

conference

proceedings

12th USENIX Symposium on
Operating Systems Design
and Implementation

Savannah, GA, USA
November 2–4, 2016

Proceedings of the 12th U
SEN

IX Sym
posium

 on Operating System
s Design and Im

plem
entation

Savannah, GA
, USA

N
ovem

ber 2–4, 2016

Sponsored by

In cooperation with ACM SIGOPS
ISBN 978-1-931971-33-1

Thanks to Our USENIX Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX Partners
Booking.com Can Stock Photo

Open Access Publishing Partner
PeerJ

USENIX Benefactors
Admin Linux Pro Magazine

© 2016 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primar-
ily for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-33-1

Thanks to Our OSDI ’16 Sponsors

Industry Partner
Free BSD Foundation

Platinum Sponsor

Diamond Sponsor

Gold Sponsors

Bronze Sponsors

Silver Sponsors

USENIX Association

November 2–4, 2016
Savannah, GA, USA

Proceedings of OSDI ’16:
12th USENIX Symposium on Operating

Systems Design and Implementation

Symposium Organizers
Program Co-Chairs
Kimberly Keeton, Hewlett Packard Labs
Timothy Roscoe, ETH Zurich

Program Committee
Nitin Agrawal, Samsung Labs
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Sujata Banerjee, Hewlett Packard Labs
Andrew Baumann, Microsoft Research Redmond
Jeff Chase, Duke University
Peter Chen, University of Michigan
Byung-Gon Chun, Seoul National University
Jeff Dean, Google
Amol Deshpande, University of Maryland
Peter Druschel, Max Planck Institute for Software Systems

(MPI-SWS)
Sasha Fedorova, University of British Columbia
Bryan Ford, École Polytechnique Fédérale de Lausanne

(EPFL)
Roxana Geambasu, Columbia University
Philip Gibbons, Carnegie Mellon University
Saikat Guha, Microsoft Research India
Gernot Heiser, NICTA and University of New South Wales
Y. Charlie Hu, Purdue University
Galen Hunt, Microsoft Research Redmond
Rebecca Isaacs, Google
Michael Kaminsky, Intel Labs
Randy Katz, University of California, Berkeley
Dejan Kostic, KTH Royal Institute of Technology
Tim Kraska, Brown University
Orran Krieger, Boston University
Phil Levis, Stanford University
Boon Loo, University of Pennsylvania
Shan Lu, University of Chicago
Petros Maniatis, Google
Z. Morley Mao, University of Michigan
Frank McSherry, ETH Zurich

James Mickens, Harvard University
Thomas Moscibroda, Microsoft Research China
Dushyanth Narayanan, Microsoft Research Cambridge
Sam H. Noh, UNIST (Ulsan National Institute of Science

& Technology)
KyoungSoo Park, Korea Advanced Institute of Science and

Technology (KAIST)
Simon Peter, The University of Texas at Austin
George Porter, University of California, San Diego
Dan Ports, University of Washington
Chris Rossbach, VMware Research and The University

of Texas at Austin
Michael Scott, University of Rochester
Margo Seltzer, Harvard School of Engineering and Applied

Sciences and Oracle
Dawn Song, University of California, Berkeley
Michael Stumm, University of Toronto
Patrick Traynor, University of Florida
Dan Tsafrir, Technion—Israel Institute of Technology
Robert Watson, University of Cambridge
Ellen Zegura, Georgia Institute of Technology
Zheng Zhang, NYU Shanghai

Poster Session Co-Chairs
George Porter, University of California, San Diego
Chris Rossbach, VMware Research and The University

of Texas at Austin

Steering Committee
Brad Chen, Google
Jason Flinn, University of Michigan
Casey Henderson, USENIX Association
Hank Levy, University of Washington
James Mickens, Harvard University
Brian Noble, University of Michigan
Margo Seltzer, Harvard School of Engineering and Applied

Sciences and Oracle
Amin Vahdat, Google and University of California,

San Diego

External Reviewers
Paarijaat Aditya
Ram Alagappan
Gustavo Alonso
Nadav Amit
Michael Andersen
Arka Bhattacharya
Kevin Butler
Michael Cahill
Joao Carreira
David Chisnall
Eslam Elnikety
Gabe Fierro
Aishwarya Ganesan
Ionel Gog
Hariharan Gopalakrishnan

Tyler Harter
Jun He
Suman Jana
Grant Hernandez
John Kolb
James Litton
Jay Lorch
Daniel Margo
Aastha Mehta
Changwoo Min
Pulkit Misra
Thomas Neumann
Gabriel Parmer
Nathan Pemberton
Thanumalayan Sankaranarayana Pillai

Bradley Reaves
Jennifer Rexford
Felix Schuster
Malte Schwarzkopf
Rijurekha Sen
Vitaly Shmatikov
Julian Shun
Viktor Vafeiadis
Anjo Vahldiek
Kapil Vaswani
Dimitrios Vytiniotis
Zev Weiss
John Wilkes
Neeraja Yadwadkar
Suli Yang

OSDI ’16:
12th USENIX Symposium on Operating Systems

Design and Implementation
Savannah, GA, USA

Message from the Program Co-Chairs . vii

Wednesday, November 2, 2016
Operating Systems I
Push-Button Verification of File Systems via Crash Refinement . .1
Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang, University of Washington

Intermittent Computation without Hardware Support or Programmer Intervention .17
Joel Van Der Woude, Sandia National Laboratories; Matthew Hicks, University of Michigan

Machine-Aware Atomic Broadcast Trees for Multicores .33
Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, and Timothy Roscoe, ETH Zurich

Light-Weight Contexts: An OS Abstraction for Safety and Performance .49
James Litton, University of Maryland, College Park and Max Planck Institute for Software Systems (MPI-SWS);
Anjo Vahldiek-Oberwagner, Eslam Elnikety, and Deepak Garg, Max Planck Institute for Software Systems
(MPI-SWS); Bobby Bhattacharjee, University of Maryland, College Park; Peter Druschel, Max Planck Institute
for Software Systems (MPI-SWS)

Cloud Systems I
Altruistic Scheduling in Multi-Resource Clusters .65
Robert Grandl, University of Wisconsin—Madison; Mosharaf Chowdhury, University of Michigan; Aditya
Akella, University of Wisconsin—Madison; Ganesh Ananthanarayanan, Microsoft

Graphene: Packing and Dependency-Aware Scheduling for Data-Parallel Clusters .81
Robert Grandl, Microsoft and University of Wisconsin—Madison; Srikanth Kandula and Sriram Rao, Microsoft;
Aditya Akella, Microsoft and University of Wisconsin—Madison; Janardhan Kulkarni, Microsoft

Firmament: Fast, Centralized Cluster Scheduling at Scale .99
Ionel Gog, University of Cambridge; Malte Schwarzkopf, MIT CSAIL; Adam Gleave and Robert N. M. Watson,
University of Cambridge; Steven Hand, Google, Inc.

Morpheus: Towards Automated SLOs for Enterprise Clusters . 117
Sangeetha Abdu Jyothi, Microsoft and University of Illinois at Urbana–Champaign; Carlo Curino, Ishai
Menache, and Shravan Matthur Narayanamurthy, Microsoft; Alexey Tumanov, Microsoft and Carnegie Mellon
University; Jonathan Yaniv, Technion—Israel Institute of Technology; Ruslan Mavlyutov, Microsoft and
University of Fribourg; Íñigo Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao, Microsoft

Transactions and Storage
The SNOW Theorem and Latency-Optimal Read-Only Transactions .135
Haonan Lu, University of Southern California; Christopher Hodsdon, University of Southern California; Khiem
Ngo, University of Southern California; Shuai Mu, New York University; Wyatt Lloyd, University of Southern
California

Correlated Crash Vulnerabilities .151
Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

(Wednesday, November 2, continues on next page)

Incremental Consistency Guarantees for Replicated Objects .169
Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi, École Polytechnique Fédérale de Lausanne
(EPFL)

FaSST: Fast, Scalable and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs . . .185
Anuj Kalia, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David G. Andersen, Carnegie Mellon
University

Networking
NetBricks: Taking the V out of NFV .203
Aurojit Panda and Sangjin Han, University of California, Berkeley; Keon Jang, Google; Melvin Walls and
Sylvia Ratnasamy, University of California, Berkeley; Scott Shenker, University of California, Berkeley, and
International Computer Science Institute

Efficient Network Reachability Analysis Using a Succinct Control Plane Representation 217
Seyed K. Fayaz and Tushar Sharma, Carnegie Mellon University; Ari Fogel, Intentionet; Ratul Mahajan,
Microsoft Research; Todd Millstein, University of California, Los Angeles; Vyas Sekar, Carnegie Mellon
University; George Varghese, University of California, Los Angeles

Simplifying Datacenter Network Debugging with PathDump .233
Praveen Tammana, University of Edinburgh; Rachit Agarwal, Cornell University; Myungjin Lee, University
of Edinburgh

Network Requirements for Resource Disaggregation .249
Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, and Sangjin Han, University of California,
Berkeley; Rachit Agarwal, Cornell University; Sylvia Ratnasamy, University of California, Berkeley; Scott
Shenker, University of California, Berkeley, and International Computer Science Institute

Thursday, November 3, 2016
Graph Processing and Machine Learning
TensorFlow: A System for Large-Scale Machine Learning .265
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng, Google Brain

Exploring the Hidden Dimension in Graph Processing .285
Mingxing Zhang, Yongwei Wu, and Kang Chen, Tsinghua University; Xuehai Qian, University of Southern
California; Xue Li and Weimin Zheng, Tsinghua University

Gemini: A Computation-Centric Distributed Graph Processing System .301
Xiaowei Zhu, Wenguang Chen, and Weimin Zheng, Tsinghua University; Xiaosong Ma, Hamad Bin Khalifa
University

Fast and Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration 317
Jiaxin Shi, Youyang Yao, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University; Feifei Li, University
of Utah

Languages and Software Engineering
REX: A Development Platform and Online Learning Approach for Runtime Emergent Software Systems . . .333
Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie, Lancaster University

Yak: A High-Performance Big-Data-Friendly Garbage Collector .349
Khanh Nguyen, Lu Fang, Guoqing Xu, and Brian Demsky; University of California, Irvine; Shan Lu, University
of Chicago; Sanazsadat Alamian, University of California, Irvine; Onur Mutlu, ETH Zurich

Shuffler: Fast and Deployable Continuous Code Re-Randomization .367
David Williams-King and Graham Gobieski, Columbia University; Kent Williams-King, University of British
Columbia; James P. Blake and Xinhao Yuan, Columbia University; Patrick Colp, University of British Columbia;
Michelle Zheng, Columbia University; Vasileios P. Kemerlis, Brown University; Junfeng Yang, Columbia
University; William Aiello, University of British Columbia

Don’t Get Caught in the Cold, Warm-up Your JVM: Understand and Eliminate JVM Warm-up Overhead
in Data-Parallel Systems .383
David Lion and Adrian Chiu, University of Toronto; Hailong Sun, Beihang University; Xin Zhuang, University
of Toronto; Nikola Grcevski, Vena Solutions; Ding Yuan, University of Toronto

Potpourri
EC-Cache: Load-Balanced, Low-Latency Cluster Caching with Online Erasure Coding 401
K. V. Rashmi, University of California, Berkeley; Mosharaf Chowdhury and Jack Kosaian, University of
Michigan; Ion Stoica and Kannan Ramchandran, University of California, Berkeley

To Waffinity and Beyond: A Scalable Architecture for Incremental Parallelization of File System Code . . .419
Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and Aditya Kulkarni, NetApp, Inc.

Clarinet: WAN-Aware Optimization for Analytics Queries .435
Raajay Viswanathan, University of Wisconsin—Madison; Ganesh Ananthanarayanan, Microsoft; Aditya Akella,
University of Wisconsin—Madison

JetStream: Cluster-Scale Parallelization of Information Flow Queries .451
Andrew Quinn, David Devecsery, Peter M. Chen, and Jason Flinn, University of Michigan

Fault Tolerance and Consensus
Just say NO to Paxos Overhead: Replacing Consensus with Network Ordering .467
Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports, University of Washington

XFT: Practical Fault Tolerance beyond Crashes .485
Shengyun Liu, National University of Defense Technology; Paolo Viotti, EURECOM; Christian Cachin,
IBM Research–Zurich; Vivien Quéma, Grenoble Institute of Technology; Marko Vukolić, IBM Research–Zurich

Realizing the Fault-Tolerance Promise of Cloud Storage Using Locks with Intent .501
Srinath Setty, Microsoft Research; Chunzhi Su, The University of Texas at Austin and Microsoft Research;
Jacob R. Lorch and Lidong Zhou, Microsoft Research; Hao Chen, Shanghai Jiao Tong University and Microsoft
Research; Parveen Patel and Jinglei Ren, Microsoft Research

Consolidating Concurrency Control and Consensus for Commits under Conflicts . 517
Shuai Mu and Lamont Nelson, New York University; Wyatt Lloyd, University of Southern California;
Jinyang Li, New York University

Friday, November 4, 2016
Security
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data .533
Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel, The University of Texas at Austin

Unobservable Communication over Fully Untrusted Infrastructure .551
Sebastian Angel, The University of Texas at Austin and New York University; Srinath Setty, Microsoft Research

Alpenhorn: Bootstrapping Secure Communication Without Leaking Metadata .571
David Lazar and Nickolai Zeldovich, MIT CSAIL

Big Data Analytics over Encrypted Datasets with Seabed .587
Antonis Papadimitriou, University of Pennsylvania and Microsoft Research India; Ranjita Bhagwan,
Nishanth Chandran, and Ramachandran Ramjee, Microsoft Research India; Andreas Haeberlen, University
of Pennsylvania; Harmeet Singh and Abhishek Modi, Microsoft Research India; Saikrishna Badrinarayanan,
University of California, Los Angeles and Microsoft Research India

(Friday, November 4, continues on next page)

Troubleshooting
Non-Intrusive Performance Profiling for Entire Software Stacks Based on the Flow Reconstruction
Principle .603
Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm, University of Toronto

Early Detection of Configuration Errors to Reduce Failure Damage .619
Tianyin Xu, Xinxin Jin, Peng Huang, and Yuanyuan Zhou, University of California, San Diego; Shan Lu,
University of Chicago; Long Jin, University of California, San Diego; Shankar Pasupathy, NetApp, Inc.

Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource Utilization Bottlenecks
in Large Scale Web Services .635
Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Margulis, Scott Michelson, Rajesh
Nishtala, Daniel Obenshain, Dmitri Perelman, and Yee Jiun Song, Facebook Inc.

Operating Systems II
CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels 653
Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo; Yale University

EbbRT: A Framework for Building Per-Application Library Operating Systems .671
Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo, Boston University

SCONE: Secure Linux Containers with Intel SGX .689
Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, and Andre Martin, Technische Universität
Dresden; Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, and Mark L Stillwell, Imperial
College London; David Goltzsche, Technische Universität Braunschweig; Dave Eyers, University of Otago;
Rüdiger Kapitza, Technische Universität Braunschweig; Peter Pietzuch, Imperial College London; Christof
Fetzer, Technische Universität Dresden

Coordinated and Efficient Huge Page Management with Ingens .705
Youngjin Kwon, Hangchen Yu, and Simon Peter, The University of Texas at Austin; Christopher J. Rossbach,
The University of Texas at Austin and VMware; Emmett Witchel, The University of Texas at Austin

Cloud Systems II
Diamond: Automating Data Management and Storage for Wide-Area, Reactive Applications 723
Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond Cheng, Ariadna Norberg, Arvind
Krishnamurthy, and Henry M. Levy, University of Washington

Slicer: Auto-Sharding for Datacenter Applications .739
Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, and Roberto Peon, Larry Kai, Alexander Shraer, and Arif Merchant,
Google; Kfir Lev-Ari, Technion—Israel Institute of Technology

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters .755
Yunqi Zhang, University of Michigan and Microsot Research; George Prekas, École Polytechnique Fédérale de
Lausanne (EPFL) and Microsoft Research; Giovanni Matteo Fumarola and Marcus Fontoura, Microsoft; Íñigo
Goiri and Ricardo Bianchini, Microsoft Research

DQBarge: Improving Data-Quality Tradeoffs in Large-Scale Internet Services .771
Michael Chow, University of Michigan; Kaushik Veeraraghavan, Facebook, Inc.; Michael Cafarella and Jason
Flinn, University of Michigan

Message from the
OSDI ’16 Program Co-Chairs

Dear colleagues,

We are delighted to welcome to you to the 12th USENIX Symposium on Operating Systems Design and Implemen-
tation, held in Savannah, GA, USA! This year’s program includes a record high 47 papers that represent the strength
of our community and cover a wide range of topics, including security, cloud computing, transaction support, stor-
age, networking, formal verification of systems, graph processing, system support for machine learning, program-
ming languages, troubleshooting, and operating systems design and implementation.

We received 260 paper submissions, which we reviewed in multiple rounds. Our program committee consisted of 48
“heavy” and “light” members with a mixture of academic and industrial research and practical experience. Papers
received 3 reviews in the first round, and we selected 109 papers to proceed to the second round. Second round
papers received a minimum of 3 further reviews. For 42 papers, where opinions were divided or where a paper was
particularly specialized, we solicited additional expert reviews in a third round. In total, the PC and external review-
ers wrote over 1160 reviews.

The submission process included a response period in which authors could answer reviewer questions and address
factual errors in the reviews. Responses had a measurable impact on PC meeting discussions, helping some papers
and hurting others. Overall, we believe responses were useful in improving the fairness of the review process and
the quality of the selected program.

After about a week of lively online discussion among the full PC, we picked 91 papers for the 26 heavy PC members
to discuss at a 1.5-day PC meeting held at the University of Washington in Seattle, WA, USA. All discussed papers
received a summary of the PC discussion. The PC’s discussion selected 47 papers for presentation at the confer-
ence, resulting in an 18% acceptance rate. We conditionally accepted all selected papers pending revisions, and the
authors and their shepherds made a significant effort to address the reviewers’ comments. Because of the improve-
ments due to the shepherding process, we deferred selection of the award papers until the final camera-ready papers
were available.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to the
authors of all submitted papers for choosing to send work of such high quality to OSDI. Thanks also to the program
committee for their many hours of hard work in reviewing and discussing the submissions and in shepherding the
accepted papers. We are also grateful to the external reviewers who provided an additional perspective on a few
papers. We thank Dan Ports and the staff at the University of Washington for hosting the PC meeting. We thank the
USENIX staff, who have been fundamental in organizing OSDI ’16. Finally, OSDI wouldn’t be what it is without its
attendees—thank you for creating and sustaining such a vibrant community!

We hope that you will find the program interesting and inspiring and trust that the conference will provide you with
a valuable opportunity to share ideas with other researchers and practitioners from institutions around the world.

Kimberly Keeton, Hewlett Packard Labs
Timothy Roscoe, ETH Zurich
OSDI ’16 Program Co-Chairs

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation vii

Push-Button Verification of File Systems via Crash Refinement

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, Xi Wang
University of Washington

Abstract
The file system is an essential operating system com-
ponent for persisting data on storage devices. Writing
bug-free file systems is non-trivial, as they must correctly
implement and maintain complex on-disk data structures
even in the presence of system crashes and reorderings
of disk operations.

This paper presents Yggdrasil, a toolkit for writing
file systems with push-button verification: Yggdrasil re-
quires no manual annotations or proofs about the im-
plementation code, and it produces a counterexample
if there is a bug. Yggdrasil achieves this automation
through a novel definition of file system correctness
called crash refinement, which requires the set of pos-
sible disk states produced by an implementation (includ-
ing states produced by crashes) to be a subset of those al-
lowed by the specification. Crash refinement is amenable
to fully automated satisfiability modulo theories (SMT)
reasoning, and enables developers to implement file sys-
tems in a modular way for verification.

With Yggdrasil, we have implemented and verified the
Yxv6 journaling file system, the Ycp file copy utility, and
the Ylog persistent log. Our experience shows that the
ease of proof and counterexample-based debugging sup-
port make Yggdrasil practical for building reliable stor-
age applications.

1 Introduction
File systems are a vital operating system service for user
applications to manage and persist data. Their correct-
ness is critical to system reliability; file system corrup-
tion can damage files and even render the disk unable to
mount [12, 13]. Correctly implementing a file system is
difficult [23], due to the need to maintain complex on-
disk data structures that must remain consistent in the
face of power failures and system crashes. Many bugs
have been found in commonly used file systems, and
have led to serious data losses [27, 35, 39, 45, 52, 54].
Such bugs are likely to continue proliferating due to the
complexity of modern storage stacks [1, 8].

Yggdrasil is a toolkit that helps programmers write file
systems and formally verify their correctness in a push-
button fashion. Yggdrasil asks programmers for three in-
puts: a specification of the expected behavior, an imple-

mentation, and consistency invariants indicating whether
a file system image is in a consistent state. It then per-
forms verification to check if the implementation meets
the specification. If there is a bug, Yggdrasil produces
a counterexample to help identify and fix the cause. If
the verification passes, Yggdrasil produces an executable
file system. It requires no manual annotations or proofs
about the implementation code.

A key challenge for push-button file system verifica-
tion is to minimize the proof burden. One approach to
verified file systems is to ask programmers to construct a
proof of implementation correctness using an interactive
theorem prover such as Coq [11] or Isabelle [33]. Pio-
neering work in this direction includes COGENT [2, 34],
Flashix [16, 47], and FSCQ [7], which are impressive
engineering achievements. However, writing proofs re-
quires both a high degree of expertise and a significant
time investment. For instance, Amani et al. reported that
verifying two operations of the BilbyFs file system took
9.25 person months, writing 13,000 lines of proof for
1,350 lines of code [2]. Verifying the FSCQ file sys-
tem took Chen et al. 1.5 years; the code size is 10×
that of xv6, an unverified file system with similar fea-
tures [7]. To free programmers from such a proof burden,
Yggdrasil provides fully automated reasoning.

Conceptually, showing that a file system is correct in-
volves exploring its behavior along all execution paths
and against all possible disk states. In practice, such ex-
haustive exploration is intractable: file systems operate
on massive inputs (e.g., entire disks); their code often
has many execution paths; and non-determinism adds
even more complexity, since one needs to reason about
crashes at arbitrary points during execution and reorder-
ings of writes due to the disk cache. Existing file-system
automated reasoning tools [52–54] therefore focus on
bug finding rather than verification.

Yggdrasil scales up automated reasoning for verify-
ing file systems with the idea of crash refinement, a new
definition of file system correctness. Crash refinement
captures the notion that even in the presence of non-
determinism, such as system crashes and reordering of
writes, any disk state produced by a correct implementa-
tion must also be producible by the specification (see §3
for a formal definition). This definition is amenable to ef-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 1

ficient satisfiability modulo theories (SMT) reasoning, an
extension of boolean satisfiability. Yggdrasil formulates
file system verification as an SMT problem and invokes
a state-of-the-art SMT solver (Z3 [15]) to fully automate
the proof process.

SMT reasoning is not, by itself, a push-button solu-
tion; building verified file systems also requires careful
design. Crash refinement enables programmers to im-
plement file systems by stacking layers of abstraction:
if an implementation is a crash refinement of an (often
much simpler) specification, they are indistinguishable
to higher layers. The higher layers can use lower specifi-
cations without reasoning about the implementation de-
tails. This modular design allows Yggdrasil to verify a
file system by exhausting all execution paths within a
layer while avoiding path explosion between layers.

In addition, crash refinement enables transparent
switching between different implementations that satisfy
the same specification. Programmers can use simple data
structures for verification, and then refine them to more
efficient versions with the same correctness guarantees.
Separating logical and physical concerns in this fashion
allows Yggdrasil to verify complex, high-performance
on-disk data structures.

We have used Yggdrasil to implement and verify
Yxv6+sync, a journaling file system that resembles
xv6 [14] and FSCQ [7], and Yxv6+group_commit, an
optimized variant with relaxed crash consistency [5, 37].
To demonstrate Yggdrasil on a broader set of applica-
tions, we have built Ycp, a file copy utility on top of
Yxv6; and Ylog, which resembles the persistent log from
the Arrakis operating system [36]. We have also built
general-purpose “peephole optimizers” [28] for file sys-
tem code (e.g., removing superfluous disk flushes). We
believe that the ease of verification makes Yggdrasil at-
tractive for building verified storage applications.

We have been using the Yxv6 file system, which runs
on top of FUSE [17], to self-host Yggdrasil’s daily devel-
opment on Linux. It has passed fsstress from the Linux
Test Project [26] and the SibylFS POSIX conformance
tests [42] (except for incomplete features, such as hard
links and extended attributes). We have found its per-
formance to be reasonable: within 10× of ext4’s default
configuration and 3–150× faster than FSCQ. Yggdrasil
focuses on single-threaded systems; verifying concurrent
implementations is beyond the scope of this paper.

This paper makes the following contributions:
• a formalization of file system crash refinement that

is amenable to fully automated SMT reasoning;
• the Yggdrasil toolkit for building verified file sys-

tems through crash refinement; and
• a case study of building the Yxv6 file system and

several other storage programs using Yggdrasil.

specification implementation consistency
invariants

verifier

compiler optimizer visualizer

C code for
file system + fsck

counterexample

failpass

Figure 1: The Yggdrasil development flow. Rectangular boxes
(within the dashed frame) denote input written by program-
mers; rounded boxes denote Yggdrasil’s components; and
curved boxes denote output. Shaded boxes are trusted to be
correct and the rest are untrusted.

The rest of the paper is organized as follows. §2 gives
a walkthrough of Yggdrasil’s usage. §3 presents formal
definitions and the main components. §4 describes the
Yxv6 file system and §5 describes other storage appli-
cations built using Yggdrasil. §6 discusses Yggdrasil’s
limitations and our experience. §7 provides implemen-
tation details. §8 evaluates correctness and performance.
§9 relates Yggdrasil to prior work. §10 concludes.

2 Overview
Figure 1 shows the Yggdrasil development flow. Pro-
grammers write the specification, implementation, and
consistency invariants all in the same language (a subset
of Python in our current prototype; see §3.2). If there
is any bug in the implementation or consistency invari-
ants, the verifier generates a counterexample to visualize
it. For better run-time performance, Yggdrasil optionally
performs optimizations (either built-in or written by de-
velopers) and re-verifies the code. Once the verification
passes, Yggdrasil emits C code, which is then compiled
and linked using a C compiler to produce an executable
file system, as well as an fsck checker.

This section gives an overview of each of these steps,
using a toy file system called YminLFS as a running ex-
ample. We will show how to specify, implement, verify,
and debug it; how to optimize its performance; and how
to get a running file system mounted via FUSE [17].

YminLFS is a log-structured file system [44]. It is kept
minimal for demonstration purposes: there are no seg-
ments, subdirectories, or garbage collection, and files are
zero-sized (no read, write, or unlink). But its core func-
tionality is still tricky to implement correctly due to non-
determinism and corner cases like overflows. In fact, the
verifier caught two bugs in our initial implementation.
The development of YminLFS took one of the authors
less than four hours, as detailed next.

2 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.1 Specification

In Yggdrasil, a file system specification consists of three
parts: an abstract data structure representing the logical
layout, a set of operations over this data structure to de-
fine the intended behavior, and an equivalence predicate
that defines whether a given implementation satisfies the
specification.

Abstract data structure. We start by specifying the
abstract data structure for YminLFS:

class FSSpec(BaseSpec):
def __init__(self):

self._childmap = Map((InoT, NameT), InoT)
self._parentmap = Map(InoT, InoT)
self._mtimemap = Map(InoT, U64T)
self._modemap = Map(InoT, U64T)
self._sizemap = Map(InoT, U64T)

The state of the data structure is described by five
abstract maps, created by calling the Map constructor
with abstract types specifying the map’s domain and
range. The childmap maps a directory inode number
and a name to a child inode number; parentmap maps
an inode number back to its parent directory’s inode
number; and the remaining maps store inode metadata
(mtime, mode, and size). Both InoT and U64T are 64-bit
integer types, and NameT is a string type.

The FSSpec data structure itself places only weak con-
straints on the logical layout of YminLFS. For exam-
ple, it does not rule out layouts in which an inode d con-
tains an inode f according to the childmap, but f is not
contained in d according to the parentmap. The FSSpec

specification disallows such invalid layouts with a well-
formedness invariant:

def invariant(self):
ino, name = InoT(), NameT()
return ForAll([ino, name], Implies(
self._childmap[(ino, name)] > 0,
self._parentmap[self._childmap[(ino, name)]] == ino))

The invariant says that the parent and child mappings
of valid (positive) inode numbers agree with each other.
Both ForAll and Implies are built-in logical operators.

File system operations. Given our logical layout, we
can now specify the desired behavior of file system op-
erations. Read-only operations, such as lookup and stat,
are easy to define:

def lookup(self, parent, name):
ino = self._childmap[(parent, name)]
return ino if ino > 0 else -errno.ENOENT

def stat(self, ino):
return Stat(size=self._sizemap[ino],

mode=self._modemap[ino],
mtime=self._mtimemap[ino])

Operations that modify the file system are more complex,
as they involve updating the state of the abstract maps.

For example, to add a new file to a given directory, mknod
needs to update all abstract maps as follows:

def mknod(self, parent, name, mtime, mode):
Name must not exist in parent.
if self._childmap[(parent, name)] > 0:

return -errno.EEXIST

The new ino must be valid & not already exist.
ino = InoT()
assertion(ino > 0)
assertion(Not(self._parentmap[ino] > 0))

with self.transaction():
Update the directory structure.
self._childmap[(parent, name)] = ino
self._parentmap[ino] = parent
Initialize inode metadata.
self._mtimemap[ino] = mtime
self._modemap[ino] = mode
self._sizemap[ino] = 0

return ino

The InoT() constructor returns an abstract inode number,
which is constrained to be valid (i.e., positive) and not
present in any directory. The changes to the file system
are wrapped in a transaction to ensure that they happen
atomically or not at all (if the system crashes).

State equivalence predicate. The last part of our
YminLFS specification defines what it means for a given
file system state to be correct:

def equivalence(self, impl):
ino, name = InoT(), NameT()
return ForAll([ino, name], And(

self.lookup(ino, name) == impl.lookup(ino, name),
Implies(self.lookup(ino, name) > 0,

self.stat(self.lookup(ino, name)) ==
impl.stat(impl.lookup(ino, name)))))

In particular, we require a correct implementation to con-
tain the same files as the abstract data structure, and each
file to have the same metadata as its abstract counterpart.

Putting it all together. With our toy specification
completed, we now highlight two key features of the
Yggdrasil specification approach. First, Yggdrasil speci-
fications are free of implementation details and are there-
fore reusable. The FSSpec data structure does not man-
date any particular on-disk layout, nor does it force the
implementation to be, for example, a log-structured file
system. In fact, our Yxv6 journaling file system is built
on top of an extension of this specification (see §4).

Second, Yggdrasil specifications are both succinct and
expressive. For example, the specification of mknod pro-
vides two deep properties in just a few lines of code:
crash-free functional correctness (i.e., a file will be cre-
ated with the correct metadata if there is no crash); and
crash safety (i.e., file creation is all-or-nothing even in
the face of crashes).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 3

b0 b1 b2 b3 b4 b5 b6 · · ·

SB I1 M

(a) The initial disk state of an empty root directory.

b0 b1 b2 b3 b4 b5 b6 · · ·

SB I1 M I2 D I ′1 M ′

(b) The disk state after adding one file.

Figure 2: YminLFS’s on-disk layout. SB is the superblock; I
denotes an inode block; M denotes an inode mapping block;
D denotes a data block; arrows denote pointers.

2.2 Implementation

To implement a file system in Yggdrasil, the programmer
needs to choose a disk model, write the code for each
specified operation, and write the consistency invariants
for the on-disk layout. We describe the disk model next,
followed by a brief overview of the implementation and
consistency invariants for YminLFS. We omit full imple-
mentation details (200 lines of Python) for space reasons.

Disk model. Yggdrasil provides several disk models:
YminLFS (as well as Yxv6) uses the asynchronous disk
model; we will use a synchronous one in §5. The asyn-
chronous disk model specifies a block device that has an
unbounded volatile cache and allows arbitrary reorder-
ing. Its interface includes the following operations:

• d.write(a, v): write a data block v to disk address a;
• d.read(a): return a data block at disk address a; and
• d.flush(): flush the disk cache.

This disk model is trusted to be a correct specification
of the underlying physical disk, as we discuss in §4.2.
Unless otherwise specified, we assume 64-bit block ad-
dresses and 4 KB blocks. We also assume that a single
block read/write is atomic, similar to prior work [7, 37].

A log-structured file system. YminLFS is imple-
mented as a log-structured file system that works in
a copy-on-write fashion. In particular, it does not
overwrite existing blocks (except for the superblock in
block zero); it has no garbage collection; and it simply
fails when it runs out of blocks, inodes, or directory en-
tries. Its interface provides a mkfs operation for initial-
izing the disk, as well as the operations for reading and
modifying the file system state that we specified in §2.1.

The mkfs operation initializes the disk as shown in Fig-
ure 2a. The effect of the operation is to create a file sys-
tem with a single empty root directory. This involves
writing three blocks: the superblock, an inode I1 for the
root directory, and an inode mapping M that stores the
mapping from inode numbers to block numbers. After

initialization, M has one entry, 1 7→ b1, and I1 points to
no data blocks, as the root directory is empty. The su-
perblock points to M , and it stores two additional coun-
ters: the next available inode number i (which is initial-
ized to 2 since the root is 1) and the next available block
number b (which is initialized to 3).

To add a file to the root directory, mknod changes the
disk state from Figure 2a to Figure 2b, as follows:

1. add an inode block I2 for the new file;
2. add a data block D for the root directory, which now

has one entry that maps the name of the new file to
its inode number 2;

3. add an inode block I ′1 for the updated root directory,
which points to its data block D;

4. add an inode mapping block M ′, which has two en-
tries: 1 7→ b5 and 2 7→ b3;

5. finally, update the superblock SB to point to the lat-
est inode mapping M ′.

Since the disk can reorder these updates, mknod must is-
sue disk flushes to be crash-safe. For example, if there
is no flush between the last two writes (steps 4 and 5),
the disk can reorder them; if the system crashes in be-
tween the reordered writes, the superblock will point to
garbage data in b6, resulting in corrupted YminLFS state.
For now, we assume a naïve but correct implementation
of mknod that inserts five flushes, one after each write. In
§2.4, we will use the Yggdrasil optimizer to remove the
first three flushes.

Consistency invariants. A consistency invariant for
a file system implementation is analogous to the well-
formedness invariant for its specification—it is a pred-
icate that determines whether a given disk state corre-
sponds to a valid file-system image. Yggdrasil uses con-
sistency invariants for two purposes: push-button verifi-
cation and run-time checking in the style of fsck [20, 30].
For verification, Yggdrasil checks that the invariant holds
for the initial file system state right after mkfs; in addi-
tion, it assumes the consistency invariant as part of the
precondition for each operation, and checks that the in-
variant holds as part of the postcondition. Once the im-
plementation is verified, Yggdrasil can optionally gen-
erate an fsck-like checker from these invariants (though
the checker cannot repair corrupted file systems). Such a
checker is useful even for a bug-free file system, as hard-
ware failures and bugs in other parts of the system can
damage the file system [40].

The YminLFS consistency invariant constrains three
components of the on-disk layout (Figure 2): the su-
perblock SB, the inode mapping block M , and the root
directory data block D. The superblock constraint re-
quires the next available inode number i to be greater
than 1, the next available block number b to be greater
than 2, and the pointer to M to be both positive and
smaller than b. The inode mapping constraint ensures

4 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that M maps each inode number in range (0, i) to a block
number in range (0, b). Finally, the root directory con-
straint requires D to map file names to inode numbers
in range (0, i). These three constraints are all Yggdrasil
needs to verify YminLFS (see §2.3).

2.3 Verification

To verify that the YminLFS implementation (§2.2) sat-
isfies the FSSpec specification (§2.1), Yggdrasil uses the
Z3 solver [15] to prove a two-part crash refinement theo-
rem (§3). The first part of the theorem deals with crash-
free executions. It requires the implementation and spec-
ification to behave alike in the absence of crashes: if both
YminLFS and FSSpec start in equivalent and consistent
states, they end up in equivalent and consistent states.
The verifier defines equivalence using the specification’s
equivalent predicate (§2.1), and consistency using the
implementation’s consistency invariants (§2.2).

The second part of the theorem deals with crashing
executions. It requires the implementation to exhibit no
more crash states (disk states after a crash) than the spec-
ification: each possible state of the YminLFS implemen-
tation (including states caused by crashes and reordered
writes) must be equivalent to some crash state of FSSpec.

Counterexamples. If there is any bug in the imple-
mentation or consistency invariants, the verifier will gen-
erate a counterexample to help programmers understand
the bug. A counterexample consists of a concrete trace
of the implementation that violates the crash refinement
theorem. As an example, consider the potential missing
flush bug described in §2.2. If we remove the flush
between the last two writes in the implementation of
mknod, Yggdrasil outputs the following counterexample:

Pending writes
lfs.py:167 mknod write(new_imap_blkno, imap)

Synchronized writes
lfs.py:148 mknod write(new_blkno, new_ino)
lfs.py:154 mknod write(new_parentdata, parentdata)
lfs.py:160 mknod write(new_parentblkno, parentinode)
lfs.py:170 mknod write(SUPERBLOCK, sb)

Crash point
[..]
lfs.py:171 mknod flush()

The output describes the bug by showing the point at
which the system crashes and the list of writes pending
in the cache (along with their source code locations). In
this example, the write of the new inode mapping block
(step 4 above) is still pending, but the write to update the
superblock to point to that block (step 5) has reached the
disk, corrupting YminLFS’s state.

The visualization of “pending” and “synchronized”
writes in the counterexample is specific to the asyn-
chronous disk model; one can extend Yggdrasil with new
disk models and customized visualizations.

Our initial YminLFS implementation contained two
other bugs: one in the lookup logic and one in the data
layout. Neither of the bugs appeared during testing runs.
Both bugs were found by the verifier in a matter of sec-
onds, and we quickly localized and fixed them by exam-
ining the resulting counterexamples.

Proofs. If the Yggdrasil verifier finds no counterexam-
ples to the crash refinement theorem, then none exist, and
we have obtained a proof of correctness. In particular,
the crash refinement theorem holds for all disks with up
to 264 blocks, and for every trace of file system opera-
tions, regardless of its length. After we fixed the bugs in
our initial YminLFS implementation, the verifier proved
its correctness in under 30 seconds.

It is worth noting that the theorem holds if the file sys-
tem is the only user of the disk. For instance, it does not
hold if an adversary corrupted the file system image by
directly modifying the disk. To address this issue, one
can run fsck generated by Yggdrasil, which guarantees
to detect any such inconsistencies.

2.4 Optimizations and compilation

As described in §2.2, YminLFS’s mknod implementation
uses five disk flushes. Yggdrasil provides a greedy opti-
mizer that tries to remove every disk flush and re-verify
the code. Running the optimizer on the mknod code re-
moves three out of the five flushes within three minutes,
while still guaranteeing correctness.

The optimized and verified YminLFS implementation,
which is in Python, is executable but slow. Yggdrasil
invokes the Cython compiler [3] to generate C code from
Python for better performance. It also provides a small
bridge to connect the generated C code to FUSE [17].
The result is a single-threaded user-space file system.

2.5 Summary

We have demonstrated how to specify, implement, de-
bug, verify, optimize, and execute the YminLFS file sys-
tem using Yggdrasil. Compared to previous file sys-
tem verification work, push-button verification eases the
proof burden and enables automated features such as vi-
sualizing bugs and optimizing code.

Since there is no need to manually prove or annotate
implementation code when using Yggdrasil, the verifi-
cation effort is spent mainly on writing the specification
and coming up with consistency invariants about the on-
disk data format. We find the counterexample visualizer
useful for finding bugs in these two parts.

The trusted computing base (TCB) includes the file
system specification, Yggdrasil’s verifier, visualizer, and
compiler (but not the optimizer), their dependencies (i.e.,
the Z3 solver, Python, and gcc), as well as FUSE and the
Linux kernel. See §6 for discussion on limitations.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 5

3 The Yggdrasil architecture
In Yggdrasil, the core notion of correctness is crash re-
finement. This section gives a formal definition of crash
refinement, and describes how Yggdrasil’s components
use this definition to support verification, counterexam-
ple visualization, and optimization.

3.1 Reasoning about systems with crashes

In Yggdrasil, programmers write both specifications and
implementations (referred to as “systems” in this section)
as state machines: each system comprises a state and a
set of operations that transition the state. A transition
can occur only if the system is in a consistent state, as
determined by its consistency invariant I. This invariant
is a predicate over the system’s state, indicating whether
it is consistent or corrupted; see §2.2 for an example.

Consider a specification F0 and an implementation
F1. Our goal is to show that F1 is correct with respect
to F0. Since both systems are state machines, a straw-
man definition of correctness is that they transition in
lock step (i.e., bisimulation): starting from equivalent
consistent states, if the same operation is invoked on
both systems, they will transition to equivalent consistent
states (where equivalence between states is defined by a
system-specific predicate). However, this bisimulation-
based definition is too strong for systems that interact
with external storage, as it does not account for non-
determinism from disk reorderings, crashes, or recovery.

To address this shortcoming, we introduce crash re-
finement as a new definition of correctness. At a high
level, crash refinement says that F1 is correct with re-
spect to F0 if, starting from equivalent consistent states
and invoking the same operation on both systems, any
state produced by F1 is equivalent to some state produced
by F0. To formalize this intuition, we define the behav-
ior of a system in the presence of crashes, formalize crash
refinement for individual operations, and extend the re-
sulting definition to entire systems.

System operations. We model the behavior of a sys-
tem operation with a function f that takes three inputs:

• its current state s;
• an external input x, such as data to write; and
• a crash schedule b, which is a set of boolean values

denoting the occurrence of crash events.
Applying f to these inputs, written as f(s,x, b), pro-
duces the next state of the system.

As a concrete example, consider a single disk write
operation that writes value v to disk address a. The ex-
ternal input to the write operation’s function fw is the
pair (a, v). The state s is the disk content before the
write; s(a) gives the old value at the address a. The
asynchronous disk model in Yggdrasil generates a pair of
boolean values (on, sync) as the crash schedule. The on

value indicates whether the write operation completed
successfully by storing its data into the volatile cache.
The sync value indicates whether the write’s effect has
been synchronized from the volatile cache to stable stor-
age. After executing the write operation, the disk is up-
dated to contain v at the address a only if both on and
sync are true, and left unchanged otherwise (e.g., the
system crashed before completing the write, or before
synchronizing it to stable storage):

fw(s,x, b) = s[a 7→ if on ∧ sync then v else s(a)],

where x = (a, v) and b = (on, sync).

Crash refinement. To define crash refinement for a
given schedule, we start from a special case where write
operations always complete and their effects are synchro-
nized to disk. That is, the crash schedule is the constant
vector true . Let s0 ∼ s1 denote that s0 and s1 are equiv-
alent states according to a user-defined equivalence rela-
tion (as in §2.1). We write s0 ∼I0,I1 s1 to say that s0
and s1 are equivalent and consistent according to their
respective system invariants I0 and I1:

s0 ∼I0,I1 s1 , I0(s0) ∧ I1(s1) ∧ s0 ∼ s1.

With a crash-free schedule true , two functions f0 and f1
are equivalent if they produce equivalent and consistent
output states when given the same external input x, as
well as equivalent and consistent starting states:

Definition 1 (Crash-free equivalence). Given two func-
tions f0 and f1 with their system consistency invariants
I0 and I1, respectively, we say f0 and f1 are crash-free
equivalent if the following holds:

∀s0, s1,x. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, true) and s′1 = f1(s1,x, true).

Next, we allow for the possibility of crashes. We say
that f1 is correct with respect to f0 if, for any crash
schedule, the state produced by f1 with that schedule is
equivalent to a state produced by f0 with some schedule:

Definition 2 (Crash refinement without recovery). Func-
tion f1 is a crash refinement (without recovery) of f0 if
(1) f0 and f1 are crash-free equivalent and (2) the fol-
lowing holds:

∀s0, s1,x, b1. ∃b0. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, b0) and s′1 = f1(s1,x, b1).

Finally, we consider the possibility that the system
may run a recovery function upon reboot. A recovery
function r is a system operation (as defined above) that
takes no external input (as it is executed when the system
starts). It should also be idempotent: even if the system
crashes during recovery and re-runs the recovery func-
tion many times, the resulting state should be the same
once the recovery is complete.

6 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Definition 3 (Recovery idempotence). A recovery func-
tion r is idempotent if the following holds:

∀s, b. r(s, true) = r(r(s, b), true).

Note that this definition accounts for multiple crash-
reboot cycles during recovery, by repeated application
of the idempotence definition on each intermediate crash
state r(s, b), r(r(s, b), b′), . . . , where b, b′, . . . are the
schedules for each crash during recovery.

Definition 4 (Crash refinement with recovery). Given
two functions f0 and f1, their system consistency invari-
ants I0 and I1, respectively, and a recovery function r,
f1 with r is a crash refinement of f0 if (1) f0 and f1
are crash-free equivalent; (2) r is idempotent; and (3) the
following holds:

∀s0, s1,x, b1. ∃b0. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, b0) and s′1 = r(f1(s1,x, b1), true).

Furthermore, systems may run background operations
that do not change the externally visible state of a sys-
tem (i.e., no-ops), such as garbage collection.

Definition 5 (No-op). Function f with a recovery func-
tion r is a no-op if (1) r is idempotent, and (2) the fol-
lowing holds:

∀s0, s1,x, b1. (s0 ∼I0,I1 s1)⇒ (s0 ∼I0,I1 s′1)

where s′1 = r(f(s1,x, b1), true).

With per-function crash refinement and no-ops, we can
now define crash refinement for entire systems.

Definition 6 (System crash refinement). Given two sys-
tems F0 and F1, and a recovery function r, F1 is a crash
refinement of F0 if every function in F1 with r is either a
crash refinement of the corresponding function in F0 or
a no-op.

The rest of this section will describe Yggdrasil’s compo-
nents based on the definition of crash refinement.

3.2 The verifier

Given two file systems, F0 and F1, Yggdrasil’s verifier
checks that F1 is a crash refinement of F0 according to
Definition 6. To do so, the verifier performs symbolic
execution [6, 24] for each operation fi ∈ Fi to obtain
an SMT encoding of the operation’s output, fi(si,x, bi),
when applied to a symbolic input x (represented as a
bitvector), symbolic disk state si (represented as an un-
interpreted function over bitvectors), and symbolic crash
schedule bi (represented as booleans). It then invokes
the Z3 solver to check the validity of either the no-op
identity (Definition 5) if f1 is a no-op, or else the per-
function crash refinement formula (Definition 4) for the
corresponding functions f0 ∈ F0 and f1 ∈ F1.

To capture all execution paths in the SMT encoding of
fi(si,x, bi), the verifier adopts a “self-finitizing” sym-
bolic execution scheme [49], which simply unrolls loops
and recursion without bounding the depth. Since this
scheme will fail to terminate on non-finite code, the ver-
ifier requires file systems to be implemented in a finite
way: for instance, loops must be bounded [50]. In our
experience (further discussed in §4), the finiteness re-
quirement does not add much programming burden.

To prove the validity of the per-function crash refine-
ment formula, the verifier uses Z3 to check if the for-
mula’s negation is unsatisfiable. If so, the result is a
proof that f1 is a crash refinement of f0. Otherwise, Z3
produces a model of the formula’s negation, which rep-
resents a concrete counterexample to crash refinement:
disk states s0 and s1, an input x, and a crash schedule
b1, such that s0 ∼I0,I1

s1 but there is no crash schedule
b0 that satisfies f0(s0,x, b0) ∼I0,I1

f1(s1,x, b1).
Checking the satisfiability of the negated crash refine-

ment formula in Definition 4 requires reasoning about
quantifiers. In general, such queries are undecidable. In
our case, the problem is decidable because the quantifiers
range over finite domains, and the formula is expressed
in a decidable combination of decidable theories (i.e.,
equality with uninterpreted functions and fixed-width
bitvectors) [51]. Moreover, Z3 can solve this problem in
practice because the crash schedule b0, which is a set of
boolean variables, is the only universally quantified vari-
able in the negated formula. As many file system specifi-
cations have simple semantics, the crash schedule b0 has
few boolean variables—often only one (e.g., the transac-
tion in §2.1)—which makes the reasoning efficient.

The verifier’s symbolic execution engine supports all
regular Python code with concrete (i.e., non-symbolic)
values. For symbolic values, it supports booleans, fixed-
width integers, maps, and lists of concrete length, as well
as regular control flow including conditionals and loops,
but no exceptions or coroutines. It does not support sym-
bolic execution into C library code.

3.3 The counterexample visualizer

To make counterexamples to validity easier to under-
stand, Yggdrasil provides a visualizer for the asyn-
chronous disk model. Given a counterexample model of
the formula in Definition 4, the visualizer produces con-
crete disk event traces (e.g., see §2.3) as follows. First,
it uses the crash schedule b1 to identify the boolean vari-
able on that indicates where the system crashed, and
relates that location to the implementation source code
with a stack trace. Second, it evaluates the boolean sync
variables that indicate whether a write is synchronized
to disk, and prints out the pending writes with their cor-
responding source locations to help identify unintended
reorderings. Yggdrasil also allows programmers to sup-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 7

ply their own plugin visualizer for data structures specific
to their file system images. We found this facility useful
when developing YminLFS and Yxv6.

3.4 The optimizer

The Yggdrasil optimizer improves the run-time perfor-
mance of implementation code. Yggdrasil treats the op-
timizer as untrusted and re-verifies the optimized code it
generates. This simple design, made possible by push-
button verification, allows programmers to plug in cus-
tom optimizations without the burden of supplying a cor-
rectness proof. We provide one built-in optimization that
greedily removes disk flush operations (see §2.4), imple-
mented by rewriting the Python abstract syntax tree.

4 The Yxv6 file system
The section describes the design, implementation, and
verification of the Yxv6 journaling file system. At a
high level, verifying the correctness of Yxv6 requires
Yggdrasil to obtain an SMT encoding of both the specifi-
cation and implementation through symbolic execution,
and to invoke an SMT solver to prove the crash refine-
ment theorem. A simple approach, used by YminLFS in
§2, is to directly prove crash refinement between the en-
tire file system specification and implementation. How-
ever, the complexity of Yxv6 makes such a proof in-
tractable for state-of-the-art SMT solvers. To address this
issue, Yxv6 employs a modular design enabled by crash
refinement to scale up SMT reasoning.

4.1 Design overview

Yxv6 uses crash refinement to achieve scalable SMT rea-
soning in three steps. First, to reduce the size of SMT
encodings, Yxv6 stacks five layers of abstraction, each
consisting of a specification and implementation, starting
with an asynchronous disk specification (§4.2). We use
Yggdrasil to prove crash refinement theorems for each
layer, showing that each correctly implements its specifi-
cation. Upper layers then use the specifications of lower
layers, rather than their implementations, in order to ac-
celerate verification. This layered approach effectively
bounds the reasoning to a single layer at a time.

Second, many file system operations touch only a
small part of the disk. To allow the SMT solver to ex-
ploit this locality, Yxv6 explicitly uses multiple separate
disks rather than one. For example, by storing the free
bitmap on a separate disk, the SMT solver can easily
infer that updating it does not affect the rest of the file
system. We then prove crash refinement from this multi-
disk system to a more space-efficient file system that uses
only a single disk (§4.3). The result of these first two
steps is Yxv6+sync, a synchronous file system that com-
mits a transaction for each system call (by forcing the log
to disk), similar to xv6 [14] and FSCQ [7].

regular files, symbolic
links, and directories

Yxv6 files

inodes

Yxv6 inodes

virtual trans-
actional disk

block pointer

transactional disk

write-ahead logging

asynchronous disk

block device
Axiom 1

Theorem 2

Theorem 3

Theorem 4

Theorem 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 3: The stack of layers of Yxv6. Within each layer, a
shaded box represents the specification; a (white) box repre-
sents the implementation; and the implementation is a crash
refinement of its specification, denoted using an arrow. Each
implementation (except for the lowest layer) builds on top of a
specification from the layer below, denoted using a circle.

Finally, for better run-time performance, we imple-
ment an optimized variant of Yxv6+sync that groups
multiple system calls into one transaction [19] and com-
mits only when the log is full or upon fsync. We prove
the resulting file system, called Yxv6+group_commit, is
a crash refinement of Yxv6+sync with a more relaxed
crash consistency model (§4.4).

4.2 Stacking layers of abstraction

Figure 3 shows the five abstraction layers of Yxv6. Each
layer consists of a specification and an implementation
that is written using a lower-level specification. We de-
scribe each of these layers in turn.

Layer 1: Asynchronous disk. The lowest layer of the
stack is a specification of an asynchronous disk. This
specification comprises the asynchronous disk model we
used in §2.2 to implement YminLFS. Since the imple-
mentation of a physical block device is opaque, we as-
sume the specification correctly models the block de-
vice (i.e., the specification is more conservative and al-
lows more behavior than real hardware), as follows:

Axiom 1. A block device is a crash refinement of the
asynchronous disk specification.

Layer 2: Transactional disk. The next layer intro-
duces the abstraction of a transactional disk, which man-

8 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ages multiple separate data disks, and offers the follow-
ing operations:

• d.begin_tx() starts a transaction;
• d.commit_tx() commits a transaction;
• d.write_tx(j, a, v) adds to the current transaction a

write of value v to address a on disk j; and
• d.read(j, a) returns the value at address a on disk j.

The specification says that operations executed within
the same transaction are atomic (i.e., all-or-nothing) and
sequential (i.e., transactions cannot be reordered).

The implementation uses the standard write-ahead
logging technique [19, 31]. It uses one asynchronous
disk (from layer 1) for the log, and a set of asynchronous
disks for data. Using a single transactional disk to man-
age multiple data disks allows higher layers to separate
writes within a transaction (e.g., updates to data and
inode blocks will not interfere), which helps scale SMT
reasoning; §4.3 refines the multiple disks to one.

The implementation is parameterized by the transac-
tion size limit k (i.e., the maximum number of writes in
one transaction). The log disk uses a fixed number of
blocks, determined by k, as a header to store log entry
addresses, and the remaining blocks to store log entry
data. The first entry in the first header block is a counter
of log entries; the consistency invariant for the transac-
tional disk layer says that this counter is always zero after
recovery. The Yxv6+sync file system sets k = 10, while
Yxv6+group_commit sets k = 511. For each of these
settings, we prove the following theorem:

Theorem 2. The write-ahead logging implementation is
a crash refinement of the transactional disk specification.

Layer 3: Virtual transactional disk. The specifica-
tion of the virtual transactional disk is similar to that
of the transactional disk, but instead uses 64-bit virtual
disk addresses [22]. Each virtual address can be mapped
to a physical disk address or unmapped later; reads and
writes are valid for mapped addresses only. We will use
this abstraction to implement inodes in the upper layer.

The virtual transactional disk implementation uses the
standard block pointers approach. It uses one transac-
tional disk managing at least three data disks: one to
store the free block bitmap, another to store direct block
pointers, and the third to store both data and singly in-
direct block pointers (higher layers will add additional
disks). The free block bitmap disk stores only one bit in
each of its blocks, which simplifies SMT reasoning but
wastes disk space; §4.3 will refine it to a more space-
efficient version.

The implementation relies on two consistency invari-
ants: (1) the mapping from virtual disk addresses to
physical disk addresses is injective (i.e., each physical
address is mapped at most once), and (2) if a virtual disk
address is mapped to physical address a, the ath bit in

the block bitmap must be marked as used. We use these
invariants to prove the following theorem:

Theorem 3. The block pointer implementation is a crash
refinement of the virtual transactional disk specification.

Layer 4: Inodes. The fourth layer introduces the ab-
straction of inodes. Each inode is uniquely identified us-
ing a 32-bit inode number. The specification maps an
inode number to 232 blocks, and to a set of metadata such
as size, mtime, and mode.

The implementation is straightforward thanks to the
virtual transactional disk specification. It simply splits
the 64-bit virtual disk address space into 232 ranges,
and each inode takes one range, which has 232 “virtual”
blocks, similar to NVMFS/DFS [22]. Inode metadata re-
sides on a separate disk managed by the virtual transac-
tional disk (which now has four data disks). There are no
consistency invariants in this layer. We prove the follow-
ing theorem:

Theorem 4. The Yxv6 inode implementation is a crash
refinement of the inode specification.

Layer 5: File system. The top layer of the file system
is an extended version of FSSpec given in §2, with regular
files, directories, and symbolic links.

The implementation builds on top of the inode speci-
fication, using a separate inode bitmap disk and another
for orphan inodes. Both are managed by the virtual trans-
actional disk (which now has six data disks plus the log
disk, giving a total of seven disks). There are two consis-
tency invariants: (1) if an inode is not marked as used in
the inode bitmap disk, its size must be zero in the meta-
data; and (2) if an inode has n blocks, no “virtual” block
larger than n is mapped. Using these invariants, we prove
the final crash refinement theorem:

Theorem 5. The Yxv6 implementation of files is a crash
refinement of the specification of regular files, symbolic
links, and directories.

Finitization. The Yggdrasil verifier requires Yxv6 op-
erations to be finite, as mentioned in §3.2. Most file sys-
tem operations satisfy this requirement, as they use only
a small number of disk reads and writes. For example,
moving a file involves updating only the source and des-
tination directories. However, there are two exceptions.

First, search-related procedures, such as finding a free
bit in a bitmap, may need to read many blocks. We
choose not to verify the bit-finding algorithm, but in-
stead adopt the idea of validation [38, 46, 48] to imple-
ment such search algorithms. The validator, which we
do verify, simply checks that an index returned by the
search is indeed marked free in the bitmap and if not,
fails the operation with an error code. We use similar

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 9

log
disk

log
partition

file data
disk

file data
partition

orphan inodes
disk

orphan inodes
partition

block bitmap
disk

packed block
bitmap disk

block bitmap
partition

inode bitmap
disk

packed inode
bitmap disk

inode bitmap
parition

inode metadata
disk

packed inodes
disk

inodes
partition

direct block
pointers disk

disk

Figure 4: The refinement of disk layout of the Yxv6 file system,
from multiple disks to a single disk. The arrows A← B denote
that B is a crash refinement of A.

strategies for directory entry lookup. This approach al-
lows us to treat search procedures as a black box, ab-
solving the SMT solver from the need to reason about
the many paths through the algorithm.

The second case is unlinking a file, as freeing all its
data blocks needs to write potentially many blocks. To
finitize this operation, our implementation simply moves
the inode of the file into a special orphan inodes disk,
which is a finite operation, and relies on a separate
garbage collector to reclaim the data blocks at a later
time. We further prove that reclamation is a no-op (as
per the definition in §3.1), as freeing a block referenced
by the orphan inodes disk does not affect the externally
visible state of the file system. We will summarize the
trade-offs of validation in §4.5.

4.3 Refining disk layouts

Theorem 5 gives a file system that runs on seven disks:
the write-ahead log, the file data, the block and inode
bitmaps for managing free space, the inode metadata, the
direct block pointers, and the orphan inodes. Using sep-
arate disks scales SMT reasoning, but it has two down-
sides. First, the two bitmaps use only one bit per block
and the inode metadata disk stores one inode per block,
wasting space. Second, requiring seven disks makes the
file system difficult to use. We now prove with crash re-
finement that it is correct to pack these disks into one
disk (Figure 4) similar to the xv6 file system [14].

Intuitively, it is correct to pack multiple blocks that
store data sparsely into one with a dense representation,
because the packed disk has the same or fewer possible
disk states. For instance, bitmap disks used in §4.2 store
one bit per block; the n-th bit of the bitmap is stored in

the lowest bit of block n. On the other hand, a packed
bitmap disk stores 4KB × 8 = 215 bits per block, and
the n-th bit is stored in bit n mod 215 of block n/215.
Clearly, using the packed bitmap is a crash refinement of
the sparse one. The same holds for using packed inodes.
Similarly, a single disk with multiple non-overlapping
partitions exhibits fewer states than multiple disks; for
example, a flush on a single disk will flush all the parti-
tions, but not for multiple disks. Combining these pack-
ing steps, we prove the following theorem:

Theorem 6. The Yxv6 implementation using seven non-
overlapping partitions of one asynchronous disk, with
packed bitmaps and inodes, is a crash refinement of that
using seven asynchronous disks.

4.4 Refining crash consistency models

Theorem 6 gives a synchronous file system that com-
mits a transaction for each system call. This file sys-
tem, which we call Yxv6+sync, incurs a slowdown as
it flushes the disk frequently (see §8 for performance
evaluation). The Yxv6+group_commit file system im-
plements a more relaxed crash consistency model [5, 37].
Unlike Yxv6+sync, its write-ahead logging implementa-
tion groups multiple transactions together [19].

Intuitively, doing a single combined transaction pro-
duces fewer possible disk states compared to two sepa-
rate transactions, as in the latter scheme the system can
crash in between the two and expose the intermediate
state. We prove the following theorem:

Theorem 7. Yxv6+group_commit is a crash refinement
of Yxv6+sync.

4.5 Summary of design trade-offs

Unlike conventional journaling file systems, the first
Yxv6 design in §4.2 uses multiple disks. To decide the
number of disks, we adopt a simple guideline: whenever
a part of the disk is logically separate from the rest of the
file system, such as the log or the free bitmap, we assign
a separate disk for that part. In our experience, this is
effective in scaling up SMT reasoning.

Yxv6’s final on-disk layout closely resembles that of
the xv6 and FSCQ file systems. One notable difference
is that Yxv6 uses an orphan inodes partition to manage
files that are still open but have been unlinked, similarly
to the orphan inode list [21] in ext3 and ext4. This de-
sign ensures correct atomicity behavior of unlink and
rename, especially when running with FUSE, which xv6
and FSCQ do not guarantee.

Another difference to FSCQ is that Yxv6 uses valida-
tion instead of verification in managing free blocks and
inodes. Although the resulting allocator is safe, it does
not guarantee that block or inode allocation will succeed
when there is enough space, treating such failures as a
quality-of-service issue.

10 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Beyond file systems
Although we designed Yggdrasil for writing verified file
systems, the idea of crash refinement generalizes to ap-
plications that use disks in other ways. This section de-
scribes two examples: Ycp, a file copy utility; and Ylog,
a persistent log data structure.

The Ycp file copy utility. Like the Unix cp utility, Ycp
copies the contents of one file to another. Unlike cp, it
has a formal specification: if the copy operation suc-
ceeds, the file system is updated so that the target file
contains the same data as the source file; if it fails due to
a system crash or an invalid target (e.g., a directory or a
symbolic link), the file system is unchanged.

The implementation of Ycp uses the Yxv6 file system
specification (Figure 3). It follows a common atomicity
pattern: (1) create a temporary file, (2) write the source
data to it, and (3) rename it to atomically create the target
file. There is no consistency invariant as Ycp uses file
system operations and is independent of disk layout.

We verify that the implementation of Ycp is a crash re-
finement of its specification using Yggdrasil. This shows
that Yggdrasil and Yxv6’s specification are useful for
reasoning about application-level correctness.

The Ylog persistent log. Ylog is a verified implemen-
tation of the persistent log from the Arrakis operating
system [36]. The Arrakis log is designed to provide an
efficient storage API with strong atomicity and persis-
tence guarantees. The core logging operation is a multi-
block append, which extends an on-disk log with entries
that can span multiple blocks. This append operation
must appear to be both atomic and immediately persis-
tent, even in the presence of crashes.

The Arrakis persistent log was originally designed to
run on top of an LSI Logic MegaRAID SAS-3 3108
RAID controller with a battery-backed cache. We there-
fore chose to implement Ylog on top of a synchronous
disk model, which does not reorder writes and matches
the behavior of the RAID controller. Ylog uses the
same on-disk layout as Arrakis: the first block (i.e., su-
perblock) contains metadata, such as the number of en-
tries and a pointer to the end of the log, followed by
blocks that contain the data of each entry.

When comparing Ylog’s implementation with that of
Arrakis, we discovered two bugs in the Arrakis persistent
log: its crash recovery logic was not idempotent, and the
log could end up with garbage data if the system crashed
again during recovery. The bugs were reported to and
confirmed by the Arrakis developers.

6 Discussion
This section discusses the limitations of Yggdrasil, as
well as our experience using and designing the toolkit.

component specification implementation consistency inv

Yxv6 250 1,500 5
YminLFS 25 150 5
Ycp 15 45 0
Ylog 35 60 0
infrastructure – 1,500 –
FUSE stub – 250 –

Figure 5: Lines of code for the Yggdrasil toolkit and storage
systems built using it, excluding blank lines and comments.

Limitations. Yggdrasil reasons about single-threaded
code, so file systems written using Yggdrasil do not sup-
port concurrency. Cython [3], Yggdrasil’s Python-to-C
compiler, is unverified, although we have not yet encoun-
tered any bugs in the development.

Yggdrasil relies on SMT solvers for automated rea-
soning, and is limited to first-order logic. It is less ex-
pressive than interactive theorem provers such as Coq
or Isabelle, although our experience shows that it is suf-
ficient for writing and verifying file systems like Yxv6
based on crash refinement.

Since the Z3 solver is at the core of Yggdrasil, its cor-
rectness is critical. To understand this risk, we ran the
Yxv6 verification using every buildable snapshot of the
Z3 Git repository over the past three years, a total of
1,417 versions. We also used two other SMT solvers,
Boolector [32] and MathSAT 5 [9], for cross-checking.
We did not observe any inconsistent results.

The Yxv6 file system lacks several modern file system
features, such as extents and delayed allocation in ext4.
Compared to hand-written file system checkers, its fsck

tool is generated by Yggdrasil and guaranteed to detect
any violations of consistency invariants, but it cannot re-
pair corrupted file systems.

Lessons learned. Bitvector operations and reasoning
about non-determinism (e.g., crashes) are common in
file system implementations. These characteristics moti-
vated us to formulate file system verification as an SMT
problem, exploiting the fully automated decision pro-
cedures for the theories of bitvectors and uninterpreted
functions. In addition, using SMT enables Yggdrasil
to produce and visualize counterexamples; we find this
ability useful for tracking subtle file system bugs during
development, especially corner cases such as overflows
and missing flushes [27].

In earlier development of Yggdrasil, we struggled to
find a disk representation for scalable SMT reasoning.
We explored several approaches, such as a lazy list of
symbolic blocks (e.g., EXE [53]) and the theory of ar-
rays, all resulting in a verification bottleneck.

Yggdrasil represents a disk using uninterpreted func-
tions that map a block address and an in-block offset
to a 64-bit integer. This two-level map helped to scale
up verification. Mapping to 64-bit integers also allowed

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 11

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 6: Performance of file systems on an SSD, in sec-
onds (log scale; lower is better).

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 7: Performance of file systems on a RAM disk, in sec-
onds (log scale; lower is better).

Yggdrasil to generate efficient C code. The idea of sep-
arating logical and physical data representations using
crash refinement further reduced the verification time by
orders of magnitude. As we will show in §8, verifying
Yxv6+sync’s theorems took less than a minute, thanks to
Z3’s efficient decision procedures, whereas Coq took 11
hours to check the proofs of FSCQ [7] (which has similar
features to Yxv6+sync).

Crash refinement requires programmers to design a
system as a state machine and implement each operation
in a finite way. File systems fit well into this paradigm.
We have used crash refinement in several contexts: to
stack layers of abstraction, to pack multiple blocks or
disks, and to relax crash consistency models. Crash re-
finement does not require advanced knowledge of pro-
gram logics (e.g., separation logic [41] in FSCQ), and is
amenable to automated SMT reasoning.

7 Implementation
Figure 5 lists the code size of the file systems and other
storage applications built using Yggdrasil, the common
infrastructure code, and the FUSE boilerplate. In total,
they consist of about 4,000 lines of Python code.

8 Evaluation
This section uses Yxv6 as a representative example to
evaluate file systems built using Yggdrasil. We aim to
answer the following questions:

• Does Yxv6 provide end-to-end correctness?
• What is the run-time performance?
• What is the verification performance?

Unless otherwise noted, all experiments were conducted
on a 4.0 GHz quad-core Intel i7-4790K CPU running
Linux 4.4.0.

Correctness. We tested the correctness of Yxv6 as
follows. First, we ran it on existing benchmarks.
Both Yxv6+sync and Yxv6+group_commit passed the
fsstress tests from the Linux Test Project [26]; they
also passed the SibylFS POSIX conformance tests [42],
except for incomplete features such as hard links or ex-

tended attributes. Second, we have been using Yxv6 to
self-host Yggdrasil’s development since early March, in-
cluding the writing of this paper; our experience is that
it is reliable for daily use. Third, we applied the disk
block enumerator from the Ferrite toolkit [5] (similar to
the Block Order Breaker [37]) to cross-check that the file
system state was consistent after a crash and recovery.

To test the correctness of Yxv6’s fsck, we manually
corrupted file system images by overwriting them with
random bytes; Yxv6’s fsck was able to detect corruption
in all these cases.

Run-time performance. To understand the run-time
performance of Yxv6, we ran a set of five benchmarks
similar to those used in FSCQ [7]: compiling the source
code of bash and Yxv6, running a mail server from the
sv6 operating system [10], and the LFS benchmark [44].

We compare the two Yxv6 variants against the verified
file system FSCQ and the ext4 file system in two con-
figurations: its default configuration (i.e., data=ordered),
and with data=journal+sync options, which together are
similar to Yxv6+sync. Although Yxv6’s implementation
is closest to xv6, we excluded xv6’s performance num-
bers as it crashed frequently on three benchmarks and did
not pass the fsstress tests.

Figure 6 shows the on-disk performance with all the
file systems running on a Samsung 850 PRO SSD. The
y-axis shows total running time in seconds (log scale).
We see that Yxv6+sync performs similarly to FSCQ and
to ext4’s slower configuration. Yxv6+group_commit,
which groups several operations into a single transaction,
outperforms those file systems by 3–150× and is on av-
erage within 10× of ext4’s default configuration.

To understand the CPU overhead, we repeated the ex-
periments using a RAM disk, as shown in Figure 7. The
two variants of Yxv6 have similar performance numbers.
They both outperform FSCQ, and are close in perfor-
mance to ext4 (except for the largefile benchmark). We
believe the reason is that Yxv6 benefits from Yggdrasil’s
Python-to-C compiler, while FSCQ’s performance is af-
fected by its use of Haskell code extracted from Coq.

12 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Verification performance. As we mentioned in §6, the
total verification time for Yxv6+sync is under a minute
on a single core. It achieved this verification perfor-
mance due to Z3’s efficient SMT solving and the use of
crash refinement in the file system.

Verifying Yxv6+group_commit took a longer time,
because it is parameterized to use larger transactions (see
§4.2). It finished within 1.6 hours using 24 cores (Intel
Xeon 2.2 GHz), approximately 36 hours on a single core.

9 Related work
Verified file system implementations. Developers
looking to build and verify file systems have primarily
turned to interactive theorem provers such as Coq [11]
and Isabelle [33]. Our approach is most similar to
FSCQ [7], a verified crash-safe file system developed in
Coq. Their proof shows that after reboot, FSCQ’s recov-
ery routines will correctly recover the file system state
without data loss. These theorems are stated in crash
Hoare logic, which extends Hoare logic with support for
crash conditions and recovery procedures. Our approach
also bears similarities to Flashix [16, 47], another veri-
fied crash-safe file system. The Flashix proof consists of
several refinements from the POSIX specification layer
down to an implementation which can be extracted to
Scala. These refinements are proved in the KIV interac-
tive theorem prover in terms of abstract state machines.

Compared to these examples, Yggdrasil’s push-
button verification substantially lowers the proof burden.
Yggdrasil can verify the Yxv6 implementation given
only the specifications and five consistency invariants.
This ease of verification, together with richer debugging
support, also helped us implement several optimizations
in Yxv6 that make its performance 3–150× faster than
FSCQ and within 10× of ext4.

COGENT [2] takes a different approach to building
verified file systems, defining a new restricted language
together with a certified compiler to C code. The CO-
GENT language rules out several common sources of er-
rors, such as memory safety and memory leaks, reduc-
ing the verification proof burden. We believe Yggdrasil
and COGENT to be complimentary: on one hand, CO-
GENT provides certified extraction to C code which could
replace Yggdrasil’s unverified extraction from Python;
on the other hand, Yggdrasil’s crash refinement strategy
could help COGENT to produce more automated proofs.

File system specifications and crash consistency.
Several projects have developed formal specifications
of file systems. SibylFS [42] is an effort to formalize
POSIX interfaces and test implementation conformance.
But because POSIX file system interfaces underspecify
allowed crash behavior, so does the SibylFS formaliza-
tion. Commuter [10] formalizes the commutativity of

POSIX interface calls to study scalability, but as with
SibylFS, the formalization does not consider crashes.

Modern file systems adopt various crash recovery
strategies, including write-ahead logging (or journal-
ing) [19, 31], log-structured file systems [44], copy-on-
write (or shadowing) [4, 43], and soft updates [18, 29].
This diversity complicates reasoning about application-
level crash safety. Pillai et al. [37] and Zheng et al.
[55] surveyed the crash safety of real-world applications,
finding many crash-safety bugs despite extensive engi-
neering effort to tolerate and recover from crashes. Born-
holt et al. [5] formalized the crash guarantees of modern
file systems as crash-consistency models, to help applica-
tion writers provide crash safety. A formally verified file
system can provide these models as an artifact of the ver-
ification process. Yggdrasil’s crash refinement strategy
helps to abstract low-level implementation details out of
these application-facing models.

Bug-finding tools. Rather than building a new veri-
fied file system, several existing projects focus on find-
ing bugs in existing file systems. FiSC [54] and eX-
plode [52] use model checking to find consistency bugs.
ELEVEN82 [25] is a bug-finding tool for “recoverabil-
ity bugs,” where a system can crash in such a way that
even after recovery, the file system is left in a state not
reachable by any crash-free execution. Yggdrasil is com-
plementary to these tools: ELEVEN82’s automata-based
bug detection allows it to explore complex optimizations,
while Yggdrasil provides proofs not only of crash safety
but of functional correctness.

10 Conclusion

Yggdrasil presents a new approach for building file sys-
tems with the aid of push-button verification. It guar-
antees correctness through a definition of file system
crash refinement that is amenable to efficient SMT solv-
ing. It introduces several techniques to scale up auto-
mated verification, including the stack of abstractions
and the separation of data representations. We believe
that this is a promising direction since it provides a
strong correctness guarantee with a low proof burden.
All of Yggdrasil’s source code is publicly available at
http://locore.cs.washington.edu/yggdrasil/.

Acknowledgments

We thank Helga Gudmundsdottir, Niel Lebeck, Hank
Levy, Haohui Mai, Qiao Zhang, the anonymous review-
ers, and our shepherd, Petros Maniatis, for their feed-
back. This work was supported in part by DARPA un-
der contract FA8750-16-2-0032 and by a gift from the
VMware University Research Fund.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 13

http://locore.cs.washington.edu/yggdrasil/

References
[1] R. Alagappan, V. Chidambaram, T. S. Pillai, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Be-
yond storage APIs: Provable semantics for storage
stacks. In Proceedings of the 15th Workshop on Hot
Topics in Operating Systems (HotOS), Kartause It-
tingen, Switzerland, May 2015.

[2] S. Amani, A. Hixon, Z. Chen, C. Rizkallah,
P. Chubb, L. O’Connor, J. Beeren, Y. Nagashima,
J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray,
G. Klein, and G. Heiser. COGENT: Verifying high-
assurance file system implementations. In Proceed-
ings of the 21st International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 175–188, At-
lanta, GA, Apr. 2016.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Sel-
jebotn, and K. Smith. Cython: The best of both
worlds. Computing in Science Engineering, 13(2):
31–39, Mar.–Apr. 2011. http://cython.org/.

[4] J. Bonwick. ZFS: The last word in filesys-
tems, Oct. 2005. https://blogs.oracle.com/
bonwick/entry/zfs_the_last_word_in.

[5] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy,
E. Torlak, and X. Wang. Specifying and check-
ing file system crash-consistency models. In Pro-
ceedings of the 21st International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 83–98,
Atlanta, GA, Apr. 2016.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceed-
ings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI), pages 209–
224, San Diego, CA, Dec. 2008.

[7] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using Crash Hoare
Logic for certifying the FSCQ file system. In Pro-
ceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[8] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek,
E. Kohler, and N. Zeldovich. Specifying crash
safety for storage systems. In Proceedings of the
15th Workshop on Hot Topics in Operating Sys-
tems (HotOS), Kartause Ittingen, Switzerland, May
2015.

[9] A. Cimatti, A. Griggio, B. Schaafsma, and R. Se-
bastiani. The MathSAT5 SMT solver. In Proceed-
ings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, pages 93–107, Rome, Italy, Mar. 2013.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich,
R. T. Morris, and E. Kohler. The scalable com-
mutativity rule: Designing scalable software for
multicore processors. In Proceedings of the 24th
ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 1–17, Farmington, PA, Nov.
2013.

[11] Coq development team. The Coq Proof Assis-
tant Reference Manual, Version 8.5pl2. INRIA,
July 2016. http://coq.inria.fr/distrib/
current/refman/.

[12] J. Corbet. Thoughts on the ext4 panic, Oct. 2012.
https://lwn.net/Articles/521803/.

[13] J. Corbet. A tale of two data-corruption bugs, May
2015. https://lwn.net/Articles/645720/.

[14] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a
simple Unix-like teaching operating system, 2016.
http://pdos.csail.mit.edu/6.828/xv6.

[15] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340,
Budapest, Hungary, Mar.–Apr. 2008.

[16] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif.
Inside a verified flash file system: Transactions
& garbage collection. In Proceedings of the 7th
Working Conference on Verified Software: Theo-
ries, Tools and Experiments, San Francisco, CA,
July 2015.

[17] FUSE. Filesystem in userspace, 2016. https://
github.com/libfuse/libfuse.

[18] G. R. Ganger and Y. N. Patt. Metadata update per-
formance in file systems. In Proceedings of the 1st
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 49–60, Monterey, CA,
Nov. 1994.

[19] R. Hagmann. Reimplementing the Cedar file sys-
tem using logging and group commit. In Proceed-
ings of the 11th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 155–162, Austin,
TX, Nov. 1987.

14 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://cython.org/
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/
https://lwn.net/Articles/521803/
https://lwn.net/Articles/645720/
http://pdos.csail.mit.edu/6.828/xv6
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

[20] V. Henson. The many faces of fsck, Sept. 2007.
https://lwn.net/Articles/248180/.

[21] V. Henson, Z. Brown, T. Ts’o, and A. van de Ven.
Reducing fsck time for ext2 file systems. In Pro-
ceedings of the Linux Symposium, pages 395–408,
Ottawa, Canada, June 2006.

[22] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A file system for virtualized flash storage. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies (FAST), pages 1–15, San
Jose, CA, Feb. 2010.

[23] R. Joshi and G. J. Holzmann. A mini challenge:
Build a verifiable filesystem. Formal Aspects of
Computing, 19(2):269–272, June 2007.

[24] J. C. King. Symbolic execution and program test-
ing. Communications of the ACM, 19(7):385–394,
July 1976.

[25] E. Koskinen and J. Yang. Reducing crash recover-
ability to reachability. In Proceedings of the 43rd
ACM Symposium on Principles of Programming
Languages (POPL), pages 97–108, St. Petersburg,
FL, Jan. 2016.

[26] LTP. Linux Test Project, 2016. http://
linux-test-project.github.io/.

[27] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S. Lu. A study of Linux file system
evolution. ACM Transactions on Storage, 10(1):
31–44, Jan. 2014.

[28] W. M. McKeeman. Peephole optimization. Com-
munications of the ACM, 8:443–444, July 1965.

[29] M. K. McKusick. Journaled soft-updates. In BSD-
Can, Ottawa, Canada, May 2010.

[30] M. K. McKusick and T. J. Kowalski. Fsck—the
UNIX file system check program. In UNIX Sys-
tem Manager’s Manual (SMM), 4.4 Berkeley Soft-
ware Distribution. University of California, Berke-
ley, Oct. 1996.

[31] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transac-
tions on Database Systems, 17(1):94–162, Mar.
1992.

[32] A. Niemetz, M. Preiner, and A. Biere. Boolector
2.0. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 9:53–58, 2015.

[33] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer-Verlag, Feb. 2016.

[34] L. O’Connor, Z. Chen, C. Rizkallah, S. Amani,
J. Lim, T. Murray, Y. Nagashima, T. Sewell, and
G. Klein. Refinement through restraint: Bringing
down the cost of verification. In Proceedings of the
21st ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 89–102,
Nara, Japan, Sept. 2016.

[35] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L.
Lawall, and G. Muller. Faults in Linux: Ten years
later. In Proceedings of the 16th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASP-
LOS), pages 305–318, Newport Beach, CA, Mar.
2011.

[36] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The operating system is the control plane.
In Proceedings of the 11th Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 1–16, Broomfield, CO, Oct. 2014.

[37] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal:
On the complexity of crafting crash-consistent ap-
plications. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), pages 433–448, Broomfield, CO,
Oct. 2014.

[38] A. Pnueli, M. Siegel, and E. Singerman. Transla-
tion validation. In Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 151–
166, Lisbon, Portugal, Mar.–Apr. 1998.

[39] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Model-based failure analysis of
journaling file systems. In Proceedings of the 35th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages
802–811, Yokohama, Japan, June–July 2005.

[40] V. Prabhakaran, L. N. Bairavasundaram,
N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. IRON file systems.
In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP), pages
206–220, Brighton, UK, Oct. 2005.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 15

https://lwn.net/Articles/248180/
http://linux-test-project.github.io/
http://linux-test-project.github.io/

[41] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Copenhagen, Denmark, July
2002.

[42] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano,
A. Madhavapeddy, and P. Sewell. SibylFS: formal
specification and oracle-based testing for POSIX
and real-world file systems. In Proceedings of the
25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 38–53, Monterey, CA, Oct.
2015.

[43] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The
Linux B-tree filesystem. ACM Transactions on
Storage, 9(3), Aug. 2013.

[44] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. In
Proceedings of the 13th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 1–15, Pa-
cific Grove, CA, Oct. 1991.

[45] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.
Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error
propagation analysis for file systems. In Proceed-
ings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), pages 270–280, Dublin, Ireland, June
2009.

[46] H. Samet. Proving the correctness of heuristically
optimized code. Communications of the ACM, 21
(7):570–582, July 1978.

[47] G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg,
and W. Reif. Development of a verified flash file
system. In Proceedings of the ABZ Conference,
June 2014.

[48] T. Sewell, M. Myreen, and G. Klein. Transla-
tion validation for a verified OS kernel. In Pro-
ceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 471–482, Seattle, WA, June
2013.

[49] E. Torlak and R. Bodik. A lightweight symbolic
virtual machine for solver-aided host languages. In
Proceedings of the 2014 ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI), pages 530–541, Edinburgh,
UK, June 2014.

[50] L. Torvalds. Re: [patch] measurements, numbers
about CONFIG_OPTIMIZE_INLINING=y impact, Jan.
2009. https://lkml.org/lkml/2009/1/9/497.

[51] C. M. Wintersteiger, Y. Hamadi, and L. de Moura.
Efficiently solving quantified bit-vector formulas.
In Proceedings of the 10th Conference on Formal
Methods in Computer-Aided Design, pages 239–
246, Lugano, Switzerland, Oct. 2010.

[52] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
Using model checking to find serious file system er-
rors. In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 273–287, San Francisco, CA, Dec. 2004.

[53] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. En-
gler. Automatically generating malicious disks us-
ing symbolic execution. In Proceedings of the 27th
IEEE Symposium on Security and Privacy, pages
243–257, Oakland, CA, May 2006.

[54] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
EXPLODE: A lightweight, general system for find-
ing serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 131–146,
Seattle, WA, Nov. 2006.

[55] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillib-
ridge, E. S. Yang, B. W. Zhao, and S. Singh. Tor-
turing databases for fun and profit. In Proceedings
of the 11th Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 449–464,
Broomfield, CO, Oct. 2014.

16 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lkml.org/lkml/2009/1/9/497

Intermittent Computation without Hardware Support
or Programmer Intervention

Joel Van Der Woude
Sandia National Laboratories∗

Matthew Hicks
University of Michigan

Abstract
As computation scales downward in area, the limi-

tations imposed by the batteries required to power that
computation become more pronounced. Thus, many fu-
ture devices will forgo batteries and harvest energy from
their environment. Harvested energy, with its frequent
power cycles, is at odds with current models of long-
running computation.

To enable the correct execution of long-running appli-
cations on harvested energy—without requiring special-
purpose hardware or programmer intervention—we pro-
pose Ratchet. Ratchet is a compiler that adds lightweight
checkpoints to unmodified programs that allow exist-
ing programs to execute across power cycles correctly.
Ratchet leverages the idea of idempotency, decompos-
ing programs into a continuous stream of re-executable
sections connected by lightweight checkpoints, stored
in non-volatile memory. We implement Ratchet on top
of LLVM, targeted at embedded systems with high-
performance non-volatile main memory. Using eight
embedded systems benchmarks, we show that Ratchet
correctly stretches program execution across frequent,
random power cycles. Experimental results show that
Ratchet enables a range of existing programs to run on
intermittent power, with total run-time overhead averag-
ing below 60%—comparable to approaches that require
hardware support or programmer intervention.

1 Introduction
Improvements in the design and development of com-

puting hardware have driven hardware size and cost to
rapidly shrink as performance improves. While early
computers took up entire rooms, emerging computers are
millimeter-scale devices with the hopes of widespread
deployment for sensor network applications [23]. These

∗Work completed while at the University of Michigan

rapid changes drive us closer to the realization of smart
dust [20], enabling applications where the cost and size
of computation had previously been prohibitive. We are
rapidly approaching a world where computers are not
just your laptop or smart phone, but are integral parts
your clothing [47], home [9], or even groceries [4].

Unfortunately, while the smaller size and lower cost of
microcontrollers enables new applications, their ubiqui-
tous adoption is limited by the form factor and expense of
batteries. Batteries take up an increasing amount of space
and weight in an embedded system and require special
thought to placement in order to facilitate replacing bat-
teries when they die [20]. In addition, while Moore’s
Law drives the development of more powerful comput-
ers, batteries have not kept pace with the scaling of
computation [18]. Embedded systems designers attempt
to address this growing gap by leveraging increasingly
power-efficient processors and design practices [49]. Un-
fortunately, these advances have hit a wall—the battery
wall; enabling a dramatic change in computing necessi-
tates moving to batteryless devices.

Batteryless devices, instead of getting energy from the
power grid or a battery, harvest their energy from their
environment (e.g., sunlight or radio waves). In fact,
the first wave of energy harvesting devices is available
today [4, 50, 9]. These first generation devices prove
that it is possible to compute on harvested energy. This
affords system designers the novel opportunity to remove
a major cost and limitation to system scaling.

Unfortunately, while harvested energy represents an
opportunity for system designers, it represents a chal-
lenge for software developers. The challenge comes
from the nature of harvested energy: energy harvest-
ing provides insufficient power to perform long-running,
continuous, computation [37]. This results in frequent
power losses, forcing a program to restart from the be-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 17

Figure 1: Energy harvesting devices replace batteries with a small
energy storage capacitor. This is the ideal charge and decay of that
capacitor when given a square wave input power source. The voltage
across the capacitor must be above v trig for program computation
to take place as that is the minimum energy required to store the
largest possible checkpoint in the worst-case environmental and device
conditions. The energy expended going from v on to v trig and
from v trig to v off is wasted in what is called the guard band.
The guard band is essential for correctness in one-time checkpointing
systems [39, 17, 3]. In real systems, the charge and discharge rate
is chaotic, depending on many variables, including temperature and
device orientation.

ginning, in hopes of more abundant power next time.
While leveraging faster non-volatile memory technolo-
gies might seem like an easy way to avoid the problems
associated with these frequent power cycles, previous
work exposes the inconsistent states that can result from
power cycles when using these technologies [26, 38].

Previous research attempts to address the problem of
intermittent computation using two broad approaches:
rely on specialized hardware [39, 29, 3, 17, 27] or require
the programmer to reason about the effects of common
case power failures on mixed-volatility systems [26].
Hardware-based solutions, rely on a single checkpoint
that gets saved just before power runs out. It is critical
for correctness that every bit of work gets saved by the
checkpoint and that there is no (non-checkpointed) work
after a checkpoint [38]. On the other hand, taking a
checkpoint too early wastes energy after the checkpoint
that could be used to perform meaningful work. This
tradeoff mandates specialized hardware to measure avail-
able power and predict when power is likely to fail. Due
to the intermittent nature of harvested energy, predict-
ing power failure is a risky venture that requires large
guard bands to accommodate a range of environmental
conditions and hardware variances. Figure 1 depicts how
guard-bands waste energy that could otherwise be used
to make forward progress. In addition to the guard-bands

wasting energy, the power monitoring hardware itself
consumes power. Even simple power monitoring circuits
(think 1-bit voltage level detector) consume power up to
33% of the power of modern ultra-low-power microcon-
trollers [5, 43].

An alternative approach, as taken by DINO [26], is
to forgo specialized hardware, instead, placing the bur-
den on the programmer to reason about the possible
outcomes of frequent, random, power failures. DINO
requires that programmers divide programs into a series
of checkpoint-connected tasks. These tasks then use data
versioning to ensure that power cycles do not violate
memory consistency. Smaller tasks increase the like-
lihood of eventual completion, at the cost of increased
overhead. Larger tasks result in fewer checkpoints, but
risk never completing execution. Thus, the burden is on
the programmer to implement—for all control flows—
correct-sized tasks given the program and the expected
operating environment. Note that even small changes
in the program or operating environment can change
dramatically the optimal task structure for a program.

Our goal is to answer the question: What can be
done without requiring hardware modifications or bur-
dening the programmer? To answer this question, we
propose leveraging information available to the compiler
to preserve memory consistency without input from the
programmer or specialized hardware. We draw upon the
wealth of research in fault tolerance [31, 24, 21, 51, 25,
13] and static analysis [7, 22] and construct Ratchet,
a compiler that is able to decompose unmodified pro-
grams into a series of re-executable sections, as shown
in Figure 2. Using static analysis, the compiler can
separate code into idempotent sections—i.e., sequences
of code that can be re-executed without entering a state
inconsistent with program semantics. The compiler
identifies idempotent sections by looking for loads and
stores to non-volatile memory and then enforcing that no
section contains a write after read (WAR) to the same
address. By decomposing programs down to a series
of re-executable sections and gluing them together with
checkpoints of volatile state, Ratchet supports existing,
arbitrary-length programs, no matter the power source.
Ratchet shifts the burden of reasoning about the effects
of intermittent computation and mixed-volatility away
from the programmer to the compiler—without relying
on hardware support.

We implement Ratchet as a set of modifications to the
LLVM compiler [22], targeting energy harvesting plat-
forms that use the ARM architecture [2] and have wholly
non-volatile main memory. We also implement an ARM-
based energy-harvesting simulator that simulates power

18 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

failures at frequencies experienced by existing energy
harvesting devices. To benchmark Ratchet, we use it to
instrument the newlib C-library [45], libgcc, and eight
embedded system benchmarks [14]. Finally, we ver-
ify the correctness of Ratchet by executing all instru-
mented benchmarks, over a range of power cycle rates,
on our simulator, which includes a set of memory con-
sistency invariants dynamically check for idempotence
violations. Our experimental results show that Ratchet
correctly stretches program execution across frequent,
random power cycles, while adding 60% total run-time
overhead1. This is comparable to approaches that require
hardware support or programmer intervention and much
better than the alternative of most benchmarks never
completing execution with harvested energy.

This paper makes several key contributions:
• We design and implement the first software-only

system that automatically and correctly stretches
program execution across random, frequent power
cycles. As a part of our design, we extend the notion
of idempotency to memory.

• We evaluate Ratchet on a wider range of bench-
marks than previously explored and show that its
total run-time overhead is competitive with existing
solutions that require hardware support or program-
mer intervention.

• We open source Ratchet, including our energy har-
vesting simulator [16], our benchmarks [15], and
modifications to LLVM to implement Ratchet [44].

2 Background
The emergence of energy harvesting devices poses the

question: How can we perform long-running computa-
tion with unreliable power? Answering this question
forces us to go beyond a direct application of existing
work from the fault tolerance community due to four
properties of energy harvesting devices:
• Power availability and duration are unknowable for

most use cases.
• Added energy drain by hardware is just as important

as added cycles by software.
• Small variations in the device and the environment

have large effects on up time.
• Faults (i.e., power cycles) are the common case.

1We say total run-time overhead to cover all sources of run-time
overhead, including hardware and software. Keep in mind that adding
hardware indirectly increases the run time of programs by decreasing
the amount of energy available for executing instructions. Because
Ratchet is software only, the total run-time overhead is equal to the
overhead due to saving checkpoints and re-execution.

Figure 2: Ratchet-compiled program in operation. The checkmarks
represent completed checkpoints, the x’s represent power failures, and
the dashed lines to the backward rotating arrows represent the system
restarting execution at the latest checkpoint. This figure shows how
programs execute as normal with added overhead from checkpoints and
re-execution.

These four properties dictate how system builders con-
struct energy harvesting devices and how researchers
make programs amenable to intermittent computation.

2.1 Prediction vs. Resilience
Given the properties of harvested energy, there are

two checkpointing methods for enabling long-running
computation: one-time and continuous. One-time check-
pointing approaches attempt to predict when energy is
about to run out and checkpoint all volatile state right
before it does. Doing this requires measuring the volt-
age across the energy storage capacitor as depicted in
Figure 1. Measuring the voltage requires an Analog-to-
Digital Converter (ADC) configured to measure the ca-
pacitor’s voltage. Hibernus [3], the lowest overhead one-
time checkpointing approach, utilizes an advanced ADC
with interrupt functionality and a configurable voltage
threshold that removes the need to periodically check the
voltage from software. As Table 1 shows, this produces
very low overheads, with the two main sources of over-
head being the extra power consumed by the ADC and
the energy wasted waiting in the guard bands.

While many energy-harvesting systems have ADCs,
the program may require use of the ADC, the ADC may
not support interrupts, or the ADC may not be config-
ured (in hardware) to monitor the voltage of the energy
storage capacitor. Without such an ADC, programs must
be able to fail at any time and still complete execution
correctly. Making programs resilient to spontaneous
power failures is the domain of continuous checkpointing
systems. Continuous checkpointing systems must main-
tain the abstraction of re-execution memory consistency
(i.e., a section of code is unable to determine if it is being
executed for the first time or being re-executed by exam-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 19

Property
Commodity

Checkpointing
[32, 11, 31, 34]

Energy Harvesting
HW-assisted

[17, 3, 29]
DINO [26] Idempotence [7, 13] Ratchet

Failure Rate Days/Weeks 100 ms 100 ms Days/Weeks 100 ms
Requires Varies HW+Compiler Programmer+Compiler Compiler Compiler
Failure Type Transient Fault Power Loss Power Loss Transient Fault Power Loss
Memory type DRAM+HDD FRAM SRAM+FRAM DRAM+HDD FRAM
Chkpt. Trigger Time Low Voltage Task Boundary Register WAR NV WAR
Chkpt. Contents Varies VS VS+NV TV — VS
Overhead Varies 0–145% [3] 80–170% 0–30% 0–115%
Primary Factor Varies Measurement Task Size # Faults Section Size

Table 1: Requirements and behavior of different checkpointing/logging techniques. WAR represents a Write-After-Read dependence, VS represents
Volatile State (e.g., SRAM and registers), NV represents Non-Volatile memory (e.g., FRAM), NV TV represents Task Variables stored in Non-
Volatile memory, and Measurement represents the added time and energy consumed by using voltage-monitoring hardware.

ining memory)2. To maintain re-execution memory con-
sistency, continuous checkpointing systems periodically
checkpoint volatile state and guard against inconsistent
updates to non-volatile memory. DINO [26] does this
through data versioning, while Ratchet does this through
maintaining idempotence. Table 1 shows that this class
of approach also yields low total overheads, with the
primary source being time spent checkpointing.

2.2 Memory Volatility
Another consideration for energy harvesting devices

is the type, placement, and use of non-volatile memory.
While the initial exploration into support for energy har-
vesting devices, Mementos [39], focuses on supporting
Flash-based systems with mixed-volatility main mem-
ory, all known follow-on work focuses on emerging
systems with Ferroelectric RAM (FRAM)-based, non-
volatile, main memory [17, 3, 26, 27]. This transi-
tion is necessary as several properties of Flash make
it antithetical to harvested energy. The primary reason
Flash is ill suited is its energy requirements. Flash
works by pushing charge across a dielectric. Doing so
is an energy intense operation requiring high voltage that
makes little sense when the system is about to run out of
power. In fact, on MSP430 devices, Flash writes fail at a
much higher voltage than the processor itself fails [5]—
increasing the energy wasted in the guard band. A second
limitation of Flash is that most programs avoid placing
variables there, increasing the amount of volatile state
that requires checkpointing. Flash writes, beyond being
energy expensive, are slow and complex. Updating a

2Note that this is a relaxation on the requirement for deterministic
re-execution [48, 31, 30, 33], where it is required that each re-execution
produce the same exact result. Our problem only requires that re-
executions produce a semantically correct execution.

variable stored in Flash requires erasing a much larger
block of memory and rewriting all data, along with the
one updated value. This process adds complexity to
applications and increases write latency over FRAM by
two-orders of magnitude.

In comparison with Flash memory, FRAM boasts ex-
tremely low voltage writes, as low as a single volt [35].
Writes to FRAM are also nearly as fast as writes to
SRAM and are bit-wise programmable. The flexibility
and low overheads of FRAM allows for processor de-
signers to create wholly non-volatile main memory, de-
creasing the size and cost of checkpoints. This opens the
door to continuous checkpointing systems as the cost of
checkpointing is outweighed by the power requirement
of the ADC. While, like previous approaches, we focus
on FRAM due to its commercial availability, there are
competing non-volatile memory technologies (e.g., Mag-
netoresistive RAM [46] and Phase Change RAM [40])
that we expect to work equally well with Ratchet. Mov-
ing program data to non-volatile memory does come
with a cost: previous work reveals that mixing non-
volatile and volatile memory is prone to error [38, 26].
Ratchet deals with this by pushing such complexity into
the compiler, relieving the programmer from the burden
of reasoning about mixed volatility main memory and the
effects of power cycles.

3 Design
Ratchet seeks to extend computation across common

case power cycles in order to enable programs on energy
harvesting devices to complete long-running computa-
tion with unreliable power sources. Ratchet enables
re-execution after a power failure by saving volatile
state to non-volatile memory during compiler-inserted
checkpoints. However, checkpointing alone is insuffi-

20 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 3: The same code executed without failures, with failures, and with failures with Ratchet. This basic example illustrates one of the difficulties
with using non-volatile main memory on intermittently powered computers: failures can create states not possible given program semantics.

cient to ensure correct computation due to the problems
with maintaining consistency between volatile and non-
volatile memory give unpredictable failures [38, 26]. To
ensure correct re-execution, we use compiler analysis
to determine sections of code that may be re-executed
from the beginning, without producing different results;
a property called idempotence. After decomposing pro-
grams into idempotent sections, we connect the indepen-
dent sections with checkpoints of volatile state. This
ensures that after a power failure the program will re-
sume with a view of all memory identical to the first
(attempted) execution3.

3.1 Idempotent Sections
Idempotent sections are useful because they are natu-

rally side effect free. Nothing needs to be changed about
them in order to protect against memory consistency
errors that may arise from partial execution. By recog-
nizing code sections with this property, Ratchet is able to
find potentially long sequences of instructions that can
be re-executed without any additional work required to
ensure memory consistency.

De Kruijf et al. identify idempotent sections by look-
ing for instruction sequences that perform a Write-After-
Read (WAR) to the same memory address [7]. Under
normal execution, overwriting a previously read memory
location is inconsequential. However, on systems that
roll back to a previous state for recovery (due to potential
issues such as power failures), overwriting a value that
was previously read will cause a different value to be
read when the code section is re-executed. Figure 3
shows an example of how re-executing a section of code
with a WAR dependency may introduce execution that
diverges from program semantics.

In order to prevent these potential consistency prob-

3We are not saying the memory must be identical. We are saying
that the values that a given idempotent section of code reads are
identical to the initial execution. Idempotency enables this relaxation.

lems Ratchet inserts a checkpoint between the write and
the read. This breaks the dependency, separating the
read and the write in different idempotent sections. This
ensures that the read always gets the original value and
the write will be contained in a different idempotent
section, where it is free to update the value. Note that
a sequence of instructions that contains a WAR may still
be idempotent if there exists a write to the same memory
address before the first read. For example a WARAW
dependency chain is idempotent since the first write ini-
tializes the value stored at the memory address so that
even if it is changed by the last write, it will be restored
upon re-execution before the address is read again. Note
that this holds for a potentially infinite sequence of writes
and reads, the sequence will be idempotent if there is a
write before the first read.

It is important to remember that in order for a load
followed by a store cause consistency problems, they
must read and modify the same memory. In order to
determine which instructions rely on the same memory
locations, Ratchet uses intraprocedural alias analysis due
to its availability, performance, and precision. Alias
analysis conservatively identifies instructions that may
read or modify the same memory locations. Since the
alias analysis is intraprocedural we conservatively as-
sume all stores to addresses outside of the stack frame
may alias with loads that occurred in the caller. This
forces Ratchet to insert a checkpoint along any control
flow path that includes a store to non-local memory.

After finding all WARs we use a modified hitting set
algorithm to insert the minimum number of checkpoints
between the loads and stores. The algorithm works by
assigning weights to different points along the control
flow graph based upon metrics such as loop depth and
the number of other idempotency violations intersected.
It uses these metrics to identify checkpointing locations
that prevent all possible idempotency violations while
trying to avoid locations that will be re-executed more

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 21

often than necessary. For example, do not checkpoint
within a loop if a checkpoint outside the loop will sep-
arate all WARs. For a more in-depth discussion of this
algorithm, we refer you to de Kruijf et al. [7].

3.2 Implicit Idempotency Violations
While looking for WARs identifies the majority of

code sequences that violate idempotence, some instruc-
tions may implicitly violate idempotence. A pop in-
struction can be modeled by a read and subsequent
update to the stack pointer. This update immediately
invalidates the memory locations just read by allowing
future push instructions to overwrite the old values. On
a system with interrupts, this scenario occurs when an
interrupt fires after a pop instruction. In this case, the
pop instruction will read from the stack and update the
stack pointer. When the interrupt occurs it will perform
a push instruction to callee save registers, in order to
preserve the state of the processor before the interrupt
fired. However, the state saved by the interrupt is written
to the stack addresses that were read by the initial pop. If
the system re-executes the pop instruction, it will read a
value from the interrupt handler—not the original value!
This behavior forces Ratchet to treat all pop instructions
as implicit idempotency violations since interrupts are
not predictable at compile time.

In order to enable a checkpoint before the slots on the
stack are freed Ratchet exchanges pop instructions for
a series of instructions that perform the same function.
The first duty of the pop instruction is to retrieve a
set of values from the stack and insert them into reg-
isters. Ratchet emulates this by inserting a series of
load instructions to retrieve these values from the stack
and place them in their respective registers. Note that
the load instructions do not update the stack pointer so
any interrupt that fires will push the new values above
these values. After the data is retrieved from the stack,
Ratchet inserts a checkpoint. Finally, Ratchet inserts
an update to the stack pointer to free the space previ-
ously occupied by the values that we just loaded into
registers. By emitting this sequence of instructions we
have deconstructed an atomic read write instruction that
is an implicit idempotency violation and replaced it by a
series of instructions that enable separation of potential
idempotency violations.

3.3 Checkpoints
In between each naturally occurring idempotent sec-

tion, we insert checkpoints in order to save all volatile
memory necessary to restart from the failure. In emerg-
ing systems we observe non-volatile memory moving
closer and closer to the CPU, so far that it has non-
volatile RAM [42]. In such a system, all that is needed to

Figure 4: Shows the relationship between checkpoint overhead and
live registers. A checkpoint’s cost is the number of cycles it takes to
commit and its weight refers to how often they occur in our benchmarks
relative to the total number of checkpoints.

restore state are the values stored in the registers. In fact,
not all registers are necessary, only registers that are used
as inputs to instructions that occur after the checkpoint
location. These registers are denoted live-in registers.

Traditionally, compilers keep a list of live-in and live-
out registers to determine which registers are needed in
a basic block to perform some computation and which
ones are unused and can be reallocated to reduce register
spilling. This information is available to the compiler
after registers have been allocated. We are interested in
which registers are live-in to a checkpoint because they
denote the volatile memory needed to correctly restart
from a given location in a program. Figure 4 shows the
relationship between checkpoint overhead and number of
live-in registers.

In order to prevent power failures during a check-
point from causing an inconsistent state, we use a dou-
ble buffering scheme. One buffer holds the previous
checkpoint, while the other is used for writing a new
checkpoint. A checkpoint is committed by updating the
pointer to the valid checkpoint buffer as the last part of
writing the checkpoint. We tolerate failures even while
taking a checkpoint by never overwriting a checkpoint
until a more recent checkpoint is available in the other
buffer. The atomicity of the store instruction for a singe
word ensures that we always have a valid checkpoint
regardless of when we experience a power failure.

3.4 Recovery
In order to recover from a power failure, we insert

code before the main function to check to see if there ex-
ists a valid checkpoint. If so, we determine that we have
experienced a power failure and need to restore state,

22 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

otherwise we begin executing from main. Restoring state
consists of moving all saved registers into the appropriate
physical registers. Once the program counter has been
restored, execution will restart from the instruction after
the most recently executed checkpoint.

In the case that some idempotent sections are too long,
that is, power may repeatedly fail before a checkpoint is
reached, we use a timer that triggers an interrupt in order
to ensure forward progress. Each interrupt checks to see
if a new checkpoint has been taken since the last time
it was called. It does this by zeroing-out the program
counter value in the unset checkpoint buffer each time it
is called. It can then tell if a checkpoint has been taken
since its last call and only checkpoint if the program
counter of the unused checkpoint buffer is still zero.

When checkpointing from the timer interrupt it is
impossible to foresee which registers are still live and
we must instead conservatively save all of the registers
to non-volatile memory. There exists a trade off when
selecting the timer speed. A timer that is short increases
the overhead due to checkpointing, while a timer that is
long increases re-execution overhead. Without additional
hardware to measure environmental conditions, the timer
can be set on the order of experts estimation of average
lifetime for transiently powered devices [39]. Note that
for our benchmarks, a timer was not needed in order to
make forward progress.

3.5 Challenges
During implementation of Ratchet we encountered a

number of design challenges with actually implementing
our ideal design. Most of these challenges related to
being entrenched at different levels of abstraction within
the compiler. While the code is in the compiler’s in-
termediate representation (IR), powerful alias analysis
and freedom from architecture level specifics made for a
logical location to identify WAR dependencies and insert
checkpoints. However, these decisions are dependent
on the choices made during the translation from the
compiler’s IR to machine code, such as which calls are
tail calls and information about when register pressure
causes register spilling.

This semantic gap causes conservative decision mak-
ing about where to place checkpoints, since the decisions
made in the front end rely on assumptions about where
checkpoints will be inserted in the back-end.

3.6 Optimizations
As we began to implement our design, it became clear

that we were inserting checkpoints more frequently than
needed. As a result of profiling our initial design we
implemented several optimizations to remove redundant
checkpoints.

r1 = mem[sp + 4]

checkpoint()

mem[sp + 4] = r2

...

r3 = mem[r2 + 8]

checkpoint()

mem[r2 + 8] = r4

r1 = mem[sp + 4]

r3 = mem[sp + 8]

checkpoint()

mem[sp + 4] = r2

...

checkpoint()

mem[sp + 8] = r4

a. b.

Figure 5: Two possible code sequences. In (a) each WAR dependency
is separated by a checkpoint, but the two checkpoints cannot be com-
bined without violating idempotency. In (b), the second checkpoint
could be moved to the same line as the first checkpoint since there are
no potentially aliasing reads separating the two checkpoints.

3.6.1 Interprocedural Idempotency Violations
Because of the limits on interprocedural alias anal-

ysis, we initially conservatively inserted a checkpoint
on function entry. This protects against potential WAR
violations between caller and callee code. We observed
that this was often conservative and could be relaxed. A
checkpoint is only necessary on function entry if there
exists a write that may alias with an address outside of
the function’s local stack frame. In the presence of an
offending write, the function entry is modeled as the
potentially offending read (since an offending load could
have occurred in the caller).

In addition, we noticed that some tail calls could be
implemented without any checkpoints. Since tail calls
operate on the stack frame of their caller, a checkpoint
on return is unnecessary, assuming that the tail call does
not modify non-local memory. However, opportunities
for this optimization were observed to be limited due to
the difficulty of determining where to put checkpoints for
intraprocedural WAR dependencies. This is a result of
the semantic gap between compiler stages, when iden-
tifying WAR dependencies, we do not yet have perfect
information about which calls can be represented as tail
calls. We imagine a more extensive version of Ratchet
that takes information from each stage of the compiler
pipeline and iteratively adjusts checkpoint locations to
find the near-minimal set of checkpoints that maintain
correctness.

3.6.2 Redundant Checkpoints
Due to the semantic gap between our alias analysis and

insertion of checkpoints in the front-end of the compiler
(while the code is still in IR), and the instruction schedul-
ing of the back-end, we observed cases where optimiza-
tions or other scheduling decisions caused redundant
checkpoints. We consider redundant checkpoints to be
a pair of checkpoints where any potential idempotency

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 23

violations could be protected with a single checkpoint.
In general, a checkpoint can be relocated within its basic
block to any dominating location does not cross any
reads and any dominated location that does not cross
any writes. This conservative rule follows even without
knowing alias information, which allows us to reorder
instructions after machine code has been generated and
we no longer know which instructions generated the
WAR dependency. Figure 5 shows an example of how
checkpoints can be combined safely by relocation.

3.6.3 Special Purpose Registers
Since all volatile state must be saved during a check-

point, all live special purpose registers must be saved
along with the live general-purpose registers. Some of
the special purpose registers have higher costs to save
than the general purpose registers. In our experience
implementing Ratchet, we found the cost of checkpoint-
ing condition codes to be high. Instead of paying this
overhead, we ensured checkpoints were placed after the
condition code information was consumed, while still en-
suring all non-volatile memory idempotency violations
were cut. Ratchet does this by reordering instructions
to ensure a checkpoint is not placed between a condi-
tion code generator and all possible consumers. This
instruction reordering is done with the same constraints
as combining checkpoints.

3.7 Architecture Specific Tradeoffs
There are a number of architectural decisions that

influence the overhead of our design. Register-rich
architectures reduce the number of idempotent section
breaks required by reducing the frequency of register
spills, at the cost of increasing checkpoint size. Atomic
read-modify-write instructions are incompatible with our
design since there is no way to checkpoint between the
read and the write. On such an architecture, Ratchet
could separate the instruction into separate load and store
operations by our compiler implementation.

4 Implementation
We implement Ratchet using the LLVM compiler in-

frastructure [22]. Beyond verifying that Ratchet output
executes correctly on an ARM development board [41],
we build an ARMv6-M [2] energy-harvesting simulator,
with wholly non-volatile memory. The simulator allows
for fine-grain control over the frequency, arrival time,
and effects of power cycles, as well as allowing us to
verify Ratchet’s correctness. The benchmarks we use for
evaluation all depend on libc, so we also use Ratchet to
instrument newlib [45], and link our benchmarks against
our instrumented library.

4.1 Compiler
We build our compiler implementation on top of the

LLVM infrastructure [22]. We add a front end, IR level
pass that detects idempotent section breaks by tracking
loads and stores to non-volatile memory that may alias
(based on earlier work targeted at registers [7]). This
top-level pass inserts checkpoint placeholders that are
eventually passed to the back end where machine code
is eventually emitted. The back end replaces pop in-
structions with non-destructive reads and a checkpoint
followed by an update to the stack pointer. Next, the
back end relocates the inserted placeholders to minimize
the number of checkpoints required by combining them
and avoiding bisecting condition code def-use chains.
After register allocation, each placeholder is replaced by
a function call to the checkpointing routine that saves
the fewest possible registers. We determine the minimal
set of registers to save using the liveness information
available in the back end.

One compiler-inserted idempotency-violating con-
struct that we modify the compiler to prevent is the
use of shared stack slots for virtual registers. If the
compiler were able to re-assign the same stack slot to
a different virtual register, it would create an idem-
potency violation as the original virtual register value
is overwritten by a different virtual register’s value.
While it is possible to include some backend analy-
sis to uncover such situations, we choose to sacrifice
some stack space and prevent the sharing of stack slots.
Achieving this in LLVM is as simple as adding the flag
-no-stack-slot-sharing to the compile com-
mand. In addition, we include the mem2reg optimiza-
tion that causes some variables that would otherwise be
stored in memory to be stored in registers. This reduces
the number of idempotency violations thereby reducing
the number of checkpoints and increasing idempotent
section length.

4.2 Energy Harvesting Simulator
We also implement a cycle accurate ARMv6-M sim-

ulator. Many of the coming internet of things class
devices are choosing to use ARM devices as they are the
performance per Watt leader. As the price of new non-
volatile memory technologies decreases and their speed
increases, we expect ARM to follow in the footsteps of
the MSP430 [42] and move to a wholly non-volatile main
memory. In fact, even Texas Instruments, the maker of
the MSP430, recently moved to ARM for their newest
MSP devices [43].

An energy-harvesting simulator is required because of
the difficulties associated with developing and debugging
intermittently powered devices. Using a cycle accurate

24 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: Runtime overhead for several versions of Ratchet.

simulator we are able to simulate failures with a proba-
bility distribution that can model the true frequency and
effects of power failures experienced by devices in the
real world. Using a simulator also allows us to take
precise measurements of how much progress a program
makes per power cycle and the cycles consumed by re-
execution. Lastly, our simulator allows for us to verify
the correctness of Ratchet for every benchmark run.

4.3 Idempotent Libraries
In order to ensure that each section of code that runs

is idempotent, we instrument all of the libraries needed
by the device. In order to facilitate real applications
we compile newlib [45], a basic libc and libm library
aimed at embedded systems, with Ratchet. This requires
a modifying three lines in newlib’s makefile to prevent it
from building these optimized versions of libc calls. We
did this because any uninstrumented code could cause
memory consistency to be violated (due to idempotency
violations) if power fails after a write-after-read depen-
dency and before a checkpoint.

Lastly, we produce an instrumented version of the
minimum runtime functions expected by clang that are
included in the compiler-rt project [1]. These functions
implement the libgcc interfaces expected by most com-
pilers. As with newlib, we use only the bare minimum
optimized assembly implementations. Those that we use,
we insert checkpoints by hand between potential write-
after-read dependencies. Thankfully, this only needs to
be done once by the library’s author.

Note that Ratchet supports assembly as long as the
assembly is free of idempotence violations or all poten-
tial idempotency violations are separated by checkpoints.
With additional engineering effort, it is possible to cre-

ate a tool that inserts these checkpoints automatically
through static analysis of the assembly [8].

5 Evaluation
In order to provide a comparison against other check-

pointing solutions for energy harvesting devices, we
evaluate Ratchet on benchmarks common to these ap-
proaches, namely, RSA, CRC, and FFT. For a more
complete analysis, we port4 several benchmarks from
MiBench, a set of embedded systems benchmarks cate-
gorized by run-time behavior [14]. Expanding the bench-
mark set used to evaluate energy harvesting systems is
crucial, because testing with a wide range of program
behaviors and truly long-running programs is more likely
to expose an approach’s tradeoffs.

Unless otherwise noted, we compile all benchmarks
with -O2 as the optimization level. We choose the
-O2 level since it includes most optimizations while
avoiding code size versus speed tradeoffs. As Section 5.3
illustrates, Ratchet supports all of LLVM’s optimization
levels. We use an average lifetime of 100 ms to match
the setup of previous works. With an average lifetime
of 100 ms running with a 24 MHz clock, this gives us a
mean lifetime of 2,400,000 cycles. Before each bout of
execution, the simulator samples from a Gaussian whose
mean is the desired mean lifetime (in cycles) and uses
that value as the number of clock cycles to execute for
before inducing the next power cycle. To simulate a
power cycle, we clear the register values.

Given this experimental setup, we set out to answer
several key questions about Ratchet:

4Some of these applications require input that is read in from a
file. Since many energy-harvesting systems do not include an operating
system or file system, we instead compile the input into the binary.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 25

Figure 7: The average number of cycles per idempotent section break.

1. Does Ratchet stretch computation across frequent,
unpredictable losses of power correctly?

2. What is the overhead of running Ratchet due to
checkpoints and re-execution?

3. Is Ratchet compatible with compiler optimizations?
4. What impact does Ratchet have on code size?
We use the results of this evaluation to compare

Ratchet against alternative approaches that require hard-
ware support or programmer intervention. See the results
of this comparison in Table 1 and Section 7.2.

5.1 Performance
To understand the effects of power cycles on long-

running programs and the overhead of Ratchet, we per-
form 10 trials of each benchmark with power failures as
described earlier. Figure 6 displays the results of this
experiment for each benchmark, averaged and normal-
ized to the run time of the benchmark executed without
power failures. The first thing to note is that 6 out of
8 of the benchmarks fail to complete execution on har-
vested energy without Ratchet (w/o Ratchet). There
are several other results for each benchmark that repre-
sent successive Ratchet optimizations (all levels except
Ideal maintain correctness): Ratchet shows the per-
formance from our naive implementation; RatchetFE
denotes placing a checkpoint at function entry only when
there is a store to a non-local variable that is not preceded
by a checkpoint; RatchetFE+RD is RatchetFE, but
with duplicate checkpoints removed in LLVM’s back-
end; RatchetFE+RD+LR adds a further optimization
of only checkpointing the live-in registers; and finally,
Ideal represents a lower bound on Ratchet’s overhead
that assumes perfect intraprocedural alias analysis and
zero idempotence violations. Ideal bounds what is

Figure 8: Re-execution overhead decreases as failure frequency in-
creases. Note that CRC and RSA have zero re-execution overhead
throughout since they are short enough to complete in a single power
cycle.

possible with more compiler engineering.
We observe an average run-time overhead of 58.9%

using Ratchet+FE+RD+LR—a 20.1% improvement
over Ratchet. The Ideal result suggests that further
compiler engineering can reduce this overhead by over
60%. The total overhead includes run-time overhead due
to saving checkpoints and re-execution, but checkpoint
overhead dominates total overhead, because re-execution
overhead approaches zero.

Looking at Figure 6, we can see that overhead varies
dramatically between benchmarks. This shows that per-
formance of our method is highly program dependent.
Intuitively, this makes sense. If one program includes an
implicit WAR dependence buried deep in the hot sections
of code and another has very few WAR dependencies,
we would expect their run times to vary dramatically. In
order to determine the effect of idempotent section length
of a benchmark on performance we measure the number
of cycles between each checkpoint commit. To measure
this, we instrument our simulator to measure the number
of cycles5 between each call to any of our checkpointing
functions. We then run each benchmark to completion,
without power cycles. The average number of cycles
per idempotent section for each benchmark is shown in
Figure 7. By comparing Figures 6 and 7 we notice that
programs with shorter idempotent sections have higher
overheads.

We also investigate the relationship between idempo-
tent section length and re-execution overhead. To do this,
we instrument our simulator to measure the number of

5Most instructions take a single clock cycle to complete in the
ARMv6-M instruction set.

26 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: The runtime overhead of each benchmark compiled with
Ratchet at various LLVM optimization levels normalized to the runtime
of the uninstrumented benchmark compiled at -O0.

cycles from the last checkpoint to a checkpoint restore.
This includes the cycles spent executing code that occurs
after the last checkpoint and the cycles spent restarting
and restoring the last checkpoint. Figure 8 shows the
fraction of run-time overhead due to re-execution for a
range of average power-on times. While short idempo-
tent sections tend to cause higher overall overhead due
to checkpoint overhead dominating the total overhead,
Figure 8 combined with Figure 7 shows that bench-
marks with shorter idempotent sections have lower re-
execution costs. This is reasonable considering that a
failure halfway through an idempotent section requires
the program to re-execute from the last checkpoint. The
more cycles since the last checkpoint, the higher the
re-execution overhead. This suggests that increases in
idempotent section length eventually will expose re-
execution time as a key component of overhead.

5.2 Correctness
We validate Ratchet’s correctness using both formal

and experimental approaches. First, to test that Ratchet
enforces idempotency with respect to non-volatile mem-
ory, we instrument the simulator to log reads and detect
WAR dependencies that occur during execution. We con-
sider a program to fail if there exists any load and sub-
sequent store, to the same address, that are not separated
by a checkpoint6. Second, to test that Ratchet enables
long-running execution even with power-cycle-induced
volatile state corruption, we simulate random power fail-
ures like those experienced in energy-harvesting devices

6This was especially helpful in debugging, as it exposed missed
WAR dependencies, such as ones caused by spilling registers onto the
stack due to register pressure, in early prototypes.

Program Ratchet Uninstrumented Change

AVERAGE 563720 560824 1.79%
rsa 41326 40694 1.55%
crc 36037 34677 3.92%
FFT 182362 183612 -0.68%
sha 3286631 3284544 0.06%
picojpeg 379134 373051 1.63%
stringsearch 184656 177567 3.99%
dijkstra 183554 178465 2.85%
basicmath 216053 213978 0.96%

Table 2: Code size increase due to Ratchet (sizes are in bytes).

and verify the results. We check the validity by running
different sequences of failures and hashing memory con-
tents and registers at the completion of each benchmark
run to compare the hash to the hash of the ground truth
run without power failure. Lastly, to ensure Ratchet
works even in the most energy starved environments we
repeat this experiment with lifetimes as short as 1 ms.

5.3 Impact of Compiler Optimizations
In order to understand the performance of Ratchet

under varying compiler optimizations, we benchmark
Ratchet across each LLVM optimization level. Figure 9
shows the performance of the benchmarks compiled,
with Ratchet, at different optimization levels relative to
uninstrumented benchmarks compiled at -O0. We ob-
serve that in general, traditional compiler optimizations
improve the performance of Ratchet. However, it also
shows that in some cases, aggressive optimization results
in higher perceived overheads. This suggests that break-
ing the program into idempotent sections can not only
reduce the efficiency of optimizations, but also cause
them to be detrimental (see Dijkstra).

5.4 Code size increase from Ratchet
Code size is a critical constraint for many energy-

harvesting devices. In order to evaluate Ratchet’s prac-
ticality with respect to code size, we measure the effect
Ratchet has on code size. On average, Ratchet increases
the size of the program by 1.79% or 2896 bytes. This
increase is caused by adding our checkpoint recovery
code, a number of optimized checkpointing functions,
checkpoint calls throughout the program, and exchang-
ing pop instructions for loads. Table 2 shows the change
in code size for each benchmark. We notice that about
1356 bytes are a result of the additional function calls
and reserved areas in memory. The rest of the code size
increase can be attributed to inserted code or code that
has been rewritten to support Ratchet, namely the trans-
lation of pop instructions. Note that the FFT program

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 27

actually sees a decrease in size. We suspect this might
be a result of Ratchet limiting optimization opportunities
such as loop unrolling.

6 Discussion
There are several issues that represent corner-cases to

Ratchet’s design, such as avoiding repeating outputs on
re-execution, instrumenting hand-written assembly, and
dealing with the effects of power cycles too short to make
forward progress. Instead of distracting from the core
design, we discuss them here.

6.1 Output Commit Problem
In any replay-based system, there is a dilemma called

the output commit problem, which states that a process
should not send data to the outside world until it knows
that that data is error free. The output commit problem
takes on new meaning for energy harvesting devices;
the problem is one of sending multiple outputs when
only one should have been sent in a correct execution.
This problem occurs during the re-execution of a code
section that created an output during an earlier execu-
tion. Imagine an LCD interface on an embedded system,
where there is re-execution while printing to the screen.
We suggest placing checkpoints immediately before and
after these output instructions to minimize the chance of
re-execution due to the instruction being at the end of
a long idempotent section. We believe that there is a
wealth of future work on making protocols themselves
robust against the effects of intermittent computation.
One step in this direction is delay/disruption-tolerant
networking [12].

6.2 Hand-Written Assembly
Hand-written assembly poses another challenge for

Ratchet. Because it is never transformed into LLVM
IR we cannot run our passes to determine if there are
idempotency violations, and if so, where they occur. One
naive approach is to simply checkpoint before and after
the assembly. While that is a good start, there still re-
mains the possibility of idempotency violations between
loads and stores within a section of assembly. While we
hand-process the assembly files required for newlib, and
libgcc it is possible to create a tool to perform this pro-
cessing automatically [8]. We choose not to write such
a tool, since only three assembly files have idempotency
violations. Instead we instrument those by hand.

6.3 Ensuring Completion
Extremely short power cycles pose a problem in that

they prevent programs from making forward progress
and thus never complete execution. Ratchet handles this

problem both at compile time and at run time. At compile
time, the programmer informs Ratchet of the expected
on time for the device. Ratchet uses this information to
make sure that no idempotent section is longer than the
expected on time. Note that adding arbitrary checkpoints
(i.e., artificial idempotent section breaks) only affects
overhead, not correctness. The second approach is to use
the watchdog timer (commonly available on embedded
systems) to insert checkpoints dynamically, when these
quick power cycles prevent forward progress. That being
said, the longest idempotent sections in our benchmarks
(roughly 5000 cycles) require on-times of less than 0.2
ms to expose this issue.

7 Related Work
Ratchet builds upon previous work from three broad

categories of research: rollback recovery, intermittently
powered computing, and idempotence. We start by ex-
amining the history of general-purpose checkpointing
and logging schemes, followed by how previous ap-
proaches to stretching program execution across frequent
power cycles have so far adapted those general-purpose
approaches. Lastly, since Ratchet builds upon previous
work on idempotence, we cover that previous work.

7.1 Rollback Recovery
Research from the fault tolerance community presents

the idea of backward error recovery, “backing up one or
more of the processes of a system to a previous state
which is hoped is error-free, before attempting to con-
tinue further operation” [36]. Backward error recovery
systems often choose checkpointing as the underlying
technique [11]. CATCH is an example of a check-
pointing system that leverages the compiler to provide
transparent rollback recovery [24].

The challenge of checkpointing is identifying and
minimizing the state that needs to be protected by a
checkpoint [36]. BugNet [31] eliminates the need for
full-state checkpoints, while maintaining correctness, by
logging the values loaded after an initial checkpoint.
This represents a dramatic reduction in overhead as it
is unlikely that a process reads the entire contents of
memory. Revive [34] reduces overhead further (up to
50%) by using undo logging to record stores instead of
loads—assuming a reliable memory.

Ratchet further reduces the bandwidth required by log-
ging/checkpointing by extending idempotency to main
memory. Idempotency tells us that only a subset of pro-
gram stores actually require logging—those that earlier
loads depend on. By checkpointing at stores that alias
with earlier loads (since the last checkpoint), Ratchet is

28 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

able to increase, by orders of magnitude, the number of
instructions between log entries/checkpoints.

7.2 Intermittently Powered Computing
Research into fault tolerant computing traditionally

targets persistently powered computers. However, new
ultra-low-power devices challenge traditional power re-
quirements, making them ideal candidates for energy
harvesting techniques. Unfortunately, these techniques
provide unreliable power availability that results in frag-
mented and incorrect execution—violating the assump-
tions of continuous power and infrequent errors. Be-
cause of this, previous work on intermittent computation
adopts known rollback recovery techniques, but must
adapt them to the properties of this new domain.

7.2.1 Hardware-assisted Checkpointing
Mementos [39] is the first system that attempts to

tackle the intermittent computation problem through the
use of a one-time (ideally) checkpoint. Mementos uses
periodic voltage measurements of the system’s energy
storage capacitor to estimate how much energy remains.
The goal is to checkpoint as late as possible. Me-
mentos provides three ways to control the periodicity
of voltage measurement: (1) function triggered: volt-
age measurement after every function return; (2) loop
triggered: voltage measurement after every loop itera-
tion; and (3) timer assisted: a countdown timer added
to either of the first two variants that gates whether a
voltage measurement is needed. Unfortunately, while
Mementos works well when programs write to volatile
state only, recent research shows that Mementos is in-
correct in the general case [26, 38]. The problem is
that Mementos allows for uncheckpointed work to oc-
cur. If uncheckpointed work updates both volatile and
non-volatile memory, only the non-volatile memory will
persist, creating an inconsistent software state. Applying
the idea of Mementos to wholly non-volatile memory, as
done by QUICKRECALL [17], actually makes the prob-
lem worse: in contrast to Flash-based systems, in sys-
tems with wholly non-volatile main memory, all program
data is stored in non-volatile memory. This makes it a
near certainty that a program will write to non-volatile
memory after a checkpoint, leading to an inconsistent
software state.

Hibernus [3] addresses QUICKRECALL’s correctness
issues through the introduction of guard bands. A guard
band is a voltage threshold that represents the amount of
energy required to store the largest possible checkpoint
to non-volatile memory in the worst-case device and
environmental conditions. Execution occurs while the
voltage is above the threshold, but hibernates when the

voltage is below the threshold. Doing this ensures that
all work gets checkpointed, at the cost of wasting energy
waiting for voltage to build up to the threshold and in the
time after a non-worst-case checkpoint—there is no safe
way to scavenge unused energy.

Hibernus also improves upon Mementos in terms
of performance. Hibernus employs a more advanced
analog-to-digital converter (ADC) (for voltage measure-
ment) that allows software to set a threshold value that
triggers an interrupt when the voltage goes below the
threshold. This removes all software overhead caused
by periodically checking the voltage (similar to polling
versus interrupts in software).

Comparing voltage-triggered checkpointing systems
to Ratchet is difficult. Fortunately, Hibernus provides a
detailed performance comparison between itself and Me-
mentos by implementing Mementos on their wholly non-
volatile development platform. Their experimental re-
sults at 100ms on-time show that Mementos’s total over-
head varies between 117% and 145%, approximately,
depending on the variant of Mementos. Hibernus’s
polling reduces total overhead to 38%, approximately. In
comparison, Ratchet’s overhead for the same benchmark
program (potentially different inputs and configuration)
is a comparable 32%.

In deciding between a one-time, voltage-triggered
checkpointing scheme and Ratchet, the biggest factor
is the ADC. Mandating an ADC is a non-starter for
many existing systems that either do not have one al-
ready or systems that have one, but not connected in a
way that supports power monitoring. This is a problem
even for Mementos, “Voltage supervisors are common
circuit components, but most—crucially, including ex-
isting prototype RFID-scale devices—-do not feature an
adjustable threshold voltage.” For future systems and
those existing systems that have an ADC capable of
voltage monitoring, even the most power efficient ADCs
consume as much as 1/3 of the power of today’s ultra-
low-power microcontrollers [5]. The future is direr as
performance/Watt tends to scale at 2x every 1.57 years
for processors (known as Dennard scaling [10]), while
ADC’s performance/Watt tends to scale at 2x every 2.6
years [19].

7.2.2 Software-only Checkpointing
DINO [26], is a software-only, programmer-driven

checkpointing scheme for tolerating an unreliable power
source. Programmers leverage the DINO compiler to
decompose their programs into a series of independent
transactions backed by data versioning to achieve mem-
ory consistency in the face of intermittent execution.
To accomplish this, the authors rely on programmer

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 29

annotated logical tasks to define the transactions. Con-
trast this with Ratchet, which automatically decomposes
programs using idempotency information inherent to a
program’s structure—allowing programmers to ignore
the effects of power cycles and mixed volatility memory.

DINO enforces a higher-level property than does
Ratchet, namely task atomicity, i.e., tasks either com-
plete or re-execute from the beginning, as viewed by
other tasks on the system. This contrasts Ratchet, which
allows intermediate writes as long as they maintain idem-
potency. Enforcing task atomicity happens to also solve
the problem of intermittent computation (assuming the
programmer defines short tasks), but enforcing a more
restrictive property incurs more run-time overhead, 80%
to 170%. Note that even though DINO is evaluated on a
mixed-volatility system, these numbers are comparable
to Ratchet’s because DINO’s overhead is more depen-
dent on the amount of state a task may update than the
volatility of that state.

7.3 Idempotence
Mahlke et al. develops the idea of idempotent code

sections in creating a speculative processor [28]. The
authors construct restartable code sections that are bro-
ken by irreversible instructions, which, “modifies an
element of the processor state which causes intolerable
side effects, or the instruction may not be executed more
than one time.” They use this notion to define how to
handle a speculatively executing instruction that throws
an exception and show that they can use the idempotence
property to begin execution from the start of the inter-
rupted section and still follow a valid control-flow path.

Kim et al. applies the idea of idempotency to data
storage, showing that idempotency is useful for reduc-
ing the amount of data stored in speculative storage
on speculatively multithreaded architectures [21]. The
authors note that there are idempotent references that are
independent of the memory dependencies that result in
errors in non-parallizable code.

Encore is a software-only system that leverages idem-
potency for probabilistic rollback-recovery [13]. Tar-
geted at systems using probabilistic fault detection
schemes, Encore provides rollback recovery without
dedicated hardware. The key insight of Encore is proba-
bilistic idempotence: ignoring infrequently executed in-
structions that break idempotence can increase the length
of idempotent sections. While this violates correctness—
something Ratchet must maintain—the authors realized
a performance improvement at the cost of not recovering
3% of the time.

De Kruijf et al. [7] presents an algorithm for iden-
tifying idempotent regions of code and show that it is

possible to segment a program into entirely idempotent
regions with minimal overhead. In this initial work,
the authors focus their attention on soft faults that do
not mangle the register state, noting that registers are
usually protected by other means. While soft faults may
not corrupt register state, power failures cause the entire
register file to be lost.

In follow-on work, de Kruijf et al. [6] presents al-
gorithms that utilize the idempotence information gen-
erated by the idempotent compiler to better inform the
register allocation step of compilation. This allows the
compiler to extend the live range of registers. Extending
the live range of register values that are live-in to a given
idempotent section all the way to the end of that section
creates a free checkpoint that enables recovery from side-
effect free faults. In contrast, faults on energy harvesting
come with significant side effects.

8 Conclusion
Ratchet is a compiler that automatically enables the

correct execution of long-running applications on de-
vices that run on harvested energy, without hardware
support. Ratchet leverages the notion of idempotence
to decompose programs into a series of checkpoint-
connected, re-executable sections. Experiments show
that Ratchet stretches program execution across random,
frequent, power cycles for a wide range of programs—
that would not be able to run completely otherwise—
at a cost of less than 60% total run-time overhead.
Ratchet’s performance is similar to existing approaches
that require hardware support or programmer reasoning.
Experiments also show that, with more engineering, it is
possible to reduce run-time overheads to around 20%.

Ratchet shows that it is possible for compilers to
reason about frequent failures and volatile versus non-
volatile memory in languages not designed with either
in mind. Pushing these burdens on the compiler opens
the door for non-expert programmers to code for energy
harvesting devices.

Acknowledgment
We thank our shepherd Y. Charlie Hu for his guidance

and the anonymous reviewers for their feedback and
suggestions. This work was supported in part by C-
FAR, one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA.

30 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] compiler-rt runtime [computer software]. Retrieved from

http://compiler-rt.llvm.org/, Mar 2015.

[2] ARM. ARMv6-M Architecture Reference Manual, Sept 2010.

[3] BALSAMO, D., WEDDELL, A., MERRETT, G., AL-HASHIMI,
B., BRUNELLI, D., AND BENINI, L. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting
systems. IEEE Embedded Systems Letters 7, 1 (2014), 15–18.

[4] BUETTNER, M., PRASAD, R., SAMPLE, A., YEAGER, D.,
GREENSTEIN, B., SMITH, J. R., AND WETHERALL, D. RFID
sensor networks with the Intel WISP. In Conference on Embed-
ded Networked Sensor Systems (2008), SenSys, pp. 393–394.

[5] DAVIES, J. H. MSP430 Microcontroller Basics, 1 ed. Elsevier
Ltd., 2008.

[6] DE KRUIJF, M., AND SANKARALINGAM, K. Idempotent code
generation: Implementation, analysis, and evaluation. In Interna-
tional Symposium on Code Generation and Optimization (2013),
CGO, pp. 1–12.

[7] DE KRUIJF, M. A., SANKARALINGAM, K., AND JHA, S. Static
analysis and compiler design for idempotent processing. In Con-
ference on Programming Language Design and Implementation
(2012), PLDI, pp. 475–486.

[8] DEBRAY, S., MUTH, R., AND WEIPPERT, M. Alias analysis of
executable code. In Symposium on Principles of Programming
Languages (1998), POPL, pp. 12–24.

[9] DEBRUIN, S., CAMPBELL, B., AND DUTTA, P. Monjolo: An
energy-harvesting energy meter architecture. In Conference on
Embedded Networked Sensor Systems (2013), SenSys, pp. 18:1–
18:14.

[10] DENNARD, R. H., GAENSSLEN, F. H., RIDEOUT, V. L., BAS-
SOUS, E., AND LEBLANC, A. R. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits 9, 5 (Oct 1974), 256–268.

[11] ELNOZAHY, E. N., AND ZWAENEPOEL, W. Manetho: Trans-
parent roll back-recovery with low overhead, limited rollback,
and fast output commit. IEEE Transactions on Computers 41,
5 (May 1992), 526–531.

[12] FARRELL, S., CAHILL, V., GERAGHTY, D., HUMPHREYS, I.,
AND MCDONALD, P. When TCP breaks: Delay and disruption
tolerant networking. IEEE Internet Computing 10, 4 (July 2006),
72–78.

[13] FENG, S., GUPTA, S., ANSARI, A., MAHLKE, S. A., AND
AUGUST, D. I. Encore: Low-cost, fine-grained transient fault re-
covery. In International Symposium on Microarchitecture (2011),
MICRO, pp. 398–409.

[14] GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T.,
MUDGE, T., AND BROWN, R. MiBench: A free, commer-
cially representative embedded benchmark suite. In International
Workshop on Workload Characterization (2001), pp. 3–14.

[15] HICKS, M. Mibench port targeted at IoT devices. https:
//github.com/impedimentToProgress/MiBench2,
2016.

[16] HICKS, M. Thumbulator: Cycle accurate ARMv6-
m instruction set simulator. https://github.com/
impedimentToProgress/thumbulator, 2016.

[17] JAYAKUMAR, H., RAHA, A., AND RAGHUNATHAN, V.
QUICKRECALL: A low overhead hw/sw approach for enabling
computations across power cycles in transiently powered com-
puters. In International Conference on Embedded Systems and
International Conference on VLSI Design (2014), pp. 330–335.

[18] JOGALEKAR, A. Moore’s law and battery technology: No dice.
Scientific American (Apr 2013).

[19] JONSSON, B. E. A survey of A/D-converter performance evo-
lution. In International Conference on Electronics, Circuits, and
Systems (Dec 2010), ICECS, pp. 766–769.

[20] KAHN, J. M., KATZ, R. H., AND PISTER, K. S. J. Next century
challenges: Mobile networking for smart dust. In International
Conference on Mobile Computing and Networking (1999), Mo-
biCom, pp. 271–278.

[21] KIM, S. W., OOI, C.-L., EIGENMANN, R., FALSAFI, B., AND
VIJAYKUMAR, T. N. Exploiting reference idempotency to re-
duce speculative storage overflow. ACM Trans. Program. Lang.
Syst. 28, 5 (2006), 942–965.

[22] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (2004), CGO,
pp. 75–86.

[23] LEE, Y., KIM, G., BANG, S., KIM, Y., LEE, I., DUTTA, P.,
SYLVESTER, D., AND BLAAUW, D. A modular 1mm3 die-
stacked sensing platform with optical communication and multi-
modal energy harvesting. In International Solid-State Circuits
Conference Digest of Technical Papers (2012), pp. 402–404.

[24] LI, C.-C., AND FUCHS, W. Catch-compiler-assisted techniques
for checkpointing. In International Symposium on Fault-Tolerant
Computing (1990), pp. 74–81.

[25] LOWELL, D. E., CHANDRA, S., AND CHEN, P. M. Exploring
failure transparency and the limits of generic recovery. In Sym-
posium on Operating Systems Design & Implementation (2000),
OSDI.

[26] LUCIA, B., AND RANSFORD, B. A simpler, safer programming
and execution model for intermittent systems. In Conference
on Programming Language Design and Implementation (2015),
PLDI, pp. 575–585.

[27] MA, K., ZHENG, Y., LI, S., SWAMINATHAN, K., LI, X., LIU,
Y., SAMPSON, J., XIE, Y., AND NARAYANAN, V. Architecture
exploration for ambient energy harvesting nonvolatile processors.
In International Symposium on High Performance Computer Ar-
chitecture (2015), HPCA, pp. 526–537.

[28] MAHLKE, S. A., CHEN, W. Y., BRINGMANN, R. A., HANK,
R. E., MEI W. HWU, W., RAMAKRISHNA, B., MICHAEL,
R., AND SCHLANSKER, S. Sentinel scheduling: a model for
compiler-controlled speculative execution. ACM Transactions on
Computer Systems 11 (1993), 376–408.

[29] MIRHOSEINI, A., SONGHORI, E., AND KOUSHANFAR, F. Ide-
tic: A high-level synthesis approach for enabling long com-
putations on transiently-powered asics. In International Con-
ference on Pervasive Computing and Communications (2013),
PerComm, pp. 216–224.

[30] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS,
J. Capo: A software-hardware interface for practical determin-
istic multiprocessor replay. In International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (2009), ASPLOS, pp. 73–84.

[31] NARAYANASAMY, S., POKAM, G., AND CALDER, B. BugNet:
Continuously recording program execution for deterministic re-
play debugging. In International Symposium on Computer Ar-
chitecture (2005), ISCA, pp. 284–295.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 31

https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/thumbulator
https://github.com/impedimentToProgress/thumbulator

[32] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K. Libckpt:
Transparent checkpointing under Unix. In USENIX Technical
Conference (1995), TCON, pp. 18–29.

[33] POKAM, G., DANNE, K., PEREIRA, C., KASSA, R., KRANICH,
T., HU, S., GOTTSCHLICH, J., HONARMAND, N., DAUTEN-
HAHN, N., KING, S. T., AND TORRELLAS, J. QuickRec:
Prototyping an Intel architecture extension for record and replay
of multithreaded programs. In International Symposium on Com-
puter Architecture (2013), ISCA, pp. 643–654.

[34] PRVULOVIC, M., ZHANG, Z., AND TORRELLAS, J. Re-
Vive: cost-effective architectural support for rollback recovery
in shared-memory multiprocessors. In International Symposium
on Computer Architecture (2002), ISCA, pp. 111–122.

[35] QAZI, M., CLINTON, M., BARTLING, S., AND CHAN-
DRAKASAN, A. A low-voltage 1 Mb FRAM in 0.13 mu m
CMOS featuring time-to-digital sensing for expanded operating
margin. IEEE Journal of Solid-State Circuits 47, 1 (Jan 2012),
141–150.

[36] RANDELL, B., LEE, P., AND TRELEAVEN, P. C. Reliability
issues in computing system design. ACM Computer Surveys 10,
2 (1978), 123–165.

[37] RANSFORD, B., CLARK, S., SALAJEGHEH, M., AND FU, K.
Getting things done on computational RFIDs with energy-aware
checkpointing and voltage-aware scheduling. In Conference on
Power Aware Computing and Systems (2008), HotPower, pp. 5–
10.

[38] RANSFORD, B., AND LUCIA, B. Nonvolatile memory is a bro-
ken time machine. In Workshop on Memory Systems Performance
and Correctness (2014), MSPC, pp. 5:1–5:3.

[39] RANSFORD, B., SORBER, J., AND FU, K. Mementos: System
support for long-running computation on RFID-scale devices.
In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2011), ASPLOS,
pp. 159–170.

[40] RAOUX, S., BURR, G. W., BREITWISCH, M. J., RETTNER,
C. T., CHEN, Y.-C., SHELBY, R. M., SALINGA, M., KREBS,
D., CHEN, S.-H., LUNG, H.-L., AND LAM, C. H. Phase-
change random access memory: A scalable technology. IBM J.
Res. Dev. 52, 4 (July 2008), 465–479.

[41] SILICON LABS. EFM32ZG-STK3200 zero gecko starter kit.

[42] TEXAS INSTRUMENTS. MSP430FR59xx Datasheet, 2014.

[43] TEXAS INSTRUMENTS. MSP432P401x Mixed-Signal Microcon-
trollers, 2015.

[44] VAN DER WOUDE, J., AND HICKS, M. Ratchet
source code repository. https://github.com/
impedimentToProgress/Ratchet, 2016.

[45] VINSCHEN, C., AND JOHNSTON, J. Newlib [computer soft-
ware]. Retrieved from https://sourceware.org/newlib/, Mar 2015.

[46] WANG, J., DONG, X., AND XIE, Y. Enabling high-performance
lpddrx-compatible mram. In Proceedings of the 2014 Interna-
tional Symposium on Low Power Electronics and Design (New
York, NY, USA, 2014), ISLPED ’14, ACM, pp. 339–344.

[47] WU, Y.-C., CHEN, P.-F., HU, Z.-H., CHANG, C.-H., LEE, G.-
C., AND YU, W.-C. A mobile health monitoring system using
RFID ring-type pulse sensor. In International Conference on
Dependable, Autonomic and Secure Computing (2009), pp. 317–
322.

[48] XU, M., BODIK, R., AND HILL, M. A ”flight data recorder” for
enabling full-system multiprocessor deterministic replay. In In-
ternational Symposium on Computer Architecture (2003), ISCA,
pp. 122–135.

[49] ZHAI, B., PANT, S., NAZHANDALI, L., HANSON, S., OLSON,
J., REEVES, A., MINUTH, M., HELFAND, R., AUSTIN, T.,
SYLVESTER, D., AND BLAAUW, D. Energy-efficient subthresh-
old processor design. Transactions on Very Large Scale Integra-
tion Systems 17, 8 (Aug 2009), 1127–1137.

[50] ZHANG, H., GUMMESON, J., RANSFORD, B., AND FU, K.
Moo: A batteryless computational RFID and sensing platform.
Tech. Rep. UM-CS-2011-020, Department of Computer Science,
University of Massachusetts Amherst, Amherst, MA, 2011.

[51] ZHANG, W., DE KRUIJF, M., LI, A., LU, S., AND SANKAR-
ALINGAM, K. ConAir: Featherweight concurrency bug recovery
via single-threaded idempotent execution. In International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2013), ASPLOS, pp. 113–126.

32 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/impedimentToProgress/Ratchet
https://github.com/impedimentToProgress/Ratchet

Machine-aware Atomic Broadcast Trees for Multicores

Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract
The performance of parallel programs on multicore ma-
chines often critically depends on group communication
operations like barriers and reductions being highly tuned
to hardware, a task requiring considerable developer skill.

Smelt is a library that automatically builds efficient
inter-core broadcast trees tuned to individual machines,
using a machine model derived from hardware registers
plus micro-benchmarks capturing the low-level machine
characteristics missing from vendor specifications.

Experiments on a wide variety of multicore machines
show that near-optimal tree topologies and communica-
tion patterns are highly machine-dependent, but can nev-
ertheless be derived by Smelt and often further improve
performance over well-known static topologies.

Furthermore, we show that the broadcast trees built by
Smelt can be the basis for complex group operations like
global barriers or state machine replication, and that the
hardware-tuning provided by the underlying tree is suffi-
cient to deliver as good or better performance than state-
of-the-art approaches: the higher-level operations require
no further hardware optimization.

1 Introduction

This paper addresses the problem of efficiently commu-
nicating between cores on modern multicore machines,
by showing how near-optimal tree topologies for point-
to-point messaging can be derived from online measure-
ments and other hardware information.

The problem is important because parallel program-
ming with message-passing is increasingly used inside
single cache-coherent shared-memory machines, mod-
ern safe concurrent programming languages, runtime sys-
tems, and for portability between single-machine and dis-
tributed deployments.

This in turn leads to the need for distributed coor-
dination operations, e.g. global synchronization barriers
or agreement protocols for ensuring consistency of dis-
tributed state, to be implemented over message-passing
channels. Efficient use of these channels becomes critical
to program performance.

The problem is hard because modern machines have

MCS Diss Smelt MCS Diss Smelt
0

8

16

24

32

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

32 Threads 64 Threads

Figure 1: Comparison of thread synchronization using
different barriers on Intel Sandy Bridge 4x8x2 with and
without Hyperthreads. Standard error is < 3%.

complex memory hierarchies and interconnect topologies.
Significant latency improvements for group operations
can result from careful layout and scheduling of messages.
Unlike classical distributed systems, the extremely low
message propagation times within a machine mean that
small changes to message patterns and ordering have large
effects on coordination latency. Worse, as we show in our
evaluation (§5.1), different machines show radically dif-
ferent optimal layouts, and no single tree topology is good
for all of them.

In response, we automatically derive efficient commu-
nication patterns tuned for each particular machine based
on online measurements of the hardware and data from
hardware discovery. We realize this technique in Smelt,
a software library which builds efficient multicast trees
without manual tuning. Smelt serves as a fundamental
building block for higher-level operations such as atomic
broadcast, barriers and consensus protocols.

Smelt provides significant performance gains. Despite
other modern barrier operations being highly tuned mono-
lithic implementations, Smelt barriers are constructed
over the multicast tree without the need for further
hardware-specific tuning. Even so, they provide 3× better
performance than a state-of-the-art shared-memory dis-
semination barrier, and is up to 6× faster than an MCS-
based barrier (Figure 1) in our experiments (§5).

In the next section we further motivate this problem,
and discuss the unexpected challenges that arise in solving
it efficiently on real hardware platforms. We then describe
Smelt’s design (§3) and give details on its implementation
(§4). We evaluate Smelt with a set of micro-benchmarks,
existing runtime systems and applications in §5.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 33

2 Motivation and background

We motivate our work in this section by first surveying
the trend of building parallel programs using message-
passing rather than shared-memory synchronization, even
in a single cache-coherent machine. We then discuss mes-
saging in a multicore machine, and how efficient imple-
mentations of group communication operations depend
critically on the characteristics of complex and diverse
memory systems. We then survey common tree topolo-
gies used in large computers for communication as a pre-
lude to our discussion of Smelt in the next section.

2.1 The move to message passing
Modern high-end servers are large NUMA multiproces-
sors with complex memory systems, employing cache-
coherency protocols to provide a consistent view of mem-
ory to all cores. Accessing shared data structures (e.g.
shared-memory barriers or locks) thus entails a sequence
of interconnect messages to ensure all caches see the up-
dates [9]. This makes write-sharing expensive: cache
lines must be moved over the interconnect incurring laten-
cies of 100s of cycles. Atomic instructions like compare-
and-swap introduce further overhead since they require
global hardware-based mutual exclusion on some re-
source (such as a memory controller).

This has led to software carefully laying out data
in memory and minimizing sharing using techniques
like replication of state, in areas as diverse as high-
performance computing [32], databases [35], and operat-
ing systems [3]. Systems like multikernels eschew shared-
memory almost entirely, updating state through communi-
cation based on message-passing.

There are other reasons to use local message-passing.
Several modern systems languages either have it as a first-
class language feature (like Go) or impose strong restric-
tions on sharing memory access (like Rust).

Furthermore, while contemporary machines are mostly
coherent, future hardware might not even provide glob-
ally shared non-coherent memory [13]. Here, efficient
message-passing is not merely a performance optimiza-
tion – it is required functionality. The same is true to-
day for programs that span clusters of machines. A single
paradigm facilitates a range of deployments.

Ironically, most NUMA message-passing mechanisms
today use cache-coherence. With few exceptions [4],
multicore machines provide no message-passing hard-
ware. Explicit point-to-point message channels are imple-
mented above shared-memory such that a cache line can
be transferred between caches with a minimum number
of interconnect transactions. Examples are URPC [5],
UMP [2] and FastForward [16]; in these cases, only two
threads (sender and receiver) access shared cache lines.

2.2 Communication in multicores
While cache-coherency protocols aim to increase mul-
ticore programmability by hiding complex interactions
when multiple threads access shared-memory, this com-
plexity of the memory hierarchy and coherency protocol
makes it hard to reason about the performance of commu-
nication patterns, or how to design near-optimal ones.

The protocols and caches also vary widely between ma-
chines. Many enhancements to the basic MESI protocol
exist to improve performance with high core counts [18,
28], and interconnects like QPI or HyperTransport have
different optimizations (e.g., directory caching) to reduce
remote cache access latency.

Worse, thread interaction causes performance variabil-
ities that prevent accurate estimation of communication
latency. For example, when one thread polls and another
writes the same line, the order in which they access the
line impacts observed latency.

Prior work characterized [29] and modelled [32]
coherence-based communication, optimizing for group
operations. However, these models require fine-grained
benchmarking of the specific architectures, providing
more accurate models but less portable algorithms.

Smelt is much more general: we abstract coherence de-
tails and base our machine model on benchmark measure-
ments, simplifying tree construction while still adapting
to underlying hardware. We show that sufficient hard-
ware details can be obtained from a few microbenchmarks
which are easily executed on new machines without need-
ing to understand intricate low-level hardware details.

2.3 Group communication primitives
In practice, message-passing is a building block for
higher-level distributed operations like atomic broadcast,
reductions, barriers or agreement. These require messages
to be sent to many cores, and so they must be sent on mul-
tiple point-to-point connections.

The problem described above is therefore critical, par-
ticularly in complex memory hierarchies. A large coher-
ent machine like an HP Integrity Superdome 2 Server has
hundreds of hardware contexts on up to 32 sockets, with
three levels of caching, many local memory controllers,
and a complex interconnection topology.

Consider a simple broadcast operation to all cores.
Baumann et et al. [2] show how a careful tree-based ap-
proach to broadcast outperforms and out-scales both se-
quential sends and using memory shared between all re-
cipients. Both the topology and the order to send mes-
sages to a node’s children are critical for performance.

The intuition is as follows: unlike classical distributed
systems, message propagation time in a single machine is
negligible compared to the (software) send- and receive
time as perceived by the sender and receiver. The store

34 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

operation underlying each send operation typically takes
a few hundred cycles on most machines. Loads on the re-
ceiver wait until the cache line transfer is done, which is
between 300 and 1000 cycles depending on the machine.
Since sequential software execution time therefore domi-
nates, it is beneficial to involve other cores quickly in the
broadcast and exploit the inherent parallelism available.
Figure 2 shows an example of such a hierarchical broad-
cast in a 8-socket machine.

r

CPU L3 $ socket interconnect tree topology

Figure 2: Multicore with message-passing tree topology

The cost of sending and receiving messages between
cores is a subtle machine characteristic typically not
known to programmers, and depends both on the separa-
tion of cores in the machine hierarchy and on more com-
plex subtleties of the cache-coherency protocol. Very lit-
tle of this information is provided by hardware itself (e.g.
in the form of registers with hardware features) and ven-
dor specifications are often incomplete or vague. Worse
hardware diversity is increasing as much as complexity.

Despite this, prior work has built machine-optimized
broadcast trees (e.g. Fibonacci trees [8]), and MPI li-
braries provide shared-memory optimizations for group
or collective operations which try to account for NUMA
hierarchies [25] using shared-memory communication
channels [17]. Our results in §5 show that these trees are
sometimes good, but there is no clear winner across all
our machines we used for evaluation.

2.4 Common tree topologies

We now introduce the tree topologies we evaluate in this
paper. The first three are hardware-oblivious, constructed
without accounting for the underlying topology. We pro-
vide a visualization for each of these on all evaluation ma-
chines: http://machinedb.systems.ethz.ch/topologies 1.

Binary trees have each node connected to at most two
children. Here, each node n connects to nodes 2n + 1

1We refer to http://machinedb.systems.ethz.ch with the symbol

and 2n + 2. Such trees often introduce redundant cross-
NUMA links, causing unnecessary interconnect traffic.
Performance is suboptimal since the low fanout (two) of-
ten means that nodes become idle even when they could
further participate in the protocol.

Fibonacci trees [22] are widely used unbalanced trees:
left-hand subtrees are larger than right-hand ones. In con-
trast to binary trees, this imbalance allows more work
to be executed in sub-trees that receive messages earlier,
which prevents nodes from being idle when they could
otherwise further participate in the broadcast. However,
like binary trees they also have a fixed fanout and can ex-
hibit redundant cross-NUMA transfers.

Sequential trees are also widely used: a root sends a
message to each other node sequentially (star-topology).
Send operations are not parallelized since one node does
all the work. This scales poorly for broadcasts on most
large multicore machines.

The other three trees we compare with consider ma-
chine characteristics in their construction:

Minimum spanning trees (MSTs) use Prim’s algo-
rithm [31] by adding edges in ascending order of cost until
the graph is connected. This minimizes expensive cross-
NUMA transfers, but does not optimize fanout and hence
send parallelism. Among others, the resulting topology
can be a star or a linear path, which both are purely se-
quential in sending.

Cluster trees are built hierarchically, as in HMPI [25].
A binary tree is built between NUMA nodes, and mes-
sages are sent sequentially within a node.

Bad trees are a worst-case tree example, built by run-
ning an MST algorithm on the inverse edge costs, maxi-
mizing redundant cross-NUMA links. We use this to show
that the topology matters, and choosing a sub-optimal tree
can be as bad as sequentially sending messages on some
machines.

3 Design

We now elaborate on the design considerations for Smelt
and describe our multicore machine model (§3.1) includ-
ing its properties and assumptions. Next, we show how we
populate it (§3.2) and how our adaptive tree is built (§3.3).
In §3.4, we will further show that exhaustive search is not
a viable solution for finding the optimal broadcast tree.

Smelt is a library which simplifies efficient program-
ming of multicore machines by providing optimized
atomic broadcast trees adapted to the hardware at hand.
The tree topology and sending order is generated automat-
ically from a machine model constructed from informa-
tion given by the hardware itself and a set of fine-grained
micro-benchmarks.

Surprisingly, the trees derived by Smelt also function

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 35

http://machinedb.systems.ethz.ch/topologies
http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch/topology/bintree
http://machinedb.systems.ethz.ch/topology/fibonacci
http://machinedb.systems.ethz.ch/topology/sequential
http://machinedb.systems.ethz.ch/topology/mst
http://machinedb.systems.ethz.ch/topology/cluster
http://machinedb.systems.ethz.ch/topology/badtree

well as building blocks for higher-level protocols – for
example, given a Smelt tree, an efficient barrier can be
implemented in two lines of code and performs as well
as or better than state-of-the-art shared-memory barriers
written and hand-tuned as monolithic components.

As a further evaluation of the applicability of Smelt, we
also re-implemented the 1Paxos [10] consensus algorithm
using Smelt trees (§5.6), which can be used to provide
consistent updates on replicated data. Further, we build a
key-value store on top of that (§5.7), which provides good
performance for consistently replicated data.

Current server machines, of course, do not exhibit par-
tial failure, and so our agreement protocol should be con-
sidered a proof-of-concept rather than a practical tool.
However, we note that even in the absence of failures,
replication within a multicore can be useful for perfor-
mance [21, 35]. Coordination and synchronization would
then still be needed to provide a consistent view of the sys-
tem state. However, it seems likely that future machines
will expose partial failures to programmers [13], requiring
replication of services and data also for fault-tolerance.

Smelt combines various tools to a smart runtime sys-
tem: (i) a machine model with micro-benchmarks to
capture hardware characteristics, (ii) a tree generator for
building optimized broadcast trees and (iii) a runtime li-
brary providing necessary abstractions and higher-level
building blocks to the programmer. We visualize this in
Figure 3.

static
information

micro-
benchmarks

Tree
Generator

tree topology +

schedule

Smelt runtime

program

Figure 3: Overview of Smelt’s design

3.1 Modelling broadcasts on multicore

Figure 4 visualizes a timeline for message-passing on a
multicore system, specifically the time that it takes for a
thread vi to send a message to two threads v j and vk.

Unlike classical networks, tsend and treceive times domi-
nate the total transmission time. We show this in our pair-
wise send and receive time (§3.2). This is significant as
the sending and receiving threads are blocked for tsend and
treceive respectively. It implies that the cost of sending n
messages grows linearly with the number of messages to
be sent, whereas in classical distributed systems, tpropage

tsend((vi, vk)) tsend((vi, v j))

treceive((vi, v j))

treceive((vi, vk))

vi

v j

vk

tpropagate

tpropagate

time

Figure 4: Visualization of a send operation: thread vi

sends a message to vk followed by another message to v j.
Send operations are sequential, while the receive opera-
tions can be processed in parallel on threads v j and vk.

dominates independently of how many messages are sent
in a single round trip.
Multicore machine model: Communication in a mul-
ticore machine can be represented as a fully connected
graph G = (V, E). Vertices vi correspond to threads,
and edges e = (vi, v j) model communication between
threads vi and v j, with edge weights as a tuple w(e) =

(tsend, treceive). We show an example of such a graph in
Figure 5. We now define tsend, treceive and tpropage:

tsend(e) denotes the time to send a message over an edge
e = (vi, v j) from sender vi to receiver v j. The sender vi

is blocked during this time. Sending a message involves
invalidating the cache line to be written and therefore
often depends on which cores the cache line is shared
with and also depend on the sequence of previously sent
messages at the sender. Moreover, it may vary with the
state of the cache line to be written.

treceive(e) denotes the time to receive an already-queued
message. The receiver is blocked while receiving the
message. In many cache-coherency protocols, receiv-
ing (reading) changes the state of the cache line in the
receiver’s cache from invalid to shared, and from mod-
ified to shared in the sender.

tpropagate(e) is the time it takes to propagate a message on
the interconnect. Propagation time is neither visible on
the sender nor receiver. We assume tpropagate = 0, as
propagation time can be seen as part of the treceive.

Our model is similar to the telephone model [38], with a
few differences: In the telephone model, each participant
has to dial other participants sequentially before transmit-
ting data. Similarly, the Smelt model has a sequential
component when sending: the thread is blocked for the
duration of tsend, and consecutive sends cannot be exe-
cuted until the previous ones are completed. However,
note that several threads can send messages concurrently
and independently of each other.

The weight of edges in our model is non-uniform: the
cost of receiving and sending messages from and to cores
that are further away (NUMA distance) is higher. This

36 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

(rreceive, tsend)

input graph G

0

1

2

3

1

2

1

example output tree τ

Figure 5: Example of fully connected input graph for four
CPUs and one possible resulting broadcast tree topology
τ with root 1 and send order as edge weights.

is even true for sending messages, since cache lines may
have to be invalidated on the receiver before they can be
modified on the sender.
Output The desired output consists of three parts: (i) A
root vroot, (ii) a tree T = (V, E′) with E′ ⊆ E, where T
is a spanning tree of G, (iii) edge priorities w′(v) repre-
senting the order in which a vertex v sends messages to its
children. T is to be chosen such that the latency lat(T) is
minimal. The latency is given recursively as

lat(T) = max(∀v ∈ V : lat(T, v))
with

lat(T, vroot) = 0

lat(T, v) = lat(T, vp) +

k∑
i=1

tsend(vp, vi)

with vp being parent of v and v the k-th child of vp. Note
that this latency includes the send-cost for k − 1 children
that vp sends a message to first.

3.2 Populating the machine model
We derive the input values for our machine model from
various sources: libraries such as libnuma [36], tools
like likwid [34], or special OS provided file systems
like /proc and /sys on Linux. The OS and libraries
obtain their information by parsing ACPI [20] tables like
the static resource affinity table (SRAT) and system local-
ity information table (SLIT), which, for example, provide
the NUMA configuration. However, this information is
coarse-grained and insufficient for our purposes.

To address this, Smelt enriches relevant static machine
information with a carefully chosen set of micro bench-
marks that capture relevant hardware details that cannot
be inferred from this static information.
Pairwise send and receive time (tsend and treceive) Mo-
tivated by §3.1, we measure the pairwise send (tsend) and
receive (treceive) latency between all hardware threads in
the system. Figure 6 shows a visualized output of this
benchmark on a 32-core AMD machine (A IL 4x4x2 in
Table 1). Both the receive and send time clearly show
the NUMA hierarchy of this eight node system. Note that
the receive costs are asymmetric: treceive does not only de-
pend on the NUMA distance but also on the direction i.e.

0 5 10 15 20 25 30
sending core

0

5

10

15

20

25

30

re
ce

iv
in

g
co

re

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30
sending core

0

5

10

15

20

25

30

re
ce

iv
in

g
co

re

0

40

80

120

160

200

240

280

320

360

Figure 6: Pairwise send (upper) and receive time (lower)
on A IL 4x4x2.

treceive(vi, vk) , treceive(vk, vi). This observation is inline
with [24].

The send cost is smaller compared to receive and (on
this machine) shows the same NUMA hierarchy. Note
that we measure the cost of sending batch of 8 messages
and take the average to compensate for the possible exis-
tence of a hardware write buffer: software is only blocked
until the store is buffered (and not until the cache line is
fetched). This hides the full cost of the cache-coherency
protocol. Ideally, Smelt would measure the effect of the
write buffer as well. This makes benchmarking signifi-
cantly more complex as the cost of sending a message be-
tween two cores would also depend on the cost of previous
send operations and the ocupancy of the write buffer.

Fortunately, write buffers are relatively small, so that
their effects do not change the runtime behavior signifi-
cantly. We keep such a benchmark open for future work
and use the more simple batch sending approach instead.

Data from our pairwise send- and receive experiments
allow us to predict the time a core is busy sending or re-
ceiving a message and when it will become idle again.
The busy/idle pattern of the cores is essential to de-
cide which topology to use and the send-order of mes-
sages. Our pairwise benchmark works independently of
the cache-coherency protocol as it determines the cost of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 37

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#pairwise

sending and receiving messages using the same software-
message-passing library and hence including all over-
heads induced by interconnect transfers triggered by the
cache-coherency protocol implemented on each machine.

Pairwise benchmarks for all our machines are avail-
able on our website (http://machinedb.systems.ethz.ch)
and the pairwise benchmark’s code can be found on
http://github/libsmelt.

3.3 Tree generation: adaptive tree
We now describe how Smelt generates trees automatically
based on the machine model. Since the tree topology for
multicast operations depends on which cores are allocated
for an application, a new tree has to be generated when-
ever an application is started. Smelt generates the tree
topologies offline in a separate tree generation step. Cur-
rently, this is done in a separate process when the applica-
tion is initialized, but we anticipate that generating a tree
topology will be a frequent operation on future machines
as a consequence of reconfiguration in the case of fail-
ure or if group communication membership changes. We
show the tree topologies generated for each of our ma-
chines on http://machinedb.systems.ethz.ch .

3.3.1 Base algorithm

When building our adaptive tree, we rely on the perfor-
mance characteristics described in §3.2, and make use of
the fact that the tree generator can defer a global view
of the system state from message send and receive times.
For example, it knows which messages are in transit and
which nodes are idle. The tree generator operates as an
event-based simulation using our pairwise measurements.
Whenever a core is idle, it uses the model to choose the
next core to send the message to.

The desired output of the tree generator is (i) the root
of the tree, (ii) a spanning tree connecting all nodes, and
(iii) a schedule that describes the send-order in each node.
If not specified by the application, we select the root to
be the thread having the lowest average send cost to ev-
ery other node in the system. The task then is to design
a good heuristic to find near-optimal solutions for find-
ing the tree topology. For example, messages can first
be sent on expensive links to minimize the cost of the
link that dominates the broadcast execution time. Alter-
natively, we can send on cheap links first to increase the
level of parallelism early up. We found that for current
multicore machines, it is more important to send on ex-
pensive links first: local communication is comparably
fast, so messages can be distributed locally and efficiently
once received on a NUMA node.

Another trade-off is between minimizing expensive
cross-NUMA links and avoiding nodes being idle. For

the machines we evaluated, we found that there is little
or no benefit from sending redundant cross-NUMA mes-
sages even if cores are otherwise idle. For the few excep-
tions, our optimizations described in §3.3.2 detect oppor-
tunities for additional cross-NUMA links and adds them
iteratively later where appropriate. Our heuristics are as
follows:

• Remote cores first: We prioritize long paths as they
dominate the latency for broadcasts. We select
the cheapest core from the most expensive remote
NUMA node. Local communication is executed af-
terwards, since this is relatively cheap.

• Avoid expensive communication links: We send the
message to a remote NUMA node only if no other
core on that node has received the message. We can
do this because our tree generator has global knowl-
edge on the messages in flight. This minimizes cross-
NUMA node communication.

• No redundancy: We never send messages to the same
core twice. The tree generator knows which mes-
sages are in flight and will not schedule another send
operation to the same core.

• Parallelism: We try to involve other nodes in the
broadcast as much as possible. The challenge here
is to find the optimal fan-out of the tree in each node.
The result often resembles an imbalanced tree so that
cores that received a copy of the message early have
a larger sub-tree than later ones.

We describe the tree generation in detail in Algorithm 1.
At any point during the generation run, a core in the tree
generator can be in either of two states: (i) active meaning
that it has received a message and is able to forward mes-
sage to other nodes, or (ii) inactive otherwise. Inactive
nodes are waiting to receive a message from their parent.
The set of active cores is denoted as Acores. NUMA nodes
are active if at least one of its cores is active (Anodes).

We observe that the tree obtained from this algorithm
is a multilevel tree for most machines (). Message de-
livery is first executed across NUMA nodes and then fur-
ther distributed within each node. The tree generator cre-
ates a multilevel hierarchy in either of these steps only
if the send operation is relatively expensive compared to
receive operations. Otherwise, it will sequentially send
messages. For example, with a NUMA node, due to rel-
atively low send costs, sequentially sending messages is
often faster than a multilevel sub-tree, especially for sys-
tems with only a few cores per node.

In our evaluation (§5.1), we show that a tree gener-
ated with our tree generator performs comparably with or
better than the best static tree topology on a wide range
of machines. While the algorithm itself might have to
be adapted in the future to cope with changes in hard-
ware development, the approach of using micro bench-

38 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/model/pairwise
https://github.com/libsmelt/libsmelt/blob/master/bench/pairwise.c
http://machinedb.systems.ethz.ch/topology/adaptivetree
http://machinedb.systems.ethz.ch/topology/adaptivetree

Algorithm 1 Smelt’s adaptive tree

Call . Set of cores
Anodes ← node_of(croot) . Active nodes
Acores ← croot . Active cores
function pick_most_expensive(C, i)

return arg maxx∈C (tsend(i, x) + treceive(i, x))
end function
function pick_cheapest(C, i)

return arg minx∈C (tsend(i, x))
end function
function node_idle(i) . Executed for active idle node i

Cinactive ← Call ∩ (Acores∪ cores_of(Anodes))
cnext ← pick_most_expensive(Cinactive, i)
if same_node(i, cnext) then . Local

Send(cnext)
Acores ← Acores ∪ cnext . Mark core active

else
Celigible ← node_of(cnext) . All cores on node
cnext ← pick_cheapest(Celigible, i)
send(cnext) . Send remotely
Anodes ← Anodes∪ node_of(cnext)
Acores ← Acores ∪ r

end if
end function
function adaptive_tree . Run for core csel f

while Call ∩ Acores , ∅ do
if csel f ∈ Acores then
node_idle(csel f)

else
wait_message

end if
end while

end function

marks to capture fine-grained hardware details for build-
ing machine-aware broadcast trees should still be applica-
ble. Programmers then automatically benefit from an im-
proved version of the algorithm constructing the tree, even
in the presence of completely new and fundamentally dif-
ferent hardware without having to change application pro-
gram code. Consequently, we believe our generator to be
useful for future increasingly heterogeneous multicores.

Note that our algorithm is designed for broadcasts trees,
but we show in §5 that it also works well for reduc-
tions. However, our design and implementation are flexi-
ble enough to use different trees for reductions and broad-
casts if necessary for future hardware.

3.3.2 Incremental optimization

Smelt’s base algorithm produces an hierarchical tree,
where only one expensive cross-NUMA link is taken per
node. This gives a good initial tree, but leaves room for
further improvements, which we describe here:

Reorder sends: most expensive subtree Smelt’s basic
algorithm as described before sends on expensive links
first. This is a good initial strategy, but can be further
improved after constructing the entire tree-topology. In
order to minimize the latency of the broadcast, the time
until a message reaches the last core has to be reduced.
Sending on links that have the most expensive sub-tree
intuitively achieves that.
Shuffling: adding further cross-NUMA links As soon
as a NUMA node is active, i.e. has received a message or
has a message being sent to it already, it will not be con-
sider for further cross-NUMA transfers. On larger ma-
chines, this can lead to an imbalance, where some threads
already terminate the broadcast and become idle when
they could still further participate in forwarding the mes-
sage to minimize global latency of the broadcast tree.

Figure 7 shows this as a simple example for only two
cores 0 and 14. Core 14 finishes early and does not
consider sending any more messages, since each other
NUMA node is already active and all its local nodes fin-
ished as well. Core 0 terminates considerably later. The
time between core 0 and core 14 finishing is tslack as indi-
cated in the figure.

If an additional cross-NUMA link between core 14’s
and core 10’s NUMA node would terminate faster despite
adding another expensive cross-NUMA link, it is benefi-
cial from a purely-latency perspective to allow core 14 to
execute this additional NUMA link replacing the link that
initially connected node 0 before this optimization.

0

14

. .
.

..
.

tslack

tsend + treceive

Figure 7: Optimization: add further cross-NUMA links

Smelt executes the following algorithm to decide based
on the model if an additional cross-NUMA link vs → ve

would reduce the latency of the broadcast. In each itera-
tive step, we select nodes vs and ve as the node that first be-
comes idle and the node that terminates last respectively.
If tsend + treceive < tslack, Smelt adds an additional cross-
NUMA link. Then we iteratively optimize until adding
edge vs → ve does not further reduce the latency of the
tree. If this is the case, the resulting tree from replacing
previous edge vx → ve with vs → ve is always better ac-
cording to the model. If slower, the algorithm would not
have chosen to optimize it and terminated.

The result can be further improved by sorting the edges.
Hence, after each “shuffle”-operation, we reorder the
scheduling of sends on each outgoing connection of a core

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 39

by the cost of the receiving core’s sub-tree as described in
the previous section.

3.4 Finding the optimal solution

Despite being a type of minimum spanning tree, tradi-
tional graph algorithms cannot be used to solve the MST
problem in our context as they do not consider the edge
priorities. In fact, finding a broadcast tree in the telephone
model for an arbitrary graph is known to be NP hard [37].

A brute-force approach to the problem is not feasible
as the search space grows rapidly. To obtain the best tree
given a set of nodes n, we need to construct first all the
possible trees with n nodes. This is the Catalan Num-
ber [11] of order n− 1 (Cn−1). Moreover, there are n! pos-
sible schedules per tree. Hence, the number of possible
configurations is shown in Equation 1.

Ntrees = n!Cn−1 =
(2n − 2)!
(n − 1)!

(1)

Assuming 1ms for evaluating the model of a single tree,
this would take over 6 months for 10 cores. We ran a
brute-force search for up to 8 cores (5 hours) for a subset
of our machines, and compared the adaptive tree against
the optimal solution under the model. The estimated run-
time by our tree generator predicts that Smelt has a rela-
tive error of 9% versus the optimal solution. In real hard-
ware the error is larger at around 13%.

Note that we designed our algorithm for large multicore
machines, and evaluating its optimality for configurations
of only 8 cores does not show the full potential of our
methodology. Unfortunately, due to the high cost of cal-
culating the optimal tree with a brute-force approach, we
were not able to extend this validation to bigger machines.

4 Implementation

The Smelt runtime (SmeltRT) is a C++ library that allows
the programmer to easily implement machine optimized
higher-level protocols by abstracting the required chan-
nel setup and message-passing functionality. SmeltRT is
structured in two layers: (i) a transport layer providing
send/receive functionality and (ii) a collective layer sup-
porting group communication. For each layer, we explain
its core concepts, interfaces and abstractions.

4.1 Transport layer

SmeltRT uses message-passing as a communication
mechanism between threads, which SmeltRT pins to
cores. The transport layer provides point-to-point
message-passing functionality between threads including

send(), receive() and OS independent control proce-
dures. Those message-passing channels are abstracted us-
ing a bi-directional queuepair, allowing different transport
backends to be used transparently.

Properties All queuepair backends must implement the
following properties: (i) reliability: a message sent over a
queuepair is never lost or corrupted and will be received
eventually. (ii) ordering: two messages sent over the same
queuepair will be received in the same order. (iii) a queue-
pair can hold a pre-defined number of messages. Since
today’s multicores are reliable, only flow control has to be
implemented to guarantee above properties. It is needed
to notify the sender which slots can be reused for further
messages.

Interface The basic send/receive interface can be seen
in the following listing. Messages are abstracted using
Smelt-messages which encapsulate payload and length to
be sent over the queuepair. The send and receive opera-
tions may block if the queuepair is full or empty respec-
tively. The state of a queuepair can be queried to avoid
unecessary blocking.

errval_t
smlt_queuepair_send(struct smlt_qp *qp,

struct smlt_msg *msg);
errval_t
smlt_queuepair_recv(struct smlt_qp *qp,

struct smlt_msg *msg);

Message-passing backends The transport layer is mod-
ular and supports multiple backends. Each queuepair
backend must adhere to the properties of a Smelt queue-
pair as stated above. Smelt’s message-passing back-
end is an adapted version of the UMP channel used
in Barrelfish [2], originally inspired by URPC [5]. A
Smelt UMP queuepair consists of two circular, unidirec-
tional buffers of cache line-sized message slots residing
in shared-memory. Each message contains a header word
which includes the sequence number for flow-control and
an epoch bit to identify new messages. Each cache
line has one producer and one consumer to minimize the
impact of the cache-coherency protocol. The cache lines
holding messages are modified only by the sender. The
receiver periodically updates a separate cache line with
the sequence number of the last received message. This
line is checked by the sender to determine whether a slot
can be reused.

Further, we implemented other shared-memory back-
ends (such as FastForward [16]) and plan to support inter-
machine message-passing backends over IP or RDMA
protocols in the future.

40 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.2 Collective layer
The collective layer builds upon the transport layer and
provides machine-aware, optimized group communica-
tion primitives such as broadcasts and reductions. A re-
duction is a gather operation which blocks until the node
has received the value from all its children and the aggre-
gate is forwarded to the parent. Such collective operations
involve one or more threads in the system.

4.2.1 Concepts

Smelt’s collective operations rely on Smelt’s core con-
cepts of topologies and contexts.
Topologies A topology describes the communication
structure for the collective operation. It defines which par-
ticipants are part of this communication group (i.e. multi-
cast). Each topology has a distinct node, the root, where
all broadcasts are initiated and all reductions end. The
topology can be generated deterministically at runtime,
loaded from a configuration file, or returned by a service.
The latter two can describe a hardware aware topology
either precalculated or supplied on demand respectively.
Contexts Smelt takes the topology description as a
blueprint for creating the required transport links which
are encapsulated in a context. A topology can be used
to create multiple contexts. Collective operations require
a valid context to identify the parent and child nodes for
sending and receiving messages.

4.2.2 Collective operations

Next we show the interface for collective operations. The
context identifies the location in the tree of the calling
thread and defines the operations being executed. The
reduction takes an operation argument – a function
pointer – to implement the reduction operation. At the
root, the result parameter contains the gathered value.

errval_t smlt_broadcast(struct smlt_context *ctx,
struct smlt_msg *msg);

errval_t smlt_reduce(struct smlt_context *ctx,
struct smlt_msg *input,
struct smlt_msg *result,
smlt_reduce_fn_t op);

Broadcasts Smelt’s broadcast primitives guarantee re-
liability and ensure that all nodes in a given context re-
ceive messages in the same order (atomic broadcast). We
assume that multicores today are fail-stop as a whole
and hence either run reliable or the entire machine fails.
Smelt’s broadcasts start at a defined, per context root and
therefore all messages are sent through the root, that acts
as a sequentializer. It is possible to have multiple con-
texts with different roots. In that case, however, each core

has to poll several memory locations for messages associ-
ated with multiple endpoints from different trees. This in-
creases the receive overhead on each core, but also the la-
tency, as multiple channels have to be polled. The sequen-
tializer, together with the FIFO property of the edge links
and reliable transmission, implements the atomic broad-
cast property.
Reductions Reductions do in-network processing on
each node from payload received from all children, and
pass the new value to the parent node. We use the same
tree as in the broadcasts and the final value can be ob-
tained at the root.
Barriers With the basic collective operations reduce
and broadcast, we implement a barrier as shown in
the code below. Note that we use the optimized zero-
payload variants of reduce and broadcast. Despite
its simplicity, our barrier outperforms or is comparable
to state-of-the-art implementations, as we show in §5.4
and §5.5. This demonstrates that a highly-tuned generic
machine-aware broadcast as implemented by Smelt can
be used for higher-level protocols that benefit automati-
cally from Smelt’s optimizations.

void smlt_barrier(struct smlt_context *ctx) {
smlt_reduce(ctx);
smlt_broadcast(ctx);

}

5 Evaluation
We ran our experiments on eleven machines of two ven-
dors with different microarchitectures and topologies (c.f.
Table 1). Throughout this section, we indicate the number
of threads as triple #sockets×#cores×#threads.

Due to space constraints, in most sections we focus
on the largest machines for each vendor. In addition to
the results shown here, we provide a website showing
detailed results for all experiments on each machine:
http://machinedb.systems.ethz.ch.

5.1 Message passing tree topologies
We evaluate the performance of Smelt’s adaptive tree
against the tree topologies shown in §2.4. We run
atomic broadcasts, reductions, barriers and two-phase
commit [23] as workloads on all of our machines.

We measure how long it takes until every thread has
completed the execution of the collective operation. We
avoid relying on synchronized clocks by introducing an
additional message to signal completion: for atomic
broadcast and two-phase commit a distinct leaf sends a
message to the root. We measure the time until the root
(i.e. the initiator of the operation) receives this message.
We repeat this for all leaves and select the maximum time

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 41

http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch

machine A MC 4x12x1 I IB 2x10x2 I NL 4x8x2 A BC 8x4x1 I KNC 1x61x4 I SB 2x8x2

CPU AMD Opteron 6174 Intel Xeon E5-2670 v2 Intel Xeon L7555 AMD Opteron 8350 Xeon Phi Intel Xeon E5-2660 0
micro arch Magny Cours IvyBridge Nehalem Barcelona k1om SandyBridge
#cores 4x12x1 @ 2.20GHz 2x10x2 @ 2.50GHz 4x8x2 @ 1.87GHz 8x4x1 @ 2.00GHz 1x60x4 @ 1.00GHz 2x8x2 @ 2.20GHz
caches 64K/ 512K/ 4M 32K/ 256K/ 25M 32K/ 256K/ 24M 64K/ 512K/ 2M 32K/ 512K/ 32K/ 256K/ 20M
memory 126G 252G 110G 15G 15G 64G

machine A SH 4x4x1 A IL 4x4x2 I SB 4x8x2 I BF 2x4x2 A IS 4x6x1

CPU AMD Opteron 8380 AMD Opteron 6378 Intel Xeon E5-4640 0 Intel Xeon L5520 AMD Opteron 8431
micro arch Shanghai Interlagos SandyBridge Bloomfield Istanbul
#cores 4x4x1 @ 2.50GHz 4x4x2 @ 2.40GHz 4x8x2 @ 2.40GHz 2x4x2 @ 2.27GHz 4x6x1 @ 2.50GHz
caches 64K/ 512K/ 6M 16K/2048K/ 6M 32K/ 256K/ 20M 32K/ 256K/ 8M 64K/ 512K/ 4M
memory 16G 512G 505G 24G 15G

Table 1: Machines used for evaluation. Caches given as L1 data / L2 / L3. (L2 per core, L3 socket). Number of cores
represented as sockets / cores per socket / threads per core.

among them. In reductions, this is reversed as the root
sends the message to the leaf. For barriers, we measure
the cost on each core and take the maximum. Barriers are
implemented as shown in §4.2.2. We repeat the experi-
ment 10’000 times and collect 1’000 data points.

We first show a detailed breakdown for selected ma-
chines to motivate that no single tree topology performs
well across all machines followed by giving an overview
of the performance across all evaluated machines. There,
we show that Smelt not only matches the best tree topol-
ogy on each machine, but further improves performance
on top of that.
Breakdown for selected machines Figure 8 shows the
detailed comparison of an 4-socket AMD machine (A IL
4x4x2), a 4-socket Intel machine (I SB 4x8x2) and an In-
tel’s Xeon Phi coprocessor (I KNC 1x60x4). The latter
uses a ring topology to connect cores instead of a hierar-
chical interconnect. In our evaluation, we use only one
thread per physical core.

Our results support the claim that there is no clear best
static topology for all machines and that the best choice
depends on the architecture and workload. As expected,
sequential sending results in a significant slowdown com-
pared to all other topologies. The other hardware oblivi-
ous trees, binary and Fibonacci, perform comparably but
suffer from using too many inter-socket messages on hier-
archical machines. The cluster topology performs well in
many cases, but since it relies on the machine’s hierarchy,
it is slow on machines not having a hierarchical memory
topology (I KNC 1x60x4). On A IL 4x4x2, the cluster is
comparable but slower than Smelt. This is because of the
rather static ordering for sending the messages as well as a
node’s outdegree in the tree that is not optimized. Despite
using machine characteristics, the MST topology does not
consider the protocol’s communication patterns nor tries
to maximize parallelism.

In contrast, Smelt’s adaptive tree (AT) achieves good
performance across all configurations due to the fact that
it uses hardware information enriched with real measure-
ments to capture fine-grained performance characteristics
of the machine and adapt the message scheduling accord-
ingly. Our results show that generating a tree based on

our machine model as described in § 3.3 achieves good
results without the programmer’s awareness of hardware
characteristics and manual tuning.

We demonstrate that the tree topology matters and that
there is no static topology that performs best on all ma-
chines even when considering the NUMA hierarchy. We
show that Smelt is able to adapt to a wide set of micro-
architectures and machine configurations without manual
tuning.

I KNC 1x61x4

I BF 2x4x2

I SB 2x8x2

I IB
2x10x2

A SH 4x4x1

A IS
4x6x1

A IL
4x4x2

A MC 4x12x1

I SB 4x8x2

I NL 4x8x2

A BC 8x4x1

2PC
barrier

red
bcast

1.17

1.12

1.18

1.24

1.09

1.07

0.86

1.06

1.22

1.30

1.08

1.11

1.35

1.41

1.27

1.37

1.10

1.09

1.24

1.13

1.13

1.08

1.01

1.10

1.11

1.13

1.24

1.16

1.07

1.03

1.09

1.15

1.17

1.09

1.18

1.07

1.33

1.38

1.53

1.22

1.01

1.02

1.21

1.01

0.6
0.8
1.0
1.2
1.4

Figure 9: Comparison of Smelt to the best static tree
topology on each machine. Ordered by the the number
of sockets as indicated by the label.

Comparison with the best other topology. Figure 9 is
a heat-map showing the speedup of Smelt compared to the
best static tree on all machines. For example, if the “clus-
ter” topology is the best tree topology besides Smelt on a
machine, we use that as a baseline. All tree topologies use
Smelt’s transport layer (§4.1).

The Fibonacci tree achieves the best performance on
three of these machines, the binary tree on one of them
and the cluster tree on the remaining seven.

Smelt not only matches the best tree topology for all but
one configuration, but also manages to achieve an average
speedup of 1.16 over all machines, peaking at a speedup
of up to 1.24x compared to the best static tree on AMD
(A SH 4x4x1) and up to 1.53x on Intel (I NL 4x8x2).

To conclude, this experiment shows that even when
the best static topology for a concrete machine is known,
Smelt still manages to further improve the performance
since, in addition to considering the hierarchy of the ma-
chine to avoid expensive cross-NUMA links, it optimally
configures the outdegree in each node of the tree. It does

42 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/experiment/ab-bench

bcast red barrier 2PC
0

20

40

60

80

100

120
E

x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(a) I KNC 1x60x4

bcast red barrier 2PC
0

5

10

15

20

25

30

35

40

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(b) A IL 4x4x2

bcast red barrier 2PC
0

10

20

30

40

50

60

70

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

] 93
.5

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(c) I SB 4x8x2

Figure 8: Details of micro benchmark results for all the evaluated tree topologies.

so based on the machine characteristics gathered from the
pairwise send and receive measurements (§3.2).

5.2 Multicast topologies

Certain workloads require collective communications
within a subset of the threads (i.e. multicast). We eval-
uate this scenario by running the benchmarks from § 5.1
with an increasing thread count starting from 2 up to the
maximum number of threads of the machine. For this,
we assign threads to NUMA nodes in round-robing, e.g.
when showing four cores on a machine with four NUMA
nodes, we would place one thread on each NUMA node.

Figure 10 shows the multicast scaling behavior of Smelt
compared to the static trees on A IL 4x4x2 and A IS
4x6x1. For a low number of cores — for example one
core per NUMA node to implement consistent updates to
data replicated on a per-NUMA basis as in §5.7 — it is
often best to send messages sequentially: we observe this
behavior in both Figure 10b and 10a. At that point, all
communication links are remote and the hierarchical clus-
ter approach does not work well. When more cores are
involved and the effects of local vs. remote communica-
tion become more obvious, the cluster topology performs
best again. In summary, the choice of topology does not
only matter on the machine, but also the multicast group
intended to use.

Further, the performance benefit when using Smelt is
often higher in intermediate configurations: for example
in Figure 10b, the maximum speedup over the best static
topology is 1.25 with 12 cores as to compared to 1.02 for a
reduction involving all 24 cores. The maximum negative
speedup of Smelt is 0.97 on A IS 4x6x1 for 22 cores.

5.3 Comparison with MPI and OpenMP

We compare Smelt with two established communication
standards: MPI and OpenMP. MPI (Message Passing In-
terface) [30] is a widely used standard for message-based
communication in the HPC community. MPI supports a
wide range of collective operations, including broadcasts,
reductions and barriers. Furthermore, the MPI libraries

provide specific channels and optimizations for shared-
memory systems.

OpenMP 4.0 [39] is a standard for shared-memory
parallel processing and is supported by major compil-
ers, operating systems and programming languages. The
OpenMP runtime library manages the execution of paral-
lel constructs. Threads are implicitly synchronized after a
parallel block or explicitly by the barrier directive.

We compare the collectives of MPI (Open MPI v1.10.2)
and OpenMP (GOMP from GCC 4.9.2) with Smelt. For
MPI we compare broadcasts, reductions, and barriers.
OpenMP only provides reductions and barriers.

For each of the runtimes, we execute the experiment
3000 times and take the last 1000 measurements. At the
beginning of each round, we synchronize all the threads
with two dissemination barriers so that all threads enter
the collective operation at the same time. This is different
from the benchmark in § 5.1 since here the cost of the
extra message depends on the used library. The broadcast
is executed with a one byte payload and reduction has a
single integer payload.

Figure 11 shows the results of the largest machines.
Smelt outperforms MPI for all the tested collective op-
erations. In broadcasts and reductions Smelt outperforms
MPI with speedups between 1.6x and 2.6x. For barriers
the lead is smaller (between 1.19x and 1.41x). OpenMP
performs worse than MPI, showing that message-passing
approaches are better-suited for large multicore machines
than shared-memory programming models. Moreover,
OpenMP is clearly outperformed by Smelt in reductions
on the three machines. OpenMP barriers perform well on
A IL 4x4x2 but still Smelt is between 1.5x and 3.8x faster.

Since OpenMP uses explicit and implicit barriers af-
ter each parallel construct, we extend the evaluation to
demonstrate how Smelt can be used to improve the GOMP
library [15]. GOMP’s standard barriers are based on
atomic instructions and the futex syscall on Linux [12,
14, 26]. We replaced GOMP’s barrier with Smelt and
compared it against the vanilla version. As workload we
took syncbench and arraybench from the EPCC OpenMP
micro-benchmarks suite [27] using standard settings and
5000 outer repetitions. We ran the benchmark using all

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 43

http://machinedb.systems.ethz.ch/machine/phi#ab-bench
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#ab-bench
http://machinedb.systems.ethz.ch/machine/sgs-r820-01#ab-bench
http://machinedb.systems.ethz.ch/experiment/ab-bench

322 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of cores

0

2

4

6

8

10

12
E

x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

s/
1
.0

0

s/
1
.1

6 f/
1
.0

4

s/
1
.1

9

f/
1
.1

3

c
/
1
.1

7

c
/
1
.2

2

c
/
1
.1

1

c
/
1
.2

3

c
/
1
.1

0

c
/
1
.0

9

c
/
1
.2

6

c
/
1
.1

8

c
/
1
.2

1

c
/
1
.1

8

c
/
1
.1

3

mst

AT

cluster

seq

fibonacci

bintree

(a) Broadcast A IL 4x4x2

2 4 6 8 10 12 14 16 18 20 22 24

Number of cores

0

2

4

6

8

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

b
/
1
.0

0

s/
0
.9

9

s/
0
.9

9

f/
1
.2

4

c
/
1
.2

2

c
/
1
.2

5

b
/
1
.2

5

c
/
1
.1

8

c
/
1
.0

2

c
/
1
.2

0

c
/
0
.9

7

c
/
1
.0

2

mst

AT

cluster

seq

fibonacci

bintree

(b) Reduction A IS 4x6x1

Figure 10: Multicast, cores allocated round-robin to NUMA nodes. Labels: speedup compared to the best static
topology and first letter of that topology’s name.

Broadcast Reduction Barrier
0

5

10

15

20

25

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(a) A IL 4x4x2

Broadcast Reduction Barrier
0

10

20

30

40

50

60

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(b) I NL 4x8x2

Broadcast Reduction Barrier
0

5

10

15

20

25

30

35

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(c) I SB 4x8x2

Figure 11: Comparison with MPI and OpenMP .

available threads.
The results of the benchmark are shown in Table 2.

Overall, Smelt performs significantly better or compa-
rable to the original GOMP barriers. In the BAR-
RIER micro-benchmark, we achieve up to 2.5x and 1.5x
speedup respectively. These results show that replacing
the standard barriers in GOMP with Smelt reduces the
overhead for synchronization significantly.

5.4 Barriers micro-benchmarks
Barriers are important building blocks for thread synchro-
nization in parallel programs. We compare our barrier im-
plementation (§ 4.2.2) with the state-of-the-art MCS dis-
semination barrier [1] (parlibMCS) and a 1-way dissemi-
nation barrier that uses atomic flags [33] (dissemination).
We show that our simple barrier implementation, based on
broadcast and reduction, can compete with highly-tuned
state-of-the-art shared-memory implementations.

In this evaluation, we synchronize threads using the dif-
ferent barriers in a tight for-loop of 10,000 iterations. This
is yet another barrier benchmark and cannot be directly
compared with the previous sections.

The results in Table 3 show significant differences be-
tween machines and whether or not hyperthreads are used.
Whereas on A IL 4x4x2 Smelt performs worse and there
is no clear winner, Smelt is up to 3x faster on Intel ma-
chines relative to the dissemination barrier and up to 6x

machine C parlibMCS dissemination Smelt

I SB 4x8x2 32 16,718 (495) 6,699 (63) 4,725 (6)
64 38,494 (755) 19,762 (22) 6,348 (10)

I NL 4x8x2 32 13,836 (348) 5,777 (239) 4,035 (22)
64 15,604 (1,366) 6,333 (185) 5,755 (26)

A IL 4x4x2 16 4,288 (7) 4,596 (92) 4,792 (9)
32 5,989 (23) 5,220 (12) 7,016 (35)

Table 3: Barrier micro-benchmark for 32 and 64 threads,
median of 100 calls [cycles], standard error in brackets.

faster compared to parlibMCS.
With this evaluation we have shown how a competitive

barrier can be implemented easily using Smelt’s hardware
aware collective operations.

5.5 Streamcluster

PARSEC Streamcluster [6] solves the online cluster-
ing problem. We chose this benchmark because it is
synchronization-intensive. We evaluate the performance
of Smelt’s barriers compared to PARSEC’s default barri-
ers, pthread barriers, and parLib dissemination barrier [1].

For all configurations, we used the native data set and
run the benchmark with and without Shoal, a framework
for optimizing memory placement and access based on
access patterns [21]. Otherwise, Streamcluster’s perfor-
mance is limited by memory bandwidth and the effects of
optimizing synchronization are less visible.

Our results in Table 4 confirm that optimizing both

44 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#scalebench
http://machinedb.systems.ethz.ch/machine/ziger#scalebench
http://machinedb.systems.ethz.ch/experiment/scalebench
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#colbench
http://machinedb.systems.ethz.ch/machine/gottardo#colbench
http://machinedb.systems.ethz.ch/machine/sgs-r820-01#colbench
http://machinedb.systems.ethz.ch/experiment/colbench
http://machinedb.systems.ethz.ch/experiment/barrier-throughput

PARALLEL FOR BARRIER SINGLE COPYPRIV COPY PRIV

A IL 4x4x2 GOMP 21.81 (112.16) 6.93 (0.15) 6.92 (0.15) 11.31 (1.41) 287.84 (122.97) 101.40 (1.22) 52.20 (301.56)
Smelt 13.93 (0.15) 4.15 (0.07) 4.13 (0.07) 7.83 (0.08) 120.10 (24.52) 104.66 (0.94) 13.84 (0.28)

I SB 4x8x2 GOMP 55.41 (333.78) 9.50 (3.22) 9.51 (3.23) 14.85 (2.26) 319.44 (7.29) 135.16 (1.13) 46.69 (140.40)
Smelt 38.31 (0.17) 5.64 (0.02) 5.63 (0.02) 10.27 (0.98) 141.95 (1.81) 128.48 (1.04) 37.20 (0.44)

Table 2: EPCC OpenMP benchmark. Average in microseconds, standard error in brackets.
pthread parsec Smelt parlib MCS

A IL 4x4x2

no Shoal 215.619 207.929 181.405 202.801
Shoal 51.816 52.075 41.116 41.061

I SB 4x8x2

no Shoal 236.476 235.394 124.492 125.184
Shoal 66.421 68.079 28.283 28.779

Table 4: Execution time of Streamcluster [seconds]

memory accesses and synchronization primitives matter
for achieving good performance of parallel programs. We
also show that our simple barrier implementation (§4.2.2)
based on a generic broadcast tree performs better than
shared-memory barriers and is competitive with a state-
of-the-art dissemination barrier.

5.6 Agreement
We implemented the 1Paxos [10] agreement protocol us-
ing Smelt. 1Paxos is a Paxos-variant optimized for mul-
ticore environments. Normal operation is shown in Fig-
ure 12a: a client sends a request to the leader which for-
wards the request to the acceptor. Then there is a single
broadcast from the acceptor to the replicas that we op-
timize using Smelt. Upon receiving the broadcast, the
leader responds to the client.

We re-implemented 1Paxos with and without Smelt,
because the original 1Paxos paper uses its own thread-
ing and message passing library. Furthermore, they cre-
ate one thread for each incoming connection which has a
large negative impact on performance [19]. The process-
ing time then dominates over communication cost making
it unsuitable for the evaluation of our work.

We vary the number of replicas from 8 to 28 and use
4 cores as load generators, which was sufficient to issue
enough requests to keep the system busy. The measure-
ments are averaged over three runs of 20 seconds each.
Figures 12b and 12c present the performance of the agree-
ment protocol and an atomic broadcast with the same
threads.

The results show that the agreement protocol on mul-
ticore machines can benefit from an optimized broadcast
primitive: using Smelt improves the throughput and re-
sponse time up to 3x compared to sequential sending on
28 replicas. As we increase the number of replicas, the
sequential broadcast quickly becomes the bottleneck. Our
results show that 1Paxos is highly tuned towards multi-
cores as its scaling behavior and performance are similar

to a plain broadcast.
By using Smelt, we can improve the performance of

agreement protocols on multicore machines, improving
also the scalability to larger number of replicas.

5.7 Key-value store
We implemented a replicated key-value store (KVS) using
1Paxos from § 5.6 to ensure consistency of updates while
reads are served directly by the replica. In our implemen-
tation, the nearest replica responds to the client request.
Our implementation supports a get/set interface. We fo-
cus on small keys (8 byte) and values (16 byte) to avoid
fragmentation. If fragmentation was implemented, larger
messages would simply be split up in multiple smaller
messages. This would cause a behavior similar to adding
more clients to the system.

We placed a KVS instance on each NUMA node of
the machine, 8 on A IL 4x4x2. An increasing number
of clients connect to their local KVS instance and issue
requests. We executed the benchmark for 20 seconds and
3 runs with a get/set ration of 80/20.

The set performance results are shown in Figure 13. We
omit the get results as they are served locally. Our results
demonstrate that Smelt is able to improve performance
even for a small number of replicas. Scalability and sta-
bility under high load are even better, resulting in up to 3x
improvement for throughput and response time.

1 4 8 12 16 20 24 1 4 8 12 16 20 24

Number of clients

0

100

200

300

400

500

600

700

800

900

S
et

th
ro

u
gh

p
u

t
[x

10
00

se
ts

/s
]

Throughput Response Time

Sequential Smelt

0

50

100

150

200

250

300

S
et

ti
m

e
[x

10
00

cy
cl

es
]

Figure 13: Set performance on A IL 4x4x2

6 Conclusion
Smelt is a new approach for tuning broadcast algo-
rithms to multicore machines. It automatically builds effi-
cient broadcast topologies and message schedules tuned

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 45

http://machinedb.systems.ethz.ch/experiment/epcc
http://machinedb.systems.ethz.ch/experiment/streamcluster
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#kvs

P/L P P P

A

L L L L

P/L leader P proposer A acceptor L learner
accept broadcast forward

(a) 1Paxos failure-free case.

8 12 16 20 24 28 8 12 16 20 24 28

Number of Replicas

0

10

20

30

40

50

60

R
es

p
on

se
ti

m
e

[x
10

00
cy

cl
es

]

1Paxos Broadcast

Sequential Smelt

(b) Response time on A IL 4x4x2.

8 12 16 20 24 28 8 12 16 20 24 28

Number of Replicas

0

100

200

300

400

500

600

700

800

900

T
h

ro
u

gh
p

u
t

[x
10

00
ag

re
em

en
ts

/s
]

1Paxos Broadcast

Sequential Smelt

(c) Throughput on A IL 4x4x2.

Figure 12: Performance results of 1Paxos agreement.

to specific hardware environments based on a machine
model which encodes both static hardware information
and costs for sending and receiving messages, generated
from micro-benchmarks that capture low-level machine
characteristics. Smelt provides an easy-to-use API which
can be used to build high-level applications on top of it.
We have shown that the trees generated by Smelt match
or outperform the best static topology on each of a variety
of machines.

Moreover, we also show how other collective opera-
tions can be constructed using these trees as a building
block and achieve good performance without requiring
any extra tuning effort. Barriers implemented trivially on
top of Smelt outperform state-of-the-art techniques, in-
cluding shared-memory algorithms which do not use mes-
sage passing. We also achieve good scaling with the num-
ber of parallel requests in an in-memory replicated key-
value store built on top of Smelt’s adaptive trees.

Consequently, we claim that automatically generated
broadcast topologies can deliver high performance in par-
allel applications without requiring programmers to have
detailed understanding of a machine’s topology or mem-
ory hierarchy. Smelt is open source and available for
download at https://github.com/libsmelt.

6.1 Future work
We believe that using Smelt will have an even larger ben-
efit on future machines that experience partial transient
hardware failures [7, 13], are more heterogeneous [7] and
increasingly rack-scale.

In the case of failures, the tree has to be reconfigured
dynamically. To make this fast, the changes in the tree
topology should ideally be kept local. We believe that our
optimizations to the basic tree topology as described in
§3.3.2 are a good starting point to explore strategies to ef-
ficiently update trees topologies locally. Furthermore, the
asymmetry of group communication as a result of spacial
scheduling and failures will make static tree topologies
less ideal (e.g. the cluster works best for a “regular” sym-
metric machine and less for irregular topologies).

Smelt will likely be able to handle more heterogeneous

hardware, as microbenchmarks reflect these performance
characteristics and the adaptive tree automatically handles
such cases. We show this by running Smelt on the Xeon
Phi, which exposes a completely different architecture,
without having to modify Smelt. Furthermore, simula-
tion based on pairwise send and receive cost should work
equally well on multicore machines providing message-
passing hardware, as long as tsend and treceive adequately
represent the system’s cost for communication. However,
it is likely that more microbenchmarks have to be added in
the future to precisely capture hardware characteristics as
more intricate accelerator hardware is added (e.g. deeper
write buffers). However, the general approach of model-
ing the machine combined with simulation will likely still
work in such a setting.

Further, we plan to extend our machine model to in-
clude more hardware details that may have an additional
impact in larger machines, like contention on inter-socket
links and write-buffer effects. Also, to date Smelt does not
address partial failures, and assumes the entire machine
to be fail-stop. Extending the system to support multi-
ple failure domains and fully networked communication
at rack scale is a natural line of extension of our work.

Acknowledgments

We thank our mentor Peter Chen and the anonymous re-
viewers for their detailed and useful reviews and the Com-
puter Architecture Group from the University of A Coruña
for the access to their cluster Pluton (Project TIN2013-
42148-P).

References

[1] Amplab, UC Berkeley. PARLIB, MCS Locks. On-
line. http://klueska.github.io/parlib/mcs.html. Ac-
cessed 05/10/2016.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and

46 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#agreement
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#agreement
http://machinedb.systems.ethz.ch/experiment/agreement
https://github.com/libsmelt
http://klueska.github.io/parlib/mcs.html

A. Singhania. The Multikernel: A new OS Architec-
ture for Scalable Multicore Systems. In Proceedings
of the 22nd ACM Symposium on Operating System
Principles, SOSP ’09, pages 29–44, Big Sky, Mon-
tana, USA, 2009.

[3] A. Baumann, S. Peter, A. Schüpbach, A. Singhania,
T. Roscoe, P. Barham, and R. Isaacs. Your computer
is already a distributed system. Why isn’t your OS?
In Proceedings of the 12th Workshop on Hot Topics
in Operating Systems, May 2009.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown,
M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. TILE64 -
Processor: A 64-Core SoC with Mesh Interconnect.
In Digest of Technical Papers of the IEEE Interna-
tional Solid-State Circuits Conference, ISSCC 2008,
pages 88–598, Feb 2008.

[5] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and
H. M. Levy. User-level Interprocess Communication
for Shared Memory Multiprocessors. ACM Trans-
actions on Computer Systems, 9(2):175–198, May
1991.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proceedings of the
17th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’08, pages
72–81, Toronto, Ontario, Canada, 2008. ACM.

[7] S. Borkar and A. A. Chien. The future of micropro-
cessors. Communications of the ACM, 54(5):67–77,
May 2011.

[8] J. Bruck, R. Cypher, and C.-T. Ho. Multiple
Message Broadcasting with Generalized Fibonacci
Trees. In Proceedings of the 4th IEEE Symposium
on Parallel and Distributed Processing, pages 424–
431, Arlington, Texas, USA, Dec 1992.

[9] T. David, R. Guerraoui, and V. Trigonakis. Ev-
erything You Always Wanted to Know About Syn-
chronization but Were Afraid to Ask. In Proceed-
ings of the 24th ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 33–48, Farminton,
Pennsylvania,USA, 2013. ACM.

[10] T. David, R. Guerraoui, and M. Yabandeh. Con-
sensus Inside. In Proceedings of the 15th Inter-
national Middleware Conference, Middleware ’14,
pages 145–156, Bordeaux, France, 2014. ACM.

[11] N. Dershowitz and S. Zaks. Enumerations of Or-
dered Trees. Discrete Mathematics, 31(1):9–28,
1980.

[12] U. Drepper. Futexes Are Tricky. Technical report,
Red Hat, Inc., Dec 2011.

[13] P. Faraboschi, K. Keeton, T. Marsland, and D. Milo-
jicic. Beyond Processor-centric Operating Sys-
tems. In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in perating Systems, HOTOS’15,
pages 17–17, Kartause Ittingen, Switzerland, 2015.
USENIX Association.

[14] H. Franke and R. Russell. Fuss, Futexes and Fur-
wocks: Fast Userlevel Lockingin Linux. In Proceed-
ings of the 2002 Ottawa Linux Symposium, OLS ’02,
pages 18:1–18:11, Denver, Colorado, USA, 2002.

[15] Free Software Foundation, Inc. Welcome to the
home of GOMP. Online. https://gcc.gnu.org/
projects/gomp/. Accessed 05/10/2016.

[16] J. Giacomoni, T. Moseley, and M. Vachharajani.
FastForward for Efficient Pipeline Parallelism: A
Cache-optimized Concurrent Lock-free Queue. In
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Program-
ming, PPoPP ’08, pages 43–52, Salt Lake City, Utah,
USA, 2008. ACM.

[17] R. L. Graham and G. Shipman. MPI Support
for Multi-core Architectures: Optimized Shared
Memory Collectives. In Proceedings of the 15th
European PVM/MPI Users’ Group Meeting, Eu-
roPVM/MPI ’ 08, pages 130–140, Dublin, Ireland,
2008. Springer Science & Business Media.

[18] D. Hackenberg, D. Molka, and W. E. Nagel. Com-
paring Cache Architectures and Coherency Proto-
cols on x86-64 Multicore SMP Systems. In Proceed-
ings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages
413–422, New York, New York, USA, 2009. ACM.

[19] R. Haecki. Consensus on a Mulicore Machine. ETH
Zurich, 2015. Master’s Thesis, http://dx.doi.org/10.
3929/ethz-a-010608378.

[20] Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba. Advanced Configuration and Power
Interface Specification, Rev. 4.0a, Apr. 2010.
http://www.acpi.info/.

[21] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris.
Shoal: Smart Allocation and Replication of Memory
for Parallel Programs. In Proceedings of the 2015
USENIX Annual Technical Conference, USENIX
ATC ’15, pages 263–276, Santa Clara, CA, 2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 47

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
http://dx.doi.org/10.3929/ethz-a-010608378
http://dx.doi.org/10.3929/ethz-a-010608378
http://www.acpi.info/

[22] D. E. Knuth. The Art of Computer Programming,
volume 3. Addison-Wesley, 2nd edition, 1998.

[23] B. W. Lampson and H. E. Sturgis. Crash Recovery
in a Distributed Data Storage System, 1979.

[24] B. Lepers, V. Quema, and A. Fedorova. Thread
and memory placement on numa systems: Asym-
metry matters. In Proceedings of the 2015 USENIX
Annual Technical Conference, USENIX ATC ’15,
pages 277–289, Santa Clara, CA, July 2015.

[25] S. Li, T. Hoefler, and M. Snir. NUMA-
aware Shared-memory Collective Communication
for MPI. In Proceedings of the 22nd International
Symposium on High-performance Parallel and Dis-
tributed Computing, HPDC ’13, pages 85–96, New
York, New York, USA, 2013. ACM.

[26] Linux Programmer’s Manual. futex - fast user-space
locking. Online. http://man7.org/linux/man-pages/
man2/futex.2.html. Accessed 05/10/2016.

[27] Mark Bull and Fiona Reid. EPCC
OpenMP micro-benchmark suite. Online.
https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/
epcc-openmp-micro-benchmark-suite. Accessed
05/10/2016.

[28] D. Molka, D. Hackenberg, and R. Schöne. Main
Memory and Cache Performance of Intel Sandy
Bridge and AMD Bulldozer. In Proceedings of
the Workshop on Memory Systems Performance and
Correctness, MSPC ’14, pages 4:1–4:10, Edinburgh,
United Kingdom, 2014. ACM.

[29] D. Molka, D. Hackenberg, R. Schöne, and W. E.
Nagel. Cache Coherence Protocol and Memory Per-
formance of the Intel Haswell-EP Architecture. In
Proceedings of the 44th International Conference on
Parallel Processing, ICPP ’ 15, pages 739–748, Bei-
jing, China, 2015.

[30] MPI Forum. Message Passing Interface Forum. On-
line. Accessed 05/10/2016.

[31] R. C. Prim. Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401, Nov 1957.

[32] S. Ramos and T. Hoefler. Cache Line Aware Op-
timizations for ccNUMA Systems. In Proceed-
ings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing,
HPDC ’15, pages 85–88, Portland, Oregon, USA,
2015. ACM.

[33] S. Ramos and T. Hoefler. Cache Line Aware Al-
gorithm Design for Cache-Coherent Architectures.
IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), 27(10):2824–2837, Oct 2016.

[34] RRZE - Regionales RechenZentrum Erlangen. lik-
wid. Online, 2015. https://github.com/RRZE-HPC/
likwid.

[35] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database Engines on Multicores, Why Parallelize
when You Can Distribute? In Proceedings of the
6th Conference on Computer Systems, EuroSys ’11,
pages 17–30, Salzburg, Austria, 2011. ACM.

[36] Silicon Graphics International Corporation. lib-
numa. Online, 2015. http://oss.sgi.com/projects/
libnuma/.

[37] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi.
Information dissemination in trees. SIAM Journal
on Computing, 10(4):692–701, 1981.

[38] Y.-H. Su, C.-C. Lin, and D. Lee. Broadcasting
in Heterogeneous Tree Networks. In Proceed-
ings of the 16th Annual International Conference
on Computing and Combinatorics, pages 368–377.
Springer-Verlag, 2010.

[39] The OpenMP Architecture Review Board. The
OpenMP API specification for parallel program-
ming. Online. http://openmp.org/. Accessed
05/10/2016.

48 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://man7.org/linux/man-pages/man2/futex.2.html
http://man7.org/linux/man-pages/man2/futex.2.html
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid
http://oss.sgi.com/projects/libnuma/
http://oss.sgi.com/projects/libnuma/
http://openmp.org/

Light-weight Contexts: An OS Abstraction for Safety and Performance
James Litton1,2, Anjo Vahldiek-Oberwagner2, Eslam Elnikety2, Deepak Garg2, Bobby

Bhattacharjee1, and Peter Druschel2

1University of Maryland, College Park
2Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus

Abstract
We introduce a new OS abstraction—light-weight con-
texts (lwCs)—that provides independent units of protec-
tion, privilege, and execution state within a process. A
process may include several lwCs, each with possibly
different views of memory, file descriptors, and access
capabilities. lwCs can be used to efficiently implement
roll-back (process can return to a prior recorded state),
isolated address spaces (lwCs within the process may
have different views of memory, e.g., isolating sensitive
data from network-facing components or isolating differ-
ent user sessions), and privilege separation (in-process
reference monitors can arbitrate and control access).

lwCs can be implemented efficiently: the overhead of
a lwC is proportional to the amount of memory exclu-
sive to the lwC; switching lwCs is quicker than switching
kernel threads within the same process. We describe the
lwC abstraction and API, and an implementation of lwCs
within the FreeBSD 11.0 kernel. Finally, we present an
evaluation of common usage patterns, including fast roll-
back, session isolation, sensitive data isolation, and in-
process reference monitoring, using Apache, nginx, PHP,
and OpenSSL.

1 Introduction
Processes abstract the unit of isolation, privilege, and
execution state in general-purpose operating systems.
Computations that require memory isolation, privilege
separation, or continuations at the OS level must be
run in separate processes1. Unfortunately, switching
and communicating between processes incurs the cost
of invoking the kernel scheduler, resource account-
ing, context-switching, and IPC. The actual hardware-
imposed cost of isolation and privilege separation, how-
ever, is much smaller: if the TLB is tagged with an ad-
dress space identifier, then switching context requires as
little as a system call and loading a CPU register.

Just as threads separate the unit of execution from
a process, we assert that there is benefit to decoupling
memory isolation, execution state, and privilege separa-
tion from processes. We show that it is possible to isolate
memory and privileges, and maintain multiple execution

1Language runtimes can provide these properties at the expense of
additional overhead, language dependence, and an increased trusted
computing base.

states within a process with low overhead, thus stream-
lining common computation patterns and enabling more
efficient and safe code.

We introduce a new first-class OS abstraction: the
light-weight context (lwC). A process may contain multi-
ple lwCs, each with their own virtual memory mappings,
file descriptor bindings, and credentials. Optionally and
selectively, lwCs may share virtual memory regions, file
descriptors and credentials.

lwCs are not schedulable entities: they are completely
orthogonal to threads that may execute within a process.
Thus, a thread may start in lwC a, and then invoke a sys-
tem call to switch to lwC b. Such a switch atomically
changes the VM mappings, file table entries, permis-
sions, instruction and stack pointers of the thread. Indeed
multiple threads may execute simultaneously within the
same lwC. lwCs maintain per-thread state to ensure a
thread that enters a lwC resumes at the point where it
was created or last switched out of the lwC.

lwCs enable a range of new in-process capabilities, in-
cluding fast roll-back, protection rings (by credential re-
striction), session isolation, and protected compartments
(using VM and resource mappings). These can be used
to implement efficient in-process reference monitors to
check security invariants, to isolate components of an
app that deal with encryption keys or other private in-
formation, or to efficiently roll back the process state.

We have implemented lwCs within the FreeBSD 11.0
kernel. The prototype shows that it is possible to im-
plement lwCs in a production OS efficiently. Our ex-
perience with implementing and retrofitting large appli-
cations such as Apache and nginx with lwCs has taught
us that it is possible to introduce many new capabilities,
such as rollback and secure data compartments, to ex-
isting production code with minimal overhead. This
paper’s contributions are:
• We introduce lwCs, a first-class OS abstraction that ex-
tends the POSIX API, and present common coding pat-
terns demonstrating its different uses.

• We describe an implementation of lwCs within
FreeBSD, and show how lwCs can be used to implement
efficient session isolation in production web servers,
both process-oriented (Apache, via roll-back) and event-
driven (nginx, via memory isolation). We show how ef-
ficient snapshotting can provide session isolation while

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 49

improving performance on web-based applications using
a PHP-based MVC application on nginx. We show how
cryptographic libraries such as OpenSSL can efficiently
create isolated data compartments within a process to
render sensitive data (such as private keys) immune to ex-
ternal attacks (e.g., buffer overruns a la Heartbleed [7]).
Finally, we show how lwCs can efficiently implement
in-process reference monitors, again for industrial-scale
servers such as Apache and nginx, that can introspect on
system calls and memory.

• We evaluate lwCs using a range of micro-benchmarks
and application scenarios. Our results show that exist-
ing methods for session isolation are often slower than
lwCs. Other common uses such as lwC-supported sen-
sitive data compartments and reference monitoring have
little to negligible overhead on production servers. Fi-
nally, we show that using the lwC snapshot capability to
quickly launch an initialized PHP runtime can improve
the performance of a production server.

The rest of this paper is organized as follows: we
discuss related work in Section 2 and describe the lwC
abstraction, API, and design in Section 3. We present
common lwC coding patterns in Section 4. We describe
our FreeBSD implementation of lwCs in Section 5, and
present an experimental evaluation in Section 6. We con-
clude in Section 7.

2 Related work
Wedge [5] provides privilege separation and isolation
among sthreads, which otherwise share an address space.
Sthreads are implemented using Linux processes. lwCs
are orthogonal to threads and therefore avoid the cost
of scheduling when switching contexts. Moreover, lwCs
can snapshot and resume an execution in any state, while
a sthread can only revert to its initial state. Wedge pro-
vides a software analysis tool that helps refactor existing
applications into multiple isolated compartments. lwCs
could benefit from a such a tool as well.

Shreds [9] builds on architectural support for memory
domains in ARM CPUs, a compiler toolchain, and ker-
nel support to provide isolated compartments of code and
data within a process. Like lwCs, shreds provide isolated
contexts within a process. lwCs, however, are fully in-
dependent of threads, require no compiler support, and
rely on page-based hardware protection only. lwCs also
provide protection rings and snapshots, which shreds do
not.

In SpaceJMP [12], address spaces are first-class ob-
jects separate from processes. While both systems can
switch address spaces within a process, SpaceJMP and
lwCs provide different abstractions, capabilities, and are
motivated by entirely different applications. SpaceJMP
supports applications that wish to use memory larger
than the available virtual address bits allow, wish to

maintain pointer-based data structures beyond process
lifetime, and share large memory objects among pro-
cesses. A SpaceJMP context switch is not associated
with a mandatory control transfer and, therefore, Space-
JMP does not support applications that require isolation
or privilege separation within a process. lwCs, on the
other hand, provide in-process isolated contexts, privi-
lege separation, and snapshots.

Dune [4] provides a kernel module and API that ex-
port the Intel VT-x architectural virtualization support
safely to Linux processes. Privilege separation, refer-
ence monitors, and isolated compartments can be imple-
mented within a process using Dune. lwCs instead pro-
vide a unified abstraction and API for these capabilities,
and their implementation does not rely on virtualization
hardware, the use of which could interfere with execution
on a virtualized platform. While the lwC implementation
incurs a higher cost for system call redirection, it avoids
Dune’s overhead on TLB misses and kernel calls.

In Trellis [20], code annotations, a compiler, run
time, and OS kernel module provide privilege separation
within an application. The kernel and runtime ensure that
functions can be called and data accessed only by code
with the same or higher privilege level. lwCs provide
privilege separation without language/compiler support,
and can switch domains at lower cost. Moreover, lwCs
additionally support snapshots.

Switching among lwCs is similar to migrating threads
in Mach [13], where they were implemented to optimize
local RPCs. Migration of threads across address spaces
is also an element of the model described by Lindström
et al. [18] and the COMPOSITE OS [24]. In single ad-
dress space operating systems (SASOS) like Opal [8] and
Mungi [15], all processes as well as persistent storage
share a single large (64-bit) address space. Unlike lwCs,
these systems do not provide privilege separation, isola-
tion, or snapshots within a process.

Mondrian Memory Protection (MMP) [32] and Mon-
drix [33] use hardware extensions to provide protection
at fine granularity within processes. The CHERI [31,34]
architecture, compiler, and operating system provides
hybrid hardware-software object capabilities for fine-
grained compartmentalization within a process. lwCs
provide in-process isolation at page granularity without
specialized hardware or language support.

Resource containers [3] separate the unit of resource
accounting from a process and account for all resources
associated with an application activity, even if the activ-
ity requires processing in multiple processes and the ker-
nel. lwCs are orthogonal to resource containers.

The Corey [6] OS provides fine-grained control over
the sharing of memory regions and kernel resources
among CPU cores to minimize contention. lwCs provide
the orthogonal capability of in-process isolation, privi-

50 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

lege separation, and snapshots.
Light-weight isolation, privilege separation, and snap-

shots can be provided also within a programming lan-
guage. Functional languages like Scheme and ML pro-
vide closures through the primitive call/cc, which can be
used to record a program state and revert to it later, and to
implement co-routines. Typed object-oriented languages
like C++ and Java provide static isolation and privilege
separation through private and protected class fields but
do not isolate objects of the same class from each other.
Dynamic language-based protection, often implemented
as object capabilities [14, 22, 23], provides fine-grained
isolation and privilege separation but has considerable
runtime overhead. lwCs instead provide in-process isola-
tion, privilege separation, and snapshots at the OS level,
independent of a programming language.

In low-level languages like C, isolation and privilege
separation can be attained using binary rewriting and
compiler-inserted checks as in CFI [1], CPI [17] and se-
cure compilation [25]. All these techniques rely on dy-
namic checks that have runtime overhead. Techniques
such as CPI and secure compilation rely on OS support
for the isolation of a reference monitor, which lwCs can
provide at low cost.

Software fault isolation (SFI) [29] and NaCl [35] rely
on static checking and instrumentation of binaries to iso-
late memory within applications running on unmodified
operating systems. SFI and NaCl do not selectively pro-
tect system calls and file descriptors. lwCs instead al-
low fine-grained control over memory, file descriptors
and other process credentials, and provide snapshots as
part of an OS abstraction.

Process checkpoint facilities create a linearized snap-
shot of a process’s state [10,19,26,38]. The snapshot can
be stored persistently and subsequently used to reconsti-
tute the process and resume its execution on the same or
a different machine. Checkpoint facilities are used for
fault-tolerance and load balancing. lwCs instead provide
very fast in-memory snapshots of a process’s state.

The Determinator OS [2] relies on a private workspace
model for concurrency control, which enables deter-
ministic execution on multi-core platforms. To support
the model, Determinator provides spaces, in which pro-
grams mutate private copies of shared objects. Like
lwCs, spaces provide isolated address spaces. Unlike a
lwC, however, a space is tied to one thread, does not
have access to I/O or shared memory, and can interact
only with its parent and only in limited ways.

Intel’s Software Guard Extensions (SGX) [16] provide
ISA support to isolate code and data in enclaves within a
process. By mapping contexts to enclaves, SGX could be
used to harden lwCs against a stronger threat model (un-
trusted OS) and to provide hardware attestation of con-
texts. However, enclaves have no access to OS services,

so some lwC applications would need considerable re-
architecting to run on SGX.

NOVA [27] provides protection domains (separate ad-
dress spaces) and execution contexts (an abstraction sim-
ilar to threads) in a micro hypervisor. NOVA’s goal is to
isolate VMMs and VMs from the core hypervisor, which
is different from lwC’s goal of providing isolation, privi-
lege separation, and snapshots within processes.

3 lwC design
lwCs are separate units of isolation, privilege, and execu-
tion state within a process. Each lwC has its own virtual
address space, set of page mappings, file descriptor bind-
ings, and credentials. Threads and lwCs are independent.
Within a process, a thread executes within one lwC at a
time and can switch between lwCs. lwCs are named us-
ing file descriptors. Each process starts with one root
lwC, which has a well-known file descriptor number.

Table 1 shows the lwC API. A lwC may create a new
(child) lwC using the lwCreate operation and receive
the child’s file descriptor. If a context a has a valid de-
scriptor for lwC c, a thread executing inside a may switch
to c using the lwSwitch operation. A lwC c is termi-
nated (and its resources released) when the last lwC with
a descriptor for c closes the descriptor. Common usage
patterns of the lwC API will be shown in Section 4.

3.1 Creating lwCs
The lwCreate call creates a new (child) lwC in the cur-
rent process. The operation’s default semantics are simi-
lar to that of a POSIX fork, in that the child lwC’s initial
state is an identical copy of the calling (parent) lwC’s
state, except for its descriptor. Unlike with fork, how-
ever, child and parent lwC share the same process id, and
no new thread is created. No execution takes place in the
new lwC until an existing thread switches to it.
lwCreate returns the descriptor of the new child lwC

new to the parent lwC with the caller descriptor set to
-1. When a thread switches to the new lwC (new) for
the first time, the lwCreate call returns with the caller’s
lwC descriptor in caller and the parent’s lwC descriptor
in new, along with any arguments from the caller in args.

By default, the new lwC gets a private copy of the
calling lwC’s state at the time of the call, including per-
thread register values, virtual memory, file descriptors,
and credentials. Shared memory regions in the calling
lwC are shared with the new lwC. The parent lwC may
modify the visibility of its resources to the child lwC us-
ing the resource-spec argument, described in Section 3.3.

The implementation does not stop other threads exe-
cuting in the parent lwC during an lwCreate. To ensure
that the child lwC reflects a consistent snapshot of the
parent’s state, all threads that are active in the parent at
the time of the lwCreate therefore should be in a consis-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 51

Function Return Value System Call
Create lwC {new, caller, args} ← lwCreate(resource-spec, options)

Switch to lwC {caller, args} ← lwSwitch(target, args)

Resource access status ← lwRestrict(l, resource-spec)
status ← lwOverlay(l, resource-spec)
status ← lwSyscall(target, mask, syscall, syscall-args)

Table 1: API for interacting with lwCs. Parameters in italics new, caller, . . . are lwC descriptors. Arguments args are
passed during lwC switches; resource-spec denotes resources (e.g. memory pages, file descriptors) that can be shared
or narrowed.

tent state. The application may achieve this, for instance,
by barrier synchronizing such threads with the thread that
calls lwCreate. A thread that does not exist in the par-
ent lwC at the time of the lwCreate may not switch to
the child in the future.

The lwCreate call takes several option flags.
LWC_SHAREDSIGNALS controls signal handling in the child
lwC, as described in Section 3.7. LWC_SYSTRAP indicates
that any system calls for which the child does not hold the
required OS capability should be redirected to its parent.
This feature enables a parent to interpose and mediate its
child’s system call activity, as described in Section 3.6.

The fork semantics of lwCreate enable the conve-
nient, language independent creation of lwCs based on
the current state of the calling lwC. No additional APIs
are required to initialize a new lwC. The new lwC can be
viewed also as a snapshot of the state of the caller at the
time of invoking lwCreate, enabling the caller to revert
to this state in the future.

3.2 Switching between lwCs
The lwSwitch operation switches the calling thread to
the lwC with descriptor target, passing args as parame-
ters. lwSwitch retains the state of the calling thread in
the present lwC. When this lwC is later switched back
into by the same thread, the call returns with the switch-
ing lwC available as caller and arguments passed in args.

Note that returns from a lwSwitch and lwCreate,
any signal handlers that were installed, and the instruc-
tion pointer locations of threads in a parent lwC at the
time of a lwCreate define the only possible entry points
into a lwC. (The root lwC has an additional one-time en-
try point when the process is launched.)
lwSwitch is semantically equivalent to a coroutine

yield. In fact, as far as control transfer is concerned,
lwCs can be viewed as isolated and privilege separated
coroutines. Recall that a procedure is a special case of a
coroutine. To achieve a (remote) procedure call among
lwCs, the called procedure, when done, simply switches
to its caller and then loops back to its beginning. This
functionality can be provided easily as part of a library.

3.3 Static resource sharing
When a lwC is created using lwCreate, the child lwC
receives a copy-on-write snapshot of all its parent’s re-
sources by default. The parent can modify this behavior
using the resource-spec argument in the lwCreate oper-
ation. The resource-spec is an array of C unions: each
array element specifies either a range of file descriptors,
virtual memory addresses, or credentials. For each range,
one of the following sharing options can be specified.
LWC_COW: the child receives a logical copy of the range
of resource (the default). LWC_SHARED: the range of re-
sources is shared among parent and child. LWC_UNMAP:
the range of resources is not mapped from the parent into
the child. (The child may subsequently map different re-
sources in the address range.)

When restricting the resources inherited by the child,
care must be taken to minimally pass on the stacks, code,
synchronization variables, and other dependencies of all
threads in the parent lwC, to ensure predictable behavior
if these threads switch to the child in the future.

3.4 Dynamic resource sharing
A lwC may dynamically map (overlay) resources from
another lwC into its address space using the lwOverlay
operation. The caller specifies which regions of a given
resource type (file descriptor or memory) are to be
overlayed, and whether the specified region should be
copied or shared, in the resource-spec parameter. The
lwOverlay call will only succeed if the caller lwC holds
access capabilities (described below in Section 3.5) for
the requested resources. A successful lwOverlay oper-
ation unmaps any existing resources at the affected ad-
dresses in the caller’s address space.

3.5 Access capabilities
Access capabilities are associated with lwC file descrip-
tors. Each lwC holds a descriptor with a universal access
capability for itself. When a lwC is created, its parent re-
ceives a descriptor with a universal access capability for
the child. A parent lwC may grant a child lwC access

52 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

capabilities for the parent lwC selectively by marking re-
source ranges as LWC_MAY_ACCESS in the resource-spec
argument passed to the lwCreate call.

Access capabilities may be restricted on a lwC de-
scriptor with the lwRestrict call. The resource-spec
parameter restricts the set of resources that may be over-
layed or accessed by any context that holds the lwC de-
scriptor l. The valid resource types are file descriptors,
virtual memory addresses, and syscall numbers. Subse-
quent to the call, the descriptor will allow lwOverlay to
succeed for any file descriptors and memory addresses,
and lwSyscall for any syscalls, respectively, that are
within the intersection of the resource-spec set and what-
ever capabilities l had previous to the call.

3.6 System call interposition/emulation
Consider an lwC C that was created with the
LWC_SYSTRAP flag. If a thread in C invokes a system call
for which C does not hold a capability according to the
OS’s sandboxing mechanism, the thread is switched to
its parent lwC instead, if the thread exists in the parent
(if the thread does not exist in the parent, the call fails
with an error). When the thread is resumed in the par-
ent lwC as a result of a faulting syscall by the child, the
arguments in the switch contain the system call number
attempted and the arguments passed to it. The parent can
choose to decline the syscall and return an error to the
child, or perform a syscall on behalf of the child, possibly
with different arguments (see below). To signal the com-
pletion of the child’s system call, the thread executing in
the parent lwC switches back to the child with the return
value and any error code as arguments to the switch call.

An authorized lwC may perform a syscall on behalf
of another lwC target using the lwSyscall operation.
The lwSyscall succeeds if the lwC calling the operation
holds an access capability (see Section 3.5) for the tar-
get and syscall, and holds the OS credentials required to
perform the requested syscall. The effects of a successful
execution of lwSyscall are as if the target had executed
the requested syscall, except that it returns to the calling
context. The mask parameter allows the caller to mod-
ify this behavior by specifying aspects of its own context
that are to be put in place for the duration of the system
call. Specifically, the caller may specify that the target’s
file table, memory space, credentials, or any combination
be replaced by the caller’s equivalent for the duration of
the call. This allows the efficient implementation of use-
ful patterns, such as enabling a untrusted lwC to read (or
append) a fixed number of bytes from (to) a protected file
without having access to the file descriptor.

3.7 Signal handling
lwCs modify the standard POSIX signal handling se-
mantics in the following way. We distinguish between

attributable signals, which can be attributed to the ex-
ecution of a particular instruction in a lwC, and non-
attributable signals, which cannot. Attributable signals,
such as SIGSEGV or SIGFPE, are delivered to the lwC that
caused the signal immediately. Non-attributable signals,
such as SIGKILL or SIGUSR1, are delivered to the root
lwC and any lwCs in the process that were created with
the LWC_SHARESIGNALS option by a parent lwC that
is able to receive such signals. A non-attributable signal
is delivered to a lwC upon the next switch to the lwC.

3.8 System call semantics
lwCs modify the behavior of some existing POSIX sys-
tem calls. During a fork, all lwCs in the calling process
are duplicated in the child process. Any memory regions
that were mmap’ed as MAP_SHARED in some lwCs of
the calling process are shared with the corresponding
lwCs in the new child process, within and across the two
processes. Any memory regions that are shared among
lwCs in the parent process using the LWC_SHARED op-
tion in lwCreate are shared among the corresponding
lwCs within the child process only. An exit system call
in any lwC of a process terminates the entire process.

3.9 lwC isolation
Because lwCs do not have access to the state of each
others’ memory, file descriptors, and capabilities un-
less explicitly shared, they can provide strong isola-
tion and privilege separation within a process. Since
lwCs share executable threads, however, an application
needs to make certain assumptions about the behavior
of other lwCs in the same process, even if they don’t
share resources and don’t have overlay capabilities for
each other. Specifically, a lwC can block or execute a
thread indefinitely or terminate the process prematurely
by invoking exit.

We believe these assumptions are reasonable in prac-
tice because the lwCs of a process are part of the same
application program. Denial-of-service within a process
is self-defeating. On the other hand, lwCs can reliably
prevent accidental leakage of private information across
user sessions, isolate authentication credentials and other
secrets, and ensure the integrity of a reference monitor.

A lwC can learn about certain activities of other lwCs
by registering for non-attributable signals. An applica-
tion that wishes to limit information flow across lwCs
should create lwCs without the LWC_SHARESIGNALS
option (the default).

3.10 lwC security
lwCs provide isolation and privilege separation within a
process, but include powerful mechanisms for sharing
and control among the lwCs of a process. Therefore, it is
important to understand the threat model and the security
properties provided by the lwC abstraction.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 53

Threat model We assume that the kernel is trustwor-
thy and uncompromised, and that the tool chain used to
build, link, and load the application does not have ex-
ploitable vulnerabilities that can be used to hijack con-
trol before main() starts. When a lwC is created, its par-
ent has universal privileges on the lwC. Consequently,
the security of a lwC assumes that its parent (and, by
transitivity, all its ancestors) cannot be hijacked to abuse
these privileges. In practice, the parent should drop all
unnecessary privileges on the child immediately after the
child is created, so this assumption is needed only with
respect to the remaining privileges. When an application
uses dynamic sharing, the same assumption must be ex-
tended to all lwCs that obtain privileges indirectly. The
lwC API does not enable any inter-process communica-
tion or sharing beyond the standard POSIX API. Con-
sequently, no new assumptions regarding lwCs in other
processes are needed.

Security properties The properties of a lwC are con-
strained by the properties of the process in which it ex-
ists. A lwC cannot attain privileges that exceed those of
its process, and the confidentiality and integrity proper-
ties of any lwC cannot be weaker than those of its pro-
cess. The properties of the root lwC are those of the pro-
cess. In applications that do not use dynamic sharing,
the privileges of a non-root lwC are bounded by those of
its parent and, transitively, by those of its ancestors; its
integrity and confidentiality cannot be weaker than those
of any of its ancestors. In applications that use dynamic
sharing through the exchange of access capabilities via
a common ancestor, the integrity (confidentiality) of a
lwC depends on all siblings and descendants that have
write (read) rights to it. For this reason, dynamic sharing
should be used with caution.

In typical patterns of privilege separation, the root
lwC should run a high-assurance component, i.e., one
that is simple, heavily scrutinized, and exports a nar-
row interface. A component that protects sensitive state
is at or near the root, to minimize its dependencies.
More complex, less stable, network or user-facing com-
ponents should be encapsulated in de-privileged lwCs at
the leaves of a process’s lwC tree and should execute with
the least privileges required.

4 Common lwC usage patterns
In this section, we illustrate lwC use patterns for snap-
shots, isolation and protection rings. For some of the
patterns, we use a web server as an illustrative setting.
However, all the patterns are broadly applicable.

Snapshot and rollback A common lwC use pattern is
snapshot and rollback, where a service process (such as
a server worker process) initializes its state to the point
where it is ready to serve requests (or sessions), snap-
shots this state, serves a request and rolls its state back

to the snapshot before serving the next request. As com-
pared to a setup where the process manually cleans up
request-specific state after each request, the snapshot and
rollback can improve performance by efficiently discard-
ing the request-specific state with a single call, and also
improves security by isolating sequential requests served
by the same task from each other.

Algorithm 1 shows the pseudocode of a small library
containing two functions—snapshot() and rollback()—
and a main() server function illustrating their use. The
server initializes its state and calls snapshot() on line 12
to create a snapshot. snapshot() duplicates the current
lwC (copy-on-write) using lwCreate on line 2. The
descriptor of the duplicated snapshot, called new, is re-
turned at line 4 and stored in the variable snap. The pro-
gram serves the request and then, to reset its state, calls
rollback(). Control transfers to line 2 in the snap (the
child) and then immediately to line 6 where the original
lwC is closed (its resources are reclaimed). The snap re-
cursively calls snapshot() (line 7). At line 2, it creates a
duplicate of itself and returns that duplicate to main() at
line 12. The cycle then repeats, with snap and its dupli-
cate having taken the roles of the original lwC and the
snap, respectively.

Algorithm 1 Snapshot and rollback

1: function SNAPSHOT()
2: new,caller,arg = lwCreate(default_spec, . . .)
3: if caller = -1 then . parent
4: return new
5: else
6: close(caller)
7: return snapshot()
8: function ROLLBACK(snap) . never returns
9: lwSwitch(snap, 0)

10: function MAIN()
11: initialize state
12: snap = snapshot()
13: serve request
14: rollback(snap)

. kills current lwC, continues at line 12 in snap

In our evaluation, we use this pattern to roll back the
state of pre-forked worker processes after each session in
the Apache web server.

Isolating sessions in an event-driven server High
throughput servers like nginx handle several sessions in
single-threaded processes using event-driven multiplex-
ing. However, they provide no isolation among sessions
within a process. This shortcoming can be addressed us-
ing lwCs. Algorithm 2 illustrates the usage pattern.

The program defines a set of network socket descrip-
tors to poll, one for each client connection, on line 10

54 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 Event-driven server with session isolation

1: function SERVE_REQUEST(retlwc, client)
2: loop
3: if would_block(client) then
4: lwSwitch(retlwc, 0);
5: else if finished(client) then
6: lwSwitch(retlwc, 1);
7: else
8: serve(client)
9: function MAIN

10: descriptors = { accept_ descriptor }
11: file2lwc_map = { accept_descriptor => root }
12: loop
13: next = descriptors.ready()
14: if next = accept_descriptor then
15: fd = accept(next)
16: descriptors.insert(fd)
17: specs = { ... } . Share fd descriptor only
18: new,caller,arg = lwCreate(specs, ...)
19: if caller = -1 then . context created
20: file2lwc_map[fd] = new
21: else
22: serve_request(root, fd)
23: else
24: lwc = file2lwc_map[next]
25: from, done = lwSwitch(lwc, ...)
26: if done = 1 then
27: close(next);close(from)
28: descriptors.remove(next)
29: file2lwc_map.unset(next)

and sets a mapping of the listening socket descriptor to
the current lwC on line 11.

Once a descriptor is ready the program moves past
line 13 and either accepts and encapsulates a new de-
scriptor in a worker lwC or resumes execution of a pre-
vious one that is now ready. In the former case, the
worker’s lwC is created on line 18 such that no descrip-
tor other than fd is passed to it (line 17), the created lwC
descriptor is mapped on line 20 and the loop resumes.
In the latter case, the previously mapped worker lwC
is retrieved on line 24. This lwC is now immediately
switched into on the subsequent line. At this point exe-
cution resumes on line 18 in the worker. As a result, it
enters the serve_request function on line 22.

When the worker is done executing it switches back
into the root lwC. It uses the lwSwitch argument to in-
dicate whether it is done with its work (arg = 1) or not
(arg = 0). When it switches back to the root, control flow
resumes at line 25. Depending on the argument passed
in from the worker, the root lwC either closes the socket
and the worker or leaves them intact for later service.

Since all worker lwCs obtain a private copy of the

root’s state, no worker sees session-specific state of other
workers. This isolates the sessions from each other.

Sensitive data isolation A third common use pattern
isolates sensitive data within a process by limiting access
to a single lwC that exposes only a narrow interface. As
an illustration, Algorithm 3 shows how to isolate a pri-
vate signature key that is available to a signing function,
but kept hidden from the rest of the (large and network-
facing) program.

Algorithm 3 Sensitive Data Isolation

1: function SIGN(key, data, out_buffer)
2: function SIGN_SSTUB(caller,arg)
3: loop
4: lwOverlay(caller,{VM,arg,sizeof(arg),SHARE})
5: sign(privkey, arg.in, arg.out)
6: lwOverlay(caller,{VM,arg,sizeof(arg),UNMAP})
7: caller,arg = lwSwitch(caller, 0)
8: function SIGN_CSTUB(buf)
9: caller,res = lwSwitch(child, buf)

10: function MAIN
11: initialization, load privkey
12: child,caller,arg =
13: lwCreate({VM,0,MAX,MAY_OVERLAY}, 0)
14: if caller != -1 then
15: sign_sstub(caller,arg)
16: privkey = 0 . erase key
17: lwRestrict(child, {VM,0,MAX,NO_ACCESS})
18: loop
19: ...
20: sign_cstub(buf)
21: ...

The main function initializes the program and loads
the private signing key into the variable privkey
(line 11). Next, it calls lwCreate to create a second lwC
with the same initial state (line 13). The child lwC, which
will become the isolated compartment with access to the
privkey, is granted the privilege to overlay any part of
the parent’s virtual memory.

The parent lwC continues executing on line 16, where
it deletes its copy of the private signing key and then re-
vokes its privilege to overlay any part of the child lwC’s
memory. Any code executed in the parent after this point
(line 17) has no way to access the private key. When this
code wishes to sign data, it calls SIGN_CSTUB passing as
argument a structure that contains the data to sign and a
large enough buffer to hold the returned signature.

The SIGN_CSTUB function performs a lwSwitch to
the child lwC, passing a pointer to the buffer as the ar-
gument. The first time the child is switched to, it returns
from lwCreate with caller != -1 and calls SIGN_SSTUB
(line 15), from which it does not return.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 55

SIGN_SSTUB now uses lwOverlay to map the buffer
from the parent lwC as a shared region into its own ad-
dress space (line 4), calls the SIGN function with the pri-
vate key, and then unmaps the buffer from its address
space. Finally, the function calls lwSwitch to return
control to the parent lwC, which resumes by returning
from the lwSwitch in line 9. Upon future invocations of
SIGN_CSTUB, the child lwC returns from the lwSwitch
in line 7 and loops back.

In our evaluation with web servers, we use this pattern
to isolate parts of the OpenSSL library that handle long-
term private keys, thus protecting the keys from vulner-
abilities like the widespread Heartbleed bug [7]. (Heart-
bleed remains a threat even after global key revocations
and reissues [11, 37].)

Protected reference monitor Next, we describe a pat-
tern that allows a parent lwC to intercept any subset of
system calls made by its child and monitor those calls.
In our evaluation, we use this pattern to implement a ref-
erence monitor for system calls made by the web server.

Algorithm 4 Reference Monitor

1: function MONITOR(child)
2: _,call = lwSwitch(child, NULL)
3: loop
4: if is_allowed(call) then
5: spec = { type = CRED, SANDBOX }
6: rv = lwSyscall(child, spec,

call.num, call.params)
7: out.err,out.rv = errno, rv;
8: else
9: out.err,out.rv = EPERM, -1;

10: _,call = lwSwitch(child, out)
11: function MAIN
12: specs = { ... } . Share (COW) all but private data
13: child,c,_ = lwCreate(specs, LWC_SYSTRAP)
14: if c = -1 then . parent becomes refmon
15: monitor(child) . Never returns
16: privdrop() && run() . Child starts here

Algorithm 4 shows the pseudocode of the pattern for
the case where the monitoring parent is the root lwC. On
line 13, the root creates a child lwC but reserves a private
region, which may contain secrets (e.g., encryption keys)
of which the child is not allowed to get a copy. The child
is created with the flag LWC_SYSTRAP, so any system calls
that the child lacks the capability for trap to the root lwC.
Once the child lwC is created, the root lwC enters the
monitoring function, which never returns.

Within the monitoring function, the root, now acting
as the reference monitor, yields to the child immediately
(line 2). The reference monitor regains control when the
child makes a system call that it does not have the ca-

pabilities for. The reference monitor checks whether the
call should be allowed (line 4) and, if so, makes the call
in the context of the child (line 6). It yields to the child
with the system call’s result and error code. If the system
call should be disallowed, the reference monitor yields to
the child with error code EPERM. The reference monitor
loops to handle the next system call.

The child starts execution on line 16 where it immedi-
ately drops privileges for all system calls that should be
monitored. This causes all these system calls to trap to
the reference monitor, which handles them as described
above.

For simplicity, our example reference monitor merely
filters system calls, a capability already provided by
many operating systems. A more interesting monitor
could inspect the system call arguments or other parts of
the child’s state by overlaying in the appropriate regions,
or perform arbitrary actions and system calls on behalf
of the child.

5 Implementation
We have implemented lwCs in the FreeBSD 11.0. We be-
gin with a brief background of the FreeBSD kernel struc-
tures used in implementing lwCs.

5.1 FreeBSD Background
In implementing lwCs, we had to modify FreeBSD ker-
nel data structures corresponding to process memory, file
tables and credentials.

Memory In FreeBSD, the address space of a process
is organized under a vmspace structure (described fully
in [21]). Within the address space, there are virtual
memory regions that correspond to a contiguous inter-
val of memory mapped into the process’s virtual ad-
dress space. These memory regions are represented as
vm_map_entry structures. Attempting to access any
memory that is not within a memory region results in
a segmentation fault.

Two memory regions that are contiguous and have
the same protection bits can be merged into a single
vm_map_entry. The number of memory regions within
a process is typically small (few tens), though for some
processes (notably Apache, that maps modules into dif-
ferent regions) it can be larger. Work performed dur-
ing fork and lwCreate is proportional to the number
of vm_map_entry structures.

Switching the virtual address space map of a process
during a context switch (lwC or otherwise) can be a rela-
tively efficient operation on modern processors. Previous
generations of processors required a TLB flush whenever
the address space had to be changed, as is the case dur-
ing process context switches, or lwC switches. Modern
processors include a “process context identifier” (PCID)
that can be used to distinguish pages that belong to differ-

56 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ent page tables. (On current Intel processors, the PCID
is 12-bits, enabling 4096 different page tables to be dis-
tinguished.) TLB entries are tagged with the PCID that
was active when they were resolved. Whenever the ac-
tive page table is ready to be changed, the kernel sets the
CR3 register to a value containing the PCID and the ad-
dress of the first page directory entry. Any cached TLB
entries that share this PCID are considered valid and may
be used. Importantly, the entire TLB does not have to be
flushed upon a context switch since entries belonging to
other PCIDs are simply considered invalid by the hard-
ware. This facility reduces the cost of context switches
by reducing the frequency of TLB flushes. FreeBSD 11.0
supports PCIDs and each lwC is assigned a unique one
for every core it is activated on.

File Table In FreeBSD, all files, sockets, devices, etc.
open in a process are accessible via the process’s file ta-
ble, which is held as a reference in the process structure.
Each entry contains a cursor, per-process flags, and ac-
cess capabilities. In our implementation, lwCs are also
accessed via file-table entries. Upon fork, the file table
is copied from the parent to the child process.

Credentials Process credentials determine capabilities
and privileges, and include process user identifiers (uid,
gid), limits (cpu time, maximum number of file descrip-
tors, stack size, etc.), the current FreeBSD jail (a restric-
tive chroot-like environment) the process is operating in,
and other accounting information.

The credentials of a process are attached to the process
structure via a struct ucred pointer. Upon a fork, a
reference to the parent structure is given to the child; sys-
tem calls that modify the credential structure allocate a
new struct ucred for the process, and copy unmodi-
fied fields from the parent.

5.2 lwC Implementation
Like a process, each lwC has a file table, virtual memory
space, and credentials associated with it.

Memory Unless otherwise specified, lwCreate repli-
cates the vmspace associated with the parent lwC in ex-
actly the same manner as fork. However, any mem-
ory regions that are specified as LWC_UNMAP during the
lwCreate call are not mapped into the new lwC’s ad-
dress space. Any memory regions that are marked as
LWC_SHARE are mapped into the lwC as memory that
differs from shared memory in only one respect: a sub-
sequent fork will not share this region with its parent.
During a lwSwitch, the calling thread saves its CPU reg-
isters, releases its reference to the current vmspace struc-
ture, and acquires a reference from the address space of
the switched to lwC.

File Table By default, during a call to lwCreate all
file descriptors are copied into the lwC file table in the

same manner as fork except that any associated file de-
scriptor overlay rights are copied as well, as described
in section 5.2. If the user specifies an interval in the
resource specifier as LWC_UNMAP, the corresponding de-
scriptors are not copied into the file table. The user may
specify that the entire file table is to be shared; in this
scenario, as an optimization, we store a reference to the
parent lwC’s file table.

lwC descriptors With one exception, lwC descriptors
have the same visibility as regular file descriptors. Upon
lwCreate, if the file table or a lwC descriptor is not
shared, then the child lwC is not able to access the par-
ent’s lwCs. lwCs closed with the close syscall results
in their removal from the calling lwC’s file table. Upon
a lwCreate or lwSwitch, if a caller parameter is speci-
fied, then the newly created (or switched to) lwC a inher-
its a reference to the caller lwC b as a file descriptor. This
descriptor, corresponding to b, is inserted into a’s file ta-
ble when a is switched to next. (If a’s file table already
had a descriptor for b, then that descriptor is reused, and
a’s file table is not modified.)

Credentials We copy credentials the same way that
they are copied during a fork call. Restoring previous
credentials (using a lwC switch) may reverse calls that
dropped privileges/put the process into a sandbox. Our
reference monitor example (Section 4) shows how this
mechanism can be used. Credentials are treated similarly
to file descriptors and vmspace structures. The calling
thread’s credential structure is replaced with a reference
to the target lwC’s reference structure.

Permissions and Overlays An executing lwC interacts
with another lwC within a process by either switching to
it or by overlaying (some of) that lwC’s resources.

A lwC a may switch to a lwC b only if b’s descrip-
tor is present in a’s file table. Overlay permissions are
more fine-grained: upon creating a new lwC c, the par-
ent p passes a set of resource specifiers. Some of these
may have LWC_MAY_OVERLAY flag set, which allows c to
overlay specified resources from p.

The lwCreate call (p creating c) results in two file de-
scriptors. One refers to c and has full overlay rights, and
is inserted into p’s file table. Thus the creator (parent)
lwC obtains all rights to the child.

The second descriptor, given to c, refers to the p lwC
and only allows overlays on the descriptor as specified
by p in the lwCreate call. File descriptors duplicated
via the dup or similar calls create a new descriptor with a
copy of the overlay rights. These rights can be narrowed
using the lwRestrict call.

The lwOverlay call imports resources from one lwC
into the calling lwC, assuming permissions are not vio-
lated. File table entries that are masked by an overlay are
closed prior to inserting new entries. Similarly, mem-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 57

ory region overlays unmap existing regions in the calling
lwC that are within the overlay interval prior to importing
overlaid regions. If the LWC_SHARE flag is set, the mem-
ory will be shared with the target lwC (i.e., writes will be
visible to both lwCs). This sharing does not persist past
a fork.

Multi-Threaded Support Our implementation sup-
ports lwCs in multithreaded programs. In addition to
necessary synchronization, lwC-specific state that used
to be associated with a process (and shared amongst all
threads) must instead be associated with each lwC. This
does not affect the existing semantics of processes be-
cause in normal operation each thread has a reference
counted pointer to shared objects (e.g., memory spaces).
Once lwC system calls are invoked it is possible for two
threads to reference separate address spaces (i.e., lwCs).
The modifications to the existing kernel were largely su-
perficial outside of process creation and destruction.

6 Evaluation
In this section, we evaluate lwCs using micro-
benchmarks, and when applying the usage patterns dis-
cussed in Section 4 in the context of the Apache and ng-
inx web servers. Our experiments were performed on
Dell R410 servers, each with 2x Intel Xeon X5650 2.66
GHz 6 core CPUs with both hyperthreading and Speed-
Step disabled, 48GB main memory, running FreeBSD
11.0 (amd64) and OpenSSL 1.0.2. The servers were con-
nected via Cisco Nexus 7018 switches with 1Gbit Ether-
net links. Each server has a 1TB Seagate ST31000424SS
disk formatted under UFS.

6.1 lwC switch
Table 2 compares the time to execute a lwSwitch
call compared to context switching between processes
(using a semaphore), between kernel threads (using a
semaphore, which we found to be faster than a mutex),
and user threads. The user threads use the getcontext
and setcontext calls specified by POSIX.1-2001. A
lwC switch takes less than half the time of a process or
kernel thread switch. The reason is that a lwC switch
avoids the synchronization and scheduling required for a
process or thread context switch, instead requiring only a
switch of the vm mapping. Somewhat surprisingly, a ker-
nel thread switch is on par with a process context switch
when both use the same form of synchronization. The
reason is that the kernel code executed during a switch
between two kernel threads in the same process or in dif-
ferent processes is largely the same.

User threads are only moderately faster than lwC
switches, because in FreeBSD 11, the user context switch
is implemented by a system call. In Linux glibc, it
is instead implemented in userspace assembly. In an
experiment with Linux 3.11.10 on the same hardware,

user thread switches run in 6% of the time required by
semaphore-based kernel thread switches.

lwC process k-thread u-thread
2.01 (0.03) 4.25 (0.86) 4.12 (0.98) 1.71 (0.06)

Table 2: Median switch time (in microseconds) and stan-
dard deviation over ten trials.

6.2 lwC creation
Next, we measured the total cost of creating, switching
to, and destroying lwCs with default arguments (all re-
sources shared COW with the parent) within a single
process. When no pages are written in either the parent
or child lwC during the lifetime of the child, the system
is able to create, switch into once, and destroy an lwC
in 87.7 microseconds on average, with standard devia-
tion below 1%. This result is independent of the amount
of memory allocated to the process. Each page written
in either parent or child, however, causes a COW fault,
which requires a page frame allocation and copy. When
100, 1000, 10000, and 100000 pages are written in the
child during the experiment described above, the average
total time taken per lwC increases to 397, 3054, 35563,
and 34182 microseconds, respectively. Standard devia-
tion was below 7% in all cases. The cost of maintaining a
separate lwC is approximately linearly dependent on the
number of unique pages it creates, and is lowest when
lwCs in a process share most of their pages.

The results of our microbenchmarks can be used to
estimate the cost of using lwCs in an application, given
an estimate of the rate of lwC creations and switches, and
the number of unique pages in each lwC. Later in this
section, we evaluate the overhead of lwCs in the context
of specific applications: Apache and nginx.

6.3 Reference monitoring
Following the pattern described in Section 4, we have im-
plemented an in-process reference monitor using lwCs.
When a process starts, the reference monitor gains con-
trol first and creates a child lwC, which executes the
server application. The child lwC is sandboxed using
FreeBSD Capsicum and disallowed from using certain
system calls, which are instead redirected to the parent
lwC using the LWC_SYSTRAP option. Our reference
monitor restricts access to the filesystem, though other
policies that restrict any system call or inspect memory
(using lwOverlay) can readily be implemented within
our basic schema. We compare the lwC reference moni-
tor (lwc-mon) to two other techniques:

Inline Monitoring (inline) This is a baseline scheme
where the reference monitor checks are inlined with
the application code. The monitored process is

58 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.01

 0.1

 1

open 4K
read

4K
 write

128K
read

128K
write

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

)
inline procsep lwc-mon

Figure 1: Cost of 10,000 monitored system calls in sec-
onds (log scale). Error bars show standard deviation.

LD_PRELOADed with a library that intercepts each sys-
tem call and checks arguments. Inlining provides a lower
bound on overhead, but does not provide security since
the monitored process can overwrite the checks or other-
wise bypass the interception library.

Process Separation (procsep) This method provides
a secure reference monitor in a separate process. The
monitored process runs in a sandbox based on FreeBSD
Capsicum [30]: the sandbox ensures that the monitored
process is unable to issue prohibited system calls (e.g.
open). At initialization, but prior to entering the sand-
box, the monitored process connects to the reference
monitor process over a Unix domain socket, which it
can subsequently use to communicate with the refer-
ence monitor, even while sandboxed. All open calls
(which the sandbox restricts) must be vectored through
this socket, which allows the reference monitor to inspect
and restrict the access as necessary. If the access is to be
granted to the sandboxed application, the reference mon-
itor shares a file descriptor over the socket.

Figure 1 shows the overhead of monitoring open, read
and write system calls, while an application is accessing
a file stored in an in-memory file system. The application
calls each system call 10,000 times and we report the av-
erage of 5 runs. Faster system calls have higher relative
overhead since the fixed cost of redirecting the system
call has to be paid. lwc-mon does not require data copy-
ing or IPC and hence outperforms procsep by a factor of
two or more.

6.4 Apache
Modern web servers are designed to efficiently map user
sessions to available processing cores. For instance, the
popular Apache HTTP server provides multi-threading
using kernel threads (threads) in one configuration and
pre-forked processes that map to different cores (pre-
fork) in another. Higher performance servers, such as
nginx, use an event loop (based on kqueue or epoll)
within a process, and have the option of spawning mul-
tiple processes that map to cores, each with their own

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

(a) HTTP

 0

 10

 20

 30

 40

 50

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

(b) HTTPS

Figure 2: Apache throughput in (GETs/sec) of 128 con-
current clients, 45 byte docs. Error bars show standard
deviation, which was below 3.7%.

event loop.
Consider the problem of isolating individual user ses-

sions to separate the privileges of different user sessions
or to implement per-user information flow control. None
of the above mentioned server configurations provide
such isolation: multi-threaded and event-driven configu-
rations serve different sessions concurrently in the same
process; pre-forked processes sequentially share among
different sessions. Apache can be configured to fork a
new process for each user session (fork), which provides
memory isolation and privilege separation. As our results
demonstrate, however, this configuration has low perfor-
mance for small session lengths, due to the overhead of
forking processes2.

lwCs can provide memory isolation, privilege separa-
tion, and high performance. We have augmented the pre-
fork mode in Apache (version 2.4.18) to provide session
isolation using the snapshot and rollback pattern from
Section 4. Within each Apache process, we create a lwC
that serves a user session; when the session ends, the

2In fact, we had to patch Apache (in server/mpm_common.c) to
continuously check the status of child processes (rather than at 1s in-
tervals) to get this configuration to perform at all at small to modest
session lengths.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 59

lwC switches (reverts) to its initial (untainted) state be-
fore serving the next user session, thereby ensuring the
isolation property.

In the following set of experiments, we use
ApacheBench (ab) to issue HTTP and HTTPS requests
to our Apache server. We modified ab to support vary-
ing client session lengths by using HTTP Keepalive and
terminating a session after a certain number of requests.
We launch a single ApacheBench instance which repeat-
edly makes up to 128 concurrent requests for a small
45 byte document. We chose small document requests
to make sure the results are not I/O-bound. Figure 2
shows the number of GET requests served per second
by the different Apache configurations at different ses-
sion lengths, and for HTTP and HTTPS. For HTTPS,
the server uses TLSv1.2, ECDHE-RSA-AES256-GCM-
SHA384 with 4096 bit keys. The results were averaged
over five runs of 60 seconds each.

At session length ∞, each client maintains a session
for the duration of the experiment. The threads and pre-
fork configurations, which provide no isolation, perform
comparably for all session lengths and protocols. fork
and lwc configurations provide isolation: lwc has bet-
ter throughput in all cases, and has a significant advan-
tage for short sessions (256 and below), particularly for
HTTP. (In HTTPS, the high CPU overhead for session
establishment dominates overall cost; however, emerging
hardware support for crypto will diminish these costs,
exposing once again the costs of isolation.) Moreover,
lwc achieves performance comparable to the best config-
uration without isolation for sessions lengths of 256 and
larger.

We also repeated the experiment with GET requests
for 900 byte documents. These documents are 20x larger
but still small enough not to saturate the network link.
The trends and relative throughput between the different
configuration were very close to those in Figure 2, with
the absolute peak throughput within 10%.

We have integrated reference monitoring within
Apache (and nginx). Figure 3 shows the throughput of
Apache prefork in different reference monitor configu-
rations when used to serve short (45 byte) documents.
The results were averaged over five runs of 20 seconds
each. In this experiment, the open and stat system calls
are monitored and checked against a whitelist of allowed
directories. These results show that a reference moni-
tor implementation based on in-process lwC incurs lower
overhead than an implementation based on process sep-
aration even for large applications where the monitored
system calls constitute only part of what the applications
do. The overhead of reference monitoring increases with
session length due to the increase in relative number of
reference monitored system calls (open and stat) com-
pared to other system calls (accept, read, send, close).

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

inline
procsep
lwc-mon

Figure 3: Throughput of different Apache reference
monitoring configurations in (GETs/sec) of 128 concur-
rent clients, 45 byte docs. Error bars show standard de-
viation, which was below 2%.

6.5 Nginx
To enable session isolation in nginx (version 1.9.15), we
allocate a lwC for each new connection: each event for
a single connection is isolated within the lwC, following
the session isolation pattern from Section 4. Note that
in the nginx case, each process may serve many differ-
ent connections simultaneously, and our implementation
creates a lwC per active connection within the process.
We have also integrated a reference monitor with nginx.

We experiment with different nginx configurations:
the stock nginx, lwc-event augments nginx’s event loop
to create a new lwC per connection, and lwc-event-mon
combines a reference monitor with the per-connection
lwC. In each case we configured nginx to use 10 worker
processes, as we found that this had the best perfor-
mance. We launch four ApacheBench instances, each
of which repeatedly makes up to 75 concurrent requests
for a small 45 byte document.

Figure 4 shows the average number of queries served
by each of the configurations over five runs of 60 seconds
each. The standard deviation did not exceed 0.9%.

nginx is considered the state of the art high-
performance server. It uses a highly optimized event
loop and is about 2.88x quicker than Apache. Introduc-
ing lwCs in this base configuration (named lwc-event in
the results) has no significant impact on the throughput
of this high-performance configuration. Similarly, refer-
ence monitoring adds only minimal overhead. For both
HTTP and HTTPS, with isolation and reference monitor-
ing, lwC-augmented nginx performs comparably to na-
tive nginx.

Large scale servers may need to maintain tens of thou-
sands of concurrent user sessions. Using lwCs for ses-
sion isolation increases the amount of per-session state.
Therefore, our next experiment explores how using lwCs
for session isolation affects nginx’s performance under a

60 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

(a) HTTP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

(b) HTTPS

Figure 4: Nginx throughput in GETs/sec with 10 work-
ers, 45B documents, 300 concurrent requests. Error bars
show standard deviation, which was below 0.9%.

large number of concurrent client connections. We ex-
perimented with two configurations: in the first, we use
between 6 and 76 ApacheBench instances, and each in-
stance issues 250 concurrent requests for a 45 byte docu-
ment. The session length was 256 and we used 10 nginx
workers. The second configuration is identical except the
ApacheBench instances request 900 byte documents.

Figure 5 shows the average number of requests served,
over 5 runs of the experiment, as a function of the number
of client sessions for stock nginx and lwc-eventfor both
file sizes.

For small documents, lwc-event matches the perfor-
mance of native nginx up to 6500 clients. Beyond, the
performance of both configurations declines following
the same trend, but the absolute throughput of lwc-event
falls below that of nginx by up to 19% at 19,500 concur-
rent clients. In investigating this result further, we find
that FreeBSD kernel threads, in particular, the interrupt
handler thread, gets CPU bound after 6500 clients, and
the CPU consumption of the nginx worker threads re-
duces with higher numbers of clients as the nginx worker
threads block waiting for the kernel to demultiplex pack-
ets. The lwc-event configuration further pays an extra
cost of lwC switches, which reduces performance com-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Number of concurrent clients

nginx (45B)
lwc-event (45B)

nginx (900B)
lwc-event (900B)

Figure 5: Nginx cumulative throughput in GETs/sec with
10 workers, session length 256, 45B and 900B docu-
ments, increasing number of concurrent clients. Error
bars show standard deviation.

pared to stock nginx. However, given that lwc-event pro-
vides session isolation, this is a still a strong result.

For 900 byte documents, the performance of stock ng-
inx and lwc-event remain similar until ∼12000 simul-
taneous clients. Performance of stock nginx is not af-
fected by increasing numbers of clients: this is because
the rate of incoming requests is lower, which means the
kernel threads do not saturate the CPU. With increasing
numbers of clients, eventually the cost of lwC switches,
which were amortized over serving a larger document,
become a measurable factor.

Overall, our results show that using lwCs, it is possible
to implement features such as session isolation and refer-
ence monitoring at low cost for both HTTPS and HTTP
sessions, and even in a high-performance server under a
challenging workload.

6.6 Isolating OpenSSL keys
lwCs provide a particularly effective way to isolate sensi-
tive data from network-based attacks such as buffer over-
flows or overreads. The sensitive data is stored in a lwC,
within the process, such that the network-facing code has
no visibility into pages that store the sensitive data. In
this way, unless the kernel is compromised, the data is
guaranteed safe, but access to functions that require the
data can be rapid, using a safe lwC-crossing interface.

As an example, we have isolated parts of the OpenSSL
library that manipulate secret information within Apache
and nginx. In our case, the web server certificate private
keys are isolated; note that such a scheme would have
rendered attacks such as Heartbleed completely ineffec-
tive since the buffer overread that Heartbleed relied on
would not have visibility into the memory storing the pri-
vate keys. We evaluate this scheme using the following
configurations:

In-process LwC Sensitive data is stored in a lwC
within the process, following the pattern from Algo-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 61

rithm 3 in Section 4. The network-facing code within the
process has no visibility into the sensitive data; access
is through a narrow interface exported via lwC switch
entry points. The isolated lwC has a copy of the orig-
inal process at the time of creation and may call what-
ever functions are available within its address space. Our
encapsulated OpenSSL library takes advantage of this
fact because the isolated lwC hosts a COW copy of the
OpenSSL code and global state and need not be aware
that it is running in a restricted environment. None of the
changes in the sensitive lwC are visible to the network
facing code.

We evaluate the cost of providing this isolation by
performing SSL handshakes (TLSv1.2,ECDHE-RSA-
AES256-GCM-SHA384 with 4096 bit keys) with the ng-
inx web server. The server was configured to spawn four
worker processes. We used ApacheBench with concur-
rency level 24 and a session length of 1. In our exper-
iments, native nginx required 99.7 seconds to complete
ten thousand SSL handshakes, whereas the configuration
with a lwC isolated SSL library required 100.4 seconds.
With lwCs, isolating SSL private keys is essentially free.

Our prototype isolates only the server certificate pri-
vate key, but not session keys or other sensitive informa-
tion. More fine-grained isolation of the OpenSSL state,
such as that described in [5], can be implemented readily
using lwCs.

6.7 FCGI fast launch
We demonstrate the utility of lwC snapshotting by adding
a “fast launch” capability to a PHP application. When a
PHP request is served, a PHP script is read from disk,
compiled by the interpreter, and then executed. During
execution, other PHP files may be included and executed.
We modified the PHP 7.0.11 programming language to
add a pagecache call that allows the script to “fast-
forward” using previous snapshots. Our implementation
augments PHP-FPM [28], which functions as a FCGI
server for nginx. Our test application is based on the
MVC skeleton application that is included with the Zend
PHP framework [36], which provides the core function-
ality for creating database-backed web-based applica-
tions such as blogs.

Before a PHP script performs any computation that
depends on request-specific parameters (e.g., cookie in-
formation), the script may invoke the pagecache call,
which implements the snapshot pattern (Algorithm 1).
The first time a pagecache is invoked, we take a snap-
shot and then revert to it on subsequent requests to the
same URL, effectively jumping execution forward in
time. We use a shared memory segment to store data
that must survive a snapshot rollback, including request-
specific data and network connection information.

Our experiments run PHP-FPM with 11 workers. PHP

itself includes an opcode cache (which caches the compi-
lation of each script in memory) and our results include
configurations where the PHP opcode cache is enabled
and not. When combining the opcode cache and the lwC
snapshot, we warm up the opcode cache before taking
the snapshot. The results in Table 3 are an average of five
runs and overall standard deviation was less than 2%.

stock php lwC php stock php lwC php
no cache no cache cache cache

226.1 615.8 1287.5 1701.4

Table 3: Average requests per second over 60 seconds
with 24 concurrent requests.

With or without the opcode cache, the lwC snapshot
is able to skip over much of the initialization of the run-
time and whatever PHP execution would otherwise occur
before the pagecache call. This result is remarkable in
that it shows lwCs can provide significant performance
benefit to highly optimized end-to-end applications such
as web frameworks, while adding isolation between user
requests.

7 Conclusions
We have introduced and evaluated light-weight contexts
(lwCs), a new first-class OS abstraction that provides
units of isolation, privilege, and execution state indepen-
dent of processes and threads. lwCs provide isolation and
privilege separation among program components within
a process, as well as fast OS-level snapshots and co-
routine style control transfer among contexts, with a sin-
gle abstraction that naturally extends the familiar POSIX
API. Our results show that fast roll-back of FCGI run-
times, compartmentalization of crypto secrets, isolation
and monitoring of user sessions can be implemented in
the production Apache and nginx web server platforms
with performance close to or better than the original con-
figurations in most cases.

8 Acknowledgments
We would like to thank the anonymous reviewers, Paari-
jaat Aditya, Björn Brandenburg, Mike Hicks, Pete Kele-
her, Matthew Lentz, Dave Levin, Neil Spring, and our
shepherd KyoungSoo Park for their helpful feedback.
This research was supported in part by US National
Science Foundation Awards (TWC 1314857 and NeTS
1526635), the European Research Council (ERC Syn-
ergy imPACT 610150), and the German Science Foun-
dation (DFG CRC 1223).

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS) (2005),
pp. 340–353.

62 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[2] AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient
system-enforced deterministic parallelism. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 193–206.

[3] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
containers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 1999),
OSDI ’99, USENIX Association, pp. 45–58.

[4] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,
MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe user-level
access to privileged CPU features. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12) (Hollywood, CA, 2012), USENIX,
pp. 335–348.

[5] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP,
B. Wedge: Splitting applications into reduced-privilege com-
partments. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2008), NSDI’08, USENIX Association, pp. 309–322.

[6] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU,
M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An operating
system for many cores. In 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2008).

[7] CERT Vulnerability Note VU#720951: OpenSSL TLS heartbeat
extension read overflow discloses sensitive information. http:
//www.kb.cert.org/vuls/id/720951.

[8] CHASE, J. S., LEVY, H. M., FEELEY, M. J., AND LAZOWSKA,
E. D. Sharing and protection in a single-address-space operating
system. ACM Trans. Comput. Syst. 12, 4 (Nov. 1994), 271–307.

[9] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., AND LU, L.
Shreds: Fine-grained execution units with private memory. 2016
IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 23-25, 2015 (2016), 20–37.

[10] DIETER, W. R., AND LUMPP, JR., J. E. User-level checkpoint-
ing for LinuxThreads programs. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference (Berkeley,
CA, USA, 2001), USENIX Association, pp. 81–92.

[11] DURUMERIC, Z., KASTEN, J., LI, F., AMANN, J., BEEKMAN,
J., PAYER, M., WEAVER, N., HALDERMAN, J. A., PAXSON,
V., AND BAILEY, M. The matter of Heartbleed. In ACM Internet
Measurement Conference (IMC) (2014).

[12] EL HAJJ, I., MERRITT, A., ZELLWEGER, G., MILOJICIC, D.,
ACHERMANN, R., FARABOSCHI, P., HWU, W.-M., ROSCOE,
T., AND SCHWAN, K. SpaceJMP: programming with multiple
virtual address spaces. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2016),
ASPLOS ’16, ACM, pp. 353–368.

[13] FORD, B., AND LEPREAU, J. Evolving Mach 3.0 to a migrating
thread model. In Proceedings of the USENIX Winter 1994 Tech-
nical Conference on USENIX Winter 1994 Technical Conference
(Berkeley, CA, USA, 1994), WTEC’94, USENIX Association.

[14] GOOGLE CAJA TEAM. Google-Caja: A source-to-source trans-
lator for securing javascript-based web.

[15] HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL,
S., AND LIEDTKE, J. The Mungi single-address-space operating
system. Softw. Pract. Exper. 28, 9 (July 1998), 901–928.

[16] INTEL CORP. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual: Vol. 3D, June 2016.

[17] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (2014), pp. 147–163.

[18] LINDSTROM, A., ROSENBERG, J., AND DEARLE, A. The grand
unified theory of address spaces. In Proceedings of the Fifth

Workshop on Hot Topics in Operating Systems (HotOS-V) (Wash-
ington, DC, USA, 1995), HOTOS ’95, IEEE Computer Society.

[19] LITZKOW, M., TANNENBAUM, T., BASNEY, J., AND LIVNY,
M. Checkpoint and migration of UNIX processes in the Con-
dor distributed processing system. Tech. Rep. UW-CS-TR-1346,
University of Wisconsin—Madison CS Department, April 1997.

[20] MAMBRETTI, A., ONARLIOGLU, K., MULLINER, C.,
ROBERTSON, W., KIRDA, E., MAGGI, F., AND ZANERO, S.
Trellis: Privilege Separation for Multi-User Applications Made
Easy. In International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID) (Sept. 2016).

[21] MCKUSICK, M. K., AND NEVILLE-NEIL, G. V. The Design
and Implementation of the FreeBSD Operating System. Pearson
Education, 2004.

[22] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-e: A security-
oriented subset of java. In NDSS (2010), vol. 10, pp. 357–374.

[23] MILLER, M. Robust composition: Towards a unified approach
to access control and concurrency control. PhD thesis, Johns
Hopkins University, 2006.

[24] PALMER, G. The case for thread migration: Predictable IPC in
a customizable and reliable OS. In Proceedings of the Workshop
on Operating Systems Platforms for Embedded Real-Time appli-
cations (OSPERT ’10) (2010).

[25] PATRIGNANI, M., AGTEN, P., STRACKX, R., JACOBS, B.,
CLARKE, D., AND PIESSENS, F. Secure compilation to pro-
tected module architectures. ACM Transactions on Programming
Languages and Systems 37, 2 (Apr. 2015).

[26] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K. Libckpt:
Transparent checkpointing under Unix. In Usenix Winter Techni-
cal Conference (January 1995), pp. 213–223.

[27] STEINBERG, U., AND KAUER, B. Nova: A microhypervisor-
based secure virtualization architecture. In Proceedings of the
5th European Conference on Computer Systems (2010), EuroSys
’10, pp. 209–222.

[28] THE PHP GROUP. FastCGI Process Manager (FPM). http:
//php.net/manual/en/install.fpm.php, 2016.

[29] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. SIGOPS Oper.
Syst. Rev. 27, 5 (Dec. 1993), 203–216.

[30] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KEN-
NAWAY, K. A taste of Capsicum: Practical capabilities for unix.
Commununications of the ACM 55, 3 (Mar. 2012).

[31] WATSON, R. N. M., WOODRUFF, J., NEUMANN, P. G.,
MOORE, S. W., ANDERSON, J., CHISNALL, D., DAVE, N. H.,
DAVIS, B., GUDKA, K., LAURIE, B., MURDOCH, S. J., NOR-
TON, R., ROE, M., SON, S., AND VADERA, M. CHERI: A
hybrid capability-system architecture for scalable software com-
partmentalization. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015 (2015),
pp. 20–37.

[32] WITCHEL, E., CATES, J., AND ASANOVIĆ, K. Mondrian mem-
ory protection. In Proceedings of the 10th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2002), ASPLOS X,
ACM, pp. 304–316.

[33] WITCHEL, E., RHEE, J., AND ASANOVIC, K. Mondrix: Mem-
ory isolation for Linux using Mondriaan memory protection. In
Proceedings of the 20th Symposium on Operating Systems Prin-
ciples (SOSP ’05) (Brighton, UK, October 2005).

[34] WOODRUFF, J., WATSON, R. N., CHISNALL, D., MOORE,
S. W., ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN,
P. G., NORTON, R., AND ROE, M. The CHERI capability
model: Revisiting RISC in an age of risk. In Proceeding of the
41st Annual International Symposium on Computer Architecuture
(Piscataway, NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 457–
468.

[35] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGER,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 63

N. Native Client: A sandbox for portable, untrusted x86 native
code. 2009 IEEE Symposium on Security and Privacy, SP 2016,
Berkeley, CA, USA, May 17-20, 2009 (2016), 79–93.

[36] ZEND. MVC Skeleton Application. https://framework.
zend.com/downloads/skeleton-app, 2016.

[37] ZHANG, L., CHOFFNES, D., DUMITRAŞ, T., LEVIN, D., MIS-
LOVE, A., SCHULMAN, A., AND WILSON, C. Analysis of SSL

Certificate Reissues and Revocations in the Wake of Heartbleed.
In ACM Internet Measurement Conference (IMC) (2014).

[38] ZHONG, H., AND NIEH, J. CRAK: Linux checkpoint/restart as a
kernel module. Tech. Rep. CUCS-014-01, Columbia University
CS Department, November 2001.

64 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Altruistic Scheduling in Multi-Resource Clusters

Robert Grandl1, Mosharaf Chowdhury2, Aditya Akella1, Ganesh Ananthanarayanan3

1 University of Wisconsin-Madison 2University of Michigan 3Microsoft

Abstract
Given the well-known tradeoffs between fairness, per-
formance, and efficiency, modern cluster schedulers of-
ten prefer instantaneous fairness as their primary objec-
tive to ensure performance isolation between users and
groups. However, instantaneous, short-term convergence
to fairness often does not result in noticeable long-term
benefits. Instead, we propose an altruistic, long-term ap-
proach, CARBYNE, where jobs yield fractions of their al-
located resources without impacting their own comple-
tion times. We show that leftover resources collected via
altruisms of many jobs can then be rescheduled to fur-
ther secondary goals such as application-level perfor-
mance and cluster efficiency without impacting perfor-
mance isolation. Deployments and large-scale simula-
tions show that CARBYNE closely approximates the state-
of-the-art solutions (e.g., DRF [27]) in terms of perfor-
mance isolation, while providing 1.26× better efficiency
and 1.59× lower average job completion time.

1 Introduction
Resource scheduling remains a key building block of
modern data-intensive clusters. As data volumes increase
and the need for analysis through multiple lenses ex-
plode [1, 2, 12, 23, 34, 41, 43, 45, 55], diverse coexisting
jobs from many users and applications contend for the
same pool of resources in shared clusters.

Consequently, today’s cluster schedulers [9,17,33,51]
have to deal with multiple resources [14, 20, 27, 29,
38], consider jobs with complex directed acyclic graph
(DAG) structures [19,29,55], and allow job-specific con-
straints [15, 28, 35, 54, 56]. Schedulers must provide per-
formance isolation between different users and groups
through fair resource sharing [9, 16, 17, 27, 29, 36, 56],
while ensuring performance (low job completion times)
and efficiency (high cluster resource utilization).

However, simultaneously optimizing fairness, perfor-
mance, and efficiency is difficult. Figure 1 demonstrates
the tradeoff space by comparing three schedulers – domi-
nant resource fairness (DRF) [27] for multi-resource fair-
ness, shortest-job-first (SJF) [26] for minimizing the av-
erage job completion time (JCT), and Tetris [29] for in-
creasing resource utilization – implemented in Apache
YARN [51]: each scheduler outperforms its counterparts

cluster_metrics_formatted

Page 5
43

56 54
78 62

10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(a) Inter-job fairness

cluster_metrics_formatted

Page 5
43

56 54
78 62

10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(b) Job performance

cluster_metrics_formatted

Page 5
43

56 54
78 62

10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(c) Cluster efficiency

Figure 1: DRF [27], SJF [26], and Tetris [29] on a TPC-DS [7]
workload on a 100-machine cluster. All jobs arrived together.
Higher is better in (a),1while the opposite is true in (b) and (c).

only in a preferred metric and significantly underper-
forms in the secondary metrics. In practice, many pro-
duction schedulers [9,10,17,33,48,51,52] settle for per-
formance isolation as their primary objective and focus
on quick convergence to instantaneous fair allocations,
while considering performance and efficiency as best-
effort, secondary goals, often without an explicit focus
on them.

In this paper, we revisit the three-way tradeoff space: is
it possible to ensure performance isolation (i.e., fairness)
and still be competitive with the best approaches for the
secondary metrics (job completion time and cluster uti-
lization)? We highlight two key characteristics. First, dis-
tributed data-parallel jobs share an all-or-nothing char-
acteristic [14, 15, 21, 56]: a parallel job cannot complete
until all its tasks have completed. Because of this, aggres-
sively using all of the fair share often does not translate
into noticeable benefits in terms of secondary metrics. In
fact, it can hurt the average JCT and cluster efficiency.
Second, users only observe the outcome of performance
isolation when their jobs complete, and they care less for
instantaneous fair-share guarantees.

Thus, we propose an altruistic, long-term approach
based on a simple insight: jobs yield fractions of their
currently allocated resources – referred to as leftover re-
sources – to be redistributed to further secondary ob-
jectives. As long as jobs can contribute resources and
still complete without taking additional time, the effects
of such redistribution remain transparent to users. (We

1In Figure 1a, we calculated the average of Jain’s fairness index [37] over
60-second intervals; error bars represent the minimum and the maximum values.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 65

S0
2 * <0.08> @0.5

S1
3 * <0.21> @1

S2
1 * <0.1> @0.1

S0
2 * <0.29> @1

1 2
Time

S0

S1

S1

S1 S1

S0

S1 S2

1.0

0.5

1 2
Time

S0
S1

S1

S1

S1

S1 S2

1.0

0.5

S0 C
ap

ac
ity

C
ap

ac
ity

Stage ID
#Tasks * <Res. Vector> @Dur J1

J2

(a) Two DAGs w/ their dependencies and requirements

S0
2 * <0.08> @0.5

S1
3 * <0.21> @1

S2
1 * <0.1> @0.1

S0
2 * <0.29> @1

1 2
Time

S0

S1

S1

S0S0

S0

S1 S2

1.0

0.5

1 2
Time

S0
S1

S1

S0

S0

S1 S2

1.0

0.5

S0Ca
pa
ci
ty

Ca
pa
ci
ty

Stage ID
#Tasks * <Res. Vector> @DurJ1

J2

(b) Aggressive scheduling

S0
2 * <0.08> @0.5

S1
3 * <0.21> @1

S2
1 * <0.1> @0.1

S0
2 * <0.29> @1

1 2
Time

S0

S1

S1

S0S0

S0

S1 S2

1.0

0.5

1 2
Time

S0
S1

S1

S0

S0

S1 S2

1.0

0.5

S0C
ap
ac
ity

C
ap
ac
ity

Stage ID
#Tasks * <Res. Vector> @DurJ1

J2

(c) Altruistic scheduling

Figure 2: Opportunities in altruistic scheduling for two DAGs contending on a single bottleneck resource. Job J1 (orange/light/solid
line) has three stages and Job J2 (blue/dark/dotted line) has one stage (a), where the number of tasks in each stage along with their
expected resource requirements and durations are shown as specified in the legend. Assuming each task can start and complete its
execution in the specified duration given its required resources, (b)–(c) depict the allocations of the bottleneck resource (vertical
axis) for different approaches: The average completion time for (b) traditional schedulers (i.e., single- or multi-resource fairness
across jobs and efficient packing within each job) is 2.05 time units; and (c) CARBYNE with altruistic scheduling is 1.55 time units.

prove that an altruistic scheduler can guarantee this in
the offline setting).

Indeed, jobs have ample opportunities for altruisms in
production (§2). For example, 50% of the time, at least
20% of the allocated resources can be used as leftover
(i.e., yielded altruistically) at Microsoft’s production an-
alytics clusters. Given a fixed amount of resources, a
job may be altruistic whenever it cannot simultaneously
schedule all of its runnable tasks – i.e., when it can
choose which tasks to schedule at that instant and which
ones to schedule later. As clusters are shared between
more users and DAG complexity (e.g., the number of
barriers, total resource requirements, and critical path
length [39]) increases, the amount of leftover resources
increases too.

Leftover resources collected via altruisms of many
jobs introduce an additional degree of freedom in cluster
scheduling. We leverage this flexibility in CARBYNE that
decides how to determine and redistribute the leftover, so
as to improve one or both of performance and efficiency
metrics as the cluster operator sees fit, while providing
the same level of user-observable performance isolation
as the state-of-the-art (§3). Specifically, given a share of
the cluster resources (computed by a fair-sharing scheme
like DRF), CARBYNE’s intra-job scheduler computes task
schedules further into the future (since it knows the DAG
of the job upfront). This allows each job to compute, at
any given time, which runnable tasks to schedule and
how much of its fair share to contribute altruistically.
CARBYNE’s inter-job scheduler uses the resulting leftover
resources to: (a) preferentially schedule tasks from jobs
that are closest to completion; then (b) pack remaining
tasks to maximize efficiency. The order of (a) and (b) can
be reversed to prioritize efficiency over JCTs. Note that
our focus is not on improving the scheduling heuristics
for the individual metrics themselves, but rather on com-
bining them with altruism. To that end, our solution can

work with any of the scheduling heuristics designed for
fairness (say, capacity scheduler [5]), completion time,
and cluster efficiency (say, DAGPS [30, 31]).

Prior work have also attempted to simultaneously
meet multiple objectives [18, 21, 26, 29–31, 38, 47]. The
main difference is that given some resources (e.g., ac-
cording to some fair allocation) prior approaches (no-
tably [29–31]) adopt eager scheduling of tasks, whereas
CARBYNE schedules altruistically by delaying tasks in
time as much as possible to accommodate those that are
in greater need of running now. As our examples in Sec-
tion 2 and results in Section 5 show, such an altruism-
based approach offers better control over meeting global
objectives. In particular, compared to [29–31], CARBYNE

is better at meeting fairness guarantees, while offering
similar performance along other objectives.

We have implemented CARBYNE as a pluggable sched-
uler on Apache YARN [51] (§4). Any framework that
runs on YARN can take advantage of CARBYNE. We de-
ployed and evaluated CARBYNE on 100 bare-metal ma-
chines using TPC-DS [7], TPC-H [8], and BigBench [4]
queries and also by replaying production traces from Mi-
crosoft and Facebook in trace-driven simulations (§5).
In deployments, CARBYNE provides 1.26× better effi-
ciency and 1.59× lower average completion time than
DRF, while closely approximating it in fairness. In fact,
CARBYNE’s performance and efficiency characteristics
are close to that of SJF and Tetris, respectively. Only 4%
jobs suffer more than 0.8× slowdown (with the maxi-
mum slowdown being 0.62×) as CARBYNE temporally
reorganizes tasks to improve all three metrics. We ob-
served slightly higher benefits in simulations for com-
plex DAGs as well as for simple MapReduce jobs. Fur-
thermore, we found that CARBYNE performs well even in
the presence of misestimations of task demands (needed
for packing) and even when some jobs are not altruistic.

66 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Stages # Barriers Input Work
Workload 50th 95th 50th 95th 50th 95th
Microsoft 13 121 4 13 34% 85%
TPC-DS 8 23 1 4 11% 88%
TPC-H 8 12 2 4 46% 82%
BigBench 7 19 2 6 24% 70%

Table 1: Structural diversity in various workloads. Each group
of columns reads out percentile distributions.

2 Motivation
This section demonstrates benefits of altruistic schedul-
ing using an example (§2.1) and quantitatively analyzes
altruism opportunities (§2.2) in DAG workloads.

2.1 Illustration of Altruism
Modern schedulers focus on instantaneous (i.e., short-
term) optimizations and take greedy decisions. We hy-
pothesize that the focus on the short-term restricts their
flexibility in optimizing secondary objectives. Instead,
if we relax them via short-term altruisms and focus on
long-term optimizations, we can enable disproportion-
ately larger flexibility during scheduling, which, in turn,
can translate into significant improvements.

Consider Figure 2 that compares two schedules as-
suming both jobs arrive at the same time. Existing sched-
ulers (Figure 2b) perform independent scheduling both
across and within jobs, resulting in an average comple-
tion time of 2.05 time units (by allocating equal share of
resources to the jobs). This holds for any combination of
today’s schedulers – max-min [36] or dominant resource
fairness (DRF) [27] across different jobs and breadth-
first order [2, 55], critical path method (CPM) [39, 40],
or packing [29] within each job – because they are inde-
pendent by design to optimize for short-term objectives.

In contrast, CARBYNE takes a long-term approach (Fig-
ure 2c), where the intra-job scheduler of J1 altruistically
gives up some of its resources (since S2 in J1 is a bar-
rier), which can better serve J2. As long as tasks in stages
S0 and S1 finish by 2 time units, J1’s completion time
will not change. By ignoring short-term greed, J1 can
improve J2’s completion time, resulting in an average
completion time of 1.55 time units (1.3× better). 2

Note that this example considers only one resource,
only two jobs, and simplistic DAGs. As complexity in-
creases across all these dimensions, CARBYNE can be
even more effective (§5).

2.2 Opportunities in Analytics DAGs
In this section, we analyze the potential for altruism. We
analyzed query DAGs from a large Microsoft production

2For this example, packing across job boundaries results in an average JCT of
1.55 time units. However, as shown in Figure 1b, packing does not always lead
to the best average JCT, and it is not difficult to construct a similar example.

CP Length # Disjoint Paths
Workload 50th 95th 50th 95th
Microsoft 7 17 6 34
TPC-DS 5 8 4 15
TPC-H 5 7 3 7
BigBench 5 8 2 10

Table 2: Diversity in length of the critical path (CP) and the
number of disjoint paths in DAGs across various workloads.

trace, TPC-DS [7], TPC-H [8], and BigBench [4] bench-
marks. We first quantify the amount of leftover resources
for altruism and then correlate it with relevant DAG prop-
erties. For a detailed analysis of all DAG properties in
production, we refer interested readers to [30, 31].

How much resources can be considered as leftover
and used for altruistic scheduling? To answer this, we
computed the fraction of allocated compute, memory,
disk in/out, and network in/out bandwidths that could
have been reallocated without affecting any job’s com-
pletion time at Microsoft for each scheduling event
such as job and task arrivals and completions. We
found that across thousands of scheduling events, 50%
of the time, at least 20% of the allocated resources
– 〈35%, 43%, 24%, 21%, 28%, 24%〉 for the resources
listed above – could be used as leftover and rescheduled
via altruistic scheduling.

We next analyze the properties of the jobs that matter
the most for altruism: total stages, number of stages with
multiple parents (i.e., barriers), length of the DAG’s crit-
ical path, and the number of disjoint paths in the DAG.

Stage-Level Observations The number of stages in a
DAG provides an approximation of its complexity. In our
traces, a DAG has at least 7 stages at median and up to
23 at the 95th percentile (Table 1). These numbers are
significantly higher for production traces.

Recall that CARBYNE is altruistic without hampering
JCT. A key factor dictating this is the number of barriers,
i.e., stages whose children must wait until they finish.
Examples include aggregation and join stages, or even
final output stages. We observed the presence of multiple
barriers in most DAGs (Table 1); also quantified in [15].

Path-Level Observations Next, we considered the
length of the critical path of the DAG [39] as well as
the number of disjoint paths. We defined each sequence
of stages that can run in parallel with other sequences
of different stages as a disjoint path. Table 2 shows that
the median length of the critical path of DAGs is 5 in
these workloads, and many DAGs have multiple disjoint
paths, further enabling altruistic scheduling; [30, 31] has
a detailed description and quantification of DAG critical
paths.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 67

Correlating DAG properties and leftover resources
To understand which of these DAG properties have the
highest impact, we calculated correlations over time be-
tween the amount of leftover resources via CARBYNE and
variabilities in each of the aforementioned attributes. We
found that the number of barriers in a DAG has the high-
est positive correlation (0.75). The more barriers a DAG
contains, the more opportunities it has to contribute. For
example, in Figure 2c, the barrier S2 of DAG J1 enabled
its altruism. The number of stages, critical path length,
and the number of disjoint paths also have high positive
correlations of 0.66, 0.71 and 0.57, respectively.

3 Altruistic Multi-Resource Scheduling
In this section, we present an online altruistic multi-
resource DAG scheduler. First, we define the problem
along with our assumptions (§3.1). Next, we discuss de-
sirable properties of an ideal DAG scheduler and asso-
ciated tradeoffs (§3.2). Based on our understanding, we
develop an offline altruistic scheduler in two steps (§3.3):
determining how much a job can contribute to leftover
and deciding how to distribute the leftover or yielded re-
sources to other jobs. Finally, we analyze why the offline
solution works well in the online scenario as well (§3.4).

3.1 Problem Statement

Given a collection of jobs – along with information about
individual tasks’ expected multi-resource requirements,
durations, and DAG dependencies – we must schedule
them such that each job receives a fair share of clus-
ter resources, jobs complete as fast as possible, and the
schedule is work-conserving. All information about indi-
vidual jobs are unknown prior to their arrival.

3.2 Complexity and Desirable Properties

Offline DAG scheduling is NP-complete [25] for all
the objectives3 – fairness, performance, and efficiency –
even when the entire DAG and completion times of each
of its stages are known. In fact, polynomial-time opti-
mal DAG scheduling algorithms exist for only three sim-
ple cases [22, 42], none of which are applicable to DAG
scheduling in multi-resource clusters.

Because achieving optimality in all of the aforemen-
tioned objectives is impossible due to their tradeoffs
[18, 21, 26, 29, 38, 47], we want to build a scheduler that
improves performance and efficiency without sacrificing
performance isolation. In the online case, we expect an
ideal such scheduler to satisfy the following goals:

• Fast completion: Each DAG should complete as fast
as possible.

• Work conservation: Available resources should not
remain unused.

3Whether multi-resource fair DAG scheduling is NP-complete is unknown.
DRF [27] results were proven for jobs where all tasks have the same resource
requirements, which is not the case in multi-stage DAGs.

• Starvation freedom: No DAG should starve for arbi-
trarily long periods.4

3.3 Offline Altruistic Scheduling

Cluster schedulers typically operate in two levels: inter-
and intra-job; i.e., between jobs and between tasks of
each job. However, we want to consider three distinct
scheduling components – the two above, and leftover
scheduling. To this end, we first identify an intermedi-
ate degree of freedom in scheduling, and we discuss how
to leverage that.

3.3.1 Solution Approach

Consider the offline problem of scheduling |J| DAG
jobs (J = {J1, J2, . . . , J|J|}) that arrived at time
0. We start by observing that given a fixed share

(
−→
Ak = 〈a1k, a2k, . . . a

|
−→
R |
k 〉) of |

−→
R | resources (

−→
R =

〈R1, R2, . . . , R|
−→
R |〉) by an inter-job scheduler, a DAG

will take a minimum of amount of time (Tk for job Jk)
to complete all its tasks, given their dependencies. How-
ever, as long as its allocation does not decrease – true in
the offline case – it can decide not to be aggressive in
using resources and still complete by Tk. Formally, we
prove the following:
Theorem 3.1 Altruism will not inflate any job’s comple-
tion time in the offline case – i.e., unless new jobs arrive
or existing jobs depart – for any inter-job scheduler.

The proof follows from the fact that none of the Tk’s
invariants – namely, resource requirements, DAG struc-
ture, and allocation of Jk – change in the offline case.

We refer to resources that are not immediately re-

quired as leftover resources (
−→
Lk = 〈l1k, l2k, . . . l

|
−→
R |
k 〉), and

we consider contributing to
−→
Lk to be an altruistic action.

For example, in Figure 2c, J1 can potentially have 0.29
units of leftover resources at time 0. Assuming its fixed
resource share of 0.5 units, it would still be able to com-
plete in 2.1 time units by delaying one more task from
stage S1 to start at time 1. Note that J1 is instead run-
ning that task at time 0 to ensure work conservation.

Given that multiple jobs can contribute leftover re-
sources (§2.2), if we combine (

−→
L =

∑
k

−→
Lk) and redis-

tribute them across all running jobs, we can create new
opportunities for improving the secondary metrics. We
can now reformulate cluster scheduling as the following
three questions:
1. how to perform inter-job scheduling to maximize the

amount of leftover resources?
2. how should an intra-job scheduler determine how

much a job should contribute to leftover? and
3. how to redistribute the leftover across jobs?

4We do not aim for stronger goals such as guaranteeing bounded starvation,
because providing guarantees require resource reservation along with admission
control. Even DRF does not provide any guarantees in the online case.

68 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

By addressing each one at each scheduling granularity
– inter-job, intra-job, and leftover – we design an altruis-
tic DAG scheduler (Pseudocode 1) that can compete with
the best and outperform the rest in all three metrics (§5).

CARBYNE invokes Pseudocode 1 on job arrival, job
completion, as well as task completion events. For each
event, it goes through three scheduling steps to deter-
mine the tasks that must be scheduled at that point in
time. While we use DRF [27], SRTF, and Tetris [29]
for concrete exposition, CARBYNE can also equivalently
use other schedulers such as DAGPS [30, 31] (instead of
Tetris) for packing and capacity scheduler [5] (instead of
DRF) for fairness.

3.3.2 Increasing Leftover via Inter-Job Scheduling
Modern clusters are shared between many groups and
users [9, 10, 16, 17, 33, 48, 51, 52]. Consequently, the pri-
mary goal in most production clusters is performance
isolation through slot-based [9, 10] or multi-resource
[16, 27] fairness. We use a closed-form version of DRF
[46] for inter-job scheduling in CARBYNE. Interestingly,
because a single- or multi-resource fair scheduler en-
forces resource sharing between all running jobs, it elon-
gates individual job completion times the most (com-
pared to schedulers focused on other primary objectives).
Consequently, fair schedulers provide the most opportu-
nities for altruistic scheduling.

3.3.3 Determining Leftover for Individual Jobs

Given some resource share
−→
Ak, CARBYNE’s intra-job

scheduler aims to maximize the amount of leftover re-
sources from each job. We schedule only those tasks that
must start running for Jk to complete within the next
Tk duration, and we altruistically donate the rest of the
resources for redistribution. Computing this is simple:
we simply perform a reverse/backward packing of tasks
from Tk to current time, packing tasks in time as close to
Tk as possible, potentially leaving more resources avail-
able at earlier times (lines 17–21 in Pseudocode 1). For
example, in Figure 2, stage S2 of job J1 can only start
after 2 time units. Hence, CARBYNE can postpone both
tasks from S0 and one task from S1 until at least the first
time unit, donating 0.29 units to leftover resources (0.08
for S0’s tasks and 0.21 for S1’s task). Similarly, job J2
donates 0.21 units to leftover resources (its fair share of
0.5 less the resource used by one task in its S0 of 0.29),
making it a sum of 0.5 leftover resource units.

Reverse packing uses the same principle as the intra-
coflow scheduler used in Varys [21], where most flows
in a coflow are slowed down so that all of them finish to-
gether with the longest running one. However, CARBYNE

considers multiple resource types as well as dependen-
cies, and unlike Varys, it does not hog CPU and memory.

A sophisticated packer (like DAGPS [30,31]) can bet-
ter increase leftover resources. As opposed to our re-

Pseudocode 1 Altruistic DAG Scheduling

1: procedure SCHEDULE(Jobs J, Resources
−→
R)

2: {
−→
Ak},

−→
L = INTERJOBSCHEDULER(J,

−→
R)

3: for all Jk ∈ J do
4:

−→
L += INTRAJOBSCHEDULER(Jk,

−→
Ak)

5: end for
6: LEFTOVERSCHEDULER(J,

−→
L)

7: end procedure

8: procedure INTERJOBSCHEDULER(Jobs J, Resources
−→
R)

9:
−−−→
LDRF =

−→
R .

−−−→
LDRF tracks total unalloc. resources

10: Calculate
−→
Ak using closed-form DRF [46] for all Jk

11: for all Jk ∈ J do
12:

−−−→
LDRF -=

−→
Ak

13: end for
14: return {Ak} and

−−−→
LDRF

15: end procedure

16: procedure INTRAJOBSCHEDULER(Job Jk, Alloc.
−→
Ak)

17: Given
−→
Ak, calculate Tk using Tetris [29]

18: Reverse parent-child task dependencies in Jk

19: Calc. task start times Rev(tjk) in the reversed DAG
20: Actual(tjk) = Rev(tjk) + Tk − Dur(tjk)
21: Tk =

{
tjk : Actual(tjk) == 0

}
. Tasks that must start

22: Schedule tjk; ∀tjk ∈ Tk

23:
−→
Lk =

−→
Ak −

∑
Req(tjk); tjk ∈ Tk

24: return
−→
Lk

25: end procedure

26: procedure LEFTOVERSCHEDULER(Jobs J, Leftover
−→
L)

27: J′ = SORT ASC (J) in the SRTF order
28: for all Jk ∈ J′ do
29: Schedule runnable tasks to maximize

−→
L usage

30: end for
31: end procedure

verse packer that only considers the parents of currently
runnable tasks, it could consider the entire DAG and its
dependencies. It could also account for the nature of de-
pendencies between stages (e.g., many-to-one, all-to-all).
The more CARBYNE can postpone tasks into the future
without affecting a DAG’s completion time, the more
leftover resources it has for altruistic scheduling.

3.3.4 Redistribution via Leftover Scheduling

Given the pool of leftover resources
−→
L from all jobs (0.5

units in the running example), leftover scheduling has
two goals:

• Minimizing the average JCT by scheduling tasks
from jobs that are closest to completion us-
ing Shortest-Remaining-Time-First (SRTF5). This
schedules the task from stage S0 of J2 in the first
time step, leaving 0.21 units of total leftover.

5This is the shortest amount of work first, as in Tetris [29].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 69

• Maximizing efficiency by packing as many unsched-
uled tasks as possible – i.e., using Tetris [29]. This
results in one more task of stage S1 of J1 to be sched-
uled, completing leftover redistribution.

3.3.5 Properties of the Offline Scheduler

The former action of the leftover scheduler enables fast
job completions, while the latter improves work conser-
vation. At the same time, because the intra-job sched-
uler ensures that Tk values are not inflated, the overall
scheduling solution maintains the fairness characteristics
of DRF and provides the same performance isolation and
starvation freedom. In summary, the offline CARBYNE

scheduler satisfies all the desirable properties.

3.4 From Offline to Online

In the online case, new jobs can arrive before Tk and de-
crease Jk’s resource share, breaking one of the invariants
of Theorem 3.1. For example, given N jobs and one re-
source, Jk receives 1

N -th of the resource; if M more jobs
arrive, its share will drop to 1

N+M -th. If Jk was altruistic
earlier, as new jobs arrive, it cannot complete within the
previously calculated Tk time units any more.

3.4.1 Analysis of Online Altruistic Scheduling

In practice, even in the online case, we observe marginal
impacts on only a handful of jobs (§5.2.3). This is be-
cause (i) production clusters run hundreds of jobs in par-
allel; and (ii) resource requirements of an individual task
is significantly smaller than the total capacity of a cluster.

Consider a single resource with total capacity R, and
assume that tasks across all jobs take the same amount
of time (t) and resource (r � R). Given N jobs, job Jk
received Ak = 1

N -th share of the single resource, and it
is expected to complete in Tk time units while scheduling
at most Ak

r tasks per time unit.
Now consider M new jobs arrive when Jk is T ′k(<

TK) time units away from completion. Their arrival de-
creases Jk’s share to A′k = 1

N+M -th, when Jk must be
able to schedule tasks at Ak

r rate to complete within Tk.
Assuming all resources being used by the running

jobs, the rate at which Jk can schedule tasks is the rate at
which tasks finish, i.e., t

R/r . Meaning, Jk is expected to

take A′
kt

R/r time units to schedule all tasks.
The additional time to schedule the remaining tasks

will be negligible compared to remaining time T ′k as long
as tasks finish uniformly randomly over time6 and

T ′k �
1

N +M

r

R
t

The above holds for most production clusters because
typically N � 1 and R� r.

6This holds true in large production clusters [54].

3.4.2 Bounding Altruism

As a failsafe to prevent jobs from being repetitively pun-
ished for altruism, CARBYNE provides a uniformly dis-
tributed probability P (Altruism). It dictates with what
probability a job will yield its resources during any
scheduling event. It is set to 1 by default – i.e., jobs yield
resources whenever possible – causing less than 4% of
the jobs to suffer at most 20% slowdown (§5.2.3). De-
creasing it results in even fewer jobs to suffer slowdown
at the expense of lower overall improvements (§5.4.3).
In an adversarial environment, one can avoid altruism al-
together by setting P (Altruism) = 0, which reduces
CARBYNE to DRF.

3.5 Discussion

Modern clusters must consider constraints such as data
locality and address runtime issues such as stragglers and
task failures. CARBYNE is likely to have minimal impact
on these aspects.

Data Locality Because disk and memory locality sig-
nificantly constrain scheduling choices [14, 23, 28], al-
truistically giving up resources for a data-local task may
adversely affect it in the future. However, delay schedul-
ing [54] informs us that waiting even a small amount of
time can significantly increase data locality. An altruisti-
cally delayed data-local task is likely to find data locality
when it is eventually scheduled.

Straggler Mitigation Techniques such as speculative
execution are typically employed toward the end of a job
to mitigate outliers [13, 15, 23, 56]. CARBYNE is likely
to prioritize speculative tasks during leftover scheduling
because it selects jobs in the SRTF order.

Handling Task Failures Similar to existing solutions,
CARBYNE does not distinguish between new and restarted
tasks. However, in case of task failures, CARBYNE must
recalculate the completion estimation (Tk) of the corre-
sponding job Jk.

4 Design Details
In this section, we describe how to enable altruism in
different cluster schedulers, explain how we have imple-
mented CARBYNE in YARN and Tez, and discuss how we
estimate task resource requirements.

4.1 Enabling Altruism in Clusters Schedulers

Enabling altruistic scheduling requires two key compo-
nents. First, a local altruistic resource management mod-
ule in each application must determine how much re-
sources it can yield. Second, the global cluster scheduler
must implement a leftover resource management module
to reallocate the yielded resources from all applications.
RPC mechanisms between the two schedulers may need
to be expanded to propagate the new information.

70 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Job Manager1

Node Manager1

Running tasks
Report available resources

Resource Manager

Asks’ Offers
Job Capacity

Allocations Resource availability

A
LT

R
U

IS
TI

C ! Altruistic schedule of the DAG
Pack reversed DAG

! Multi-resource Asks
Asks’ = {AsksDEFAULT + AsksALTRUISTIC}

LE
FT

O
V

ER ! Leftover reallocation policies
Leftover allocation for AsksALTRUISTIC → (SRTF policy)

! Propagate leftover reallocation decisions
On Asks’ reply

New logic to allocate tasks to machines
Pack AsksDEFAULT → (packing, priority)

…

…
Figure 3: Multi-resource scheduling in a data-parallel cluster.
CARBYNE-related changes are shown in orange.

In case of monolithic schedulers such as YARN,7 indi-
vidual job managers (e.g., Spark/Tez master) implement
the altruism module. The leftover management module
is implemented in the cluster-wide resource manager. For
two-level schedulers such as Mesos [33], Mesos master’s
global allocation module should manage the leftover re-
source management, while the altruistic module can be
implemented at the framework-level such as Spark or
MPI. Similar architectural principles apply for shared-
state schedulers (e.g., Omega [48]) too.

4.2 CARBYNE System
In the following, we describe how we have implemented
the two modules to provide altruism. Figure 3 depicts the
core pieces of typical parallel cluster schedulers today as
well as the core new functionality we add to integrate
CARBYNE, marked in orange. We modified and added
1400 lines of code to implement CARBYNE on YARN.

Primer on Data-Parallel Cluster Scheduling Typi-
cally, today’s data-parallel cluster schedulers divide the
scheduling procedure into three parts.

A node manager (NM) runs on every machine in the
cluster, and it is responsible for running tasks and report-
ing available resources.

For each job, a job manager or Application Master
(AM) runs on some machine in the cluster and holds job
context information regarding various types of tasks to
be executed (pending/in-progress/completed), their de-
pendencies (e.g., DAG) and resource requirements (e.g.,
memory, CPU).

7Please refer to [48] on why YARN is a monolithic, not two-level, scheduler.

A cluster-wide resource manager (RM) receives Ask
requests from various AMs for their pending tasks to
be scheduled and information about the available re-
sources on different machines from NMs through heart-
beats. Based on this information and fairness considera-
tions, it assigns tasks to machines. Typically, an Ask con-
tains information such as preferences for data locality,
the amount of resources required and priorities at which
tasks should be executed. Priority is an useful mechanism
to enable AMs to encode their preferences to execute one
task over the other (e.g., due to ordering in the DAG or
failures).

CARBYNE Implementation We have built CARBYNE as
an extension to the YARN [51] and Tez [2] frameworks.
To implement Pseudocode 1, we made the following
modifications:

1. RPC Mechanism We enhanced the RPC protocol
between YARN RM and Tez AM to propagate the to-
tal resource allocation of a job as computed at RM, ac-
cording to the fairness policy enforced in the cluster
and the current runnable jobs. Also, we extended the
Ask data structure to support Asks of different types
(AsksDEFAULT for tasks that it must run in order to not
be slow down due to altruism and AsksALTRUISTIC for
tasks that it may run if the job scheduler tries to use all
the allocated resources) as well as other relevant infor-
mation (e.g., task’s demand estimates across multiple di-
mensions, task’s priority, remaining work etc.).

2. Tez Job Manager Given the most recent resource
allocation for a job received from the RM, CARBYNE-
enabled Tez AM altruistically schedules the remain-
ing DAG (i.e., unscheduled tasks and their dependen-
cies). It implements, the IntraJobScheduler proce-
dure from Pseudocode 1 to encode resource requests
(AsksDEFAULT) for tasks that should be scheduled via
altruism. To do that, CARBYNE does reverse packing us-
ing [29] to identify the minimum set of tasks that should
run as of now while respecting their dependencies, in or-
der to not slow down the expected job completion time.
In addition, it computes AsksALTRUISTIC using the de-
fault intra-job scheduler in Tez that decides on a breadth-
first ordering for scheduling tasks. The optional set of
tasks are the ones that can be scheduled according to a
greedy scheduler and provides to the RM additional in-
formation in order to reallocate leftover resources. While
we use [29] to do reverse packing and breadth-first or-
dering to compute AsksALTRUISTIC, any other intra-
job scheduling technique (e.g., DAGPS [30, 31], Critical
Path Method) can be used as well. AM also includes pri-
orities with each task that serve as “hints” to the RM as
discussed below.

3. YARN’s Resource Manager The scheduling pro-
cess in YARN RM is triggered whenever an NM reports

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 71

available resources. We updated YARN RM’s match-
ing logic to project tasks’ resource requests onto avail-
able capacity. First, among the runnable jobs, it com-
putes periodically their DRF allocation and propagates
the corresponding resource allocation on the next heart-
beat response to every AM. (InterJobScheduler pro-
cedure from Pseudocode 1). Second, it schedules tasks
requests from jobs AsksDEFAULT using similar heuris-
tics as in Tetris [29] to do packing and reduce job com-
pletion time. In addition, we encode the priorities of the
tasks into these heuristics in a way similar to DAGPS
[30, 31] to account for tasks dependencies in the same
DAG’s job as instructed by the Tez Job Manager. Pack-
ing resource requests from AsksDEFAULT according to
the job AM-hinted task priorities enables the RM sched-
uler to enforce the altruistic schedule computed by each
job AM while improving the cluster utilization. If no
more AsksDEFAULT can be satisfied, the RM scheduler
satisfies AsksALTRUISTIC resource requests from jobs
sorted ascending based on the amount of remaining work
(emulating SRTF), until no more requests can be satisfied
during this scheduling cycle (LeftOverScheduler pro-
cedure from Pseudocode 1). This approach prefers effi-
ciency as a secondary objective over JCTs; however, their
order can be reversed. For example, the RM scheduler
can pack resource requests from AsksALTRUISTIC and
satisfies AsksDEFAULT based on the amount of remain-
ing work.

4.3 Demand Estimation
CARBYNE relies on estimates of tasks’ resource demands
– across CPU, memory, disk, and the network – and their
durations to make scheduling decisions. Since modern
datacenters have zero or small over-subscription factors
[3, 49], CARBYNE considers only access link bandwidths
between a machine and its ToR switch.8

To estimate tasks’ demands and durations, CARBYNE

leverages well-established techniques such as using his-
tory of prior runs for recurring jobs [11, 24, 29] and as-
suming tasks from the same stage to have similar re-
source requirements [14, 27, 44]. We note that requiring
manual annotation is also possible, and there are some
promising efforts to infer task requirements from pro-
gram analysis [32]; CARBYNE currently does not use such
techniques. While CARBYNE performs the best with accu-
rate estimations, we have found that using the aforemen-
tioned techniques work well in practice (§5.4.2).

5 Evaluation
We evaluated CARBYNE on a 100-machine cluster [6] us-
ing publicly available benchmarks – TPC-DS, TPC-H,
and BigBench – as well as Hive traces collected from
large production clusters at Microsoft and Facebook.

8For oversubscribed networks with well-defined bottlenecks (e.g., host-toToR
links), one may consider bandwidth demands on the oversubscribed links instead.

To understand performance at a larger scale, we used a
trace-driven simulator to replay task logs from the same
traces. Our key findings are:

• CARBYNE can closely approximate DRF, Tetris, and
SJF in terms of fairness, efficiency, and performance,
respectively, in both offline and online scenarios
(§5.2). Moreover, it provides 1.26× better efficiency
and 1.59× lower average completion time than DRF.

• CARBYNE provides similar benefits in large-scale
simulations, even for simple MapReduce jobs (§5.3).

• Sensitivity analysis show that CARBYNE performs
even better with resource contention, and it is robust
to misestimations in resource requirements and when
jobs are not always altruistic (§5.4).

In the following, unless otherwise explicitly men-
tioned, we refer to CARBYNE as our implementation atop
YARN and TEZ as described in Section 4 using Tetris as
an intra-job scheduler (other than Section 5.5) and DRF
for fairness.

5.1 Experimental Setup

Workloads Our workloads consist of mix of jobs from
public benchmarks – TPC-DS [7], TPC-H [8], Big-
Bench [4], and from Microsoft and Facebook produc-
tion traces collected from clusters with thousands of ma-
chines. Our experimental methodology is adapted from
and similar to prior work [30, 31]. In each experiment
run, the jobs are randomly chosen from one of the cor-
responding benchmark and follows a Poisson arrival dis-
tribution with average inter-arrival time of 20 seconds.
Each job lasts from few minutes to tens of minutes, and
we generate corresponding input sizes from GBs to hun-
dreds of GBs. Unless otherwise noted, each experiment
has 250 jobs. Microsoft workload has 30000 job DAGs
with millions of tasks (§2.2). Facebook workload has
7000 jobs and 650, 000 tasks spanning six hours, and
jobs use the actual arrival times from the trace. Each ex-
periment is run three times, and we present the median.

Cluster Our experiments use 100 bare-metal servers.
Each machine has 20 cores, 128 GB of memory, 128 GB
SSD, a 10 Gbps NIC and runs CentOS 7. Meaning, the
cluster can run up to 2000 tasks in parallel. The network
has a congestion-free core.

Simulator To run CARBYNE at a larger scale and to
gain more insights into CARBYNE’s performance, we
built a simulator that replays job traces. The simulator
mimics various aspects of the logs, handling jobs with
different arrival times and dependencies as well as mul-
tiple fairness and scheduling schemes.

Compared Scheduler Baselines We compare CAR-
BYNE primarily against the following approaches:

72 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cluster_metrics_formatted

Page 5
43

56 54
78 62

10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(a) Inter-job fairness

cluster_metrics_formatted

Page 5

43
56 54

78 62
10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(b) Job performance

cluster_metrics_formatted

Page 5

43
56 54

78 62
10

44
92

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

43
56 54

78 62
10

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

11
23 12

24

76
9

81
4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

11
23 12

24

76
9

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
74 0.

86

0.
64

0.
81

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
74 0.

86

0.
64

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(c) Cluster efficiency

Figure 4: [Cluster] CARBYNE’s performance against the best schemes in fairness (DRF), improvement in average JCT (SJF), and
achieving cluster efficiency (Tetris) in the offline case as shown in Figure 1. CARBYNE approaches the best in each category and
outperforms the rest. Higher is better in (a), while the opposite is true in (b) and (c).

1. DRF: YARN’s implementation of the DRF algorithm
[27] for inter-job scheduling along with the default
intra-job scheduler in Tez that decides on a breadth-
first ordering for scheduling tasks;

2. Tetris: Uses breadth-first-ordering for intra-job
scheduling and Tetris [29] (with its fairness knob,
f → 0) for inter-job scheduling;

3. SJF: A shortest-job-first scheduler that uses Critical
Path Method (CPM) to determine job duration and
schedules job in the shortest-first order. We use SJF
primarily as an upper-bound of CARBYNE’s improve-
ment in average job completion time.

Metrics Our primary metric to quantify performance
is the improvement in the average JCT, computed as:

Factor of Improvement =
Duration of an Approach

Duration of CARBYNE
(1)

Factor of improvement greater than 1 means CARBYNE is
performing better, and vice versa.

Additionally, we use makespan, i.e., when all jobs in a
workload completed, to measure efficiency.

Finally, to quantify fairness, we compute Jain’s fair-
ness index [37] on 60 seconds time window intervals,
and we plot the average, minimum, and maximum val-
ues across all intervals until the workload completes.

5.2 CARBYNE in Testbed Experiments

In this section, we compare CARBYNE to the state-of-the-
art solutions across multiple benchmarks and metrics,
evaluate its impact on workloads as a whole and on in-
dividual jobs, dissect the sources of improvements, and
show that CARBYNE has small amortized overheads.

5.2.1 Performance vs. Efficiency vs. Fairness

The Offline Case Figure 4 depicts fairness, the aver-
age JCT, and cluster efficiency in our cluster experiments
on the TPC-DS workload in the offline case.

We observe that DRF is the most fair approach, with a
fairness index of 0.86 on average. However, CARBYNE is

only 0.05 units away. In comparison, Tetris is off by 0.12
units and SJF by 0.22. CARBYNE can be unfair on small
time intervals due to leftover reallocation, during which
jobs can get more or less than their fair share. However,
on longer time intervals (60 seconds in our experiments),
it is closest to DRF because of its long-term approach
toward fairness.

The average JCT is improved the most by SJF, and
CARBYNE provides only 1.06× worse average JCT. In
comparison, Tetris and DRF are off by 1.46× and 1.59×
on average, respectively. Although CARBYNE performs
SRTF during leftover reallocation, it is slightly worse
than SJF because it attempts not to delay any job beyond
its fair-share-calculated completion time.

Finally, Tetris provides the highest cluster efficiency
(lowest makespan) by efficiently packing tasks across
jobs, and CARBYNE is the closest scheme, which is only
1.03× worse than Tetris. Although CARBYNE is also
packing tasks, it favors tasks from altruistic jobs instead
of treating all runnable tasks equally. In comparison,
DRF and SJF are off by 1.26× and 1.43×, respectively.

The Online Case Next, we focus on the case when
jobs arrive over time (Section 5.1 has details on arrival
process). Figure 5 shows that even in the online case,
CARBYNE can closely match DRF (0.06 units worse),
SJF (1.2× worse), and Tetris (1.07× worse) in fairness,
performance, and efficiency, respectively – although the
margins are slightly larger than that in the offline case.

Next, we investigate the root causes behind CARBYNE

performing worse in the online case and whether they
match our hypotheses in Section 3.4.

5.2.2 JCT Improvements Across Entire Workloads

While CARBYNE performs well for different metrics, the
most important metric from a user’s perspective is the
average JCT. To better understand CARBYNE’s impact on
JCT, we compare it against popular alternatives: DRF
and Tetris (§5.1). Note that we do not include SJF from
hereon because it performs the worst both in terms of ef-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 73

cluster_metrics_formatted

Page 3
51

24 66
54 74

15

55
20

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

51
24 66

54 74
15

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

98
6 10
96

64
3 77

4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

98
6

10
96

64
3

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
71 0.

84

0.
62

0.
78

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
71 0.

84

0.
62

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(a) Inter-job fairness

cluster_metrics_formatted

Page 3

51
24 66

54 74
15

55
20

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

51
24 66

54 74
15

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

98
6 10
96

64
3 77

4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

98
6

10
96

64
3

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
71 0.

84

0.
62

0.
78

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
71 0.

84

0.
62

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(b) Job performance

cluster_metrics_formatted

Page 3

51
24 66

54 74
15

55
20

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

51
24 66

54 74
15

0

2000

4000

6000

8000

M
ak

es
pa

n
(s

ec
on

ds
)

98
6 10
96

64
3 77

4

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

98
6

10
96

64
3

0

500

1000

A
vg

. J
C

T
 (s

ec
on

ds
)

0.
71 0.

84

0.
62

0.
78

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

0.
71 0.

84

0.
62

0

0.5

1

Ja
in

's
 F

ai
rn

es
s I

nd
ex

(c) Cluster efficiency

Figure 5: [Cluster] CARBYNE’s performance against the best schemes in achieving fairness (DRF), improvement in average JCT
(SJF), and cluster efficiency (Tetris) in the online case. CARBYNE approaches the best in each category and outperforms the rest.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 J

ob
s

Job Completion Time (Seconds)

DRF

Tetris

Carbyne

0.01

0.1

1
0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 J

ob
s

Job Completion Time (Seconds)

DRF

Tetris

Carbyne

Figure 6: [Cluster] CDF of job completion times using differ-
ent approaches on TPC-DS workload.

ficiency and fairness, while only marginally outperform-
ing CARBYNE in performance.

Figure 6 shows the distributions of job completion
times of the compared approaches for the TPC-DS work-
load. Only two highest percentiles are worse off by at
most 1.1× than Tetris using CARBYNE (not visible in Fig-
ure 6). Table 3 shows the corresponding improvement
factors for multiple workloads.

CARBYNE vs. DRF For TPC-DS, CARBYNE speeds up
jobs by 1.36× on average and 1.88× at the 95th per-
centile over DRF. Improvement factors are about the
same for TPC-H and BigBench workloads. However,
corresponding 75th and 95th percentile improvements
were up to 1.62× and 1.96× for TPC-H. These gains are
mostly due to the presence of a larger fraction of shorter
jobs in the TPC-H workload, which benefit more due to
CARBYNE’s leftover allocation procedure.

CARBYNE vs. Tetris CARBYNE’s improvements are
similar against Tetris. Tetris ignores jobs dependencies
and strives to pack, looking only at the current set of
runnable tasks. In contrast, CARBYNE packs critical tasks
during the leftover allocation.

5.2.3 Sources of Improvements
We have shown that workloads experience aggregate im-
provements using CARBYNE. A natural question is then to
ask: where do these gains come from? To better answer
that question, Figure 7 presents the factors of improve-
ments of individual jobs.

25th percentile 50th percentile
Workload DRF Tetris DRF Tetris
TPC-DS 1.15 1.12 1.36 1.32
TPC-H 1.11 1.14 1.33 1.29
BigBench 1.13 1.10 1.41 1.35

75th percentile 95th percentile
Workload DRF Tetris DRF Tetris
TPC-DS 1.55 1.47 1.88 1.75
TPC-H 1.62 1.44 1.96 1.71
BigBench 1.57 1.52 1.85 1.82

Table 3: [Cluster] Factors of improvement across various
workloads w.r.t. DRF and Tetris.

0

0.2

0.4

0.6

0.8

1

0.6 1 1.4 1.8 2.2

Fr
ac

tio
n

of
 J

ob
s

Factor of Improvement

DRF

Tetris

Figure 7: [Cluster] CDF of factors of improvement of individ-
ual jobs using CARBYNE w.r.t. different approaches.

We observe that for more than 84% of the jobs, CAR-
BYNE performs significantly better than the alternatives.
Only 16% of the jobs slow down – by at most 0.62× –
using CARBYNE w.r.t. different approaches. No more than
4% of the jobs slow down more than 0.8×.

Dissecting a Job’s Execution To better understand
how CARBYNE works in practice, we snapshot the exe-
cution of the same job from one of our TPC-DS cluster
runs, with and without CARBYNE. Figure 8 presents the
number of running tasks during the job execution when
running CARBYNE and DRF. In both cases, the jobs were
scheduled almost at the same time, approximately 300
seconds after our experiment has started.

The key takeaways are the following. First, in DRF,
the breadth-first intra-job scheduler is greedily schedul-
ing tasks whenever it has containers allocated (either due

74 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

5

10

15

20

301 401 501 601 701 801 901 1001 1101

R

un
ni

ng
 T

as
ks

Time (Seconds)

Carbyne w/o Leftover
Carbyne
DRF

Figure 8: [Cluster] Snapshot of the execution of a TPC-DS
query. The job switches from being altruistic in the earlier part
of execution to receiving altruisms in the latter part, leading to
faster completion. The gap between light and dark orange lines
represent the tasks received from leftover allocation.

to fairness or work conservation mechanisms). However,
being greedy does not necessarily help. Between times
570 and 940, its progress is slowed down mostly due to
high contention in the cluster. Second, CARBYNE’s direc-
tive of being altruistic helps in the long run. We observe
that even when resources are available for allocation (in-
terval between 300 and 550), its allocation is smoother
than DRF (dark orange line). Instead of up to 11 tasks
to be allocated, it decides to schedule up to 5 while giv-
ing up the remaining resources to the leftover. However,
note that it does receive back some of the leftover re-
sources (the gap between the light and dark orange lines
in Figure 8). Finally, as the job nears completion, CAR-
BYNE provides more leftover resources even when there
is high contention in the cluster. In the interval between
570 seconds to 850 seconds, it is receiving significantly
larger share than DRF by relying on other jobs’ altruisms
(i.e., the gap between the dark and light orange lines).

Which Jobs Slow Down? We observed that typically
jobs with more work (many tasks and large resource de-
mands per task) are more prone to losses, especially if
they contend with many small jobs. One such example is
a job that was slowed down by 0.64× w.r.t DRF; it was
contending with more than 40 jobs during its lifetime, all
of them had less work to do, and hence, got favored by
our leftover resource allocation policy.

However, unlike SJF or SRTF, CARBYNE is not inher-
ently biased towards improving shorter jobs at the disad-
vantage of larger jobs. In fact, half of the jobs that slowed
down more than 0.8× (i.e., 2% of all jobs) were small.

We also attempted to bin/categorize the jobs based on
characteristics such as the number of tasks, total amount
of work, and DAG depth; however, but we did not ob-
serve any correlations w.r.t changes in JCT. Instead, we
found that whether and how much a job may suffer is
a function of the entire cluster’s conditions during the
job’s runtime: available resources, rates of jobs arriv-
ing/finishing, their amount of remaining work, and the
level of altruism. For better understand their impacts, we

perform extensive simulations under multiple parameter
choices in Section 5.4.

5.2.4 Scheduling Overheads

Recall from Section 4.2 that CARBYNE expands the Tez
AM with an additional altruistic scheduling logic, which
is triggered whenever the job’s share allocation is chang-
ing. We find that CARBYNE-related changes inflate the
decision logic by no more than 10 milliseconds, with a
negligible increase in memory usage of the AM.

CARBYNE’s logic to match tasks to machines – RM’s
matching logic happens on every heartbeat from NM to
RM – is more complex than that in YARN. To quantify its
overhead we compute the average time to process heart-
beats from NM to RM for different number of pending
tasks. We find that for 10000 pending tasks, CARBYNE’s
additional overhead is 2 milliseconds compared to Tetris
(18 ms), and the overhead is up to 4 milliseconds for
50000 pending tasks. CARBYNE also extends the Ask re-
quests from AM for multiple resource requirements and
encapsulates Asks for the altruistic decisions it makes.
However, because Asks are cumulative, we found that
the additional overhead is negligible.

5.3 Performance in Trace-Driven Simulations

To better understand how CARBYNE performs under var-
ious parameter choices, we simulate altruistic schedul-
ing using TPC-DS, TPC-H, and BigBench benchmarks
as well as Microsoft and Facebook traces.

5.3.1 Benchmarks’ Performance in Simulations

To evaluate the fidelity of our simulator, first we replayed
the TPC-DS trace logs from cluster experiments in simu-
lation. Table 4 shows the factors of improvement in JCT
for TPC-DS workload in simulation that are consistent
with that from our cluster experiments (Table 3). Similar
results are obtained for the other workloads.

CARBYNE improves over the alternatives by up to
1.59× on average and 7.67× at the 95th percentile. Note
that in simulation CARBYNE’s improvements are slightly
better than that in practice at higher percentiles. This is
mainly due to natural factors such as failures, stragglers,
and other delays that are not captured by our simulator.

5.3.2 Large-Scale Simulation on Production Trace

Table 4 also shows improvements for a 3000 (10000)-
machine Facebook (Microsoft) production trace. CAR-
BYNE outperforms others by up to 2.85× (8.88×) and
2.23× (7.86×) on average (95th percentile).

Note that the gains in production traces are signifi-
cantly larger than that for other benchmarks. The primary
reason is the increased opportunities for temporal rear-
rangements, both due to more jobs and more machines.
In the Facebook trace, all the jobs are MapReduce jobs,
and a significant fraction are Map-only jobs. Because

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 75

25th percentile 50th percentile
Workload DRF Tetris DRF Tetris
TPC-DS 1.17 1.12 1.59 1.47
Facebook 1.24 1.24 2.75 2.85
Microsoft 1.16 1.12 2.23 1.74

75th percentile 95th percentile
Workload DRF Tetris DRF Tetris
TPC-DS 2.73 2.23 7.67 6.17
Facebook 4.31 4.31 8.77 8.88
Microsoft 3.67 3.28 7.86 7.05

Table 4: [Simulation] Factors of improvement across various
workloads w.r.t. DRF and Tetris.

1.
57 1.
91 2.
22 2.
28

1.
35

1.
76 2.
04 2.
19

0

0.5

1

1.5

2

2.5

1 2 4 6Fa
ct

or
 o

f i
m

pr
ov

em
en

t

Multiple of Original Load

DRF Tetris

Figure 9: [Simulation] CARBYNE improvements over the al-
ternatives for different cluster loads.

these jobs only have one or two stages, tasks are less con-
strained. On the other hand, jobs in Microsoft trace are
more complex DAGs with barriers which enables many
opportunities for altruism. Furthermore, many jobs are
large and have tens to thousands of tasks that can run in
parallel. Together, they open up many opportunities for
CARBYNE to use the leftover resources.

5.4 Sensitivity Analysis
5.4.1 Impact of Contention
In order to examine CARBYNE performance at different
levels of contention, we vary load by changing the num-
ber of servers while keeping the workload constant. For
example, half as many servers leads to twice as much
load on the cluster. Figure 9 shows our results. At 1×
cluster load, CARBYNE improves over alternatives by up
to 1.57× on average. However, as we increase resource
contention, CARBYNE’s gains keep increasing. For exam-
ple, at 2× the load, its gains are between 1.76× and
1.91× on average. This is expected because the more the
contention, the better is CARBYNE in carefully rearrang-
ing tasks over time. The performance gap increases even
more at 4× load. However, at 6×, CARBYNE’s improve-
ments are almost the same as that at 4× load; this is be-
cause the cluster became saturated, without much room
for leftover allocations.

5.4.2 Impact of Misestimations
CARBYNE assumes that we can accurately estimate tasks’
resource demands and durations. However, accurate es-

0

0.5

1

1.5

-50 -25 0 25 50Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Error in Resource Misestimations [%]

DRF

Tetris

Figure 10: [Simulation] CARBYNE’s improvements in terms
of average JCT in the presence of misestimations in tasks’ re-
source demands for different intra-job schedulers.

0

0.5

1

1.5

0 0.25 0.5 0.75 1Fa
ct

or
 o

f i
m

pr
ov

em
en

t

Probability of Making Altruistic Choices

DRF

Tetris

Figure 11: [Simulation] Benefits over the alternatives increase
as CARBYNE makes altruistic choices more often. By default,
CARBYNE uses 1; i.e., it is altruistic whenever possible.

timations can be challenging in practice, and misestima-
tions are inevitable. To understand the impact of mises-
timations on CARBYNE, we introduce X% errors in our
estimated demands and durations. Specifically, we select
X ∈ [−50, 50], and decrease/increase task resource de-
mands by tasknewReq = (1 + X/100) ∗ taskorigReq;
task durations are changed accordingly.

Figure 10 shows CARBYNE’s performance for vary-
ing degrees of estimation errors. It performs consistently
better and becomes comparable when we underestimate,
because underestimations encourage higher parallelism
(due to false sense of abundance), disregarding altruistic
scheduling. We also selectively introduced errors only to
some of the tasks (not shown) with similar results: CAR-
BYNE outperformed the rest despite misestimations.

5.4.3 Impact of Altruism Levels

The core idea behind CARBYNE is that jobs should altru-
istically give up resources that do not improve their JCT.
In this experiment, we study how different levels of al-
truism (P (Altruism)) impact CARBYNE’s benefits.

We observe in Figure 11 that increasing levels of altru-
ism increases CARBYNE’s advantage over the alternatives
– CARBYNE outperforms them by up to 1.24× when jobs
are altruistic half the time (P (Altruism) = 0.5) and up
to 1.56× at P (Altruism) = 1. Last but not the least, at
P (Altruism) = 0, CARBYNE is comparable to its alter-
natives; meaning, despite jobs being aggressive in their
scheduling, our mechanism is still robust.

76 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8

1

0.5 3 5.5 8 10.5 13

Fr
ac

tio
n

of
 J

ob
s

Factor of Improvement

Carbyne+Tetris

Carbyne +DAGPS

Figure 12: [Simulation] CDF of factors of improvement of in-
dividual jobs using CARBYNE + Tetris [29] and CARBYNE +
DAGPS [30, 31] w.r.t. DRF. Benefits increase when CARBYNE

uses a better DAG scheduler.

5.5 Impact of a Better DAG Scheduler

We also performed simulations where CARBYNE uses
DAGPS [30, 31], a more sophisticated intra-job sched-
uler that considers the entire DAG and its dependencies
between stages, instead of Tetris. Figure 12 shows that
DAGPS can further increase CARBYNE’s performance.
We observe that for at least 50% of the jobs, CARBYNE

+ DAGPS performs better than CARBYNE + Tetris and
factors of improvement increase from 2.36× to 3.41×
for at least 25% of the jobs w.r.t. DRF. Similar observa-
tions hold when comparing with Tetris instead of DRF
as the baseline. The additional gains are mainly due to
DAGPS’s ability to extract more leftover resources with-
out affecting individual DAG completion times.

5.6 Comparison To Multi-Objective Schedulers

As mentioned in Section 1, prior solutions have also at-
tempted to simultaneously meet multiple objectives. For
example, Tetris [29] combines heuristics that improve
cluster efficiency with those that lower average job com-
pletion time, and provides a knob (f) to trade-off fairness
for performance. So far, we have shown CARBYNE’s ben-
efits against Tetris optimized for performance (f → 0).
Now we compare CARBYNE with Tetris offering strict
fairness (f → 1); we refer to this as TetrisFair. We found
CARBYNE to be more fair than TetrisFair, with the aver-
age Jain’s fairness index of 0.89 instead of 0.84. This is
due to CARBYNE’s ability to adhere strictly to fair alloca-
tions than TetrisFair’s fairness knob. CARBYNE also im-
proves the average job completion time by up to 1.22×
and 2.9× at the 95th percentile. Although CARBYNE’s
altruistic behavior to delay tasks in time play a signifi-
cant role in getting these benefits, TetrisFair’s strategy to
adopt strict fairness also limits the number of running
jobs considered for efficient scheduling, which further
hurts job completion times. Finally, these gains have di-
rect implications on cluster efficiency, where CARBYNE

outperforms TetrisFair by 1.06×.

6 Related Work
Inter- and Intra-Job Schedulers Traditional cluster
resource managers, e.g., Mesos [33] and YARN [51],
employ inter-job schedulers [15, 21, 26, 27, 29, 35, 56]
to optimize different objectives. For example, DRF [27]
for fairness, shortest-job-first (SJF) [26] for minimiz-
ing the average JCT, and Tetris [29] for improving effi-
ciency/utilization. More importantly, all of them focus on
quick convergence to their preferred metric. Given some
share of the resources, intra-job/task schedulers within
each job optimize their own completion times. Examples
include schedulers that process stages in a breadth-first
order [2, 55], ones that follow the critical path [39, 40],
and packers [29]. Again, all these schedulers are greedy
in that they use up all resources allocated to them.

CARBYNE differs from all of them in at least two ways.
First, CARBYNE takes an altruistic approach to maximize
resources that can be redistributed. Second, by better re-
distributing the leftover resources, CARBYNE can simul-
taneously improve multiple objectives.
Altruistic Schedulers Delay scheduling for data local-
ity [54] and coflow scheduling for network scheduling
[20, 21] come the closest to CARBYNE in the high-level
principle of altruism. The former waits to get better data
locality, while the latter slows individual network flows
down so that they all finish together. CARBYNE takes the
next step by applying altruistic scheduling in the context
of multi-resource scheduling. We leverage altruism to si-
multaneously improve multiple contrasting objectives.
Leftover Redistribution Hierarchical schedulers in
both networking [50] and cluster computing [16] face
the same problem as CARBYNE in terms of how to redis-
tribute leftover resources. However, in those cases, en-
tities do not voluntarily yield resources; they only yield
resources after saturating their needs. Furthermore, they
redistribute by fairly dividing resources among siblings
in the hierarchy, whereas CARBYNE takes advantage of
leftover resources to improve the average JCT and re-
source utilization without violating fairness.
DAG and Workflow Schedulers When the entire
DAG with the completion times of all stages are known,
the Critical Path Method (CPM) [39, 40] is one of the
best known algorithms to minimize end-to-end comple-
tion times. However, it can be applied only as an intra-
job scheduler. Many dynamic heuristics exist for online
intra-DAG scheduling with varying results [53]. How-
ever, for multiple DAGS, i.e., for inter-DAG schedul-
ing, existing solutions rely on either fair or shortest-first
scheduling disciplines. In contrast, CARBYNE combines
packing, ordering, and fair allocation.

7 Conclusion
Given the tradeoffs between fairness, performance, and
efficiency, modern cluster schedulers [9, 10, 17, 33, 48,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 77

51, 52] focus on performance isolation through instanta-
neous fairness and relegate performance and efficiency
as best-effort, secondary goals. However, users perceive
isolation only after jobs complete. As long as job com-
pletion times do not change, we can take a long-term,
altruistic view instead of an instantaneous one. Using
CARBYNE, jobs yield fractions of their resources with-
out inflating their completion times. By combining and
rescheduling these leftover resources from collective al-
truisms, CARBYNE significantly improves application-
level performance and cluster utilization while provid-
ing the same level of performance isolation as mod-
ern schedulers. Deployments and large-scale simulations
on benchmarks and production traces show that CAR-
BYNE closely approximates DRF in terms of performance
isolation, while providing 1.26× better efficiency and
1.59× lower average completion time.

Acknowledgments
We would like to thank the anonymous OSDI and SIG-
COMM reviewers and our shepherd, Phil Levis, for
their insightful comments and feedback that helped im-
prove the paper. Robert and Aditya were supported
in part by National Science Foundation (grants CNS-
1302041, CNS-1330308, and CNS-1345249), Google
and the Wisconsin Institute of Software-Defined Data-
centers of Madison. Mosharaf was supported in part by
National Science Foundation (grants CCF-1629397 and
CNS-1563095) and Google.

References
[1] Apache Hadoop. http://hadoop.apache.org.

[2] Apache Tez. http://tez.apache.org.

[3] AWS Innovation at Scale. https:
//www.youtube.com/watch?v=JIQETrFC_SQ.

[4] Big-Data-Benchmark-for-Big-Bench.
https://github.com/intel-hadoop/

Big-Data-Benchmark-for-Big-Bench.

[5] Capacity Scheduler.
https://hadoop.apache.org/docs/r2.4.1/

hadoop-yarn/hadoop-yarn-site/

CapacityScheduler.html.

[6] Chameleon.
https://www.chameleoncloud.org/.

[7] TPC Benchmark DS (TPC-DS).
http://www.tpc.org/tpcds.

[8] TPC Benchmark H (TPC-H).
http://www.tpc.org/tpch.

[9] YARN Capacity Scheduler.
http://goo.gl/cqwcp5.

[10] YARN Fair Scheduler. http://goo.gl/w5edEQ.

[11] S. Agarwal, S. Kandula, N. Burno, M.-C. Wu,
I. Stoica, and J. Zhou. Re-optimizing data parallel
computing. In NSDI, 2012.

[12] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. BlinkDB: Queries with
bounded errors and bounded response times on
very large data. In EuroSys, 2013.

[13] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective Straggler Mitigation: Attack of
the Clones. In NSDI, 2013.

[14] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and
I. Stoica. PACMan: Coordinated memory caching
for parallel jobs. In NSDI, 2012.

[15] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in mapreduce clusters using Mantri. In
OSDI, 2010.

[16] A. A. Bhattacharya, D. Culler, E. Friedman,
A. Ghodsi, S. Shenker, and I. Stoica. Hierarchical
scheduling for diverse datacenter workloads. In
SoCC, 2013.

[17] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable
and coordinated scheduling for cloud-scale
computing. In OSDI, 2014.

[18] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica.
HUG: Multi-resource fairness for correlated and
elastic demands. In NSDI, 2016.

[19] M. Chowdhury and I. Stoica. Efficient coflow
scheduling without prior knowledge. In
SIGCOMM, 2015.

[20] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,
and I. Stoica. Managing data transfers in computer
clusters with Orchestra. In SIGCOMM, 2011.

[21] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with Varys. In SIGCOMM,
2014.

[22] E. G. Coffman and J. L. Bruno. Computer and
job-shop scheduling theory. John Wiley & Sons,
1976.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

78 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://hadoop.apache.org
http://tez.apache.org
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://www.chameleoncloud.org/
http://www.tpc.org/tpcds
http://www.tpc.org/tpch
http://goo.gl/cqwcp5
http://goo.gl/w5edEQ

[24] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: Guaranteed job latency in
data parallel clusters. In Eurosys, pages 99–112,
2012.

[25] M. Garey and D. Johnson. “Strong”
NP-completeness results: Motivation, examples,
and implications. Journal of the ACM,
25(3):499–508, 1978.

[26] M. R. Garey, D. S. Johnson, and R. Sethi. The
complexity of flowshop and jobshop scheduling.
Mathematics of operations research,
1(2):117–129, 1976.

[27] A. Ghodsi, M. Zaharia, B. Hindman,
A. Konwinski, S. Shenker, and I. Stoica. Dominant
Resource Fairness: Fair allocation of multiple
resource types. In NSDI, 2011.

[28] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Choosy: Max-min fair sharing for datacenter jobs
with constraints. In EuroSys, 2013.

[29] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In SIGCOMM, 2014.

[30] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. Do the hard stuff first: Scheduling
dependent computations in data-analytics clusters.
In MSR-TR-2016-19, 2016.

[31] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. Graphene: Packing and
dependency-aware scheduling for data-parallel
clusters. In OSDI, 2016.

[32] S. Gulwani, K. K. Mehra, and T. Chilimbi.
SPEED: Precise and efficient static estimation of
program computational complexity. In POPL,
2009.

[33] B. Hindman, A. Konwinski, M. Zaharia,
A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In NSDI,
2011.

[34] M. Isard, M. Budiu, Y. Yu, A. Birrell, and
D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In
EuroSys, 2007.

[35] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair
scheduling for distributed computing clusters. In
SOSP, 2009.

[36] J. M. Jaffe. Bottleneck flow control. IEEE
Transactions on Communications, 29(7):954–962,
1981.

[37] R. Jain, D.-M. Chiu, and W. Hawe. A quantitative
measure of fairness and discrimination for
resource allocation in shared computer systems.
Technical Report DEC-TR-301, Digital Equipment
Corporation, 1984.

[38] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang.
Multi-resource allocation: Fairness-efficiency
tradeoffs in a unifying framework. In INFOCOM,
2012.

[39] J. E. Kelley. Critical-path planning and
scheduling: Mathematical basis. Operations
Research, 9(3):296–320, 1961.

[40] J. E. Kelley. The critical-path method: Resources
planning and scheduling. Industrial scheduling,
13:347–365, 1963.

[41] M. Kornacker, A. Behm, V. Bittorf,
T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff,
D. Kumar, A. Leblang, N. Li, I. Pandis,
H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL
engine for Hadoop. In CIDR, 2015.

[42] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999.

[43] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A
new framework for parallel machine learning. In
UAI, 2010.

[44] K. Morton, M. Balazinska, and D. Grossman.
ParaTimer: A progress indicator for MapReduce
DAGs. In SIGMOD, 2010.

[45] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataow
system. In SOSP, 2013.

[46] D. C. Parkes, A. D. Procaccia, and N. Shah.
Beyond Dominant Resource Fairness: Extensions,
limitations, and indivisibilities. In EC, 2012.

[47] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
FairCloud: Sharing the network in cloud
computing. In SIGCOMM, 2012.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 79

[48] M. Schwarzkopf, A. Konwinski,
M. Abd-El-Malek, and J. Wilkes. Omega:
Flexible, scalable schedulers for large compute
clusters. In EuroSys, 2013.

[49] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising:
A decade of Clos topologies and centralized
control in Google’s datacenter network. In
SIGCOMM, 2015.

[50] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair
service curve algorithm for link-sharing, real-time
and priority service. In SIGCOMM, 1997.

[51] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet
another resource negotiator. In SoCC, 2013.

[52] A. Verma, L. Pedrosa, M. Korupolu,
D. Oppenheimer, E. Tune, and J. Wilkes.

Large-scale cluster management at Google with
Borg. In EuroSys, 2015.

[53] J. Yu, R. Buyya, and K. Ramamohanarao.
Workflow scheduling algorithms for grid
computing. In Metaheuristics for Scheduling in
Distributed Computing Environments, pages
173–214. 2008.

[54] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In
EuroSys, 2010.

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[56] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In OSDI, 2008.

80 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Graphene: Packing and Dependency-aware Scheduling
forData-Parallel Clusters

Robert Grandl†+, Srikanth Kandula†, Sriram Rao†, Aditya Akella†+, Janardhan Kulkarni†
Microso�† and University ofWisconsin-Madison+

Abstract– We present anew cluster scheduler,Graphene,
aimed at jobs that have a complex dependency structure
and heterogeneous resource demands. Relaxing either of
these challenges, i.e., scheduling a DAG of homogeneous
tasks or an independent set of heterogeneous tasks, leads
to NP-hard problems. Reasonable heuristics exist for
these simpler problems, but they perform poorly when
scheduling heterogeneous DAGs. Our key insights are:
(1) focus on the long-running tasks and thosewith tough-
to-pack resource demands, (2) compute a DAG sched-
ule, oøine, by ûrst scheduling such troublesome tasks
and then scheduling the remaining tasks without violat-
ing dependencies. _ese oøine schedules are distilled to
a simple precedence order and are enforced by an online
component that scales to many jobs. _e online compo-
nent also uses heuristics to compactly pack tasks and to
trade-oò fairness for faster job completion. Evaluation on
a 200-server cluster and using traces of productionDAGs
at Microso�, shows that Graphene improves median job
completion time by 25% and cluster throughput by 30%.

1 Introduction
Heterogeneous DAGs are increasingly common in data-
parallel clusters. We useDAG to refer to a directed acyclic
graph where each vertex represents a task and edges en-
code input-output dependencies. Programming models
such as Dryad, SparkSQL and Tez compile user scripts
into job DAGs [2, 19, 24, 43, 57, 67]. Our study of a large
production cluster inMicroso� shows that jobs have large
and complex DAGs; themedian DAG has a depth of ûve
and thousands of tasks. Furthermore, there is a substan-
tial variation in task durations (sub-second to hundreds
of seconds) and the resource usage of tasks (e.g., compute,
memory, network and disk bandwidth). In this paper, we
consider the problem of scheduling such heterogeneous
DAGs eõciently.

Given job DAGs and a cluster of machines, a cluster
scheduler matches tasks to machines online. _is match-
ing has tight timing requirements due to the scale ofmod-
ern clusters. Consequently, schedulers use simple heuris-
tics. _e heuristics leave gains on the table because they
ignore crucial aspects of the problem. For example, crit-

ical path-based schedulers [36] only consider the critical
path as determined by predicted task runtime and sched-
ule tasks in the order of their critical path length. When
DAGs have many parallel chains, running tasks that use
diòerent resources together can lead to a better schedule
because it allows more tasks to run at the same time. As
another example,multi-resource packers [37] aim to run
the maximal number of pending tasks that ût within the
available resources. WhenDAGs are deep, locally optimal
choices do not always result in the fastest completion time
of the whole DAG. Hence, intuitively, considering both
variation in resource demands and dependencies may re-
sult in better schedules for heterogeneous DAGs.
By comparing the completion times of jobs in the pro-

duction cluster with those achieved by an oracle, we esti-
mate that themedian job can be sped up by up to 50%. We
observe that individual DAGs have fewer tasks running
relative to the optimal schedule at some point in their life-
time. _e cluster has lower overall utilization because (a)
resources are idle evenwhen tasks are pending due to de-
pendencies or resource fragmentation, and (b) fewer jobs
are released because users wait for the output of previous
jobs. Given the large investment in such clusters, even a
modest increase in utilization and job latency can have
business impact [1, 10, 61].
We note that the optimal schedule for heterogeneous

DAGs is intractable [54, 55]. Prior algorithmicwork exists
especially on simpler versions of the problem [18, 20, 21,
35, 50, 60, 65]. However, we are yet to ûnd one that holds
in the practical setting of a data-parallel cluster. Speciû-
cally, the solution has to work online, scale to large and
complex DAGs as well as many concurrent jobs, cope
with machine-level fragmentation as opposed to imagin-
ing one cluster-wide resource pool, and handle multiple
objectives such as fairness, latency and throughput.

In this paper,we describe a cluster schedulerGraphene
that eõciently schedules heterogeneous DAGs. To iden-
tify a good schedule for one DAG, we observe that
the pathologically bad schedules in today’s approaches
mostly arise due to two reasons: (a) long-running tasks
have no other work to overlap with them, which reduces
parallelism, and (b) the tasks that are runnable do not

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 81

Figure 1: Steps taken by Graphene from a DAG on the le�
to its schedule on the right. Troublesome tasks T (in red) are
placed ûrst. _e remaining tasks (parents P, children C and
siblings S) are placed on top of T in a careful order to ensure
compactness and respect dependencies.

pack well with each other, which increases resource frag-
mentation. Our approach is to identify the potentially
troublesome tasks, such as those that run for a very long
time or are hard to pack, and place them ûrst onto a vir-
tual resource-time space. _is space would have d + 1 di-
mensionswhen tasks require d resources; the last dimen-
sion being time. Our intuition is that placing the trou-
blesome tasks ûrst leads to a good schedule since the re-
maining tasks can be placed into resultant holes in this
space.
At job submission time, Graphene builds a preferred

schedule for a job as shown in Figure 1. A�er identifying
a subset of troublesome tasks, the remaining tasks are di-
vided into the parent, child and sibling subsets. Graphene
ûrst places the troublesome tasks onto a virtual resource-
time space and then places the remaining subsets. Realiz-
ing this idea has a few challenges. Which choice of trou-
blesome tasks leads to the best schedule? Further, since
troublesome tasks are placed ûrst, when a task is consid-
ered for placement some of its parent tasks and some of
its children tasksmay already have been placed in the vir-
tual space. How to guarantee that every task can be placed
without violating dependencies? Our answers are in §4.

Graphene’s online component schedules the tasks of
each DAG in the order of their starting time in the vir-
tual resource-time space. Furthermore, across the many
DAGs thatmay be running in the cluster, the online com-
ponent respects diòerent objectives– low job latency, high
cluster throughput and fairness. _ese objectives can
translate to discordant actions. For example, a fairness
scheme such as DRF [33] may want to give resources to
a certain job but the shortest-job-ûrst heuristic that re-
duces job latency may pick a diòerent job. Similarly, the
task that is most likely to reduce resource fragmenta-
tion [37] may not start early in the virtual resource-time
space. Our reconciliation heuristic intuitively picks tasks
by consensus (e.g., based on a weighted combination of
the scores received by a task from each objective). How-
ever, to maintain predictable performance, we limit un-
fairness to an operator-conûgured threshold.
We have implemented Graphene as extensions to

Apache YARN and Tez and have experimented with jobs
from TPC-DS, TPC-H and other benchmarks on a 200
server cluster. Furthermore, we evaluate Graphene in
simulations on 20,000 DAGs from a production cluster.

To summarize, our key contributions are:
1. A characterization of the DAGs seen in production
at Microso� and an analysis of the performance of
various DAG scheduling algorithms (§2).

2. A novel DAG scheduler that combines multi-
resource packing and dependency awareness (§4).

3. An online inter-job scheduler that mimics the pre-
ferred per-job schedules while bounding unfair-
ness (§5) for many fairness models [6, 33, 47].

4. In our extended tech report [38], we develop a new
lower bound on the completion time of a DAG.
Using this, we show that the schedules built by
Graphene’s oøine component are within 1.04 times
the theoretically optimal schedule (OPT) for half of
the production DAGs; three quarters are within 1.13
times and the worst is 1.75 times OPT.

5. Our experiments show that Graphene improves the
completion time of half of the DAGs by 19% to 31%
across the variousworkloads. ProductionDAGs im-
prove relatively more because those DAGs aremore
complex and have diverse resource demands. _e
gains accrue from running more tasks at a time; the
cluster’s job throughput (e.g., makespan) also im-
proves by about 25%.

While we present our work in the context of cluster
scheduling, DAGs are a powerful and general abstraction
for scheduling problems. Scheduling the network trans-
fers of a multi-way join or the work in a geo-distributed
analytics job etc. can be represented as DAGs. We oòer
early results in §8 from applying Graphene to scheduling
the DAGs that arise in distributed build systems [3, 34]
and in request-response work�ows [46, 66].

2 Primer on Scheduling Job DAGs
2.1 Problem deûnition

Let each job be represented as a directed acyclic graph
G = {V ,E}. Each node in V is a task with demands for
various resources. Edges in E encode precedence con-
straints between tasks. Many jobs can simultaneously run
in a cluster. Given a set of concurrent jobs {G}, the clus-
ter schedulermaps tasks tomachineswhile respecting ca-
pacity constraints and task dependencies. _e goals of a
typical cluster scheduler are high performance (measured
using job throughput, average job completion time and
overall cluster utilization) while oòering fairness (mea-
sured w.r.t how resources are divided).

2.2 An illustrative example

We use the DAG shown in Figure 2 to illustrate the issues
in scheduling DAGs. Each node represents a task: the
node labels represent the duration (top) and the demands
for two resources (bottom). Assume that the capacity is 1
for both resources. Let ε represent a value approaching
zero.

82 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Technique Execution Order Time Worst-case
OPT t1 → t3 → {t4 , t0}→ {t0 , t2 , t5} T −
CPSched t0 → t3 → t4 → t5 → t1 → t2 3T O(n)×OPT
Tetris t0 → t1 → t3 → t2 → t4 → t5 3T O(d)×OPT

Figure 2: An example DAG where a packer (Tetris [37]) and
a Critical Path scheduler take 3× the optimal algo OPT. Here,
Graphene is close to OPT (see §2.2). Assume ε→ 0.

Figure 3: Illustrating the online case. Online, Graphene
schedules the tasks of each DAG in the order of their start
time in the oøine schedule. Resources are to be divided fairly
between two jobs both of which have the same DAG shown
in Figure 2. Notice that fairness interleaves allocation be-
tween the jobs. Graphene’s average job completion time and
makespan improve by 25% to 75% and 50% to 100% respec-
tively depending on the compared baseline.

Intuitively, a good schedule would overlap the long-
running tasks shownwith a dark background. _e result-
ing optimal schedule (OPT) is listed in the table below the
ûgure. OPT overlaps the execution of all the long-running
tasks, t0 , t2 and t5, and ûnishes in T .

Since such long-running or resource-intensive tasks
can be present anywhere in the DAG, greedy schedulers
o�en perform poorly as we show next.
Critical path-based schedulers (CPSched) pick tasks

along the critical path (CP) in the DAG. _e CP for a
task is the longest path from the task to the job output.
_e table shows the task execution order with CPSched.1
CPSched ignores the resources needed by tasks. In this
example, CPSched performs poorly because it does not
schedule tasks oò the critical path early (e.g., t1 , t3 , t4)
even though doing so reduces resource fragmentation by
overlapping long-running tasks.

Packers, such as Tetris [37], match tasks to machines
so as to maximize the number of simultaneously running
tasks. Tetris greedily picks the task with the highest value
of the dot product between task’s demand vector and the

1CPof t0 , t1 , t3 isT(1+5ε),T(1+ε) andT(1+4ε) respectively. Tasks
can run simultaneously only if their total demand is below capacity.

available resource vector. _e table also shows the task ex-
ecution orderwithTetris.2 Tetris does not account for de-
pendencies. Its packing heuristic only considers the tasks
that are currently schedulable. In this example,Tetris per-
forms poorly because it will not choose locally inferior
packing options (such as running t1 instead of t0) even
though that can lead to a better global packing.

Graphene comes close to the optimal schedule for this
example. When searching for troublesome subsets, itwill
consider the subset {t0 , t2 , t5} because these tasks run
for much longer. As shown in Figure 1, the troublesome
tasks will be placed ûrst. Since there are no dependencies
among them, they will run at the same time. _e par-
ents ({t1 , t3 , t4}) and any children are then placed before
and a�er the troublesome tasks respectively in a compact
manner whilemaintaining inter-task dependencies.
Online: Consider two jobs that have the DAG shown
in Figure 2. Figure 3 illustrates the online schedule
when resources are to be divided evenly between these
jobs (e.g., slot fairness [13]).

_e oøine schedule computed byGraphene for each of
the jobs,whichoverlaps the long-running tasks (t0 , t2 , t5),
is shown on top. _e online component distills these
schedules into a precedence order over tasks. For exam-
ple, the order for both jobs is: t1 , t3 , t4 , t0 , t2 , t5. Figure 3,
bottom, shows a time-lapse of the task execution.
Capacity Scheduler (CS) [7], a widely used cluster

scheduler, checks for which DAG the next available slot
has to be allocated, and then picks (in a breadth-ûrst or-
der) a runnable task from the designated DAG that ûts
the available resources. Figure 3 shows that CS results
in an average job completion time (JCT) and makespan
of 2.5T and 3T respectively. Fairness causes the sched-
uler to interleave the tasks of the two jobs. Tetris happens
to produce a similar schedule to CS. Note that this on-
line schedule is far from the preferred per-DAG schedule,
only a few of the long-running tasks overlap. Similar to
CS,most production schedulers, including Spark, sched-
ule tasks based on some topological ordering of the DAG
while using fairness to decide which job to give resources
to next. Hence, they behave similarly.
Figure 3 also shows that CPSched has an average JCT

andmakespanof 3.5T and 4T respectively. _is is because
CPSched ûnishes the t1 tasks of both the jobs late; because
t1 has a small CP length. _erefore the t2 tasks from both
jobs do not overlap with any other long task.
Finally, the ûgure shows that Graphene has an average

JCT andmakespan of 2T . Graphene achieves this by just
enforcing a precedence orderwithin eachDAG. In partic-
ular, note that all of the schedulers are work-conserving;
they leave resources idle only if no schedulable task can ût

2Tetris’ packing score for each task, in descending order, is t0=0.9,
t1=0.85, t3=0.84, t2=0.8, t4=0.7 and t5=0.3.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 83

Figure 4: Visualizing a few small productionDAGs. _e leg-
end is in the top le�. See §2.3.

in those resources. _e key diòerence, among the sched-
ulers, is the order in which they consider the tasks for
scheduling. Another diòerence is whether this order is
computed based only on the runnable tasks (e.g., order-
ing runnable tasks on their CP length, packing score or
on their breadth-ûrst position) versus ordering based on
a global optimization. Informally, Graphene’s gains arise
from looking at the entire DAG and choosing a globally
optimal schedule.
2.3 AnalyzingDAGs in Production

To understand the problem with actual DAGs and at
scale, we examine (a) the production jobs from a cluster
of tens of thousands of servers at Microso�, (b) jobs from
a 200 server Hive [67] cluster and (c) jobs from a Condor
cluster [5].
Structural properties: As a preliminary, Figure 4 illus-
trates some production DAGs at Microso�. Each circle
denotes a stage. By stage, we mean a collection of tasks
that perform the same computation on diòerent data (e.g.
all map tasks). _e size of the circle corresponds to the
number of tasks in logarithmic scale, the circle’s color cor-
responds to the average task duration in linear scale and
the edge color denotes the type of dependency. We see
W-shaped DAGs (bottom le�) that join multiple datasets,
inverted V-shaped DAGs (middle) that perform diòerent
analysis on a dataset, and more complex shapes (right)
wherein multiple datasets are analyzed leading to multi-
pleoutputs. Note also the varying average durationsof the
tasks (circle colors); the resource variations are not shown
for simplicity. Further, note cycles in the DAGswhich are
possibly due to self-joins and range-partitions.
Figure 5 plots a CDF of various structural properties of

theDAGs from theMicroso� cluster. Since the x-axis is in
log scale, we put the probability mass for x = 0 at x = 0.1.
We see that the median DAG has a depth of ûve. To

compare, a map-reduce job has depth of one. A quarter
of the DAGs have depth above ten.

While 40% of the DAGs are trees (i.e., no cycle a�er
ignoring the direction of dependency), we see that many
have cycles (half of the DAGs have at least 3 cycles); the
average number of tasks in a cycle is 5 (not shown in the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000C
D

F
(F

ra
ct

io
n
 o

f
D

A
G

s
 w

it
h
 v

a
lu

e
 <

x
)

Value

Stages
Depth
Cycles
Edges
Barriers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

Fr
a
ct

io
n
 o

f
T
a
sk

s
 w

it
h
 V

a
lu

e
 <

 x

Value

In degree
Out degree

Figure 5: Characterizing structural properties of the DAGs

ûgure). Tree-like DAGs are an important special case as
they are, theoretically,more tractable to schedule [48].

_e DAGs can be quite large; themedian job has thou-
sands of tasks and tens of stages. To compare, a map-
reduce job has two stages.

We also see thatmost of the edges are not barriers (e.g.,
those labeled “can be local”). Note the gap between the
orange stars line and the black squares line in Figure 5
which correspond to counts of all edges and barriers re-
spectively. A barrier edge indicates that every task in the
parent stage should ûnish before any task in the child
stage begins.
We observe that DAGs can be cut into portions such

that all tasks a�er the cut can only begin a�er every task
before the cut has ûnished. An example cut is shown
with a red dashed line on the DAG in Figure 4 (le� bot-
tom). Cuts o�en arise because a dataset, perhaps newly
generated by upstream tasks, has to be partitioned before
downstream tasks can begin. Cuts are convenient because
the optimal schedule for the DAG is a concatenation of
the optimal schedules of the cut portions of that DAG.
We observe that 24% of the productionDAGs can be split
into four or more parts.

_e median (75th percentile) task in-degree and out-
degree are 1 (8) and 3 (20) respectively. For amap-reduce
jobwithm mappers and r reducers, themedian in-degree
will be 0 if m ≥ r and m otherwise. _e larger out-degree
is because stages that read from the ûle-system are data re-
ductive; hence, the query optimizer creates fewer down-
stream tasks overall.

Overall, we conclude that DAGs are both large and
have complex structures.
Diversity in resource demands: Similar to prior
work [33, 37], we observed substantial variability in the
usage of various resources; the details are in [38].
Potential for improvement: To quantify potential gains,
we compare the runtime of productionDAGs to twomea-
sures. _e ûrst, CPLength, is the duration of the DAG’s
critical path. If the available parallelism is inûnite, the
DAGwould ûnishwithin CPLength. _e second, TWork,

84 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fr
a
ct

io
n
 o

f
D

A
G

s
 w

it
h
 G

a
p
 <

 x

Gap = 1 - (Measure / DAG runtime)

Gap from NewLB
Gap from TWork
Gap from CPLength

Figure 6: CDF of gap betweenDAG runtime and severalmea-
sures. Gap is computed as 1− measure

DAG runtime .

is the total work in the DAG normalized by the cluster
share of that DAG (a formula is in Table 1.) If there were
no dependencies and perfect packing, a DAG would ûn-
ishwithin TWork. Figure 6 plots a CDF of the relative gap
between the runtime of a DAG and thesemeasures. Half
of the jobs have a gap of over 70% for both CPLength and
TWork.
Understanding the gap: A careful reader would notice
that about 15% of the DAGs ûnish faster than somemea-
sures. _is is because our production scheduler occa-
sionally gives jobs more than their fair share if the cluster
has spare resources; hence, measures which assume that
the cluster share will be theminimum guaranteed for the
DAG can be larger than the actual completion time. We
will ignore such DAGs for this analysis.

Suppose OPT is the optimal completion time for a DAG
given a certain cluster share. We know that actual run-
time is larger than OPT and that the above measures are
smaller than OPT. Now, the gap could be due to one of
two reasons. (1) _e measure is loose (i.e., well below
OPT). In practice, we found this to be the case because
CPLength ignores all the work oò the critical path and
TWork ignores dependencies. (2) _e observed runtimes
of DAGs are in�ated by runtime artifacts such as task fail-
ures, stragglers and performance interference from other
cluster activity [17, 74].

To correct for (2), we discount the eòects of runtime
artifacts on the above computed DAG runtime as follows.
First, we chose the fastest completion time from a group
of recurring jobs. It is unlikely that every execution suf-
fers from failures. Second, to correct for stragglers–one
or a few tasks holding up job progress–we deduct from
completion time the periods when the job ran fewer than
ten concurrent tasks. Note that both these changes reduce
the gap; hence they under-estimate the potential gain.
Further, to correct for (1), we develop a new improved

lower bound NewLB that uses the speciûc structure of
data-parallel DAGs. Further details are in [38]; but intu-
itively NewLB leverages the fact that all the tasks in a job
stage (e.g., a map or reduce or join) have similar depen-
dencies, durations and resource needs. _e gap relative
to NewLB is smaller, indicating that the newer bound is
tighter, but the gap is still over 50% for half of the jobs.
_at is, they take over two times longer than they could.

To summarize, (1) production jobs have large DAGs
that are neither a bunch of unrelated stages nor a chain
of stages, and (2) a packing+dependency-aware scheduler
can oòer substantial improvements.
2.4 Analytical Results

Lemma 1 (Dependencies). Any scheduling algorithm,
deterministic or randomized, that does not account
for the DAG structure (e.g., only schedules currently
runnable tasks) is Ω(d) times OPT where d is the num-
ber of resources.

_e proof, for deterministic algorithms, follows from
designing an adversarialDAG for any scheduler [38]. We
extend this to randomized algorithms by usingYao’smin-
imax principle [38].

Lemma 1 applies to the following multi-resource pack-
ers [37, 58, 69, 70] since they ignore dependencies.

Lemma 2 (Resource Variation). Schedulers that ig-
nore resource heterogeneity have poor worst-case per-
formance. For example, critical path scheduling can be
Ω(n) times OPTwhere n is the number of tasks in a DAG.

_e proof is by designing adversarial DAGs [38].
Combining these two principles, we conjecture that it

is possible to ûnd similar examples for any scheduler that
ignores dependencies or ignores resource usages.

To place these results in context, note that d is about
4 (cores,memory, network, disk) and can be larger when
tasks require resources at other servers or on many net-
work links. Further, the median DAG has hundreds of
tasks (n). _e key intuition here is that DAGs are hard
to schedule because of their complex structure and be-
cause of discretization issues when tasks usemultiple re-
sources (fragmentation, task placement etc.) Graphene is
close to OPT on all of the described examples and iswithin
1.04 times OPT for half of the production DAGs (see §7).
2.5 Acquiring annotated DAGs

Acquiring an annotated DAG is non-trivial. Much prior
work has similar requirements as Graphene (see Table 2
in [38]). _ere are two parts to this: the structure of the
DAG and the task proûles (resourceneeds anddurations).
DAG structure: In order to launch a task only a�er par-
ent tasks ûnish, everyDAG scheduler is aware of theDAG
structure. Furthermore, the DAG is o�en known before
the job starts. Runtime changes to the DAG, if they hap-
pen, only aòect small portions of a DAG. For example,
our scheduler adds an aggregation tree in front of a re-
duce stage depending upon runtime conditions.
Task resource demands and durations: Graphene re-
quires each task to be annotated with the demands for
any resource that could be congested; the other resources
do not aòect scheduling. Here, we consider four re-
sources (cores, memory, disk and network bandwidth).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 85

RM

Online Component
+multiple objectives

DAG

Schedule
Constructor

AM

DAG

Schedule
Constructor

AM

…

Node
heartbeats

Assign tasks

Figure 7: Graphene builds schedules per DAG at job sub-
mission. _e runtime component handles online aspects.
AM and RM refer to the YARN’s application and resource
manager components.

Schedulers such asYarn,Mesos,Hive and Spark ask users
to annotate their tasks with cores and memory require-
ments; for example, [1 core, 1 GB] is the default inHadoop
2.6. Graphene requires annotations for more resources as
well as the durations of tasks.

_ere are some early eòorts to obtain these pro-
ûles (tasks’ demands and durations) automatically. For
example, in theproduction cluster atMicroso�, up to 40%
of the resources in the examined cluster are used by recur-
ring jobs; the same script executes periodically on newly
arriving data. Recurring jobs can be identiûed based on
the job name (e.g., LogMiner date[time]) and prior
work shows that the task proûles of these jobs can be es-
timated from history (a�er normalizing for the size of in-
put) [16]. For the remaining jobs, some priorwork builds
proûles via sampling [59], program analysis [40], or based
on online observations of the actual usages of tasks in the
same stage [17]. Our method is described in §6; our sen-
sitivity analysis in §7.4 shows that Graphene is robust to
modest amounts of estimation error.

3 Novel ideas in Graphene
Cluster scheduling is the problem of matching tasks to
machines. Most production schedulers today do so in
an onlinemanner and have very tight timing constraints
since clusters have thousands of servers, many jobs that
each havemany pending tasks and tasks that ûnish in sec-
onds or less [8, 73]. Given such stringent time budget,
carefully considering large DAGs seems daunting.
As noted in §1, a key design decision in Graphene is

to divide this problem into two parts. An oøine compo-
nent constructs careful schedules for a single DAG. We
call these the preferred schedules. A second online compo-
nent enforces the preferred schedules of the various jobs
running in the cluster. We elaborate on each of these parts
below. Figure 7 shows an example of how the two parts
may inter-operate in aYARN-style architecture. Dividing
a complex problem into parts and independently solving
each part o�en leads to a sub-optimal solution. While we
have no guarantees for our particular division, we note
that it scales to large clusters and outperforms the state-
of-art in experiments.

To ûnd a compact schedule for a single DAG, our idea
is to place the troublesome tasks, i.e. those that can lead to
a poor schedule, ûrst onto a virtual space. Intuitively, this
maximizes the likelihood that any holes, un-used parts

Term Deûnition
Task t an atomic unit of execution
Stage s a group of tasks that run same code on diòer-

ent data
TWork(s) maxresource r

1
Cr
∑t∈s tduration ∗ trdemands

ExecTime(s) estimated time to execute tasks in s
V ,G V denotes all stages (and tasks) in a DAG G
S a virtual schedule: i.e. a placement of a given

DAG of tasks in a resource-time space
C(s,G), P(s,G),
D(s,G),
A(s,G), U(s,G)

Children, parents, descendants, ancestors and
unordered neighbors of s in G; note that
U(s,G) = V −A(s,G)−D(s,G)−{s}

Table 1: Glossary of terms.

of the resource-time space, can be ûlled by other tasks.
However, ûnding the best choice of troublesome tasks is
as hard as ûnding a good schedule for theDAG.We use an
eõcient search strategy that mimics dynamic program-
ming: it picks subsets that are more likely to be useful
and avoids redundant exploration. Furthermore, placing
troublesome tasks ûrst can lead to dead-ends. We deûne
dead-end to be an arrangement of a subset of the DAG
in the virtual space on which the remaining tasks can-
not be placed without violating dependencies. Our strat-
egy is to divide the DAG into subsets of tasks and place
one subset at a time. While intra-subset dependencies
are handled directly during schedule construction, inter-
subset dependencies are handled by restricting the order
inwhich the various subsets are placed. We prove that the
resultant placement has no dead-ends.

_e online component has to co-ordinate between
some potentially discordant directives. Each job running
in the cluster oòers a preferred schedule for its tasks (con-
structed as above). Fairness models such as DRF may
dictate which job (or queue) should be served next. _e
set of tasks that is advantageous for packing (e.g., maxi-
mal use ofmultiple resources) can be diòerent from both
the above choices. We oòer a simplemethod to reconcile
these various directives. Our idea is to compute a real-
valued score for each pending task that incorporates the
above aspects so�ly. _at is, the score trades-oò violations
on some directives if the other directives weigh strongly
against it. For example, we can pick a task that is less use-
ful from a packing perspective if it appears much earlier
on the preferred schedule. One keynovel aspect is bound-
ing the extent of unfairness.

_e oøine component of Graphene is described next;
the online component is described in Section 5.

4 Scheduling one DAG
Graphene builds the schedule for a DAG in three steps.
Figure 1 illustrates these steps and Figure 8 has a simpli-
ûedpseudocode. First,Graphene identiûes some trouble-
some tasks and divides the DAG into four subsets (§4.1).
Second, tasks in a subset are packed greedily onto the vir-
tual space while respecting dependencies (§4.2). _ird,
Graphene carefully restricts the order in which diòerent

86 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 Func: BuildSchedule:
2 Input: G: a DAG, m: number of machines
3 Output: An ordered list of tasks t ∈ G
4 Sbest ←∅ // best schedule for G thus far
5 foreach sets {T,S,P,C} ∈ CandidateTroublesomeTasks(G) do
6 Space S ← CreateSpace(m) //resource-time space
7 S ← PlaceTasks(T,S ,G) // trouble goes first
8 S ← TrySubsetOrders({SCP,SPC,CSP,PSC},S ,G)
9 if S < Sbest then Sbest ← S //keep the best schedule;

10 return OrderTasks(G ,Sbest)

Figure 8: Pseudocode for constructing the schedule for a
DAG. Helper methods are in Figure 9.

subsets are placed such that the troublesome tasks go ûrst
and there are no dead-ends (§4.3). Graphene picks the
most compact schedule a�er iterating over many choices
for troublesome tasks. _e resulting schedule is passed on
to the online component (§5).

4.1 Searching for troublesome tasks

To identify troublesome tasks, Graphene computes two
scores per task. _e ûrst, LongScore, divides the task
duration by the maximum across all tasks. Tasks with a
higher score aremore likely to be on the critical path and
can beneût from being placed ûrst because otherwork can
overlap with them. _e second, FragScore, re�ects the
packability of tasks in a stage (e.g., amap or a reduce). It
is computed by dividing the total work in a stage (TWork
deûned in Table 1) by the time a greedy packer takes
to schedule that stage. Tasks that are more diõcult to
pack would have a lower FragScore. Given thresholds
l and f , Graphene picks tasks with LongScore ≥ l or
FragScore ≤ f . Intuitively, this biases towards select-
ing tasks that aremore likely to hurt the schedule because
they are long ordiõcult topack. Each value of {l , f } leads
to a choice of troublesome tasks Twhich leads to a sched-
ule (a�er placing the tasks in T ûrst and then the other
subsets); Graphene iterates over diòerent values for the l
and f thresholds and picks themost compact schedule.

To speed up this search, (1) rather than choose the
threshold values arbitrarily, Graphene picks values that
are discriminative, i.e. those that lead to diòerent choices
of troublesome tasks, and (2) Graphene remembers the
set of troublesome tasks that were already explored (by
previous settings of the thresholds) so that only one
schedule is built for each troublesome set. Note also that
the diòerent choices of troublesome tasks can be explored
in parallel. Further improvements are in §4.4.
As shown in Figure 9 (line 9), the set T is a closure

over the chosen troublesome tasks. _at is, T contains
the troublesome tasks and all tasks that lie on a path in
the DAG between two troublesome tasks. _e parent and
child subsets P, C consist of tasks that are not in T but have
a descendant or ancestor in T respectively. _e subset S
consists of the remaining tasks.

1 Func: CandidateTroublesomeTasks:
2 Input: DAG G; Output: list L of sets T,S,P,C

// choose a candidate set of troublesome tasks; per choice, divide G
into four sets

3 L←∅
4 ∀v ∈ G ,LongScore(v)← v .duration/maxv′∈G v′ .duration
5 ∀v ∈ G , v in stage s ,FragScore(v)← TWork(s)/ExecTime(s)
6 foreach l ∈ δ , 2δ , . . . 1 do
7 foreach f ∈ δ , 2δ , . . . 1 do
8 T← {v ∈ G∣LongScore(v) ≥ l or FragScore(v) ≤ f }
9 T← Closure(T)

10 if T ∈L then continue // ignore duplicates;
11 P←⋃v∈T A(v ,G); C←⋃v∈T D(v ,G); S← V −T−P−C;
12 L←L∪{T,S,P,C}

Figure 9: Identifying various candidates for troublesome
tasks and dividing the DAG into four subsets.

4.2 Compactly placing tasks of a subset

Given a subset of tasks and a partially occupied space,
how best topack the taskswhile respectingdependencies?
Graphene uses the following logic for each of the subsets
T,P,S and C. One can choose to place the parents ûrst
or the children ûrst. We call these the forward and back-
ward placements respectively. More formally, the forward
placement recursively picks a task all of whose ancestors
have already been placed on the space and puts it at the
earliest possible time a�er its latest ûnishing ancestor. _e
backward placement is analogously deûned. Intuitively,
both placements respect dependencies but can lead to dif-
ferent schedules since greedy packing yields diòerent re-
sults based on the order in which tasks are placed. Fig-
ure 10:PlaceTasks shows some simpliûed pseudo-code.
Traversing the tasks in either placement has n logn com-
plexity for a subset of n tasks and if there arem machines,
placing tasks greedily has n log(mn) complexity.

4.3 Subset orders that guarantee feasibility

For each division of DAG into subsets T,S,P,C,Graphene
considers these 4 orders: TSCP,TSPC,TPSC or TCSP. _at
is, in the TSCP order, it ûrst places all tasks in T, then tasks
in S, then tasks in C and ûnally all tasks in P. Intuitively,
this helps because the troublesome tasks T are always
placed ûrst. Further, other orders may lead to dead-ends.
For example, consider the order TPCS; by the time some
task t in the subset S is considered for placement, parents
of t and children of t may already have been placed since
they may belong to the sets P and C respectively. Hence,
it may be impossible to place t without violating depen-
dencies. We prove that the above orders avoid dead-ends
and are the only orders beginning with T to do so.

Note also that only one of the forwards or backwards
placements (described in §4.2) are appropriate for some
subsets of tasks. For example, tasks in P cannot be placed
forwards since some descendants of these tasks may al-
ready have been placed (such as those in T). As noted
above, the forwards placement places a task a�er its last
ûnishing ancestor but ignores descendants and can hence
violate dependencies if used for P; because by deûnition

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 87

1 Func: PlaceTasks(V ,S ,G):
2 Inputs: V : subset of tasks to be placed, S : space (partially filled), G:
a DAG

3 Output: a new space with tasks in V placed atop S
4 return min(PlaceTasksF(V ,S ,G), PlaceTasksB(V ,S ,G))

5 Func: PlaceTasksF: // forwards placement, inputs and outputs same
as PlaceTasks

6 S ← Clone(S)
7 finished placement set F ← {v ∈ G∣v already placed in S}
8 while true do
9 ready set R← {v ∈ V − F ∣ P(v ,G) ⊆ F}

10 if R =∅ then break // all done;
11 v′ ← task in R with longest runtime
12 t←maxv∈P(v ,G)EndTime(v ,S)
13 // place v′ at earliest time ≥ t when its resource needs can be met
14 F ← F ∪ v′

15 Func: PlaceTasksB: // only backwards, analogous to PlaceTasksF.

16 Func: TrySubsetOrders:
17 Input: G: a DAG, Sin : space with tasks in T already placed
18 Output: A space that has the most compact placement of all tasks.
19 S1 ,S2 ,S3 ,S4 ← Clone(Sin)
20 return min(// pick the most compact among all feasible orders
21 PlaceTasksF(C, PlaceTasksB(P, PlaceTasks(S,S1 ,G),G),G), //SPC
22 PlaceTasksB(P, PlaceTasksF(C, PlaceTasks(S,S2 ,G),G),G), //SCP
23 PlaceTasksB(P, PlaceTasksB(S, PlaceTasksF(C,S3 ,G),G),G), //CSP
24 PlaceTasksF(C, PlaceTasksF(S, PlaceTasksB(P,S4 ,G),G),G) //PSC
25);

Figure 10: Pseudocode for the description in §4.2, §4.3.

every task in the parent subset P has at least one descen-
dant task. Analogously, tasks in C cannot be placed back-
wards. Tasks in S can be placed in one or both place-
ments, depending on the inter-subset order. Finally, since
the tasks in T are placed onto an empty space they can be
placed either forwards or backwards; details are in Fig-
ure 10:TrySubsetOrders. We prove the following:

Lemma 3. (Correctness) Our method in §4.1–§4.3 satis-
ûes dependencies and avoids dead-ends. (Completeness)
_emethod explores every order that places troublesome
tasks ûrst and is free of dead-ends.

Intuitively, the proof (omitted for space) follows from
(1) all four subsets are closed and hence intra-subset de-
pendencies are respected by the placement logic in §4.2
whether in the forward or in the backward placement, (2)
the inter-subset orders and the corresponding restrictions
to only use forwards and/or backwards placements spec-
iûed in §4.3 ensure that dependencies across subsets are
respected and, (3) every other order that beginswith T can
lead to dead-ends.
4.4 Enhancements

We note a few enhancements. First, as noted in §2.3, it
is possible to partition a DAG into parts that are totally
ordered. Hence, any schedule for the DAG is a concate-
nation of per-partition schedules. _is lowers the com-
plexity of schedule construction. 24% of the production
DAGs can be split into four or more parts. Second, and
along similar lines, whenever possible we reduce com-
plexity by reasoning over stages. Stages are collections
of tasks and are 10 to 103 times fewer in number than
tasks. _ird, schedule computation can be sped up in a

Figure 11:_e various aspects considered byGraphene’s on-
line component when matching tasks to machines.

few ways. Parallelizing the search will help the most, i.e.
examine diòerent choices for troublesome tasks T in par-
allel. Working over more compact representations (e.g.,
scaling down the DAG and the cluster by a corresponding
amount) will also help. Fourth, jobs that are short-lived,
or only use a small amount of resources, or do not have
complex DAG structures, will bypass the oøine portion
of Graphene. Fi�h, the complexity of schedule construc-
tion is independent of the sizes of the subsets T,S,P,C
that Graphene divides the DAG into. However, if ∣T∣ is
very large, the approach of placing troublesome tasks ûrst
and other tasks carefully around them is unlikely to help.
We prune such choices of T without further exploration.
Among the schedules built by Graphene for production
DAGs, the median DAG has 17% of its tasks considered
troublesome; these tasks contribute to 32% of the work in
that job. Finally, note that it is possible to recursively em-
ploy this logic: i.e., given a DAG G, pick a troublesome
subset T, let G′ be the sub-DAG over tasks in T, repeat
the logic on G′. We defer further examination of this ap-
proach to future work.

5 Scheduling manyDAGs
Given the preferred schedules for each job, we describe
how the Graphene inter-job scheduler matches tasks to
machines online. Recall the example in Figure 3. _e
scheduling procedure is triggered when a machine m re-
ports its vector of available resources to the cluster-wide
resourcemanager. Given a set of runnable jobs (and their
tasks), the scheduler returns a list of tasks to be allocated
on that machine. _e challenge is to enforce the per-job
order computed in §4 while also packing tasks for cluster
eõciency, ensuring low JCTs, and enforcing fairness.

5.1 Inter-job Scheduler

Enforcing preferred schedules. Using the per-DAG
schedule constructed in §4, a tpr iS core is computed for
each task t by (1) ranking tasks in increasing order of their
start time in the schedule and (2) dividing the rank by the
number of tasks in the DAG so that the result is between
1 (for the task that begins ûrst) and 0. As noted below,
Graphene preferentially schedules tasks with a higher
tpr iS core value ûrst.
Packing eõciency. Graphene borrows ideas from [37] to
improve packing eõciency. For every task, it computes a
packing score pScoret as a dot product between the task
demand vector and themachine’s available resource vec-
tor. To favor local placement, when remote resources are
needed, pScoret is reduced bymultiplyingwith a remote

88 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

penalty rp (∈ [0, 1]). Sensitivity analysis on the value of rp
is in §7.4.
Job completion time. Graphene estimates the remaining
work in a job j similar to [37]; srpt j is a sum over the
remaining tasks to schedule in j, the product of their du-
ration and resource demands. A lower score implies less
work remaining in the job j.
Bounding unfairness. Graphene trades oò fairness for
better performance while ensuring that the maximum
unfairness is below an operator conûgured threshold.
Speciûcally, Graphene maintains deûcit counters [64]
across jobs tomeasureunfairness. _e deûcit counters are
updated as follows. When a task t from a group g is sched-
uled, its deûcit increases by factort ×(fairShareg − 1)
and the deûcit of all the other groups g′ increases by
factort × fairShareg′ . _is update lowers the deûcit
counter of g proportional to the resources allocated to it
and increases the deûcit counters of other groups to re-
member that they were treated unfairly. Further, by vary-
ing the value of factort , Graphene can support diòer-
ent fairness schemes: e.g., factort = 1 mimics slot fair-
ness and factort = demand of the dominant resource of g
mimics DRF [33].
Combining schedule order, packing, completion time
and fairness. Graphene attempts to simultaneously con-
sider the above four aspects; as shown in Figure 11, some
of the aspects vary with the task while others vary across
jobs. First, Graphene combines the performance related
aspects into a single score, i.e., perfScoret = pScoret ⋅
tpr iS core −ηsrpt j . η is a parameter that is automatically
updated based on the average srpt and pScore across
jobs and tasks. Subtracting η ⋅srpt j prefers shorter jobs.
Sensitivity analysis on the value of η is in §7.4. Intuitively,
the combined value perfScoret so�ly enforces the var-
ious objectives. For example, if a task t is preferred by
all individual objectives (belongs to shortest job, is most
packable, is next in the preferred schedule), then it will
have the highest perfScoret . When the objectives are
discordant, colloquially, the task preferred by a majority
of objectives t will have the highest perfScoret .

Next, to trade-oò performancewhile bounding unfair-
ness, let the most unfairly treated group (the one with
the highest deûcit counter) be gunfair. If the deûcit
counter of gunfair is below the unfairness threshold, then
Graphene picks the task with the maximum perfScore

from among all groups; else it picks the taskwith themax-
imum perfScore from gunfair. _e unfairness thresh-
old is κC where κ (< 1) is a tunable parameter and C is the
cluster capacity.
Further details, including a pseudo-code, are in [38].

6 Graphene System
We have implemented the runtime component (§5) in the
Apache YARN resource manager (RM) and the sched-

ule constructor (§4) in the Apache Tez application mas-
ter (AM). Our (unoptimized) schedule constructor ûn-
ishes in tens of seconds on theDAGs used in experiments;
this is in the same ballpark as the time to compile and
query-optimize these DAGs. Recurring jobs use previ-
ously constructed schedules. Each DAG is managed by
an instance of the Tez AM which closely resembles other
frameworks such as FlumeJava [25] and Dryad [43]. _e
per-job AMs negotiatewith the YARN RM for containers
to run the job’s tasks; each container is a ûxed amount of
various resources. As part of implementingGraphene,we
expanded the interface between the AM and RM to pass
additional information, such as the job’s pending work
and tasks’ demands, duration and preferred order. Here,
we describe some key aspects.

6.1 DAG Annotations

Recall from §2.5 that Graphene requires a more detailed
annotation of DAGs than existing systems: speciûcally, it
needs task durations and estimates of network and disk
usages; the usages of cores andmemory are already avail-
able [8, 67, 73].

Our approach is to construct estimates for the aver-
age task in each stage using a combination of historical
data and prediction. _ese estimates are used by the of-
�ine portion of Graphene (§4). As noticed by priorwork,
recurring jobs are common in our production clusters
and historical usages, a�er normalizing for the change in
data volume, are predictive for such job groups [16]. _e
online portion of Graphene (§5) reûnes these estimates
based on the actualwork of a task (e.g., by noting its input
size) and based on the executions of earlier tasks; since
(a) tasks in the same stage o�en run in multiple waves
due to capacity limits and (b) running tasks issue periodic
progress reports [8, 17].

In our evaluation, we execute the jobs once and use
the actual observed usage (from job history) to compute
the necessary annotations. We normalize both the dura-
tion and usage estimates by the tasks’ input size, as ap-
propriate. A sensitivity analysis that introduces diòerent
amounts of error to the estimates and shows their eòect
on performance is in §7.4.

We observe that Graphene is rather robust to estima-
tion error because relatively small diòerences in tasks’ du-
ration and usages do not change the schedule. For exam-
ple, while it is useful to know that reduce and join tasks
are network-heavy as opposed to map tasks which have
no network usage, it is less useful to know precisely how
much network usage a reducer or a join taskwill have; the
actual usage would vary, at runtime, in any case due to
contention, thread or process scheduling, etc. Similarly,
while it is useful to know that tasks in a certain stage will
take ten times longer, on average, and hence it is better to
overlap those tasks with unrelated work, it is less useful

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 89

to know the exact duration of a task; again, the exact du-
rations will vary because of contention,machine-speciûc
slowdowns etc. [17].
6.2 Eõcient onlinematching

Naively implementing our runtime component (§5)
would improve schedule quality at the cost of delaying
scheduling. We use bundling to oòset this issue.

Some background: _e matching logic in typical
schedulers isheartbeat-based [8]. When amachineheart-
beats to the RM, the allocator (0) maintains an ordering
over pending tasks, (1) picks the ûrst appropriate task to
allocate to that machine, (2) adjusts its data structures
(such as, resorting/rescoring) and (3) repeats these steps
until all resources on the node have been allocated or all
allocation requests have been satisûed.
A naive implementation of the runtime component

would examine all the pending tasks; thereby increasing
the time to match.

Instead, we propose to bundle the allocations. Speciû-
cally, rather than breaking the loop a�er ûnding the ûrst
schedulable task (step 1 above), we keep along a bundle
of tasks that can all be potentially scheduled on the ma-
chine. At the end of one pass, we assign multiple tasks by
choosing from among those in the bundle.

_e bundle amortizes the cost of examining the pend-
ing tasks. We can allocate multiple tasks in one pass as
opposed to one pass per task. It is also easy to see that
bundling admitsnon-greedy choices and that the pass can
be terminated early when the bundle has good-enough
tasks. We have refactored theYarn schedulerwith conûg-
urable choices for (1)which tasks to add to the bundle, (2)
when to terminate bundling and (3) which tasks to pick
from the bundle. From conversations with Hadoop com-
mitters, these code-changes help improve matching eõ-
ciency and code readability.
6.3 Co-existing with other features

We note that a cluster scheduler performs other roles be-
sides matching tasks to machines. Several of these roles
such as handling outliers and failed tasks diòerently [17,
74], delay scheduling [72], reservations [12, 30] or sup-
porting heterogeneous clusters where only some servers
may haveGPUs [11] are implemented as preconditions to
the main schedule loop, i.e. they are checked ûrst, or are
implemented by partitioning the tasks that will be con-
sidered in the scheduling loop. Since Graphene’s changes
only aòect the inner core of the schedule loop (e.g., given
a set of pending tasks, which subset to allocate to a ma-
chine), our implementation co-exists with these features.

7 Evaluation
Our key evaluation results are as follows.
(1) In experiments on a 200 server cluster, relative to Tez
jobs running on YARN, Graphene improves completion

timeofhalfof the jobsby 19% to 31% across variousbench-
marks. 25% of the jobs improve by 30% to 49%. _e extent
of gains depends on the workload (complexity of DAGs,
resource usage variations etc.).
(2) On over 20,000 DAGs from production clusters, the
schedules constructed by Graphene are faster by 25% for
half of the DAGs. A quarter of the DAGs improve by 57%.
Further, by comparing with our new lower bound, these
schedules are optimal for 40% of the jobs and within 13%
of optimal for 75% of the jobs.
(3) By examining further details, we show that the gains
are from better packing dependent tasks. Makespan (and
cluster throughput) improve by a similar amount. More
resources are used, on average, by Graphene and trading
oò short-term unfairness improves performance.
(4) We also compare with several alternative schedulers
and oòer a sensitivity analysis to cluster load, various pa-
rameter choices, and annotation errors.

7.1 Setup

Our experimental clusterhas 200 serverswith two quad-
core IntelE2550 processors (hyperthreading enabled), 128
GB RAM, 10 drives, and a 10Gbps network interface. _e
network has a congestion-free core [39].
Workload: Our workload mix consists of jobs from
public benchmarks—TPC-H [14], TPC-DS [15], Big-
Bench [4], and jobs from a production cluster that runs
Hive jobs (E-Hive). We also use 20K DAGs from a pri-
vate production system in our simulations. In each exper-
imental run, job arrival is modeled as a Poisson process
with average inter-arrival time of 25s for 50minutes. Each
job is picked at random from the corresponding bench-
mark. We built representative inputs and varied input size
fromGBs to tens of TBs such that the average query com-
pletes in a few minutes and the longest query ûnishes in
under ten minutes on the idle cluster. A typical experi-
ment run has about 120 jobs. _e results presented are
themedian over three runs.
Compared Schemes: We experimentally compare
Graphene with the following baselines: (1) Tez ∶ breadth-
ûrst order of tasks in the DAG running atop YARN’s
Capacity Scheduler (CS), (2) Tez+CP ∶ critical path
length based order of tasks in the DAG atop CS and (3)
Tez+Tetris ∶ breadth-ûrst order of tasks in the DAG
atop Tetris [37]. To tease apart the gains from the of-
�ine and online components, we also oòer results for (4)
Tez+G+CS and (5) Tez+G+Tetris which use the of-
�ine constructed schedules at the jobmanager (to request
containers in that order) but the online components are
agnostic to the desired schedule (either the default ca-
pacity scheduler or Tetris respectively). Using simula-
tions, we also compare Graphene against the following
schemes: (6) BFS ∶ breadth ûrst order, (7) CP ∶ critical
path order, (8) Random order, (9) StripPart [20], (10)

90 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 0 20 40 60 80 100

Fr
ac

ti
on

 o
f

D
A

G
s

Reduction in job duration against Tez default[%]

Graphene

Tez+Tetris

Tez+CP

(a) CDF of gains for jobs on TPC-DS workload

50th percentile 75th percentile
Workload G T+C T+T G T+C T+T
TPC-DS 27.8 4.1 6.5 45.7 8.9 16.6
TPC-H 30.5 3.8 8.9 48.3 7.7 15.0
BigBench 25.0 6.4 6.2 33.3 21.7 18.5
E-Hive 19.0 1.0 5.8 29.7 4.5 14.2

G stands for Graphene. T+C and T+T denote Tez+CP and Tez+Tetris
respectively (see §7.1). The improvements are relative to Tez.

(b) Improvements in JCT across all the workloads

Figure 12: Comparing completion time improvements of var-
ious schemes relative to Tez.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8R
u
n
n
in

g
 t

a
sk

s
[1

0
0
 x

]

Time [1000 x s]

Tez+Tetris

Graphene

Tez
Tez+CP

(a) Running tasks

 0
 20
 40
 60
 80

 100
 120
 140
 160

0 1 2 3 4 5 6

U
ti

liz
a
ti

o
n
 %

Time [1000x s]

CPU MEM N/R D/R

(b) Graphene

 0
 20
 40
 60
 80

 100
 120
 140
 160

0 1 2 3 4 5 6 7

U
ti

liz
a
ti

o
n
 %

Time [1000x s]

CPU MEM N/R D/R

(c) Tez+Tetris

 0
 20
 40
 60
 80

 100
 120
 140
 160

0 1 2 3 4 5 6 7 8

U
ti

liz
a
ti

o
n
 %

Time [1000x s]

CPU MEM N/R D/R

(d) Tez+CP
Figure 13: For a cluster runwith 200 jobs, a time lapse of how
many tasks are running (le�most) and how many resources
are allocated by each scheme. N/R represents the amount of
network read,D/R the disk read andD/W the corresponding
disk write.

Tetris [37], and (11) CoffmanGraham [29].
All of the above schemes except (9) are work-

conserving. (6)–(8) and (10) pick only from among the
runnable tasks but vary in the speciûc heuristic. (9) and
(11) perform more complex schedule construction, as we
will discuss later.
Metrics: Improvement in JCT is our key metric. Be-
tween two schemes, we measure the normalized gap in
JCTs. _at is, the diòerence in the runtime of a job di-
vided by the job runtime; the normalization lets us com-
pare jobs with very diòerent runtimes. We also measure
makespan, i.e., the time to ûnish a given set of jobs, Jain’s
fairness index [45], and the actual usages of various re-
sources in the cluster.

7.2 How does Graphene do in experiments?

Job Completion Time: Relative to Tez, Figure 12 shows
thatGraphene improves half of theDAGs by 19 to 31%; the
extent of gains depends on theworkload and varies across
benchmarks. A quarter of the DAGs improve by 30 to
49%. We see occasional regressions. Up to 5% of the jobs
in the TPC-DS benchmark slow down with Graphene;
the maximum slowdown is 16%. We found this to pri-
marily happen on the shorter jobs and believe it is due to
noise from runtime artifacts such as stragglers and task
failures [17]. _e table in Figure 12 shows the results for
all the benchmarks; we see that DAGs from E-Hive see
the smallest improvement (19% at median) because the
DAGs here are mostly two stage map-reduce jobs. _e
other benchmarks have more complex DAGs and hence
receive larger gains.

Relative to the alternatives, Figure 12 shows that
Graphene is 15% to 34% better. Tez+CP achieves
only marginal gains over Tez, hinting that critical path
scheduling does not suõce. _e exception is the Big-
Bench datasetwhere about half the queries are dominated
by work on the critical path. Tez+Tetris comes closest
to Graphene because Tetris’ packing logic reduces frag-
mentation. _e gap is still substantial since Tetris ignores
dependencies. In fact, we see that Tez+Tetris does not
consistently beat Tez+CP. Our takeaway is that consid-
ering both dependencies and packing substantially im-
proves DAG completion time.

Where do the gains come from? Figure 13 oòers more
detail on an example experimental run. Graphene keeps
more tasks running on the cluster and hence ûnishes
faster (Figure 13a). _e other schemes take over 20%
longer. Graphene runs more tasks by reducing fragmen-
tation and by overbooking resources such as network and
disk that do not lose goodput when demand exceeds ca-
pacity (unlike say memory). Comparing Figure 13b with
Figures 13c, 13d, the average allocation of all resources is
higher with Graphene. Occasionally, Graphene allocates
over 100% of the network and disk. One caveat about our
measurement methodology here: we take the peak us-
age of a task and assume that the task held on to those
resources for the entirety of its lifetime; hence, the us-
ages are over-estimates for all schemes. Tez+Tetris,
the closest alternative, has fewer tasks running at all times
because (a) it does not overbook (resource usages are be-
low 100% in Figure 13c) and (b) it has aworse global pack-
ing for a DAG because it ignores dependencies and packs
only the runnable tasks. Tez+CP is impacted negatively
by two eòects: (a) ignoring disk and network usage leads
to arbitrary over-allocation (the “total” resource usage is
higher because, due to saturation, tasks hold on to allo-
cations for longer) and (b) due to fragmentation, many
fewer tasks run on average. Overall, Graphene gains by
increasing the task throughput.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 91

Workload Tez+CP Tez+Tetris Graphene
TPC-DS +2.1% +8.2% +30.9%
TPC-H +4.3% +9.6% +27.5%

Table 2:Makespan, gap from Tez.

Workload Scheme 2Q vs. 1Q Jain’s fairness index
Perf. Gap 10s 60s 240s

TPC-DS
Tez −13% 0.82 0.86 0.88

Tez+DRF −12% 0.85 0.89 0.90
Tez+Tetris −10% 0.77 0.81 0.92

Graphene +2% 0.72 0.83 0.89
Table 3: Fairness: Shows the performance gap and Jain’s fair-
ness index when used with 2 queues (even share) versus 1
queue. Here, a score of 1 indicates perfect fairness.

Makespan: To evaluate makespan, we make one change
to the experiment setup– all jobs arrive within the ûrst
few minutes. Everything else remains the same. Table 2
shows the gap in makespan for diòerent cases. Due to
careful packing, Graphene sustains high cluster resource
utilization which in turn enables jobs to ûnish quickly:
makespan improves 30% relative to Tez and over 20% rel-
ative to alternatives.
Fairness: Can we improve performance while also be-
ing fair? Intuitively, fairness may hurt performance since
fairly dividing resources may lower overall utilization or
slow-down some jobs. To evaluate fairness, wemake one
change to the experiment set up. _e jobs are evenly and
randomly distributed among two queues and the sched-
uler has to divide resources evenly.

Table 3 reports the gap in performance (median JCT)
for each scheme when run with two queues vs. one.
Tez, Tez+DRF and Tez+Tetris lose over 10% in per-
formance relative to their one queue counterparts. _e
table shows that with two queues, Graphene has a small
gain (perhaps due to experimental noise). Hence, rela-
tively, Graphene performs even better than the alterna-
tives if given more queues. But why? Table 3 also shows
Jain’s fairness index computed over 10s, 60s and 240swin-
dows. We see thatGraphene is less fair at short timescales
but is indistinguishable at larger time windows. _is is
because Graphene bounds unfairness (§5); it leverages
short-term slack from precise fairness to make schedul-
ing choices that improve performance.
Value of enforcing preferred schedules online: Recall
that Graphene’s online component enforces the preferred
schedules constructed by the oøine component. To tease
apart the value of this combination, we consider alterna-
tives wherein the job managers use the preferred sched-
ules (to request containers in that order) but the cluster
scheduler is agnostic; i.e. it simply runs the default ca-
pacity scheduler or Tetris (we call these Tez+G+CS and
Tez+G+Tetris respectively). We ûnd that Graphene
oòers 26% and 28% better median JCT compared to
Tez+G+Tetris and Tez+G+CS. _is experiment was
conducted on a smaller 50 server cluster with diòerent
hardware so these numbers are not directly comparable
with the remaining experiments; we oòer them merely as

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
D

A
G

s

Reduction in job duration [%]

Random
Tetris

Graphene

New lb

(a) Graphene vs. Baselines

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
D

A
G

s

Reduction in job duration [%]

Graphene

Crit.Path
Fit all

(b) Graphene vs. Alternates
Figure 14: Comparing Graphene with other schemes. We
removed the lines for CG and StripPart from the rightûgure
because they hug x = 0; see Table 4.

25th 50th 75th 90th

Graphene 7 25 57 74
Random −2 0 1 4

Crit.Path Fit cpu/mem −2 0 2 1
Fit all 1 4 13 16

Tetris Fit all 0 7 29 42
Strip Part. Fit all 0 1 12 27

Coffman-Graham. Fit all 0 1 12 26
Fit cpu/mem −2 0 0 2

Table 4: Reading out the gaps from Figure 14. Each entry is
the improvement relative to BFS.

a qualitative validation of Graphene’s combination of on-
line and oøine components.

7.3 Comparing with alternatives

We use simulations to compare a wider set of algo-
rithms (§7.1) on themuch largerDAGs that ran in the pro-
duction clusters. Wemimic the actual dependencies, task
durations and resource needs from the cluster.
Figure 14 compares the schedules constructed by

Graphene with the schedules from other algorithms. Ta-
ble 4 reads out the gaps at various percentiles. We observe
that Graphene’s gains at the end of schedule construction
are about the same as those at runtime (Figure 12). _is
is interesting because the runtime component only so�ly
enforces the desired schedules from all the jobs running
simultaneously in the cluster. It appears that any loss in
performance fromnot adhering to the desired schedule is
made up by the gains from better packing (acrossDAGs)
and trading oò some short-term unfairness.

Second, Graphene’s gains are considerable compared
to the alternatives. CP and Tetris are the closest. _e
reason is that Graphene looks at the entire DAG and
places the troublesome tasks ûrst, leading to amore com-
pact schedule overall.

_ird, when tasks have unit durations and nicely
shaped demands, CG (Coòman-Graham [29]) is at most 2
times optimal. However, it does not perform well on the
heterogeneous DAGs seen in production. Some recent
extensions of CG to handle heterogeneity ignore fragmen-
tation when resources are divided across machines [49].
Fourth, StripPart [20] combines resource packing

and task dependencies and has the best-known approx-
imation ratio: O(logn) on a DAG with n tasks [20]. _e
key idea is to partition tasks into levels such that all depen-

92 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

R
e
d

u
ct

io
n
 [

%
]

in

 A
v
g

.
Jo

b
 C

o
m

p
l.

Parameter Value

m
rp

(a) Job Duration

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

R
e
d
u
ct

io
n
 [

%
]

 i
n
 M

a
ke

sp
a
n

Parameter Value

m
rp

(b) Makespan
Figure 15: Graphene - sensitivity analysis.

dencies go across levels and then to tightlypack each level.
We ûnd that StripPart under-performs simpler heuris-
tics in practice because (a) independent tasks that happen
to fall into diòerent levels cannot be packed together lead-
ing towasted resources between levels and (b) the recom-
mended per-level packers (e.g. [60]) do not support mul-
tiple resources and vector packing [58].

How close is Graphene to Optimal? Comparing
Graphene with NewLB, we ûnd that Graphene is optimal
for about 40% of the DAGs. For half (three quarters) of
the DAGs, Graphene is within 4% (13%) of the new lower
bound. A gap still remains: for 10% of DAGs, Graphene
takes 25% longer. Manually examining these DAGs shows
that NewLB is loose for most of them (deriving a tighter
lower bound is an open problem). In sum, Graphene is
close to optimal for most of the production DAGs.

7.4 Sensitivity Analysis

Packing vs. Shortest Remaining Processing Time
(srpt): Recall that we combine packing score and srpt
using a weighted sum with η (§5). Let η be m times the
average over the two expressions that it combines. Fig-
ure 15 shows the reduction in average JCT (on le�) and
makespan (on right) for diòerent values of m. Values of
m ∈ [0.1,0.3] have the most gains. Lower values lead to
worse average JCT because the eòect of srpt reduces;
larger values lead to moderately worsemakespan. Hence,
we recommend m = 0.2.
Remote Penalty: Graphene uses a remote penalty rp to
prefer local placement. Our analysis shows that both JCT
and makespan improve the most when rp ∈ [0.7,0.85]
(Figure 15). Since rp is amultiplicative penalty, lower val-
ues of rp cause the scheduler tomiss (non-local) schedul-
ing opportunitieswhereas higher rp can over-use remote
resources. We use rp = 0.8.
Cluster Load:We vary cluster load by reducing the num-
ber of available servers without changing the workload.
Figure 16 shows the JCTs and makespan for a query set
derived from TPC-DS. Both Graphene and the alterna-
tives oòer more gains at higher loads. _is is because the
need for careful scheduling and packing increases when
resources are scarce. Gains due to Graphene increase by
+10% at 2× load and by +15% at 6× load. Further, the gap
between Graphene and the alternatives remains similar
across load levels.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8

R
e
d

u
ct

io
n
 [

%
]

in

 A
v
g

.
Jo

b
 C

o
m

p
l.

Multiple of Original Load

Tez+Tetris

Graphene

Tez+CP

(a) Job Duration

 0

 10

 20

 30

 40

 50

 0 2 4 6 8

R
e
d

u
ct

io
n
 [

%
]

 i
n
 M

a
ke

sp
a
n

Multiple of Original Load

Graphene

Tez+Tetris

Tez+CP

(b) Makespan
Figure 16: Graphene’s gains increase with cluster load.

Fractional change in JCT

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1 0 0.1 0.2

C
D

F
o
ve

r
D

A
G

s

CPSched

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1 0 0.1 0.2

Graphene

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1 0 0.1 0.2

Tetris

[-0.75:-0.50]
[-0.50:-0.25]

[0.25:0.50]
[0.50:0.75]

Figure 17: Fractional change in the job completion time (JCT)
of DAGswith various schedulerswhen task durations and re-
source proûles aremis-estimated.

Impact of misestimations: We oòer to each scheduler
an inaccurate task duration and resource usage vector
but have the underlying execution use the true values.
Hence, the schedulers match tasks to machine based on
imperfect estimates. Once scheduled, the tasks may ûn-
ish a�er a diòerent duration or use diòerent amounts
of resources. When the total resource demand crosses
machine capacity, we delay the completion of tasks fur-
ther by a proportional amount. Figure 17 shows a CDF
of the change in the completion time of the production
DAGs for diòerent schedulers. Each line denotes a dif-
ferent amount of error. For example, the red triangle
line labeled [−0.75 ∶ −0.50] corresponds to picking a ran-
dom number in that range for each stage and then chang-
ing the task durations and resource needs fractionally by
that random number (−0.75 indicates a 75% lower value).
We see that the impact of mis-estimates is rather small;
Graphene changes roughly similarly to the other sched-
ulers. Under-estimates tend to speed up the job because
the scheduler over-allocates tasks but over-allocation can
also slow-down jobs. Over-estimates delay jobs because
the scheduler wastes resources; it may refrain from allo-
cating a task when its needs appear larger than the avail-
able resources at a machine. Overall, Graphene appears
robust to mis-estimations.

8 Applying Graphene to other domains
We evaluateGraphene’s eòectiveness in schedulingDAGs
that arise in distributed compilation jobs [3, 32, 34] and
Internet service work�ows [46].
Distributed build systems speed up the compilation of

large code bases [3, 34]. Each build is a DAG with de-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 93

 0

 10

 20

 30

 40

 50

 1 2 3 4 5

R
e
d
u
ct

io
n
 [

%
]

DAG size (100x)

G vs. T
G vs. CP

(a) Distributed Build Systems:
Compilation time

 0

 10

 20

 30

 40

 50

 0 1 2 3 4

R
e
d

u
ct

io
n
 [

%
]

DAG size (100x)

G vs. T
G vs. CP

(b) Request-response work�ows:
Query latency

Figure 18: Comparing Graphene (G) with Tetris (T) and
Critical path scheduling (CP) onDAGs from other domains.

pendencies between the various tasks (compilation, link-
ing, test, code analysis). _e tasks have diòerent runtimes
and diòerent resource proûles. Figure 18a shows that
Graphene is 20% (30%) faster than Tetris (CP) when
scheduling the buildDAGs from a production distributed
build system [32]. Each bar is centered on themedian gain
for DAGs of a certain size; the error bars are quartiles.
We also examine the DAGs that arise in datacenter-

side work�ows for Internet-services [46]. For instance,
a search query translates into a work�ow of dependent
RPCs at the datacenter (e.g., spell check before index
lookup, video and image lookup in parallel). _e RPCs
use diòerent resources, have diòerent runtimes and of-
ten run on the same server pool [46]. Over several
work�ows from a production service, Figure 18b shows
that Graphene improves upon alternatives by about 24%.
_ese encouraging early results hint that Graphene may
bemore broadly useful.

9 RelatedWork
To structure the discussion, we ask four questions: (Q1)
does a scheme consider both packing and dependencies,
(Q2) does it make realistic assumptions, (Q3) is it practi-
cal to implement in cluster schedulers and, (Q4) does it
consider multiple objectives such as fairness? Graphene
is unique in positively answering these four questions.
Q1 ∶ NO. Substantial prior work ignores dependencies
but packs tasks with varying demands for multiple re-
sources [26, 37, 60, 65, 71]. _e best results are when the
demand vectors are small [21]. Other work considers de-
pendencies but assumes homogeneous demands [29, 36].
A recent multi-resource packing scheme, Tetris [37], suc-
ceeds on the three other questions but does not handle
dependencies. Hence, we saw in §7 that Tetris performs
poorly when schedulingDAGs (can be up to 2d times oò,
see [38]). Tetris can also be arbitrarily unfair.
Q1 ∶ YES,Q2 ∶ NO._epacking+dependenciesproblemhas
been considered at length under job-shop scheduling [31,
35, 50, 63]. Most results assume knowledge of job arrival
times and proûles [49]. For the case with unknown fu-
ture job arrivals (the version considered here), no algo-
rithms with bounded competitive ratios are known [54,
55]. Some notable work assumes only two resources [23],

applies for a chain but not a generalDAG [18] or assumes
one cluster-wide resource pool [51].

Q3 ∶ NO. Several of the schemes listed above are com-
plex and hence do not meet the tight timing require-
ments of cluster schedulers. VM allocators [28] also con-
sider multi-resource packing. However, cluster sched-
ulers have to support roughly two to three orders ofmag-
nitude higher rate of allocation (tasks aremore numerous
than VMs).

Q3 ∶ YES,Q1 ∶ NO. Several works in cluster scheduling ex-
ist such as Quincy [44], Omega [62], Borg [68], Kuber-
netes [9] and Autopilot [42]. None of these combine
multi-resource packing with DAG-awareness and many
do neither. Job managers such as Tez [2] and Dryad [43]
use simple heuristics such as breath-ûrst scheduling and
perform poorly in our experiments.

Q4 ∶ NO. Recently proposed fairness schemes incor-
porate multiple resources [33] and some are work-
conserving [27]. We note that these fairness schemes nei-
ther pack nor are DAG-aware. Graphene can incorporate
these fairness methods as one of the multiple objectives
and trades oò bounded unfairness for performance.

10 Concluding Remarks

DAGs are a common scheduling abstraction. However,
we found that existing algorithms make key assumptions
that do not hold in the case of cluster schedulers. Our
scheduler, Graphene, is an eõcient online solution that
scales to large clusters. We experimentally validated that
it substantially improves the scheduling of DAGs in both
synthetic and emulated production traces. _e core tech-
nical contributions are: (1) construct a good schedule
for a DAG by placing tasks out-of-order on to a virtual
resource-time space, and (2) use an online heuristic to
so�ly enforce the desired schedules and simultaneously
manage other concerns such as packing and fairness.
Much of these innovations use the fact that job DAGs
consist of groups of tasks (in each stage) that have similar
durations, resource needs, and dependencies. We intend
to contribute our Graphene implementation to Apache
YARN/Tez projects.

Acknowledgments

For early discussions, we would like to thank Ganesh
Ananthanaryanan and Peter Bodik. For feedback that
helped improve this paper, we thank the anonymous re-
viewers, our shepherd Phil Levis, Mohammad Alizadeh,
Chris Douglas, Hongzi Mao, Ishai Menache and Malte
Schwarzkopf. For operating the cluster that motivated
and inspired this work, we thank the Cosmos/ SCOPE
production team at Microso�.

94 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] 43 bigdata platforms and bigdata analytics so�ware.

http://bit.ly/1DROqgt.

[2] Apache Tez. http://tez.apache.org/.

[3] Bazel. http://bazel.io/.

[4] Big-Data-Benchmark. http://bit.ly/1HlFRH0.

[5] Condor. http://research.cs.wisc.edu/

htcondor/.

[6] Hadoop: Fair scheduler/ slot fairness. http://

bit.ly/1PfsT7F.

[7] Hadoop MapReduce - Capacity Scheduler. http:

//bit.ly/1tGpbDN.

[8] Hadoop YARN Project. http://bit.ly/

1iS8xvP.

[9] Kubernetes. http://kubernetes.io/.

[10] Market research on big-data-as-service oòerings.
http://bit.ly/1V6TXV4.

[11] Node labels in yarn. http://bit.ly/2d92ook.

[12] Reserved containers in yarn. http://bit.ly/

2ckArDO.

[13] Slot and resource fairness in yarn. http://bit.

ly/2ckArDO.

[14] TPC-H Benchmark. http://bit.ly/1KRK5gl.

[15] TPC-DS Benchmark. http://bit.ly/1J6uDap,
2012.

[16] Agarwal, S., Kandula, S., Burno, N.,Wu,M.-C.,
Stoica, I., andZhou, J. Re-optimizing data parallel
computing. In NSDI (2012).

[17] Ananthanarayanan, G., Kandula, S., Green-
berg, A., Stoica, I., Lu, Y., Saha, B., and Harris,
E. Reining in the Outliers in MapReduce Clusters
Using Mantri. In OSDI (2010).

[18] Anderson, E., Beyer, D., Chaudhuri, K., Kelly,
T., Salazar, N., Santos, C., Swaminathan, R.,
Tarjan, R., Wiener, J., and Zhou, Y. Value-
maximizing deadline scheduling and its application
to animation rendering. In SPAA (2005).

[19] Armbrust, M., Xin, R. S., Lian, C., Huai, Y.,
Liu, D., Bradley, J. K., Meng, X., Kaftan, T.,
Franklin, M. J., Ghodsi, A., and Zaharia, M.
Spark sql: Relational data processing in spark. In
SIGMOD (2015).

[20] Augustine, J., Banerjee, S., and Irani, S. Strip
packingwith precedence constraints and strip pack-
ing with release times. In SPAA (2006).

[21] Azar, Y., Cohen, I. R., Fiat, A., and Roytman, A.
Packing small vectors. In SODA (2016).

[22] Azar,Y.,Kalp-Shaltiel, I., Lucier, B.,Menache,
I., Naor, J., and Yaniv, J. Truthful online schedul-
ing with commitments. In EC (2015).

[23] Belkhale, K. P., and Banerjee, P. An approx-
imate algorithm for the partitionable independent
task scheduling problem. Urbana 51 (1990), 61801.

[24] Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey,
B., Shakib, D.,Weaver, S., and Zhou, J. SCOPE:
Easy and Eõcient Parallel Processing of Massive
Datasets. In VLDB (2008).

[25] Chambers, C.,Raniwala, A., Perry, F., Adams, S.,
Henry, R. R., Bradshaw, R., andWeizenbaum,N.
Flumejava: Easy, eõcient data-parallel pipelines. In
PLDI (2010).

[26] Chandra, C., and Sanjeev, K. On multidimen-
sional packing problems. SIAM J. Comput. (2004).

[27] Chowdhury,M., Liu, Z.,Ghodsi, A., and Stoica,
I. Hug: Multi-resource fairness for correlated and
elastic demands. In NSDI (2016).

[28] Chowdhury, N., Rahman, M., and Boutaba,
R. Virtual Network Embedding with Coordinated
Node and Link Mapping. In INFOCOM (2009).

[29] Coffman, E.G., J., and Graham, R. Optimal
scheduling for two-processor systems. Acta Infor-
matica (1972).

[30] Curino, C., Difallah, D. E., Douglas, C., Kr-
ishnan, S., Ramakrishnan, R., and Rao, S.
Reservation-based scheduling: If you’re late don’t
blame us! In SOCC (2014).

[31] Czumaj, A., and Scheideler, C. ANewAlgorithm
Approach to the General Lovasz Local Lemma with
Applications to Scheduling and Satisûability Prob-
lems (Extended Abstract). In STOC (2000).

[32] Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A.,
Lan, E.,Mavrinac, E., Schulte,W., Sanches, N.,
and Kandula, S. CloudBuild: Microso�’s Dis-
tributed and Caching Build Service. In ICSE (2016).

[33] Ghodsi, A., Zaharia,M., Hindman, B., Konwin-
ski, A., Shenker, S., and Stoica, I. Dominant
Resource Fairness: Fair Allocation Of Multiple Re-
source Types. In NSDI (2011).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 95

http://bit.ly/1DROqgt
http://tez.apache.org/
http://bazel.io/
http://bit.ly/1HlFRH0
http://research.cs.wisc.edu/htcondor/
http://research.cs.wisc.edu/htcondor/
http://bit.ly/1PfsT7F
http://bit.ly/1PfsT7F
http://bit.ly/1tGpbDN
http://bit.ly/1tGpbDN
http://bit.ly/1iS8xvP
http://bit.ly/1iS8xvP
http://kubernetes.io/
http://bit.ly/1V6TXV4
http://bit.ly/2d92ook
http://bit.ly/2ckArDO
http://bit.ly/2ckArDO
http://bit.ly/2ckArDO
http://bit.ly/2ckArDO
http://bit.ly/1KRK5gl
http://bit.ly/1J6uDap

[34] Gliboric, M., Schulte, W., Prasad, C., van
Velzen, D., Narsamdya, I., and Livshits, B. Au-
tomated migration of build scripts using dynamic
analysis and search-based refactoring. In OOPSLA
(2014).

[35] Goldberg, L. A., Paterson, M., Srinivasan, A.,
and Sweedyk, E. Better approximation guarantees
for job-shop scheduling. In SODA (1997).

[36] Graham, R. L. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics
(1969).

[37] Grandl, R., Ananthanarayanan, G., Kandula,
S., Rao, S., and Akella, A. Multi-resource Packing
for Cluster Schedulers. In SIGCOMM (2014).

[38] Grandl,R.,Kandula, S.,Rao, S., Akella, A., and
Kulkarni, J. Graphene: Packing and dependency-
aware scheduling for data-parallel clusters, extended
version. In MSR Technical Report (2016).

[39] Greenberg, A., Jain, N., Kandula, S., Kim, C.,
Lahiri, P.,Maltz, D. A., Patel, P., and Sengupta,
S. Vl2: A scalable and �exible data center network.
In SIGCOMM (2009).

[40] Gulwani, S.,Mehra, K., and Chilimbi, T. Speed:
Precise and eõcient static estimation of program
computational complexity. In POPL (2009).

[41] Hindman, B., Konwinski, A., Zaharia, M., Gh-
odsi, A., Joseph, A. D., Katz, R., Shenker, S., and
Stoica, I. Mesos: a platform for ûne-grained re-
source sharing in the data center. In NSDI (2011).

[42] Isard,M. Autopilot: Automatic Data Center Man-
agement. OSR (2007).

[43] Isard,M., Budiu,M., Yu, Y., Birrell, A., and Fet-
terly, D. Dryad: Distributed Data-parallel Pro-
grams from Sequential Building Blocks. In Eurosys
(2007).

[44] Isard,M., et al. Quincy: Fair Scheduling ForDis-
tributed Computing Clusters. In SOSP (2009).

[45] Jain, R., Chiu, D., and Hawe, W. A quantita-
tive measure of fairness and discrimination for re-
source allocation in shared computer systems. CoRR
cs.NI/9809099 (1998).

[46] Jalaparti, V., Bodik, P., Kandula, S., Menache,
I., Rybalkin, M., and Yan, C. Speeding up dis-
tributed request-responsework�ows. In SIGCOMM
(2013).

[47] Kelly, F., Maulloo, A., and Tan, D. Rate control
for communication networks: shadow prices, pro-
portional fairness and stability. Journal of the Oper-
ational Research Society (1998).

[48] Kumar,V. S.A.,Marathe,M.V., Parthasarathy,
S., and Srinivasan, A. Scheduling on unrelated
machines under tree-like precedence constraints.
Algorithmica (2009).

[49] Kwok, Y., and Ahmad, I. Static scheduling algo-
rithms for allocating directed task graphs to multi-
processors. ACMComputing Surveys (CSUR) (1999).

[50] Leighton, F. T., Maggs, B. M., and Rao, S. Uni-
versal packet routing algorithms. In FOCS (1988).

[51] Lepère, R., Trystram, D., and Woeginger, G. J.
Approximation Algorithms for Scheduling Mal-
leable Tasks Under Precedence Constraints. Inter-
national Journal of Foundations of Computer Science
(2002).

[52] Lucier, B., Menache, I., Naor, J., and Yaniv,
J. Eõcient online scheduling for deadline-sensitive
batch computing. In SPAA (2013).

[53] Makarychev, K., and Panigrahi, D. Precedence-
constrained scheduling of malleable jobs with pre-
emption. In ICALP (2014).

[54] Mastrolilli, M., and Svensson, O. (acyclic) job
shops are hard to approximate. In FOCS (2008).

[55] Monaldo, M., and Ola, S. Improved bounds for
�ow shop scheduling. In ICALP (2009).

[56] Motwani, R., and Raghavan, P. Randomized Al-
gorithms. Cambridge University Press, New York,
NY, USA, 1995.

[57] Olston, C., et al. Pig Latin: A Not-So-Foreign
Language for Data Processing. In SIGMOD (2008).

[58] Panigrahy, R., Talwar, K., Uyeda, L., and
Wieder, U. Heuristics for Vector Bin Packing. In
MSR TR (2011).

[59] Peng, D., and Dabek, F. Large-scale incremental
processing using distributed transactions and noti-
ûcations. DBMS 2006 (2010), 1–15.

[60] Schiermeyer, I. Reverse-ût: A2-optimal algorithm
for packing rectangles. In Proceedings of the Second
Annual European Symposium on Algorithms (1994).

[61] Schurman, E., and Brutlag, J. _e User
and Business Impact of Server Delays, Addi-
tional Bytes, and Http Chunking in Web Search.

96 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://velocityconf.com/velocity2009/

public/schedule/detail/8523, 2009.

[62] Schwarzkopf, M., Konwinski, A., Abd-El-
Malek, M., and Wilkes, J. Omega: Flexible,
scalable schedulers for large compute clusters. In
EuroSys (2013).

[63] Shmoys, D. B., Stein, C., and Wein, J. Im-
proved approximation algorithms for shop schedul-
ing problems. SIAM J. Comput. (1994).

[64] Shreedhar, M., and Varghese, G. Eõcient fair
queueing using deûcit round robin. In SIGCOMM
(1995).

[65] Sungjin, I., Nathaniel, K., Janardhan, K., and
Debmalya, P. Tight bounds for online vector
scheduling. In FOCS (2015).

[66] Suresh, L., Canini, M., Schmid, S., and Feld-
mann, A. C3: Cutting tail latency in cloud data
stores via adaptive replica selection. In NSDI (2015).

[67] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z.,
Chakka, P., Zhang, N., Antony, S., Liu, H., and
Murthy, R. Hive- a warehousing solution over a
map-reduce framework. In VLDB (2009).

[68] Verma, A., Pedrosa, L.,Korupolu,M.R.,Oppen-
heimer, D., Tune, E., and Wilkes, J. Large-scale
clustermanagement atGooglewithBorg. InEuroSys
(2015).

[69] Woeginger,G. J. _ere IsNoAsymptoticPTASFor
Two-Dimensional Vector Packing. In Information
Processing Letters (1997).

[70] Yossi, A., Ilan, C., Seny, K., and Bruce, S. Tight
bounds for online vector bin packing. In STOC
(2013).

[71] Yossi, A., Ilan Reuven, C., and Iftah,G. _e loss
of serving in the dark. In STOC (2013).

[72] Zaharia, M., Borthakur, D., Sarma, J. S.,
Elmeleegy, K., Shenker, S., and Stoica, I. De-
lay Scheduling: A Technique For Achieving Local-
ity And Fairness In Cluster Scheduling. In EuroSys
(2010).

[73] Zaharia, M., Chowdhury, N. M. M., Franklin,
M., Shenker, S., and Stoica, I. Spark: Cluster
computingwithworking sets. No.UCB/EECS-2010-
53.

[74] Zaharia,M., Konwinski, A., Joseph, A.D., Katz,
R., and Stoica, I. Improving MapReduce Perfor-
mance in Heterogeneous Environments. In OSDI
(2008).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 97

http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://velocityconf.com/velocity2009/public/schedule/detail/8523

Firmament: fast, centralized cluster scheduling at scale

Ionel Gog† Malte Schwarzkopf‡ Adam Gleave† Robert N. M. Watson† Steven Hand∗
† University of Cambridge Computer Laboratory ‡ MIT CSAIL ∗Google, Inc.

Abstract
Centralized datacenter schedulers can make high-quality
placement decisions when scheduling tasks in a clus-
ter. Today, however, high-quality placements come at
the cost of high latency at scale, which degrades response
time for interactive tasks and reduces cluster utilization.

This paper describes Firmament, a centralized sched-
uler that scales to over ten thousand machines at sub-
second placement latency even though it continuously
reschedules all tasks via a min-cost max-flow (MCMF)
optimization. Firmament achieves low latency by using
multiple MCMF algorithms, by solving the problem in-
crementally, and via problem-specific optimizations.

Experiments with a Google workload trace from a
12,500-machine cluster show that Firmament improves
placement latency by 20× over Quincy [22], a prior
centralized scheduler using the same MCMF optimiza-
tion. Moreover, even though Firmament is centralized, it
matches the placement latency of distributed schedulers
for workloads of short tasks. Finally, Firmament ex-
ceeds the placement quality of four widely-used central-
ized and distributed schedulers on a real-world cluster,
and hence improves batch task response time by 6×.

1 Introduction
Many applications today run on large datacenter clus-
ters [3]. These clusters are shared by applications of
many organizations and users [6; 21; 35]. Users execute
jobs, which each consist of one or more parallel tasks.
The cluster scheduler decides how to place these tasks
on cluster machines, where they are instantiated as pro-
cesses, containers, or VMs.

Better task placements by the cluster scheduler lead
to higher machine utilization [35], shorter batch job run-
time, improved load balancing, more predictable appli-
cation performance [12; 36], and increased fault toler-
ance [32]. Achieving high task placement quality is hard:
it requires algorithmically complex optimization in mul-
tiple dimensions. This goal conflicts with the need for a

low placement latency, the time it takes the scheduler to
place a new task. A low placement latency is required
both to meet user expectations and to avoid idle cluster
resources while there are waiting tasks. Shorter batch
task runtimes and increasing cluster scale make it diffi-
cult to meet both conflicting goals [9; 10; 13; 23; 29].
Current schedulers thus choose one to prioritize.

Three different cluster scheduler architectures exist to-
day. First, centralized schedulers use elaborate algo-
rithms to find high-quality placements [11; 12; 35], but
have latencies of seconds or minutes [13; 32]. Second,
distributed schedulers use simple algorithms that allow
for high throughput, low latency parallel task placement
at scale [13; 28; 29]. However, their uncoordinated de-
cisions based on partial, stale state can result in poor
placements. Third, hybrid schedulers split the workload
across a centralized and a distributed component. They
use sophisticated algorithms for long-running tasks, but
rely on distributed placement for short tasks [9; 10; 23].

In this paper, we show that a centralized scheduler
based on sophisticated algorithms can be fast and scal-
able for both current and future workloads. We built Fir-
mament, a centralized scheduler that meets three goals:

1. to maintain the same high placement quality as an
existing centralized scheduler (viz. Quincy [22]);

2. to achieve sub-second task placement latency for all
workloads in the common case; and

3. to cope well with demanding situations such as clus-
ter oversubscription or large incoming jobs.

Our key insight is that even centralized sophisticated al-
gorithms for the scheduling problem can be fast (i) if they
match the problem structure well, and (ii) if few changes
to cluster state occur while the algorithm runs.

Firmament generalizes Quincy [22], which represents
the scheduling problem as a min-cost max-flow (MCMF)
optimization over a graph (§3) and continuously resched-
ules the entire workload. Quincy’s original MCMF algo-
rithm results in task placement latencies of minutes on a
large cluster. Firmament, however, achieves placement

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 99

latencies of hundreds of milliseconds in the common
case and reaches the same placement quality as Quincy.

To achieve this, we studied several MCMF optimiza-
tion algorithms and their performance (§4). Surpris-
ingly, we found that relaxation [4], a seemingly ineffi-
cient MCMF algorithm, outperforms other algorithms on
the graphs generated by the scheduling problem. How-
ever, relaxation can be slow in crucial edge cases, and we
thus investigated three techniques to reduce Firmament’s
placement latency across different algorithms (§5):

1. Terminating the MCMF algorithms early to find
approximate solutions generates unacceptably poor
and volatile placements, and we reject the idea.

2. Incremental re-optimization improves the runtime
of Quincy’s original MCMF algorithm (cost scal-
ing [17]), and makes it an acceptable fallback.

3. Problem-specific heuristics aid some MCMF algo-
rithms to run faster on graphs of specific structure.

We combined these algorithmic insights with several
implementation-level techniques to further reduce Fir-
mament’s placement latency (§6). Firmament runs two
MCMF algorithms concurrently to avoid slowdown in
edge cases; it implements an efficient graph update algo-
rithm to handle cluster state changes; and it quickly ex-
tracts task placements from the computed optimal flow.

Our evaluation compares Firmament to existing dis-
tributed and centralized schedulers, both in simulation
(using a Google workload trace) and on a local 40-
machine cluster (§7). In our experiments, we find that
Firmament scales well: even with 12,500 machines and
150,000 live tasks eligible for rescheduling, Firmament
makes sub-second placements. This task placement la-
tency is comparable to those of distributed schedulers,
even though Firmament is centralized. When scheduling
workloads that consist exclusively of short, sub-second
tasks, Firmament scales to over 1,000 machines, but suf-
fers overheads for task runtimes below 5s at 10,000 ma-
chines. Yet, we find that Firmament copes well with re-
alistic, mixed workloads that combine long-running ser-
vices and short tasks even at this scale: Firmament keeps
up with a 250× accelerated Google workload. Finally,
we show that Firmament’s improved placement quality
reduces short batch tasks’ runtime by up to 6× compared
to other schedulers on a real-world cluster.

Firmament is available as open-source software (§9).

2 Background
Cluster managers such as Mesos [21], YARN [34],
Borg [35], and Kubernetes [14] automatically share and
manage physical datacenter resources. Each one has a
scheduler, which is responsible for placing tasks on ma-
chines. Figure 1 illustrates the lifecycle of a task in a
cluster manager: after the user submits the task, it waits
until the scheduler places it on a machine where it sub-

time

Task
submitted

Start
scheduling

Task
placed

Task
running

Task
completed

waiting scheduling starting running

algorithm runtime
task placement latency

task response time

Figure 1: Task lifecycle phases, state transition events
(bottom) and the time ranges used in this paper (top).

sequently runs. The time between submission and task
placement is the task placement latency, and to the total
time between the task’s submission and its completion is
the task response time.1 The time a task spends being
actively scheduled is the scheduler’s algorithm runtime.

For each task, the scheduling algorithm typically first
performs a feasibility check to identify suitable ma-
chines, then scores them according to a preference order,
and finally places the task on the best-scoring machine.
Scoring, i.e., rating the different placement choices for
a task, can be expensive. Google’s Borg, for example,
relies on several batching, caching, and approximation
optimizations to keep scoring tractable [35, §3.4].

High placement quality increases cluster utilization
and avoids performance degradation due to overcommit.
Poor placement quality, by contrast, increases task re-
sponse time (for batch tasks), or decreases application-
level performance (for long-running services).

2.1 Task-by-task placement

Most cluster schedulers, whether centralized or dis-
tributed, are queue-based and process one task at a time
(per scheduler). Figure 2a illustrates how such a queue-
based scheduler processes a new task. The task first
waits in a queue of unscheduled tasks until it is dequeued
and processed by the scheduler. In a busy cluster, a
task may spend substantial time enqueued. Some sched-
ulers also have tasks wait in a per-machine “worker-side”
queue [29], which allows for pipelined parallelism.

Task-by-task placement has the advantage of being
amenable to uncoordinated, parallel decisions in dis-
tributed schedulers [9; 10; 13; 28]. On the other hand,
processing one task at a time also has two crucial down-
sides: first, the scheduler commits to a placement early
and restricts its choices for further waiting tasks, and sec-
ond, there is limited opportunity to amortize work.

2.2 Batching placement

Both downsides of task-by-task placement can be ad-
dressed by batching. Processing several tasks in a batch

1Task response time is primarily meaningful for batch tasks; long-
running service tasks’ response times are conceptually infinite, and in
practice are determined by failures and operational decisions.

100 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

time

Task
submitted

Task
enqueued

Task
dequeued

Task
placed

Task
starts

enqueueing waiting in queue placing (∗queueing)

algorithm runtime
task placement latency

(a) Queue-based schedulers (∗: optional worker-side queue).

time

Change
detected

Graph
updated

Solver
started

Solver
finished

Workload
rescheduled

updating waiting solver running extracting

algorithm runtime
task placement latency

(b) Flow-based schedulers (Quincy [22], Firmament).

Figure 2: Tasks wait to be placed individually in queue-based schedulers (a), while flow-based schedulers (b) resched-
ule the whole workload in a long solver run, which makes it essential to minimize algorithm runtime at scale.

50 450 850
1250

2500
5000

7500
10000

12500

Cluster size [machines]

0

20

40

60

80

100

A
lg

or
ith

m
ru

nt
im

e
[s

ec
]

Figure 3: Quincy [22]’s approach scales poorly as clus-
ter size grows. Simulation on subsets of the Google
trace; boxes are 25th, 50th, and 75th percentile delays,
whiskers 1st and 99th, and a star indicates the maximum.

allows the scheduler to jointly consider their placement,
and thus to find the best trade-off for the whole batch. A
natural extension of this idea is to reconsider the entire
existing workload (“rescheduling”), and to preempt and
migrate running tasks if prudent.

Flow-based scheduling, introduced by Quincy [22],
is an efficient batching technique. Flow-based schedul-
ing uses a placement mechanism – min-cost max-flow
(MCMF) optimization – with an attractive property: it
guarantees overall optimal task placements for a given
scheduling policy. Figure 2b illustrates how it proceeds.
If a change to cluster state happens (e.g., task submis-
sion), the scheduler updates an internal graph represen-
tation of the scheduling problem. It waits for any running
optimization to finish, and then runs a MCMF solver on
the graph. This yields an optimal flow from which the
scheduler extracts the task assignments.

However, Figure 3 illustrates that Quincy, the current
state-of-the-art flow-based scheduler, is too slow to meet
our placement latency goal at scale. In this experiment,
we replayed subsets of the public Google trace [30],
which we augmented with locality preferences for batch

C
lu

st
er

m
an

ag
er

Jobs and tasks

Monitoring data

Cluster topology

Sc
he

du
le

r

Min-cost
max-flow solver

Flow network

Scheduling policy

optimal flow submit

extracted
placements modify

Figure 4: Firmament’s scheduling policy modifies the
flow network according to workload, cluster, and moni-
toring data; the network is passed to the MCMF solver,
whose computed optimal flow yields task placements.

processing jobs2 against our faithful reimplementation of
Quincy’s approach. We measured the scheduler algo-
rithm runtime for clusters of increasing size with propor-
tional workload growth. The algorithm runtime increases
with scale, up to a median of 64s and a 99th percentile of
83s for the full Google cluster (12,500 machines). Dur-
ing this time, the scheduler must wait for the solver to
finish, and cannot choose any placements for new tasks.

The goal of this paper is to build a flow-based sched-
uler that achieves equal placement quality to Quincy, but
which does so at sub-second placement latency. As our
experiment illustrates, we must achieve at least an order-
of-magnitude speedup over Quincy to meet this goal.

3 Firmament approach
We chose to develop Firmament as a flow-based sched-
uler for three reasons. First, flow-based scheduling
considers the entire workload, allowing us to support
rescheduling and priority preemption. Second, flow-
based scheduling achieves high placement quality and,
consequently, low task response times [22, §6]. Third,
as a batching approach, flow-based scheduling amortizes
work well over many tasks and placement decisions, and
hence achieves high task throughput – albeit at a high
placement latency that we aim to improve.

2Details of our simulation are in §7; in the steady-state, the 12,500-
machine cluster runs about 150,000 tasks comprising about 1,800 jobs.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 101

T0,0

T0,1

T0,2

T1,0

T1,1

M0

M1

M2

M3

S

U0

U1

5

5
5

7

7

2

3

1

6

4

2

Figure 5: Example flow network for a four-machine
cluster with two jobs of three and two tasks. All tasks
except T0,1 are scheduled on machines. Arc labels show
non-zero costs, and all arcs have unit capacity apart from
those between unscheduled aggregators and the sink.
The red arcs carry flow and form the min-cost solution.

3.1 Architecture

Figure 4 gives an overview of the Firmament sched-
uler architecture. Firmament, like Quincy, models the
scheduling problem as a min-cost max-flow (MCMF) op-
timization over a flow network. The flow network is a
directed graph whose structure is defined by the schedul-
ing policy. In response to events and monitoring infor-
mation, the flow network is modified according to the
scheduling policy, and submitted to an MCMF solver to
find an optimal (i.e., min-cost) flow. Once the solver
completes, it returns the optimal flow, from which Fir-
mament extracts the implied task placements. In the fol-
lowing, we first explain the basic structure of the flow
network, and then discuss how to make the solver fast.

3.2 Flow network structure

A flow network is a directed graph whose arcs carry flow
from source nodes to a sink node. A cost and capacity
associated with each arc constrain the flow, and specify
preferential routes for it.

Figure 5 shows an example of a flow network that ex-
presses a simple cluster scheduling problem. Each task
node T j,i on the left hand side, representing the ith task of
job j, is a source of one unit of flow. All such flow must
be drained into the sink node (S) for a feasible solution to
the optimization problem. To reach S, flow from T j,i can
proceed through a machine node (Mm), which schedules
the task on machine m (e.g., T0,2 on M1). Alternatively,
the flow may proceed to the sink through an unscheduled
aggregator node (U j for job j), which leaves the task un-
scheduled (as with T0,1) or preempts it if running.

In the example, a task’s placement preferences are ex-
pressed as costs on direct arcs to machines. The cost to
leave the task unscheduled, or to preempt it when run-

ning, is the cost on its arc to the unscheduled aggregator
(e.g., 7 for T1,1). Given this flow network, an MCMF
solver finds a globally optimal (i.e., minimum-cost) flow
(shown in red in Figure 5). This optimal flow expresses
the best trade-off between the tasks’ unscheduled costs
and their placement preferences. Task placements are ex-
tracted by tracing flow from the machines back to tasks.

In our example, tasks had only direct arcs to machines.
The solver finds the best solution if every task has an arc
to each machine scored according to the scheduling pol-
icy, but this requires thousands of arcs per task on a large
cluster. Policy-defined aggregator nodes, similar to the
unscheduled aggregators, reduce the number of arcs re-
quired to express a scheduling policy. Such aggregators
group, e.g., machines in a rack, tasks with similar re-
source needs, or machines with similar capabilities. With
aggregators, the cost of a task placement is the sum of all
costs on the path from the task node to the sink.

3.3 Scheduling policies

Firmament generalizes flow-based scheduling over the
single, batch-oriented policy proposed by Quincy. Clus-
ter administrators use a policy API to configure Firma-
ment’s scheduling policy, which may incorporate e.g.,
multi-dimensional resources, fairness, and priority pre-
emption [31, Ch. 6–7]. This paper focuses on Firma-
ment’s scalability, and we therefore use only three sim-
plified, illustrative policies explained in the following: (i)
a simple load-spreading policy, (ii) Quincy’s slot-based,
locality-oriented policy, and (iii) a network-aware policy
that avoids overloading machines’ network connections.

Load-spreading policy. Figure 6a shows a trivial use
of an aggregator: all tasks have arcs to a cluster-wide
aggregator (X). The cost on the outgoing arc from X to
each machine node is proportional to the number of tasks
already running on the machine (e.g., one task on M3).
The effect is that the number of tasks on a machine only
increases once all other machines have at least as many
tasks (as e.g., in Docker SwarmKit). This policy neither
requires or nor uses the full sophistication of flow-based
scheduling. We use it to highlight specific edge cases in
MCMF algorithms (see §4.3).

Quincy policy. Figure 6b depicts Quincy’s original
locality-oriented policy [22, §4.2], which uses rack ag-
gregators (Rr) and a cluster aggregator (X) to express
data locality for batch jobs. Tasks have low-cost prefer-
ence arcs to machines and racks on which they have local
data, but fall back to scheduling via the cluster aggregator
if their preferences are unavailable (e.g., T0,2). This pol-
icy is suitable for batch jobs, and optimizes for a trade-
off between data locality, task wait time, and preemp-
tion cost. We use it to illustrate MCMF algorithm per-
formance and for head-to-head comparison with Quincy.

102 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

T0,0

T0,1

T0,2

T1,0

T1,1

X

M0

M1

M2

M3

S

U0

U1

5

5

5

7

7

1

1

1

2
running: 0

(a) Load-spreading policy with a sin-
gle cluster aggregator (X) and costs pro-
prtional to number of tasks per machine.

T0,0

T0,1

T0,2

T1,0

T1,1

X

R0

M0

M1

R1

M2

M3

S

U0

U1

12
56

20
11

9

10

42

32

77

running: 5

PA: 7

PA: 8

(b) Quincy policy with cluster (X) and
rack (R) aggregators, and data locality
preference arcs (PA).

T0,0

T0,1

T0,2

T1,0

T1,1

RA400

M0 (850)

M1 (850)

RA150 M2 (650)

M3 (1050)

S

U0

U1

2500

2500

1250

1050

10
00

800

running: 0

(c) Network-aware policy with request
aggregators (RA) and dynamic arcs to
machines with spare network bandwidth.

Figure 6: Different aggregators, arcs, and costs help Firmament express the scheduling policies used in this paper;
costs are example values consistent with each policy. Firmament also supports other policies via an API [31, Ch. 6–7].

Network-aware policy. Figure 6c illustrates a policy
which avoids overcommitting machines’ network band-
width (which degrades task response time). Each task
connects to a request aggregator (RA) for its network
bandwidth request. The RAs have one arc for each task
that fits on each machine with sufficient spare bandwidth
(e.g., 650 MB/s of 1.25 GB/s on M2’s 10G link). These
arcs are dynamically adapted as the observed bandwidth
use changes. Costs on the arcs to machines are the sum
of the request and the currently used bandwidth, which
incentivizes balanced utilization. We use this policy to
illustrate Firmament’s potential to make high-quality de-
cisions, but a production policy would be more complex
and extend it with a priority notion and additional re-
source dimensions (e.g., CPU/RAM) [31, §7.3].

4 Min-cost max-flow algorithms
A flow-based scheduler can use any MCMF algorithm,
but some algorithms are better suited to the scheduling
problem than others. In this section, we explain the
MCMF algorithms that we implemented for Firmament,
compare them empirically, and explain their sometimes
unexpected performance.

A min-cost max-flow algorithm takes a directed flow
network G = (N,A) as input. Each arc (i, j) ∈ A has a
cost ci j and a maximum capacity ui j. Each node i ∈ N
also has an associated supply b(i); nodes with positive
supply are sources, those with negative supply are sinks.

Informally, MCMF algorithms must optimally route
the flow from all sources (e.g., task nodes Ti, j) to sinks
(e.g., the sink node S) without exceeding the capacity
constraint on any arc. To understand the differences be-
tween MCMF algorithms, we need a slightly more for-
mal definition: the goal is to find a flow f that minimizes

Eq. 1, while respecting the flow feasibility constraints of
mass balance (Eq. 2) and capacity (Eq. 3):

Minimize ∑
(i, j)∈A

ci j fi j subject to (1)

∑
k:(j,k)∈A

f jk− ∑
i:(i, j)∈A

fi j = b(j),∀ j ∈ N (2)

and 0≤ fi j ≤ ui j,∀(i, j) ∈ A (3)

Some algorithms use an equivalent definition of the flow
network, the residual network. In the residual network,
each arc (i, j) ∈ A with cost ci j and maximum capacity
ui j is replaced by two arcs: (i, j) and (j, i). Arc (i, j) has
cost ci j and a residual capacity of ri j = ui j− fi j, while arc
(j, i) has cost −ci j and a residual capacity r ji = fi j. The
feasibility constraints also apply in the residual network.

The primal minimization problem (Eq. 1) also has an
associated dual problem, which some algorithms solve
more efficiently. In the dual min-cost max-flow prob-
lem, each node i∈N has an associated dual variable π(i)
called the potential. The potentials are adjusted in dif-
ferent, algorithm-specific ways to meet optimality condi-
tions. Moreover, each arc has a reduced cost with respect
to the node potentials, defined as:

cπ
i j = ci j−π(i)+π(j) (4)

A feasible flow is optimal if and only if at least one of
three optimality conditions is met:

1. Negative cycle optimality: no directed negative-
cost cycles exist in the residual network.

2. Reduced cost optimality: there is a set of node po-
tentials π such that there are no arcs in the residual
network with negative reduced cost (cπ

i j).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 103

Algorithm Worst-case complexity
Relaxation O(M3CU2)
Cycle canceling O(NM2CU)
Cost scaling O(N2M log(NC))
Successive shortest path O(N2U log(N))

Table 1: Worst-case time complexities for min-cost
max-flow algorithms. N is the number of nodes, M the
number of arcs, C the largest arc cost and U the largest
arc capacity. In our problem, M > N >C >U .

3. Complementary slackness optimality: there is a
set of node potentials π such that the flow on arcs
with cπ

i j > 0 is zero, and there are no arcs with both
cπ

i j < 0 and available capacity.

Algorithms. The simplest MCMF algorithm is cycle
canceling [25]. The algorithm first computes a max-
flow solution, and then performs a series of iterations in
which it augments flow along negative-cost directed cy-
cles in the residual network. Pushing flow along such a
cycle guarantees that the overall solution cost decreases.
The algorithm finishes with an optimal solution once no
negative-cost cycles remain (i.e., the negative cycle opti-
mality condition is met). Cycle canceling always main-
tains feasibility and attempts to achieve optimality.

Unlike cycle canceling, the successive shortest path
algorithm [2, p. 320] maintains reduced cost optimality
at every step and tries to achieve feasibility. It repeatedly
selects a source node (i.e., b(i)> 0) and sends flow from
it to the sink along the shortest path.

The relaxation algorithm [4; 5], like successive short-
est path, augments flow from source nodes along the
shortest path to the sink. However, unlike successive
shortest path, relaxation optimizes the dual problem by
applying one of two changes when possible:

1. Keeping π unchanged, the algorithm modifies the
flow, f , to f ′ such that f ′ still respects the reduced
cost optimality condition and the total supply de-
creases (i.e., feasibility improves).

2. It modifies π to π ′ and f to f ′ such that f ′ is still
a reduced cost-optimal solution and the cost of that
solution decreases (i.e., total cost decreases).

This allows relaxation to decouple the improvements in
feasibility from reductions in total cost. When relaxation
can reduce cost or improve feasibility, it reduces cost.

Cost scaling [17–19] iterates to reduce cost while
maintaining feasibility, and uses a relaxed complemen-
tary slackness condition called ε-optimality. A flow is ε-
optimal if the flow on arcs with cπ

i j > ε is zero and there
are no arcs with cπ

i j <−ε on which flow can be sent. Ini-
tially, ε is equal to the maximum arc cost, but ε rapidly
decreases as it is divided by a constant factor after every
iteration that achieves ε-optimality. Cost scaling finishes

50
1250

2500
5000

7500
10000

12500

Cluster size [machines]

1ms

10ms

100ms

1s

10s

100s

A
vg

.a
lg

or
ith

m
ru

nt
im

e
[l

og
10

]

Cycle canceling
Succ. shortest
Cost scaling
Relaxation

Figure 7: Average runtime for MCMF algorithms on
clusters of different sizes, subsampled from the Google
trace. We use the Quincy policy and slot utilization is
about 50%. Relaxation performs best, despite having the
highest time complexity. [N.B.: log10-scale y-axis.]

when 1
n -optimality is achieved, since this is equivalent to

the complementary slackness optimality condition [17].

4.1 Algorithmic performance

Table 1 summarizes the worst-case complexities of the
algorithms discussed. The complexities suggest that suc-
cessive shortest path ought to work best, as long as
U log(N)< M log(NC), which is the case as U �M and
C ≥ 1. However, since MCMF algorithms are known to
have variable runtimes depending on the input graph [15;
24; 26], we decided to directly measure performance.

4.2 Measured performance

As in the experiment in Figure 3, we subsample the
Google trace and replay it for simulated clusters of differ-
ent sizes. We use the Quincy scheduling policy for batch
jobs and prioritize service jobs over batch ones. Figure 7
shows the average runtime for each MCMF algorithm
considered. Even though it has the best worst-case time
complexity, successive shortest path outperforms only
cycle canceling, and even on a modest cluster of 1,250
machines its algorithm runtime exceeds 100 seconds.

Moreover, the relaxation algorithm, which has the
highest worst-case time complexity, actually performs
best in practice. It outperforms cost scaling (used in
Quincy) by two orders of magnitude: on average, re-
laxation completes in under 200ms even on a cluster of
12,500 machines. One key reason for this perhaps sur-
prising performance is that relaxation does minimal work
when most scheduling choices are straightforward. This
happens if the destinations for tasks’ flow are uncon-
tested, i.e., few new tasks have arcs to the same location
and attempt to schedule there. In this situation, relaxation
routes most of the flow in a single pass over the graph.

104 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

91 92 93 94 95 96 97 98 99 100
Cluster slot utilization [%]

0
50

100
150
200
250
300
350
400
450

A
lg

or
ith

m
ru

nt
im

e
[s

ec
] Relaxation

Cost scaling

Figure 8: Close to full cluster utilization, relaxation run-
time increases dramatically, while cost scaling is unaf-
fected: the x-axis shows the utilization after scheduling
jobs of increasing size to a 90%-utilized cluster.

0 1000 2000 3000 4000 5000
Tasks in arriving job

0
5

10
15
20
25
30
35
40

A
lg

or
ith

m
ru

nt
im

e
[s

ec
] Relaxation

Cost scaling

Figure 9: Contention slows down the relaxation algo-
rithm: on cluster with a load-spreading scheduling pol-
icy, relaxation runtime exceeds that of cost scaling at just
under 3,000 concurrently arriving tasks (e.g., a large job).

4.3 Edge cases for relaxation

Yet, relaxation is not always the right choice. For exam-
ple, it can perform poorly under the high load and over-
subscription common in batch analytics clusters [29].
Figure 8 illustrates this: here, we push the simulated
Google cluster closer to oversubscription. We take a
snapshot of the cluster and then submit increasingly
larger jobs. The relaxation runtime increases rapidly, and
at about 93% cluster utilization, it exceeds that of cost
scaling, growing to over 400s in the oversubscribed case.

Moreover, some scheduling policies inherently cre-
ate contention between tasks. Consider, for example,
our load-spreading policy that balances the task count
on each machine. This policy makes “under-populated”
machines a popular destination for tasks’ flow, and thus
creates contention. We illustrate this with an experi-

0 20 40 60 80 100 120 140
Algorithm runtime [sec]

0

1000

2000

3000

4000

5000

Ta
sk

m
is

pl
ac

em
en

ts

Relaxation
Cost scaling

Figure 10: Approximate min-cost max-flow yields poor
solutions, since many tasks are misplaced until shortly
before the algorithms reach the optimal solution.

ment: we submit a single job with an increasing num-
ber of tasks to a cluster using the load-spreading policy.
This corresponds to the rare-but-important arrival of very
large jobs: for example, 1.2% of jobs in the Google trace
have over 1,000 tasks, and some even over 20,000. Fig-
ure 9 shows that relaxation’s runtime increases linearly
in the number of tasks, and that it exceeds the runtime of
cost scaling once the new job has over 3,000 tasks.

To make matters worse, a single overlong relaxation
run can have a devastating effect on long-term placement
latency. If many new tasks arrive during such a long run,
the scheduler might again be faced with many unsched-
uled tasks when it next runs. Hence, relaxation may take
a long time again, accumulate many changes, and in the
worst case fail to ever recover to low placement latency.

5 MCMF optimizations for scheduling
Relaxation has promising common-case performance at
scale for typical workloads. However, its edge-case be-
havior makes it necessary either (i) to fall back to other
algorithms in these cases, or (ii) to reduce runtime in
other ways. In the following, we use challenging graphs
to investigate optimizations that either improve relax-
ation or the best “fallback” algorithm, cost scaling.

5.1 Approximate min-cost max-flow

MCMF algorithms return an optimal solution. For the
cluster scheduling problem, however, an approximate so-
lution may well suffice. For example, TetriSched [33]
(based on an MILP solver), as well as Paragon [11] and
Quasar [12] (based on collaborative filtering), terminate
their solution search after a set time. We therefore inves-
tigated the solution quality of cost scaling and relaxation
when they are terminated early. This would work well
if the algorithms spent a long time on minor solution re-
finements with little impact on the overall outcome.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 105

Algorithm Feasiblity Red. cost
optimality ε-optimality

Relaxation – 3 –
Cycle canceling 3 – –

Cost scaling 3 – 3

Succ. shortest path – 3 –

Table 2: Algorithms have different preconditions for
each internal iteration. Cost scaling expects feasibility
and ε-optimality, making it difficult to incrementalize.

In our experiment, we use a highly-utilized cluster (cf.
Figure 8) to investigate relaxation and cost scaling, but
the results generalize. Figure 10 shows the number of
“misplaced” tasks as a function of how early we termi-
nate the algorithms. We treat any task as misplaced if
it is (i) preempted in the approximate solution but keeps
running in the optimal one; (ii) scheduled on a differ-
ent machine to where it is scheduled in the optimal so-
lution. Both cost scaling and relaxation misplace thou-
sands of tasks when terminated early, and tasks are still
misplaced even in the final iteration before completion.
Hence, early termination appears not to be a viable place-
ment latency optimization for flow-based schedulers.

5.2 Incremental min-cost max-flow

Since cluster state does not change dramatically between
subsequent scheduling runs, the MCMF algorithm might
be able to reuse its previous state. In this section, we
describe what changes are required to make MCMF al-
gorithms work incrementally, and provide some intuition
for which algorithms are suitable for incremental use.

All cluster events (e.g., task submissions, machine
failures) ultimately reduce to three different types of
graph change in the flow network:

1. Supply changes at nodes when arcs or nodes which
previously carried flow are removed (e.g., due to
machine failure), or when nodes with supply are
added to the graph (e.g., at task submission).

2. Capacity changes on arcs if machines fail or
(re)join the cluster. Note that arc additions and re-
movals can also be modeled as capacity changes
from and to zero-capacity arcs.

3. Cost changes on an arc when the desirability of
routing flow via that arc changes; when these hap-
pen exactly depends on the scheduling policy.

Changes to the supply of a node, an arc’s capacity, or its
cost can invalidate the feasibility and optimality of an ex-
isting flow. Some MCMF algorithms require the flow to
be feasible at every step and improve ε-optimality, while
others require optimality to always hold and improve fea-
sibility (Table 2). A solution must be optimal and feasi-
ble because an infeasible solution fails to route all flow,
which leaves tasks unscheduled or erroneously preempts
them, while a non-optimal solution misplaces tasks.

Quincy Load-spreading
Scheduling policy

0

10

20

30

40

50

60

A
lg

or
ith

m
ru

nt
im

e
[s

ec
]

Cost scaling Incremental cost scaling

Figure 11: Incremental cost scaling is 25% faster com-
pared to from-scratch cost scaling for the Quincy policy
and 50% faster for the load-spreading policy.

Reduced cost on arc from i to j
Change type cπ

i j < 0 cπ
i j = 0 cπ

i j > 0
Increasing arc cap.

Decreasing arc cap. fi j > u′i j
Increasing arc cost c′πi j > 0 fi j > 0

Decreasing arc cost c′πi j < 0

Table 3: Arc changes requiring solution reoptimization.
Green: stays optimal and feasible; red: breaks feasibility
or optimality; orange: breaks feasibility or optimality if
condition in cell holds. Decreasing arc capacity can de-
stroy feasibility; all other changes affect optimality only.

We implemented incremental versions of the cost scal-
ing and relaxation algorithms. Incremental cost scaling
is up to 50% faster than running cost scaling from scratch
(Figure 11). Incremental cost scaling’s potential gains
are limited because cost scaling requires the flow to be
feasible and ε-optimal before each intermediate iteration
(Table 2). Graph changes can cause the flow to violate
one or both requirements: for example, any addition or
removal of task nodes adds supply and breaks feasibil-
ity. Table 3 shows the effect of different arc changes on
the feasibility and optimality of the flow. A change that
modifies the cost of an arc (i, j) from cπ

i j < 0 to c′πi j > 0,
for example, breaks optimality. Many changes break op-
timality and cause cost scaling to fall back to a higher
ε-optimality to compensate. To bring ε back down, cost
scaling must do a substantial part of the work it would
do from scratch. However, the limited improvement still
helps reduce our fallback algorithm’s runtime.

Incremental relaxation ought to work better than in-
cremental cost scaling, since the relaxation algorithm
only needs to maintain reduced cost optimality (Table 2).
In practice, however, it turns out not to work well. While
the algorithm can be incrementalized with relative ease
and often runs faster, it – counter-intuitively – can also be

106 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

No AP AP
Relaxation

0
15
30
45
60

A
lg

.r
un

tim
e

[s
ec

]

(a) Arc prioritization (AP).

No TR TR
Cost scaling

0
15
30
45
60

A
lg

.r
un

tim
e

[s
ec

]

(b) Eff. task removal (TR).

Figure 12: Problem-specific heuristics reduce runtime
by 45% (AP, relaxation) and 10% (TR, inc. cost scaling).

slower incrementally than when running from scratch.
Relaxation requires reduced cost optimality to hold at

every step of the algorithm and tries to achieve feasibility
by pushing flow on zero-reduced cost arcs from source
nodes to nodes with demand. The algorithm builds a tree
of zero-reduced cost arcs from each source node in or-
der to find such demand nodes. The tree is expanded by
adding zero-reduced cost arcs to it. When running from
scratch, the likelihood of zero-reduced cost arcs connect-
ing two zero-reduced cost trees is low, as there are few
such trees initially. Only when the solution is close to
optimality, trees are joined into larger ones. Incremen-
tal relaxation, however, works with the existing, close-
to-optimal state, which already contains large trees that
must be extended for each source. Having to traverse
these large trees many times, incremental relaxation can
run slower than from scratch. This happens especially for
graphs that relaxation already struggles with, e.g. ones
that contain nodes with a lot of potential incoming flow.
In practice, we found that incremental relaxation per-
forms well only if tasks are not typically connected to
a large zero-reduced cost tree.

5.3 Problem-specific heuristics

Our scheduler runs min-cost max-flow on a graph with
specific properties, rather than the more general graphs
typically used to evaluate MCMF algorithms [24, §4].
For example, our graph has a single sink; it is a directed
acyclic graph; and flow must always traverse unsched-
uled aggregators or machine nodes. Hence, problem-
specific heuristics might help the algorithms find solu-
tions more quickly. We investigated several such heuris-
tics, and found two beneficial ones: (i) prioritization of
promising arcs, and (ii) efficient task node removal.

5.3.1 Arc prioritization

The relaxation algorithm builds a tree of zero-reduced
cost arcs for every source node (see §5.2) in order to lo-
cate zero-reduced cost paths (i.e., paths that do not break
reduced cost optimality) to nodes with demand. When
this tree must be extended, any arc of zero reduced cost

that connects a node inside the tree to a node outside the
tree can be used. However, some arcs are better choices
for extension than others. The quicker we can find paths
to nodes with demand, the sooner we can route the sup-
ply. We therefore prioritize arcs that lead to nodes with
demand when extending the cut, adding them to the front
of a priority queue to ensure they are visited sooner.

In effect, this heuristic implements a hybrid graph
traversal that biases towards depth-first exploration when
demand nodes can be reached, but uses breadth first ex-
ploration otherwise. Figure 12a shows that applying this
heuristic reduces relaxation runtime by 45% when run-
ning over a graph with contended nodes.

5.3.2 Efficient task removal

Our second heuristic helps incremental cost scaling. It
is based on the insight that removal of a running task is
common (e.g., due to completion, preemption, or a ma-
chine failure), but breaks feasibility. This happens be-
cause the task node is removed, which creates demand at
the machine node where the task ran, since the machine
node still has outgoing flow in the intermediate solution.
Breaking feasibility is expensive for cost scaling (§5.2).

However, we can reconstruct the task’s flow through
the graph, remove it, and drain the machine node’s flow
at the single sink node. This creates demand in a single
place only (the sink), which accelerates the incremental
solution. However, Figure 12b shows that this heuristic
offers only modest gains: it improves runtime by 10%.

6 Firmament implementation
We implemented a new MCMF solver for Firmament. It
supports the four algorithms discussed earlier (§4) and
incremental cost scaling. The solver consists of about
8,000 lines of C++. Firmament’s cluster manager and
our simulator are implemented in about 24,000 lines of
C++, and are available at http://firmament.io.

In this section, we discuss implementation-level tech-
niques that, in addition to our prior algorithmic insights,
help Firmament achieve low task placement latency.

6.1 Algorithm choice

In §4, we saw that the practical performance of MCMF
algorithms varies. Relaxation often works best, but
scales poorly in specific edge cases. Cost scaling, by
contrast, scales well and can be incrementalized (§5.2),
but is usually substantially slower than relaxation.

Firmament’s MCMF solver always speculatively exe-
cutes cost scaling and relaxation, and picks the solution
offered by whichever algorithm finishes first. In the com-
mon case, this is relaxation; having cost scaling as well
guarantees that Firmament’s placement latency does not
grow unreasonably large in challenging situations. We
run both algorithms instead of developing a heuristic to
choose the right one for two reasons: first, it is cheap, as

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 107

http://firmament.io

0 5 10 15 20 25
Algorithm runtime [sec]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

of
al

go
ri

th
m

ru
nt

im
es

Price refine + cost scaling
Cost scaling

Figure 13: Incremental cost scaling runs 4× faster if we
apply the price refine heuristic to a graph from relaxation.

the algorithms are single-threaded and do not parallelize;
second, predicting the right algorithm is hard and the
heuristic would depend on both scheduling policy and
cluster utilization (cf. §4), making it brittle and complex.

6.2 Efficient algorithm switching

Firmament also applies an optimization that helps it ef-
ficiently transition state from relaxation to incremental
cost scaling. Firmament’s MCMF solver uses incremen-
tal cost scaling as it is faster than running cost scal-
ing from scratch (§5.2). Typically, however, the (from-
scratch) relaxation algorithm finishes first. The next in-
cremental cost scaling run must therefore use the solution
from a prior relaxation as a starting point. Since relax-
ation and cost scaling use different reduced cost graph
representations, this can be slow. Specifically, relaxation
may converge on node potentials that fit poorly into cost
scaling’s complementary slackness requirement, since
relaxation only requires reduced cost optimality.

We found that price refine [17], a heuristic originally
developed for use within cost scaling, helps with this
transition. Price refine reduces the node potentials with-
out affecting solution optimality, and thus simplifies the
problem for cost scaling. Figure 13 shows that applying
price refine to the prior relaxation solution graph speeds
up incremental cost scaling by 4× in 90% of cases.

We apply price refine on the previous solution before
we apply the latest cluster changes. This guarantees that
price refine is able to find node potentials that satisfy
complementary slackness optimality without modifying
the flow. Consequently, cost scaling must start only at a
value of ε equal to the costliest arc graph change.

6.3 Efficient solver interaction

So far, we have primarily focused on reducing the
MCMF solver’s algorithm runtime. To achieve low task
placement latency, we must make two steps that fall out-

1 to_visit = machine_nodes # list of machine nodes

2 node_flow_destinations = {} # auxiliary remember set

3 mappings = {} # final task mappings

4 while not to_visit.empty():
5 node = to_visit.pop()

6 if node.type is not TASK_NODE:
7 # Visit the incoming arcs

8 for arc in node.incoming_arcs():
9 moved_machines = 0

10 # Move as many machines to the incoming arc’s

11 # source node as there is flow on the arc

12 while assigned_machines < arc.flow:
13 node_flow_destinations[arc.source].append(

14 node_flow_destinations[node].pop())

15 moved_machines += 1

16 # (Re)visit the incoming arc’s source node

17 if arc.source not in to_visit:
18 to_visit.append(arc.source)

19 else: # node.type is TASK_NODE
20 mappings[node.task_id] =

21 node_flow_destinations[node].pop()

22 return mappings

Listing 1: Our efficient algorithm for extracting task
placements from the optimal flow returned by the solver.

side the solver runtime efficient as well. First, Firmament
must efficiently update the flow network’s nodes, arcs,
costs, and capacities before every MCMF optimization to
reflect the chosen scheduling policy. Second, Firmament
must quickly extract task placements out of the flow net-
work after the optimization finishes. We improve over
the prior work on flow-based scheduling in Quincy for
both aspects, as explained in the following.

Flow network updates. Firmament does two breadth-
first traversals of the flow network to update it for a new
solver run. The first traversal updates resource statis-
tics associated with every entity, such as the memory
available on a machine, its current load, or a task’s re-
source request. The traversal starts from the nodes ad-
jacent to the sink (usually machine nodes), and propa-
gates statistics along each node’s incoming arcs. Upon
the first traversal’s completion, Firmament runs a second
traversal that starts at the task nodes. This pass allows
the scheduling policy to update the flow network’s nodes,
arcs, costs and capacities using the statistics gathered in
the first traversal. Hence, only two passes over the large
graph must be made to prepare the next solver run. Their
overhead is negligible compared to the solver runtime.

Task placement extraction. At the end of a run, the
solver returns an optimal flow through the given network
and Firmament must extract the task placements implied
by this flow. Since Firmament allows arbitrary aggrega-
tors in the flow network, paths from tasks to machines
may be longer than in Quincy, where arcs necessarily
pointed to machines or racks. Hence, we had to gen-

108 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

eralize Quincy’s approach to this extraction [22, p. 275].
To extract task assignments efficiently, we devised the
graph traversal algorithm shown in Listing 1. The algo-
rithm starts from machine nodes and propagates a list of
machines to which each node has sent flow via its incom-
ing arcs. In the common case, the algorithm extracts the
task placements in a single pass over the graph.

7 Evaluation
We now evaluate how well Firmament meets its goals:

1. How do Firmament’s task placement quality and
placement latency compare to Quincy’s? (§7.2)

2. How does Firmament cope with demanding situa-
tions such as an overloaded cluster? (§7.3)

3. At what operating points does Firmament fail to
achieve sub-second placement latency? (§7.4)

4. How does Firmament’s placement quality compare
to other cluster schedulers on a physical cluster run-
ning a mixed batch/service workload? (§7.5)

7.1 Methodology

Our experiments combine scale-up simulations with ex-
periments on a local testbed cluster.

In simulations, we replay a public production work-
load trace from 12,500-machine Google cluster [30]
against Firmament’s implementation. Our simulator is
similar to Borg’s “Fauxmaster” [35, §3.1]: it runs Firma-
ment’s real code and scheduling logic against simulated
machines, merely stubbing out RPCs and task execution.
However, there are three important limitations to note.
First, the Google trace contains multi-dimensional re-
source requests for each task. Firmament supports multi-
dimensional feasibility checking (as in Borg [35, §3.2]),
but in order to fairly compare to Quincy, we use slot-
based assignment. Second, we do not enforce task con-
straints for the same reason, even though they typically
help Firmament’s MCMF solver. Third, the Google trace
lacks information about job types and input sizes. We use
Omega’s priority-based job type classification [32, §2.1],
and estimate batch task input sizes as a function of the
known runtime using typical industry distributions [8].

In local cluster experiments, we use a homogeneous
40-machine cluster. Each machine has a Xeon E5-
2430Lv2 CPU (12× 2.40GHz), 64 GB RAM, and uses
a 1TB magnetic disk for storage. The machines are con-
nected via 10 Gbps, full-bisection bandwidth Ethernet.

When we compare with Quincy, we run Firmament
with Quincy’s scheduling policy and restrict the solver
to use only cost scaling (as Quincy’s cs2 solver does).

7.2 Scalability vs. Quincy

In Figure 3, we illustrated that Quincy fails to scale to
clusters of thousands of machines at an acceptable place-
ment latency. We now repeat the same experiment us-
ing Firmament on the full-scale simulated Google clus-

0 10 20 30 40 50 60
Task placement latency [sec]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

ta
sk

pl
ac

em
en

tl
at

en
cy

Firmament
Cost scaling (Quincy)

Figure 14: Firmament has a 20× lower task placement
latency than Quincy on a simulated 12,500-machine
cluster at 90% slot utilization, replaying the Google
trace. The placement quality is identical to Quincy’s.

ter. However, we increase the cluster slot utilization from
the earlier experiment’s 50% to 90% to make the setup
more challenging for Firmament, and also tune the cost
scaling-based MCMF solver for its best performance.3

Figure 14 shows the results as a CDF of task place-
ment latency, i.e., the time between a task being submit-
ted to the cluster manager and the time when it has been
placed (§2). While Quincy takes between 25 and 60 sec-
onds to place tasks, Firmament typically places tasks in
hundreds of milliseconds and only exceeds a sub-second
placement latency in the 90th percentile. Therefore, Fir-
mament improves task placement latency by more than
a 20× over Quincy, but maintains the same placement
quality as it also finds an optimal flow.

Firmament’s low placement latency comes because re-
laxation scales well even for large flow networks with the
Google trace workload. This scalability allows us to af-
ford scheduling policies with many arcs. As an illustra-
tive example, we vary the data locality threshold in the
Quincy scheduling policy. This threshold decides what
fraction of a task’s input data must reside on a machine or
within a rack in order for the former to receive a prefer-
ence arc to the latter. Quincy originally picked a thresh-
old of a maximum of ten arcs per task. However, Fig-
ure 15a shows that even a lower threshold of 14% local
data, which corresponds to at most seven preference arcs,
yields algorithm runtimes of 20–40 seconds for Quincy’s
cost scaling. A low threshold allows the scheduler to ex-
ploit more fine-grained locality, but increases the num-
ber of arcs in the graph. Consequently, if we lower the
threshold to 2% local data,4 the cost scaling runtime in-

3Specifically, we found that an α-factor parameter value of 9, rather
than the default of 2 used in Quincy, improves runtime by ≈30%.

42% is a somewhat extreme value used for exposition here. The
benefit of such a low threshold in a real cluster would likely be limited.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 109

0 10 20 30 40
Algorithm runtime [sec]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

of
al

go
ri

th
m

ru
nt

im
es

Firmament 14%
Firmament 2%
Cost scaling (Quincy) 14%
Cost scaling (Quincy) 2%

(a) Low preference thresholds see subs-second runtimes in Fir-
mament, while Quincy (with cost scaling) takes over 40s.

Pref. threshold [local data] Input data locality
14% 56%

2% 71%
(b) A lower preference threshold improves data locality.

Figure 15: Firmament scales to many arcs, and thus sup-
ports a lower preference arc threshold than Quincy.

creases to well over 40 seconds. Firmament, on the other
hand, still achieves sub-second algorithm even with a 2%
threshold. This threshold yields an increase in data lo-
cality from 56% to 71% of total input data (Table 15b),
which saves 4 TB of network traffic per simulated hour.

7.3 Coping with demanding situations

In the previous experiments, Firmament had a lower
placement latency than Quincy because relaxation han-
dles the Google workload well. As explained in §4, there
are situations in which this is not the case. In those sit-
uations, Firmament picks incremental cost scaling’s so-
lution as it finishes first (§6). We now demonstrate the
benefits of running two algorithms rather than just one.

In this experiment, we shrink the number of slots per
cluster machine to reach 97% average utilization. Con-
sequently, the cluster experiences transient periods of
oversubscription. Figure 16 compares Firmament’s au-
tomatic use of the fastest algorithm against using only
one algorithm, either relaxation or cost scaling. During
oversubscription, relaxation alone takes hundreds of sec-
onds per run, while cost scaling alone completes in ≈30
seconds independent of cluster load. Firmament’s incre-
mental cost scaling finishes first in this situation, taking
10–15 seconds, which is about 2× faster than using cost
scaling only (as Quincy does). Firmament also recov-
ers earlier from the overload situation starting at 2,200s:
while the relaxation-only runtime returns to sub-second
level only around 3,700s, Firmament recovers at 3,200s.
Relaxation on its own takes longer to recover because

1000 1500 2000 2500 3000 3500 4000
Simulation Time [sec]

0

40

80

120

160

200

A
lg

or
ith

m
ru

nt
im

e
[s

ec
] Relaxation only

Cost scaling (Quincy)
Firmament

Figure 16: At times of high utilization (gray), Firma-
ment outperforms relaxation and Quincy’s cost scaling.

5000 4000 3000 2000 1000 0
Task duration [ms]

0

1000

2000

3000

4000

5000

Jo
b

re
sp

on
se

tim
e

[m
s]

Ideal
Firmament 100 machines
Firmament 1000 machines

Figure 17: Firmament’s breaking point is at tasks are
shorter than≈5ms at 100-machine scale, and≈375ms at
1,000-machine scale, with 80% cluster slot utilization.

many tasks complete and free up slots during the long
solver runs. These slots cannot be re-used until the next
solver run completes, even though new, waiting tasks
accumulate. Hence, Firmament’s combination of algo-
rithms outperforms either algorithm running alone.

7.4 Scalability to sub-second tasks

In the absence of oversubscription, we now investi-
gate the scalability limit of Firmament’s sub-second
relaxation-based MCMF. To find Firmament’s breaking
point, we subject it to a worst-case workload consist-
ing entirely of short tasks. This experiment is similar to
Sparrow’s breaking-point experiment for the centralized
Spark scheduler [28, Fig. 12]. We submit jobs of 10 tasks
at an interarrival time that keeps the cluster at a constant
load of 80% if there is no scheduler overhead. We mea-
sure job response time, which is the maximum of the ten
task response times for a job. In Figure 17, we plot job re-
sponse time as a function of decreasing task duration. As

110 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

50x 100x 150x 200x 250x 300x
Google trace speedup

0

3

6

9

12

15

18
Ta

sk
pl

ac
em

en
tl

at
en

cy
[s

ec
]

Firmament Relaxation only

Figure 18: Firmament, unlike relaxation alone, keeps
up with a 300× accelerated Google workload (1st, 25th,
50th, 75th, 99th percentiles and maximum).

we reduce task duration, we also reduce task interarrival
time to keep the load constant, hence increasing the task
throughput faced by the scheduler. With an ideal sched-
uler, job response time would be equal to task runtime as
the scheduler would take no time to choose placements.
Hence, the breaking point occurs when job response time
deviates from the diagonal. For example, Spark’s cen-
tralized task scheduler in 2013 had its breaking point on
100 machines at a 1.35 second task duration [28, §7.6].

By contrast, even though Firmament runs MCMF over
the entire workload every time, Figure 17 shows that it
achieves near-ideal job response time down to task dura-
tions as low as 5ms (100 machines) or 375ms (1,000 ma-
chines). This makes Firmament’s response time compet-
itive with distributed schedulers on medium-sized clus-
ters that only run short tasks. At 10,000 machines, Fir-
mament keeps up with task durations ≥5s. However,
such large clusters usually run a mix of long-running and
short tasks, rather than short tasks only [7; 10; 23; 35].

We therefore investigate Firmament’s performance on
a mixed workload. We speed up the Google trace by
dividing all task runtimes and interarrival times by a
speedup factor. This simulates a future workload of
shorter batch tasks [27], while service jobs are still long-
running. For example, at a 200× speedup, the median
batch task takes 2.1 seconds, and the 90th and 99th per-
centile batch tasks take 18 and 92 seconds. We mea-
sure Firmament’s placement latency across all tasks, and
plot the distributions in Figure 18. Even at a speedup of
300×, Firmament keeps up and places 75% of the tasks
at with sub-second latency. As before, a single MCMF
algorithm does not scale: cost scaling’s placement la-
tency already exceeds 10s even without any speedup, and
relaxation sees tail latencies well above 10 seconds be-
yond a 150× speedup, while Firmament scales further.

7.5 Placement quality on a local cluster

We deployed Firmament on a local 40-machine cluster to
evaluate its real-world performance. We run a workload
of short batch analytics tasks that take 3.5–5 seconds to
complete on an otherwise idle cluster. Each task reads in-
puts of 4–8 GB from a cluster-wide HDFS installation in
this experiment, and Firmament uses the network-aware
scheduling policy. This policy reflects current network
bandwidth reservations and observed actual bandwidth
use in the flow network, and strives to place tasks on
machines with lightly-loaded network connections. In
Figure 19a, we show CDFs of task response times ob-
tained using different cluster managers’ schedulers. We
measure task response time, and compare to a baseline
that runs each task in isolation on an otherwise idle net-
work. Firmament’s task response time comes closest to
the baseline above the 80th percentile as it successfully
avoids overcommitting machines’ network bandwidth.
Other schedulers make random assignments (Sparrow),
perform simple load-spreading (SwarmKit), or do not
consider network bandwidth (Mesos, Kubernetes). Since
our cluster is small, Firmament’s task placement latency
is inconsequential at around 5ms in this experiment.

Real-world clusters, however, run a mix of short, inter-
active tasks and long-running service and batch process-
ing tasks. We therefore extend our workload with new
long-running batch and service jobs to represent a simi-
lar mix. The long-running batch workloads are generated
by fourteen iperf clients who communicate using UDP
with seven iperf servers. Each iperf client generates 4
Gbps of sustained network traffic and simulates a batch
job in a higher-priority network service class [20] than
the short batch tasks (e.g., a TensorFlow [1] parameter
server). Finally, we deploy three nginx web servers and
seven HTTP clients as long-running service jobs. We run
the cluster at about 80% network utilization, and again
measure the task response time for the short batch analyt-
ics tasks. Figure 19b shows that Firmament’s network-
aware scheduling policy substantially improves the tail
of the task response time distribution of short batch tasks.
For example, Firmament’s 99th percentile response time
is 3.4× better than the SwarmKit and Kubernetes ones,
and 6.2× better than Sparrow’s. The tail matters, since
the last task’s response time often determines a batch
job’s overall response time (the “straggler” problem).

8 Related work
Many cluster schedulers exist, but Firmament is the first
centralized one to offer high placement quality at sub-
second placement latency on large clusters. We now
briefly compare Firmament to existing schedulers.

Optimization-based schedulers. Firmament retains
the same optimality as Quincy [22], but achieves much

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 111

0 3 6 9 12 15 18 21
Task response time [sec]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

of
ta

sk
re

sp
on

se
tim

e

Idle (isolation)
Firmament
Docker SwarmKit
Kubernetes
Mesos
Sparrow

(a) Short batch analytics tasks running on a cluster with an oth-
erwise idle network. Overhead over “idle” due to contention.

0 20 40 60 80 100 120 140 160 180 200
Task response time [sec]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

ta
sk

re
sp

on
se

tim
e

Idle (isolation)
Firmament
Docker SwarmKit
Kubernetes
Mesos
Sparrow

(b) Short batch analytics tasks running on a cluster with back-
ground traffic from long-running batch and service tasks.

Figure 19: On a local 40-node cluster, Firmament improves task response time of short batch tasks in the tail using a
network-aware scheduling policy, both (a) without and (b) with background traffic. Note the different x-axis scale.

lower placement latency. TetriSched [33] uses a mixed
integer-linear programming (MILP) optimization and ap-
plies techniques similar to Firmament’s (e.g., incremen-
tal restart from a prior solution) to reduce placement la-
tency. Its placement quality degrades gracefully when
terminated early (as required at scale), while Firma-
ment always returns optimal solutions. Paragon [11],
Quasar [12], and Bistro [16] also run expensive scoring
computations (collaborative filtering, path selection), but
scale the task placement by using greedy algorithms.

Centralized schedulers. Mesos [21] and Borg [35]
match tasks to resources greedily; Borg’s scoring uses
random sampling with early termination [35, §3.4],
which improves latency at the expense of placement
quality. Omega [32] and Apollo [7] support multiple par-
allel schedulers to simplify their engineering and to im-
prove scalability. Firmament shows that a single sched-
uler can attain scalability, but its MCMF optimization
does not trivially admit multiple independent schedulers.

Distributed schedulers. Sparrow [28] and Tarcil [13]
are distributed schedulers developed for clusters that see
a high throughput of very short, sub-second tasks. In
§7.4, we demonstrated that Firmament offers similarly
low placement latency as Sparrow on clusters up to 1,000
machines, and beyond if only a part of the workload
consists of short tasks. Mercury [23] is a hybrid sched-
uler that makes centralized, high-quality assignments for
long tasks, and distributedly places short ones. With
Firmament, we have shown that a centralized scheduler
can scale even to short tasks, and that they benefit from
the improved placement quality. Hawk [10] and Ea-
gle [9] extend the hybrid approach with work-stealing
and state gossiping techniques that improve placement

quality; Yaq-d [29], by contrast, reorders tasks in worker-
side queues to a similar end. Firmament shows that even
a centralized scheduler can quickly schedule short tasks
in large clusters with mixed workloads, rendering such
complex compensation mechanisms largely unnecessary.

9 Conclusions
Firmament demonstrates that centralized cluster sched-
ulers can scale to large clusters at low placement laten-
cies. It chooses the same high-quality placements as an
advanced centralized scheduler, at the speed and scale
typically associated with distributed schedulers.

Firmament, our simulator, and our data sets are open-
source and available from http://firmament.io. A
Firmament scheduler plugin for Kubernetes [14] is cur-
rently under development.

Acknowledgements
We are grateful to M. Frans Kaashoek, Frank McSherry,
Derek G. Murray, Rebecca Isaacs, Andrew Warfield,
Robert Morris, and Pamela Delgado, as well as Jon
Gjengset, Srivatsa Bhat, and the rest of MIT PDOS group
for comments on drafts of this paper. We also thank Phil
Gibbons, our shepherd, and the OSDI 2016 reviewers for
their feedback. Their input much improved this paper.

This work was supported by a Google European Doc-
toral Fellowship, by NSF award CNS-1413920, and
by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL),
under contract FA8750-11-C-0249. The views, opinions,
and/or findings contained in this paper are those of the
authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of
DARPA or the Department of Defense.

112 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://firmament.io

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen,

Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. “TensorFlow: A system for
large-scale machine learning”. In: Proceedings of
the 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). Savan-
nah, Georgia, USA, Nov. 2016.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and
James B. Orlin. Network flows: theory, algo-
rithms, and applications. Prentice Hall, 1993.

[3] Luiz André Barroso, Jimmy Clidaras, and Urs
Hölzle. “The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Ma-
chines, Second edition”. In: Synthesis Lectures on
Computer Architecture 8.3 (July 2013), pp. 1–154.

[4] Dimitri P. Bertsekas and Paul Tseng. “Relaxation
Methods for Minimum Cost Ordinary and Gener-
alized Network Flow Problems”. In: Operations
Research 36.1 (Feb. 1988), pp. 93–114.

[5] Dimitri P. Bertsekas and Paul Tseng. “The Relax
codes for linear minimum cost network flow prob-
lems”. In: Annals of Operations Research 13.1
(Dec. 1988), pp. 125–190.

[6] Arka A. Bhattacharya, David Culler, Eric Fried-
man, Ali Ghodsi, Scott Shenker, and Ion Stoica.
“Hierarchical Scheduling for Diverse Datacenter
Workloads”. In: Proceedings of the 4th Annual
Symposium on Cloud Computing (SoCC). Santa
Clara, California, Oct. 2013, 4:1–4:15.

[7] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi,
Jingren Zhou, Zhengping Qian, Ming Wu, et al.
“Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing”. In: Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Broomfield,
Colorado, USA, Oct. 2014, pp. 285–300.

[8] Yanpei Chen, Sara Alspaugh, and Randy Katz.
“Interactive Analytical Processing in Big Data
Systems: A Cross-industry Study of MapReduce
Workloads”. In: Proceedings of the VLDB Endow-
ment 5.12 (Aug. 2012), pp. 1802–1813.

[9] Pamela Delgado, Diego Didona, Florin Dinu, and
Willy Zwaenepoel. “Job-Aware Scheduling in Ea-
gle: Divide and Stick to Your Probes”. In: Pro-
ceedings of the 7th ACM Symposium on Cloud
Computing (SoCC). Santa Clara, California, USA,
Oct. 2016.

[10] Pamela Delgado, Florin Dinu, Anne-Marie Ker-
marrec, and Willy Zwaenepoel. “Hawk: Hybrid
Datacenter Scheduling”. In: Proceedings of the
USENIX Annual Technical Conference. Santa
Clara, California, USA, July 2015, pp. 499–510.

[11] Christina Delimitrou and Christos Kozyrakis.
“Paragon: QoS-aware Scheduling for Heteroge-
neous Datacenters”. In: Proceedings of the 18th

International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS). Houston, Texas, USA, Mar.
2013, pp. 77–88.

[12] Christina Delimitrou and Christos Kozyrakis.
“Quasar: Resource-Efficient and QoS-Aware
Cluster Management”. In: Proceedings of the 18th

International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, Utah, USA,
Mar. 2014.

[13] Christina Delimitrou, Daniel Sanchez, and Chris-
tos Kozyrakis. “Tarcil: Reconciling Scheduling
Speed and Quality in Large Shared Clusters”. In:
Proceedings of the 6th ACM Symposium on Cloud
Computing (SoCC). Kohala Coast, Hawaii, USA,
Aug. 2015, pp. 97–110.

[14] Cloud Native Computing Foundation. Kubernetes.
http://k8s.io; accessed 14/11/2015.

[15] Antonio Frangioni and Antonio Manca. “A Com-
putational Study of Cost Reoptimization for Min-
Cost Flow Problems”. In: INFORMS Journal on
Computing 18.1 (2006), pp. 61–70.

[16] Andrey Goder, Alexey Spiridonov, and Yin Wang.
“Bistro: Scheduling Data-Parallel Jobs Against
Live Production Systems”. In: Proceedings of
the USENIX Annual Technical Conference. Santa
Clara, California, USA, July 2015, pp. 459–471.

[17] Andrew V. Goldberg. “An Efficient Implemen-
tation of a Scaling Minimum-Cost Flow Algo-
rithm”. In: Journal of Algorithms 22.1 (1997),
pp. 1–29.

[18] Andrew V. Goldberg and Michael Kharitonov.
“On Implementing Scaling Push-Relabel Algo-
rithms for the Minimum-Cost Flow Problem”. In:
Network Flows and Matching: First DIMACS Im-
plementation Challenge. Ed. by D.S. Johnson and
C.C. McGeoch. DIMACS series in discrete math-
ematics and theoretical computer science. Ameri-
can Mathematical Society, 1993.

[19] Andrew V. Goldberg and Robert E. Tarjan. “Find-
ing Minimum-Cost Circulations by Successive
Approximation”. In: Mathematics of Operations
Research 15.3 (Aug. 1990), pp. 430–466.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 113

http://k8s.io

[20] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel
Gog, Robert N. M. Watson, Andrew W. Moore,
Steven Hand, and Jon Crowcroft. “Queues don’t
matter when you can JUMP them!” In: Pro-
ceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI). Oakland, California, USA, May 2015.

[21] Benjamin Hindman, Andy Konwinski, Matei Za-
haria, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, et al. “Mesos: A platform for
fine-grained resource sharing in the data center”.
In: Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation
(NSDI). Boston, Massachusetts, USA, Mar. 2011,
pp. 295–308.

[22] Michael Isard, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar, and Andrew Gold-
berg. “Quincy: fair scheduling for distributed
computing clusters”. In: Proceedings of the 22nd

ACM Symposium on Operating Systems Princi-
ples (SOSP). Big Sky, Montana, USA, Oct. 2009,
pp. 261–276.

[23] Konstantinos Karanasos, Sriram Rao, Carlo
Curino, Chris Douglas, Kishore Chaliparambil,
Giovanni Matteo Fumarola, Solom Heddaya, et
al. “Mercury: Hybrid Centralized and Distributed
Scheduling in Large Shared Clusters”. In: Pro-
ceedings of the USENIX Annual Technical Con-
ference. Santa Clara, California, USA, July 2015,
pp. 485–497.

[24] Zoltán Király and P. Kovács. “Efficient imple-
mentations of minimum-cost flow algorithms”. In:
CoRR abs/1207.6381 (2012).

[25] Morton Klein. “A Primal Method for Minimal
Cost Flows with Applications to the Assignment
and Transportation Problems”. In: Management
Science 14.3 (1967), pp. 205–220.

[26] Andreas Löbel. Solving Large-Scale Real-World
Minimum-Cost Flow Problems by a Network Sim-
plex Method. Tech. rep. SC-96-07. Zentrum für In-
formationstechnik Berlin (ZIB), Feb. 1996.

[27] Kay Ousterhout, Aurojit Panda, Joshua Rosen,
Shivaram Venkataraman, Reynold Xin, Sylvia
Ratnasamy, Scott Shenker, et al. “The case for tiny
tasks in compute clusters”. In: Proceedings of the
14th USENIX Workshop on Hot Topics in Oper-
ating Systems (HotOS). Santa Ana Pueblo, New
Mexico, USA, May 2013.

[28] Kay Ousterhout, Patrick Wendell, Matei Zaharia,
and Ion Stoica. “Sparrow: Distributed, Low La-
tency Scheduling”. In: Proceedings of the 24th

ACM Symposium on Operating Systems Princi-
ples (SOSP). Nemacolin Woodlands, Pennsylva-
nia, USA, Nov. 2013, pp. 69–84.

[29] Jeff Rasley, Konstantinos Karanasos, Srikanth
Kandula, Rodrigo Fonseca, Milan Vojnovic, and
Sriram Rao. “Efficient Queue Management for
Cluster Scheduling”. In: Proceedings of the 11th

ACM European Conference on Computer Systems
(EuroSys). London, United Kingdom, Apr. 2016.

[30] Charles Reiss, Alexey Tumanov, Gregory R.
Ganger, Randy H. Katz, and Michael A. Kozuch.
“Heterogeneity and dynamicity of clouds at scale:
Google trace analysis”. In: Proceedings of the 3rd

ACM Symposium on Cloud Computing (SoCC).
San Jose, California, Oct. 2012, 7:1–7:13.

[31] Malte Schwarzkopf. “Operating system support
for warehouse-scale computing”. PhD thesis. Uni-
versity of Cambridge Computer Laboratory, Oct.
2015.

[32] Malte Schwarzkopf, Andy Konwinski, Michael
Abd-El-Malek, and John Wilkes. “Omega: flexi-
ble, scalable schedulers for large compute clus-
ters”. In: Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems (EuroSys).
Prague, Czech Republic, Apr. 2013, pp. 351–364.

[33] Alexey Tumanov, Timothy Zhu, Jun Woo
Park, Michael A. Kozuch, Mor Harchol-Balter,
and Gregory R. Ganger. “TetriSched: global
rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters”. In: Proceedings of
the 11th ACM European Conference on Computer
Systems (EuroSys). London, England, United
Kingdom, 2016.

[34] Vinod Kumar Vavilapalli, Arun C. Murthy,
Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, et al. “Apache
Hadoop YARN: Yet Another Resource Negotia-
tor”. In: Proceedings of the 4th Annual Symposium
on Cloud Computing (SoCC). Santa Clara, Cali-
fornia, Oct. 2013, 5:1–5:16.

[35] Abhishek Verma, Luis David Pedrosa, Madhukar
Korupolu, David Oppenheimer, and John Wilkes.
“Large scale cluster management at Google”. In:
Proceedings of the 10th ACM European Confer-
ence on Computer Systems (EuroSys). Bordeaux,
France, Apr. 2015.

114 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[36] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit
Jnagal, Vrigo Gokhale, and John Wilkes. “CPI2:
CPU Performance Isolation for Shared Compute
Clusters”. In: Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems (EuroSys).
Prague, Czech Republic, Apr. 2013, pp. 379–391.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 115

Morpheus: Towards Automated SLOs for Enterprise Clusters

Sangeetha Abdu Jyothi m,u Carlo Curinom Ishai Menachem

Shravan Matthur Narayanamurthym Alexey Tumanovm,c Jonathan Yanivt

Ruslan Mavlyutovm, f Íñigo Goirim Subru Krishnanm Janardhan Kulkarnim

Sriram Raom

m Microsoft, u University of Illinois at Urbana–Champaign, c Carnegie Mellon University
t Technion-Israel Institute of Technology, f University of Fribourg

Abstract
Modern resource management frameworks for large-
scale analytics leave unresolved the problematic ten-
sion between high cluster utilization and job’s perfor-
mance predictability—respectively coveted by operators
and users. We address this in Morpheus, a new sys-
tem that: 1) codifies implicit user expectations as ex-
plicit Service Level Objectives (SLOs), inferred from his-
torical data, 2) enforces SLOs using novel scheduling
techniques that isolate jobs from sharing-induced perfor-
mance variability, and 3) mitigates inherent performance
variance (e.g., due to failures) by means of dynamic re-
provisioning of jobs. We validate these ideas against pro-
duction traces from a 50k node cluster, and show that
Morpheus can lower the number of deadline violations by
5× to 13×, while retaining cluster-utilization, and lower-
ing cluster footprint by 14% to 28%. We demonstrate the
scalability and practicality of our implementation by de-
ploying Morpheus on a 2700-node cluster and running it
against production-derived workloads.

1 Introduction
Commercial enterprises ranging from Fortune-500 com-
panies to venture-capital funded startups are increas-
ingly relying on multi-tenanted clusters for running their
business-critical data analytics jobs. These jobs comprise
of multiple tasks that are run on different cluster nodes,
where the unit of per-task resource allocation is a con-
tainer (i.e, a bundle of resources such as CPU, RAM and
disk I/O) on an individual machine. From an analysis
of large-scale production workloads, we observe signifi-
cant variance in job runtimes, which sometimes results in
missed deadlines and negative business impact. This is
perceived by users as an unpredictable execution experi-
ence, and it accounts for 25% of (resource-provisioning
related) user escalations in Microsoft big-data clusters.

Unpredictability comes from several sources, which for
discussion purposes, we roughly group as follows:

• Sharing-induced – performance variability caused
by inconsistent allocations of resources across job
runs—a scheduling policy artifact.

• Inherent – performance variability due to changes in
the job input (size, skew, availability), source code
tweaks, failures, and hardware churn—this is en-
demic even in dedicated and lightly used clusters.

Unpredictability is most noticeable to users who sub-
mit periodic jobs (i.e., scheduled runs of the same job on
newly arriving data). Their recurrent nature prompts users
to form an expectation on jobs’ runtime performance as
well as react to any deviation from it, particularly, if the
job is business-critical (i.e., a production job).

Unfortunately, widely deployed resource managers [9,
27, 51, 55] provide limited mechanisms (e.g., fairness
weights, priorities, job killing) for users to cope with un-
predictability of such jobs. Given these basic tools, users
resort to a combination of ad-hoc tricks, often pivoting
around conservative over-provisioning for important pro-
duction jobs. These coarse compensating actions are man-
ual and inherently error-prone. Worse, they may adversely
impact cluster utilization—a key metric for cluster opera-
tors. Owing to the substantial costs involved in building/-
operating large-scale clusters, operators seek good return
on investment (ROI) by maximizing utilization.

Divergent predictability and utilization requirements
are poorly handled by existing systems. This is taxing
and leads to tension between users and operators.

An ideal resource management infrastructure would
provide predictable execution as a core primitive, while
achieving high cluster utilization. This is a worthwhile
infrastructure to build, particularly, because periodic, pro-
duction jobs make up the majority of cluster workloads,
as reported by [43] and as we observe in §2.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 117

In this paper, we move the state of the art towards this
ideal, by proposing a system called Morpheus. Building
Morpheus poses several interesting challenges such as,
automatically: 1) capturing user predictability expecta-
tions, 2) controlling sharing-induced unpredictability, and
3) coping with inherent unpredictability. We elaborate on
these challenges next.

Inferring SLOs and modeling job resource demands.
Our first challenge is to formalize the implicit user pre-
dictability expectation in an explicit form that is action-
able for the underlying resource management infrastruc-
ture. We refer to the resulting characterization as an (in-
ferred) Service Level Objective (SLO). We focus on com-
pletion time SLOs or deadlines. The next step consists of
quantifying the amount of resources that must be provi-
sioned during the execution of the job to meet the SLO
without wastefully over-provisioning resources. Natu-
rally, the precise resource requirements of each job de-
pend on numerous factors such as function being com-
puted, the degree of parallelism, data size and skew.

The above is hard to accomplish for arbitrary jobs for
two reasons: 1) target SLOs are generally unknown to
operators, and often hard to define even for the users—
see §2, and 2) automatic provisioning is a known hard
problem even when fixing the application framework [52,
15, 26, 19]. However, the periodic nature of our work-
load makes this problem tractable by means of history-
driven approaches. We tackle this problem using a com-
bination of techniques: First, we statistically derive a
target SLO for a periodic job by analyzing all inter-job
data dependencies and ingress/egress operations (§ 4).
Second, we leverage telemetry of historical runs to de-
rive a job resource model—a time-varying skyline of re-
source demands. We employ a Linear Programming for-
mulation, that explicitly controls the penalty of over/un-
der provisioning—balancing predictability and utilization
(§5). Programmatically deriving SLOs and job resource
model enables a tuning-free user experience, where users
can simply sign-off on the proposed contract. Users may
alternatively override any parameter of the inferred SLO
and the job resource model, which becomes binding if ac-
cepted by our system.

Eliminating sharing-induced unpredictability. Our
second challenge is to enforce SLOs while retaining high-
utilization in a shared environment. This consists of
controlling performance variance with minimal resource
over-provisioning. As noted above, sharing-induced un-
predictability is a scheduling artifact. Accordingly, we
structurally eliminate it by leveraging the notion of recur-
ring reservation, a scheduling construct that isolates peri-
odic production jobs from the noisiness of sharing. A key

property of recurring reservations is that once a periodic
job is admitted each of its instantiations will have a pre-
dictable resource allocation. High-utilization is achieved
by means of a new online, planning algorithm (§ 6). The
algorithm leverages jobs’ flexibility (e.g., deadline slack)
to pack reservations tightly.

Mitigating inherent unpredictability. Our last challenge
is dealing with inherent performance variance (i.e., ex-
ogenous factors, such as task failures, code/data changes,
etc.). We do this by dynamically re-provisioning the cur-
rent instance of a reservation, in response to job resource
consumption, in relationship to the SLO. This compen-
sates for short-term drifts, while continuous retraining of
our SLO and job resource model extractors captures long-
term effects. This problem is in spirit similar to what was
proposed in Jockey [19], as we discuss in §7.

We emphasize that all of the above techniques are
framework-independent—this is key for our production
clusters as they support multiple application frameworks.

Experimental validation. We validate our design by im-
plementing Morpheus atop of Hadoop/YARN [51] (§8).
We then perform several faithful simulations with traces
of a production cluster with over 50k nodes, and show
that the SLOs we derived are representative of the job’s
needs. The combination of tight job provisioning, reser-
vation packing, and dynamic reprovisioning allows us to
achieve: 5× to 13× reduction in potential SLO viola-
tions (with respect to user-defined static provisioning),
and identical cluster utilization. All while, our packing al-
gorithms leverage the flexibility in target SLOs to smooth
the provisioning load over time, and achieve better ROI,
by reducing cluster footprint by 14% to 28%. We con-
clude by deploying Morpheus on a 2700-node cluster, and
performing stress-tests with a production-derived work-
load. This confirms both the scalability of our design, and
the practicality of our implementation (§ 9). We intend to
release components of Morpheus as open-source and the
progress can be tracked at [2].

2 Motivation

In the early phases of our project, we set out to confir-
m/deny our informal intuitions of how big-data clusters
are operated and used. We did so by analyzing four data
sources: 1) execution logs of millions of jobs running on
clusters with more than 50k nodes, 2) infrastructure de-
ployment/upgrade logs, 3) interviews, discussion threads,
and escalation tickets from users, operators and decision
makers, and 4) targeted micro-benchmarks. We summa-
rize below the main findings of our analysis.

118 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0%

20%

40%

60%

80%

100%

prod adhoc

ES
CA

LA
TI
O
N
S(
%
)

low

medium

high

extreme

SEVERITY
A) B) C)

Figure 1: Analysis of user escalations and recurrent behaviors of production workloads.

2.1 Cluster workloads
Proper execution of production jobs is crucial. Produc-
tion jobs represent over 75% of our workload and a simi-
lar percentage of the provisioned capacity—the rest being
dedicated to ad-hoc jobs (10-20%) and ready to handle
growth/failures (5-10%). All unassigned capacity is redis-
tributed fairly to speed up jobs. As expected, users care
mostly about proper execution of production jobs. Fig. 1a
shows that over 90% of all escalations relate to production
jobs, and this percentage grows to 100% for high/extreme
severity escalations.
Predictability trumps fairness. Further analysis of the
escalations of Fig. 1a and of discussion threads, indicates
that users are 120× more likely to complain about the
performance (un)predictability (25% of all job/resource-
management escalations) than about fairness (< 0.2%),
despite the fact that our system does not enforce fairness
strictly. This outcome may be expected, as customers can-
not observe how “fair” allocations really are.
Production jobs are often periodic. Over 60% of the
jobs in our larger/busier clusters are recurrent. Most
of these recurring jobs are production jobs operating on
continuously arriving data, hence are periodic in nature.
Fig. 1b shows the distribution of the period for periodic
jobs. Interestingly, most of the distribution mass is con-
tributed by a small number of natural values (e.g., once-
a-day, once-an-hour, etc.); this property will be useful to
our allocation mechanisms (§6). Fig. 1c provides further
evidence of recurrent behavior, by showing that job start
times are more densely distributed around the “start-of-
the-hour”. This confirms that most jobs are submitted au-
tomatically on a fixed schedule.

The above evidence confirms that the most important
portion of our workloads is strongly recurrent. This al-
lows for planning the cluster agenda, without being overly
conservative in the resource provisioning of jobs.

2.2 Predictability challenges
Manual tuning of job allocation is hard. Fig. 2a shows
the distribution of the ratio between the total amount of
resources provisioned by the job’s owner and the job’s

actual resource usage (both comparing peak parallelism
and area). The wide range of over/under-allocation in-
dicates that it is very hard for users (or they lack incen-
tives) to optimally provision resources for their jobs. We
further validate this hunch through a user study in [15].
The graphs shows that 75% of jobs are over-provisioned
(even at their peak), with 20% of them over 10× over-
provisioned. This is likely due to users statically setting
their provisioning for a periodic job. We confirm this, by
observing that in one-month period over 80% of periodic
jobs had no changes in their resource provisioning. Large
under-provisioned jobs partially offset the impact of over-
provisioning on cluster utilization.
Sources of performance variance. It is hard to precisely
establish the sources of variance from the production logs
we have. We observe a small but positive correlation
(0.16) between the amount of sharing (above provisioned
resources) and job runtime variance. This indicates that
increased sharing affects runtime variance.

We investigate further the roles of sharing-induced
and inherent performance variance by means of a sim-
ple micro-benchmark. Fig. 2b shows the normalized run-
time of 5 TPC-H queries1. We consider two configura-
tions one with constrained parallelism (500 containers),
and one with unconstrained parallelism (>2000 contain-
ers); each container is a bundle of <1core,8GB RAM>.
Each query was run 100 times in each configuration on an
empty cluster at 10TB scale. The graph shows that even
when removing common sources of inherent variability
(data availability, failures, network congestion), runtimes
remain unpredictable (e.g., due to stragglers, §7).

By analyzing these experiments and observing produc-
tion environments, we conclude that: 1) history-based
approaches can model well the “normal” behavior of a
query (small box), 2) handling outliers (as in the long
whiskers) without wasting resources requires a dynamic
component that performs reprovisioning online, and 3)
while each source of variance may be addressed with an
ad-hoc solution, providing a general-purpose line of de-
fense is paramount— see §7 for our solution.

1Box shows [25th,75th] percentiles, and whiskers shows [min,max].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 119

0

20

40

60

80

100

120

4
/1

6
/1

8
/1

1
0

/1

1
2

/1

2
/1

4
/1

C
ap

ac
it

y
(%

)

SKU1 SKU2A) B) C)

Figure 2: A) Empirical CDF of provisioning vs. used resources, B) box-whisker plot of normalized runtime of TPC-H
queries running with 500 containers (left) and >2000 containers (right). C) cluster capacity of different machine types.

2.3 Changing conditions
Cluster conditions keep evolving—jobs may run on
different server types. We provide in Fig. 2c a measure
of hardware churn in our clusters. We refer to different
machines configurations as Stock Keeping Units (SKUs).
Over a period of a year, the ratio between number of ma-
chines of type SKU1 and type SKU2 changed from 80/20
to 55/45; the total number of nodes also kept changing
over that period. This is notable, because even seem-
ingly minor hardware differences can impact job runtime
significantly— e.g., 40% difference in runtime on SKU1
vs SKU2 for a Spark production job.
User scripts keep evolving. We perform an analysis of
the versioning of user scripts/UDFs. We remove all sim-
ple parameterizations that naturally change with every in-
stantiation, and then construct a fuzzy match of the code
structure. Within one-month of trace data, we detect that
15-20% of periodic jobs had at least one large code delta
(more than 10% code difference), and over 50% had at
least one small delta (any change that breaks MD5 of the
parameter-stripped code). Hence, even an optimal static
tuning is likely going to drift out of optimality over time.

Motivated by all of the above evidence, we focus on
building a resource management substrate that provides
predictable execution as a core primitive.

3 Overview of Morpheus
Morpheus is a system that continuously observes and
learns as periodic jobs execute over time. The findings are
used to economically reserve resources for the job ahead
of job execution, and dynamically adapt to changing con-
ditions at runtime. To give an informal sense of the key
functionalities in Morpheus, we start our overview by fol-
lowing a typical life-cycle of a periodic job (JobX) as it is
governed by Morpheus (§3.1). Next, we describe the core
subsystems (§3.2). Fig. 3 provides a logical view of the
architecture, and “zooms in” on a particular job.

3.1 “Life” of a periodic job

With reference to Fig. 3, a typical periodic jobs goes
through the following stages.

1. The user periodically submits JobX with manually pro-
visioned resources. In the meantime, the underlying
infrastructure captures:

(a) Data-dependencies and ingress/egress operations
in the Provenance Graph (PG).

(b) Resource utilization of each run (marked as the
R1-R4 skylines in Fig. 3) in a Telemetry-History
(TH) database.

2. The SLO Inference performs an offline analysis of the
successful runs of JobX:

(a) From the PG it derives a deadline d—the SLO.
(b) From the TH, it derives a model of the job re-

source demand over time, R∗. We refer to R∗ as
the job resource model

3. The user signs off (or optionally overrides) the
automatically-generated SLO and job resource model.

4. Morpheus enforces SLOs via recurring reservations:

(a) Adds a recurring reservation for JobX into the
cluster agenda—this sets aside resources over
time based on the job resource model R∗.

(b) New instances of JobX run within the recurring
reservation (dedicated resources).

5. The Dynamic Reprovisioning component monitors the
job progress online, and increases/decreases the reser-
vation, to mitigate inherent execution variability.

6. Morpheus constantly feeds back into Step 2 the PG
and telemetry information of the new runs for contin-
uous learning and refinement of the SLO and the job
resource model.

120 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Provenance Graph

j

...

...

...

.

.

.

.

.

.

a d time

R3

Reservation
Placement

Recurring Reservation

 p

R

s d

 p

R

s d

 p

R*

a d

User sign-off/override

Automatic Inference

Reservation
Resizing

Telemetry history

 p

Live Job Resource Usage

Dynamic Reprovisioning

Extractors
Target
SLOs

Job
Resource

Model
R1 R2 R4

5
1a

1b

2a

2b

3

4a 4b

6

Figure 3: Conceptual view of Morpheus’ architecture. Numbers/letters match the “Life” of a periodic job (§3.1).

3.2 Key components
We next give a brief overview of the different compo-
nents in Morpheus, highlighting the different timescales
in which they operate. Details follow in §4–§7. We start
our description with the automatic inference module,
which consists of two sub-components:
Extractor of target SLOs (§4). This sub-component op-
erates on a Provenance Graph (PG). This is a graph cap-
turing all inter-job data dependencies, as well as all in-
gress/egress operations. The SLO extractor leverages the
precise timing information stored in the PG to statistically
derive a deadline for the periodic job—as time at which
downstream consumers read a job’s output2.
Job resource model (§5). This sub-component takes as
input detailed telemetry information on job runs. The
information includes time-series of resource utilization
(“skyline”)—the amount of resources (represented as con-
tainers) used by the job at certain time granularity, typi-
cally one minute. Based on time-series of multiple runs,
the sub-component constructs a tight envelope R∗ around
the “typical” behavior of the job. These time-series are
also used to derive the period, P.

The automatic inference module outputs the SLO and
the job resource model in the form of a recurring reserva-
tion request for a newly observed periodic jobs, and con-
tinuously refines existing ones on slow time scale (e.g.,
daily). The inferred SLO and job resource model feed the
resource reservation component automatically, yet Mor-
pheus also allows for user SLO and job resource model
sign-off/override. More specifically, the job owners are
given three options: 1) sign-off on the proposed SLO and
job resource model as-is, 2) override any of the param-
eters based on further knowledge (e.g., the job will run
on 10× more data starting tomorrow), or simply 3) reject
the use of SLOs, in which case the job runs with standard

2Note that a small number of periodic jobs exhibit latency-sensitive
behaviors (output consumed immediately). Our system handles those as
a special case of a deadline with no slack.

fair-queueing semantics [51]. By signing off a recurring
reservation the user approves the SLO, the initial job de-
mand skyline, as well as it accepts a bounded (and config-
urable3) amount of runtime reprovisioning—more below.
Reservation Placement (§6). The SLO and the job re-
source model are expressed in terms of a recurring reser-
vation request to a Reservation Placement mechanism.
Morpheus implementation (§8) builds upon YARN’s
reservation system [51, 13], which we extend to accom-
modate periodic reservations. The allocation problem it-
self poses a substantial algorithmic challenge, as the goal
is to “pack” efficiently online arriving jobs with different
periods and arbitrary skylines. To address this challenge,
we design a novel online packing algorithm specialized
for periodic jobs. The algorithm exploits the jobs’ flexi-
bility (e.g., deadline slack) to compactly pack them, which
leaves enough capacity for ad-hoc jobs. Our algorithm is
incremental as it places new reservation requests, without
modifying the allocation plan for other jobs.
Dynamic Reprovisioning (§7). Naturally, any tight and
static capacity reservation cannot perfectly accommo-
date all job instances. To cope with dynamic variabil-
ity in job execution (or “inherent unpredictability”), this
component continuously monitors the rate of progress
of the job with respect to the amount of reservation
consumed. If progress appears slower/faster than ex-
pected, the component automatically adjusts the reserva-
tion, by tweaking the resources provisioned for this reser-
vation. Notably, such black-box approach is framework-
independent, which is key given the large amount of
frameworks that run in our clusters.

3.3 Current limitations
Before we fully describe Morpheus, we briefly highlight
some limitations of our system.
Control over globally-shared resources. Morpheus re-
lies on the underlying resource management infrastructure

3This is currently a system-wide parameter, but it could be easily
evolved to be a per-job parameter if demanded by customers.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 121

(Apache Hadoop/YARN in our current implementation)
to enforce its decisions. As such, Morpheus can only en-
force container-level resources (such as CPU/Memory),
but lacks control over globally-shared resources (e.g.,
bandwidth on switches, DNS server). Resulting runtime
variability is coped with via dynamic reprovisioning (§7).
Support of non-periodic jobs. Morpheus supports both
periodic and non-periodic reservations, but does not au-
tomate the SLO and job resource model extraction for
never-seen-before jobs. Recent literature has shown that
job resource modeling can be performed a-priori (from
query and input data only) for a given application frame-
work [15, 42, 41, 56]—we discuss integration of these ap-
proaches in Morpheus in §8. SLO extraction for never-
seen-before jobs remains an open problem.
Automatic SLAs. Morpheus provides an important build-
ing blocks towards, but does not aim at delivering full-
fledged automated Service Level Agreements (SLAs). A
full SLA typically includes a specification of the eco-
nomic (or business) aspects of the provider-user agree-
ment [57]. For example, it may include the cost of unit of
resources, threshold of expected SLO attainment, legal/fi-
nancial consequences of missing the target SLO, limits of
how much dynamic-reprovisioning is allowed and charg-
ing consequences, etc. These aspects require further in-
vestigation beyond the scope of this paper.

4 SLO inference
In this section, we show how to automatically derive
SLOs for periodic jobs based on inter-job dependencies.

Based on interviews with cluster operators and users,
we isolate one observable metric which users care about:
job completion by a deadline. Specifically, analyzing the
escalation tickets, some users seem to form expectations
such as: “95% of job X runs should complete by 5pm”.
Other users are not able to specify a concrete deadline,
but do state that other teams rely on the output of their
job, and may need it in a timely manner. Overall, the
goal of Morpheus is to crystallize what users perceive as
“good-enough” job performance through automatically-
generated target SLO. Towards that end, Morpheus uti-
lizes a Provenance Graph (PG) as the main inference tool.
We next briefly describe the inference procedure.
Provenance Graph – reasoning about cluster data. The
PG gathers logs (petabytes daily across our production en-
vironments) capturing key aspects of job execution, file
system accesses, and system metrics. The PG is a seman-
tically rich and compact (few TBs) graph representation
of these raw logs. Specifically, nodes represent jobs and
files in our clusters, and edges capture read/write opera-
tions among jobs, files, and all ingress/egress operations

violations
Input − avail time (𝑇inAvail)
Job-start time (𝑇start)

Job-completion time (𝑇end)
Output − consumed time (𝑇outRead)

a j dj

Figure 4: A periodic job from production traces.

(modeled as virtual source/sink nodes). This represen-
tation gives us a unique vantage point with nearly per-
fect close-world knowledge of the meaningful events in
the cluster. The PG is constructed by scanning three sets
of logs: application logs, filesystem logs, frontend logs.
The application logs capture all job-related events such
as: start and completion times, failures, and a job’s in-
puts/outputs (this is part of the algebraic representation
of the user query). The filesystem logs provide metadata
information about files (size, nodes storing each block,
etc.). The frontend logs capture upload/download opera-
tions from the cluster (i.e., ingress/egress). A daily batch
job is used to parse the logs and by means of template-
matching extract both the structure and node/edge proper-
ties which are then efficiently stored in the PG [37].
Isolating periodic jobs. We group individual job in-
stances in a periodic job, if the templatized job names are
an exact match, if source-code signatures are an approxi-
mate match, and if submissions have a near-constant inter-
arrival time. The latter criterion is evaluated using the co-
efficient of variation (CV) measure of inter-arrival times.
CV is computed as the ratio of median absolute devia-
tion (MAD) (a robust estimate of dispersion) and central
value (median), namely CV = MAD

median ; we filter out jobs
with large CV. We derive the period Pj of a job j based on
the submission times—not subject to queuing delays.
Estimating SLOs from the PG. With reference to Fig. 4,
our goal is to derive estimates for the earliest start time a j
and the deadline d j for the job. To this end, we rely on four
random variables, in chronological order: TinAvail, time at
which job inputs are available (i.e., the time of last write to
any input); Tstart, time when the job starts execution; Tend,
time when the job completes execution; ToutRead, time at
which any job output is first read. All these times are de-
fined relative to the start of the current period TperiodStart

4.
We say that a job has an actionable deadline if its output

4The start time of the period of the ith job instance is given by
TperiodStart = AbsoluteReferenceTime+ i ·period, where AbsoluteRefer-
enceTime is the time of first event recorded for the periodic job.

122 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is consumed at an approximately fixed time, relative to
the start of the period (e.g., everyday at 4pm), and if there
is non-trivial amount of slack between the job end and
the deadline. Formally this means imposing thresholds on
CV (ToutRead) and median

(
ToutRead−Tend

Tend−Tstart

)
. Finally, a j and

d j are derived5 as percentiles of the distributions of TinAvail
and ToutRead (e.g., 95th and 50th percentiles, respectively).
The vast majority of periodic jobs in our workloads have
actionable deadlines (§9), and will be offered an inferred
SLO. The remainder will continue running with manually
provisioned resources.

5 Job Resource Model
The second part of our inference module produces a re-
source allocation R∗j that has high fidelity to the actual
requirements of some periodic job j. In a nutshell, Mor-
pheus collects resource usage patterns of periodic jobs
over N j instances that have run in the past, and solves
an LP that “best fits” all patterns. Fig. 5 shows 4 runs
(R1-R4) of a TPC-H query that were used, along with
other runs, to generate R∗. The underlying optimization is
governed by a parameter α ∈ [0,1] which determines the
extent to which one wishes to reduce over-allocation of
resources (α = 1 hinting the maximal reduction of over-
allocation). The usage patterns are captured as a set of
skylines, one per run of a periodic job j. The resource
allocation R∗j is defined as the amount of resources to be
provisioned (e.g., number of containers) at any point in
time, for the successful execution of the different runs of
j. For ease of presentation, we omit the index j, yet recall
that all quantities below are for the same periodic job.

To derive the resource allocation, we first align the start
times of all the job runs (instances), and quantize time, so
that each quantized time-step corresponds to a fixed actual
duration (e.g., one minute). Formally, a skyline for the i-th
instance can be defined by the sequence {si,k}, the aver-
age number of containers used for each time-step k (k ∈
1, . . . ,K). Using a collection of sequences as input, the op-
timization problem outputs the vector s = (s1, . . .sK)—the
number of containers reserved at each time-step.

Our optimization objective is a cost function which is a
linear combination of two terms: One term which penal-
izes for “over-allocation” Ao(s), and another term which
penalizes for “under-allocation” Au(s), both illustrated in
Fig. 5; formally, we wish to minimize αAo(s) + (1−

5Note that, for a small fraction of the jobs, the periodicity of the job j
can be smaller than the one of its consumers (e.g., daily jobs rolled up in
a monthly report). In this case, we force a deadline based on the smallest
periodicity to ensure the resource provisioning load is distributed over
time (e.g., daily) instead of accumulated at the end (e.g., monthly). We
confirmed with users that this aligns with their intents.

Over−Allocation

Under−Allocation

0

500

1000

1500

2000

2500

0 60 120 180 240 300 360
Time in Seconds

C
on

ta
in

er
s

Provisioned − R*

Used − R1, R2, R3, R4

Figure 5: LP deriving a provisioned skyline R∗, from four
runs (R1-R4) of TPC-H Query12 (10TB scale).

α)Au(s). Next we describe these terms.
Over-allocation penalty. The over-allocation penalty is
defined as the average over-allocation of containers. For-
mally, the expression (sk−si,k)

+ =max{sk−si,k,0} is the
instantaneous over-allocation for instance i at time-step
k. Accordingly, the over-allocation penalty is given by
Ao(s) = 1

N ∑
N
i=1 ∑k(sk− si,k)

+.
Under-allocation penalty. We define a penalty which
captures the eventual under-allocation of resources. In-
tuitively, we allow the job to “catch up” on under-
allocations using resources available later in the run. For-
mally, we define the debt for instance i at time-step k as
Di,k(s1, . . . ,sk) = (Di,k−1 + si,k− sk)

+, with Di,0 = 0. Ob-
serve that the allocation can decrease the debt over time,
but cannot accumulate “credit” for later times (i.e., the
debt cannot go below zero). The under-allocation penalty
is the average debt at the last time step. Accordingly,
Au(s) = 1

N ∑
N
i=1 Di,K(s).

The idea behind choosing these particular forms of
penalties is to model, as closely as possible, the usage
of allocated resources by a job that requests them. Par-
ticularly, the over-allocation penalty models the amount
of unused resources because the job instance doesn’t need
them. Wasted resources allocated in a time-step cannot
be recovered back at a later time-step. However, a short-
age of resources at a time-step can be satisfied at a later
point in time assuming the job is elastic. Final shortage of
provisioned resources has to be counted only at the end;
hence motivating the under-allocation penalty.
Avoiding lazy solutions. Just optimizing the above cri-
teria can lead to solutions that lazily under-provision ini-
tially and compensate by aggressively allocating towards
the end of a job’s execution. So we add the follow-
ing regularization constraint to the optimization problem
1
N ∑

N
i=1

∑k(si,k−sk)
+

∑k si,k
≤ ε . In words, we wish to sustain the

average normalized instantaneous under-allocation below
a threshold ε . While the objective and the constraints have
non-linear terms, the optimization problem can be casted
as an LP through standard lossless transformations.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 123

The “right” value of ε may depend on the job character-
istics (e.g., size, duration). In order to reduce the burden
of calibrating the value of ε for every job, we roll ε into
the optimization problem as follows. We add a linear term
β · ε to the objective function. The value of β is set pro-
portional to the other terms in the objective function, to
make it relevant. Specifically, we solve the original op-
timization problem (without the β · ε term), and obtain
a value V . We then set β to be a fraction of that value.
Through experiments across many jobs, we found that set-
ting β as 0.1V yields good results across the board.
Complexity. The LP has (O(N×K)) number of variables
and constraints. Our sampling granularity is typically one
minute, and we keep roughly one-month worth of data.
This generates less than 100K variables and constraints.
A state-of-the-art solver (e.g., Gurobi, CPlex) can solve
an LP of millions of variables and constraints in up to few
minutes. Since we are way below the computational limit
of top solvers, we obtain a solution within few seconds for
all periodic jobs in our clusters.
Estimating parallelism. We assume that the skylines
used to derive R∗ are generated under capacity alloca-
tions sufficient to satisfy the maximum parallelism a job
instance can harness. This assumption holds for produc-
tion jobs because they are typically over-allocated to meet
their deadlines. Under this assumption, we treat the esti-
mate s=(s1, . . .sK) of a job’s resource requirement as also
being its maximum parallelism for each timestep k. Fur-
ther, we assume by default that the minimum parallelism
of a job is one container (i.e., any requirement sk can be
stretched over time); this assumption can be overridden
by either users or operators, assuming that they have addi-
tional knowledge about the inner working of the jobs. In-
ferring the min-parallelism automatically remains an open
future direction.

6 Packing multiple periodic jobs
In this section, we provide an overview of LowCost – the
algorithm we use to pack multiple periodic jobs.

6.1 Periodic reservations
Regardless of the packing algorithm we shall use, we face
a practical challenge of how to reserve resources for mul-
tiple, possibly infinite, instances of a periodic job. It is
inefficient to calculate and store a separate reservation for
each instance of a periodic job. To address this challenge,
we force the constraint that all instances associated with
the same periodic job would have the same reservation
across runs (namely, the same offset with respect to the
period of the job). E.g., a daily job which requires 10 con-
tainers for one hour between 10am and 4pm maybe forced

to execute between noon to 1pm every day. While this de-
sign choice might reduce the flexibility of a reservation-
packing algorithm, it provides stronger predictability to
users and reduces allocation complexity.

Having a fixed offset for each periodic jobs produces
a repeating pattern in the overall allocation of all peri-
odic jobs. We identify and store the smallest repeating
unit which can accurately capture this recurring pattern
in the set of all periodic jobs. In particular, we use the
Least Common Multiple (LCM) of the time periods as
the length of the internal storage unit. This ensures that
all periodic jobs align with the boundaries of the storage
unit; see Fig. 6 for an illustration. From an algorithmic
perspective, one can determine how to pack multiple pe-
riodic jobs by only focusing on the LCM representation.
This speeds up the packing algorithm, as it does not need
to consider separately each instance of the periodic job.

Figure 6: Illustration of LCM representation for multiple
periodic reservations.

One may argue that the LCM can get very large, due to
slightly “off-kilter” periods of a few jobs (e.g., 58 minute
period). However, as shown in Fig. 1b, the distribution of
periods in our clusters shows that most period values are
divisors of one day. Accordingly, in practice, we set the
LCM to be one day. The small fraction of jobs with peri-
ods that are not amenable (off-kilter or periods larger than
one day) are accommodated using non-periodic reserva-
tions for each instance. We note that the LCM can be
reconfigured in case of many such outliers.

6.2 Problem formulation
Setting. The input for a planning algorithm is a set of pe-
riodic jobs and a time range [0,T], which represents the
LCM period as described above. These jobs are typically
revealed to the system one by one – i.e., in an online fash-
ion. For simplicity, we describe the algorithmic problem
under the assumption that each job has one instance within
the LCM; we remove this assumption towards the end of
the subsection. Each job j is characterized by a start time
a j, a deadline d j, and a collection of stages k ∈ [1,K j].
Each stage k captures a timestep of the reservation (see
§5), hence is characterized by a total demand of s j

k con-

124 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3 4

43

𝑑𝑗𝑎𝑗

existing reservations

new job

14 x 8 x 16 x 12 x

resources

Figure 7: An example of LowCost execution. The new
job has four stages with different number of containers.
Stage 3 is currently being provisioned. Since the stage
demands 16 containers and the total remaining demand is
38 containers, the time-interval for this stage is 16/38 of
the time available, i.e., 16

38 · 19 = 8. The arrow indicates
where the next container of stage 3 would be allocated.

tainers; the stage may also have a minimum parallelism
constraint (or gang size) of gk containers.
Objective and Constraints. The goals of the packing al-
gorithm are to (i) allocate containers to all periodic jobs,
such that their requirements are met by the deadline, and
(ii) minimize the waiting time for non-periodic, ad-hoc
jobs. These goals can be better fulfilled if the cluster
load is balanced over time. Intuitively, a balanced allo-
cation increases the likelihood of accommodating future
jobs (both periodic and non-periodic) that arrive into the
system. As a concrete measure for a balanced allocation,
the objective of LowCost is to minimize the maximal total
allocation over time. We impose the following constraints
on any solution. First, unless strictly necessary, we do
not allow re-scheduling of jobs that are already in the sys-
tem. This is important for business continuity. Second,
because we typically use a sequence of stages to represent
resource skylines, the entire allocation has to be contigu-
ous, i.e., we do not allow “holes” in the allocation.

We note that the resulting online scheduling problem is
hard already for single-stage jobs – Even the offline prob-
lem is NP-hard, as it generalizes the makespan minimiza-
tion problem on multiple machines (e.g., [34]).
Requirements. We highlight the main requirements from
a packing algorithm. The offline version of our planning
problem can be casted as a Mixed Integer Linear Program
(MILP). However, we prefer a quicker and “lighter” solu-
tion in terms of the running complexity. The main reason
for not relying on rather costly solvers, is that Morpheus
may often update the reservation plan. For example, upon
arrival of a new periodic job, or as a consequence of
changes in the resource estimations (hence reservation)
of a job. On a related note, we need an incremental so-
lution. That is, we wish to keep the reservations steady

for jobs that are already in the system, and do not exhibit
substantial changes in their resource demand.

6.3 Packing with LowCost
Cost function. LowCost uses a cost-based approach
for allocation of containers that takes into account
current cluster allocation and the resource demand of
each job – each time slot t is associated with a cost
c(t). By default, the cost function c : N → R repre-
sents the current load of the cluster. Formally, c(t) =

max
{

load(MEM,t)
capacity(MEM,t) ,

load(cores,t)
capacity(cores,t)

}
, where load(·, t) rep-

resents the total allocation of the resource at time t, and
capacity(·, t) represents its capacity.
The basic algorithm. In a nutshell, the idea behind Low-
Cost is to allocate each incoming job in a way that is cost-
efficient with respect to maxt c(t). To that end, LowCost
follows a greedy procedure which places containers itera-
tively at cost-efficient positions.

In more detail, LowCost handles the stages one by one
in reverse chronological order. For each stage k, LowCost
first sets a time interval I j,k = [τ l

j,k,τ
r
j,k] during which the

stage can be allocated. τr
j,k is set right before the alloca-

tion of stage k+1. The length of I j,k is set proportional to
the ratio between the demand of the stage and the total de-

mand of the remaining stages, i.e., s j
k

∑
k
k′=1 s j

k′
; see Fig. 7 for

an example. To accommodate the contiguous allocation
constraint, the eligible time steps for allocating the next
gang of a given stage are [τcur

j,k −1,τr
j,k], where τcur

j,k is the
leftmost timestep which includes some non-zero value for
the current allocation to the stage. LowCost repeats the
above procedure for different end points, and chooses the
allocation with the minimum cost.
Multiple instances. Finally, a periodic job may have mul-
tiple instances within the LCM (e.g., an hourly job j,
where the LCM is one day). As mentioned earlier, we
place all the instances of the job with the same offset with
respect to the period of the job (e.g., all instances of j
should start at the same time-of-day). We incorporate this
constraint in LowCost as follows. Observe that we essen-
tially need to decide on the placement of a single instance.
To do so, for each timestep within the job’s period, we set
the cost as the maximal cost across all timesteps with the
same offset with respect to the period. For example, the
cost seen by j at the 5-th minute would be the maximum
over the costs at 12:05, 1:05, etc. LowCost then places a
single instance based on these costs, and repeats the as-
signment for all instances within the LCM.

We wish to analyze in isolation the consequences of this
choice. Accordingly, for the analysis sake, we assume
that all periodic jobs have the same skyline requirement

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 125

for their instances, but still jobs can differ in their period.
Under these assumptions, we measure the performance of
LowCost using the standard measure of competitive ratio.
The competitive ratio of an online algorithm is the ratio
of cost (for our problem, the maximal height of the allo-
cation) incurred by the online algorithm compared to the
offline optimal solution. Let Pmin,Pmax denote the mini-
mum and maximum period of jobs within the LCM. We
have the following guarantee:

Theorem 6.1 Under the above assumptions, LowCost is
O
(

log
(Pmax

Pmin

))
-competitive for the objective of minimiz-

ing the maximum height of the allocation.

The proof follows by showing that LowCost leads to an
efficient (constant-competitive) schedule when jobs have
the same period. The log-factor arises due to the range
of possible job periods. Intuitively, this result implies that
there is bounded performance loss due to the combination
of our design and algorithmic choices.
Non-periodic jobs. So far we described how we reserve
resources for periodic jobs. We now briefly address how
Morpheus handles non-periodic jobs. The design of Mor-
pheus assumes that periodic jobs have strict priority over
non-periodic (mostly ad-hoc) jobs. This is commensurate
with our analysis, which indicates that the bulk of peri-
odic jobs are (business-critical) production jobs (see §2).
Accordingly, when Morpheus needs to allocate resources
to a new periodic job, it ignores most of the scheduled
non-periodic jobs (excluding periodic jobs that are han-
dled as non-periodic ones), and then attempts to reallocate
resources for non-periodic jobs in case they need more re-
sources. Specifically, Morpheus places the non-periodic
using the same logic of the basic LowCost algorithm, de-
scribed above. The only difference is that the plan for the
lower-priority non-periodic jobs uses the residual capac-
ity, after subtracting the chunk used for periodic jobs.

7 Dynamic Reprovisioning
While reservations can eliminate sharing-induced unpre-
dictability, they provide little protection against inherent
unpredictability arising from hard-to-control exogenous
causes, such as infrastructure issues (e.g., hardware re-
placements (see §2), lack of isolation among tasks of mul-
tiple jobs, and framework code updates) and job-centric
issues (changes in the size, skew, availability of input data,
changes in code/functionalities, etc.).

Although eliminating all the causes of unpredictabil-
ity is very hard, we can mitigate their impact on SLO at-
tainment during runtime, by dynamically modifying the
current instance of a periodic reservation. To that end,
we design a dynamic reprovisioning mechanism which is

triggered when a job execution appears to be headed for
an SLO violation.
Dynamic Reprovisioning Algorithm (DRA). The Dy-
namic Reprovisioning Algorithm (DRA) we currently
employ in Morpheus continuously monitors the resource
consumption of the job, compares it with the resources
allocated in the reservation and intuitively “stretches”
the skyline of resources to accommodate a slower-than-
expected job execution. Reprovisioning is triggered when
a job resource demand (used containers plus pending ask)
exceeds the resources allocated in the skyline. Extra re-
sources are granted for up to T seconds (default 1min), af-
ter which DRA is reevaluated again. The amount of extra
resources is based on the job’s instantaneous demand, but
capped at ρ ∗max(Rrecent) where Rrecent is the amount of
resources allocated in the skyline in the last few minutes
(default 2min), and ρ is a fudge factor (default value 2)
that allows an elastic job to use extra parallelism to make
up for lost time; note that DRA verifies that the job does
not get more resources than it requests. Given this pro-
posed reprovisioning, DRA updates the current instance
of the periodic reservation (by increasing it locally). This
is done by invoking LowCost, which ensures the update is
accepted only if enough resources exist in the plan.

Map1 Map2 Red1 Red2

chance for
reprovisioning

2500

2000

1500

1000

500

0
0 50 100 150 200 250

Figure 8: Resource consumption over time for 100 runs of
TPC-H Query1 on 2200 parallel containers (job running
alone in the cluster).

The proposed heuristics cope well with the inherent un-
predictability we observed in Section 2.2. We show this
by plotting in Fig. 8 the resource consumption over time
for the TPC-H Query1 (100 runs, and highlighting 3 ran-
dom ones in red/green/blue). DRA kicks in for jobs that
have straggling Map2 tasks, which translates in a delayed
start of Red1 stage. By extending the 1000 containers
allocation at the end of Red1 by an extra minute we al-
low most jobs to complete effectively. Similar analysis
has been performed for other TPC-H queries with equally
good results, and in §9 we validate DRA performance on
large production traces.

DRA is simple to implement and rather robust, how-
ever deeper understanding of the application-framework
could lead to more precise reprovisioning decisions. In

126 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Morpheus’ pluggable architecture, this could be achieved
by borrowing techniques from [15, 41, 19].
Adjusting LowCost to facilitate reprovisioning. The po-
sition of the original reservation allocation with respect to
the [TinAvail,ToutRead] window is critical for the effective-
ness of dynamic reprovisioning. In order to improve the
success probability of reprovisioning, it is necessary to
allocate resources far away from the deadline (allowing
sufficient slack in time for the reprovisioning algorithm
to compensate a slower than expected run). However, in
case of high variance in input data availability, it is benefi-
cial to place the allocation close to the deadline (to ensure
that data is available before allocation and thus reduce
the probability of reprovisioning). To account for this
trade-off, we adjust LowCost’s cost function for “prob-
lematic” jobs (e.g., jobs with high CV for Tstart−TinAvail,
ToutRead−Tend) by adding an alignment penalty . Specif-
ically, the penalty is linearly proportional to the absolute
time-distance between the mid-point of the allocation, and
the mid-point between the start time and the deadline (i.e.,
a j+d j

2). This penalty incentivizes allocations that are not
too close to neither the start or the deadline of the job.
This trades the two dangers of allocating resources before
the input is available, and not having enough slack after
the allocation before the deadline.

8 Implementation
We implement the design of §3 as extensions to Apache
Hadoop / YARN [51]. Referring back to the architecture
of Fig. 3, we implement the three components of Mor-
pheus as follows. First, the automatic inference engine
operates as a standalone service. It continuously con-
sumes provenance and telemetry data and submits reser-
vation requests to the Resource Manager (RM)—YARN’s
centralized scheduler component [51]—via its REST end-
point. Second, the reservation placement component im-
plements LowCost as in-process functionality of the RM.
Third, the dynamic reprovisioning mechanism is imple-
mented as a monitoring thread in the RM, which observes
job resource requests and triggers resizing of reservations.
Each of the above components is highly pluggable and
can easily be specialized to leverage framework-specific
knowledge, such as [19, 41, 15].

In the rest of this section, we discuss some of the engi-
neering challenges in building a production-ready system.
Scalability. Morpheus’ periodic reservations are instanti-
ated as per-job queues in the RM. Each queue’s capacity
continuously grows and shrinks according to the provi-
sioning skyline. YARN’s RM scheduler [51], is designed
to support a small number of infrequently reconfigured
queues (e.g., one per division of a company). Hence, the

implementation leveraged strict consistency via locking
for queue updates. This limited Morpheus’ scalability to
levels far below our production needs. We address this by
substantially reworking the RM scheduler locking mecha-
nisms through a combination of finer-granularity locking
and lock-free data structures. The key intuition is that
the RM operates as an asynchronous event-driven sys-
tem based on heartbeats and, therefore, is amenable to
operating with relaxed consistency. We carefully study
the effects of our changes and confirm that they induce
very small and transient inconsistencies, that are natu-
rally resolved without visible impact within milliseconds.
This results in a sustained scalability orders of magnitude
higher than the baseline. We showcase this experimen-
tally running on a 2700-node cluster in §9.3.
Cold-Start. An obvious concern for a system that relies
on history to make inference is how to handle cold-start
scenarios, such as non-recurring jobs or initial runs of
a new recurring job. We have three lines of defense to
cope with this problem: (a)Backward compatibility: Our
approach by design is able to support running jobs with
existing fair-queueing infrastructure mode. (b) Manual
SLOs and job resource models: The APIs supporting the
sign-off (step 3) in our job lifecycle can be used to sup-
ply a manually defined SLO and job resource model (both
for periodic and non-periodic jobs [13]). (c) Application-
specific tools: Given a fixed application framework (e.g.,
Hive/Giraph/Scope/Spark) it is possible to build tools that
leverage sample runs and careful modeling to predict the
behavior of the full-scale execution of the jobs. We exper-
imentally integrated with Predict [41] to support Giraph
computations, as well as recently enabled similar func-
tionalities for Hive/Tez/MapReduce with the Perforator
[15] effort. In [15], we take Hive queries and perform car-
dinality estimation via lightweight profiling of UDFs. We
then use this accurate cardinality estimates together with
explicit models of Tez/MapReduce pipelining and paral-
lelism and hardware performance profiles to estimate a
job demand model. Perforator is integrated with our in-
frastructure, but complete integration between Morpheus
and Perforator technologies is part of our future work.

9 Experimental Evaluation
In this section, we demonstrate effectiveness and scalabil-
ity of Morpheus through simulations and cluster runs.
Experimental Settings Our experiments are based on
two production traces and a synthetic benchmarking suite:
Enterprise-trace, a one-month trace of jobs running on a
large 50k-node production COSMOS cluster [9]; Hadoop-
trace, a three-month trace derived from a 4k nodes pro-
duction Hadoop cluster; TPC-H, the standard TPC-H

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 127

0%

20%

40%

60%

80%

100%

Morpheus
α=1%

Morpheus
α=5%

user

re
so

u
rc

e
s

(n
o

rm
al

iz
e

d
)

Used

Provisioned

α Static
prov.

Dynamic
prov.

0% 58% 4400%

0.10% 37% 1600%

0.50% 19% 1400%

1% 5% 1300%

5% -45% 500%

10% -67% 246%

B) Job Provisioning D) Cluster sizeC) SLO violation reduction

0.01 1 10010 10000.1

1.0

0.8

0.6

0.4

0.2

Deadline (ratio of job duration)

C
D

F
A) SLO Extraction

Figure 9: Comparison of Morpheus with current user manual provisioning.

benchmark running on Hive/Tez at 10TB scale. The
enterprise-trace has been discussed in §2, and TPC-H is
well documented [12]. The table below presents a break-
down of jobs types and size for our hadoop-trace. Jobs are
clustered into multiple classes based on duration and size.

Hadoop-trace

framework class freq. % avg avg
duration (sec) parall.

MR/TEZ
S 7% 73 1.5
M 15% 156 19
L 0.6% 2778 469

SPARK

S 39.8% 173 2.6
M 14.52% 605 18
L 7.8% 1400 88

XL 4% 6300 510
XXL 8.6% 24570 1000

MPI - 1.56% 7800 400

For each category we extract salient statistical distri-
butions: job arrival times, workload frequency, job paral-
lelism, and job duration. These distributions are used to
power a Gridmix-based [48] load generator.

9.1 Performance on the enterprise-trace
First, we challenge Morpheus in a simulation based on our
largest dataset, the enterprise-trace. For this data-set we
have full provenance graph (PG) and telemetry informa-
tion, and we can thus test all components of Morpheus.
Sensible SLOs for most jobs. A pressing question we
want to answer is whether the SLOs we derive are repre-
sentative of user expectations. Short of a full-scale user
study, we study a reliable proxy metrics: job success/-
failure. Given job pairs A→ B, such that B is the first
consumer of A’s output, we measure from the trace:
P(Bfail | AmissSLO)≈ P(Bfail | Afail)> 4×P(Bfail | AmeetSLO)

This shows that the negative impact of missing a deadline
is comparable with the impact of complete failure of the
job. This is empirically 4× worse for the dependent job B
than if A had met the SLO.

Second, we observe that Morpheus SLO target extrac-
tor successfully derives SLOs for over 70% of the millions
of instances of periodic jobs in the enterprise-trace. For
the remainder we have too little data in our trace to de-
rive SLOs with good confidence (e.g., we only have four

samples in our trace for jobs with weekly periodicity).
SLOs, job modeling, packing, and reprovisioning. In
Fig. 9 we use our enterprise-trace (70% training and 30%
testing) to show Morpheus’ ability to: (A) extract SLOs,
(B) derive job resource models, (C) achieve high SLO at-
tainment gains over the baseline, and (D) pack reserva-
tion efficiently (measured as potential cluster reduction).
In Fig. 9a, we present a CDF of the ratio between the
slack (time between job-completion and deadline) and the
job duration (ToutRead−Tend

Tend−Tstart
). The majority of jobs have

substantial amount of slack (almost 70% of jobs have
enough slack to serially execute two or more times before
the deadline)—this flexibility is leveraged during packing.
Fig. 9b compares the job provisioning achieved by Mor-
pheus under different assignments of the parameter α with
the user-supplied one (matching our motivation Fig. 2a).
Morpheus drastically outperforms the user, by being con-
sistently closer to the ideal provisioning (1:1 ratio, shown
as vertical dotted line). Different assignment of α affect
how tightly the skyline is fitted, but also how likely we
are to miss an SLO (Fig. 9c). We find that a value of 1%
leads to the best balance, yielding 13× reduction of the
worst-case SLO misses—these are defined as the amount
of SLO violations a periodic job would incur if no oppor-
tunistic (fair-share) capacity is available. Finally Fig. 9d
shows that our packing algorithms manage to handle the
complex skylines produced by the job modeling compo-
nent, and leverage the slack in SLOs to densely pack the
cluster agenda. This matches our important constraint of
not increasing the cluster cost (but actually lowering it).
The ratio between used and provisioned indicates that we
achieve high-utilization, even though we rely solely on
guaranteed provisioning, while the user compensate with
under-allocation via opportunistic fair-sharing. Note that
our unused capacity is anyway redistributed fairly, but we
do not rely on it to achieve high utilization.

9.2 Breakdown of contributions
Fig. 10a shows a breakdown of contributions of our static
techniques. We fix a target SLO attainment level 5×

128 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

o
u

rc
es

 (
n

o
rm

al
iz

ed
)

Provisioned

Used

TECHNIQUES
SLO + Packing
Auto-Skyline

✔
✔

✔
✔

U
se

r
p

ro
v.

A) B)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

SL
O

 V
io

la
ti

o
n

s

Cluster Size

Morpheus
static prov.

User
Prov.

Morpheus
dynamic prov.

Figure 10: Gain break-down: each technique employed
by Morpheus delivers sizable improvements.

above the baseline, and show the smallest size cluster
required to achieve that under different combinations of
our techniques. In particular, we show that: 1) SLO-
extraction + packing lower the baseline cluster size by 6%,
2) Job resource modeling, i.e., using our skyline instead of
user supplied provisioning, can alone lower cluster size by
16%, and that 3) when combined they achieve 19% total
reduction. Fig. 10b highlights the trade-off between uti-
lization and predictability, by showing how turning on/off
our dynamic reprovisioning we can either: 1) match the
user utilization level, and deliver 13× lower violations, or
2) match the current SLO attainment and reduce cluster
size by over 60% (since we allow more aggressive tun-
ing of the LP, and repair underallocations dynamically).
Hence, each of the techniques we developed is required
and supplies a substantial portion of our overall win.

9.3 Physical deployments and scale tests
In this section, we challenge Morpheus with a combi-
nation of the Hadoop-trace and the TPC-H workloads.
We test our system under 3 environments: (a) 275-node
cluster with 2200 containers (1core, 8GB RAM per con-
tainer), (b) 2700-node cluster (100k containers) and (c)
4000-node production cluster.
Adversarial workload. We validate Morpheus’ ability to
protect jobs from an adversarial workload. In Fig. 12, we
show an hourly periodic workload comprised of several
TPC-H queries running on a 275-node cluster (equivalent
to 2200 containers). The workload imposes heavy load
on the cluster, with container utilization hovering near
100% of the available capacity during most of the experi-
ment. The jobs are submitted periodically within a reser-
vation we derived from historical runs. We then surround
the periodic jobs with thousands of ad-hoc jobs from the
Hadoop-trace which can take upto 75% of the cluster ca-
pacity. Thus, periodic reservations are run against a clus-
ter stressed with production workload. Morpheus success-
fully eliminates all sharing-induced variability. To further
challenge our system, we manually delay the start of one
of the queries. The system immediately reacts by dynami-

time(hours)
0 1 2 3 4 5 6 7 8

time(hours)
0 1 2 3 4 5 6 7 80

200

400

600

800

re
se

rv
at

io
ns

0

20

40

60

80

m
em

or
y

(T
B

)

Figure 11: Scalability metrics for large scale real cluster
run (on 2700 nodes)

cally reprovisioning the (delayed) job with extra capacity,
compensating for our actions and meeting the target SLO.
Scale test (2700 nodes). We validate Morpheus’ scala-
bility to target production clusters, by running it live on
a 2700-node cluster, scheduling almost 100k concurrent
containers through the ResourceManager. This is a high-
load workload designed to stress the scheduling infras-
tructure. We run a sustained 8hr experiment, with hun-
dreds of reservation submissions per hour. We measure
the system performance both as perceived by the user (not
shown), and as observed by instrumented system compo-
nents (Fig. 11). The key takeaway of this experiment is
three-fold: 1) we demonstrate that Morpheus is able to
sustain high load on a large cluster, 2) we confirm that in a
real deployment Morpheus can achieve high plan utiliza-
tion, 3) we confirm that user-facing latencies are in-line
with production cluster user expectations. We see up to
900 concurrent reservations in the plan, with up to 270
of them active throughout the 8hr run. At peak, aggre-
gate guaranteed capacity exceeds the 92TB of container
memory, reaching maximum cluster capacity. The system
remains responsive throughout the experiment with reser-
vation submission latencies within 10sec.
Production deployment. We validate our system by de-
ploying it in a 4000-node production environment. In this
context, we are only allowed to run a small number of pe-
riodic jobs via reservations, while the bulk of the load is
imposed by ad-hoc and manually provisioned jobs. Fo-
cusing on a periodic run of TPC-H Query3, the runtime
variability was well controlled, despite utilization swings
of whole cluster in excess of 69k cores during the job exe-
cution. During the same period, jobs running without the
protection of reservations observed much larger variance.

10 Related Work
SLO extraction. To the best of our knowledge, we are
the first to propose fully automated extraction of SLOs
from historical data. Close related work focused on semi-
automated, iterative generation of SLOs for databases
[40] and web services [46].
Runtime/provisionining estimation. Substantial re-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 129

reprovisioning

LCM

total container
utilization

Figure 12: Run on 275-node cluster: shows an example of successful dynamic-reprovisioning.

lated work has been devoted both in database and sys-
tems literature to estimate query runtimes, and resource
needs. Runtime prediction has been studied in databases
[33, 10, 21], Big-Data/Cloud [39, 38, 52, 20, 17], and
HPC/Grid computing settings [53, 31, 45]. A large body
of work [54, 32, 11] leveraged known MapReduce job
structure to accurately predict both resource demand and
runtimes across different data input sizes. Our architec-
ture allows using any of these techniques, when the ap-
plication framework is known, while this paper presents
a framework-agnostic solution purely based on history.
History-based modeling has been used in other contexts:
failure-prediction for quality of service (QoS) [18], and
resource allocation in business process management [28,
3, 35].
SLO enforcement. Automatic techniques for meeting
SLOs [59, 19], use a combination of profiling and job
structure knowledge for runtime prediction. PRESS [23]
focuses on meeting SLOs at a single-node level and can
adjust allocated resources online. Jockey [19] provides a
solution for dynamic reprovisioning based on job models
derived from execution history and job’s internal depen-
dencies. It can be used as a framework-specific dynamic
reprovisioning policy. Morpheus provides deadlines and
global arbitration, which are beyond the scope of [19].
Other dynamic enforcement mechanisms include control-
theoretic approaches such as [16, 49].
Online packing and scheduling. The scheduling prob-
lem solved by Morpheus is a significant generalization of
online multidimensional bin-packing problems [4, 25, 7,
5] and online deadline-scheduling problems (see [36, 6]
and references therein). Placement in periodic settings has
also been studied in the context of real-time and multi-
processor machines [8, 47, 14]. However, the combina-
tion of jobs with stage-dependencies, periodicity and and
deadlines requires novel algorithm design.
Cluster Scheduling. There has been a substantial body of
work on cluster scheduling for big-data analytics [22, 29,
58, 50, 24]. Corral [30] leverages job recurrence and pre-
dictable resource requirements to coordinate data and task
placement for higher utilization, but does not consider
SLOs. Based on published material, SLO inference/en-

forcement is not present in Mesos [27], Borg [55], and
Omega [44]. However, Morpheus’ mechanisms can be
adapted to alternative underlying schedulers. Apollo [9]
makes more explicit trade-offs on time vs locality at the
task level, but does not provide job-completion SLOs.
YARN’s reservation system [13] serves as a base for Mor-
pheus, but it left unsolved the SLO and job resource model
derivation, support for periodic reservations, and dynamic
reprovisioning. Moreover, the packing algorithms we
present here outperform the one in [13] even for non-
periodic jobs [1].

11 Conclusion
In this paper, we present Morpheus, a system de-
signed to resolve the tension between predictability and
utilization—that we discovered thorough analysis of clus-
ter workloads and operator/user dynamics. Morpheus
builds on three key ideas: automatically deriving SLOs
and job resource models from historical data, relying on
recurrent reservations and packing algorithms to enforce
SLOs, and dynamic reprovisioning to mitigate inherent
execution variance. We validate our design and imple-
mentation against large production traces, and on a 2700-
node cluster. Morpheus reduces worst-case SLO viola-
tions by 5-13×, while concurrently reducing the cluster
footprint by 14-28%. Overall, Morpheus enables pre-
dictable performance with less resource provisioning—a
win-win for operators and users.

Acknowledgements
We thank our shepherd Sasha Fedorova, and the review-
ers for their insightful feedback. We are particularly in-
debted to Chris Douglas for numerous conversations that
helped shape this project. We are also grateful to many
colleagues for many great discussions: Ricardo Bian-
chini, Roni Burd, Kishore Chaliparambil, Chris Douglas,
Avrilia Floratou, Giovanni M. Fumarola, Greg Ganger,
Brighten Godfrey, Solom Heddaya, Virajith Jalaparti,
Alekh Jindal, Srikanth Kandula, Konstantinos Karana-
sos, Alica Li, Joseph Naor, Vivek Narasayya, Sekhar Pa-
supuleti, Sean Po, Raghu Ramakrishnan, Keerthi Selvaraj,
Arun Suresh, Vin Wang, and Markus Weimer.

130 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] LowCost: A Cost-Based Placement Agent for

YARN Reservations. https://issues.
apache.org/jira/browse/YARN-3656.

[2] Support for recurring reservations in the YARN
Reservation System. https://issues.
apache.org/jira/browse/YARN-5326.

[3] M. Arias, E. Rojas, J. Munoz-Gama, and
M. Sepúlveda. A framework for recommend-
ing resource allocation based on process mining. In
Business Process Management Workshops - BPM
2015, 13th International Workshops, Innsbruck,
Austria, August 31 - September 3, 2015, Revised
Papers, pages 458–470, 2015.

[4] J. Augustine, S. Banerjee, and S. Irani. Strip Pack-
ing with Precedence Constraints and Strip Packing
with Release Times. Theoretical Computer Science,
410(38-40), 2009.

[5] Y. Azar, I. R. Cohen, and I. Gamzu. The loss of serv-
ing in the dark. In Proceedings of the Symposium on
Theory of Computing Conference, STOC, 2013.

[6] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S.
Naor, and J. Yaniv. Truthful online scheduling with
commitments. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, pages
715–732. ACM, 2015.

[7] N. Bansal and A. Khan. Improved Approximation
Algorithm for Two-Dimensional Bin Packing. In
Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, 2014.

[8] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources.
In Proceedings of the 9th International Symposium
on Parallel Processing, IPPS ’95, pages 280–288,
Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
coordinated scheduling for cloud-scale computing.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 285–
300, Broomfield, CO, Oct. 2014. USENIX Associa-
tion.

[10] S. Chaudhuri and V. Narasayya. Self-tuning
database systems: A decade of progress. In Proceed-
ings of the 33rd International Conference on Very

Large Data Bases, VLDB ’07, pages 3–14. VLDB
Endowment, 2007.

[11] L. Cherkasova. Performance modeling in Mapre-
duce environments: Challenges and opportunities.
In Proceedings of the 2nd ACM/SPEC International
Conference on Performance Engineering, ICPE ’11,
pages 5–6, New York, NY, USA, 2011. ACM.

[12] T. P. P. Council. TPC-H benchmark specification.
Published at http://www. tcp. org/hspec. html, 2008.

[13] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan,
R. Ramakrishnan, and S. Rao. Reservation-based
scheduling: If you’re late don’t blame us! In Pro-
ceedings of the ACM Symposium on Cloud Comput-
ing, SOCC, 2014.

[14] R. I. Davis and A. Burns. A survey of hard real-
time scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[15] A. Desai, K. Rajan, and K. Vaswani. Critical path
based performance models for distributed queries. In
Microsoft Tech-Report: MSR-TR-2012-121, 2012.

[16] Y. Diao, J. L. Hellerstein, S. Member, S. Parekh,
S. Member, R. Griffith, G. E. Kaiser, S. Member,
and D. Phung. A control theory foundation for
self-managing computing systems. IEEE journal,
23:2213–2222, 2005.

[17] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y.
Zomaya, and B. B. Zhou. Profiling applications for
virtual machine placement in clouds. In Cloud Com-
puting (CLOUD), 2011 IEEE International Confer-
ence on, pages 660–667. IEEE, 2011.

[18] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Ko-
vacs, and R. M. Badia. Semantic resource alloca-
tion with historical data based predictions. In The
First International Conference on Cloud Computing,
GRIDs, and Virtualization, CLOUD COMPUTING
2010, 2010.

[19] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data
parallel clusters. In Proceedings of the ACM Eu-
ropean Conference on Computer Systems, EuroSys,
2012.

[20] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Pat-
terson. Statistics-driven workload modeling for the
cloud. In Data Engineering Workshops (ICDEW),
2010 IEEE 26th International Conference on, pages
87–92. IEEE, 2010.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 131

[21] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. Jordan, and D. Patterson. Predicting mul-
tiple metrics for queries: Better decisions enabled
by machine learning. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on,
pages 592–603. IEEE, 2009.

[22] A. Ghodsi, M. Zaharia, B. Hindman, A. Kon-
winski, S. Shenker, and I. Stoica. Dominant re-
source fairness: Fair allocation of multiple resource
types. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Imple-
mentation, NSDI’11, pages 323–336, Berkeley, CA,
USA, 2011. USENIX Association.

[23] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedic-
tive Elastic ReSource Scaling for cloud systems. In
2010 International Conference on Network and Ser-
vice Management, pages 9–16, Oct 2010.

[24] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 455–466.
ACM, 2014.

[25] R. Harren and W. Kern. Improved Lower Bound for
Online Strip Packing. Theory of Computing Systems,
56(1), 2015.

[26] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, volume 11,
pages 261–272, 2011.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing
in the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’11, pages 295–308, Berkeley,
CA, USA, 2011. USENIX Association.

[28] Z. Huang, W. Aalst, X. Lu, and H. Duan. Rein-
forcement Learning Based Resource Allocation in
Business Process Management. Data and Knowl-
edge Engineering, 70(1):127 –145, 2011.

[29] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair scheduling
for distributed computing clusters. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 261–276. ACM, 2009.

[30] V. Jalaparti, P. Bodik, I. Menache, S. Rao,
K. Makarychev, and M. Caesar. Network-aware
scheduling for data-parallel jobs: Plan when you
can. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 407–420, New York, NY,
USA, 2015. ACM.

[31] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky.
Estimating computation times of data-intensive ap-
plications. IEEE Distributed Systems Online, 5(4),
April 2004.

[32] P. Lama and X. Zhou. Aroma: Automated resource
allocation and configuration of mapreduce environ-
ment in the cloud. In Proceedings of the 9th Interna-
tional Conference on Autonomic Computing, ICAC
’12, pages 63–72, New York, NY, USA, 2012. ACM.

[33] K. Lee, A. C. Konig, V. Narasayya, B. Ding,
S. Chaudhuri, B. Ellwein, A. Eksarevskiy, M. Kohli,
J. Wyant, P. Prakash, R. Nehme, J. Li, and
J. Naughton. Operator and query progress esti-
mation in microsoft sql server live query statis-
tics. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIG-
MOD 2016). ACM Association for Computing Ma-
chinery, June 2016.

[34] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approx-
imation algorithms for scheduling unrelated paral-
lel machines. Mathematical programming, 46(1-
3):259–271, 1990.

[35] T. Liu, Y. Cheng, and Z. Ni. Mining event logs to
support workflow resource allocation. Knowl.-Based
Syst., 35:320–331, 2012.

[36] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. Ef-
ficient online scheduling for deadline-sensitive jobs.
In Proceedings of the twenty-fifth annual ACM sym-
posium on Parallelism in algorithms and architec-
tures, pages 305–314. ACM, 2013.

[37] R. Mavlyutov, C. Curino, B. Asipov, and P. Cudre-
Mauroux. Dependency-Driven Analytics: a Com-
pass for Uncharted Data Oceans, 2016. Microsoft
Technical Report MS-TR-2016-69, http://bit.
ly/2dQfRhc.

[38] K. Morton, M. Balazinska, and D. Grossman. Para-
timer: a progress indicator for mapreduce dags. In
Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of data, pages
507–518. ACM, 2010.

132 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[39] K. Morton, A. Friesen, M. Balazinska, and D. Gross-
man. Estimating the progress of mapreduce pipe-
lines. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 681–684. IEEE,
2010.

[40] J. Ortiz, V. T. de Almeida, and M. Balazinska.
Changing the face of database cloud services with
personalized service level agreements. In CIDR,
2015.

[41] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ail-
amaki. PREDIcT: Towards predicting the runtime
of large scale iterative analytics. Proceedings of the
VLDB Endowment, 6(14):1678–1689, 2013.

[42] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco,
and A. Ailamaki. Same queries, different data: Can
we predict runtime performance? In Data Engineer-
ing Workshops (ICDEW), 2012 IEEE 28th Interna-
tional Conference on, pages 275–280. IEEE, 2012.

[43] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca,
M. Vojnovic, and S. Rao. Efficient queue manage-
ment for cluster scheduling. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, page 36. ACM, 2016.

[44] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: flexible, scalable schedulers
for large compute clusters. In Proceedings of the
ACM European Conference on Computer Systems,
EuroSys, 2013.

[45] O. Sonmez, N. Yigitbasi, A. Iosup, and D. Epema.
Trace-based evaluation of job runtime and queue
wait time predictions in grids. In Proceedings of the
18th ACM International Symposium on High Per-
formance Distributed Computing, HPDC ’09, pages
111–120, New York, NY, USA, 2009. ACM.

[46] J. Spillner and A. Schill. Dynamic SLA template ad-
justments based on service property monitoring. In
Cloud Computing, 2009. CLOUD’09. IEEE Interna-
tional Conference on, pages 183–189. IEEE, 2009.

[47] A. Srinivasan and S. Baruah. Deadline-based
scheduling of periodic task systems on multiproces-
sors. Information Processing Letters, 84(2):93–98,
2002.

[48] The Apache Software Foundation. GridMix,
2015. http://hadoop.apache.org/docs/
current/hadoop-gridmix/GridMix.
html.

[49] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads di-
rector: Scaling a distributed storage system un-
der stringent performance requirements. In Pro-
ceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, pages 12–12,
Berkeley, CA, USA, 2011. USENIX Association.

[50] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. TetriSched:
Global rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, EuroSys’16, pages 35:1–35:16, New York,
NY, USA, 2016. ACM.

[51] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet
Another Resource Negotiator. In Proceedings of the
4th annual Symposium on Cloud Computing, page 5.
ACM, 2013.

[52] S. Venkataraman, Z. Yang, M. Franklin, B. Recht,
and I. Stoica. Ernest: efficient performance pre-
diction for large-scale advanced analytics. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 363–378,
2016.

[53] S. Verboven, P. Hellinckx, F. Arickx, and J. Broeck-
hove. Runtime prediction based grid scheduling of
parameter sweep jobs. In Asia-Pacific Services Com-
puting Conference, 2008. APSCC ’08. IEEE, pages
33–38, Dec 2008.

[54] A. Verma, L. Cherkasova, and R. H. Campbell.
Aria: Automatic resource inference and allocation
for mapreduce environments. In Proceedings of the
8th ACM International Conference on Autonomic
Computing, ICAC ’11, pages 235–244, New York,
NY, USA, 2011. ACM.

[55] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proceedings
of the Tenth European Conference on Computer Sys-
tems, page 18. ACM, 2015.

[56] K. Wang and M. M. H. Khan. Performance pre-
diction for apache spark platform. In High Perfor-
mance Computing and Communications (HPCC),
2015 IEEE 7th International Symposium on Cy-
berspace Safety and Security (CSS), 2015 IEEE

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 133

12th International Conferen on Embedded Software
and Systems (ICESS), 2015 IEEE 17th International
Conference on, pages 166–173. IEEE, 2015.

[57] P. Wieder, J. M. Butler, W. Theilmann, and
R. Yahyapour. Service level agreements for cloud
computing. Springer Science & Business Media,
2011.

[58] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay Scheduling: A
Simple Technique for Achieving Locality and Fair-

ness in Cluster Scheduling. In Proceedings of the
ACM European Conference on Computer Systems,
EuroSys, 2010.

[59] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of
pig programs for meeting service level objectives.
In Proceedings of the 9th International Conference
on Autonomic Computing, ICAC ’12, pages 53–62,

New York, NY, USA, 2012. ACM.

134 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The SNOW Theorem
and Latency-Optimal Read-Only Transactions

Haonan Lu?, Christopher Hodsdon?‡, Khiem Ngo?, Shuai Mu†, Wyatt Lloyd?
?University of Southern California, †New York University

Abstract
Scalable storage systems where data is sharded across

many machines are now the norm for Web services as
their data has grown beyond what a single machine can
handle. Consistently reading data across different shards
requires transactional isolation for the reads. Yet a Web
service may read from its data store hundreds or thou-
sands of times for a single page load and must minimize
read latency to keep response times low. Examining the
read-only transaction algorithms for many recent aca-
demic and industrial scalable storage systems suggests
there is a tradeoff between their power—expressed as
the consistency they provide and their compatibility with
other types of transactions—and their latency.

We show that this tradeoff is fundamental by proving
the SNOW Theorem, an impossibility result that states
that no read-only transaction algorithm can provide both
the lowest latency and the highest power. We then use
the tight boundary from the theorem to guide the design
of new read-only transaction algorithms for two scalable
storage systems, COPS and Rococo. We implement our
new algorithms and then evaluate them to demonstrate
they provide lower latency for read-only transactions and
to understand their impact on overall throughput.

1 Introduction

Scalable data stores are a fundamental building block
of large-scale systems, such as modern Web services.
Spreading data across machines—i.e., sharding—allows
the system to scale its capacity and throughput, but also
complicates how programs and users interact with the
data. When all the data is on a single machine, consis-
tently updating that machine is sufficient to ensure reads
are consistent. When data is spread across machines,
consistently updating the data store is no longer sufficient
because reads to different shards will arrive at different
times and thus see different views of the data store.

‡Work partially done as a student at Rutgers University-Camden.

Consistently viewing data thus requires transactional
isolation, where reads to different shards either all ob-
serve a given update or none do. General transactions
provide isolation, but are heavyweight and complex, es-
pecially for transactions that do not update data. Thus,
it is common to have a special algorithm for read-only
transactions, which are transactions the system knows
will only read data. The importance of these read-only
transaction algorithms has been recognized by many re-
cent systems [5, 8, 11, 12, 14, 26, 27, 29, 31, 37, 38].

Read-only transaction algorithms ensure isolation, but
often incur overhead relative to simple inconsistent reads
of the same data. This overhead stems from extra rounds
of communication to find a consistent view, extra meta-
data to determine if a view is consistent, and/or blocking
operations until a consistent view is found. The overhead
of these algorithms is important because many real-world
workloads are dominated by reads and thus read perfor-
mance determines the performance of the overall system.
For instance, 99.8% of the operations for Facebook’s dis-
tributed data store TAO are reads [10]. The latency of
these reads is especially important because, as Facebook
has reported, “a single user request may result in thou-
sands of subqueries, with a critical path that is dozens of
subqueries long” [4].

This breadth of reads and especially the depth of se-
quential reads for a single page load make their latency
critical to the response times of the Web services. These
response times are aggressively optimized because they
affect user engagement and revenue [13, 24, 34]. Thus,
one way to improve upon existing scalable storage sys-
tems is to decrease the latency of their read-only transac-
tions. But instead of simply making them faster, we seek
to make them latency-optimal, i.e., as fast as possible.

When examining existing systems we were able to de-
rive latency-optimal read-only transaction algorithms for
some, but not all of them. Investigating the cause of this
dichotomy led us to discover a tradeoff between the la-
tency and the power of read-only transactions.

We prove this tradeoff is fundamental with the SNOW

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 135

Theorem, which states it is impossible for a read-only
transaction algorithm to provide all four desirable prop-
erties: Strict serializability, Non-blocking operations,
One-response from each shard, and compatibility with
conflicting Write transactions. The power-related prop-
erties are strict serializability—which is the strongest
form of consistency—and compatibility with conflict-
ing write transactions—which indicates what other types
of transactions are in the system. The latency-related
properties are non-blocking operations—which ensures
each shard immediately handles each read request—and
one response—which ensures a single round of messages
with the minimal amount of data.

The intuition of the proof is that when a transaction
with writes commits there is a point at every server
when the transaction becomes visible, but that the asyn-
chronous nature of the network allows read requests to
arrive before the transition on one server and after the
transition on another. To cope with this possibility, a
read-only transaction algorithm must either settle for
consistency weaker than strict serializability (S), block
some read requests to avoid the inconsistent interleaving
(N), coordinate and/or retry the reads (O), or preclude the
possibility of conflicting write transactions (W).

The SNOW Theorem is similar to the CAP Theo-
rem [9, 18] in that it helps system designers avoid try-
ing to achieve the impossible and identifies a fundamen-
tal choice they must make when designing their system.
In addition, we make the SNOW Theorem even more
useful by demonstrating what is possible. We show the
four properties are tight by describing algorithms that
provide each combination of them. We further tighten
this boundary by moving beyond considering the proper-
ties as binary to instead viewing them as spectrums. For
instance, we show that while strict serializability is im-
possible with the other three properties, an only-slightly
weaker consistency model we call process-ordered seri-
alizability is possible. We call algorithms that touch the
boundary of what is possible SNOW-optimal.

Using the lens of SNOW-optimality we can examine
scalable data stores to determine if and what room for
improvement in their read-only transactions exists. We
find room for improvement in many systems, and focus
in particular on two recent and quite different data stores,
COPS [26] and Rococo [29]. COPS is scalable, geo-
replicated, causally consistent, and has only read-only
transactions and single-key write operations. In con-
trast, Rococo is scalable, designed for a single datacenter,
strictly serializable, and has general transactions.

We present the design, implementation, and evaluation
of novel read-only transaction algorithms for COPS and
Rococo. We call the resulting systems COPS-SNOW and
Rococo-SNOW. The key insight common to the systems
is that to make reads as fast as possible we need to shift

as much coordination overhead as possible into writes.
Our evaluation of COPS-SNOW shows that it almost

always provides lower latency for read-only transactions
and improves latency more as contention increases at
the cost of lower overall throughput. Our evaluation
of Rococo-SNOW shows that it always achieves lower
latency for read-only transactions and has much higher
throughput in the high-contention online transaction pro-
cessing workloads Rococo is designed for, at the cost of
slightly lower throughput under low contention.

The contributions of this paper include:

• The SNOW Theorem, which proves there is a fun-
damental tradeoff between the power and latency of
read-only transaction algorithms. This paper also
contributes algorithms that show the tightness of the
SNOW Theorem and the precise boundary of what is
possible, which we characterize as SNOW-optimality.

• The design and implementation of novel read-only
transaction algorithms for both the COPS and Ro-
coco scalable data stores that are latency-optimal and
SNOW-optimal, respectively.

• Evaluations of COPS-SNOW and Rococo-SNOW that
explore their effect on the latency and throughput of
the systems under a variety of settings.

Section 2 presents necessary background and Sec-
tion 3 explains the SNOW properties. Section 4 gives
the statement and proof of the SNOW Theorem, shows
its tightness, and explores SNOW-optimality. The de-
signs of COPS-SNOW and Rococo-SNOW are presented
in Section 5 and then evaluated in Section 6. Section 7
discusses related work and Section 8 concludes.

2 Background

Web services are typically built using two distinct tiers of
machines: a frontend tier and a storage tier. The frontend
tier is stateless and handles requests from users by exe-
cuting application code that reads and writes data from
the stateful storage tier. The Web service is typically
replicated across multiple datacenters, but we restrict our
discussion here to a single datacenter for simplicity.1 The
storage tier shards its data across many machines.

Figure 1 shows how a simple page is generated in a
Web service. A frontend machine receives a request from
a user and then runs the application logic to generate her
page by reading data across many shards in the storage
tier. All of the reads must complete before the page can
be returned to the user. A typical page load issues hun-
dreds or thousands of reads [4]. Many of these reads can
be issued in a parallel batch like the reads of a and b.
However, some reads are dependent on earlier reads, i.e.,

1Our results are magnified in cross datacenter settings.

136 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Page

Request
Frontend

Frontend

Frontend Shard Z

Shard A

Shard B

Frontend Tier Storage Tier

App Logic

z=“3”

Datacenter

Use
r

“Clients” “Servers”

Figure 1: Typical Web service architecture with a
frontend machine executing application logic to gen-
erate a page that reads data from the storage tier.

they read from keys that are returned by earlier reads. In
Figure 1 the read of z depends on the read of b that re-
turns z. Within a page load there are often chains of key
dependences that are dozens of reads deep [4].

Because of the breadth and especially depth of these
reads, providing low read latency is essential to enabling
fast page load times. In the rest of this paper we focus on
one-shot [20] read-only transactions that do not include
key dependences that cross shards. One-shot read-only
transactions can be issued in a single parallel batch, e.g.,
the reads of a and b. Following key dependences requires
multi-shot read-only transactions. We focus on one-shot
transactions because they are simpler to reason about and
their results generalize: what is not possible for one-shot
read-only transactions is also not possible for the more
general multi-shot read-only transactions.

In this paper we consider read-only transactions gener-
ally, but with the current motivation of application logic
on frontend machines consistently reading data from the
storage tier to generate pages. To match general termi-
nology on read-only transactions we call the frontend
machines the clients and the storage tier the servers.

3 The SNOW Properties

This section introduces the SNOW properties and ex-
plains their importance for read-only transactions.

3.1 Strict Serializability
Strict serializability ensures there exists a total order over
all the transactions in the system—i.e., transactions are
serializable—and their results appear to have come from
a single machine processing them one at a time [32].
This latter requirement ensures the total order respects
the real-time ordering of transactions [19]. That is, if
transaction t2 begins in real time after transaction t1 has
completed, then t2 will appear after t1 in the total order.

When two transactions are concurrent there is no real-
time ordering between them. For instance, if t4 begins
after t3 begins but before t3 has finished, then they are
concurrent and either could be ordered first in a legal
total order. The total order requirement of strict serial-
izability guarantees that transactions are fully isolated,
i.e., a transaction does not observe partial effects of other
transactions. Informally, the real-time ordering require-
ment of strict serializability guarantees a read-only trans-
action always returns the most recent values.

Strict serializability is the most desirable consistency
model because it provides the strongest guarantees. It
is easiest for programmers to write correct application
logic on top of a strictly serializable system, and it elim-
inates the most user-visible anomalies [28] compared to
other consistency models. Section 4.4 discusses weaker
consistency models.

3.2 Non-Blocking Operations
We define non-blocking operations to require that each
server can handle the operations within a read-only trans-
action without blocking for any external event. That is,
a process involved in handling a read-only transaction
never voluntarily relinquishes a processor. Blocking be-
haviors that are prohibited include waiting for a lock to
be available, waiting for messages from other servers,
waiting for messages from other clients, or waiting for
a timeout to fire. In contrast, non-blocking behavior en-
sures a server can immediately process and respond to
requests from clients. Non-blocking operations are de-
sirable because they directly relate to the latency of the
read-only transactions; they save at least the time that
would be spent blocking.

3.3 One Response Per Read
We define one response per read to be the combination of
one round-trip to each server and one version per read.
The one version subproperty requires that servers send
only one value for each read. The one round-trip sub-
property requires the client to send at most one request
to each server and the server to send at most one response
back. (This allows for zero messages to and from some
servers, for instance, if they do not store data being read.)

The one version subproperty aligns with the latency
of read-only transactions. If a server sends multiple ver-
sions of a value, that much more time is spent serializ-
ing, transmitting, and deserializing the values. The one
round-trip subproperty strongly aligns with the latency
of read-only transactions. For instance, an algorithm that
takes two round trips will take roughly twice as long in
transmission and queuing. This subproperty also disal-
lows algorithms that abort a transaction and then start

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 137

over, because starting over is another round trip. We ex-
plore multi-round algorithms further in Section 4.4.

The one response property is desirable because it leads
to faster read-only transactions. We call algorithms that
provide the one response and non-blocking properties
latency-optimal because they are as fast as possible: a
client sends a single request to each server, each server
handles the request immediately, and the servers send
back exactly the data the client wants to read.

3.4 Write Transactions that Conflict
We define the write transactions property as the abil-
ity of a read-only transaction algorithm to coexist with
conflicting transactions that update data. This requires,
first, that a data store allows transactions that update data.
General transactions that read and write data satisfy this
requirement, as do weaker write-only transactions that
only write data. This property also requires that write
transactions can conflict with read-only transactions, i.e.,
write transactions can update data spread across multiple
servers concurrently with read-only transactions viewing
that data. The ability to coexist with conflicting write
transactions is desirable because write transactions make
programming application logic much easier.

4 The SNOW Theorem

The SNOW Theorem is an impossibility result that states
no read-only transaction algorithm can provide all of the
SNOW properties. This section presents a proof of the
SNOW Theorem, discusses the tightness of the theorem,
defines SNOW-optimality, and discusses the spectrums
of related properties.

4.1 Models, Definitions, and Assumptions
System Model. Our system model is similar to that
used in FLP [16]. A distributed system is modeled by
a set of N processes, where N > 1. Processes communi-
cate by sending and receiving messages. A set of client
processes (machines) issue requests to the server pro-
cesses (machines), which store the data. System actions
are modeled as each process going through a sequence
of events, where an event is an atomic step of receiving
a message, doing local computation, and/or producing a
set of output messages.

Network Model. The SNOW Theorem holds for
the asynchronous network [18] and the partially syn-
chronous network [15] models. In an asynchronous net-
work, there are no physical clocks and messages between
processes can be arbitrarily delayed. In a partially syn-
chronous network, the message delay is bounded and

there is a bound on the drift rate between clocks at differ-
ent processors, but either the rates are not known apriori
or do not hold immediately. In the proof, we use an asyn-
chronous network for simplicity. We then discuss the
correctness of the SNOW Theorem under the partially
synchronous network model.

Definitions. A transaction is a set of operations that
read and/or update data. Clients group all operations that
are sent to the same server into a single request. The in-
vocation time of the transaction is the time when a client
process sends each request in the transaction to the in-
volved servers. The response time of the transaction is
the time when the client has received all the responses
from the servers.

Lamport’s happened-before relation [21] is the (small-
est) partial order such that “1) If a and b are events in the
same process, and a comes before b, then a→ b. 2) If
a is the sending of a message by one process and b is
the receipt of the same message by another process, then
a→ b. 3) If a→ b and b→ c then a→ c.”

We use the happened before relation to differentiate
between two server behaviors for handling read-only
transaction requests. Let r be the handling of a request
from a read-only transaction, R, on a server. A write
transaction, W, is unknown to r if the client that issued R
could not know about W when it issued the request and
the server handling the request could not know about R
until the request arrived. More formally, W is unknown
to r if Winv 9 Rinv and Rinv 9 e′, where e′ is the event
on server S that directly precedes r. The server handles r
with the default behavior if W is unknown to r.

Assumptions. We assume a reliable network, reliable
processors, and one-shot transactions. A reliable net-
work eventually delivers every message sent. Reliable
processors eventually receive and process every message
sent. One-shot transactions [20] require at most one re-
quest per server process, i.e., they do not use the out-
put of a request as part of the input of another request.2

These assumptions are not necessary as the SNOW The-
orem holds without them. Assuming them demonstrates
the strength of the impossibility result. We also use these
assumptions when characterizing what is possible (§4.3–
4.4) and categorizing related work (§7).

We also assume there are at least two server processes
and at least three client processes. These assumptions
are necessary for our proof. SNOW is possible with a
single server process or a single client process. It is an
open question if SNOW is possible when the system has
at least two server processes and exactly two client pro-
cesses.

2Equivalently, there are no cross-server key- or value-dependencies.

138 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CWSA SB

Rinv

CR

W
invisible

W
visible

ra = new

rb = old

W = {
a = new
b = new
}

Wresp

Figure 2: The asynchronous nature of the network
allows one request in a read-only transaction to ar-
rive before a conflicting write transaction is visible
on one server, while another request arrives after the
write transaction becomes visible at a different server.
This requires read-only transactions to either settle
for weaker consistency (S), block some read requests
(N), coordinate and/or retry the reads (O), or pre-
clude conflicting write transactions (W).

4.2 SNOW is Impossible

The SNOW Theorem is an impossibility result that states
no read-only transaction algorithm can provide optimal
latency and the highest power. Providing optimal la-
tency requires providing the non-blocking (N) and one
response (O) properties. Providing the highest power re-
quires providing strict serializability (S) and being com-
patible with conflicting write transactions (W).

The intuition of the proof is that when a transaction
with writes commits, there is a point at every server when
the transaction becomes visible, i.e., newly arriving reads
will see its effect. However, the asynchronous nature of
the network allows read requests to arrive before the tran-
sition on one server and after the transition on another,
as shown in Figure 2. Turning this intuition into a proof,
however, turns out to be more complex. We prove the
SNOW Theorem by contradiction, i.e., we assume there
exists a read-only transaction with all of the SNOW prop-
erties and then eventually show this assumption leads to
a contradiction. First, we show that the default behav-
ior of servers must be to return a value, which we called
the “default” value (Lemma 1). Second, we show that
this default value must initially not expose an ongoing
write transaction (Lemma 2). Third, we show that this
default value must eventually expose that write transac-
tion (Lemma 3). Fourth, we show that this default value
must transition from not exposing the write transaction to

exposing it, at some point on each server (Corollary 4).
Finally, we prove the SNOW Theorem by constructing
an execution where two requests from a read-only trans-
action take the default behavior at two different servers,
with one request arriving before the transition and one
arriving after the transition.

The SNOW Theorem. No read-only transaction algo-
rithm provides all of the SNOW properties.

Proof. Assume to contradict that there exists a read-
only transaction algorithm with all of the SNOW proper-
ties. Consider a distributed system with at least the two
servers, SA and SB, and the three clients, CR, CR′ , and CW ,
that we assumed exist.

Let R be a read-only transaction issued by CR that
reads a from SA and b from SB. Let the first events that
happen on SA and SB as part of the read-only transaction
algorithm be ra and rb, respectively. Let W be a conflict-
ing write transaction that writes a = new and b = new.
Let the values of a and b before W is applied be old.

Lemma 1. The default behavior at servers returns val-
ues that are used by clients.

Proof. This follows directly from the non-blocking and
one response properties. �

Lemma 2. Servers initially return old by default.

Proof. R and W can be concurrent by the conflicting
write transaction property. ra can occur at Sa before any
event that happened after Winv by the concurrency of R
and W and the asynchronous network. ra can be the first
request in R to arrive at a server by the asynchronous net-
work. Then, by definition, ra is handled by default and
returns a value by Lemma 1. Sa cannot know of W be-
cause Winv 9 ra and so must return old. �

Lemma 3. Servers eventually return new by default.

Proof. Assume to contradict that servers never return new
by default. Let R be invoked after W returns at CW . R
must return a = new and b = new by strict serializability.
By assumption, Sa and Sb must have returned new by a
non-default behavior. Let ra be the first of the requests of
R to be handled by a server, by the asynchronous net-
work. Then the non-default behavior must have been
triggered by the receipt at CR of some message msee that
connects Winv→ Rinv.

Consider the execution up until the point where the
msee message is in the network. By the asynchronous net-
work we can deliver or delay messages arbitrarily. De-
lay all messages not explicitly mentioned and continue
that execution by delivering msee.3 Then deliver all mes-
sages for R, which must still see a = new and b = new

3This construction guards against write transaction algorithms that
explicitly notify all clients of their existence before completing.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 139

because they are indistinguishable from the original ex-
ecution. Let R′ be a read-only transaction issued by CR′

that reads a from SA and b from SB that is invoked after
R returns. Deliver no messages to CR′ before it issues R′,
and deliver all of the messages in R′. Let r′a be the first
request in R′ delivered by the asynchronous network. By
definition r′a is handled by default, and by assumption
old must be returned. By strict serializability, old must
also be returned for b to R′. Thus, R′ reads a = old and
b = old even though it is invoked after R returns having
read a = new and b = new. This violates strict serializ-
ability and is our contradiction. �

Corollary 4. There exists a transition at each server be-
tween defaulting to old and defaulting to new.

Proof. This follows directly from Lemmas 2 and 3. �

Proof of the SNOW Theorem. Let tA and tB be the first
transitions from defaulting to old and defaulting to new
at SA and SB, respectively, that exist by Corollary 4. Let
tA happen first, without loss of generality. Deliver no
message to CR before R is invoked. Deliver ra immedi-
ately after tA and before rb. By definition, ra is handled
by default, and by being immediately after tA it must re-
turn new. Next, immediately deliver rb. By definition,
rb is handled by default. By being before tB, rb must re-
turn old. Thus, in this execution R returns a = new and
b = old. This violates strict serializability and is the con-
tradiction we needed to prove the SNOW Theorem. �

SNOW with Partial Synchrony. We have shown the
correctness of the SNOW Theorem for the asynchronous
network model. The theorem also holds for partially
synchronous networks because transforming bounds on
delay or clock drift into knowledge that can be used in
an algorithm requires blocking in proportion to those
bounds [15]. Lemma 2 still holds because ra may still
arrive before knowledge of W and would need to wait for
that knowledge to arrive to be able to return new, which
is not allowed because it is blocking. Lemma 3 also still
holds because eliminating the possibility of CR receiving
msee, then completing a read-only transaction, and then
CR′ completing a read-only transaction before receiving
any messages would require waiting out bounds. That
waiting would have to be on the read path of either CR
and/or CR′ , which is not allowed because it is blocking.

4.3 Tightness and SNOW-Optimality
We demonstrate the tightness of the SNOW Theorem
by showing that every combination of three out of the
four SNOW properties is possible. That is, there exists
read-only transaction algorithms that satisfy S+O+W,
N+O+W, S+N+W, and S+N+O.

Rococo-SNOW, one of the algorithms we will dis-
cuss later in this paper, is S+O+W. It is a blocking al-
gorithm but is compatible with stronger transaction se-
mantics, i.e., write-only transactions and general trans-
actions. Algorithms that provide multi-object snap-
shots in the past are often N+O+W algorithms. For
instance, Spanner [11]’s snapshot reads API that is se-
rializable. MySQL Cluster [31] also uses a N+O+W
algorithm while providing read committed consistency.
These algorithms favor low latency over the isolation
and/or recency of strict serializability. Eiger [27]’s read-
only transaction algorithm is S+N+W, as it uses multiple
rounds to make the write transaction known to all reads.

We designed a novel algorithm for COPS, COPS-DW,
that satisfies S+N+O by making all simple write oper-
ations go through a distinguished writer. The distin-
guished writer totally orders the writes. In addition,
when each write commits, the distinguished writer com-
putes a consistent snapshot for concurrent or later read-
only transactions to return. This algorithm is of theoreti-
cal interest only and is not practical because it serializes
all writes. It remains open whether there exists practical
S+N+O algorithms. These algorithms demonstrate the
tightness of the SNOW Theorem, that is, the four SNOW
properties are the minimal set of properties that make co-
existence impossible.

Given that the SNOW Theorem is tight, we define a
read-only transaction algorithm to be SNOW-optimal if
its properties sit on the boundary of the SNOW Theorem,
i.e., it achieves three out of the four SNOW properties.
In the four different combinations of SNOW-optimality,
S+N+O and N+O+W favor the performance of read-only
transactions since non-blocking and one response lead to
low latency. We call algorithms that satisfy N+O latency-
optimal. In contrast, property combinations S+O+W and
S+N+W lean towards the power of read-only transac-
tions as they provide the strongest consistency guarantee
and compatibility with conflicting write transactions.

4.4 Spectrums of Properties
To fully understand what we can learn from the SNOW
Theorem, we further tighten the boundary on what is pos-
sible by moving beyond considering the one response
and strict serializability properties as binary to viewing
them as spectrums.

If the one response property is sacrificed, then how
many rounds of messages are sufficient for the rest of the
properties to hold?

By examining the systems we have found, existing
read-only transaction algorithms range from at most
three rounds of messages (Eiger) to an unbounded num-
ber of rounds of messages. It is currently open if there
exist S+N+W algorithms with at most two rounds.

140 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

If the strict serializability property is sacrificed, then
what is the next strongest consistency model an algo-
rithm can achieve if the other three properties hold?

Process-ordered serializability is a consistency model
slightly weaker than strict serializability that is effec-
tively the combination of serializability and sequential
consistency [22]. It requires that there exists a legal to-
tal ordering over all operations in the system, provides
transactional isolation, and guarantees that the legal total
order agrees with each process’s ordering of its own op-
erations. It is weaker than strict serializability in that it
does not necessarily return the most recent values across
processes. We designed a novel algorithm we call Eiger-
PS for the Eiger data store. Eiger-PS satisfies N+O+W,
while providing process-ordered serializability.

The key idea of the read-only transaction algorithm
of Eiger-PS is for each client to maintain a serializable
view of the system and to only move to a new view when
it is certain that the new view contains that client’s most
recent write. We accomplish this by having each client
maintain a global safe time, GST, which is the latest log-
ical time at which no server is holding a pending write
transaction. The GST is maintained by each client pe-
riodically requesting from every server their local safe
time, which is the latest time on the server with no in-
progress write transactions. The client then only reads at
its GST, which provides serializability in Eiger [27]. To
achieve process-ordered serializability, each client must
see its most recent write. Reading at the GST will not
necessarily guarantee that the client sees its most recent
write as the client may not have updated its GST since the
commit of the last write transaction. Thus, we have each
write transaction wait to return until the writing client’s
GST exceeds the logical commit time of the write trans-
action. This does not provide strict serializability be-
cause a client may not see the most recent write com-
mitted by another client.

Because process-ordered serializability is possible, all
of the consistency models that are weaker than process-
ordered serializability are also able to coexist with the
other three properties. For instance, some weaker consis-
tency models include serializability, causal consistency,
snapshot isolation, parallel snapshot isolation, and read
committed. That is, with all of these weaker forms of
consistency, a read-only transaction algorithm can pro-
vide N+O+W.

5 Read-Only Transaction Designs

This section explores how to use SNOW-optimality as a
lens to examine existing algorithms, our common insight
in deriving SNOW-optimal algorithms, and the designs
of COPS-SNOW and Rococo-SNOW that integrate new
read-only transaction algorithms.

5.1 Exploring Improvements with SNOW
SNOW-optimality is a powerful lens with which to ex-
amine the design of read-only transaction algorithms. If
an algorithm is already SNOW-optimal, then we cannot
improve it without making a different choice in the trade-
off between latency and power. If an algorithm is not
SNOW-optimal, however, we know that it is possible to
improve it without making a different design choice.

Any algorithm that is not SNOW-optimal has at most
two of the SNOW properties. We improve upon such
algorithms by keeping the SNOW properties they pro-
vide and adding at least one of the latency-related prop-
erties. We do not add strict serializability or compatibil-
ity with conflicting write transactions because doing so
would change the base system into something new.

The COPS distributed data store has a non-blocking
algorithm for its read-only transactions and we designed
a new non-blocking and one response algorithm. The
new COPS-SNOW algorithm is latency-optimal, but not
SNOW-optimal because it is neither strictly serializable
nor compatible with write transactions. The Rococo dis-
tributed data store has a read-only transaction algorithm
that is strictly serializable and compatible with conflict-
ing writes. We designed a new algorithm that adds the
one response property. The new Rococo-SNOW algo-
rithm is SNOW-optimal but not latency-optimal.

In addition to helping us discover systems whose algo-
rithms we can improve, the SNOW Theorem also helps
us avoid trying to improve systems that we cannot. Some
of the distributed data stores we examined were already
SNOW-optimal and so we knew it would be impossible
to improve them. For instance, Spanner [11] is SNOW-
optimal because it has a strictly serializable, one round
read-only transaction algorithm that is compatible with
conflicting write transactions. Section 7 discusses more
systems that are already SNOW-optimal.

5.2 Common Insight for Optimal Reads
After identifying if and how we can improve upon the
read-only transaction algorithm in existing systems, we
need to design algorithms that realize that improvement.
We have found one common insight in our new algo-
rithms that we think will be useful in deriving other
SNOW-optimal algorithms. This key insight is to make
reads cheaper by making writes more expensive.

Instead of blocking reads, block writes. Instead of re-
quiring extra rounds of communication for reads, require
them for writes. Shifting the burden to writes will al-
ways improve the individual performance of reads. But
for the read-heavy workloads that are common for Web
services, such a design can also improve overall perfor-
mance because it diminishes a minority of the workload
to improve the majority of it.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 141

public! private!

public! private!

ACL:!

Album:!

r1!

r2!

ID=100!

(after ACLprivate)!

r1’!

(a) COPS read-only transaction

public! private!

public! private!

ACL:!

Album:!

r1[ID=100]!

r2[ID=100]!

check! ID=100!

ID=100!

(b) COPS-SNOW read-only transaction

Figure 3: Ensuring causal consistency for a private photo that is updated after setting the ACL to private. COPS
takes two rounds of requests (r1,r2 then r1′) while COPS-SNOW takes only one round to ensure consistency.

5.3 COPS-SNOW Design

This subsection describes the COPS system and our new
read-only transaction algorithm for it.

COPS Overview. COPS is a scalable, geo-replicated
storage system where each replica (datacenter) contains
a full copy of the data sharded across many machines.
COPS has single-key write operations and does not have
write transactions. Each datacenter accepts writes lo-
cally and then replicates them to remote datacenters with
metadata that indicates their causal dependencies. Re-
mote datacenters check that the write’s causal dependen-
cies are satisfied before applying the write. This ensures
that the data spread across many shards in each replica is
always causally consistent [3, 21]. COPS has read-only
transactions that are handled entirely locally in a replica
and provide a causally consistent view of the data store.
For the rest of our discussion of COPS we focus on its
operations within a single datacenter, but our results ap-
ply equally in the geo-replicated setting.

The original read-only transaction algorithm in COPS
is causally consistent, non-blocking, two rounds, and is
not compatible with write transactions. COPS read-only
transactions begin when application logic invokes a read-
only transaction that includes the full list of keys the
client wants to read. The client then sends out a first
round of read requests to each shard that has data in
the transaction. Servers respond with their current value
for the data along with the causal dependencies of each
value. After the first round the client checks to see if
all of the returned values are mutually consistent. Each
causal dependency that is returned with a read is a con-
straint on other values in the system, e.g., b1 depends on
a1 means that if a client observes b1 it must also observe
a1 or an even later version of a (if it reads a). If all of the
dependencies of all the values returned in the first round
are satisfied, then COPS returns the values to the applica-
tion logic after a single round. If, however, not all of the

dependencies are satisfied, then COPS issues a second
round of read requests for each value that does not satisfy
other values’ dependencies. COPS requests the specific
versions of keys that are depended upon, e.g., if a0 and
b1 are returned in the first round then a1 will be requested
in the second round. Requesting these specific versions
guarantees COPS will complete in two rounds because
these versions satisfy current dependencies. In addition,
these specific versions do not introduce any new depen-
dencies because, by the definition of causality, their de-
pendencies are a subset of the dependencies of values
that depend upon them, e.g., a1’s dependencies are a sub-
set of b1’s.

COPS-SNOW Algorithm. We improve COPS with
a new latency-optimal read-only transaction algorithm.
Our COPS-SNOW algorithm keeps the power properties
of the current algorithm: it provides causal consistency
and is not compatible with conflicting write transactions.
It is latency-optimal because it keeps the non-blocking
property of the current algorithm and adds the one re-
sponse property. Following our common insight we shift
the complexity from the reads to the writes in COPS.
More specifically, we shift the consistency check and
second round fetch of consistent values from the read-
only transaction algorithm into the write algorithm.

In COPS a second-round read is needed if and only if
one part of the read-only transaction ra does not see a
write wa1 and another part of the read-only transaction rb
does see a write wb1 that is causally after wa1. Figure 3a
shows this in action with COPS using the canonical ac-
cess control list (ACL) and photo example where an al-
bum is switched to private (wa1) and then a private photo
is added (wb1). In this example, COPS will send a new
read r1′ that will see write wa1 and return the consistent
set of the private ACL and Album.

Our new algorithm flips this responsibility by having
a write check if any of its causal dependencies have not
been observed by an ongoing read-only transaction. If

142 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 Client Side
2 function read_only_txn(<keys>):
3 trans_id = generate_uuid()
4 vals, deps = []
5 for k in keys # in parallel
6 vals[k], deps = read_txn(k, trans_id)
7 # update causal dependencies
8 return vals
9

10 function write(key, val):
11 old_deps = get_deps()
12 new_dep = write(key, val, old_deps)
13 # update causal dependencies
14 return
15

16 Server Side
17 function read_txn(key, trans_id):
18 if trans_id in old_rdrs[key]
19 time = old_rdrs[key][trans_id]
20 return val = read_at_time(key, time)
21 curr_rdrs[key].append(trans_id,
22 logical_time.now())
23 return read(key)
24

25 function write(key, val, deps):
26 for d in deps # in parallel
27 old_rs = check_dep(d)
28 old_rdrs[key].append(old_rs)
29 old_rdrs[key].append(curr_rdrs[key])
30 curr_rdrs[key].clear()
31 write(key, val)
32 # calculate causal dep for this write
33 return new_dep
34

35 function check_dep(dep)
36 # normal causal dependency check
37 return old_rdrs[dep.key]

Figure 4: Pseudocode for COPS-SNOW.

any of those causal dependencies were not observed by
a read-only transaction then this write should not be ob-
served by it either, so the write updates metadata encod-
ing that. Figure 3b shows our new algorithm in action on
the same example. COPS-SNOW returns the consistent
set of the public ACL and Album.

Figure 4 shows the pseudocode for COPS-SNOW. On
the client side writes are the same as in COPS, and read-
only transactions are similar but simpler because they re-
turn the values from the first and only round. On the
server side there are five high-level changes relative to
COPS: two changes to reads, two to writes, and one to
dependency checks.

The first change to reads is that they check to see if
their enclosing transactions are listed in the old readers
data structure (old rdrs) and if so return an older, con-

sistent value. The second change to reads is that they
are recorded as observing the current value in the cur-
rent readers data structure (curr rdrs). This enables
writes that overwrite the value to record which read-only
transactions did not see them.

The first change to writes is that they do dependency
checks to see if any of their causal dependencies over-
wrote values that a read-only transaction observed. If so,
the write records in the old readers data structure that
those read-only transactions should see older values to
be consistent. The second change to writes is that they
record any read-only transactions that observed the value
they overwrote by copying the current readers data struc-
ture into the old readers data structure. The change to
dependency checks is that they return the set of read-
only transactions that did not see a causally dependent
update. The combination of changes to writes enables
this. Adding reads of the overwritten values captures
reads that did not observe this write. Adding reads that
did not see this write’s causal dependencies—which also
did dependency checks that added their causal dependen-
cies, and so on—captures the transitive closure of this
write’s dependencies.

For clarity the pseudocode excludes logic related to
updating causal dependencies; grouping reads to keys
that are stored on the same server; updating Lamport
clocks; and storing, reading, and garbage-collecting old
versions. All of this logic is similar to what COPS does,
and is identical to what Eiger does.

5.4 Rococo-SNOW Design

This subsection describes the Rococo system and our
new read-only transaction algorithm for it.

Rococo Overview. Rococo is a strictly serializable,
distributed data store with general transactions [29]. Ro-
coco was designed primarily for the single datacenter set-
ting we consider here. Rococo introduced a new concur-
rent control algorithm that outperforms traditional con-
currency control algorithms under high contention work-
loads by reordering conflicting transactions instead of
aborting them. Rococo requires the transactions that
it executes to be chopped into pieces and analyzed for
safety before the system is deployed. Each transaction
is chopped into pieces that execute on shards as stored
procedures. For instance, to increment keys a and b that
are stored in different shards, Rococo would have a piece
for a that invokes the increment stored procedure server-
side and a separate piece for b that invokes the increment
stored procedure server-side. Rococo analyzes the pieces
of transactions to ensure that if they conflict at run time
it will be able to safely reorder them.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 143

Rococo’s general transactions operate in three phases
run by a coordinator. The first phase distributes pieces
of the transaction to the appropriate shards and deter-
mines all directly conflicting transactions. The second
phase ensures all shards have the same metadata about
directly conflicting transactions. The third phase, which
can often be skipped, ensures all shards have the same
metadata about transitively (but not directly) conflicting
transactions. After the second or third phase each shard
deterministically orders all conflicting transactions and
then executes them in that order.

The original read-only transaction algorithm in Ro-
coco is strictly serializable, blocking, multi-round, and
compatible with conflicting write transactions. It takes
two rounds in the best case and an infinite number of
rounds in the worst case. In the first round the coordi-
nator sends read requests to each involved shard. Those
read requests block until after the execution of all con-
flicting transactions that started at that shard before this
read arrived. The second round is identical, and Ro-
coco considers the read-only transaction successful only
if both rounds read the same values. If not, Rococo will
continue issuing another round of reads until two consec-
utive rounds return the same results. This algorithm en-
sures strict serializability for the reads because it ensures
they are totally ordered relative to all conflicting transac-
tions. Waiting for all conflicting transactions to execute
at a shard before returning in the first round ensures those
transactions will have at least started at all other involved
shards before the second-round read arrives. Thus, if a
read-only transaction is not fully ordered before or after
a write transaction, it will see different results and con-
tinue trying.

Rococo-SNOW Algorithm. We improve Rococo with
a new SNOW-optimal read-only transaction algorithm.
Our Rococo-SNOW algorithm keeps the power proper-
ties of the current algorithm: it provides strict serializ-
ability and is compatible with conflicting write transac-
tions. It also adds the one response property to these,
which makes it SNOW-optimal. It is not latency-optimal
because it blocks, which we know is unavoidable. Fol-
lowing our common insight we shift the complexity from
reads into the commit algorithm of Rococo.

Due to space limitations, we only briefly describe our
new algorithm and omit its pseudocode. It is concep-
tually similar to the COPS-SNOW algorithm in that it
tracks whenever a value is read by a read-only trans-
action and then propagates the knowledge of that to all
other servers where that ordering is important. In Ro-
coco the second round (and additional rounds after that)
are necessary to protect against the case where one part
of a read-only transaction does not see a write transaction
but another part does. Our new algorithm ensures this

case never occurs by blocking each piece of a read-only
transaction until all conflicting write transactions have
executed at that shard. Rococo’s commit algorithm en-
sures that each piece of a transaction has knowledge of
the transitive closure of all conflicting transactions. We
piggyback the knowledge of read-only transaction pieces
that did not see any of the transitive closure of conflicting
transactions into that commit algorithm.

If a different piece of the read-only transaction did not
see a conflicting write transaction, then this shard will
know about that through the commit algorithm before it
unblocks this piece of the read-only transaction. Thus,
the shard will know whether to return an old state or the
most recent state when it executes the read-only transac-
tion piece. When the coordinator receives replies from
all involved shards, it knows the results are consistent
and thus returns them to the application logic.

6 Evaluation

We experimentally evaluate COPS-SNOW and Rococo-
SNOW to understand how their latency and throughput
compare to the original COPS and Rococo under a vari-
ety of settings. The evaluation shows that both COPS-
SNOW and Rococo-SNOW achieve lower latency for
read-only transactions. COPS-SNOW achieves this at
the cost of lower system throughput. Rococo-SNOW has
slightly lower throughput than Rococo under low con-
tention but actually achieves much higher throughput in
the high-contention settings Rococo was designed for.

6.1 COPS-SNOW

Implementation. We implemented COPS-SNOW as
a modification to Eiger [27], the successor to COPS.
Eiger provides the same level of consistency guarantees
as COPS, adds support for write-only transactions, sup-
ports a richer data model, and has a read-only transaction
algorithm based on logical time instead of causal depen-
dencies. We disable Eiger’s write-only transactions to
change it to a COPS-like mode where it has an at most
two-round read-only transaction algorithm. This allows
Eiger to propagate and store far fewer dependencies than
COPS and makes its read-only transaction algorithm far
more efficient. For this reason, we implement on top
of Eiger: we are comparing to the state-of-the-art read-
only transaction algorithm for causally-consistent sys-
tems without compatibility with write transactions. We
refer to this baseline as COPS throughout the evaluation.
This implementation is available publicly on GitHub.4

4https://github.com/USC-NSL/COPS-SNOW

144 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/USC-NSL/COPS-SNOW

��
���
���
���
���
����
����
����
����
����
����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
�
�
��
�
�
�

�����������������

����
���������

(a) Latency with 0.1 write frac

����
����
����
����
����
����
����
����
����
��

����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
���
�
�
��
�
��
�
�
�

�����������������

����
�������
�������
������
������

(b) Normalized median latency

����
����
����
����
����
����
����
����
����
��

����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
���
�
�
��
�
��
�
�
�
�
�
�

�����������������

����
������
������
�������
�������

(c) Normalized throughput

Figure 5: Latency and throughput for COPS-SNOW and COPS for varying fractions of writes in the workload.
The latency graphs show the median latency for read-only transactions. Throughput graphs show the overall
throughput of the cluster.

Testbed, Bottleneck Resource, and Trials. We tried
to match our experimental setup to that of Eiger’s as
much as possible. We ran all the experiments on the
PRObE Nome testbed [17]. (Some of Eiger’s experi-
ments were run on Nome’s predecessor Kodiak.) Each
Nome machine has four Quad-Core AMD Opteron 2.2
GHz CPUs, 32 GB RAM, and two network interfaces:
one 1 Gbps Ethernet and one 20 Gbps Infiniband. All
COPS-SNOW experiments were run on a 20 Gbps Infini-
band network, which matches the network configuration
Eiger used. Due to inefficient thread scheduling within
Cassandra, upon which Eiger is based, one instance can-
not saturate all 16 cores on a physical machine. To make
a fair baseline for comparison, we run two instances on
each node so we can saturate one of the machine’s re-
sources. For all experiments the bottleneck is network
interrupt processing. We ran 15 trials for each experi-
ment and report the median. Each trial lasted at least 90
seconds with the first and last quarter excluded to avoid
artifacts due to warm up, cool down, and imperfectly
synchronized clients.

Configuration and Workloads. We evaluate COPS-
SNOW using two logical datacenters that are physically
co-located in the testbed with eight server machines each.
We use 16 client machines to load the servers in one of
the logical datacenters. (Our throughput disadvantage
would decrease as client load shifted to be more evenly
distributed across the datacenters.) We use the dynamic
workload generator from Eiger with Zipfian traffic gen-
eration using these parameters:

Parameter Default Range
Value Size (B) 128
Cols/Key 5
Keys/Operation 5 5 – 32
Write Fraction 0.1 0.01 – 0.5
Zipfian Constant 0.8 0.7 – 0.99

The default parameters match the defaults in Eiger’s
evaluation and we choose 0.8 as the default Zipfian con-
stant because it provides moderate skew. For a write of
5 – 32 keys we send out 5 – 32 parallel, unrelated indi-
vidual write operations. We explore how the throughput
of COPS-SNOW compares to COPS under a variety of
settings shown by the ranges of parameters we explore.

Performance with Varying Write Fraction. Figure 5
shows the latency and throughput of COPS-SNOW and
COPS as we increase the number of closed-loop client
threads on each client machine. Figure 5a shows the la-
tency with a write fraction of 0.1. In this setting, there
are enough writes to require COPS to sometimes go to
the second round of its algorithm and COPS-SNOW has
a slight latency advantage.

Figure 5b shows the median latency of COPS-SNOW
normalized against that of COPS for a variety of write
fractions. When the write fraction is very low at 0.01,
there are so few writes that all of COPS’s read-only trans-
actions take only one round and have similar latency to
COPS-SNOW. When the number of closed-loop client
threads is high, sometimes the latency of COPS-SNOW
is actually higher than that of COPS because the systems
are overloaded. This overload is outside the model we
considered in this paper, which we believe is reasonable
because overload is outside of the normal range of sys-
tem operations. Exploring the affect of overload on la-
tency is an interesting avenue of future work.

The larger result from Figure 5b is that the latency im-
provement of COPS-SNOW increases as the write frac-
tion increases. It is substantial when the write fraction is
close to 0.3. The rest of the experiments use the default
0.1 fraction. If they used a higher write fraction their la-
tency results would be more pronounced and if they used
a smaller write fraction their latency results would be less
pronounced.

Figure 5c shows the throughput of the cluster in the
same settings. Here we see that COPS-SNOW is trading

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 145

��
���
���
���
���
����
����
����
����
����
����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
�
�
��
�
�
�

�����������������

����
���������

(a) Latency with Zipf=0.9

����
����
����
����
����
����
����
����
����
��

����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
���
�
�
��
�
��
�
�
�

�����������������

����
��������
��������
��������
���������

(b) Normalized median latency

����
����
����
����
����
����
����
����
����
��

����
����

�� ��� ��� ��� ���� ���� ����

�
�
��
�
���
�
�
��
�
��
�
�
�
�
�
�

�����������������

����
���������
��������
��������
��������

(c) Normalized throughput

Figure 6: Latency and throughput for COPS-SNOW and COPS for varying levels of skew in the workload.
Latency graphs show the median latency for read-only transactions. Throughput graphs show the overall
throughput of the cluster.

away throughput for lower latency for read-only trans-
actions. This loss in throughput comes from the extra
messages in the write algorithm in COPS-SNOW.

Performance with Varying Keys per Operation.
Due to space constraints, we omit the figure showing the
throughput and latency of COPS-SNOW and COPS for
a varying number of operations in each transaction. Our
results show that COPS-SNOW has a latency advantage
that increases as read-only transactions increase in size
because the read-only transactions in COPS are more
likely to go to the second round. It also shows that the
throughput of COPS-SNOW becomes worse relative to
COPS as read-only transactions become larger because
each write has more causal dependencies to check.

Performance with Varying Levels of Skew. Figure 6
shows the latency and throughput of COPS-SNOW and
COPS for varying levels of skew in the workload. Fig-
ure 6a shows the latency of read-only transactions when
the skew is moderate with a Zipfian constant of 0.9.
COPS-SNOW has a latency advantage over COPS be-
cause there is moderate contention in the workload and
COPS sometimes needs a second round for reads. Fig-
ure 6b shows that COPS-SNOW has an increasing la-
tency advantage as the workload becomes more skewed
as long as the systems are not overloaded. Figure 6c
shows that the throughput disadvantage of COPS-SNOW
decreases slightly as the workload becomes more skewed
and the extra RPCs in the write algorithm of COPS-
SNOW are offset by the extra RPCs in the second round
of read-only transaction in COPS.

6.2 Rococo-SNOW

Implementation. We implemented Rococo-SNOW as
a modification to Rococo’s code base. We converted Ro-
coco from a single-version to a multi-version system to

support our read-only transactions and replaced its read-
only transaction logic with our new algorithm. This im-
plementation is available publicly on GitHub.5

Testbed, Bottleneck Resource, and Trials. We tried
to match our experimental setup to that of Rococo’s as
much as possible. We ran all the experiment on the
PRObE Nome testbed. (All of Rococo’s experiments
were run on Nome’s predecessor Kodiak, which has been
decommissioned.) The machines’ specifications are the
same as they were for COPS-SNOW with two excep-
tions. First, we use the Ethernet network interface in-
stead of the Infiniband interface to match the setup from
Rococo’s evaluation (the network is never a bottleneck).
Second, Rococo is single-threaded and used only one
core in its evaluation so we run one Rococo process per
machine, which only uses one of the cores. This core is
always the bottleneck. The rest of our experiment set-
tings were identical to what were used in Rococo, e.g.,
each trial lasted at least 60 seconds with first and last
quarter excluded to avoid artifacts due to warm up, cool
down, and imperfectly synchronized clients.

Configuration and Workload. We evaluate Rococo-
SNOW using 8 server machines and 16 client machines.
We evaluate using Rococo’s district-sharded TPC-C with
all parameters matching Rococo’s evaluation [29].

TPC-C Throughput and Read-only Transactions.
Figure 7 shows the performance of Rococo-SNOW, Ro-
coco, 2PL, and OCC as load and contention are increas-
ing by increasing the number of concurrent requests per
server in the system. The throughput for the (read-write)
new order transaction is shown in Figure 7a. The TPC-C
benchmark requires a specific mix of its five transaction
types, so this throughput is proportional to the through-
put of each type of transaction. Our results for Rococo,

5https://github.com/USC-NSL/Rococo-SNOW

146 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/USC-NSL/Rococo-SNOW

��

�����

�����

�����

�����

�����

�����

�� ��� ��� ��� ��� ����

�
�
��
�
�
�
�
�
��
��
�
�
��
��
�
��
�
�

����������������������

�����������
������

���
���

(a) New order throughput

��

����

����

����

����

�����

�����

�� ��� ��� ��� ��� ����

�
�
��
�
�
�
��
�
�
�

����������������������

���
������

���
�����������

(b) Stock level latency

��
����
����
����
����
����
����
����
����
����
��

�� ��� ��� ��� ��� ����

�
�
�
�
���
��
��

����������������������

�����������
���

������
���

(c) Stock level commit rate

Figure 7: Rococo-SNOW performance with Rococo’s TPC-C benchmark. The throughput of new order trans-
actions is shown, which is proportional to the throughput of all transactions. The median latency and commit
rate of the read-only stock level transactions are shown.

2PL, and OCC, match what was observed in Rococo’s
evaluation. We see that Rococo-SNOW provides lower
peak throughput than Rococo. This is because with so
few requests per server there is low contention and Ro-
coco’s read-only transactions rarely “abort” (i.e., must
continue to another round), while Rococo-SNOW makes
the write algorithm more complex. Once contention in-
creases to a moderate level with 30 requests/server, the
throughput of Rococo-SNOW matches that of Rococo
and then starts to exceed it. In the high-contention work-
loads that Rococo was designed for, Rococo-SNOW ac-
tually has much higher throughput. This is because
Rococo-SNOW’s read-only transactions always succeed
after a single blocking round, while Rococo’s read-only
transactions often have to retry many times when con-
tention is high.

Figure 7b shows the latency of the read-only stock
level transactions, which shows that Rococo-SNOW pro-
vides much lower latency than Rococo. Figure 7c shows
the “commit” rate of stock level transactions. The low
commit rate for these read-only transactions makes them
the bottleneck for Rococo under high contention, even
though all of Rococo’s read-write transactions have a
commit rate of 100% (not shown).

7 Related Work

This section reviews existing read-only transactions and
discusses other impossibility results.

Existing Read-Only Transactions. Figure 8 catego-
rizes many recent systems with read-only transaction al-
gorithms according to the SNOW properties. Some like
Yesquel [1], MySQL Cluster [31], and Spanner [11]’s
snapshot reads API are SNOW-optimal and latency-
optimal. To be optimal in both the systems must give up
one of the power related properties, and all of the three
systems give up strict serializability. Spanner’s snapshot
reads API provides a serializable (but potentially stale)

snaphot over the data. Yesquel provides snapshot isola-
tion, which is slightly weaker. MySQL Cluster provides
the yet weaker read-committed consistency model.

Many systems are SNOW-optimal but not latency-
optimal. These systems made a different design choice
and give up a latency related property to be as power-
ful as possible. One system, Eiger [27], has a bound
on the number of rounds needed for read-only trans-
actions. Other non-blocking SNOW-optimal systems
have an unbounded number of rounds. These include
DrTM [37], RIFL [23], and Sinfonia [2]. The unbounded
number of rounds typically comes from algorithms that
can abort, e.g., those based on optimistic concurrency
control. Rococo-SNOW is a different flavor of SNOW-
optimal because it is blocking, as is the algorithm of
Spanner-RO [11], which is Spanner’s strictly serializable
read-only transaction API.

Finally, many systems are neither SNOW-optimal nor
latency-optimal. This suggests there is room for im-
provement in the latency of their read-only transaction
algorithms without making a fundamentally different de-
sign choice. COPS [26] and Rococo [29] fall into this
category, which is the primary reason we developed new
algorithms for them. Walter [35], Orbe [14], Chain-
Reaction [5], Calvin [36], RAMP [8], Granola [12],
TAPIR [38], and Janus [30] also fall in this category and
are strong candidates for improvement.

Impossibility Results. Our work is inspired by other
impossibility results. The FLP result proves that in a
deterministic asynchronous system distributed processes
cannot always achieve consensus if even one process can
be faulty [16]. FLP is a different type of impossibility
result than SNOW because it states a liveness property
cannot always be satisfied: it is impossible to guarantee
a good thing (consensus) will always eventually happen.
In practice, however, consensus despite multiple faulty
processes happens regularly. The SNOW theorem, on
the other hand, states a safety property cannot always be

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 147

System S N O W

SNOW-optimal and latency-optimal

Spanner-Snap [11]* Ser X X X
Yesquel [1] SI X X X
MySQL Cluster [31]* RC X X X

SNOW-optimal

Eiger [27]* X X ≤ 3 X
DrTM [37]* X X ≥ 1 X
RIFL [23] X X ≥ 2 X
Sinfonia [2] X X ≥ 2 X
Spanner-RO [11]* X × X X
Rococo-SNOW* X × X X

Latency-optimal

COPS-SNOW* Causal X X ×

Neither SNOW-optimal nor latency-optimal

Janus [30] X × ≤ 2 X
Calvin [36] X × 2 X
Rococo [29]* X × ≥ 1 X
TAPIR [38]* Ser × X X
Granola-Independent [12]* Ser X ≥ 2 X
Granola-Coordinated [12]* Ser X ≥ 2 X
Walter [35] PSI X ≤ 2 X
COPS [26]* Causal X ≤ 2 ×
Orbe [14]* Causal × 2 ×
ChainReaction [5]* Causal × ≥ 2 ×
RAMP-F [8]* RA X ≤ 2 X
RAMP-H [8]* RA X ≤ 2 X
RAMP-S [8]* RA X 2 X

Figure 8: Categorization of read-only transactions
along the SNOW properties. Astericks denote algo-
rithms that are specialized for read-only transactions.

satisfied: it is impossible to guarantee a bad thing (violat-
ing strict serializability) will never happen. Any system
that can violate a safety property is not safe, and thus
cannot be used in practice.

The CAP Theorem proves it is impossible for a
distributed data store to always provide consistency
(strict serializability) and availability under network par-
titions [9, 18]. Lipton and Sandberg [25] first discov-
ered and Attiya and Welch [7] later refined a result that
shows it is impossible to achieve sequential consistency
and low latency in a replicated system. The CAP Theo-
rem and Lipton/Sandberg result are similar to SNOW in
that they point to a fundamental design decision for sys-
tem builders where they must choose some properties at
the expense of losing others.

A recent line of work has investigated read-only trans-
action for transactional memory (TM). Attiya et al. [6]
proved that it is impossible to have strictly serializ-
able TM implementations that ensure read-only transac-
tions are invisible—i.e., reads do not update memory—
and wait-free—always terminate regardless of concur-
rent transactions. Peluso at el. [33] further refined this
result with a TM implementation that has wait-free read-
only transactions but with a relaxed consistency model.
This work explores the possibilities of read-only trans-
actions in a different setting from ours. The concerns
of the different setting are different, TM is interested in
efficient hardware implementation while we are more in-
terested in a finer granularity of performance properties,
e.g., one response.

8 Conclusion

Read-only transactions are a fundamental building block
for large-scale applications such as modern Web ser-
vices. The SNOW Theorem proves that there is a fun-
damental tradeoff between the power and latency of
read-only transactions by showing that it is impossible
for an algorithm to provide strict serializability, non-
blocking operations, one response per read, and com-
patibility with write transactions. The resulting no-
tion of SNOW-optimality along with latency-optimality
are powerful lenses for examining existing systems and
determining if the latency of their read-only transac-
tions can be improved. Using those lenses we designed
and implemented COPS-SNOW—a new latency-optimal
algorithm—and Rococo-SNOW—a new SNOW-optimal
algorithm. Our evaluation demonstrates that both algo-
rithms provide lower latency for read-only transactions.

Acknowledgments

We are grateful to Theano Stavrinos, Minlan Yu, the
OSDI program committee, and our shepherd, Dan Ports,
for their feedback that improved this work. Our evalua-
tion at scale was made possible by the PRObE testbed,
which is supported by NSF awards CNS-1042537 and
CNS-1042543. The administrative team for the PRObE
testbed went above and beyond in their help to us.
This work was supported by NSF grants CNS-1464438,
CNS-1514422, and AFOSR grant FA9550-15-1-0302.
Part of Christopher Hodsdon’s work on this project was
done while he was an undergraduate student at Rut-
gers University-Camden and supported by NSF awards
1218620 and 1433220.

148 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AGUILERA, M. K., LENERS, J. B., AND WALFISH, M. Yesquel:
scalable SQL storage for Web applications. In Proc. SOSP (Oct
2015).

[2] AGUILERA, M. K., MERCHANT, A., SHAH, M., VEITCH, A.,
AND KARAMANOLIS, C. Sinfonia: A new paradigm forbuilding
scalable distributed systems. In Proc. SOSP (Oct 2007).

[3] AHAMAD, M., NEIGER, G., KOHLI, P., BURNS, J., AND
HUTTO, P. Causal memory: Definitions, implementation, and
programming. Distributed Computing 9, 1 (1995).

[4] AJOUX, P., BRONSON, N., KUMAR, S., LLOYD, W., AND
VEERARAGHAVAN, K. Challenges to adopting stronger consis-
tency at scale. In Proc. HotOS (May 2015).

[5] ALMEIDA, S., LEITAO, J., AND RODRIGUES, L. ChainReac-
tion: a causal+ consistent datastore based on chain replication. In
Proc. Eurosys (Apr 2013).

[6] ATTIYA, H., HILLEL, E., AND MILANI, A. Inherent limita-
tions on disjoint-access parallel implementations of transactional
memory. In Proc. SPAA (Aug 2009).

[7] ATTIYA, H., AND WELCH, J. L. Sequential consistency versus
linearizability. ACM Trans. Comput. Syst. 12, 2 (1994).

[8] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M.,
AND STOICA, I. Scalable atomic visibility with RAMP transac-
tions. In Proc. SIGMOD (Jun 2014).

[9] BREWER, E. A. Towards robust distributed systems. In Proc.
Principles of Distributed Computing (Jul 2000).

[10] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-
MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,
S., LI, H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG,
Y. J., AND VENKATARAMANI, V. Tao: Facebook’s distributed
data store for the social graph. In Proc. ATC (Jun 2013).

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., ANDSANJAY GHEMAWAT, J. F., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., ANDSEBASTIAN KANTHAK, W. H., KO-
GAN, E., LI, H., LLOYD, A., MELNIK, S., ANDDAVID NAGLE,
D. M., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., AND-
CHRISTOPHER TAYLOR, M. S., WANG, R., AND WOODFORD,
D. Spanner: Google’s globally-distributed database. In Proc.
OSDI (Oct 2012).

[12] COWLING, J., AND LISKOV, B. Granola: Low-overhead dis-
tributed transaction coordination. In Proc. ATC (Jun 2012).

[13] DIXON, P. Shopzilla site redesign: We get what we measure.
Velocity Conference Talk, 2009.

[14] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe:
Scalable causal consistency using dependency matrices and phys-
ical clocks. In Proc. SoCC (Oct 2013).

[15] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in
the presence of partial synchrony. Journal of the ACM (JACM)
35, 2 (1988), 288–323.

[16] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Im-
possibility of distributed consensus with one faulty process. In
Proc. Principles of Database Systems (Mar 1983).

[17] GIBSON, G., GRIDER, G., JACOBSON, A., AND LLOYD, W.
Probe: A thousand-node experimental cluster for computer sys-
tems research. USENIX ;login: (June 2013).

[18] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services. In
ACM SIGACT News (Jun 2002).

[19] HERLIHY, M. P., AND WING, J. M. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on
Program-ming Languages and Systems 12, 3 (1990), 463–492.

[20] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P., MADDEN, S., STONEBRAKER,
M., ZHANG, Y., ET AL. H-store: a high-performance, distributed
main memory transaction processing system. Proceedings of the
VLDB Endowment 1, 2 (2008), 1496–1499.

[21] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21, 7 (1978).

[22] LAMPORT, L. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput.
(1979).

[23] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITAY, S., AND
OUSTERHOUT, J. Implementing linearizability at large scale and
low latency. In Proc. SOSP (Oct 2015).

[24] LINDEN, G. Make data useful. Stanford CS345 Talk, 2006.

[25] LIPTON, R. J., AND SANDBERG, J. S. PRAM: A scalable shared
memory. Tech. Rep. TR-180-88, Princeton Univ., Dept. Comp.
Sci., 1988.

[26] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with COPS. In Proc. SOSP (Oct 2011).

[27] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Proc. NSDI (Apr 2013).

[28] LU, H., VEERARAGHAVAN, K., AJOUX, P., HUNT, J., SONG,
Y. J., TOBAGUS, W., KUMAR, S., AND LLOYD, W. Existential
consistency: Measuring and understanding consistency at face-
book. In Proc. SOSP (Oct 2015).

[29] MU, S., CUI, Y., ZHANG, Y., LLOYD, W., AND LI, J. Ex-
tracting more concurrency from distributed transactions. In Proc.
OSDI (Oct 2014).

[30] MU, S., NELSON, L., LLOYD, W., AND LI, J. Consolidating
concurrency control and consensus for commits under conflicts.
In Proc. OSDI (Nov 2016).

[31] MYSQL. MySQL :: MySQL Cluster CGE. https://www.
mysql.com/products/cluster/, 2016.

[32] PAPADIMITRIOU, C. H. The serializability of concurrent
database updates. Journal of the ACM 26, 4 (1979).

[33] PELUSO, S., PALMIERI, R., ROMANO, P., RAVINDRAN, B.,
AND QUAGLIA, F. Disjoint-access parallelism: Impossibility,
possibility, and cost of transactional memory implementations.
In Proc. PODC (Jul 2015).

[34] SCHURMAN, E., AND BRUTLAG, J. The user and business im-
pact of server delays, additional bytes, and HTTP chunking in
web search. Velocity Conference Talk, 2009.

[35] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.
Transactional storage for geo-replicated systems. In Proc. SOSP
(Oct 2011).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 149

https://www.mysql.com/products/cluster/
https://www.mysql.com/products/cluster/

[36] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,
P., AND ABADI, D. J. Calvin: Fast distributed transactions for
partitioned database systems. In Proc. SIGMOD (May 2012).

[37] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-
memory transaction processing using RDMA and HTM. In Proc.
SOSP (Oct 2015).

[38] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNA-
MURTHY, A., AND PORTS, D. R. K. Building consistent trans-
actionswith inconsistent replication. In Proc. SOSP (Oct 2015).

150 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Correlated Crash Vulnerabilities

Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel,
Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin – Madison

Abstract
Modern distributed storage systems employ complex
protocols to update replicated data. In this paper, we
study whether such update protocols work correctly in
the presence of correlated crashes. We find that the
correctness of such protocols hinges on how local file-
system state is updated by each replica in the system.
We build PACE, a framework that systematically gener-
ates and explores persistent states that can occur in a
distributed execution. PACE uses a set of generic rules
to effectively prune the state space, reducing checking
time from days to hours in some cases. We apply PACE

to eight widely used distributed storage systems to find
correlated crash vulnerabilities, i.e., problems in the up-
date protocol that lead to user-level guarantee violations.
PACE finds a total of 26 vulnerabilities across eight sys-
tems, many of which lead to severe consequences such
as data loss, corrupted data, or unavailable clusters.

1 Introduction
Modern distributed storage systems are central to large
scale internet services [19,22,28,66]. Important services
such as photo stores [74,77,79], e-commerce [61], video
stores [27], text messaging [82], social networking [93],
and source repositories [78] are built on top of mod-
ern distributed storage systems. By providing replica-
tion, fault tolerance, high availability, and reliability, dis-
tributed storage systems ease the development of com-
plex software services [17, 31, 59, 75].

Reliability of user data is one of the most important
tenets of any storage system [3, 41, 49, 69]. Distributed
storage systems improve reliability by replicating data
over a collection of servers [7, 13, 63, 80, 84, 89, 91].

To safely replicate and persist application data, mod-
ern storage systems implement complex data update pro-
tocols. For example, ZooKeeper [5] implements an
atomic broadcast protocol and several systems including
LogCabin [57] and etcd [23] implement the Raft con-
sensus protocol to ensure agreement on application data

between replicas. Although the base protocols (such as
atomic broadcast [12], Raft [68], or Paxos [51]) are prov-
ably correct, implementing such a protocol without bugs
is still demanding [16, 36, 42, 44, 94], especially when
machines can crash at any instant [53].

Many distributed storage systems can recover from
single node or partial cluster failures. In this study, we
consider a more insidious crash scenario in which all
replicas of a particular data shard crash at the same time
and recover at a later point. We refer to such crash
scenarios as correlated failures. Correlated failures are
common and several instances of such failures have been
reported in the recent past [11,20,21,25,26,35,43,49,65,
92]; these failures occur due to root causes such as data-
center-wide power outages [38], operator errors [97],
planned machine reboots, or kernel crashes [35].

When nodes recover from a correlated failure, the
common expectation is that the data stored by the dis-
tributed system would be recoverable. Unfortunately,
local file systems (which store the underlying data and
metadata of many distributed storage systems) compli-
cate this situation. Recent research has shown that file
systems vary widely with respect to how individual op-
erations are persisted to the storage medium [70]. For
example, testing has revealed that in ext4, f2fs [8], and
u2fs [58], one cannot expect the following guarantee: a
file always contains a prefix of the data appended to it
(i.e., no unexpected data or garbage can be found in the
appended portion) after recovering from a crash. The
same test also shows that this property may be held by
btrfs and xfs. Since most practical distributed systems
run atop local file systems [47,62,81], it is important for
them to be aware of such behaviors. These file-system
nuances can result in unanticipated persistent states in
one or more nodes when a distributed storage system re-
covers from a correlated crash.

Recent studies [14, 70] have demonstrated that these
widely varying file-system behaviors increase the com-
plexity of building a crash-consistent update protocol,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 151

even for single machine applications such as SQLite. We
refer to this form of crash consistency as single-machine
(application-level) crash consistency.

Distributed storage systems have to deal with the com-
plexity of building a crash-consistent storage update pro-
tocol in addition to correctly implementing a distributed
agreement and recovery protocol. We refer to this form
of crash consistency in a distributed setting as correlated
crash consistency. Although the challenges of build-
ing a crash-consistent distributed update protocol have
the same flavor as building a crash-consistent single-
machine protocol, correlated crash consistency is a fun-
damentally different problem for three reasons.

First, distributed systems can fail in more ways than a
single machine system. Since a distributed system con-
stitutes many components, a group of components may
fail together at the same or different points in the pro-
tocol. Second, unique opportunities and problems exist
in distributed crash recovery; after a failure, it is possi-
ble for one node in an inconsistent state to repair its state
by contacting other nodes or to incorrectly propagate the
corruption to other nodes. In contrast, single-machine
applications rarely have external help. Third, crash re-
covery in a distributed setting has many more possible
paths than single-machine crash recovery as distributed
recovery depends on states of many nodes in the system.

We say a distributed system has a correlated crash vul-
nerability if a correlated crash during the execution of the
system’s update protocol (and subsequent recovery) ex-
poses a user-level guarantee violation. In this paper, we
examine whether distributed storage systems are vulner-
able to correlated crashes. To do this, we introduce PACE,
a novel framework that systematically explores corre-
lated crash states that occur in a distributed execution.

PACE considers consistent cuts in the distributed ex-
ecution and generates persistent states corresponding to
those cuts. PACE models local file systems at individual
replicas using an abstract persistence model (APM) [70]
which captures the subtle crash behaviors of a particular
file system. PACE uses protocol-specific knowledge to re-
duce the exploration state space by systematically choos-
ing a subset of nodes to introduce file-system nuances
modeled by the APM. In the worst case, if no attributes
of a distributed protocol are known, PACE can operate in
a slower brute-force mode to still find vulnerabilities.

We applied PACE to eight widely used distributed
storage systems spanning important domains includ-
ing database caches (Redis [76]), configuration stores
(ZooKeeper [5], LogCabin [57], etcd [23]), real-time
databases (RethinkDB [83]), document stores (Mon-
goDB [60]), key-value stores (iNexus [46]), and dis-
tributed message queues (Kafka [6]).

We find that many of these systems are vulnerable to
correlated crashes. Modern distributed storage systems

expect certain guarantees from file systems such as or-
dered directory operations and atomic appends for their
local update protocols to work correctly. We also find
that in many cases global recovery protocols do not use
intact replicas to fix the problematic nodes. PACE found a
total of 26 vulnerabilities that have severe consequences
such as data loss, silent corruption, and unavailability.
We also find that many vulnerabilities can be exposed
on commonly used file systems such as ext3, ext4, and
btrfs. We reported 18 of the discovered vulnerabilities
to application developers. Twelve of them have been
already fixed or acknowledged by developers. While
some vulnerabilities can be fixed by straightforward code
changes, some are fundamentally hard to fix.

Our study also demonstrates that PACE is general: it
can be applied to any distributed system; PACE is sys-
tematic: it explores different systems using general rules
that we develop; PACE is effective: it found 26 unique
vulnerabilities across eight widely used distributed sys-
tems. PACE’s source code and details of the discovered
vulnerabilities are publicly available [2].

The rest of the paper is organized as follows. We
first describe correlated crash consistency in detail (§2).
Next, we explain how PACE works and how it uses
protocol-awareness to systematically reduce exploration
state space (§3). Then, we present our study of correlated
crash vulnerabilities in distributed storage systems (§4).
Finally, we discuss related work (§5) and conclude (§6).

2 Correlated Crash Consistency
Building a crash-consistent distributed update protocol is
complex for two reasons: machines can crash at any time
in a correlated fashion and updates to the local file sys-
tem have to be performed carefully to recover from such
crashes. Given this complexity, we answer the following
question in this paper: Do modern distributed storage
systems implement update and recovery protocols that
function correctly when nodes crash and recover in a
correlated fashion, or do they have vulnerabilities? To
answer this question, we first describe the failure model
that we consider and build arguments for why the con-
sidered failure model is important. Next, we explain the
system states we explore to find if a distributed update
protocol has correlated crash vulnerabilities.

2.1 Failure Model
Components in a distributed system can fail in various
ways [39]. Most practical systems do not deal with
Byzantine failures [52] where individual components
may give conflicting information to different parts of the
system. However, they handle fail-recover failures [39]
where components can crash at any point in time and re-
cover at any later point in time, after the cause of the
failure has been repaired. When a node crashes and re-

152 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

covers, all its in-memory state is lost; the node is left
only with its persistent state. Our study considers only
such fail-recover failures.

A common expectation is that practical distributed
systems would not violate user-level guarantees in the
face of such fail-recover failures. However, nuances in
local file system can cause unanticipated persistent states
to arise after a crash and a subsequent reboot, compli-
cating proper recovery. We explain such nuances in lo-
cal file-system behaviors later (§2.2.2). Notice that this
is how one individual node crashes and recovers; other
nodes may continue to function and make progress.

Our failure model concentrates on a more devastating
scenario where all or a group of nodes crash and recover
together. We refer to this type of failure as a correlated
crash. Specifically, we focus on two kinds of correlated
crash scenarios: first, data-center-wide power outages
where all machines in the cluster crash and recover to-
gether; second, correlated failures where only a group of
machines containing all replicas for a shard of data crash
and recover together and other machines (that are not part
of the shard) in the cluster do not react to the failure.

Large-scale correlated failures such as cluster-wide
power outages are common and occur in the real
world [11,20,21,25,26,35,43,49,65,92]. For example, a
recent study from Google [35] showed that node failures
in Google data centers are often correlated and the causes
of node failures fall into three categories: application
restarts, planned machine reboots, and unplanned ma-
chine reboots. From data over a period of three months,
the study showed that as many as 15 unplanned reboots
and 30 planned reboots per 1000 machines can happen
in a single day. Also, a failure burst in one instance of
a distributed file system [37] can take down as many as
50 machines at almost the same time. This kind of fail-
ure typically can be seen during a power outage in a data
center. Rolling kernel upgrades also cause failure bursts
that can take down around 20 machines within a short
window of time.

Although the system cannot progress when all replicas
crash, the common expectation is that the data stored by
the storage system will be recoverable after the replicas
come alive (for example, after power has been restored).

Our failure model is not intended to reason about sce-
narios where only a subset of replicas of a particular data
shard crash and recover by themselves. Also, the vul-
nerabilities we find with our correlated failure model do
not apply to a geo-replicated setting; in such a setting,
conscious decisions place replicas such that one power
failure cannot affect all replicas at the same time. While
correlated failures are less problematic in such settings,
the storage systems we examine in this study are heavily
tested and the common expectation is that these systems
should be reliable irrespective of how they are deployed

ɸɸ

ɸ

ɸ

ɸ

Figure 1: A simple distributed protocol. The figure shows
a simple distributed protocol. Annotations show the persistent state
after performing each operation. Dash dot lines show different cuts.

and the probability of failures. Further, many deploy-
ments are not geo-replicated and thus may expect strong
guarantees even in the presence of correlated crashes.
Overall, crash-correctness should be deeply ingrained in
these systems regardless of deployment decisions.

2.2 Distributed Crash States
Now we explain the global system states that result due
to correlated crashes. As we explained, after a crash
and subsequent reboot, a node is left only with its per-
sistent data. The focus of our study is in checking only
the resulting persistent states when failures happen. The
global states that we capture are similar to distributed
snapshots [18] described by Chandy and Lamport. The
main difference between a generic distributed snapshot
and a global persistent state is that the latter consists only
of the on-disk state and not the in-memory state of the
machines. Moreover, since network channels do not af-
fect persistent on-disk state, our global persistent states
do not keep track of them.

To understand the persistent states that we capture,
consider a cluster of three machines named A, B, and
C. Assume that the initial persistent states of these ma-
chines are Aφ , Bφ , and Cφ , respectively. Assume that a
workload W run on this cluster transitions the persistent
states to A f , B f , and C f , respectively. For instance, W
could be a simple workload that inserts a new key-value
pair into a replicated key-value store running on A, B,
and C. Notice that the persistent state of all nodes goes
through a transition before arriving at the final states A f ,
B f , and C f . A correlated crash may happen at any time
while W runs, and after a reboot, the persistent state of
a node X may be any intermediate state between Xφ and
X f where X can be A or B or C. For simplicity, we refer
to this collection of persistent states across all nodes as
global persistent state or simply global state. If a partic-
ular global state G can occur in an execution, we call G
a reachable global state.

2.2.1 Reachable Global States
The reachability of a global state depends on two fac-
tors: the order in which messages are exchanged between

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 153

nodes and the local file systems of the nodes. To illustrate
the first factor, consider a distributed protocol shown in
Figure 1. In this protocol, node P starts by sending mes-
sage M1, then writes foo and baz to a file, and then
sends another message M2 to node Q. Node Q receives
M1 and M2 and then writes bar to a file. For now, as-
sume that the toy application is single threaded and all
events happen one after the other. Also assume that the
file system at P and Q is synchronous (i.e., operations are
persisted in order to the disk). We will soon remove the
second assumption and subsequently the first (§3.2).

Assume that the initial persistent state of P was Pφ and
Q was Qφ . After performing the first and second write, P
moves to P1 and P2, respectively. Similarly, Q moves to
Q1 after performing the write. Notice that <Pφ ,Qφ> is a
reachable global persistent state as P could have crashed
before writing to the file and Q could have crashed before
or after receiving the first message. Similarly, <P2,Q1>
and <P2,Qφ> are globally reachable persistent states.

In contrast, <Pφ ,Q1> and <P1,Q1> are unreachable
persistent states as it is not possible for Q to have written
the file without P sending the message to it. Intuitively,
global states that are not reachable in an execution are
logically equivalent to inconsistent cuts in a distributed
system [10]. For example, <Pφ ,Q1> and <P1,Q1> are
inconsistent cuts since the recv of M2 is included in the
cut but the corresponding send is excluded from the cut.
Also, network operations such as send and recv do not
affect the persistent state. For example, the three differ-
ent cuts shown in Figure 1 map onto the same persistent
state <Pφ ,Qφ>.

Next, we consider the fact that the local file systems at
P and Q also influence the global states. Assume that the
application is still single threaded but writes issued by
an application can be buffered in memory as with mod-
ern file systems. Depending on which exact file system
and mount options are in use, modern file systems may
reorder some (or many) updates [9, 70, 73]. With this
asynchrony and reordering introduced by the file system,
it is possible for the second write baz to reach the disk
before the first write foo. Also, it is possible for P to
crash after baz is persisted and the message is sent to Q,
but before foo reaches the disk. In such a state of P, it
is possible for Q to have either reached its final state Q1
or crash before persisting bar and so remain in Qφ . All
these states are globally reachable.

2.2.2 File-system Behavior
The reordering of writes by the file system is well un-
derstood by experienced developers. To avoid such re-
ordering, developers force writes to disk by carefully is-
suing fsync on a file as part of the update protocol.
Although some common behaviors such as reordering
of writes are well understood, there are subtle behaviors

that application developers find hard to reason about. For
example, the following subtle behavior is not well doc-
umented: if a crash happens when appending a single
block of data to a file in ext4 writeback mode, the file
may contain garbage on reboot. These behaviors are nei-
ther bugs nor intended features, but rather implications
of unrelated performance improvements. To worsen the
problem, these subtle behaviors vary across file systems.

Recent research [4,14,70–72] classifies file-system be-
haviors into two classes of properties: atomicity and or-
dering. The atomicity class of properties say whether a
particular file system must persist a particular operation
in an atomic fashion in the presence of crashes. For in-
stance, must ext2 perform a rename in an atomic way
or can it leave the system in any intermediate state? The
ordering class of properties say whether a particular file
system must persist an operation A before another oper-
ation B. For instance, must ext4 (in its default mode) or-
der a link and a write operation? While ext4 orders
directory operations and file write operations, the same
does not hold true with btrfs which can reorder directory
operations and write operations.

Given these variations across file systems and some-
times even across different configurations of the same
file system, it is onerous to implement a crash-consistent
protocol that works correctly on all file systems. Recent
research has discovered that single-machine applications
have many vulnerabilities in their update protocols which
can cause them to corrupt or lose user data [4, 70, 98].

Distributed storage systems also face the same chal-
lenge as each replica uses its local file system to store
user data and untimely crashes may leave the applica-
tion in an inconsistent state. However, distributed sys-
tems have more opportunities for recovery as redundant
copies of data exist on other nodes.

3 Protocol-Aware Crash Explorer
To examine if distributed storage systems violate user-
level guarantees in correlated crash scenarios, we build
a generic correlated crash exploration framework, PACE,
which systematically generates persistent states that can
occur in a distributed execution in the presence of cor-
related crashes. We note here that PACE is not intended
to catch bugs in distributed consensus protocols. Specif-
ically, it does not exercise reordering of network mes-
sages to explore corner cases in consensus protocols; as
explained later (§5), distributed model checkers attack
this problem. PACE’s intention is to examine the interac-
tion of global crash recovery protocols and the nuances
in local storage protocols (introduced by each replica’s
local file system), in the presence of correlated crashes.

Some vulnerabilities that we discover are exposed
only if a particular file-system operation is reordered on
all replicas while some vulnerabilities are exposed even

154 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

when the reordering happens on a single replica. Using
observations from how vulnerabilities are exposed and a
little knowledge about the distributed protocol, we make
our exploration protocol-aware. Using this awareness,
PACE can prune the search space while finding as many
vulnerabilities as a brute-force search. To explain how
protocol-aware exploration works, we first describe the
design of our crash exploration framework.

3.1 Design and Implementation Overview
PACE is easy to use and can be readily applied to any dis-
tributed storage system. PACE needs a workload script
and a checker script as inputs. For many modern dis-
tributed systems, a group of processes listening on dif-
ferent ports can act as a cluster of machines. For systems
that do not allow this convenience, we use a group of
Docker [30] containers on the same machine to serve as
the cluster. In either case, PACE can test the entire sys-
tem on a single machine. PACE is implemented in around
5500 lines of code in Python.

To begin, PACE starts the cluster with system call trac-
ing, runs the workload, and then stops the cluster after
the workload is completed. PACE parses the traces ob-
tained and identifies cross node dependencies such as a
send on one node and the corresponding recv on some
other node. After the traces are parsed and cross node
dependencies established, PACE replays the trace to gen-
erate different persistent crash states that can occur in
the traced execution. A system-specific checker script
is run on top of each crash state; the checker script as-
serts whether user-level guarantees (e.g., committed data
should not be corrupted or lost) hold. Any violations in
such assertions are reported as vulnerabilities. We next
discuss what correlated crash states can occur in a dis-
tributed execution and how we generate them.

3.2 Crash States
We use a running example of a ZooKeeper cluster exe-
cuting an update workload for further discussion. PACE

produces a diagrammatic representation of the update
protocol as shown in Figure 2.

First, the client contacts the leader in the ZooKeeper
cluster. The leader receives the request and orchestrates
the atomic broadcast protocol among its followers as
shown by send and recv operations and careful up-
dates to the file system (write and fdatasync on a
log file that holds user data). Finally, after ensuring that
the updated data is carefully replicated and persisted, the
client is acknowledged. At this point, it is guaranteed
that the data will be consistent and durable.

Note that each node runs multiple threads and the fig-
ure shows the observed order of events when the traces
were collected. If arbitrary delays were introduced, the
order may or may not change, but this observed order is
one schedule among all such possible schedules.

send(M
CL1

)
recv(M

CL1
)

Client (C) Leader (L)

#L
1

write(v/log)

Follower 2 (Q)

 send(M
LP2

)

recv(M
PL1

)
recv(M

PL2
)

recv(M
PL3

)

#L
2

write(v/log)
#L

3
append(v/log)

#L
4

append(v/log)

fdatasync(v/log)

 send(M
LP3

)

 send(M
LP4

)

recv(M
PL4

)
send(M

LC1
)recv(M

LC1
)

#C
1

print(“Updated”)

recv(M
LP1

) send(M
LP1

)
recv(M

LP2
)

recv(M
LP3

)
 send(M

PL1
)

 send(M
PL2

)
 send(M

PQ1
)

#P
1

write(v/log)
 send(M

PQ2
)

 send(M
PL3

)

#P
2

write(v/log)
#P

3
append(v/log)

 fdatasync(v/log)

recv(M
LP4

)

recv(M
QP1

)
 send(M

PL4
)

recv(M
PQ1

)

recv(M
PQ2

)

recv(M
PQ3

) send(M
PQ3

)
#P

4
append(v/log) #Q

1
write(v/log)

#Q
2

write(v/log)
#Q

3
append(v/log)

#Q
4

append(v/log)

fdatasync(v/log)

 send(M
QP1

)

Follower 1 (P)

Figure 2: ZooKeeper protocol for an update work-
load. The figure shows the sequence of steps when the client in-
teracts with the ZooKeeper cluster. The workload updates a value. The
client prints to stdout once the update request is acknowledged.

We reiterate here that PACE captures crash states that
occur due to a correlated failure where all replicas fail
together. PACE is not intended to reason about partial
crashes where only a subset of replicas crash.

3.2.1 Globally Reachable Prefixes
Assume that all nodes shown in Figure 2 start with per-
sistent state Xφ where X is the node identifier with L
for leader, C for client, and so forth. MXYi is the ith

message sent by X to Y . All operations that affect per-
sistent state are annotated with the persistent state to
which the node transitions by performing that opera-
tion. For example, the leader transitions to state L1 after
the first write to a file. The total set of global per-
sistent states is the cross product of all local persistent
states. Precisely, the total set is the cross product of the
sets {Cφ ,C1}, {Lφ ,L1,L2,L3,L4}, {Pφ ,P1,P2,P3,P4} and
{Qφ ,Q1,Q2,Q3,Q4}. However, some of the global states
in this resultant set cannot occur in the distributed execu-
tion. For example, <Cφ ,L2, P2, Q1> is an inconsistent
cut and cannot occur as a global state since it is not pos-
sible for Q to receive MPQ3 before P reaches P3 and then
sends MPQ3.

We refer to a global state that is reachable in this trace
as a globally reachable persistent prefix or simply glob-
ally reachable prefix. We call this a prefix as it is a prefix
of the file-system operations within each node.

Previous work [70] has developed tools to uncover
single-machine crash vulnerabilities. Such tools trace
only file-system related system calls and do not trace net-
work operations. Hence, they cannot capture dependen-
cies across different nodes in a distributed system. Such
tools cannot be directly applied to distributed systems; if
applied, they may generate states that may not actually

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 155

occur in a distributed execution and thus can report spu-
rious vulnerabilities. On the other hand, PACE captures
all cross node dependencies and so generates only states
that can occur in a distributed execution.

3.2.2 File-system Persistence Models
Generating globally reachable prefixes does not require
any knowledge about how a particular file system per-
sists operations. As we discussed, file systems exhibit
important behaviors with respect to how operations are
persisted. We borrow the idea of abstract persistence
model (APM) from our previous work [70] to model the
file system used by each node.

An APM specifies all constraints on the atomicity and
ordering of file-system operations for a given file sys-
tem, thus defining which crash states are possible. For
example, in an APM that specifies the ext2 file system,
appends to a file can be reordered and the rename op-
eration can be split into smaller operations such as delet-
ing the source directory entry and creating the target di-
rectory entry. In contrast, in the ext3 (data-journaling)
APM, appends to a file cannot be reordered and the
rename operation cannot be split into smaller opera-
tions. An APM for a new file system can be easily de-
rived using the block order breaker (BOB) tool [70].

PACE considers all consistent cuts in the execution to
find globally reachable prefixes. On each such globally
reachable prefix, PACE applies the APM (that specifies
what file-system specific crash states are possible) to pro-
duce more states. The default APM used by PACE has
few restrictions on the possible crash states. Intuitively,
our default APM models a file system that provides the
least guarantees when crashes occur but is still POSIX
compliant. For simplicity, we refer to file-system related
system calls issued by the application as logical opera-
tions and the smaller operations into which each logical
operation is broken down as micro operations. We now
describe our default APM.
Atomicity of operations. Applications may require a
single logical operation such as append or overwrite
to be atomically persisted for correctness. In the de-
fault APM used by PACE, all logical operations are bro-
ken into the following micro operations: write block,
change size, create dir entry, and delete dir entry. For
example, a logical truncate of a file will be broken
into change size followed by write block(random) fol-
lowed by write block(zeroes). Similarly, a rename
will be broken into delete dir entry(dest) + truncate
if last link followed by create dir entry(dest) followed
by delete dir entry(src). Overwrites, truncates, and ap-
pends are split into micro operations aligned at the block
boundary or simply into three micro operations. PACE

can generate crash states corresponding to different in-
termediate states of the logical operation.

Ordering between operations. Applications may re-
quire that a logical operation A be persisted before an-
other logical operation B for correctness. To reorder op-
erations, PACE considers each pair of operations (A, B)
and applies all operations from the beginning of the trace
until B except for A. This reordering produces a state cor-
responding to the situation where the node crashes after
all operations up to B have been persisted but A is still not
persisted. The ordering constraint for our default APM is
as follows: all operations followed by an fsync on a file
or directory F are ordered after the operations on F that
precede the fsync.

We now describe how applying an APM produces
more states on a single machine. Consider the
ZooKeeper protocol in which <Cφ , L1, P2, Qφ> is a
globally reachable prefix. P has moved to P2 by apply-
ing two write operations starting from its initial state
Pφ . On applying the default APM onto the above pre-
fix, PACE recognizes that on node P it is possible for the
second write to reach the disk before the first one (by
considering different ordering between two operations).
Hence, it can reorder the first write after the second write
on P. This resultant state is different from the prefix. In
this resultant state, after recovery, P will see a file-system
state where the second write to the log is persisted but
effects of the first write are missing. If there were an
fsync or fdatasync after the first write, then the de-
fault APM cannot and will not reorder the two write op-
erations. This reordering is within a single node; similar
reorderings can be exercised on all nodes.

Depending on the APM specification, logical opera-
tions can be partially persisted or reordered or both at
each node in the system. Intuitively, applying an APM
on a global prefix relaxes its constraints. This relax-
ation allows the APM to partially persist logical opera-
tions (atomicity) or reorder logical operations with one
another (ordering). We refer to the relaxations allowed
by an APM as APM-allowed relaxations or simply APM
relaxations. For simplicity, we refer to this process of
relaxing the constraints (by reordering and partially per-
sisting operations) as applying that particular relaxation.

PACE can be configured with any APM. We find the
most vulnerabilities with our default and ext2 APMs. We
also report the vulnerabilities when PACE is configured
with APMs of other commonly used file systems.

3.3 Protocol-Aware Exploration
While applying relaxations on a single node results in
many persistent states for that node, PACE needs to con-
sider applying different relaxations across every com-
bination of nodes to find vulnerabilities. As a conse-
quence, there are several choices for how PACE can ap-
ply relaxations. Consider a five node cluster and assume
that n relaxations are possible in one node. Then, as-

156 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 creat(v/log)
2 append(v/log, 16)
3 trunc(v/log, 16399)
4 append(v/log, 1)
5 write(v/log, 49)
6 fdatasync(v/log)
7 write(v/log, 12)
8 write(v/log, 16323)
9 append(v/log, 4209)
10 append(v/log, 1)

11 fdatasync(v/log)
12 ACK Client

1 creat(v/log)
2 append(v/log, 16)
3 trunc(v/log, 16399)
4 append(v/log, 1)
5 write(v/log, 49)
6 fdatasync(v/log)
7 write(v/log, 12)
8 write(v/log, 16323)
9 append(v/log, 4209)
10 append(v/log, 1)
11 fdatasync(v/log)
12 ACK Client

(a) (b)

Figure 3: Local file-system update protocol on a single
ZooKeeper node. The figure shows the sequence of file-system
operations on a single ZooKeeper node. Operations 1 through 6 hap-
pen on node initialization and operations 7 through 12 when the client
starts interacting. Several operations that happen on initialization are
not shown for clarity. (a) and (b) show two different crash scenarios.

suming there are no cross node dependencies, there are(5
1

)
∗ n+

(5
2

)
∗ n2 +

(5
3

)
∗ n3 +

(5
4

)
∗ n4 +

(5
5

)
∗ n5 ways of

combining the relaxations across nodes. Even for a mod-
erate n such as 20, there are close to 4 million states. A
brute-force approach would explore all such states. We
now explain how PACE prunes this space by using knowl-
edge about the distributed protocols (such as agreement
and leader election) employed by a system.

3.3.1 Replicated State Machine Approaches
We use the same ZooKeeper traces shown in Figure 2 for
this discussion. For simplicity, we assume that there are
odd number of nodes in the system.

ZooKeeper implements an atomic broadcast proto-
col which is required to run a replicated state machine
(RSM) [45, 68, 90]. There are various paradigms to im-
plement an RSM some of which include Paxos [51],
Raft [68], and atomic broadcast [24]. Google’s
Chubby [15] implements a Paxos-like algorithm and
LogCabin [57] implements Raft. An RSM system as a
whole should continue to make progress as long as a ma-
jority of the nodes are operational and can communicate
with each other and the clients [68].

Figure 3(a) shows the file-system operations on a sin-
gle ZooKeeper node; network operations are not shown
for clarity. The tenth operation appends one byte to the
log to denote the commit of a transaction after which the
file is forced to disk by the fdatasync call. It is pos-
sible for the tenth operation to reach the disk before the
ninth operation and a crash can happen at this exact point
before the fdatasync call. After this crash and subse-
quent restart, ZooKeeper would fail to start as it detects
a checksum mismatch for the data written, and the node
becomes unusable. The same reordering can happen on
all nodes, rendering the entire cluster unusable.

In the simple case where this reordering happens on
only one node, even though that single node would fail

to start, the other two nodes still constitute a majority and
so can elect a leader and make progress. PACE uses this
knowledge about the protocol to eliminate testing cases
where a reordering happens on only one node. Also, it is
unnecessary to apply the relaxation on all three nodes as
the cluster can become unavailable even when the relax-
ation is applied on just a majority (any two) of the nodes.

As another example, consider the same protocol but
with a different crash that happens after the client is ac-
knowledged, as shown in Figure 3(b). Once acknowl-
edged, ZooKeeper guarantees that the data is replicated
and persisted to disk on a majority of nodes. The direc-
tory entry for the log file has to be persisted explicitly
by performing an fsync on the parent directory [1, 70]
to ensure that the log file is present on disk even after a
crash. However, ZooKeeper does not fsync the parent
directory and so it is possible for the log file to go miss-
ing after a crash. On a single node, if the log file is lost,
it does not lead to user-visible global data loss as the ma-
jority still has the log file. Similar to the unavailability
case, a global data loss can happen if the same reorder-
ing happens on a majority of nodes even if the data exists
on one other node where this reordering did not happen.

Thus, we observe that in any RSM system, it is re-
quired that a particular APM relaxation is applied on at
least a majority of nodes for a vulnerability to be exposed
globally. Also, it is unnecessary to apply an APM relax-
ation on all possible majority choices; for example, in a
system with five nodes, applying a relaxation on three,
four, or five nodes (all of which represent a majority)
will expose the same vulnerability. This knowledge is
not system-specific, but rather protocol-specific.
System-independent. LogCabin is a system similar to
ZooKeeper that provides a configuration store on top of
the consensus module but uses the Raft protocol to im-
plement an RSM. When applying a particular APM re-
laxation, LogCabin can lose data. For this data loss vul-
nerability to be exposed, the relaxation has to be applied
on at least a majority of the nodes. This observation is
not specific to a particular system; rather, it holds true
across ZooKeeper and LogCabin because both systems
are RSM protocol implementations.

Using our observation, we derive the following rule
that helps PACE eliminate a range of states: For any RSM
system with N replicas, check only states that would re-
sult when a particular APM relaxation is applied on an
exact majority (where exactly dN/2e servers are chosen
from N) of the nodes. Note that there are

(N
dN/2e

)
ways of

choosing the exact majority.
We note that the pruning rule does not guarantee find-

ing all vulnerabilities. It works because it makes an im-
portant assumption: the base consensus protocol is im-
plemented correctly. PACE is not intended to catch bugs
in consensus protocol implementations.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 157

We now make a further observation about RSM pro-
tocols that can further reduce the state space. Consider
the data loss vulnerability shown in Figure 3(b). Sur-
prisingly, sometimes a global data loss may not be ex-
posed even when the reordering happens on a majority.
To see why, consider that the current leader (L) and the
first follower (P) lose the log file as the creat operation
is not persisted before the crash. In this case, the major-
ity has lost the file. On recovery, the possibility of global
data loss depends on who is elected as the leader the next
time. Specifically, the data will be lost, if either L or P is
elected as the new leader. On the other hand, if the sec-
ond follower Q is elected as the leader, then the data will
not be lost. In effect, the data will be lost if a node that
lost its local data becomes the leader the next time, irre-
spective of the presence of the same data on other nodes.

In Raft, on detecting an inconsistency, the followers
are forced to duplicate the leader’s log (i.e., the log en-
tries flow only outward from the leader) [68]. This en-
forcement is required to satisfy safety properties of Raft.
While ZooKeeper’s atomic broadcast (ZAB) does not ex-
plicitly specify if the log entries only flow outward from
the leader, our experiments show that this is the case.
Previous work also supports our observation [68].

This brings a question that counters our observation:
Why not apply the relaxation on any one node and make
it the leader during recovery? Consider the reordering
shown in Figure 3(b). If this reordering happens on one
node, that node will lose the log; it is not possible for this
node to be elected the leader as other nodes would notice
that this node has missing log entries and not vote for it.
If this node is not elected the leader, then local data loss
would not result in global data loss.

In contrast, if the log is lost on two nodes, the two
nodes still constitute a majority and so one of them can
become the leader and therefore override the data on the
third node causing a global data loss. However, it is pos-
sible for the third node Q, where the data was not lost, to
become the leader and so hide the global data loss.

Given this information, we observe that it is required
only to check states that result from applying a partic-
ular APM relaxation on any one exact majority of the
nodes. In a cluster of five nodes, there are

(5
3

)
= 10 ways

of choosing an exact majority and it is enough to check
any one combination from the ten. To effectively test if a
global vulnerability can be exposed, we strive to enforce
the following: when the cluster recovers from a crashed
state, if possible, the leader should be elected from the set
of nodes where the APM relaxation was applied. Some-
times the system may constrain us from enforcing this;
however, if possible, we enforce it automatically to drive
the system into vulnerable situations.

From the two observations, we arrive at two sim-
ple, system-independent, and protocol-aware exploration

rules employed by PACE to prune the state space and ef-
fectively search for undesired behaviors:

• R1: For any RSM system with N servers where fol-
lowers duplicate leader’s log, generate states that
would result if a particular APM relaxation is applied
on any exact majority of the servers.

• R2: For all states generated using R1, if possible,
enforce that the leader is elected from exact majority
in which the APM relaxation was applied.

Since we did not see popular practical systems that
use RSM approaches where log entries can flow in both
directions like in Viewstamped replication [55, 67] or
where there can be multiple proposers at the same time
like in Paxos, we have not listed the rules for them. We
leave this generalization as an avenue for future work.

3.3.2 Other Replication Schemes
PACE also handles replicated systems that do not use
RSM approaches: Redis, Kafka, and MongoDB. Appli-
cations belonging to this category do not strictly require
a majority for electing a leader and committing transac-
tions. For example, in Redis’ default configuration, the
master is fixed and cannot be automatically re-elected
by a majority of slaves if the master fails. Moreover,
it is possible for the master to make progress without the
slaves. Similarly, Kafka maintains a metadata structure
called the in-sync replicas and any node in this set can
become the leader without consent from the majority.

Systems belonging to this category typically force
slaves to sync data from the master. Hence, any prob-
lem in the master can easily propagate to the slaves. This
hints that applying APM relaxations on the master is nec-
essary. Next, since our workloads ensure that the data is
synchronously replicated to all nodes, it is unacceptable
to read stale data from the slaves once an acknowledg-
ment is received. This hints that applying APM relax-
ations on any slave and subsequent reads from the slave
can expose the stale data problem. Since systems of this
type can make progress even if one node is up, we need to
apply APM relaxations on all the nodes to expose cluster
unavailability vulnerabilities.

For applications of this type, PACE uses a combination
of the following rules to explore the state space:

• R3: Generate states that result when a particular re-
laxation is applied on the master.

• R4: Generate states that result when a particular re-
laxation is applied on any one slave.

• R5: Generate states that result when a particular re-
laxation is applied on all nodes at the same time.

In Redis, we use R3 and R4 but not R5: we use R3
to impose APM relaxations only on the master because
the cluster can become unavailable for writes if only the
master fails; we use R4 as reads can go to slaves. Simi-

158 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

larly, in Kafka, we use R3 and R5 and not R4: we do not
use R4 because all reads and writes go only through the
leader; we use R5 to test states where the entire cluster
can become unavailable because the cluster will be us-
able even if one node functions. MongoDB can be con-
figured in many ways. We configure it much like an RSM
system where it requires a majority for leader election
and writes; hence, we use R1 and R2.

Examining a new distributed system with PACE re-
quires developers to only understand whether the system
implements a replicated state machine or not and how
the master election works. Once this is known, PACE can
be easily configured with the appropriate set of pruning
rules. We believe that PACE can be readily helpful to de-
velopers given that they already know their system’s pro-
tocols. We reiterate that the pruning rules do not guaran-
tee finding all vulnerabilities; rather, they provide a set of
guidelines to quickly search for problems. In the worst
case, if no properties are known about a protocol, PACE

can work in brute-force mode to find vulnerabilities.

3.3.3 Effectiveness of Pruning
To demonstrate the effectiveness of our pruning rules, we
explored crash states of Redis and LogCabin with PACE

and the brute-force approach. In Redis, for a simple
workload on a three node cluster, brute-force needs to
check 11,351 states whereas PACE only needs to check
1009 states. While exploring 11× fewer states, PACE

found the same three vulnerabilities as the brute-force
approach. In LogCabin, PACE discovers two vulnerabil-
ities, checking 27,713 states in eight hours; the brute-
force approach did not find any new vulnerabilities after
running for over a week and exploring nearly 900,000
states. The reduction would be more pronounced as the
number of nodes in a system increases.

3.4 Limitations and Caveats
PACE is not complete – it can miss vulnerabilities. Specif-
ically, PACE exercises only one and the same reordering
at a time across the set of nodes. For instance, consider
two reorderings ri and r j. It is possible that no vulner-
ability is seen if ri or r j is applied individually on two
nodes. But when ri is applied on one node and r j on the
other, then it may lead to a vulnerability. PACE would
miss such vulnerabilities. Note that if ri and r j can both
individually cause a vulnerability, then PACE would catch
both of them individually. This is a limitation in imple-
mentation and not a fundamental one. There is no similar
limitation with partially persisting operations (i.e., PACE

can partially persist different operations across nodes).
Also, PACE does not focus on finding bugs in agreement
protocols. We expand more on this topic later (§5).

System Configuration Workload Checker

Redis
appendfsync=always,

min-slaves-to-write=2
and wait

update existing
old and new data

(master and slave),
check-aof, check-dump

ZooKeeper Default update existing old and new data
LogCabin Default update existing old and new data

etcd Default update existing old and new data

RethinkDB durability=hard,
writeack=majority

update existing,
insert new old and new data

MongoDB W=3, journal=true update existing old and new data

iNexus Default update existing,
insert new old and new data

Kafka
flush.interval.msgs=1,
min in-sync replicas=3,

DirtyElection=False

create topic,
insert message topic and message

Table 1: Configurations, Workloads, and Checkers.
The table shows the configuration, workloads and checkers for each
system. We configured all systems with three nodes. The configuration
settings ensure data is synchronously replicated and flushed to disk.

4 Application Vulnerabilities Study
We studied eight widely used distributed systems span-
ning different domains including database caches (Re-
dis v3.0.4), configuration stores (ZooKeeper v3.4.8, Log-
Cabin v1.0.0, etcd v2.3.0), real-time databases (Re-
thinkDB v2.2.5), document stores (MongoDB v3.0.11),
key-value stores (iNexus v0.13), and message queues
(Kafka v0.9.0). We tested MongoDB with two stor-
age engines: WiredTiger [64] (MongoDB-WT) and
RocksDB [86] (MongoDB-R). PACE found 26 unique
vulnerabilities across the eight systems.

We first describe the workloads and checkers we used
to detect vulnerabilities (§4.1). We then present a few ex-
ample protocols and vulnerabilities to give an intuition of
our methodology and the types of vulnerabilities discov-
ered (§4.3). We then answer three important questions:
Are there common patterns in file-system requirements
(§4.4)? What are the consequences of the vulnerabilities
discovered by PACE (§4.5)? How many vulnerabilities
are exposed on real file systems (§4.6)? We then de-
scribe our experience with reporting the vulnerabilities
to application developers (§4.7). We finally conclude by
discussing the implications of our findings and the diffi-
culties in fixing the discovered vulnerabilities (§4.8).

4.1 Application Workloads and Checkers
Most systems have configuration options that change
user-level guarantees. We configured each system to
provide the highest level of safety guarantees possible.
When guarantees provided are unclear, our checkers
check for typical user expectations; for example, data ac-
knowledged as committed should not be lost in any case
or the cluster should be available after recovering from
crashes. Even though some applications do not explic-
itly guarantee such properties, we believe it is reasonable
to test for such common expectations.

To test a system, we first construct a workload. Our
workloads are not specifically crafted to expose vulnera-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 159

Workload
Start cluster
Insert new data
zk = client(hosts=server ips)
zk.set("/mykey", "newvalue")
pace.acknowledged = True
Stop cluster

Checker
Start cluster
Check for data
retry policy = retry(max tries = r, delay = d,
backoff = b)
zk = client(hosts=server ips, retry policy)
ret, stat = zk.get("/mykey")
if request succeeded:
..if pace.acknowledged and ret == None:
....return ’data loss new commit’
..if pace.acknowledged and ret != ’newvalue’:
....return ’corrupt’
..if not pace.acknowledged and ret == None:
....return ’data loss old commit’
else:
..return ’unavailable’
return ’correct’
Stop cluster

Listing 1: Workload and Checker. Simplified workload and
checker for ZooKeeper.

bilities, but rather are very natural and simple. Our work-
loads insert new data or update existing data and record
the acknowledgment from the cluster. They are usually
about 30-40 LOC.

To check each crash state, we implement a checker.
The checker is conceptually simple; it starts the cluster
with the crash state produced by PACE and checks for cor-
rectness by reading the data updated by the workload. If
the data is lost, corrupted, or not retrievable, the checker
flags the crash state incorrect. Further, our checkers
invoke recovery tools mentioned in applications’ docu-
mentation if an undesired output is observed. If the prob-
lem is fixed after invoking the recovery tool, then it is not
reported as a vulnerability. Our checkers are about 100
LOC. Table 1 shows the configurations (that achieve the
strongest safety guarantees), workloads, and checkers for
all systems. Listing 1 shows the simplified pseudocode
of the workload and the checker for ZooKeeper.

4.2 Vulnerability Accounting
A system has a crash vulnerability if a crash exposes a
user-level guarantee violation. Counting such vulnerable
places in the code is simple for single-machine applica-
tions. In a distributed system, multiple copies of the same
code execute and so PACE needs to be careful in how it
counts unique vulnerabilities.

We count only unique combinations of states that ex-
pose a vulnerability. Consider a sequence S1 that creates
(C), appends (A), and renames (R) a file. Assume that
a node will not start if it crashes after C but before R.
Assume there are three nodes in an RSM system and two

crash after C but before R. In this case, the cluster can be-
come unusable in four ways (C-C, CA-CA, C-CA, CA-
C). We count all such instances as one vulnerability. If
the third node crashes within this sequence, it will also be
mapped onto the same vulnerability. If there is another
different sequence S2 that causes problems, a vulnerabil-
ity could be exposed in many different ways as one node
can crash within S1 and another within S2. We associate
all such combinations to two unique vulnerabilities, at-
tributing to the atomicity of S1 and S2.

PACE also associates each vulnerability with the appli-
cation source code line using the stack trace information
obtained during tracing. When many vulnerabilities map
to the same source line, PACE considers that a single vul-
nerability. When we are unable to find the exact source
lines for two different vulnerabilities, we count them as
one. We note that our way of counting vulnerabilities
results in a conservative estimate.

4.3 Example Protocols and Vulnerabilities
Figure 4 shows protocols and vulnerabilities in
ZooKeeper, etcd, Redis, and Kafka. Due to space con-
straints, we show protocols only for four systems; proto-
col diagrams for other systems are publicly available [2].

RSM systems where vulnerabilities are exposed when
APM relaxations are applied on a majority of nodes are
represented using a grid. Figure 4(a) and 4(b) show the
combinations of persistent states across two nodes in a
three node ZooKeeper and etcd cluster, respectively. Op-
erations that change persistent state are shown on the left
(for one node) and the top (for the other node). A box
(i,j) corresponds to a crash point where the first node
crashes at operation i and the second at j. At each such
crash point, PACE reorders other operations, or partially
persists operations or both. A grey box denotes that the
distributed execution did not reach that combination of
states. A white box means that after applying all APM
relaxations, PACE was unable to find a vulnerability. A
black box denotes that when a specific relaxation (shown
on the left) is applied, a vulnerability is exposed.

As shown in Figure 4(a), to maintain proposal infor-
mation, ZooKeeper appends epoch numbers to tempo-
rary files, and renames them. If the renames are not
atomic or reordered after a later write, the cluster be-
comes unavailable. If a log file creation and a subsequent
append of header metadata are not atomically persisted,
then the nodes fail to start. Similarly, the immediate
truncate after log creation has to be atomically persisted
for correct startup. Writes and appends during transac-
tions, if reordered, can also cause node startup failures.
ZooKeeper can lose data as it does not fsync the parent
directory when a log is created.

Figure 4(b) shows the protocol and vulnerabilities in
etcd. etcd creates a temporary write-ahead log (WAL),

160 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

recv(ack)
send(client, ack)
creat(rep.tmp)

append(rep.tmp)
fsync(rep.tmp)

rename(rep.tmp, rep)

fdatasync(wal)

 Not vulnerable

Not reached
 Vulnerable

append(aof)
fdatasync(aof)

send(data)

creat(tmp)
append(tmp)

fsync(tmp)
rename(tmp, tmp-bg)
rename(tmp-bg, aof)

fdatasync(aof)
recv(data)

 append(aof)
 fdatasync(aof)

send(ack)

(c)(i)Redis master

creat(wal.tmp)
append(wal.tmp)

fdatasync(wal.tmp)
rename(wal.tmp, wal)

append(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

Safe file flush
Directory ops
Other ordering

 Atomicity

mkdir(t)
creat(t/log)

append(t/log)
fsync(t/log)
send(msg)

(b) etcd

(c)(ii)Redis slave

 Legend

(d)(i)Kafka leader

 9
 8

 7
 6

5

 4
 3

 2

1
0

 14

 1
3

12
 11

 10

(d)(ii)Kafka follower

0 1 2 3 4 5 6 7 8 9 10 11 12

 recv(msg)
append(t/log)

fsync(t/log)
send(ack)

creat(rep.tmp)
append(rep.tmp)

fsync(rep.tmp)
rename(rep.tmp, rep)

mkdir(t)
creat(t/log)

recv(ack)
send(client, ack)

fdatasync(log)

 19
 18

 17
 16

 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122 2324

(a) ZooKeeper

 9
 8

 7
 6

5

 4
 3

 2

1
0

trunc(log)
append(log)

append(ae.tmp)
fsync(ae.tmp)

rename(ae.tmp, ae)
creat(ue.tmp)

creat(snap)
append(snap)
append(snap)
append(snap)

append(ce.tmp)
fsync(ce.tmp)

unlink(ue)
creat(log)

append(log)
write(log)

write(log)
write(log)

rename(ce.tmp, ce)

creat(ce.tmp)

append(log)
append(log)

fdatasync(log)

creat(ae.tmp)

(a) ZooKeeper

 14
 13

 12
 11

 10

 2
42

32
22

1 2
0

Figure 4: Protocols and Vulnerabilities. (a), (b), (c), and (d) show protocols and vulnerabilities in ZooKeeper, etcd, Redis, and Kafka,
respectively. States that are not vulnerable, that were not reached in the execution, and that are vulnerable are shown by white, grey, and black
boxes, respectively. The annotations show how a particular state becomes vulnerable. In Zookeeper, box (24, 24) is vulnerable because both nodes
crash after the final fdatasync but before the log creation is persisted. Atomicity vulnerabilities are shown with brackets enclosing the operations
that need to be persisted atomically. The arrows show the ordering dependencies in the application protocol; if not satisfied, vulnerabilities are
observed. Dotted, dashed, and solid arrows represent safe file flush, directory operation, and other ordering dependencies, respectively.

appends some metadata, and renames it to create the final
WAL. The WAL is appended, flushed, and then the client
is acknowledged. We find that etcd cluster becomes un-
available if crashes occur when the WAL is appended;
the nodes fail to start if the appends to the WAL are re-
ordered or not persisted atomically. Also, if the rename
of the WAL is reordered, a global data loss is observed.

Non-RSM systems where vulnerabilities are exposed
even when relaxations are applied on a single machine
are shown using trace pairs. As shown in Figure 4(c),
Redis uses an append-only file to store user data. The
master appends to the file and sends the update to slaves.
Slaves, on startup, rewrite and rename the append-only
file. When the master sends new data, the slaves ap-
pend it to their append-only file and sync it. After the
slaves respond, the client is acknowledged. Data loss
windows are seen if the rename of the append-only file is
not atomic or reordered after the final fdatasync. When
the append is not atomic on the master, a user-visible
silent corruption is observed. Moreover, the corrupted
data is propagated from the master to the slaves, over-

riding their correct data. The same append (which maps
to the same source line) on the slave results in a window
of silent corruption. The window closes eventually since
the slaves sync the data from the master on startup.

Figure 4(d) shows the update protocol of Kafka. Kafka
creates a log file in the topic directory to store messages.
When a message is added, the leader appends the mes-
sage and flushes the log. It then contacts the followers
which perform the same operation and respond. After ac-
knowledging the client, the replication offset (that tracks
which messages are replicated to other brokers) is ap-
pended to a temporary file, flushed, and renamed to the
replication-offset-checkpoint file. The log can be lost af-
ter a crash because its parent directory is not flushed after
the log creation. If the log is lost on the master, then the
data is globally lost since the master instructs the slaves
also to drop the messages in the log. Similarly, Kafka can
lose a message topic altogether since the parent directory
of the topic directory is not explicitly flushed.

We observe that some systems (e.g., Redis, Kafka) do
not effectively use redundancy as a source of recovery.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 161

System

FS Requirements Failure Consequences

U
ni

qu
e

vu
ln

er
ab

ili
tie

s

In
te

r-
sy

sc
al

la
to

m
ic

ity

Atomic-
ity

Order-
ing

Data
loss

Un-
avail-
able

Window

A
pp

en
ds

an
d

tr
un

ca
te

s
R

en
am

e
(d

es
tl

in
k

ab
se

nt
)

R
en

am
e

(d
es

tl
in

k
ex

is
ts

)
Sa

fe
fil

e
flu

sh
D

ir
ec

to
ry

op
s

O
th

er
Si

le
nt

co
rr

up
tio

n
O

ld
co

m
m

it
N

ew
co

m
m

it
M

et
ad

at
a

co
rr

up
tio

n
U

se
rd

at
a

co
rr

up
tio

n
C

or
ru

pt
io

n
D

at
a

lo
ss

ol
d

co
m

m
it

D
at

a
lo

ss
ne

w
co

m
m

it

Redis 1 1 1 1 1 1 1 3
ZooKeeper 1 1 1 1 1 1 1 4 1 6
LogCabin 1 1 1 1 1 2
etcd 1 1 1 1 1 2 3
RethinkDB
MongoDB-WT 1 1 1
MongoDB-R 1 1 1 1 1 3 3 5
iNexus 1 1 1 1 1 2 3
Kafka 1 2 3 3
Total 2 4 1 6 4 5 4 1 2 9 12 3 1 2 1 26

Table 2: Vulnerabilities - Types and Consequences.
The table shows the unique vulnerabilities categorized by file-system
requirements and consequences.

For instance, in these systems, a local problem (such as
a local corruption or data loss) which results due to a
relaxation on a single node, can easily become a global
vulnerability such as a user-visible silent corruption or
data loss. In such situations, these systems miss opportu-
nities to use other intact replicas to recover from the local
problem. Moreover, such local problems are propagated
to other intact replicas, overriding their correct data.

4.4 Patterns in File-system Requirements
Table 2 shows file-system requirements across systems.
We group the results into three patterns:
Inter-Syscall Atomicity. ZooKeeper and LogCabin re-
quire inter system call atomicity (multiple system calls
need to be atomically persisted). In both these systems,
when a new log file is initialized, the creat and the initial
append of the log header need to be atomically persisted.
If the log initialization is partially persisted, the cluster
becomes unavailable. Vulnerabilities due to inter system
call atomicity requirements can occur on all file systems
irrespective of how they persist operations.
Atomicity within System calls. We find that seven
applications require system calls to be atomically per-
sisted. Eleven unique vulnerabilities are observed when
system calls are not persisted atomically. Six out of
the eleven vulnerabilities are dependent on atomic re-
place by rename (destination link already exists), one on
atomic create by rename (destination link does not exist),
and four on atomic truncates or appends. Four applica-
tions require appends or truncates to be atomic. Redis,
ZooKeeper, and etcd can handle appended portions filled
with zeros but not garbage.

Ordering between System calls. Six applications ex-
pect system calls to be persisted in order. Kafka and
ZooKeeper suffer from data loss since they expect the
safe file flush property from the file system. To persist
a file’s directory entry, the parent directory has to be ex-
plicitly flushed to avoid such vulnerabilities. We found
that reordering directory operations can cause vulnerabil-
ities. We found that five applications depend on ordered
renames: Redis exhibits a data loss window, etcd perma-
nently loses data, ZooKeeper, MongoDB-R, and iNexus
fail to start. Four applications require other operations
(appends and writes) to be ordered for correct behavior.

4.5 Vulnerability Consequences
Table 2 shows the vulnerability consequences. We find
that all vulnerabilities have severe consequences like
silent corruption, data loss, or cluster unavailability. Re-
dis silently returns and propagates corrupted data from
the master to slaves even if slaves have correct older ver-
sion of data. Redis also has a silent corruption window
when reads are performed on slaves. While only one sys-
tem silently corrupts and propagates corrupted data, six
out of eight systems are affected by permanent data loss.
Depending on the crash state, previously committed data
can be lost when new data is inserted or the newly in-
serted data can be lost after acknowledgment. Redis ex-
hibits a data loss window that is exposed when reads are
performed on the slaves. As slaves continuously sync
data from the master, the window eventually closes.

Cluster unavailability occurs when nodes fail to
start due to corrupted application data or metadata.
ZooKeeper and etcd fail to start if CRC checksums mis-
match in user data. MongoDB-WT fails to start if the
turtle file is missing and MongoDB-R fails to start if the
sstable file is missing or there is a mismatch in the cur-
rent and manifest files. LogCabin and iNexus skip log
entries when checksums do not match but fail to start if
metadata is corrupted. LogCabin fails to start when an
unexpected segment metadata version is found. Simi-
larly, ZooKeeper fails to start on unexpected epoch val-
ues. While some of these scenarios can be fixed by expert
application users, the process is intricate and error prone.

We note that the vulnerabilities are specific to our sim-
ple workloads and all vulnerabilities reported by PACE

have harmful consequences. More complex workloads
and checkers that assert more subtle invariants are bound
to find more vulnerabilities.

4.6 Impact on Real File Systems
We configured PACE with APMs of real file systems. Ta-
ble 3 shows the vulnerabilities on each file system. We
observe that many vulnerabilities can occur on all exam-
ined file systems. Only two vulnerabilities are observed
in ext3-j (data-journaling) as all operations are persisted
in order. All vulnerabilities that occur on our default

162 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ext2 ext3-w ext3-o ext4-o ext3-j btrfs
Redis 3 1 1
ZooKeeper 6 3 1 1 1 3
LogCabin 2 1 1 1 1 1
etcd 3 2
MongoDB-WT 1
MongoDB-R 5 2 2 2 3
iNexus 2 1 1 2
Kafka 3
Total 26 9 5 5 2 10

Table 3: Vulnerabilities on Real File Systems. The table
shows the number of vulnerabilities on commonly used file systems.

APM are also exposed on ext2. Applications are vul-
nerable even on Linux’s default file system (ext4 ordered
mode). Many of the vulnerabilities are exposed on btrfs
as it reorders directory operations. In summary, the vul-
nerabilities are exposed on many current file systems on
which distributed storage systems run today.

4.7 Confirmation of Problems Found
We reported 18 of the discovered vulnerabilities to ap-
plication developers. We confirmed that the reported
issues cause serious problems (such as data loss and
unavailability) to users of the system. Seven out of
the 18 reported issues were assigned to developers and
fixed [32–34, 56, 87, 88]. Another five issues have been
acknowledged or assigned to developers. Out of this
five, two in Kafka were already known [48]. Other is-
sues are still open and under consideration. We found
that distributed storage system developers, in general, are
responsive to such bug reports for two reasons. First,
we believe developers consider crashes very important
in distributed systems compared to single-machine ap-
plications. Second, the discovered vulnerabilities due to
crashes affect their users directly (for example, data loss
and cluster unavailability).

We found that users and random-crash testing have
also occasionally encountered the same vulnerabilities
that were systematically discovered by PACE. However,
PACE diagnoses the underlying root cause and provides
information of the problematic source code line, easing
the process of fixing these vulnerabilities.

4.8 Discussion
We first discuss the immediate implications of our find-
ings in building distributed storage systems atop file sys-
tems. Next, we discuss the difficulties in fixing some of
the discovered vulnerabilities.

4.8.1 Implications
We find that redundancy by replication is not the panacea
for constructing reliable storage systems. Although
replication can help with single node failures, correlated
crashes still remain a problem. We find that application
protocols, when driven to corner cases, can often over-
ride correct versions of data with corrupted data or older

versions without considering how the system reached
such a state. For example, Redis and Kafka can prop-
agate corrupted data and data loss to slaves, respectively.
Similarly, RSM systems override correct newer versions
of data on other nodes when a majority of nodes have lost
the data; a better recovery strategy could use the unaf-
fected replicas to fix the loss of acknowledged data even
if the data is lost on a majority of nodes. We believe
replication protocols and local storage protocols should
be designed in tandem to avoid such undesired behaviors.

System designers need to be careful about two prob-
lems when embracing layered software. First, the reli-
ability of the entire system depends on individual com-
ponents. MongoDB’s reliability varies depending on the
storage engine (WiredTiger or RocksDB). Second, sep-
arate well-tested components when integrated can bring
unexpected problems. In the version of MongoDB we
tested, we found that correct options are not passed from
upper layers to RocksDB, resulting in a data loss. Simi-
larly, iNexus uses a modified version of LevelDB which
does not flush writes to disk when transactions commit.
Applications need to clearly understand the guarantees
provided by components when using them.

We find that a few applications are overly cautious in
how they update file-system state. LogCabin flushes files
and directories after every operation. Though this avoids
many reordering vulnerabilities, it does not fix atom-
icity vulnerabilities. Issuing fsync at various places
does not completely avoid reliability problems. Also,
the implication of too much caution is clear: low perfor-
mance. While this approach is reasonable for configura-
tion stores, key-value stores need a better way to achieve
the same effect without compromising performance.

All modern distributed storage system run on top of a
variety of file systems that provide different crash guar-
antees. We advocate that distributed storage systems
should understand and document on which file systems
their protocols work correctly to help practitioners make
conscious deployment decisions.

4.8.2 Difficulties in Fixing
Now we discuss the difficulties in fixing the discov-
ered vulnerabilities. The effort to fix the vulnerabili-
ties varies significantly. While some of them are simple
implementation-level fixes, many of them are fundamen-
tal problems that require rethinking how distributed crash
recovery protocols are designed.

Some vulnerabilities (such as those due to non-atomic
renames) are automatically masked in modern file sys-
tems; these possess a practical concern only when the
applications are run on file systems that do not provide
such guarantees (e.g., ext2). While only some vulnera-
bilities can be easily fixed, many vulnerabilities are fun-
damentally hard to fix and they fall into three categories.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 163

First, some vulnerabilities cannot be fixed by current
file system interfaces or straightforward changes in appli-
cation local update protocols. For example, consider the
inter-syscall atomicity vulnerabilities and the non-atomic
multi-block appends and truncates. These vulnerabilities
are exposed on all current file systems since POSIX does
not provide a way to atomically persist multiple system
calls or a write that spans multiple blocks. While a differ-
ent interface that allows multiple system calls to be atom-
ically persisted can help, such an interface is far from
reality in current commodity file systems.

Second, many reordering vulnerabilities can be fixed
by carefully issuing fsync at correct places in the local
update protocol. However, applications may not be will-
ing to do so, given the clear performance impact in the
common case update protocol code.

Third, sometimes the programming environment may
constrain applications from utilizing some file system in-
terfaces, leading to vulnerabilities. For example, con-
sider the safe file flush and directory operation reordering
vulnerabilities in ZooKeeper and Kafka. These vulnera-
bilities arise because these systems are written in Java in
which fsync cannot be readily issued on directories.

In all the above cases, simply fixing the local update
protocols is not a feasible solution. Fixing these funda-
mental problems requires carefully designing local and
global recovery protocols that interact correctly to fix the
problem using other intact replicas.

5 Related Work
Recent work has demonstrated that file-system behaviors
vary widely [4, 14, 70–73]. We derive our APM specifi-
cations from our previous work [70]. Our previous work
also developed Alice to uncover single-machine crash
vulnerabilities. Tools like Alice cannot be directly ap-
plied to distributed systems as they do not track cross
node dependencies. If applied, such tools may report
spurious vulnerabilities. Although such tools can be ap-
plied in stand-alone mode like in ZooKeeper [99], many
code paths would not be exercised and thus miss impor-
tant vulnerabilities. Zheng et al. [98] find crash vulner-
abilities in databases. Unlike our work, Zheng et al. do
not systematically explore all states that can occur in an
execution. They find vulnerabilities that can commonly
occur: they do not model file-system behavior closely
and therefore cannot explore all corner cases.

PACE is complementary to distributed model check-
ers [29, 40, 42, 54, 95, 96]: bugs due to file-system be-
haviors discovered by PACE cannot be discovered by ex-
isting model checkers and bugs due to network message
re-orderings cannot be discovered by PACE. Distributed
model checkers use dynamic partial-order based tech-
niques to reduce state space explosion. SAMC [54] can
also induce crashes and reboots in addition to reordering

messages. To reduce state space, SAMC uses seman-
tic information which requires testers to write protocol-
specific rules for a target system. PACE uses only high-
level protocol-awareness to prune the state space and
does not require any code as input. Jepsen [50] is a tool
that tests distributed systems under faulty networks and
partial failures. Similar to distributed model checkers,
such tools are complementary to PACE.

Previous tools focus solely on either single-node file
system behavior or distributed consensus and thus cannot
understand the interaction of distributed recovery proto-
col and a local-storage protocol. To our knowledge, our
work is the first to consider file-system behaviors in the
context of distributed storage systems. It is difficult for
other distributed model checkers to reproduce the vulner-
abilities found by PACE because they run the system on
top of already implemented storage stacks. PACE models
the file system used by the distributed system and thus
can check how a distributed storage system will work on
any current or future file system.

6 Conclusion
Modern distributed storage systems suffer from corre-
lated crash vulnerabilities and subtleties in local file-
system behavior influence the correctness of distributed
update protocols. We present PACE a tool that can
effectively search for correlated crash vulnerabilities
by pruning the search space. We study eight popu-
lar distributed storage systems using PACE and find 26
unique vulnerabilities. As modern distributed storage
systems are becoming the primary choice for storing
and managing critical user data, tools such as PACE

are increasingly vital to uncover reliability problems.
Source code of PACE, workloads, checkers, and de-
tails of the discovered vulnerabilities are publicly avail-
able at http://research.cs.wisc.edu/adsl/
Software/pace/.

Acknowledgments
We thank the anonymous reviewers and Jeffrey Chase
(our shepherd) for their insightful comments. We thank
the members of the ADSL for their valuable discus-
sions. This material was supported by funding from NSF
grants CNS-1419199, CNS-1421033, CNS-1319405,
and CNS-1218405, DOE grant DE-SC0014935, as well
as donations from EMC, Facebook, Google, Huawei,
Microsoft, NetApp, Samsung, Seagate, Veritas, and
VMware. Finally, we thank CloudLab [85] for provid-
ing a great computing environment for running our ex-
periments. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and may not reflect the views of NSF, DOE,
or other institutions.

164 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://research.cs.wisc.edu/adsl/Software/pace/
http://research.cs.wisc.edu/adsl/Software/pace/

References
[1] Necessary step(s) to synchronize filename operations on disk.

http://austingroupbugs.net/view.php?id=672.
[2] Pace Tool and Results. http://research.cs.wisc.edu/

adsl/Software/pace/.
[3] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak,

Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch,
Marvin Theimer, and Roger P. Wattenhofer. Farsite: Federated,
Available, and Reliable Storage for an Incompletely Trusted En-
vironment. SIGOPS Oper. Syst. Rev., 36(SI):1–14, December
2002.

[4] Ramnatthan Alagappan, Vijay Chidambaram, Thanu-
malayan Sankaranarayana Pillai, Aws Albarghouthi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Beyond Storage
APIs: Provable Semantics for Storage Stacks. In Proceedings
of the 15th USENIX Conference on Hot Topics in Operating
Systems, HOTOS’15, pages 20–20, Berkeley, CA, USA, 2015.
USENIX Association.

[5] Apache. Apache ZooKeeper. https://zookeeper.
apache.org/.

[6] Apache. Kafka. http://kafka.apache.org/.
[7] Apache Cassandra. Cassandra Replica-

tion. http://docs.datastax.com/en/
cassandra/2.0/cassandra/architecture/
architectureDataDistributeReplication_c.
html.

[8] ArchLinux. f2fs. https://wiki.archlinux.org/
index.php/F2FS.

[9] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Oper-
ating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91
edition, May 2015.

[10] Özalp Babaoğlu and Keith Marzullo. Distributed Systems (2Nd
Ed.). pages 55–96, 1993.

[11] Mehmet Bakkaloglu, Jay J Wylie, Chenxi Wang, and Gregory R
Ganger. On Correlated Failures in Survivable Storage Systems .
Technical report, DTIC Document, 2002.

[12] Kenneth P. Birman and Thomas A. Joseph. Reliable Communi-
cation in the Presence of Failures. ACM Trans. Comput. Syst.,
5(1):47–76, January 1987.

[13] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and
Roger M. Needham. Grapevine: An Exercise in Distributed Com-
puting. Commun. ACM, 25(4):260–274, April 1982.

[14] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishna-
murthy, Emina Torlak, and Xi Wang. Specifying and Checking
File System Crash-Consistency Models. In Proceedings of the
Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
’16, pages 83–98, New York, NY, USA, 2016. ACM.

[15] Mike Burrows. The Chubby Lock Service for Loosely-coupled
Distributed Systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages
335–350, Berkeley, CA, USA, 2006. USENIX Association.

[16] Marco Canini, Vojin Jovanovic, Daniele Venzano, Gautam Ku-
mar, Dejan Novakovic, and Dejan Kostic. Checking for Insidi-
ous Faults in Deployed Federated and Heterogeneous Distributed
Systems. Technical report, 2011.

[17] Cassandra. Apache Cassandra. https://academy.
datastax.com/resources/brief-introduction-
apache-cassandra.

[18] K. Mani Chandy and Leslie Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM Trans.
Comput. Syst., 3(1):63–75, February 1985.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. pages 15–15, 2006.

[20] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti,
John Ousterhout, and Mendel Rosenblum. Copysets: Reducing
the Frequency of Data Loss in Cloud Storage. In Proceedings
of the 2013 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’13, pages 37–48, Berkeley, CA, USA, 2013.
USENIX Association.

[21] ComputerWorldUK. Lightning strikes Amazon and Microsoft
data centres. http://www.computerworlduk.com/
galleries/infrastructure/ten-datacentre-
disasters-that-brought-firms-offline-
3593580/#5.

[22] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s
Hosted Data Serving Platform. Proc. VLDB Endow., 1(2):1277–
1288, August 2008.

[23] CoreOS. etcd. https://coreos.com/etcd/.
[24] Flaviu Cristian, Houtan Aghili, Raymond Strong, and Danny

Dolev. Atomic Broadcast: From Simple Message Diffusion to
Byzantine Agreement. Citeseer, 1986.

[25] DataCenterDynamics. Lessons from the Singapore Exchange
failure. http://www.datacenterdynamics.com/
power-cooling/lessons-from-the-singapore-
exchange-failure/94438.fullarticle.

[26] DataCenterKnowledge. Lightning Disrupts Google Cloud Ser-
vices. http://www.datacenterknowledge.com/
archives/2015/08/19/lightning-strikes-
google-data-center-disrupts-cloud-
services/.

[27] Datastax. Netflix Cassandra use case. http://www.
datastax.com/resources/casestudies/netflix.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: Amazon’s Highly Available Key-value Store. volume 41,
pages 205–220, New York, NY, USA, October 2007. ACM.

[29] Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo
Chen, Alastair F. Donaldson, John Erickson, Cheng Huang,
Akash Lal, Rashmi Mudduluru, Shaz Qadeer, and Wolfram
Schulte. Uncovering Bugs in Distributed Storage Systems dur-
ing Testing (Not in Production!). In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 249–262, Santa
Clara, CA, Feb 2016. USENIX Association.

[30] Docker. Docker. https://www.docker.com/.
[31] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex:

A Distributed, Searchable Key-value Store. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 25–36, New York, NY, USA, 2012. ACM.

[32] etcd. Possible cluster unavailability on few file systems. https:
//github.com/coreos/etcd/issues/6379.

[33] etcd. Possible cluster unavailbility. https://github.com/
coreos/etcd/issues/6378.

[34] etcd. Possible data loss – fsync parent directories. https://
github.com/coreos/etcd/issues/6378.

[35] Daniel Ford, François Labelle, Florentina I. Popovici, Murray
Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean
Quinlan. Availability in Globally Distributed Storage Systems.
In Presented as part of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, Berkeley, CA, 2010.
USENIX.

[36] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Friday: Global Comprehension for Dis-
tributed Replay. In Proceedings of the 4th USENIX Conference
on Networked Systems Design & Implementation, NSDI’07,
pages 21–21, Berkeley, CA, USA, 2007. USENIX Association.

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System. In Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’03, pages 29–
43, New York, NY, USA, 2003. ACM.

[38] Google. Google Cloud Status. https://status.
cloud.google.com/incident/compute/15056#
5719570367119360.

[39] Google Code University. Introduction to Distributed Sys-
tem Design. http://www.hpcs.cs.tsukuba.ac.jp/
˜tatebe/lecture/h23/dsys/dsd-tutorial.html.

[40] Rachid Guerraoui and Maysam Yabandeh. Model Checking a
Networked System Without the Network. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’11, pages 225–238, Berkeley, CA, USA,
2011. USENIX Association.

[41] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Improv-
ing File System Reliability with I/O Shepherding. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, October 14-17,
2007, pages 293–306, 2007.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 165

http://austingroupbugs.net/view.php?id=672
http://research.cs.wisc.edu/adsl/Software/pace/
http://research.cs.wisc.edu/adsl/Software/pace/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
http://kafka.apache.org/
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
https://wiki.archlinux.org/index.php/F2FS
https://wiki.archlinux.org/index.php/F2FS
https://academy.datastax.com/resources/brief-introduction-apache-cassandra
https://academy.datastax.com/resources/brief-introduction-apache-cassandra
https://academy.datastax.com/resources/brief-introduction-apache-cassandra
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5
https://coreos.com/etcd/
http://www.datacenterdynamics.com/power-cooling/lessons-from-the-singapore-exchange-failure/94438.fullarticle
http://www.datacenterdynamics.com/power-cooling/lessons-from-the-singapore-exchange-failure/94438.fullarticle
http://www.datacenterdynamics.com/power-cooling/lessons-from-the-singapore-exchange-failure/94438.fullarticle
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://www.datastax.com/resources/casestudies/netflix
http://www.datastax.com/resources/casestudies/netflix
https://www.docker.com/
https://github.com/coreos/etcd/issues/6379
https://github.com/coreos/etcd/issues/6379
https://github.com/coreos/etcd/issues/6378
https://github.com/coreos/etcd/issues/6378
https://github.com/coreos/etcd/issues/6378
https://github.com/coreos/etcd/issues/6378
https://status.cloud.google.com/incident/compute/15056#5719570367119360
https://status.cloud.google.com/incident/compute/15056#5719570367119360
https://status.cloud.google.com/incident/compute/15056#5719570367119360
http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html
http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html

[42] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang,
and Lintao Zhang. Practical Software Model Checking via Dy-
namic Interface Reduction. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 265–278, New York, NY, USA, 2011. ACM.

[43] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier:
Highly Durable, Decentralized Storage Despite Massive Corre-
lated Failures. In Proceedings of the 2Nd Conference on Sympo-
sium on Networked Systems Design & Implementation - Volume
2, NSDI’05, pages 143–158, Berkeley, CA, USA, 2005. USENIX
Association.

[44] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill.
IronFleet: Proving Practical Distributed Systems Correct. In Pro-
ceedings of the 25th Symposium on Operating Systems Princi-
ples, SOSP ’15, pages 1–17, New York, NY, USA, 2015. ACM.

[45] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10, pages
11–11, Berkeley, CA, USA, 2010. USENIX Association.

[46] iNexus. iNexus. https://github.com/baidu/ins.
[47] Kafka. Kafka Disks and Filesystem. https://kafka.

apache.org/081/ops.html.
[48] Kafka. Possible data loss. https://issues.apache.org/

jira/browse/KAFKA-4127.
[49] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase,

and John Wilkes. Designing for Disasters. In Proceedings of the
3rd USENIX Conference on File and Storage Technologies, FAST
’04, pages 59–62, Berkeley, CA, USA, 2004. USENIX Associa-
tion.

[50] Kyle Kingsbury. Jepsen. http://jepsen.io/.
[51] Leslie Lamport. Paxos Made Simple. ACM Sigact News,

32(4):18–25, 2001.
[52] Leslie Lamport, Robert Shostak, and Marshall Pease. The

Byzantine Generals Problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, July 1982.

[53] Butler Lampson and Howard Sturgis. Crash recovery in a dis-
tributed data storage system. Xerox Palo Alto Research Center
Palo Alto, California, 1979.

[54] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jef-
frey F. Lukman, and Haryadi S. Gunawi. SAMC: Semantic-aware
Model Checking for Fast Discovery of Deep Bugs in Cloud Sys-
tems. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’14, pages 399–
414, Berkeley, CA, USA, 2014. USENIX Association.

[55] Barbara Liskov and James Cowling. Viewstamped Replication
Revisited. Technical Report MIT-CSAIL-TR-2012-021, MIT,
July 2012.

[56] LogCabin. Cluster unavailable due to power failures. https:
//github.com/logcabin/logcabin/issues/221.

[57] LogCabin. LogCabin. https://github.com/logcabin/
logcabin.

[58] Marshall Kirk McKusick and Jeffery Roberson. Journaled Soft-
updates. Proceedings of EuroBSDCon, 2010.

[59] MongoDB. Introduction to MongoDB. https://docs.
mongodb.org/manual/introduction/.

[60] MongoDB. MongoDB. https://www.mongodb.org/.
[61] MongoDB. MongoDB at ebay. https://www.mongodb.

com/presentations/mongodb-ebay.
[62] MongoDB. MongoDB Platform Specific Considera-

tions. https://docs.mongodb.org/manual/
administration/production-notes/#platform-
specific-considerations.

[63] MongoDB. MongoDB Replication. https://docs.
mongodb.org/manual/replication/.

[64] MongoDB. MongoDB WiredTiger. https://docs.
mongodb.org/manual/core/wiredtiger/.

[65] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Se-
shan. Subtleties in Tolerating Correlated Failures in Wide-area
Storage Systems. In Proceedings of the 3rd Conference on Net-
worked Systems Design & Implementation - Volume 3, NSDI’06,
pages 17–17, Berkeley, CA, USA, 2006. USENIX Association.

[66] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,
Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, Paul Saab, David Stafford, Tony Tung, and Venkatesh-
waran Venkataramani. Scaling Memcache at Facebook. In Pro-
ceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, nsdi’13, pages 385–398, Berkeley,
CA, USA, 2013. USENIX Association.

[67] Brian M. Oki and Barbara H. Liskov. Viewstamped Replication:
A New Primary Copy Method to Support Highly-Available Dis-
tributed Systems. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC ’88,
pages 8–17, New York, NY, USA, 1988. ACM.

[68] Diego Ongaro and John Ousterhout. In Search of an Understand-
able Consensus Algorithm. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX
ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX
Association.

[69] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Proceedings
of the 1988 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’88, pages 109–116, New York, NY,
USA, 1988. ACM.

[70] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All File Systems
Are Not Created Equal: On the Complexity of Crafting Crash-
consistent Applications. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’14, pages 433–448, Berkeley, CA, USA, 2014. USENIX
Association.

[71] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Crash Consistency.
Communications of the ACM, 58(10):46–51, October 2015.

[72] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Crash Consistency: Re-
thinking the Fundamental Abstractions of the File System. Com-
munications of the ACM, 13(7), July 2015.

[73] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Joo-
Young Hwang, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Towards Efficient, Portable Application-level Consis-
tency. In Proceedings of the 9th Workshop on Hot Topics in De-
pendable Systems, HotDep ’13, pages 8:1–8:6, New York, NY,
USA, 2013. ACM.

[74] Redis. Instagram Architecture. http://
highscalability.com/blog/2012/4/9/the-
instagram-architecture-facebook-bought-
for-a-cool-billio.html.

[75] Redis. Introduction to Redis. http://redis.io/topics/
introduction.

[76] Redis. Redis. http://redis.io/.
[77] Redis. Redis at Flickr. http://code.flickr.net/2014/

07/31/redis-sentinel-at-flickr/.
[78] Redis. Redis at GitHub. http://nosql.mypopescu.com/

post/1164218362/redis-at-github.
[79] Redis. Redis at Pinterest. http://highscalability.

com/blog/2012/4/9/the-instagram-
architecture-facebook-bought-for-a-cool-
billio.html.

[80] Redis. Redis Replication. http://redis.io/topics/
replication.

[81] Redis. Virtual Memory – Redis . http://redis.io/
topics/virtual-memory.

[82] Redis. Who’s using Redis? http://redis.io/topics/
whos-using-redis.

[83] RethinkDB. RethinkDB. https://www.rethinkdb.com/.
[84] RethinkDB. RethinkDB Replication. https:

//www.rethinkdb.com/docs/sharding-and-
replication/.

[85] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing
CloudLab: Scientific infrastructure for advancing cloud architec-
tures and applications. USENIX ;login:, 39(6), December 2014.

[86] RocksDB. RocksDB. http://rocksdb.org/blog/
1967/integrating-rocksdb-with-mongodb-2/.

[87] Mongo RocksDB. Data loss – fsync parent directory on file
creation and rename. https://github.com/mongodb-
partners/mongo-rocks/issues/35.

166 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/baidu/ins
https://kafka.apache.org/081/ops.html
https://kafka.apache.org/081/ops.html
https://issues.apache.org/jira/browse/KAFKA-4127
https://issues.apache.org/jira/browse/KAFKA-4127
http://jepsen.io/
https://github.com/logcabin/logcabin/issues/221
https://github.com/logcabin/logcabin/issues/221
https://github.com/logcabin/logcabin
https://github.com/logcabin/logcabin
https://docs.mongodb.org/manual/introduction/
https://docs.mongodb.org/manual/introduction/
https://www.mongodb.org/
https://www.mongodb.com/presentations/mongodb-ebay
https://www.mongodb.com/presentations/mongodb-ebay
https://docs.mongodb.org/manual/administration/production-notes/#platform-specific-considerations
https://docs.mongodb.org/manual/administration/production-notes/#platform-specific-considerations
https://docs.mongodb.org/manual/administration/production-notes/#platform-specific-considerations
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://redis.io/topics/introduction
http://redis.io/topics/introduction
http://redis.io/
http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/
http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/
http://nosql.mypopescu.com/post/1164218362/redis-at-github
http://nosql.mypopescu.com/post/1164218362/redis-at-github
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://redis.io/topics/replication
http://redis.io/topics/replication
http://redis.io/topics/virtual-memory
http://redis.io/topics/virtual-memory
http://redis.io/topics/whos-using-redis
http://redis.io/topics/whos-using-redis
https://www.rethinkdb.com/
https://www.rethinkdb.com/docs/sharding-and-replication/
https://www.rethinkdb.com/docs/sharding-and-replication/
https://www.rethinkdb.com/docs/sharding-and-replication/
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
https://github.com/mongodb-partners/mongo-rocks/issues/35
https://github.com/mongodb-partners/mongo-rocks/issues/35

[88] Mongo RocksDB. Mongodb - rocksdb data loss bug. https:
//groups.google.com/forum/#!topic/mongodb-
dev/X9LQOorieas.

[89] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM
Comput. Surv., 37(1):42–81, March 2005.

[90] Fred B. Schneider. Implementing Fault-tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv.,
22(4):299–319, December 1990.

[91] Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. De-
mers, Mike Spreitzer, and Carl Hauser. Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Storage System.
In Proceedings of the Fifteenth ACM Symposium on Operating
System Principles, SOSP 1995, Copper Mountain Resort, Col-
orado, USA, December 3-6, 1995, pages 172–183, 1995.

[92] TheRegister. Admin downs entire Joyent data center.
http://www.theregister.co.uk/2014/05/28/
joyent_cloud_down/.

[93] Twitter. Twitter Blogs. https://blog.twitter.com/
2015/handling-five-billion-sessions-a-day-
in-real-time.

[94] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor
Kuncak. Predicting and Preventing Inconsistencies in Deployed
Distributed Systems. ACM Trans. Comput. Syst., 28(1):2:1–2:49,
August 2010.

[95] Maysam Yabandeh and Dejan Kostić. DPOR-DS: Dynamic Par-
tial Order Reduction in Distributed Systems. Technical report,
2009.

[96] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Li-
dong Zhou. MODIST: Transparent Model Checking of Unmod-
ified Distributed Systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation,
NSDI’09, pages 213–228, Berkeley, CA, USA, 2009. USENIX
Association.

[97] YCombinator. Joyent us-east-1 rebooted due to operator
error. https://news.ycombinator.com/item?id=
7806972.

[98] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lil-
libridge, Elizabeth S. Yang, Bill W. Zhao, and Shashank Singh.
Torturing Databases for Fun and Profit. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’14, pages 449–464, Berkeley, CA, USA,
2014. USENIX Association.

[99] ZooKeeper. ZooKeeper Standalone Opera-
tion. https://zookeeper.apache.org/
doc/r3.3.3/zookeeperStarted.html#sc_
InstallingSingleMode.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 167

https://groups.google.com/forum/#!topic/mongodb-dev/X9LQOorieas
https://groups.google.com/forum/#!topic/mongodb-dev/X9LQOorieas
https://groups.google.com/forum/#!topic/mongodb-dev/X9LQOorieas
http://www.theregister.co.uk/2014/05/28/joyent_cloud_down/
http://www.theregister.co.uk/2014/05/28/joyent_cloud_down/
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
https://news.ycombinator.com/item?id=7806972
https://news.ycombinator.com/item?id=7806972
https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html#sc_InstallingSingleMode
https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html#sc_InstallingSingleMode
https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html#sc_InstallingSingleMode

Incremental Consistency Guarantees for Replicated Objects

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi∗

School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{rachid.guerraoui, matej.pavlovic, dragos-adrian.seredinschi}@epfl.ch

Abstract
Programming with replicated objects is difficult. De-

velopers must face the fundamental trade-off between
consistency and performance head on, while struggling
with the complexity of distributed storage stacks. We in-
troduce Correctables, a novel abstraction that hides most
of this complexity, allowing developers to focus on the
task of balancing consistency and performance. To aid
developers with this task, Correctables provide incre-
mental consistency guarantees, which capture successive
refinements on the result of an ongoing operation on a
replicated object. In short, applications receive both a
preliminary—fast, possibly inconsistent—result, as well
as a final—consistent—result that arrives later.

We show how to leverage incremental consistency
guarantees by speculating on preliminary values, trading
throughput and bandwidth for improved latency. We ex-
periment with two popular storage systems (Cassandra
and ZooKeeper) and three applications: a Twissandra-
based microblogging service, an ad serving system, and
a ticket selling system. Our evaluation on the Amazon
EC2 platform with YCSB workloads A, B, and C shows
that we can reduce the latency of strongly consistent op-
erations by up to 40% (from 100ms to 60ms) at little cost
(10% bandwidth increase, 6% throughput drop) in the
ad system. Even if the preliminary result is frequently
inconsistent (25% of accesses), incremental consistency
incurs a bandwidth overhead of only 27%.

1. Introduction

Replication is a crucial technique for achieving
performance—i.e., high availability and low latency—
in large-scale applications. Traditionally, strong consis-
tency protocols hide replication and ensure correctness
by exposing a single-copy abstraction over replicated ob-
jects [26, 46]. There is a trade-off, however, between
consistency and performance [14, 21, 33]. Weak consis-
tency [28] boosts performance, but introduces the possi-
bility of incorrect (anomalous) behavior.

∗Author names appear in alphabetical order.

A common argument in favor of weak consistency is
that such anomalous behavior is rare in practice. Indeed,
studies reveal that on expectation, weakly consistent val-
ues are often correct even with respect to strong consis-
tency [19, 55]. Applications which primarily demand
performance thus forsake stronger models and resort to
weak consistency [16, 28].

There are cases, however, where applications often di-
verge from correct behavior due to weak consistency. As
an extreme example, an execution of YCSB workload
A [25] in Cassandra [45] on a small 1K objects dataset
can reveal stale values for 25% of weakly consistent read
operations (Figure 7 in §6). This happens when using
the Latest distribution, where read activity is skewed to-
wards popular items [25]. In other cases, even very rare
anomalies are unacceptable (e.g., when handling sensi-
tive data such as user passwords), making strongly con-
sistent access a necessity. For this class of applications,
correctness supersedes performance, and strong consis-
tency thus takes precedence [26].

There is also a large class of applications which do
not have a single, clear-cut goal (either performance or
correctness). Instead, such applications aim to satisfy
both of these conflicting demands. These applications
fall in a gray zone, somewhere in-between the two previ-
ous classes, as we highlight in Figure 1. Typically, these
applications aim to strike an optimal balance of consis-
tency and performance by employing different consis-
tency models, often at the granularity of individual op-
erations [18, 24, 43, 51, 66]. Choosing the appropriate
consistency model, even at this granularity, is hard, and

Demand for Performance HighLow
Weak

Strong

D
em

an
d

fo
r

C
or

re
ct

ne
ss

Weaker Consistency

Gray
Zone

(no single choice is ideal)

St
ro

ng
er

C
on

si
st

en
cy

Figure 1: Many applications fall into a gray zone, torn
between the need for both performance and correctness.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 169

the result is often sub-optimal, as developers still end up
with fixing a certain side of the consistency/performance
trade-off (and sacrificing the other side).

Moreover, programming in the gray area is diffi-
cult, as developers have to juggle different consistency
models in their applications [24, 43]. If programming
with a single consistency model (such as weak consis-
tency [26]) is non-trivial, then mixing multiple models
is even harder [50]. In their struggle to optimize perfor-
mance with consistency, developers must go up against
the full complexity of the underlying storage stack. This
includes choosing locations (cache or backup or primary
replica), dealing with coherence and cache-bypassing, or
selecting quorums. These execution details reflect as a
burden on developers, complicate application code, and
lead to bugs [31, 55].

Our goal is to help with the programming of applica-
tions located in the gray area. We accept as a fact that no
single consistency model is ideal, providing both high
performance and strong consistency (correctness) at the
same time [14, 33]. Our insight is to approach this ideal
in complementary steps, by combining consistency mod-
els in a single operation. Briefly, developers can invoke
an operation on a replicated object and obtain multiple,
incremental views on the result, at successive points in
time. Each view reflects the operation result under a
particular consistency model. Initial (preliminary) views
deliver with low latency—but weak consistency—while
stronger guarantees arrive later. We call this approach
incremental consistency guarantees (ICG).

We introduce Correctables, an abstraction which
grants developers a clean, consistency-based interface
for accessing replicated objects, clearly separating se-
mantics from execution details. This abstraction reduces
programmer effort by hiding storage-specific protocols,
e.g., selecting quorums, locations, or managing coher-
ence. Correctables are based on Promises [53], which
are placeholders for a single value that becomes avail-
able in the future. Correctables generalize Promises by
representing not a single, but multiple future values, cor-
responding to incremental views on a replicated object.

To the best of our knowledge, our abstraction is the
first which enables applications to build on ICG. As few
as two views suffice for ICG to be useful. The advan-
tage of ICG is that applications can speculate on the pre-
liminary view, hiding the latency of strong consistency,
and thereby improving performance [71]. Speculating
on preliminary responses is expedient considering that,
in many systems, weak consistency provides correct re-
sults on expectation [19, 55].

Speculation with ICG is applicable to a wide range
of scenarios. Consider, for instance, that a single
application-level operation can aggregate multiple—up
to hundreds of—storage-level objects [16, 27, 52, 65].

Since these objects are often inter-dependent, they can
not always be fetched in parallel. With ICG, the appli-
cation can use the fast preliminary view to speculatively
prefetch any dependent objects. By the time the final
(strongly consistent) view arrives, the prefetching would
also finish. If the preliminary result was correct (match-
ing the final one), then the speculation is deemed suc-
cessful, reducing the overall latency of this operation.

Alternatively, ICG can open the door to exploit-
ing application-specific semantics for optimizing per-
formance. Imagine an application requiring a mono-
tonically increasing counter to reach some pre-defined
threshold (e.g., number of purchased items in a shop re-
quired for a fidelity discount). If a weakly consistent
view of the counter already exceeds this threshold, the
application can proceed without paying the latency price
of a strongly consistent view.

The high-level abstraction centered on consistency
models, coupled with the performance benefits of en-
abling speculation via ICG, are the central contributions
of Correctables. We evaluate these performance benefits
by modifying two well-known storage systems (Cassan-
dra [45] and ZooKeeper [39]). We plug Correctables on
top of these, build three applications (a Twissandra-based
microblogging service [10], an ad serving system, and a
ticket selling system), and experiment on Amazon EC2.

Our evaluation first demonstrates that there is a siz-
able time window between preliminary and final views,
which applications can use for speculation. Second, us-
ing YCSB workloads A, B, and C, we show that we can
reduce the latency of strongly consistent operations by up
to 40% (from 100ms to 60ms) at little cost (10% band-
width increase, 6% throughput drop) in the ad system.
The other two applications exhibit similar improvements.
Even if the preliminary result is often inconsistent (25%
of accesses), incremental consistency incurs a bandwidth
overhead of only 27%.

In the rest of this paper, we overview our solution in
the context of related work (§2) and present the Correcta-
bles interface (§3). We show how applications use Cor-
rectables (§4), and describe the bindings to various stor-
age stacks (§5). We then give a comprehensive evalua-
tion (§6) and conclude (§7).

2. Overview & Related Work

This paper addresses the issue of programming and spec-
ulating with replicated objects through a novel abstrac-
tion called Correctables. In this section, we overview the
main concepts behind Correctables, and we contrast our
approach with related work.

2.1 Consistency Choices
There is an abundance of work on consistency models.
These range from strong consistency protocols [40, 46,

170 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

68], some optimized for WAN or a specific environ-
ment [26, 29, 44, 48, 72, 74], through intermediary mod-
els such as causal consistency [30, 54], to weak consis-
tency [28, 67]. As a recent development, storage systems
offer multiple—i.e., differentiated—consistency guaran-
tees [24, 43, 62]. This allows applications in the above-
mentioned gray zone to balance consistency and perfor-
mance on a per-operation basis: the choice of guarantees
depends on how sensitive the corresponding operation is.

Differentiated guarantees can take the form of
SLAs [66], policies attached to data [43], dynamic quo-
rum selection for quorum-based storage systems such as
Dynamo [28] or others [8, 45], or even ad-hoc opera-
tion invariants [18]. In practice, two consistency levels
often suffice: weak and strong [1, 5]. Sensitive opera-
tions (e.g., account creation or password checking) use
the strong level, while less critical operations (e.g., re-
move from basket) use weak guarantees [43, 66, 73] to
achieve good performance.

For instance, in Gemini [51], operations are either
Blue (fast, weakly consistent) or Red (slower, strongly
consistent). For sensitive data such as passwords, Face-
book uses a separate linearizable sub-system [55]. Like-
wise, Twitter employs strong consistency for “certain
sets of operations” [64], and Google’s Megastore ex-
poses strong guarantees alongside read operations with
“inconsistent” semantics [20]. Another frequent form
of differentiated guarantees appears when applications
bypass caches to ensure correctness for some opera-
tions [16, 60].

Given this great variety of differentiated guarantees,
we surmise that applications can benefit from mixing
consistency models. The notable downside of this ap-
proach is that application complexity increases [50]. De-
velopers must orchestrate different storage APIs and con-
sider the interactions between these protocols [16, 18,
69]. Our work subsumes results in this area. We propose
to hide different schemes for managing consistency un-
der a common interface, Correctables, which can abstract
over a varying combination of storage tiers and reduce
application complexity. In addition, we introduce the no-
tion of incremental consistency guarantees (ICG), i.e.,
progressive refinement of the result of a single operation.

2.2 ICG: Incremental Consistency Guarantees

Applications which use strong consistency—either ex-
clusively or for a few operations—do so to avoid anoma-
lous behavior which is latent in weaker models. Interest-
ingly, recent work reveals that this anomalous behavior is
rare in practice [19, 55]. There are applications, however,
which cannot afford to expose even those rare anomalies.

For instance, consider a system storing user pass-
words, and say it has 1% chance of exposing an inconsis-
tent password. If such a system demands correctness—

as it should—then it is forced to pay the price for strong
consistency on every access, even though this is not nec-
essary in 99% of cases. We propose ICG to help appli-
cations avert this dilemma, and pay for correctness only
when inconsistencies actually occur.

With ICG, an application can obtain both weakly
consistent (called preliminary) and strongly consistent
(called final) results of an operation, one by one, as these
become available. While waiting for the final result, the
application can speculatively perform further processing
based on the preliminary—which is correct on expecta-
tion. Following our earlier example, this would help hide
the latency of strong consistency for 99% of accesses.

The full latency of strong consistency is only exposed
in case of misspeculation, when the preliminary and final
values diverge because the preliminary returned incon-
sistent data [71]. These are the 1% cases where strong
consistency is needed anyway. Speculation through ICG
can lessen the most prominent argument against strong
consistency, namely its performance penalty. With ICG
we pay the latency cost of strong consistency only when
necessary, regardless of how often this is the case.

Speculation is a well-known technique for improving
performance. Traditionally, the effects of speculation in
a system remain hidden from higher-level applications
until the speculation confirms, since the effects can lead
to irrevocable actions in the applications [41, 57, 59, 71].
Alternatively, it has been shown that leaking speculative
effects to higher layers can be beneficial, especially in
user-facing applications, where the effects can be undone
or the application can compensate in case of misspecu-
lation [36, 47, 49, 61]. We propose to use eventual con-
sistency as a basis for doing speculative work, as a novel
approach for improving performance in replicated sys-
tems. Also, more generally, we allow the application
itself (which knows best), to decide on the speculation
boundary [70]—whether to externalize effects of specu-
lation, and later to undo or compensate these effects, or
whether to isolate users from speculative state.

Besides speculation, ICG is useful in other cases as
well. For instance, applications can choose dynami-
cally whether to settle with a preliminary value and for-
sake the final value altogether. This is a way to obtain
application-specific optimizations, e.g., to enforce tight
latency SLAs. Alternatively, we can expose the prelim-
inary response to users and revise it later when the final
response arrives. This strategy is akin to compensating
in case of misspeculation, as mentioned earlier.

Clearly, not all applications are amenable to exploit-
ing ICG. In Table 1 we give a high-level account on
three categories of applications: (1) those which have no
additional benefit from strong consistency or ICG; (2)
those which require correct results but are not amenable
to speculation; and at last (3) applications that can obtain

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 171

Category Synopsis Applications and use cases

Weak
Consistency

Use the weakest, but fastest consistency
model, e.g., by using partial quorums, or go-
ing to the closest replica or cache. No benefit
from ICG.

Computation on static (BLOBs) content, e.g., thumbnail gener-
ator for images and videos, accessing cold data, fraud analysis,
disconnected operations in mobile applications, etc.

Strong
Consistency

Use the strongest available model, e.g., by
going to the primary replica. Applications re-
quire correct results.

Infrastructure services (e.g., load-balancing, session stores,
configuration and membership management services), stock
tickers, trading applications, etc.

Incremental
Consistency
Guarantees

(ICG)

Use multiple, incremental models. Applica-
tions benefit from weakly consistent values
(e.g., by speculating or exposing them), but
prefer correct results.

E-mail, calendar, social network timeline, grocery list, flight
search aggregation, online shopping, news reading, browsing,
backup, collaborative editing, authentication and authorization,
advertising, online wallets, etc.

Table 1: Different patterns and their corresponding use cases. Many applications can benefit from ICG.

performance without sacrificing correctness by leverag-
ing ICG.

2.3 Client-side Handling of ICG
To program with ICG, applications need to wait asyn-
chronously for multiple replies to an operation (where
each reply encapsulates a different guarantee on the re-
sult) while doing useful work, i.e., speculate. To the best
of our knowledge, no abstraction fulfills these criteria.
To minimize the effort of programming with ICG, we
draw inspiration from Promises, seminal work on han-
dling asynchronous remote procedure calls in distributed
systems [53].

A Promise is a placeholder for a value that will be-
come available asynchronously in the future. Given
the urgency to handle intricate parallelism and aug-
menting complexity in applications, it is not surpris-
ing that Promises are becoming standard in many lan-
guages [6, 2, 12, 31]. We extend the binary interface of
Promises (a value either present or absent) to obtain a
multi-level abstraction, which incrementally builds up to
a final, correct result.

The Observable interface from reactive programming
can be seen as a similar generalization of Promises. Ob-
servables abstract over asynchronous data streams of ar-
bitrary type and size [56]. Our goal with Correctables,
in contrast, is to grant developers access to consistency
guarantees on replicated objects in a simple manner. The
ProgressivePromise interface in Netty [7] also general-
izes Promises. While it can indicate progress of an oper-
ation, a ProgressivePromise does not expose preliminary
results of this operation.

3. Correctables

This section presents the Correctables interface for pro-
gramming and speculating with replicated data. Applica-
tions use this interface as a library, as Figure 2 depicts. At
the top of this library sits the application-facing API. The
library is connected to the storage stack using a storage
binding, which is a module that encapsulates all storage

Client

Cache Cassandra ZooKeeper

Storage

binding binding binding binding

Correctables
LIBRARY

RPC

invoke

API

(Weak / Strong)

RPC

C
o
n
si

st
e
n
c
y-

b
a
se

d

in
te

rf
a
c
e

S
ys

te
m

-s
p

e
c
ifi

c

in
te

rf
a
c
e

Desktop
Application

Web
Frontend

Mobile
App

Caching
Daemon

Correctable

Figure 2: High-level view of Correctables, as an interface to
the underlying storage.

system specific interfaces and protocols. Correctables
fulfill two critical functions: (i) translate API calls into
storage-specific requests via a binding, and (ii) orches-
trate responses from the binding and deliver them—in an
incremental way—to the application, using Correctable
objects. Each call to an API method returns a Correctable
which represents the progressively improving result (i.e.,
a result with ICG).

3.1 From Promises to Correctables
As mentioned earlier, Correctables descend from
Promises. To model an asynchronous task, a Promise
starts in the blocked state and transitions to ready when
the task completes, triggering any callback associated
with this state [53]. Promises help with asynchrony,
but not incrementality. To convey incrementality, a Cor-
rectable starts in the updating state, where it remains
until the final result becomes available or an error oc-
curs (see Figure 3). When this happens, the Correctable
closes with that result (or error), transitioning to the final
(or error) state. Upon each state transition, the corre-
sponding callback triggers. Preliminary results trigger

close(view)

close(error)

update(newView)

onUpdate
onError

onFinal

(callback)
(callback)

(callback)

UPDATING
ERROR

FINAL

Figure 3: The three states, transitions, and callbacks
associated with a Correctable.

172 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a same-state transition (from updating to updating). A
Correctable can have callbacks associated with each of
its three states. To attach these callbacks, we provide
the setCallbacks method; together with speculate,
these two form the two central methods of a Correctable,
which we examine more closely in §4.

3.2 Decoupling Semantics from Implementation

The Correctables abstraction decouples applications
from storage specifics by adopting a thin, consistency-
based interface, centered around consistency levels.
This enables developers—who naturally reason in terms
of consistency rather than protocol specifics—to ob-
tain simple and portable implementations. With Cor-
rectables, applications can transparently switch storage
stacks, as long as these stacks support compatible con-
sistency models.

Our API consists of three methods:

1. invokeWeak(operation),
2. invokeStrong(operation), and
3. invoke(operation[, levels]).

The first two allow developers to select either weak or
strong consistency for a given operation. The returned
Correctable never transitions from updating to updating
state and only closes with a final value (or error). These
two methods follow the traditional practice of providing
a single result which lies at one extreme of the consisten-
cy/performance trade-off.

The third method provides ICG, allowing developers
to operate on this trade-off at run-time, which makes
it especially relevant for applications in the above-
mentioned gray area. Instead of a single result (as is the
case with the two former methods), invoke provides in-
cremental updates on the operation result. Optionally,
invoke accepts as argument the set of consistency lev-
els which the result should—one after the other—satisfy.
If this argument is absent, invoke provides all available
levels. This argument allows some optimizations, e.g., if
an application only requires a subset of the available con-
sistency levels, this parameter informs a binding to avoid
using the extraneous levels; we omit further discussion
of this argument due to space constraints. The available
consistency levels depend on the underlying storage sys-
tem and binding, which we discuss in more detail in §5.

In the next section, we show how to program with
Correctables through several representative use-cases. In
code snippets we adopt a Python-inspired pseudocode
for readability sake. For brevity we leave aside error han-
dling, timeouts, or other features inherited from modern
Promises, such as aggregation or monadic-style chain-
ing [12, 31, 53].

1 from pylons import app_globals as g # cache access
2 from r2.lib.db import queries # backend access

4 def user_messages(user, update = False):

5 key = messages_key(user._id)

6 trees = g.permacache.get(key)

7 if not trees or update:

8 trees = user_messages_nocache(user)

9 g.permacache.set(key, trees) # cache coherence
10 return trees

11 def user_messages_nocache(user):

12 # Just like user messages , but avoiding the cache...

Listing 1: Different consistency guarantees in Reddit [13], as
an example of tight coupling between applications and storage.
Developers must manually handle the cache and the backend.

1 def user_messages(user, strong = False):

2 key = messages_key(user._id)

3 # coherence handled by invoke* functions in bindings
4 if strong: return invokeStrong(get(key))

5 else: return invokeWeak(get(key))

Listing 2: Reddit code rewritten using Correctables.

4. Correctables in Action

This section presents examples of how Correctables can
be useful on two main fronts. (1) Decoupling applica-
tions from their storage stacks by providing an abstrac-
tion based on consistency levels. (2) Improving applica-
tion performance by means of ICG, e.g., via speculation
or exploiting application-specific semantics.

4.1 Decoupling Applications from Storage

We first discuss a simple case of decoupling, where we il-
lustrate the use the first two functions in our API, namely
invokeWeak and invokeStrong. As discussed in §2,
many applications differentiate between weak and strong
consistency to balance correctness with performance. In
practice, applications often resort to ad-hoc techniques
such as cache-bypassing to achieve this, which compli-
cates code and leads to errors [16, 31]. Listing 1 shows
code from Reddit [13], a popular bulletin-board system
and a prime example of such code. Developers have to
explicitly handle cache access (lines L6 and L9), make
choices based on presence of items in the cache (L7),
manually bypass the cache (L8) under specific condi-
tions, and write duplicate code (L12).

Instead of explicit cache-bypassing, we can em-
ploy invokeWeak and invokeStrong to substantially
simplify the code by replacing ad-hoc abstractions
like user messages and user messages nocache, as
Listing 2 shows. Furthermore, we can replace other near-
identical functions for differentiated guarantees, elimi-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 173

1 invoke(read(...))

2 .speculate(speculationFunc[, abortFunc])

3 .setCallbacks(onFinal = (res) => deliver(res))

Listing 3: Generic speculation with Correctables. The square
brackets indicate that abortFunc is optional.

nating duplicate logic.1 Cache-coherence and bypassing
is completely handled by the storage-specific binding.
This reduces both programmer effort and application-
level complexity.

The third method in our library is invoke. Correcta-
bles are crucial for this method, since it captures ICG.
invoke allows applications to speculate on preliminary
values (hiding the latency of strong consistency), or ex-
ploit application-specific semantics, as we show next.

4.2 Speculating with Correctables

Many applications are amenable to speculating on pre-
liminary values to reap performance benefits. To under-
stand how to achieve this, we consider any non-trivial op-
eration in a distributed application which involves read-
ing data from storage. Using invoke to access the stor-
age, applications can perform speculation on the prelim-
inary value. If this preliminary value is confirmed by
the final value, then speculation was correct, reducing
overall latency [71]. Examples where speculation applies
include password checking or thumbnail generation (as
mentioned in [66]), as well as operations for airline seat
reservation [73], or web shopping [43].

Listing 3 depicts how this is performed in practice with
Correctables. Even though such speculation can be or-
chestrated directly by using the onUpdate and onFinal

callbacks of a Correctable object, we provide a conve-
nience method called speculate that captures the spec-
ulation pattern (L2). It takes a speculation function as
an argument, applying it to every new view delivered
by the underlying Correctable if this view differs from
the previous one. The speculate method returns a new
Correctable object which closes with the return value of
the user-provided speculation function. If the final view
matches a preliminary one (which is the common case),
the new Correctable can close immediately when the fi-
nal view becomes available, confirming the speculation.
Otherwise, it closes only after the speculation function is
(automatically) re-executed with correct input. In the lat-
ter case, an optional abort function is executed, undoing
potential side-effects of the preceding speculation. Next,
we discuss an ad serving system as an example applica-
tion that can benefit from such speculation.

1Similar pairs of ad-hoc functions exist in Reddit for accessing
other objects. Perhaps accidentally, these other functions contain com-
ments referring to user messages instead of their specific objects.
We interpret this as a strong indication of “copy-pasting” code, which
Correctables would help prevent.

1 def fetchAdsByUserId(uid):

2 invoke(getPersonalizedAdsRefs(uid))

3 .speculate(getAds) # fetch & post−process ads
4 .setCallbacks(onFinal = (ads) => deliver(ads))

Listing 4: Example of applying speculation in an advertising
system to hide latency of strong consistency.

Advertising System. Typically, ads are personalized to
user interests. These interests fluctuate frequently, and
so ads change accordingly [42]. Given their revenue-
based nature, advertising systems have conflicting re-
quirements, as they aim to reconcile consistency (fresh-
ness of ads) with performance (latency) [24, 26]. We thus
find that they correspond to our notion of gray area, and
are a suitable speculation use-case.

Listing 4 shows how we can use ICG while fetching
ads. First, we obtain a list of references to personalized
ads using the invoke method (L2). This method returns
both a preliminary view (with weak guarantees) and a fi-
nal (fresh) view. Using the references in the preliminary
view, we fetch the actual ads content and media, and do
any post-processing, such as localization or personaliza-
tion (L3). If the final view corresponds to the prelim-
inary, then speculation was correct, and we can deliver
(L4) the ads fast; otherwise, getAds re-executes on the
final view, and we deliver the result later. We use this
application as our first experimental case-study (§6.3.2).

The pattern of fetching objects based on their
references—which themselves need to be fetched first—
is widespread. It appears in many applications, such as
reading the latest news, the most recent transactions, the
latest updates in a social network, an inventory, the most
pressing items in a to-do list or calendar, and so on. In
all these cases, the application needs to chase a pointer
(reference) to the latest data, while weak consistency
can reveal stale values, which is undesirable. We avoid
stale data by reading the references with invoke, and
we mask the latency of the final value by speculatively
fetching objects based on the preliminary reference.

4.3 Exploiting Application Semantics
Applications can exploit their specific semantics to lever-
age the preliminary and the final values of invoke. For
instance, consider the web auction system mentioned by
Kraska et al. [43], where strong consistency is critical in
the last moments of a bid, but is not particularly helpful
in the days before the bid ends, when contention is very
low and anomalous behavior is unlikely. Another exam-
ple is selling items from a predefined stock of such items.
If a preliminary response suggests that the stock is still
big, it is safe to proceed with a purchase. Otherwise, if
the stock is almost empty, it would be better to wait for
the arrival of the final response. This is the case, for in-
stance, for a system selling tickets to an event, which we
describe next.

174 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 def purchaseTicket(eventID):

2 done = false

3 invoke(dequeue(eventID)).setCallbacks(

4 onUpdate = (weakResult) =>

5 if weakResult.ticketNr > THRESHOLD:

6 done = true # many tickets left , so we can buy
7 confirmPurchase()

8 onFinal = (strongResult) =>

9 if not done and strongResult is not null:

10 confirmPurchase() # we managed to get a ticket
11 else: display("Sold out. Sorry!"))

Listing 5: Dynamic selection of consistency guarantees in a
ticket selling system. If there are many tickets in the stock, we

can safely use weak consistency.

Selling Tickets for Events. For this application sys-
tem, we depart from the popular key-value data type.
First, as we want to avoid overselling, we need a stronger
abstraction to serialize access to the ticket stock. Sim-
ple read/write objects (without transactional support) are
fundamentally insufficient [37]. Second, we want to
demonstrate the applicability of ICG to other data types.
We thus model the ticket stock using a queue, which is a
simple object, yet powerful enough to avoid overselling.

Event organizers enqueue tickets and retailers dequeue
them. This data type allows us to serialize access to the
shared ticket stock [15, 43]. We assume, however, that
tickets bear no specific ordering (i.e., there is no seat-
ing). Clients are interested in purchasing some ticket, and
it is irrelevant which exact element of the queue is de-
queued. We can thus resort to weak consistency most of
the time, and use strong consistency sparingly. We con-
sider a weakly consistent result of an operation to be the
outcome of simulating that operation on the local state of
a single replica (see §5.2).

Listing 5 shows how we can selectively use strong
consistency in this case, based on the estimated stock
size. For each purchase, retailers use invoke with the
dequeue operation. This yields a quick preliminary re-
sponse, by peeking at the queue tail on the closest replica
of the queue. If the preliminary value indicates that there
are many tickets left (e.g., via a ticket sequence num-
ber, denoting the ticket’s position in the queue), which
is the common case, the purchase can succeed without
synchronous coordination on dequeue, which completes
in the background. This reduces the latency of most pur-
chase operations. As the queue drains, e.g. below a pre-
defined threshold of 20 tickets, retailers start waiting for
the final results, which gives atomic semantics on de-
queuing, but incurs higher latency. This system repre-
sents our second experimental case study (§6.3.2).

4.4 Exposing Data Incrementally
In some cases, it is beneficial to expose even incorrect
(stale) data to the user if this data arrives fast, and amend
the output as more fresh data becomes available. In-
deed, a quick approximate result is sometimes better than

1 invoke(getLatestNews()).setCallbacks(

2 onUpdate = (items) => refreshDisplay(items))

Listing 6: Progressive display of news items using
Correctables. The refreshDisplay function triggers with

every update on the news items.

an overdue reply [28, 66]. Many applications update
their output as better results become available. A no-
table example is flight search aggregators [9], or gener-
ally, applications which exhibit high responsiveness by
leaking to the user intermediary views on an ongoing op-
eration [47, 49], e.g., previews to a video or shipment
tracking. We can assist the development of this type of
applications, as we describe next.
Smartphone News Reader. Consider a smartphone
news reader application for a news service replicated
with a primary-backup scheme [66]. Additionally, re-
cently seen news items are stored in a local phone cache.
With ICG provided by Correctables, the application can
be oblivious to storage details. It can use a single logical
storage access to fetch the latest news items, as Listing 6
shows. The binding would translate this logical access
to three actual requests: one to the local cache, resolving
almost immediately, one to the closest backup replica,
providing a fresher view, and one to a more distant pri-
mary replica, taking the longest to return but providing
the most up-to-date news stories.

4.5 Discussion: Applicability of ICG
In a majority of use-cases, we observe that two views
suffice. Correctables, however, support arbitrarily many
views. Note that this does not add any complexity to the
interface and can be useful, as the news reader applica-
tion shows.

There are other examples of applications which can
benefit from multiple views. A notable use-case are
blockchain-based applications (e.g., Bitcoin [58]), where
Correctables can track transaction confirmations as they
accumulate and eventually the transaction becomes an ir-
revocable part of the blockchain, i.e., strongly-consistent
with high probability. This is a use-case we also imple-
mented, but omit for space constraints. In larger quorum
systems (e.g., BFT), Correctables can represent the ma-
jority vote as it settles. Search or recommenders, like-
wise, can benefit from exposing multiple intermediary
results in subsequent updates.2

Intuitively, multiple preliminary views are helpful for
applications requiring live updates. On the one hand,
several preliminary values would make the application
more interactive and offer users a finer sense of progress.
This is especially important when the final result has high
latency (Bitcoin transactions take tens of minutes). On
the other hand, as the replicated system delivers more

2We are grateful to our anonymous OSDI reviewers for this partic-
ularly constructive idea.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 175

preliminary views for an operation, less operations can
be sustained and overall throughput drops. Thus, ap-
plications which build on ICG with multiple incremen-
tal views observe a trade-off between interactivity and
throughput. This trade-off can be observed even when
the system delivers only two views (§6.2.1).

In order to be practical, the cost of generating and
exploiting the preliminary values of ICG must not out-
weight their benefits. The cost of generating ICG is
captured in the trade-off we highlighted above; the cost
of exploiting ICG is highly application-dependent. If
used for speculation, the utility of 2+ views depends on
how expensive it is to re-do the speculative work upon
misspeculation. This can range from negligible (simply
display preliminary views) to potentially very expensive
(prefetch bulky data). Additionally, the utility also de-
pends on how often misspeculation actually occurs. This
depends on the workload characteristics: workloads with
higher write ratios elicit higher rates of inconsistencies,
and thus more misspeculations (§6.2.1–Divergence).

There are also cases when using ICG is not an op-
tion. This is either due to the underlying storage pro-
viding a unique consistency model and lacking caches,
or due to application semantics, which can render ICG
unnecessary—we give examples of this in the first two
rows of Table 1. Correctables, however, are benefi-
cial beyond ICG. This abstraction can hide the com-
plexity of dealing with storage-specific protocols, e.g.,
quorum-size selection. The application code thus be-
comes portable across different storage systems.

5. Bindings

Our library handles all the instrumentation around Cor-
rectable objects. This includes creation, state transitions,
callbacks, and the API inherited from Promises [12, 31].
Bindings are storage-specific modules which the library
uses to communicate with the storage. These modules
encapsulate everything that is storage system specific,
and thus draw the separating line between consistency
models—which Correctables expose—and implementa-
tions of these models. In this section, we describe the
binding API, and show how bindings can facilitate effi-
cient implementation of ICG with server-side support.

5.1 Binding API
An instance of our library always uses one specific bind-
ing. A binding establishes: (1) the concrete configuration
of the underlying storage stack (e.g., Memcache on top
of Cassandra) together with (2) the consistency levels of-
fered by this stack, and (3) the implementation of any
storage specific protocol (e.g., for coherence, choosing
quorums). This allows the library to act as a client to the
storage stack.

When an application calls an API method (§3.2), the
library immediately returns a Correctable. In the back-
ground, we use the binding API to access the underlying
storage. The binding forwards responses from the stor-
age through an upcall to the library. The library then
updates (or closes) the associated Correctable, executing
the corresponding callback function.

The binding API exposes two methods to the li-
brary. First, consistencyLevels() advertises to
the library the supported consistency levels. It sim-
ply returns a list of supported consistency levels,
ordered from weakest to strongest. In most imple-
mentations, this will probably be a one-liner returning
a statically defined list. The second function is
submitOperation(op, consLevels, callback).
The library uses this function to execute operation op on
the underlying storage, with consLevels specifying the
requested consistency levels. The callback activates
whenever a new view of the result is available. The
binding has to implement the protocol for executing
op and invoke callback once for each requested
consistency level.

Listing 7 shows the implementation of a simple bind-
ing for a primary-backup storage, supporting two con-
sistency levels. A more sophisticated binding could ac-
cess the backup and primary in parallel, or could pro-
vide more than two consistency levels. We designed the
binding API to be as simple as possible; contributors or
developers wishing to support a particular store must im-
plement this API when adding new bindings. We cur-
rently provide bindings to Cassandra and ZooKeeper.

5.2 Efficiency and Server-side Support
On a first glance, ICG might seem to evoke large
bandwidth and computation overheads. Indeed, if the
invoke method comprises multiple independent single-
consistency requests, then storage servers will partly
redo their own work. Also, as the weakly and strongly
consistent values often coincide, multiple responses are
frequently redundant. Such overheads would reduce the
practicality of ICG.

1 def consistencyLevels():

2 return [WEAK, STRONG]

4 def submitOperation(operation, consLevels, callback):

5 if WEAK in consLevels:

6 backupResult = queryClosestBackup(operation)

7 callback(backupResult, WEAK)

8 if STRONG in consLevels:

9 primaryResult = queryPrimary(operation)

10 callback(primaryResult, STRONG)

Listing 7: Simple binding to a storage system with
primary-backup replication.

176 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

With server-side support, however, we can minimize
these overheads. For instance, we can send a single re-
quest to obtain all the incremental views on a replicated
object. An effective way to do this is to hook into the
coordination mechanism of consistency protocols. This
mechanism is the core of such protocols, and the pro-
vided consistency model and latency depend on the type
of coordination. For example, asynchronous (off the crit-
ical path) coordination ensures eventually consistent re-
sults with low-latency [28]. Coordination through an
agreement protocol, as in Paxos [46], yields linearizabil-
ity [38], but with a higher latency.

Our basic insight is that we can get a good guess of the
result already before coordinating, based on a replica’s
local state. In fact, this same state is being exposed
when asynchronous coordination is employed, and as
we alreay mentioned, this state is consistent on expec-
tation. The replica can leak a preliminary response—
with weak guarantees—to the client prior to coordination
(Figure 4). Moreover, we can reduce bandwidth over-
head by skipping the final response if it is the same as
the preliminary: a small confirmation message suffices,
to indicate that the preliminary response was correct. In-
deed, with such an optimization, ICG has minor band-
width overhead (§6.2.1).

An additional benefit from this approach compared to
sending two independent requests is that it prevents cer-
tain types of unexpected outcomes. For instance, strong
consistency might be more stale than weak consistency
if responses to two independent requests were reordered
by the WAN [66]. Using this approach, we modify two
popular systems—Cassandra and ZooKeeper—to pro-
vide efficient support for ICG. Other techniques (e.g.,
master leases [23]) or replication schemes (e.g., primary-
backup) can provide final views fast, skipping the prelim-
inary altogether.

Cassandra. Cassandra uses a quorum-gathering pro-
tocol for coordination [32]. In our modified version of
Cassandra—called Correctable Cassandra (CC)—the co-
ordinating node sends a preliminary view after obtain-
ing the first result from any replica. This view has low
latency, obtained either locally (if the coordinator is it-
self a replica) or from the closest replica. Our binding

Binding
Request

Replicated
Storage

Response
(final)

Response
(preliminary)

Weak consistency Strong consistency

Coordination

Figure 4: Simple server support for efficient ICG. The storage
system sends a preliminary response before coordinating. Note

that for a single request, the storage provides two responses.

to CC supports two consistency levels, weak (involving
one replica) and strong (involving two or more). To min-
imize bandwidth overhead of invoke, CC uses the con-
firmation messages optimization we mentioned earlier.
ZooKeeper. To demonstrate the versatility of Cor-
rectables, we consider a different data type, namely repli-
cated queues, which ZooKeeper can easily model [11].
Our binding supports operations enqueue and dequeue,
with weak and strong consistency semantics, accessi-
ble via invokeWeak and invokeStrong, respectively;
invoke supplies both consistency models incrementally.

The vanilla ZooKeeper implementation (ZK) has
strong consistency [39]. For efficient ICG, we implement
Correctable ZooKeeper (CZK) by adding a fast path to
ZK: a replica first simulates the operation on its local
state, returning the preliminary (weak) result. After co-
ordination (via the Zab protocol [40]), this replica applies
the operation and returns the strong response.
Causal Consistency and Caching. We also imple-
ment a binding to abstract over a causally consistent store
complemented by a client-side cache. The invoke func-
tion reveals two views: one from cache (very fast, possi-
bly stale), and another from the causally consistent store.
This binding ensures write-through cache coherence, al-
lows cache-bypassing (invokeStrong) or direct cache
access (invokeWeak), e.g., in case of disconnected op-
erations for mobile applications [62]. Given the space
constraints we focus on the two other bindings.

6. Evaluation
Our evaluation focuses on quantifying the benefits of
ICG. Before diving into it, it is important to note that any
potential benefit of ICG is capped by performance gaps
among consistency models. Briefly, if strong consistency
has the same performance as weaker models (or the dif-
ference is negligible) then applications can directly use
the stronger model. This is, however, rarely the case. In
practice, there can be sizable differences—up to orders
of magnitude—across models [17, 66].

We first describe our evaluation methodology, and
then show that such optimization potential indeed exists.
We do so by looking at the performance gaps between
weak and strong consistency in quorum-based (Cassan-
dra) and consensus-based (ZooKeeper) systems. We then
quantify the performance gain of using ICG in three case
studies: a Twissandra-based microblogging service [10],
an ad serving system, and a ticket selling application.

6.1 Methodology
We run all experiments on Amazon’s EC2 with m4.large
instances and a replication factor of 3, with replicas dis-
tributed in Frankfurt (FRK), Ireland (IRL), and N. Vir-
ginia (VRG). Unless stated otherwise, to obtain WAN
conditions, the client is in IRL and uses the replica in

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 177

FRK; note that colocating the client with its contact
server (i.e., both in IRL) would play to our advantage,
as it would reduce the latency of preliminary responses
and allow a bigger performance gap. We also experiment
with various other client locations in some experiments.

For Cassandra experiments, we compare the baseline
Cassandra v2.1.10 (labeled C), with our modified Cor-
rectable Cassandra (CC). We use superscript notation to
indicate the specific quorum size for an execution, e.g.,
C1 denotes a client reading from Cassandra with a read
quorum R = 1 (i.e., involving 1 out of 3 replicas). For
the ZooKeeper queue, we compare our modified Cor-
rectable ZooKeeper (CZK) against vanilla ZooKeeper
(ZK), v3.4.8. The cumulative implementation effort as-
sociated with CC and CZK, including three case studies,
is modest, at roughly 3k lines of Java code.

6.2 Potential for Exploiting ICG
To determine the potential of ICG, we examine their be-
havior in practice. Studies show that large load on a sys-
tem and high inter-replica latencies give rise to large per-
formance gaps among consistency models [17, 66]. To
the best of our knowledge, however, there are no stud-
ies which consider a combination of incremental consis-
tency models in a single operation. We first investigate
this behavior in Cassandra and then in ZooKeeper.

6.2.1 Potential for Exploiting ICG in Cassandra
Cassandra can offer us insights into the basic behavior of
ICG in a quorum system. As explained in §5, CC offers
two consistency models: weak, which yields the prelimi-
nary view (R = 1), and strong, giving the final view (R =
2 or R = 3, depending on the requested quorum size).
For write operations, we set W = 1. We use microbench-
marks and YCSB [25] to measure single-request latency
and performance under load, respectively. For each CC
experiment, we run three 60-second trials and elide from
the results the first and last 15 seconds. We report on the
average and 99th percentile latency, omitting error bars
if negligible.
Single-request Latency. We use a microbenchmark
consisting of read-only operations on objects of 100B.
We are interested in the performance gap between pre-
liminary and final views as provided by ICG, and we

 0

 50

 100

 150

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

m
s
)

CC preliminary
CC final

C
99th %ile latency

R=3 R=2 R=1

L
a
te

n
c
y
 g

a
p

Figure 5: Single-request latencies in Cassandra for different
quorum configurations. A bigger latency gap means a larger

time window available for speculation.

contrast these with their vanilla counterparts. We thus
compare CC2 (R ∈ {1,2}) and CC3 (R ∈ {1,3}) with C1

(R = 1), C2 (R = 2), and C3 (R = 3). For CC, R has two
values: the read quorum size for the preliminary (weak)
and for the final (strong) replies, respectively.

Figure 5 shows the results for all these configurations,
grouped by their read quorum size. The average latency
of preliminary views—whether it is for CC2 or CC3—
follows closely the latency of C1, which coincides with
the 20ms RTT between the client and the coordinator.
Preliminary views reflect the local state on the replica in
FRK, having the same consistency as C1. Final views of
CC2 and CC3 follow the trend of the requested quorum
size and reflect the behavior of C2 and C3 respectively.

The performance gap between the preliminary and fi-
nal view for CC2 is 20ms. The coordinator (FRK) is
gathering a quorum of two: itself and the closest replica
(IRL). The gap indeed corresponds to the RTT between
these two regions. For CC3, the gap is much larger: up to
140ms for the 99th percentile, due to the larger distance
to reach the third replica (VRG). By speculating on the
preliminary views, applications can hide up to 20ms (or
140ms) of the latency for stronger consistency. In prac-
tice, such differences already impact revenue, as users
are highly-sensitive to latency fluctuations [28, 35].
Performance Under Load. We also study the perfor-
mance gap using YCSB workloads A (50:50 read/write
ratio), B (95:5 read/write ratio), and C (read-only) [25].
To stress the systems and obtain WAN conditions, we de-
ploy 3 clients, one per region, with each client connect-
ing to a remote replica. For brevity, we only report on
the results for the client in IRL and R = {1,2}. Figure 6
presents the average latency as a function of throughput.
We plot the evolution of both the preliminary and final
views individually.

We observe that CC trades in some throughput due
to the load generated on the coordinator, which handles
ICG. We observe this behavior in all three workloads.
This is to be expected, considering the modifications nec-
essary to implement preliminary replies (§5.2). Briefly,
we add another step to every read operation that uses
quorums larger than one. This step, called preliminary
flushing, occurs at any coordinator replica serving read
operations as soon as that replica finishes reading the re-
quested data from its local storage—and prior to gath-
ering a quorum from other replicas. This step generates
additional load on the coordinator replica, explaining the
throughput drop of CC2 compared to baselines. Related
work on replicated state machines (RSM) suggests an op-
timization [71] which resembles our flushing technique.
Perhaps unsurprisingly, the optimized RSM exhibits a
similar throughput drop [71, §6.2] as we notice in these
experiments.

The latency gap between preliminary and final views

178 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

L
a

te
n

c
y
 (

m
s
)

Workload A (50:50 read/write)

C
1
 (R=1) C

2
 (R=2) CC

2
 preliminary (R=1) CC

2
 final (R=2)

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

Throughput (ops/sec)

Workload B (95:5 read/write)

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

Workload C (read-only)

Figure 6: Performance of Correctable Cassandra (CC) compared to baseline Cassandra (C). Note that the measurements for CC2

have two results, one for the preliminary view and another for final. These two have the same throughput but different latencies.

is the same as the one we observe in the microbench-
marks. To conclude, our results confirm that the perfor-
mance gaps while using ICG are noticeable, and hence
there is room for hiding latency.
Divergence. To obtain more insight about the behavior
of ICG, we use CC and the YCSB benchmark to mea-
sure how often preliminary values diverge from final re-
sults. We achieve this by using invoke and comparing
the preliminary view to the final one. We run this ex-
periment with a small dataset of 1K objects. We aim at
obtaining the conditions of a highly-loaded system where
clients are mostly interested in a small (popular) part of
the dataset.

Figure 7 shows our result for a mix of representative
YCSB workloads (A and B) and access patterns (Zipfian
and Latest) with default settings. Notably, workload A
(50:50 read/write) under Latest distribution (read activ-
ity skewed towards recently updated items) exhibits high
divergence, up to 25%. Under such conditions, using
R = 1 would yield many stale results. Indeed, some ap-
plications with high write ratios, e.g., notification or ses-
sion stores [25, 34], tend to use R = 2, even though this
forces all read operations to pay the latency price [19].

In fact, even if less than 1% of accessed objects
are inconsistent, these are typically the most popular
(“linchpin” [16, 60]) objects, being both read- and write-
intensive. Such anomalies have a disproportionate effect
at application-level, since they reflect in many more than
1% application-level operations. Applications with high
update ratios as modeled by workload A, e.g., social net-
works [24], can thus benefit from exploiting ICG to avoid
anomalies.

 0
 5

 10
 15
 20
 25
 30

30 60 120 180 240 300

%
D

iv
e
rg

e
n
c
e

#Total client threads

Workload A-Latest
Workload A-Zipfian

Workload B-Latest
Workload B-Zipfian

Figure 7: Divergence of preliminary from final (correct) views
in Correctable Cassandra with various YCSB configurations.

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

30 60 120

180

240

300

E
ff
ic

ie
n
c
y
 (

k
B

/o
p
)

Workload A

C
1

C
1

CC
2

CC
2

*CC
2

*CC
2

#Total client threads

Latest distribution:

Zipfian distribution:

+27%

+77% +15%

+90%

30 60 120

180

240

300

Workload B

#Total client threads

Latest distribution:

Zipfian distribution:

+27%

+77% +15%

+90%

Figure 8: Efficiency (bandwidth overhead) of the ICG
implementation in Correctable Cassandra (CC).

Bandwidth Overhead. In addition to the throughput
drop mentioned above, client-replica bandwidth is the
next relevant metric which ICG can impact. Yet, op-
timizations can cut the cost of this feature (§5.2). We
implement such an optimization in CC, whereby a final
view contains only a small confirmation—instead of the
full response—if it coincides with the preliminary view.
We note that in all experiments thus far we did not rely
on this optimization, which makes our comparisons with
Cassandra conservative.

To obtain a worst-case characterization of the costs of
ICG, we consider the scenario where divergence can be
maximal, as this will lessen the amount of bandwidth we
can save with our optimization. Hence, we consider the
exact conditions we use in the divergence benchmark,
where we discovered that divergence can rise up to 25%.
In this experiment, we measure the average data trans-
ferred (KB) per operation. We contrast three scenarios.
First, as baseline, we use C1, where clients request a sin-
gle consistency version using weak reads. The other two
systems are CC2 (without optimization) and ∗CC2 (opti-
mized to reduce bandwidth overhead).

Figure 8 shows our results. As expected, if divergence
is very high—notably in workload A—then many pre-
liminary results are incorrect. This means that final views
cannot be replaced by confirmations, increasing the data
cost by up to 27%. Without any optimization, this would
drive the cost up by 77%. Workload B has a smaller write
ratio (5%), so a lower divergence and more optimization
potential: we can reduce the overhead from 90% down

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 179

 0

 50

 100

 150

 200
A

v
e
ra

g
e
 L

a
te

n
c
y

(m
s
)

CZK preliminary
CZK final

ZK
99th %ile latency

Leader in IRL Leader in VRG

Follower
 (FRK)

Leader
 (IRL)

Follower
 (IRL)

Leader
(VRG)

 Client
connection:

Figure 9: Latency gaps between preliminary and final views
on the result of dequeue operations in Correctable ZooKeeper

(CZK) compared to ZooKeeper (ZK). Client is in IRL.

to 15% (since most final views are confirmations).
Our experiments prove that ICG have a modest cost in

terms of data usage. This cost can be further reduced
through additional techniques (§5.2). We remark that
our choice of baseline, C1, is conservative, because CC2

offers better guarantees than C1. A different baseline
would be a system where clients send two requests—one
for R = 1 and one for R = 2—and receive two replies.
While such a baseline offers the same properties as CC2,
it would involve bigger data consumption, putting our
system at an advantage.

6.2.2 Potential for Exploiting ICG in ZooKeeper
Latency Gaps. We also measure performance gaps in
ZooKeeper queues for various locations of the leader and
the replica which the client (in IRL) connects to. We
show the results for four representative configurations for
adding elements to a queue (we discuss dequeuing in the
context of a ticket selling system in §6.3.2). The ele-
ments are small, containing an identifier of up to 20B
(e.g., ticket number). Figure 9 shows the latency gaps
when we use ICG in Correctable ZooKeeper (CZK) com-
pared to baseline ZooKeeper (ZK).

In all cases, the latency of the preliminary view (con-
taining the name of the assigned znode) corresponds to
the RTT between the client and the contacted replica.
This latency ranges from 2ms (when client and replica
are both in IRL), through 20ms (the RTT from IRL to
FRK), up to 83ms (the RTT between IRL and VRG). The
most appealing part of this result is perhaps the substan-
tial gap which appears when the client and the closest
follower are in IRL and the leader is distant (in VRG), in
the third group of results in Figure 9.
Bandwidth Overhead. Storing big chunks of data is
not ZooKeeper’s main goal. The client-server bandwidth
is usually not dominated by the payload, reducing the
benefits of the confirmation optimization. For enqueu-
ing, the bandwidth cost thus increases by roughly 50%,
from 270 to 400 bytes/operation. As expected, this corre-
sponds to one additional (preliminary) response message
in addition to the original request and (final) response.

While queues are a common ZooKeeper use-case, a

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 2 4 6 8 10 12

E
ff

ic
ie

n
c
y
 (

K
B

/o
p

)

 ZooKeeper Correctable ZooKeeper

Clients

500 tickets 1000 tickets

-71%

-44%

-81%

-60%

1 2 4 6 8 10 12
Clients

500 tickets 1000 tickets

-71%

-44%

-81%

-60%

Figure 10: Efficiency (bandwidth overhead) for dequeuing
operation in Correctable ZooKeeper (CZK) and ZooKeeper

(ZK). Overhead in CZK is independent of queue size.

problem appears in standard dequeue implementations
due to message size inflation [3]. Specifically, clients
first read the whole queue and then try to remove the tail
element. To evade this problem in CZK, clients only read
the constant-sized tail relevant for dequeuing. Figure 10
compares the bandwidth cost per dequeue operation in
CZK and ZK for different queue sizes as we increase the
number of contending threads. While the cost still in-
creases with contention in both cases, in CZK we make
it independent of queue size, which is not the case for
ZK. As future work, we plan to make the dequeue cost
also independent of contention using tombstones [63].

6.3 Case Studies for Exploiting ICG
Given the optimization potential explored so far, we now
investigate how to exploit it in the context of three appli-
cations: the Twissandra microblogging service [10], an
ad serving system, and a ticket selling system. The first
two build on CC and use speculation. The last applica-
tion uses CZK queues.

6.3.1 Speculation Case Studies
For Twissandra, we are interested in get timeline op-
eration, since this is a central operation and is amenable
to optimization through speculation. This operation pro-
ceeds in two-steps: (1) fetch the timeline (tweet IDs),
and then (2) fetch each tweet by its ID. We re-implement
this function to use invoke on step (1) and leverage the
preliminary timeline view to speculatively execute step
(2) by prefetching the tweets. If the final timeline corre-
sponds to the preliminary, then the prefetch was success-
ful and we can reduce the total latency of the operation.
In case the final timeline view is different, we fetch the
tweets again based on their IDs from this final view.

Our second speculation case study is the ad serving
system we describe in §4.2. The goal is to reduce the
total latency of fetchAdsByUserId operation without
sacrificing consistency, so we exploit ICG by speculating
on preliminary values (Listing 4).

For both systems, we adapt their respective operations
to use invoke (R = {1,2}) and plug them in the YCSB
framework. We compare these operations using a base-
line that uses only the strongly consistent result (R = 2),

180 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

L
a
te

n
c
y
 (

m
s
)

Workload A
A

d
s
 S

y
s
te

m
T

w
is

s
a

n
d

ra
C

2
 (R=2) CC

2
 (R=1,2)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300
Throughput (ops/sec)

Workload B
A

d
s
 S

y
s
te

m
T

w
is

s
a

n
d

ra

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

Workload C
A

d
s
 S

y
s
te

m
T

w
is

s
a

n
d

ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

L
a
te

n
c
y
 (

m
s
)

A
d

s
 S

y
s
te

m
T

w
is

s
a

n
d

ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300
Throughput (ops/sec)

A
d

s
 S

y
s
te

m
T

w
is

s
a

n
d

ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

A
d

s
 S

y
s
te

m
T

w
is

s
a

n
d

ra

Figure 11: Using speculation via ICG to improve latency in the advertising system and in Twissandra (get timeline operation).
Correctable Cassandra (CC) improves latency by up to 40% in exchange for a throughput drop of 6%.

and does not leverage speculation. For Twissandra we
use a corpus of 65k tweets [4] spread over 22k user time-
lines; the ad serving system uses a dataset of 100k user-
profiles and 230k ads, where each profile references be-
tween 1 and 40 random ads.

The results are in Figure 11. In contrast to our other
experiments, we deploy Twissandra replicas in Virginia,
N. California, and Oregon EC2 regions. The goal is to
see how performance gains vary based on deployment
scenario. The ads system uses the same configuration as
before. The client is in IRL for both experiments.

We first explain the results for the ads system. As
can be seen, these are consistent with our earlier find-
ings from Cassandra experiments (Figure 6). We trade
throughput for better latency. Prior to saturation, we can
serve ads with an average latency of 60ms. In the same
conditions, the baseline achieves 100ms average latency
(improvement by 40%). In turn, the throughput drop is
most noticeable in workload A, by 18ops/sec (reduced
by 6%). The smaller throughput drop compared to the
raw results of Figure 6 is explained by the fact that each
fetchAdsByUserId entails two storage accesses. Only
the first access, however, uses ICG (to speculate). The
second storage access is hidden inside getAds (Listing 4,
L3); this is a read with R = 2, incurring no extra cost.

For Twissandra, we observe a lower throughput and
higher latency, as the client is farther from the coordina-
tor and replicas are also more distant from each other.
But otherwise we draw similar conclusions. Notably,
across both of these case-studies, divergence was con-
sistently under 1%, so the applications encountered very
few misspeculations.

6.3.2 Selling Tickets to Events
A second notable use-case of ICG is exploiting applica-
tion semantics, as we discuss in the ticket selling system
from §4.3 (see Listing 5). Here we exploit the fact that

 0

 100

 200

 300

 400 420 440 460 480 500L
a
te

n
c
y
 t
o
 b

u
y
 t
ic

k
e
t

 (
m

s
e
c
)

Ticket number

Correctable ZooKeeper ZooKeeper

Last 20
 tickets

Figure 12: Selling tickets with ZK and CZK. The last 20
tickets incur high latency due to strong consistency.

the position of a ticket in the queue is irrelevant. Thus, in
the common case, we can rely on the preliminary value.
Strong consistency (atomicity), however, becomes criti-
cal when ticket retailers are contending over the last few
remaining tickets. Using ICG, we can switch dynami-
cally between using the preliminary or the final results
when the stock becomes low, to avoid overselling.

We consider 4 retailers concurrently serving (dequeu-
ing) tickets from a fixed-size stock of 500 tickets. Retail-
ers are colocated with a CZK follower in FRK, the leader
being in IRL. We wait for the final (atomic, equivalent to
ZK) response for the last 20 tickets, otherwise we use
the preliminary one. This is a conservative bound; in our
experiments, only the last two tickets were “revoked” by
the final view on average, with a maximum of six.

Figure 12 shows individual ticket purchase latencies,
averaged over five runs, compared to latencies with
vanilla CZK. As long as there are more than 20 tickets
left, we reduce the purchase latency substantially. The
high variability of final view latencies is caused by con-
tention between the retailers, which does not affect pre-
liminary views. We experiment also with larger ticket
stocks (1000), but the queue length has no practical ef-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 181

fect on latencies. To support more contention (more re-
tailers) in practice, such a ticketing service can scale-out.
For instance, we can shard the ticket stock and instantiate
multiple replicated CZK services, each of them serving
a partition of the overall stock, ensuring scalability [22].

7. Conclusions

We have presented Correctables, an abstraction for pro-
gramming with replicated objects. The contribution of
Correctables is twofold. First, they decouple an applica-
tion from its underlying storage stack by drawing a clear
boundary between consistency guarantees and the vari-
ous methods of achieving them. This reduces developer
effort and allows for simpler and more portable code.

Second, Correctables provide incremental consistency
guarantees (ICG), which allow to compose multiple con-
sistency levels within a single operation. With this type
of guarantees we aim to fill a gap in the consistency/per-
formance trade-off. Namely, applications can make last-
minute decisions about what consistency level to use
in an operation while this operation is executing. This
opens the door to new optimizations based on specula-
tion or on concrete, application-specific semantics.

We evaluated the performance and overhead of ICG,
as well as the impact of this novel type of guarantees on
three practical systems: (1) a microblogging service and
(2) an ad serving system, both backed by Cassandra, and
(3) a ticket selling system based on ZooKeeper queues.
We modified both Cassandra and ZooKeeper to support
ICG with little overhead. We showed how ICG provided
by Correctables bring substantial latency decrease for the
price of small bandwidth overhead and throughput drop.

We believe that Correctables provide a new way to
structure the interaction between applications and their
storage by exploiting incrementality, and hence a new
way to build distributed applications.

Acknowledgements

We thank our shepherd, Timothy Roscoe, and the anony-
mous OSDI reviewers for their thoughtful comments
which greatly improved the quality of our paper. We
are also grateful to our colleagues from the Distributed
Programming Laboratory (LPD) for putting up with our
recurring requests for feedback, and for the insightful
discussions we had along the way with Martin Odersky
(who also suggested us the name Correctables), Edouard
Bugnion, Willy Zwaenepoel, John Wilkes, Aleksan-
dar Dragojević, Julia Proskurnia, Vlad Ureche, and Jad
Hamza. A special thanks goes to Kenji Relut for his help
with ZooKeeper. This work has been supported in part by
the European ERC Grant 339539 - AOC and the Swiss
FNS grant 20021 147067.

References
[1] Amazon SimpleDB.

https://aws.amazon.com/simpledb/.

[2] C++ Futures at Instagram.
http://instagram-engineering.tumblr.com/

post/121930298932/c-futures-at-instagram.

[3] Distributed queue. netflix/curator. https://github.
com/Netflix/curator/wiki/Distributed-Queue.

[4] Followthehashtag / 170,000 Apple tweets.
http://followthehashtag.com/datasets/

170000-apple-tweets-free-twitter-dataset/.

[5] Google appengine.
https://appengine.google.com/.

[6] google/guava wiki: ListenableFutureExplained.
https://github.com/google/guava/wiki/

ListenableFutureExplained.

[7] ProgressivePromise (Netty 4.0 API).
http://netty.io/4.0/api/io/netty/util/

concurrent/ProgressivePromise.html.

[8] Riak KV, distributed NoSQL database.
http://basho.com/products/riak-kv/.

[9] Skyscanner. http://www.skyscanner.ch.

[10] Twissandra.
https://github.com/twissandra/twissandra/.

[11] ZooKeeper Recipes and Solutions.
http://tiny.cc/zkqueues.

[12] Futures for C++11 at Facebook, 2015. https:
//code.facebook.com/posts/1661982097368498.

[13] reddit/r2/r2/lib/comment_tree.py:308,
Accessed March, 2016. Source:
https://github.com/reddit/reddit.

[14] D. J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story.
Computer, (2), 2012.

[15] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. In SOSP, 2007.

[16] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and
K. Veeraraghavan. Challenges to adopting stronger
consistency at scale. In HotOS XV, 2015.

[17] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. VLDB, 7(3), 2013.

[18] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Feral Concurrency Control:
An Empirical Investigation of Modern Application
Integrity. In SIGMOD, 2015.

182 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/simpledb/
http://instagram-engineering.tumblr.com/post/121930298932/c-futures-at-instagram
http://instagram-engineering.tumblr.com/post/121930298932/c-futures-at-instagram
https://github.com/Netflix/curator/wiki/Distributed-Queue
https://github.com/Netflix/curator/wiki/Distributed-Queue
http://followthehashtag.com/datasets/170000-apple-tweets-free-twitter-dataset/
http://followthehashtag.com/datasets/170000-apple-tweets-free-twitter-dataset/
https://appengine.google.com/
https://github.com/google/guava/wiki/ListenableFutureExplained
https://github.com/google/guava/wiki/ListenableFutureExplained
http://netty.io/4.0/api/io/netty/util/concurrent/ProgressivePromise.html
http://netty.io/4.0/api/io/netty/util/concurrent/ProgressivePromise.html
http://basho.com/products/riak-kv/
http://www.skyscanner.ch
https://github.com/twissandra/twissandra/
http://tiny.cc/zkqueues
https://code.facebook.com/posts/1661982097368498
https://code.facebook.com/posts/1661982097368498
reddit/r2/r2/lib/comment_tree.py:308
https://github.com/reddit/reddit

[19] P. Bailis, S. Venkataraman, M. J. Franklin, J. M.
Hellerstein, and I. Stoica. Probabilistically bounded
staleness for practical partial quorums. VLDB, 5(8),
2012.

[20] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR, 2011.

[21] E. Brewer. Cap twelve years later: How the ”rules” have
changed. Computer, 45(2), 2012.

[22] M. Burrows. The Chubby lock service for
loosely-coupled distributed systems. In OSDI, 2006.

[23] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: An engineering perspective. In PODC, 2007.

[24] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data
serving platform. VLDB, 1(2), 2008.

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In SoCC, 2010.

[26] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3), 2013.

[27] J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2), 2013.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo. In SOSP, 2007.

[29] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Castro.
No Compromises: Distributed Transactions with
Consistency, Availability, and Performance. In SOSP,
2015.

[30] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency with
physical clocks. In SoCC, 2014.

[31] M. Eriksen. Your server as a function. In PLOS, 2013.

[32] D. K. Gifford. Weighted voting for replicated data. In
SOSP, 1979.

[33] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2), 2002.

[34] C. Hale and R. Kennedy. Using Riak at Yammer, March
2011. http://dl.dropbox.com/u/2744222/
2011-03-22_Riak-At-Yammer.pdf.

[35] J. Hamilton. The cost of latency.
http://perspectives.mvdirona.com/2009/10/

the-cost-of-latency/, 2009.

[36] P. Helland and D. Campbell. Building on quicksand. In
CIDR, 2009.

[37] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 1991.

[38] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3), 1990.

[39] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[40] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In DSN, 2011.

[41] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about Eve: Execute-Verify
Replication for Multi-Core Servers. In OSDI, 2012.

[42] Y. Koren. Collaborative filtering with temporal
dynamics. CACM, 53(4), 2010.

[43] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann.
Consistency Rationing in the Cloud: Pay only when it
matters. VLDB, 2(1), 2009.

[44] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data Center Consistency. In
EuroSys, 2013.

[45] A. Lakshman and P. Malik. Cassandra - A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev.,
44(2), 2010.

[46] L. Lamport. The part-time parliament. ACM TOCS,
16(2), 1998.

[47] J. R. Lange, P. A. Dinda, and S. Rossoff. Experiences
with Client-based Speculative Remote Display. In
USENIX ATC, 2008.

[48] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and
J. Ousterhout. Implementing Linearizability at Large
Scale and Low Latency. In SOSP, 2015.

[49] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,
S. Grizan, A. Wolman, and J. Flinn. Outatime: Using
speculation to enable low-latency continuous interaction
for mobile cloud gaming. In MobiSys, 2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 183

http://dl. dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://dl. dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/

[50] C. Li, J. Leitao, A. Clement, N. Preguiça, R. Rodrigues,
and V. Vafeiadis. Automating the choice of consistency
levels in replicated systems. In USENIX ATC, 2014.

[51] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as
possible, consistent when necessary. In OSDI, 2012.

[52] D. Li, J. Mickens, S. Nath, and L. Ravindranath.
Domino: Understanding Wide-Area, Asynchronous
Event Causality in Web Applications. In SoCC, 2015.

[53] B. Liskov and L. Shrira. Promises: Linguistic support
for efficient asynchronous procedure calls in distributed
systems. In PLDI, 1988.

[54] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In NSDI, 2013.

[55] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential
Consistency: Measuring and Understanding Consistency
at Facebook. In SOSP, 2015.

[56] E. Meijer. Your mouse is a database. CACM, 55(5),
2012.

[57] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster Web Browsing Using Speculative Execution. In
NSDI, 2010.

[58] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system.

[59] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative
Execution in a Distributed File System. In SOSP, 2005.

[60] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling Memcache at Facebook. In NSDI,
2013.

[61] G. Pang, T. Kraska, M. J. Franklin, and A. Fekete.
PLANET: Making Progress with Commit Processing in
Unpredictable Environments. In SIGMOD, 2014.

[62] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu. Simba: Tunable
End-to-end Data Consistency for Mobile Apps. In
EuroSys, 2015.

[63] Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1), 2005.

[64] P. Schulle. Manhattan, distributed database for Twitter
scale. http://tiny.cc/twitmanhattan, 2014.

[65] M. Schwarzkopf. Operating system support for
warehouse-scale computing. PhD thesis, University of
Cambridge Computer Laboratory, 2015.

[66] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In SOSP,
2013.

[67] D. B. Terry, M. M. Theimer, K. Petersen, a. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated
storage system. SIGOPS Oper. Syst. Rev., 29(5), 1995.

[68] R. Van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In OSDI,
2004.

[69] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data
Consistency Properties and the Trade-offs in
Commercial Cloud Storage: the Consumers’ Perspective.
In CIDR, 2011.

[70] B. Wester, P. M. Chen, and J. Flinn. Operating System
Support for Application-Specific Speculation. In
EuroSys, 2011.

[71] B. Wester, J. A. Cowling, E. B. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in replicated
state machines through client speculation. In NSDI,
2009.

[72] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining ACID and
BASE in a distributed database. In OSDI, 2014.

[73] H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services. In
OSDI, 2000.

[74] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building Consistent Transactions
with Inconsistent Replication. In SOSP, 2015.

184 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://tiny.cc/twitmanhattan

FaSST: Fast, Scalable and Simple Distributed Transactions with
Two-sided (RDMA) Datagram RPCs

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

Abstract
FaSST is an RDMA-based system that provides dis-
tributed in-memory transactions with serializability and
durability. Existing RDMA-based transaction processing
systems use one-sided RDMA primitives for their ability
to bypass the remote CPU. This design choice brings sev-
eral drawbacks. First, the limited flexibility of one-sided
RDMA reduces performance and increases software com-
plexity when designing distributed data stores. Second,
deep-rooted technical limitations of RDMA hardware
limit scalability in large clusters. FaSST eschews one-
sided RDMA for fast RPCs using two-sided unreliable
datagrams, which we show drop packets extremely rarely
on modern RDMA networks. This approach provides
better performance, scalability, and simplicity, without re-
quiring expensive reliability mechanisms in software. In
comparison with published numbers, FaSST outperforms
FaRM on the TATP benchmark by almost 2x while using
close to half the hardware resources, and it outperforms
DrTM+R on the SmallBank benchmark by around 1.7x
without making data locality assumptions.

1 Introduction
“Remote procedure calls (RPC) appear to be a useful paradigm.”

— Birrel & Nelson, 1984

Serializable distributed transactions provide a power-
ful programming abstraction for designing distributed
systems such as object stores and on-line transaction pro-
cessing (OLTP) systems. Although earlier work in this
space sacrificed strong transactional semantics for perfor-
mance [9], recent systems have shown that transactions
can be fast in the datacenter [12, 28, 7, 5].1 The key en-
ablers are high-speed networks and lightweight network
stacks (i.e., kernel bypass). In addition, these systems
exploit Remote Direct Memory Access (RDMA) for its
low latency and CPU efficiency. A common thread in
these systems is that they make extensive use of one-sided
RDMA operations that bypass the remote CPU. The in-
tent behind this decision is to harness one-sided RDMA’s
ability to save remote CPU cycles.

1We discuss only distributed transactions in this paper, so we use the
more general but shorter term transactions.

In this paper, we explore whether one-sided RDMA is
not the best choice for designing transaction processing
systems. First, there is a gap between the paradigm of
one-sided RDMA, and capabilities needed for efficient
transactional access to remote data stores. One-sided
RDMA provides only remote reads, writes, and atomic op-
erations, whereas accessing data stores typically involves
traversing data structures such as hash tables and B-Trees.
In general, these structures consist of an index for fast
lookup, and the actual data, requiring two or more RDMA
reads to access data. This leads to lower throughput and
higher latency, and reduces the net CPU savings from
remote CPU bypass [15]. The key technique to overcome
this gap is to flatten the data structure, by either ignor-
ing the index [5], merging the data with the index [12],
or caching the index [12, 28, 7] at all servers. Each of
these variants has an associated cost in generality and sys-
tem performance. Second, the connection-oriented nature
of current one-sided RDMA implementations typically
requires CPU cores to share local NIC queue pairs for
scalability [11], reducing local per-core RDMA through-
put by several factors, and the net benefit of remote CPU
bypass.

We show that there is a better primitive for transactions:
remote procedure calls (RPCs) over two-sided unreliable
datagram messages. RPCs involve the remote CPU in
message processing and are more flexible than one-sided
RDMA, allowing data access in a single round trip [15].
However, previous RPC implementations over RDMA
either performed poorly (e.g., up to 4x worse than one-
sided RDMA in FaRM [12]), or were specialized (e.g.,
HERD’s RPCs [15] deliver high performance for all-to-
one communication where one server handles RPCs from
many clients). A key contribution of this work is FaSST
RPCs: an all-to-all RPC system that is fast, scalable, and
CPU-efficient. This is made possible by using RDMA’s
datagram transport that provides scalability, and allows
“Doorbell batching” which saves CPU cycles by reduc-
ing CPU-initiated PCIe bus transactions. We show that
FaSST RPCs provide (1) up to 8x higher throughput, and
13.9x higher CPU efficiency than FaRM’s RPCs (Sec-
tion 4.5), and (2) 1.7–2.15x higher CPU efficiency, or
higher throughput, than one-sided READs, depending on

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 185

whether or not the READs scale to clusters with more
than a few tens of nodes (Section 3.3).

Using an unreliable transport layer requires handling
packet loss. In RDMA networks such as InfiniBand, how-
ever, packet loss is extremely rare because the underlying
link layer provides reliability. We did not observe any
lost packets in our experiments that transmitted over 50
PB of network data on a real-world InfiniBand cluster
with up to 69 nodes. Nevertheless, packet loss can occur
during hardware failures, and corner cases of the link-
layer’s reliability protocol. We detect these losses using
coarse-grained timeouts triggered at the RPC requester,
and describe how they can be handled similarly to con-
ventional machine failures.

FaSST is a new transaction processing system built
on FaSST RPCs. It uses optimistic concurrency con-
trol, two-phase commit, and primary-backup replica-
tion. Our current implementation supports transactions
on an unordered key-value store based on MICA [18],
and maps 8-byte keys to opaque objects. We evalu-
ate FaSST using three workloads: a transactional ob-
ject store, a read-mostly OLTP benchmark called TATP,
and a write-intensive OLTP benchmark called Small-
Bank. FaSST compares favorably against published per-
machine throughput numbers. On TATP, FaSST outper-
forms FaRM [12] by 1.87x when using close to half
the hardware (NIC and CPU) resources. On SmallBank,
FaSST outperforms DrTM+R [7] by 1.68x with similar
hardware without making data locality assumptions. The
source code for FaSST and the experiments in this paper is
available at https://github.com/efficient/fasst.

2 Background
2.1 Fast distributed transactions
This section outlines the environment that we target with
FaSST. FaSST aims to provide distributed transactions
inside a single datacenter where a single instance of the
system can scale to a few hundred nodes. Each node in the
system is responsible for a partition of the data based on
a primary key, and nodes operate in the symmetric model,
whereby each node acts both as a client and a server.
For workloads with good data locality (e.g., transactions
that only access data in one partition), the symmetric
model can achieve higher performance by co-locating
transactions with the data they access [11, 12].

FaSST targets high-speed, low-latency key-value trans-
action processing with throughputs of several million
transactions/sec and average latencies around one hun-
dred microseconds on common OLTP benchmarks with
short transactions with up to a few tens of keys. Achieving
this performance requires in-memory transaction process-
ing, and fast userspace network I/O with polling (i.e.,
the overhead of a kernel network stack or interrupts is

unacceptable). We assume commercially available net-
work equipment: 10-100 Gbps of per-port bandwidth and
≈ 2 µs end-to-end latency.

Making data durable across machine failures requires
logging transactions to persistent storage, and quick re-
covery requires maintaining multiple replicas of the data
store. Keeping persistent storage such as disk or SSDs
on the critical path of transactions limits performance.
Similar to recent work, FaSST assumes that the transac-
tion processing nodes are equipped with battery-backed
DRAM [12], though future NVRAM technologies, if fast
enough, would also work.

Finally, FaSST uses primary-backup replication to
achieve fault tolerance. We assume that failures will
be handled using a separate fault-tolerant configuration
manager that is off of the critical path (the Vertical Paxos
model [17]), similar to recent work on RDMA-based
distributed transactions [12, 7]. We do not currently im-
plement such a configuration manager.

2.2 RDMA
RDMA is a networking concept of which several im-
plementations exist. The Virtual Interface Architecture
(VIA) is a popular model for user-level, zero-copy net-
working [13], and forms the basis of current commod-
ity RDMA implementations such as InfiniBand, RoCE
(RDMA over Converged Ethernet), and iWARP (internet
Wide Area RDMA Protocol). VIA NICs provide user
processes with virtual interfaces to the network. VIA is
fundamentally connection-oriented: a connection must
be established between a pair of virtual interfaces before
they are allowed to communicate. This design decision
was made by VIA architects to simplify VIA implemen-
tations and reduce latency [13]. The discussion in this
paper, and some of our contributions are specific to VIA-
based RDMA implementations; we discuss other, non-
commodity RDMA implementations in Section 7.1.

In VIA-based RDMA implementations, virtual inter-
faces are called queue pairs (QPs), each consisting of a
send queue and a receive queue. Processes access QPs by
posting verbs to these queues. Two-sided verbs—SEND
and RECV—require involvement of the CPU at both the
sender and receiver: a SEND generates a message whose
data is written to a buffer specified by the receiver in a pre-
posted RECV. One-sided verbs—READ, WRITE, and
ATOMIC—bypass the remote CPU to operate directly on
remote memory.

RDMA transports can be connected or connectionless.
Connected transports offer one-to-one communication be-
tween two queue pairs: to communicate with N remote
machines, a thread must create N QPs. These transports
provide one-sided RDMA and end-to-end reliability, but
do not scale well to large clusters. This is because NICs
have limited memory to cache QP state, and exceeding

186 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/efficient/fasst

SEND/RECV WRITE READ/ATOMIC

RC 3 3 3

UC 3 3 7

UD 3 7 7

Table 1: Verbs supported by each transport type. RC, UC, and
UD stand for Reliable Connected, Unreliable Connected, and
Unreliable Datagram, respectively.

the size of this state by using too many QPs causes cache
thrashing [11]. Connectionless (datagram) transports are
extensions to the connection-oriented VIA, and support
fewer features than connected transports: they do not pro-
vide one-sided RDMA or end-to-end reliability. However,
they allow a QP to communicate with multiple other QPs,
and have better scalability than connected transports as
only one QP is needed per thread.

RDMA transports can further be either reliable or unre-
liable, although current commodity NICs do not provide
a reliable datagram transport. Reliable transports provide
in-order delivery of messages and return an error in case
of failure. Unreliable transports achieve higher perfor-
mance by avoiding acknowledgment packets, but do not
provide reliability guarantees or return an error on net-
work failures. Modern high-speed networks, including
Mellanox’s InfiniBand and Intel’s OmniPath, also provide
reliability below the transport layer [3, 6]. Their link layer
uses flow control to prevent congestion-based losses, and
retransmissions to prevent bit error-based losses. Infini-
Band’s physical layer uses Forward Error Correction to
fix most bit errors, which themselves are rare. For ex-
ample, the bit error rate of the InfiniBand cables used
in our clusters is less than 10−15. Therefore even unre-
liable transports, which lack end-to-end reliability, lose
packets extremely rarely: we did not lose any packets in
around 50 PB of unreliable data transfer (Section 3.4).
Note that link-layer flow control in these networks can
cause congestion collapse in rare scenarios, leading to
low throughput, but not dropped packets.

Current RDMA implementations provide three main
transports: Reliable Connected (RC), Unreliable Con-
nected (UC), and Unreliable Datagram (UD). Table 1
shows the subset of verbs supported by implementations
of each transport. Not all transport layers provide all
types of verbs, so choosing a verb means accepting the
limitations of the available transports. Note that only con-
nected transports provide one-sided verbs, limiting the
scalability of designs that use these verbs.

3 Choosing networking primitives
We now describe the rationale behind our decision to build
an RPC layer using two-sided datagram verbs. We show
that RPCs are:

Name Hardware

CX3 Mellanox ConnectX-3 (1x 56 Gb/s InfiniBand
ports), PCIe 3.0 x8, Intel® Xeon® E5-2450
CPU (8 cores, 2.1 GHz), 16 GB DRAM

CIB Mellanox Connect-IB (2x 56 Gb/s InfiniBand
ports), PCIe 3.0 x16, Intel® Xeon® E5-2683-
v3 CPU (14 cores, 2 GHz), 192 GB DRAM

Table 2: Measurement clusters

1. Fast: Although READs can outperform similarly-
sized RPCs on small clusters, RPCs perform better
when accounting for the amplification in size or num-
ber of READs required to access real data stores.

2. Scalable: Datagram RPC throughput and CPU use
remains stable as the cluster size increases, whereas
READ performance degrades because READs must
use connected transport with today’s NICs.

3. Simple: RPCs reduce the software complexity re-
quired to design distributed data stores and transac-
tions compared to one-sided RDMA-based systems.

3.1 Advantage of RPCs
Recent work on designing distributed data stores over
RDMA-capable networks has largely focused on how
to use one-sided RDMA primitives. In these designs,
clients access remote data structures in servers’ memory
using one or more READs, similar to how one would
access data in local memory. Various optimizations help
reduce the number of READs needed; we discuss two
such optimizations and their limitations below.

Value-in-index: FaRM [11, 12] provides hash table ac-
cess in ≈ 1 READ on average by using a specialized index
that stores data adjacent to its index entry, allowing data
to be READ with the index. However, doing so ampli-
fies the size of the READ by a factor of 6–8x, reducing
throughput [15]. This result highlights the importance of
comparing the application-level capabilities of network-
ing primitives: although micro-benchmarks suggest that
READs can outperform similar-sized RPCs, READs re-
quire extra network traffic and/or round-trips due to their
one-sided nature, tipping the scales in the other direction.

Caching the index: DrTM [28, 7] caches the index of
its hash table at all servers in the cluster, allowing single-
READ GETs; FaRM [12] uses a similar approach for its
B-Tree. Although this approach works well when the
workload has high locality or skew, it does not work in
general because indexes can be large: Zhang et al. re-
port that indexes occupy over 35% of memory for popular
OLTP benchmarks in a single-node transaction processing
system [30]; the percentage is similar in our implemen-
tation of distributed transaction processing benchmarks.
In this case, caching even 10% of the index requires each
machine to dedicate 3.5% of the total cluster memory

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 187

capacity for the index, which is impossible if the clus-
ter contains more than 100/3.5 ≈ 29 nodes. The Cell
B-Tree [21] caches B-Tree nodes 4 levels above the leaf
nodes to save memory and reduce churn, but requires
multiple round trips (∼ 4) when clients access the B-Tree
using READs.

RPCs allow access to partitioned data stores with two
messages: the request and the reply. They do not re-
quire message size amplification, multiple round trips,
or caching. The simplicity of RPC-based programming
reduces the software complexity required to take advan-
tage of modern fast networks in transaction processing:
to implement a partitioned, distributed data store, the user
writes only short RPC handlers for a single-node data
store. This approach eliminates the software complexity
required for one-sided RDMA-based approaches [11, 21].
For example, in this paper, we use MICA’s hash table
design [18] for unordered key-value storage. We made
only minor modifications to the MICA codebase to sup-
port distributed transactions. In the future, we plan to use
Masstree [19] for ordered storage.

3.2 Advantage of datagram transport
Datagram transport allows each CPU core to create one
datagram QP that can communicate with all remote cores.
Since the number of QPs is relatively small (as many
as the number of cores), providing each core exclusive
access to QPs is possible without overflowing the NIC’s
cache. Providing exclusive access to QPs with connected
transport, however, is not scalable: In a cluster with N ma-
chines and T threads per machine, doing so requires N ∗T
QPs at every machine, which may not fit in the NIC’s
queue pair cache. Threads can share QPs to reduce the
QP memory footprint [11]. Sharing QPs reduces CPU ef-
ficiency because threads contend for locks, and the cache
lines for QP buffers bounce between their CPU cores. The
effect can be dramatic: in our experiments, QP sharing
reduces the per-core throughput of one-sided READs by
up to 5.4x (Section 3.3.2). Similarly, FaRM’s RPCs that
use one-sided WRITEs and QP sharing become CPU-
bottlenecked at 5 million requests/sec (Mrps) per ma-
chine [12]. Our datagram-based RPCs, however, do not
require QP sharing and achieve up to 40.9 Mrps/machine,
and even then they are bottlenecked by the NIC, not CPU
(Section 3.3.1).

In comparison with connected transports, datagram
transport confers a second important advantage in addi-
tion to scalability: Doorbell batching reduces CPU use.
We describe this feature in a simplified form here; a de-
tailed discussion is available in our earlier paper [16].
User processes post operations to the NIC by writing
to a per-QP Doorbell register on the NIC over the PCIe
bus, specifying the number of new operations on that QP.
This write is relatively expensive for the CPU because

it requires flushing the write buffers, and using memory
barriers for ordering. In transactional systems, however,
applications can amortize this cost by issuing multiple
RDMA work requests at a time. Examples include read-
ing or validating multiple keys for multi-key transactions,
or sending update messages to the replicas of a key. With
a datagram QP, the process only needs to ring the Doorbell
once per batch, regardless of the individual message des-
tinations within the batch. With connected QPs, however,
the process must ring multiple Doorbells—as many as the
number of destinations appearing in the batch. Note that
Doorbell batching does not coalesce packets at the RDMA
layer (i.e., it does not put multiple application-level re-
quests in a single RDMA packet); Doorbell batching also
does not add latency because we do it opportunistically,
i.e., we do not wait for a batch of messages to accumulate.

3.3 Performance considerations
Two recent projects study the relative performance of
RPCs and one-sided RDMA. In the asymmetric setting
where multiple clients send requests to one server, HERD
shows that RPCs perform similarly to READs [15]. In
HERD, clients send requests to the server via WRITEs
over UC; the server responds with SENDs over UD. This
approach scales well with the number of clients because
the number of active queue pairs at the server is small.
The server’s UC QPs are passive because the server’s
CPU does not access them; these passive QPs consume
little memory in the NIC. The active UD QPs are few in
number.

Unfortunately, as noted by Dragojevic et al. [12],
HERD’s RPC design does not scale well in the symmetric
setting required for distributed transactions, where every
machine issues requests and responses. This scenario
requires many active UC QPs on each node for sending
requests. In FaRM’s experiments [12] in the symmetric
setting, READs outperform their RPCs by 4x.

We now present experimental results showing that
FaSST’s RPCs are a better choice than one-sided RDMA
for distributed transactions. The design and implementa-
tion of our RPC system is discussed in detail in Section 4;
here, we use it to implement basic RPCs where both the
request and reply are fixed-size buffers. We first compare
the raw throughput of RPCs and one-sided READs by
using a small cluster where READs do not require QP
sharing. Next, we compare their performance on more
realistic, medium-sized clusters.

Clusters used: To show that our results generalize to a
range of RDMA hardware, we use two clusters with dif-
ferent NICs and CPU processing power (Table 2). The
clusters are named after the initials of their NIC. CX3 is
a shared Emulab [29] cluster with 192 nodes; our experi-
ments used up to 69 nodes, depending on the availability
of nodes. CX3 nodes have a ConnectX-3 NIC and an

188 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Intel SandyBridge CPU with 8 cores. CIB is a private
cluster with 11 nodes. CIB nodes have a more powerful
Connect-IB NIC that provides 2x more bandwidth and
around 4x higher message rate than a ConnectX-3 NIC.
They also have a more powerful, 14-core Intel Haswell
CPU.

Experiment setup: We use a cluster of machines in a
symmetric setting, i.e., every machine issues requests
(RPC requests or READs) to every other machine. For
READs without QP sharing, each thread creates as many
RC QPs as the number of machines, and issues READs
to randomly chosen machines. We evaluate RPC perfor-
mance for two request batch sizes (1 and 11) to show the
effect of Doorbell batching for requests. We prevent RPC
request coalescing (Section 4) by sending each request in
a batch to a different machine; this restricts our maximum
batch size on CIB to 11.

We compare RPC and READ performance for different
response sizes; for RPCs, the request size is fixed at 32
bytes, which is sufficient to read from FaSST’s data stores.
We report millions of requests per second per machine
(Mrps/machine). Note that for RPCs, each machine’s
CPU also serves responses to requests from other ma-
chines, so the number of messages sent by a machine is
approximately twice the request rate that we report. Our
results show that:

1. FaSST RPCs provide good raw throughput. For
small messages up to 56 bytes, RPCs deliver a sig-
nificant percentage of the maximum throughput of
similar-sized READs on small clusters: 103–106%
on CX3 and 68–80% on CIB, depending on the re-
quest batch size. When accounting for the amplifica-
tion in READ size or number required to access data
structures in real data stores, RPCs deliver higher
raw throughput than READs.

2. On medium-sized clusters, if READs do not share
QPs, RPCs provide 1.38x and 10.1x higher through-
put on CIB and CX3, respectively. If READs do
share QPs, their CPU efficiency drops by up to 5.4x,
and RPCs provide 1.7–2.15x higher CPU efficiency.

These experiments highlight the sometimes dramatic dif-
ference in performance between micro-benchmarks and
more realistic settings.

3.3.1 On small clusters

To measure the maximum raw throughput of READs,
we use 6 nodes so that only a small number of QPs are
needed even for READs: each node on CX3 (8 cores) and
CIB (14 cores) uses 48 and 84 QPs, respectively. We use
11 nodes for RPCs to measure performance with a large
request batch size—using only 6 nodes for RPCs would
restrict the maximum non-coalesced request batch size to
6. (As shown in Section 3.3.2, using 11 nodes for READs
gives lower throughput due to cache misses in the NIC,

��

��

��

��

��

���

���

���

�� ��� ���� ���� ���� ���� ����

�
��
�
��
�
��
�
�
�
�
��
�

��������������������������������������

����
���������������������������

�����������������������������

(a) CX3 cluster (ConnectX-3 NIC)

��

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ����

�
��
�
��
�
��
�
�
�
�
��
�

��������������������������������������

����
���������������������������

�����������������������������

(b) CIB cluster (Connect-IB NIC)

Figure 1: Small clusters: Throughput comparison of FaSST
RPCs (11 nodes) and READs (6 nodes). Note that the two
graphs use a different Y scale.

so we use fewer nodes to measure their peak throughput.)
Figure 1 shows Mrps/machine for READs and RPCs on
the two clusters.

Raw throughput: Depending on the request batch size,
FaSST RPCs deliver up to 11.6–12.3 Mrps on CX3, and
34.9–40.9 Mrps on CIB. READs deliver up to 11.2 Mrps
on CX3, and 51.2 Mrps on CIB. The throughput of both
RPCs and READs is bottlenecked by the NIC: although
our experiment used all cores on both clusters, fewer cores
can achieve similar throughput, indicating that the CPU
is not the bottleneck.

Comparison with READs: Although RPCs usually de-
liver lower throughput than READs, the difference is
small. For response sizes up to 56 bytes, which are
common in OLTP, RPC throughput is within 103–106%
of READ throughput on CX3, and 68–80% of READ
throughput on CIB, depending on the request batch size.
For larger responses, READs usually outperform our
RPCs, but the difference is smaller than 4x, as is the case
for FaRM’s one-sided RPCs. This is because FaSST’s
RPCs are bottlenecked by the NIC on both clusters,
whereas FaRM’s RPCs become CPU-bottlenecked due to
QP sharing (Section 3.3.2). As noted above, these “raw”
results are only baseline micro-benchmarks; the follow-
ing paragraphs consider the numbers in the context of
“real-world” settings.

Effect of multiple READs: In all cases (i.e., regardless
of cluster used, response size, and request batch size),
RPCs provide higher throughput than using 2 READs.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 189

��

��

���

���

���

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��
����
����
����
����
����
����
����
����

�
��
�
��
�
�
�
��
�
���

�
�
�
��
�

�
�
�
��
�
�
�
��
�
���

�
�
�
��
�

���������������������������

��������
���������
������������������������������

(a) CX3 cluster (ConnectX-3 NIC)

��

���

���

���

���

���

���

���

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��

����

����

����

����

�����

�����

�����

�
��
�
��
�
�
�
��
�
���

�
�
�
��
�

�
�
�
��
�
�
�
��
�
���

�
�
�
��
�

���������������������������

��������
���������

������������������������������

(b) CIB cluster (Connect-IB NIC)

Figure 2: Comparison of FaSST RPC and READ throughput,
and the number of QPs used for READs with increasing emu-
lated cluster size.

Thus, for any data store/data structure that requires two or
more READs, RPCs provide strictly higher throughput.

Effect of larger READs: Consider, for example, a hash
table that maps 8-byte keys to 40-byte values (this config-
uration is used in one of the database tables in the TATP
benchmark in Section 6) on CX3. For this hash table,
FaRM’s single-READ GETs require approximately 384-
byte READs (8x amplification) and can achieve up to 6.5
Mrps/machine on CX3. With FaSST RPCs, these key-
value requests can be handled in one RPC with an 8-byte
request and a 40-byte response (excluding header over-
heads), and can achieve 11.4–11.8 Mrps/machine (over
75% higher) before the ConnectX-3 NIC becomes the
bottleneck. On CIB, 384-byte READs achieve 23.1 Mrps,
whereas FaSST RPCs achieve 34.9–40.9 Mrps (over 51%
higher).

3.3.2 On medium-sized clusters

Measuring the impact of one-sided RDMA’s poor scala-
bility requires more nodes. As the CIB cluster has only 11
physical machines, we emulate the effect of a larger clus-
ter by creating as many QPs on each machine as would
be used in the larger cluster. With N physical nodes, we
emulate clusters of N ∗ M nodes for different values of
M . Instead of creating N QPs, each worker thread creates
N ∗ M QPs, and connects them to QPs on other nodes.
Note that we only do so for READs because for FaSST’s
RPCs, the number of local QPs does not depend on the
number of machines in the cluster.

Figure 2 compares READ and RPC throughput for
increasing emulated cluster sizes. We use 32-byte READs
and RPC requests and responses. Note that the peak

��

��

��

��

��

���

���

�� ��� ��� ��� ��� ����

�
��
�
��
�
��
��
��
�
�

��

���������������������
���������
���������

Figure 3: Per-thread READ throughput with QP sharing (CIB)

READ throughput in this graph is lower than Figure 1 that
used 6 nodes. This is because NIC cache misses occur
with as few as 11 nodes. On CX3, READ throughput
drops to 24% of its peak with as few as 22 emulated nodes.
On CIB, READs lose their throughput advantage over
RPCs on clusters with 33 or more nodes. The decline with
Connect-IB NICs is more gradual than with ConnectX-3
NICs. This may be due to a larger cache or better cache
miss pipelining [10] in the Connect-IB NIC. Section 7.2
discusses the possible impact of future NIC and CPU
hardware on queue pair scalability.

Sharing QPs: Fewer QPs are required if they are shared
between worker threads, but doing so drastically reduces
the CPU efficiency of one-sided RDMA. QP sharing is
typically implemented by creating several sets of N QPs,
where each set is connected to the N machines [11]. A
machine’s threads are also grouped into sets, and threads
in a set share a QP set.

We measure the loss in CPU efficiency as follows. We
use one server machine that creates a tuneable number
of QPs and connects them to QPs spread across 5 client
machines (this is large enough to prevent the clients from
becoming a bottleneck). We run a tuneable number of
worker threads on the server that share these QPs, issuing
READs on QPs chosen uniformly at random.

We choose the number of QPs and threads per set based
on a large hypothetical cluster with 100 nodes and CIB’s
CPUs and NICs. A Connect-IB NIC supports ≈ 400 QPs
before READ throughput drops below RPC throughput
(Figure 2). In this 100-node cluster, the 400 QPs are
used to create 4 sets of 100 connections (QPs) to remote
machines. CIB’s CPUs have 14 cores, so sets of 3–4
threads share a QP set.

Figure 3 shows per-thread throughput in this experi-
ment. For brevity, we only show results on CIB; the loss
in CPU efficiency is comparable on CX3. The hypotheti-
cal configuration above requires sharing 100 QPs among
at least 3 threads; we also show other configurations that
may be relevant for other NICs and cluster sizes. With
one thread, there is no sharing of QPs and throughput
is high—up to 10.9 Mrps. Throughput with QP sharing
between 3 threads, however, is 5.4x lower (2 Mrps).

This observation leads to an important question: If the
increase in CPU utilization at the local CPU due to QP

190 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

sharing is accounted for, do one-sided READs use fewer
cluster-wide CPU cycles than FaSST’s RPCs that do not
require QP sharing? We show in Section 4 that the answer
is no. FaSST’s RPCs provide 3.4–4.3 Mrps per core on
CIB—1.7–2.15x higher than READs with QP sharing
between 3 threads. Note that in our symmetric setting,
each core runs both client and server code. Therefore,
READs use cluster CPU cycles at only the client, whereas
RPCs use them at both the client and the server. However,
RPCs consume fewer overall CPU cycles.

3.4 Reliability considerations
Unreliable transports do not provide reliable packet deliv-
ery, which can introduce programming complexity and/or
have performance implications (e.g., increased CPU use),
since reliability mechanisms such as timeouts and retrans-
missions must be implemented in the software RPC layer
or application.

To understand FaSST’s approach to handling potential
packet loss, we make two observations. First, we note that
transaction processing systems usually include a recon-
figuration mechanism to handle node failures. Reconfigu-
ration includes optionally pausing ongoing transactions,
informing nodes of the new cluster membership, replay-
ing transaction logs, and re-replicating lost data [12]. In
FaSST, we assume a standard reconfiguration mechanism;
we have not implemented such a mechanism because this
paper’s contribution is not in that space. We expect that,
similar to DrTM+R [7], FaRM’s recovery protocol [12]
can be adapted to FaSST.

The second observation is that in normal operation,
packet loss in modern RDMA-capable networks is ex-
tremely rare: in our experiments (discussed below), we
observed zero packet loss in over 50 PB of data trans-
ferred. Packets can be lost during network hardware fail-
ures, and corner cases of the link/physical layer reliability
protocols. FaSST’s RPC layer detects these losses using
coarse-grained timeouts maintained by the RPC requester
(Section 4.3).

Based on these two observations, we believe that an
acceptable first solution for handling packet loss in FaSST
is to simply restart one of the two FaSST processes that
is affected by the lost RPC packet, allowing the recon-
figuration mechanism to make the commit decision for
the affected transaction. We discuss this in more detail in
Section 5.1.

3.4.1 Stress tests for packet loss

Restarting a process on packet loss requires packet losses
to be extremely rare. To quantify packet loss on real-
istic RDMA networks, we set up an experiment on the
CX3 cluster, which is similar to real-world clusters with
multiple switches, oversubscription, and sharing. It is
a shared cluster with 192 machines arranged in a tree

topology with seven leaf and two spine switches, with an
oversubscription ratio of 3.5. The network is shared by
Emulab users. Our largest experiment used 69 machines
connected to five leaf switches.

Threads on these machines use UD transport to ex-
change 256-byte RPCs. We used 256-byte messages to
achieve both high network utilization and message rate.
Threads send 16 requests to remote threads chosen uni-
formly at random, and wait for all responses to arrive
before starting the next batch. A thread stops making
progress if a request or reply packet is lost. Threads rou-
tinely output their progress messages to a log file; we
manually inspect these files to ensure that all threads are
making progress.

We ran the experiment without a packet loss for approx-
imately 46 hours. (We stopped the experiment when a log
file exhausted a node’s disk capacity.) The experiment
generated around 100 trillion RPC packets and 33.2 PB of
network data. Including other smaller-scale experiments
with 20–22 nodes, we have transferred over 50 PB of
network data without a lost packet.

While we observed zero packet loss, we detected sev-
eral reordered packets. Using sequence numbers em-
bedded in the RPC packets, we observed around 1500
reordered packets in 100 trillion packets transferred. Re-
ordering happens due to multi-path in CX3: although
there is usually a single deterministic path between each
source and destination node, the InfiniBand subnet man-
ager sometimes reconfigures the switch routing tables to
use different paths.

4 FaSST RPCs
FaSST’s RPCs are designed for transaction workloads
that use small (∼ 100 byte) objects and a few tens of
keys. This layer abstracts away details of RDMA, and
is used by higher-layer systems such as our transaction
processing system. Key features of FaSST’s RPCs include
integration with coroutines for efficient network latency
hiding, and optimizations such as Doorbell batching and
message coalescing.

4.1 Coroutines
RDMA network latency is on the order of 10 µs under
load, which is much higher than the time spent by our
applications in computation and local data store accesses.
It is critical to not block a thread while waiting for an RPC
reply. Similar to Grappa [22], FaSST uses coroutines (co-
operative multitasking) to hide network latency: a corou-
tine yields after initiating network I/O, allowing other
coroutines to do useful work while the RPC is in flight.
Our experiments showed that a small number (∼ 20) of
coroutines per thread is sufficient for latency hiding, so
FaSST uses standard coroutines from the Boost C++ li-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 191

brary instead of Grappa’s coroutines, which are optimized
for use cases with thousands of coroutines. We measured
the CPU overhead to switch between coroutines to be
13–20 ns.

In FaSST, each thread creates one RPC endpoint that
is shared by the coroutines spawned by the thread. One
coroutine serves as the master; the remaining are workers.
Worker coroutines only run application logic and issue
RPC requests to remote machines, where they are pro-
cessed by the master coroutine of the thread handling the
request. The master coroutine polls the network to iden-
tify any newly-arrived request or response packets. The
master computes and sends responses for request pack-
ets. It buffers response packets received for each worker
until all needed responses are available, at which time it
invokes the worker.

4.2 RPC interface and optimizations

A worker coroutine operates on batches of b ≥ 1 requests,
based on what the application logic allows. The worker
begins by first creating new requests without performing
network I/O. For each request, it specifies the request
type (e.g., access a particular database table, transaction
logging, etc.), and the ID of destination machine. After
creating a batch of requests, the worker invokes an RPC
function to send the request messages. Note that an RPC
request specifies the destination machine, not the destina-
tion thread; FaSST chooses the destination thread as the
local thread’s ID–based peer on the destination machine.
Restricting RPC communication to between thread peers
improves FaSST’s scalability by reducing the number of
coroutines that can send requests to a thread (Section 4.4).

Request batching. Operating on batches of requests has
several advantages. First, it reduces the number of NIC
Doorbells the CPU must ring from b to 1, saving CPU
cycles. Second, it allows the RPC layer to coalesce mes-
sages sent to the same destination machine. This is partic-
ularly useful for multi-key transactions that access multi-
ple tables with same primary key, e.g., in the SmallBank
benchmark (Section 6). Since our transaction layer parti-
tions tables by a hash of the primary key, the table access
requests are sent in the same packet. Third, batching re-
duces coroutine switching overhead: the master yields to
a worker only after receiving responses for all b requests,
reducing switching overhead by a factor of b.

Response batching: Similar to request batching, FaSST
also uses batching for responses. When the master corou-
tine polls the NIC for new packets, it typically receives
more than one packet. On receiving a batch of B request
packets, it invokes the request handler for each request,
and assembles a batch of B response packets. These re-
sponses are sent using one Doorbell. Note that the master

does not wait for a batch of packets to accumulate before
sending responses to avoid adding latency.

Cheap RECV posting: FaSST’s RPCs use two-sided
verbs, requiring RECVs to be posted on the RECV queue
before an incoming SEND arrives. On our InfiniBand
hardware, posting RECVs requires creating descriptors in
the host-memory RECV queue, and updating the queue’s
host-memory head pointer. No CPU-initiated PCIe trans-
actions are required as the NIC fetches the descriptors
using DMA reads. In FaSST, we populate the RECV
queue with descriptors once during initialization, after
which the descriptors are not accessed by the CPU; new
RECVs re-use descriptors in a circular fashion, and can
be posted with a single write to the cached head pointer.
Doing so required modifying the NIC’s device driver, but
it saves CPU cycles.

It is interesting to note that in FaSST, the NIC’s RECV
descriptor DMA reads are redundant, since the descriptors
never change after initialization. Avoiding these DMA
reads may be possible with device firmware changes or
with future programmable NICs; doing so will likely give
FaSST’s RPCs a large throughput boost [16].

4.3 Detecting packet loss

The master coroutine at each thread detects packet loss for
RPCs issued by its worker coroutines. The master tracks
the progress of each worker by counting the number of
responses received for the worker. A worker’s progress
counter stagnates if and only if one of the worker’s RPC
packets (either the request or the response) is lost: If a
packet is lost, the master never receives all responses for
the worker; it never invokes the worker again, preventing
it from issuing new requests and receiving more responses.
If no packet is lost, the master eventually receives all
responses for the worker. The worker gets invoked and
issues new requests—we do not allow workers to yield to
the master without issuing RPC requests.

If the counter for a worker does not change for timeout
seconds, the master assumes that the worker suffered a
packet loss. On suspecting a loss, the master kills the
FaSST process on its machine (Section 5.1). Note that,
before it is detected, a packet loss affects only the progress
of one worker, i.e., other workers can successfully commit
transactions until the loss is detected. This allows us to
use a large value for timeout without affecting FaSST’s
availability. We currently set timeout to one second. In
our experiments with 50+ nodes, we did not observe a
false positive with this timeout value. We observed false
positives with significantly smaller timeout values such
as 100 ms. This can happen, for instance, if the thread
handling the RPC response gets preempted [12].

192 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.4 RPC limitations
Although FaSST aims to provide general-purpose RPCs,
we do currently not support workloads that require mes-
sages larger than the network’s MTU (4 KB on our In-
finiBand network). These workloads are likely to be
bottlenecked by network bandwidth with both RPC- and
one-sided RDMA-based designs, achieving similar per-
formance. This limitation can be addressed in several
performance-neutral ways if needed.2

FaSST also restricts each coroutine to one message per
destination machine per batch; the message, however, can
contain multiple coalesced requests. This restriction is
required to keep the RECV queues small so that they can
be cached by the NIC. Consider a cluster with N nodes, T
threads per node, and c coroutines per thread. For a given
thread, there are N peer threads, and N ∗ c coroutines
that can send requests to it. At any time, each thread
must provision as many RECVs in its RECV queue as the
number of requests that can be sent to it. Allowing each
coroutine m messages per destination machine requires
maintaining (N ∗c∗m) RECVs per RECV queue. A fairly
large cluster with N = 100, c = 20, and T = 14 requires
14 RECV queues of size 2000∗m at each machine. m = 1
was sufficient for our workloads and worked well in our
experiments, but significantly larger values of m reduce
RPC performance by causing NIC cache thrashing.

Supporting a larger cluster may require reducing RECV
queue size. This can be achieved by reducing the number
of requests allowed from a local thread to a particular
remote machine from c to some smaller number; a corou-
tine yields if its thread’s budget for a remote machine is
temporarily exhausted. This will work well with large
clusters and workloads without high skew, where the prob-
ability of multiple coroutines sending requests to the same
remote machine is small.

4.5 Single-core RPC performance
We showed in Section 3.3 that FaSST RPCs provide good
per-NIC throughput. We now show that they also pro-
vide good single-core throughput. To measure per-core
throughput, we run one thread per machine, 20 coroutines
per thread, and use 32-byte RPCs. We use all 11 avail-
able machines on CIB; we use 11 machines on CX3 for
comparison. We evaluate RPC performance with multiple
request batch sizes. To prevent request coalescing by our
RPC layer, we choose a different machine for each request
in the batch.

For our RPC baseline, we use a request batch size
of one, and disable response batching. We then enable
the request batching, cheap RECV posting, and response

2Infrequent small but > 4KB messages could be segmented in the
RPC layer. Alternately, a three-message exchange wherein the sender
requests that the recipient use a one-sided READ to obtain a large
message payload could be used.

��

��

��

��

��

��

��� ���

�
��
�
��
��
�
��
��
�
��
�
�
�
�
�
��
��
��
�
�

���������������

�����������������

���������������

��������������

�����������������

������������������

���

���
���

���

���

���

��� ���

���
���

���

���

Figure 4: Per-core RPC throughput as optimizations 2–6 are
added

batching optimizations in succession. Figure 4 shows
the results from this experiment. Note that the batching
optimizations do not apply to READs, because Doorbells
cannot be batched across the connected QPs. For brevity,
we discuss only CIB here.

Even without any optimizations, FaSST RPCs are more
CPU-efficient than READs with QP sharing: our base-
line achieves 2.6 Mrps, whereas READs achieve up to 2
Mrps with QP sharing between 3 or more threads (Fig-
ure 3). With a request batch size of 3 and all optimizations
enabled, FaSST RPCs achieve 4 Mrps—2x higher than
READs. Peak RPC throughput with one request per batch
is 3.4 Mrps (not shown).

With 11 requests per batch, FaSST RPCs achieve 4.3
Mrps. At this request rate, each CPU core issues 17.2
million verbs per second on average: 4.3 million SENDs
each for requests and responses, and 8.6 million for their
RECVs. This large advantage over one-sided READs
(which achieve 2 million verbs per second) arises from
FaSST’s use of datagram transport, which allows exclu-
sive access to QPs and Doorbell batching.

Comparison with FaRM RPCs: FaRM’s RPCs achieve
up to 5 Mrps with one ConnectX-3 NIC and 16 CPU
cores [11]. Their throughput does not increase notice-
ably when another ConnectX-3 NIC is added [12], so
we expect them to provide ≈ 5 Mrps with a Connect-IB
NIC. FaSST RPCs can achieve 34.9–40.9 Mrps (Figure 1),
i.e., up to 8x higher throughput per NIC. FaRM’s RPCs
achieve 5/16 = 0.31 Mrps per core; FaSST can achieve
3.4–4.3 Mrps per core depending on the request batch
size (up to 13.9x higher).

5 Transactions
FaSST provides transactions with serializability and dura-
bility on partitioned distributed data stores. FaSST’s data
stores map 8-byte keys to opaque application-level objects.
Each key is associated with an 8-byte header, consisting
of a lock bit, and a 63-bit version number. The header
is used for concurrency control and for ordering commit

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 193

Version Next
63 32

L
1

Key-value entriesShared header

Main bucket

Overflow bucket

Key-value entries

Next

Figure 5: Layout of main and overflow buckets in our MICA-
based hash table

log records during recovery. Several keys can map to the
same header.

We have implemented transactions for an unordered
key-value store based on MICA [18]. The key-value
store uses a hash table composed of associative buckets
(Figure 5) with multiple (7–15) slots to store key-value
items. Each key maps to a main bucket. If the number
of keys mapping to a main bucket exceeds the bucket
capacity, the main bucket is dynamically linked to a chain
of overflow buckets. The header for all keys stored in a
main bucket and its linked overflow buckets is maintained
in the main bucket.

In FaSST, worker coroutines run the transaction logic
and act as transaction coordinators. FaSST’s transaction
protocol is inspired by FaRM’s, with some modifications
for simplicity. FaSST uses optimistic concurrency control
and two-phase commit for distributed atomic commit, and
primary-backup replication to support high availability.
We use the Coordinator Log [24] variant of two-phase
commit for its simplicity. Figure 6 summarizes FaSST’s
transaction protocol. We discuss the protocol’s phases in
detail below. All messages are sent using FaSST RPCs.
We denote the set of keys read and written by the trans-
action by R (read set) and W (write set) respectively. We
assume that the transaction first reads the keys it writes,
i.e., W ⊆ R.

1. Read and lock: The transaction coordinator begins
execution by reading the header and value of keys from
their primaries. For a key in W , the coordinator also re-
quests the primary to lock the key’s header. The flexibility
of RPCs allows us to read and lock keys in a single round
trip. Achieving this with one-sided RDMA requires 2
round trips: one to lock the key using an ATOMIC opera-
tion, and one to read its value [7]. If any key in R or W is
already locked, the coordinator aborts the transaction by
sending unlock RPCs for successfully locked keys.

2. Validate: After locking the write set, the coordinator
checks the versions of its read set by requesting the ver-
sions of R again. If any key is locked or its version has
changed since the first phase, the coordinator aborts the
transaction.

3. Log: If validation succeeds, the transaction can com-
mit. To commit a transaction, the coordinator replicates

c
c

C

P1

B1

P2

B2

L1

Execute phase Commit phase

c

2. Validate

c

3. Log

c
c

4. Commit
 backup

Serialization point Committed

1. Read + lock 5. Commit
 primary

Figure 6: FaSST’s transaction protocol with tolerance for one
node failure. P1 and P2 are primaries and B1 and B2 are their
backups. C is the transaction coordinator, whose log replica is
L1. The solid boxes denote messages containing application-
level objects. The transaction reads one key from P1 and P2,
and updates the key on P2.

its commit log record at f + 1 log replicas so that the
transaction’s commit decision survives f failures. The
coordinator’s host machine is always a log replica, so we
send f RPCs to remote log replicas. The commit log
record contains W ’s key-value items and their fetched
versions.

4. Commit backup: If logging succeeds, the coordina-
tor sends update RPCs to backups of W . It waits for an
ACK from each backup before sending updates to the
primaries. This wait ensures that backups process up-
dates for a bucket in the same order as the primary. This
ordering is not required in FaRM, which can drop out-of-
order bucket updates as each update contains the contents
of the entire bucket. FaSST’s updates contain only one
key-value item and are therefore smaller, but cannot be
dropped.

5. Commit primary: After receiving all backup ACKs,
the coordinator sends update RPCs to the primaries of
W . On receiving an update, a primary updates the key’s
value, increments its version, and unlocks the key.

Similar to existing systems [12, 28], FaSST omits val-
idation and subsequent phases for single-key read-only
transactions.

5.1 Handling failures and packet loss
Currently, the FaSST implementation provides serializ-
ability and durability, but not high availability. Similar
to prior single-node transaction systems [27], we have
implemented the normal case datapath (logging and repli-
cation) to the extent that fast recovery is possible, but we
have not implemented the actual logic to recover from a
machine failure. We assume that FaRM’s mechanisms to
detect and recover from machine failures, such as leases,
cluster membership reconfiguration, log replay, and re-
replication of lost data can be adapted to FaSST; we dis-

194 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cuss how packet losses can be handled below. Note that
our implementation is insensitive to packet reordering
since each RPC message is smaller than the network’s
MTU.

We convert a packet loss to a machine failure by killing
the FaSST process on the machine that detects a lost
RPC packet (Section 4.3). The transaction affected by the
lost packet will not make progress until the killed FaSST
process is detected (e.g., via leases); then the transaction’s
commit/abort decision will be handled by the recovery
mechanism. This basic scheme can be improved (e.g., the
victim node can be re-used to avoid data re-replication
since it need not reboot), but that is not the focus of our
work.

In Section 3.4, we measured the packet loss rate of
our network at less than one in 50 PB of data. Since
we did not actually lose a packet, the real loss rate may
be much lower, but we use this upper-bound rate for a
ballpark availability calculation. In a 100-node cluster
where each node is equipped with 2x56 Gbps InfiniBand
and transfers data at full-duplex bandwidth, 50 PB will be
transferred in approximately 5 hours. Therefore, packet
losses will translate to less than 5 machine failures per
day. Assuming that each failure causes 50 ms of down-
time as in FaRM [12], FaSST will achieve five-nines of
availability.

5.2 Implementation
We now discuss details of FaSST’s transaction implemen-
tation. Currently, FaSST provides transactions on 8-byte
keys and opaque objects up to 4060 bytes in size. The
value size is limited by our network’s MTU (4096 bytes)
and the commit record header overhead (36 bytes). To ex-
tend a single-node data store for distributed transactions,
a FaSST user writes RPC request handlers for pre-defined
key-value requests (e.g., get, lock, put, and delete). This
may require changes to the single-node data store, such as
supporting version numbers. The user registers database
tables and their respective handlers with the RPC layer
by assigning each table a unique RPC request type; the
RPC subsystem invokes a table’s handler on receiving a
request with its table type.

The data store must support concurrent local read and
write access from all threads in a node. An alternate de-
sign is to create exclusive data store partitions per thread,
instead of per-machine partitions as in FaSST. As shown
in prior work [18], this alternate design is faster for lo-
cal data store access since threads need not use local
concurrency control (e.g., local locks) to access their ex-
clusive partition. However, when used for distributed
transactions, it requires the RPC subsystem to support
all-to-all communication between threads, which reduces
scalability by amplifying the required RECV queue size
(Section 4.4). We chose to sacrifice higher CPU efficiency

Nodes NICs CPUs (cores used, GHz)

FaSST (CX3) 50 1 1x E5-2450 (8, 2.1 GHz)
FaRM [12] 90 2 2x E5-2650 (16, 2.0 GHz)
DrTM+R [7] 6 1 1x E5-2450-v3 (8, 2.3 GHz)

Table 3: Comparison of clusters used to compare published
numbers. The NIC count is the number of ConnectX-3 NICs.
All CPUs are Intel® Xeon ® CPUs. DrTM+R’s CPU has 10
cores but their experiments use only 8 cores.

on small clusters for a more pressing need: cluster-level
scalability.

5.2.1 Transaction API

The user writes application-level transaction logic in a
worker coroutine using the following API.

AddToReadSet(K, *V) and AddToWriteSet(K, *V,
mode) enqueue key K to be fetched for reading or writing,
respectively. For write set keys, the write mode is either
insert, update, or delete. After the coroutine returns from
Execute (see below) the value for key K is available in
the buffer V. At this point, the application’s transaction
logic can modify V for write set keys to the value it wishes
to commit.

Execute() sends the execute phase-RPCs of the trans-
action protocol. Calling Execute suspends the worker
coroutine until all responses are available. Note that the
AddToReadSet and AddToWriteSet functions above do
not generate network messages immediately: requests are
buffered until Execute is called. This allows the RPC
layer to send all requests in with one Doorbell, and coa-
lesce requests sent to the same remote machine. Applica-
tions can call Execute multiple times in one transaction
after adding more keys. This allows transactions to choose
new keys based on previously fetched keys.

Execute fails if a read or write set key is locked. In
this case, the transaction layer returns failure to the appli-
cation, which then must call Abort.

Commit() runs the commit protocol, including vali-
dation, logging and replication, and returns the commit
status. Abort() sends unlock messages for write set keys.

6 Evaluation
We evaluate FaSST using 3 benchmarks: an object store,
a read-mostly OLTP benchmark, and a write-intensive
OLTP benchmark. We use the simple object store bench-
mark to measure the effect of two factors that affect
FaSST’s performance: multi-key transactions and the
write-intensiveness of the workload. All benchmarks in-
clude 3-way logging and replication, and use 14 threads
per machine.

We use the other two benchmarks to compare against
two recent RDMA-based transaction systems, FaRM [12]
and DrTM+R [7]. Unfortunately, we are unable do a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 195

direct comparison by running these systems on our clus-
ters. FaRM is not open-source, and DrTM+R depends on
Intel’s Restricted Transactional Memory (RTM). Intel’s
RTM is disabled by default on Haswell processors due to
a hardware bug that can cause unpredictable behavior. It
can be re-enabled by setting model-specific registers [28],
but we were not permitted to do so on the CIB cluster.

For a comparison against published numbers, we use
the CX3 cluster which has less powerful hardware (NIC
and/or CPU) than used in FaRM and DrTM+R; Table 3
shows the differences in hardware. We believe that the
large performance difference between FaSST and other
systems (e.g., 1.87x higher than FaRM on TATP with
half the hardware resources; 1.68x higher than DrTM+R
on SmallBank without locality assumptions) offsets per-
formance variations due to system and implementation
details. We also use the CIB cluster in our evaluation to
show that FaSST can scale up to more powerful hardware.

TATP is an OLTP benchmark that simulates a telecom-
munication provider’s database. It consists of 4 database
tables with small key-value pairs up to 48 bytes in size.
TATP is read-intensive: 70% of TATP transactions read
a single key, 10% of transactions read 1–4 keys, and
the remaining 20% of transactions modify keys. TATP’s
read-intensiveness and small key-value size makes it well-
suited to FaRM’s design goal of exploiting remote CPU
bypass: 80% of TATP transactions are read-only and do
not involve the remote CPU. Although TATP tables can
be partitioned intelligently to improve locality, we do not
do so (similar to FaRM).

SmallBank is a simple OLTP benchmark that sim-
ulates bank account transactions. SmallBank is write-
intensive: 85% of transactions update a key. Our imple-
mentation of SmallBank does not assume data locality.
In DrTM+R, however, single-account transactions (com-
prising 60% of the workload) are initiated on the server
hosting the key. Similarly, only a small fraction (< 10%)
of transactions that access two accounts access accounts
on different machines. These assumptions make the work-
load well-suited to DrTM+R’s design goal of optimizing
local transactions by using hardware transactional mem-
ory, but they save messages during transaction execution
and commit. We do not make either of these assumptions
and use randomly chosen accounts in all transactions.

Although the TPC-C benchmark [26] is a popular
choice for evaluating transaction systems, we chose not
to include it in our benchmarks for two reasons. First,
TPC-C has a high degree of locality: only around 10% of
transactions (1% of keys) access remote partitions. The
speed of local transactions and data access, which our
work does not focus on, has a large impact on TPC-C per-
formance. Second, comparing performance across TPC-C
implementations is difficult. This is due to differences in
data structures (e.g., using hash tables instead of B-Trees

����

��

���

����

�������������� ��������������

�
��
�
��
�
�
��
�
�
�
�
�
��
��
��
��
�
��
�
�
�
�
��
�

������������
����������������

������������
����������������

������������
����������������

����

����

����

����

���

���

����

����

���

���

����

����

Figure 7: Object store performance. The solid and patterned
bars show transaction throughput and RPC request rate, respec-
tively. The Y axis is in log scale.

for some tables), interaction of the benchmark with sys-
tem optimizations (e.g., FaRM and DrTM+R use caching
to reduce READs, but do not specify cache hit rates), and
contention level (DrTM+R uses 1 TPC-C “warehouse”
per thread whereas FaRM uses ≈ 7, which may reduce
contention).

6.1 Object store
We create an object store with small objects with 8-byte
keys and 40-byte values. We scale the database by using
1 million keys per thread in the cluster. We use work-
loads with different read and write set sizes to evalu-
ate different aspects of FaSST. An object store work-
load in which transactions read r keys, and update w of
these keys (on average) is denoted by O(r,w); we use
O(1,0), O(4,0), and O(4,2) to evaluate single-key read-
only transactions, multi-key read-only transactions, and
multi-key read-write transactions. All workloads choose
keys uniformly at random; to avoid RPC-level coalescing,
keys are chosen such that their primaries are on different
machines. Figure 7 shows FaSST’s performance on the
object store workloads on the two clusters.

6.1.1 Single-key read-only transactions

With O(1,0) FaSST achieves 11.0 million transactions
per second (Mtps) per machine on CX3. FaSST is bottle-
necked by the ConnectX-3 NIC: this throughput corre-
sponds to 11.0 million RPC requests per second (Mrps),
which is 96.5% of the NIC’s maximum RPC throughput
in this scenario.

On CIB, FaSST achieves 32.3 Mtps/machine and
is CPU-limited. This is because O(1,0) does not al-
low Doorbell batching for requests, leading to low per-
core throughput. Although CIB’s CPUs can saturate
the NIC without request Doorbell batching for an RPC
microbenchmark that requires little computation (Sec-
tion 3.3.1), they cannot do so for O(1,0) which requires
key-value store accesses.

Comparison: FaRM [12] reports performance for the
O(1,0) workload. FaRM uses larger, 16-byte keys and

196 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

32-byte values. Our FaSST implementation currently
supports only 8-byte keys, but we use larger, 40-byte
values to keep the key-value item size identical. Using
16-byte keys is unlikely to change our results.3

FaRM achieves 8.77 Mtps/machine on a 90-node clus-
ter with O(1,0). It does not saturate its 2 ConnectX-3
NICs and is instead bottlenecked by its 16 CPU cores.
FaSST achieves 1.25x higher per-machine throughput
with 50 nodes on CX3, which has close to half of FaRM’s
hardware resources per node (Table 3). Although O(1,0)
is well-suited to FaRM’s design goal of remote CPU
bypass (i.e., no transaction involves the remote CPU),
FaRM performs worse than FaSST. Note that with FaRM’s
hardware—2 ConnectX-3 NICs and 16 cores—FaSST
will deliver higher performance; based on our CIB results,
we expect FaSST to saturate the two ConnectX-3 NICs
and outperform FaRM by 2.5x.

6.1.2 Multi-key transactions

With multi-key transactions, FaSST reduces per-message
CPU use by using Doorbell batching for requests. With
O(4,0), FaSST achieves 1.5 and 4.7 Mtps/machine on
CX3 and CIB, respectively. (The decrease in Mtps from
O(1,0) is because the transactions are larger.) Similar to
O(1,0), FaSST is NIC-limited on CX3. On CIB, however,
although FaSST is CPU-limited with O(1,0), it becomes
NIC-limited with O(4,0). With O(4,0) on CIB, each
machine generates 37.9 Mrps on average, which matches
the peak RPC throughput achievable with a request batch
size of 4.

With multi-key read-write transactions in O(4,2),
FaSST achieves 0.78 and 2.3 Mtps/machine on CX3 and
CIB, respectively. FaSST is NIC-limited on CX3. On
CIB, the bottleneck shifts to CPU again because key-value
store inserts into the replicas’ data stores are slower than
lookups.

Comparison: FaRM does not report object store results
for multi-key transactions. However, as FaRM’s con-
nected transport does not benefit from Doorbell batching,
we expect the gap between FaSST’s and FaRM’s perfor-
mance to increase. For example, while FaSST’s RPC
request rate increases from 32.3 Mrps with O(1,0) to
37.9 Mrps with O(4,0), the change in FaRM’s READ
rate is likely to be negligible.

6.2 TATP
We scale the TATP database size by using one million
TATP “subscribers” per machine in the cluster. We use
all CPU cores on each cluster and increase the number
of machines to measure the effect of scaling. Figure 8

3On a single node, FaSST’s data store (MICA) delivers similar GET
throughput (within 3%) for these two key-value size configurations.
Throughput is higher with 16-byte keys, which could be because MICA’s
hash function uses fewer cycles.

��

���

����

����

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��
���

��
�

������������������

���
���

Figure 8: TATP throughput

��

���

���

���

���

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��
���

��
�

������������������

���
���

Figure 9: SmallBank throughput

shows the throughput on our clusters. On CX3, FaSST
achieves 3.6 Mtps/machine with 3 nodes (the minimum
required for 3-way replication), and 3.55 Mtps/machine
with 50 nodes. On CIB, FaSST’s throughput increases
to 8.7 Mtps/machine with 3–11 nodes. In both cases,
FaSST’s throughput scales linearly with cluster size.

Comparison: FaRM [12] reports 1.55 Mtps/machine for
TATP on a 90-node cluster. With a smaller 50-node clus-
ter, however, FaRM achieves higher throughput (≈ 1.9
Mtps/machine) [1]. On 50 nodes on CX3, FaSST’s
throughput is 87% higher. Compared to O(1,0), the
TATP performance difference between FaSST and FaRM
is higher. TATP’s write transactions require using FaRM’s
RPCs, which deliver 4x lower throughput than FaRM’s
one-sided READs, and up to 8x lower throughput than
FaSST’s RPCs (Section 4.5).

6.3 SmallBank
To scale the SmallBank database, we use 100,000 bank
accounts per thread. 4% of the total accounts are accessed
by 90% of transactions. (Despite the skew, the work-
load does not have significant contention due to the large
number of threads, and therefore “bank accounts” in the
workload/cluster.) This configuration is the same as in
DrTM [28]. Figure 9 shows FaSST’s performance on
our clusters. FaSST achieves 1.57–1.71 Mtps/machine
on CX3, and 4.2–4.3 Mtps/machine on CIB, and scales
linearly with cluster size.

Comparison: DrTM+R [7] achieves 0.93 Mtps/machine
on a cluster similar to CX3 (Table 3), but with more pow-
erful CPUs. FaSST outperforms it by over 1.68x on CX3,
and over 4.5x on CIB. DrTM+R’s lower performance
comes from three factors. First, ATOMICs lead to a funda-
mentally slower protocol. For example, excluding logging
and replication, for a write-set key, DrTM+R uses four
separate messages to read, lock, update, and unlock the
key; FaSST uses only two messages. Second, as shown

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 197

��

���

���

���

���

����

�� ��� ��� ��� ��� ����

�
�
��
�
�
�
��
�
��
��
�
�
�
�
�
�
�
�

�������������������������

����

������

Figure 10: TATP latency on CIB

in our prior work, ATOMICs perform poorly (up to 10x
worse than READs) on the ConnectX-3 NICs [16] used
in DrTM+R; evaluation on Connect-IB NICs may yield
better performance, but is unlikely to outperform FaSST
because of the more expensive protocol. Third, DrTM+R
does not use queue pair sharing, so their reported perfor-
mance may be affected by NIC cache misses.

6.4 Latency
For brevity, we discuss FaSST’s latency only for TATP
on CIB. Figure 10 shows FaSST’s median and 99th per-
centile latency for successfully committed TATP transac-
tions. To plot a throughput-latency curve, we vary the re-
quest load by increasing the number of worker coroutines
per thread from 1 to 19; each machine runs 14 threads
throughout. We use at most 19 worker coroutines per
thread to limit the RECV queue size required on a (hypo-
thetical) 100-node cluster to 2048 RECVs (Section 4.4).
Using the next available RECV queue size with 4096
RECVs can cause NIC cache misses for some workloads.
With one worker coroutine per thread, the total transaction
throughput is 19.7 Mtps with 2.8 µs median latency and
21.8 µs 99th percentile latency. Since over 50% of com-
mitted transactions in TATP are single-key reads, FaSST’s
median latency at low load is close to the network’s RTT.
This shows that our batching optimizations do not add
noticeable latency. With 19 worker coroutines per thread,
cluster throughput increases to 95.7 Mtps, and median and
99th percentile latency increase to 12.6 µs and 87.2 µs,
respectively.

7 Future trends
7.1 Scalable one-sided RDMA
A key limitation of one-sided RDMA on current com-
modity hardware is its low scalability. This limitation
itself comes from the fundamentally connection-oriented
nature of the Virtual Interface Architecture. Two attempts
at providing scalable one-sided RDMA are worth men-
tioning.

DCT: Mellanox’s Dynamically Connected Transport [2]
(DCT) preserves their core connection-oriented design,

but dynamically creates and destroys one-to-one connec-
tions. This provides software the illusion of using one
QP to communicate with multiple remote machines, but
at a prohibitively large performance cost for our work-
loads: DCT requires three additional network messages
when the target machine of a DCT queue pair changes: a
disconnect packet to the current machine, and a two-way
handshake with the next machine to establish a connec-
tion [8]. In a high fanout workload such as distributed
OLTP, this increases the number of packets associated
with each RDMA request by around 1.5x, reducing per-
formance.

A detailed evaluation of DCT on CIB is available in
FaSST’s source code repository. Here, we discuss DCT’s
performance in the READ rate benchmark used in Sec-
tion 3.3.1. We use 6 machines and 14 threads per ma-
chine, which issue 32-byte READs to machines chosen
uniformly at random. We vary the number of outstanding
READs per thread, and the number of DCT QPs used by
each thread. (Using only one DCT QP per thread limits its
throughput to approximately one operation per multiple
RTTs, since a QP cannot be used to READ from multiple
machines concurrently. Using too many DCT QPs causes
cache NIC misses.) We achieve only up to 22.9 Mrps per
machine—55.3% lower than the 51.2 Mrps achievable
with standard READs over the RC transport (Figure 1).

Portals: Portals is a less-widespread RDMA specifica-
tion that provides scalable one-sided RDMA using a con-
nectionless design [4]. Recently, a hardware implementa-
tion of Portals—the Bull eXascale Interconnect [10]—has
emerged, currently available only to HPC customers. The
availability of scalable one-sided RDMA may reduce the
performance gap between FaSST and FaRM/DrTM+R.
However, even with scalable one-sided RDMA, trans-
action systems that use it will require large or multiple
READs to access data stores, reducing performance. Fur-
ther, it is likely that RPC implementations that use scal-
able one-sided WRITEs will provide even better perfor-
mance than FaSST’s two-sided RPCs by avoiding the NIC
and PCIe overhead of RECVs. However, WRITE-based
RPCs do not scale well on current commodity hardware.

In this paper, we took an extreme position where we
used only RPCs, demonstrating that remote CPU bypass
is not required for high performance transactions, and
that a design using optimized RPCs can provide better
performance. If scalable one-sided RDMA becomes com-
monly available in the future, the best design will likely
be hybrid of RPCs and remote bypass, with RPCs used
for accessing data structures during transaction execu-
tion, and scalable one-sided WRITEs used for logging
and replication during transaction commit.

198 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7.2 More queue pairs
Our experiments show that the newer Connect-IB NIC
can cache a larger number of QPs than ConnectX-3 (Fig-
ure 2). Just as advances in technology yield NICs that
are faster and have more/better cache, newer CPUs will
also have more cores. We showed earlier that sharing
QPs between only 2 threads causes CPU efficiency to
drop by several factors (Figure 3). Avoiding QP sharing
with next-generation CPUs (e.g., 28 cores in Intel’s up-
coming Skylake processors) on a 100-node cluster will
require NICs that can cache 2800 QPs—7 times more
than Connect-IB’s 400 QPs. This trend lends additional
support to datagram-based designs.

7.3 Advanced one-sided RDMA
Future NICs may provide advanced one-sided RDMA
operations such as multi-address atomic operations, and
B-Tree traversals [23]. Both of these operations require
multiple PCIe round trips, and will face similar flexibility
and performance problems as one-sided RDMA (but over
the PCIe bus) if used for high-performance distributed
transactions. On the other hand, we believe that “CPU
onload” networks such as Intel’s 100 Gbps OmniPath [6]
are well-suited for transactions. These networks provide
fast messaging over a reliable link layer, but not one-sided
RDMA, and are therefore cheaper than “NIC offload”
networks such as Mellanox’s InfiniBand. FaSST requires
only messaging, so we expect our design to work well
over OmniPath.

8 Related work
High-performance RDMA systems: FaSST draws
upon our prior work on understanding RDMA perfor-
mance [16], where we demonstrated the effectiveness of
Doorbell batching for RDMA verbs. A number of recent
systems have used one-sided verbs to build key-value
stores and distributed shared memory [20, 21, 11, 21].
These systems demonstrate that RDMA is now a practical
primitive for building non-HPC systems, though their one-
sided designs introduce additional complexities and per-
formance bottlenecks. FaSST’s two-sided RPC approach
generalizes our approach in HERD [15]. HERD used a
hybrid of unreliable one-sided and two-sided RDMA to
implement fast RPCs in a client-server setting; FaSST
extends this model to a symmetric setting and further
describes a technique to implement reliability.

Distributed transactions in the datacenter: Like
FaSST, FaRM [12] uses primary-backup replication and
optimistic concurrency control for transactions. FaRM’s
design (unlike FaSST) is specialized to work with their
desire to use one-sided RDMA verbs. FaRM also pro-
vides fast failure detection and recovery, and a sophis-
ticated programming model, which was not a goal of

this work. Several projects use one-sided ATOMICs for
transactions [28, 7, 5]. Though an attractive primitive,
ATOMICs are slow on current NICs (e.g., ConnectX-3
serializes all ATOMIC operations [16]), use connected
QPs, and fundamentally require more messages than an
RPC-based approach (e.g., separate messages are needed
to read and lock a key). Calvin [25] uses conventional
networking without kernel bypass, and is designed around
avoiding distributed commit. Designs that use fast net-
works, however, can use traditional distributed commit
protocols to achieve high performance [12, 28].

9 Conclusion
FaSST is a high-performance, scalable, distributed in-
memory transaction processing system that provides se-
rializability and durability. FaSST achieves its perfor-
mance using FaSST RPCs, a new RPC design tailored
to the properties of modern RDMA hardware that uses
two-sided verbs and datagram transport. It rejects one of
the seemingly most attractive properties of RDMA—CPU
bypass—to keep its communication overhead low and its
system design simple and fast. The combination allows
FaSST to outperform recent RDMA-based transactional
systems by 1.68x–1.87x with fewer resources and mak-
ing fewer workload assumptions. Finally, we provide the
first large-scale study of InfiniBand network reliability,
demonstrating the rarity of packet loss on such networks.

Acknowledgments We are tremendously grateful to
Joseph Moore and NetApp for providing continued ac-
cess to the CIB cluster. We thank Miguel Castro for initial
discussions that shaped this project, and for his feedback
on the paper. We also thank Milo Martin for his feedback
that helped improve the paper, Chao Xin for conducting
initial performance measurements, Hyeontaek Lim for
his generous support with running MICA, and Y. Char-
lie Hu for shepherding. Emulab [29] and PRObE [14]
resources were used in our experiments. PRObE is sup-
ported in part by NSF awards CNS-1042537 and CNS-
1042543 (PRObE). This work was supported by fund-
ing from the National Science Foundation under awards
1345305, 1314721, and 1535821, and by Intel via the In-
tel Science and Technology Center for Cloud Computing
(ISTC-CC).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 199

References

[1] Private communication with FaRM’s authors.
[2] Mellanox Connect-IB product brief. http:

//www.mellanox.com/related-docs/prod_

adapter_cards/PB_Connect-IB.pdf, 2015.
[3] Mellanox OFED for Linux user manual.

http://www.mellanox.com/related-docs/
prod_software/Mellanox_OFED_Linux_User_

Manual_v2.2-1.0.1.pdf, 2015.
[4] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pe-

dretti, K. Wheeler, K. Underwood, R. Riesen, A. B.
Maccabe, and T. Hudson. The Portals 4.0 network
programming interface november 14, 2012 draft.

[5] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and
E. Zamanian. The end of slow networks: It’s time
for a redesign. In Proc. VLDB, New Delhi, India,
Aug. 2016.

[6] M. S. Birrittella, M. Debbage, R. Huggahalli,
J. Kunz, T. Lovett, T. Rimmer, K. D. Underwood,
and R. C. Zak. Intel Omni-path architecture: En-
abling scalable, high performance fabrics. In Pro-
ceedings of the 2015 IEEE 23rd Annual Symposium
on High-Performance Interconnects, 2015.

[7] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast
and general distributed transactions using RDMA
and HTM. In Proc. 11th ACM European Conference
on Computer Systems (EuroSys), Apr. 2016.

[8] D. Crupnicoff, M. Kagan, A. Shahar, N. Bloch,
and H. Chapman. Dynamically-connected trans-
port service, May 19 2011. URL https://www.
google.com/patents/US20110116512. US Patent
App. 12/621,523.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-
lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-
nian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. In Proc. 21st
ACM Symposium on Operating Systems Principles
(SOSP), Stevenson, WA, Oct. 2007.

[10] S. Derradji, T. Palfer-Sollier, J.-P. Panziera,
A. Poudes, and F. W. Atos. The BXI interconnect
architecture. In Proceedings of the 2015 IEEE 23rd
Annual Symposium on High-Performance Intercon-
nects, 2015.

[11] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In Proc.
11th USENIX NSDI, Seattle, WA, Apr. 2014.

[12] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Cas-
tro. No compromises: Distributed transactions with
consistency, availability, and performance. In Proc.
25th ACM Symposium on Operating Systems Prin-

ciples (SOSP), Monterey, CA, Oct. 2015.
[13] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,

B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and
C. Dodd. The virtual interface architecture. IEEE
Micro, pages 66–76, 1998.

[14] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
PRObE: A Thousand-Node Experimental Cluster
for Computer Systems Research.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In Proc.
ACM SIGCOMM, Chicago, IL, Aug. 2014.

[16] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high-performance RDMA systems. In
Proc. USENIX Annual Technical Conference, Den-
ver, CO, June 2016.

[17] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos
and primary-backup replication. Technical report,
Microsoft Research, 2009.

[18] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-
value storage. In Proc. 11th USENIX NSDI, Seattle,
WA, Apr. 2014.

[19] Y. Mao, E. Kohler, and R. T. Morris. Cache crafti-
ness for fast multicore key-value storage. In Proc.
7th ACM European Conference on Computer Sys-
tems (EuroSys), Bern, Switzerland, Apr. 2012.

[20] C. Mitchell, Y. Geng, and J. Li. Using one-sided
RDMA reads to build a fast, CPU-efficient key-value
store. In Proc. USENIX Annual Technical Confer-
ence, San Jose, CA, June 2013.

[21] C. Mitchell, K. Montgomery, L. Nelson, S. Sen,
and J. Li. Balancing CPU and network in the cell
distributed B-Tree store. In Proc. USENIX Annual
Technical Conference, Denver, CO, June 2016.

[22] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Latency-tolerant software
distributed shared memory. In Proc. USENIX An-
nual Technical Conference, Santa Clara, CA, June
2015.

[23] S. Raikin, L. Liss, A. Shachar, N. Bloch, and M. Ka-
gan. Remote transactional memory, 2015. US Patent
App. 20150269116.

[24] J. W. Stamos and F. Cristian. Coordinator log
transaction execution protocol. Distrib. Parallel
Databases, 1(4):383–408, Oct. 1993. ISSN 0926-
8782. doi: 10.1007/BF01264014. URL http:
//dx.doi.org/10.1007/BF01264014.

[25] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, May

200 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
https://www.google.com/patents/US20110116512
https://www.google.com/patents/US20110116512
http://dx.doi.org/10.1007/BF01264014
http://dx.doi.org/10.1007/BF01264014

2012.
[26] TPC-C. TPC benchmark C. http://www.tpc.org/

tpcc/, 2010.
[27] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Mad-

den. Speedy transactions in multicore in-memory
databases. In Proc. 24th ACM Symposium on Oper-
ating Systems Principles (SOSP), Farmington, PA,
Nov. 2013.

[28] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In Proc. 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[29] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In Proc.
5th USENIX OSDI, pages 255–270, Boston, MA,
Dec. 2002.

[30] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky,
L. Ma, and R. Shen. Reducing the storage over-
head of main-memory OLTP databases with hybrid
indexes. In Proc. ACM SIGMOD, San Francisco,
USA, June 2016.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 201

http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

NetBricks: Taking the V out of NFV

Aurojit Panda† Sangjin Han† Keon Jang‡ Melvin Walls† Sylvia Ratnasamy† Scott Shenker†?

† UC Berkeley ‡ Google ? ICSI

Abstract
The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve I/O
efficiency, we introduce a novel technique called zero-copy
software isolation.

1 Introduction
Networks today are responsible for more than just for-
warding packets, this additional functionality is imple-
mented using “middleboxes”. Middleboxes implement a
wide range of functionality, including security (e.g., fire-
walls, IDS/IPSs), performance (e.g., caches, WAN opti-
mizers) and support for new applications and protocols
(e.g., TLS proxies). Middlebox functionality was initially
provided by dedicated hardware devices, and is in wide de-
ployment today. A 2012 survey [44] found that in many net-
works there are equal numbers of middleboxes, switches
and routers.

Approximately four years ago, many large carriers ini-
tiated an effort, called Network Function Virtualization
(NFV), to replace hardware middleboxes with software
implementations running in VMs [10]. This approach en-
abled middlebox functionality (called Network Functions
or NFs) to be run on commodity servers and was supposed
to bring several advantages including: (a) simplifying de-
ployment, since deploying new functionality merely re-
quires software changes; (b) simpler management using

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of µs,
and throughput on the order of 10s of Gbps; efficiency,
it should be possible to consolidate several NFs on a sin-
gle machine; support for chaining, since each packet is
typically processed by a sequence of NFs; the flexibility
to run NFs manufactured by multiple vendors; and the
ability to process packets from multiple tenants while pro-
viding some degree of isolation between them. Note that
because many carriers provide middlebox services to their
customers, the NFs supported by carriers include those that
are commonly found in enterprise environments (e.g., fire-
walls, NATs, IPS/IDSs, WAN optimizers, etc.) in addition
to ones specific to carriers (e.g., EPC, carrier-grade NAT).

Why do current tools for building and running NFs fall
short of these requirements? In terms of building NFs, tools
need to support both rapid-development (achieved through
the use of high-level abstractions) and high performance
(often requiring low-level optimizations). In other appli-
cation domains, programming frameworks and models
have been developed to allow developers to use high-level
abstractions while the framework optimizes the implemen-
tations of those abstractions (ensuring high performance);
the rise of data analytic frameworks (e.g., Hadoop, Spark)
is an example of this phenomenon. However, the state-of-
the-art for NFV is much more primitive. There are program-
ming models such as Click [27] that do not provide easily
customizable low-level optimizations, and libraries such as

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 203

DPDK [23] that only provide highly-optimized packet I/O
and low-level processing primitives (which alone is not suf-
ficient to implement real-world NFs), but no approach that
provides both high performance and rapid development.
The result is that today NFV developers typically spend
much time optimizing their code, which greatly slows de-
velopment time and increases the likelihood for bugs.

The current approaches for running NFs is also inade-
quate. Isolation between NF is critical: memory isolation
is essential for ensuring safety between NFs (which might
come from different vendors); and performance isolation
is essential to allow such deployments to serve multiple
customers. Currently, NFV deployments rely on VMs and
containers to provide isolation, but as we show in §5, they
incur substantial performance overheads for simple NFs.

To address these inadequacies in the current NFV
paradigm, we propose a very different approach for build-
ing and running NFs.1 Our approach, called NetBricks, is
clean-slate in that it requires rewriting NFs, but we do not
see this as a significant drawback given the relative lack of
progress towards NFV deployments. Our approach targets
deployments in large carrier networks, but applies to other
environments as well.

NetBricks provides both a programming model (for
building NFs) and an execution environment (for running
NFs). The programming model is built around a core set
of high-level but customizable abstractions for common
packet processing tasks; to demonstrate the generality of
these abstractions and the efficiency of their implemen-
tations, we reimplemented 5 existing NFs in NetBricks
and show that they perform well compared to their native
versions. Our execution environment relies on the use of
safe languages and runtimes for memory and fault isola-
tion (similar to existing systems we rely on scheduling
for performance isolation). Inter-process communication
is also important in NF deployments, and IPC in these
deployments must ensure that messages cannot be modi-
fied by an NF after being sent, a property we refer to as
packet isolation. Current systems copy packets to ensure
packet isolation, we instead use static check to provide this
property without copies. The resulting design, which we
call Zero-Copy Software Isolation (ZCSI), is the first to
achieve memory and packet isolation with no performance
penalty (in stark contrast to virtualization).

NetBricks is open source and is available at https:
//netbricks.io.

1Note that in addition to building and running NFs, one also has to
manage them. There are separate and active efforts on this topic (dis-
cussed in §6) in both research [12, 37] and industry [11, 30] that are
orthogonal to our concerns here.

2 Background and Motivation
In this section we provide a few more details on the prob-
lems with today’s approaches to NFV, and then give a
high-level description of how NetBricks resolves these
problems. As in much of this paper, we separate the task
of building NFs from the task of running them.

2.1 Building NFs
The vast majority of commercial NFs today make use of a
fast I/O library (DPDK, netmap, etc.). While this greatly
improves I/O performance, developers are responsible for
all other code optimizations. The Click modular router
(which can also make use of such libraries) enables de-
velopers to construct an NF by connecting together vari-
ous packet processing modules (called elements). While
Click does not limit how packets flow between elements,
modules typically support only limited amount of cus-
tomization through setting various parameters. Thus, when
implementing new NF functionality, developers commonly
need to implement new modules, and optimizing the perfor-
mance of such a module is difficult and time-consuming.

Our approach differs in two respects. First, we limit
the set of such modules to core functions such as packet
parsing, processing payloads, bytestream processing, and
the like. That is, rather than have developers deal with
a large set of modules – trying to determine which best
suit their needs in terms of optimization and generality –
NetBricks focuses on a core set with well-known semantics
and highly-optimized implementations.

Second, in order to provide the necessary generality, we
allow these core modules to be customized through the
use of User-Defined Functions (UDFs). This gives these
modules great flexibility, while allowing NetBricks to use
optimized implementations of these modules. We think this
approach represents a sweet-spot in the tradeoff between
flexibility and performance; yes, one can imagine NFs
that would not be easily supported by the set of modules
NetBricks provides, but all the common NFs we know of
fit comfortably within NetBricks’ range. NetBricks thus
gives developers the flexibility they need, and operators
the performance they want.

One can think of the relationship between Click and Net-
Bricks to be analogous to the difference between MPI and
Map Reduce. Both Click and MPI give developers a totally
general framework in which to build their applications, but
the developer must take on the task of optimizing the result-
ing code (unless they can reuse existing modules without
change). In contrast, NetBricks and Map Reduce support
only a more limited set of abstractions whose actions can
be customized through user code.

204 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://netbricks.io
https://netbricks.io

2.2 Running NFs
Current NFV deployments typically involve NFs run-
ning in containers or VMs, which are then connected via
vSwitch. In this setup VMs and containers provide isola-
tion, ensuring that one NF cannot access memory belong-
ing to another and the failure of an NF does not bring down
another. The vSwitch abstracts NICs, so that multiple NFs
can independently access the network, and is also respon-
sible for transferring packets between NFs. This allows
several NFs to be consolidated on a single physical ma-
chine and allows operators to “chain” several NFs together
i.e., ensure packets output from one NF are sent to another.

However these mechanisms carry a significant perfor-
mance penalty. When compared to a single process with
access to a dedicated NIC, per-core throughput drops by
up to 3⇥ when processing 64B (minimum size) packets
using containers, and by up to 7⇥ when using VMs. This
gap widens when NFs are chained together; containers are
up to 7⇥ slower than a case where all NFs run in the same
process, and VMs are up to 11⇥ slower. Finally, running
chaining multiple NFs in a single process is up to 6⇥ faster
than a case where each NF runs in a container (or VM)
and is allocated its own core – this shows that adding cores
does not address this performance gap. We provide more
details on these results in §5.3.

The primary reason for this performance difference it
that during network I/O packets must cross a hardware
memory isolation boundary. This entails a context switch
(or syscall), or requires that packets must cross core bound-
aries; both of which incur significant overheads. We avoid
these overheads by relying on compile-time and runtime
checks to enforce memory isolation in software. This is
similar what was proposed by Singularity [20]. To further
reduce packet I/O costs we use unique types [13] to im-
plement safe 0-copy packet I/O between NFs. We call this
technique Zero-Copy Software Isolation (ZCSI) and show
that it provides low-overhead isolation for NFs.

3 Design
In this section we describe the design of NetBricks, start-
ing with the programming abstractions and ending with
the execution environment. We focus on NetBricks’s archi-
tecture in this section, and present implementation notes
in the next section.

3.1 Programming Abstractions
Network functions in NetBricks are built around several
basic abstractions, whose behavior is dictated by user sup-
plied functions (UDFs). An NF is specified as a directed
graph with these abstractions as nodes. These abstrac-
tions fall into five basic categories – packet processing,

bytestream processing, control flow, state management,
and event scheduling – which we now discuss in turn.

Abstractions for Packet Processing: Each packet in
NetBricks is represented by a structure containing (i) a
stack of headers; (ii) the payload; and (iii) a reference to
any per-packet metadata. Headers in NetBricks are struc-
tures which include a function for computing the length
of the header based on its contents. Per-packet metadata
is computed (and allocated) by UDFs and is used to pass
information between nodes in an NF. UDFs operating on a
packet are provided with the packet structure, and can ac-
cess the last parsed header, along with the payload and any
associated metadata. Each packet’s header stack initially
contains a “null” header that occupies 0 bytes.

We provide the following packet processing operators:
• Parse: Takes as input a header type and a packet

structure (as described above). The abstraction parses
the payload using the header type and pushes the
resulting header onto the header stack and removes
bytes representing the header from the payload.

• Deparse: Pops the bottom most header from the
packet’s header stack and returns it to the payload.

• Transform: This allows the header and/or payload
to be modified as specified by a UDF. The UDF can
make arbitrary changes to the packet header and pay-
load, change packet size (adding or removing bytes
from the payload) and can change the metadata or
associate new metadata with the packet.

• Filter: This allows packet’s meeting some criterion
to be dropped. UDFs supplied to the filter abstraction
return true or false. Filter nodes drops all packets for
which the UDF returns false.

Abstractions for Bytestream Processing: UDFs oper-
ating on bytestreams are given a byte array and a flow
structure (indicating the connection). We provide two op-
erators for bytestream processing:

• Window: This abstraction takes four input parame-
ters: window size, sliding increment, timeout and a
stream UDF. The abstraction is responsible for receiv-
ing, reordering and buffering packets to reconstruct
a TCP stream. The UDF is called whenever enough
data has been received to form a window of the ap-
propriate size. When a connection is closed or the
supplied timeout expires, the UDF is called with all
available bytes. By default, the Window abstraction
also forwards all received packets (unmodified), al-
lowing windows to be processed outside of the regu-
lar datapath. Alternatively, the operator can drop all
received packets, and generate and send a modified
output stream using the packetize node.

• Packetize: This abstraction allows users to convert

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 205

byte arrays into packets. Given a byte array and a
header stack, the implementation segments the data
into packets with the appropriate header(s) attached.

Our current implementations of these operators assume
the use of TCP (i.e., we use the TCP sequence numbers
to do reordering, use FIN packets to detect a connection
closing, and the Packetize abstraction applies headers by
updating the appropriate TCP header fields), but we plan
to generalize this to other protocols in the future.

Abstractions for Control Flow Control flow abstrac-
tions in NetBricks are necessary for branching (and merg-
ing branches) in the NF graph. Branching is required to
implement conditionals (e.g., splitting packets according
to the destination port, etc.), and for scaling packet process-
ing across cores. To efficiently scale across multiple cores,
NFs need to minimize cross-core access to data (to avoid
costs due to cache effects and synchronization); however,
how traffic should be partitioned to meet this objective
depends on the NF in question. Branching constructs in
NetBricks therefore provide NF authors a mechanism to
specify an appropriate partitioning scheme (e.g., by port
or destination address or connection or as specified by a
UDF) that can be used by NetBricks’s runtime. Further-
more, branching is often also necessary when chaining
NFs together. Operators can use NetBricks’s control flow
abstractions to express such chaining behavior by dictating
which NF a packet should be directed to next. To accom-
plish these various goals, NetBricks offers three control
flow operators:

• Group By: Group By is used either to explicitly
branch control flow within an NF or express branches
in how multiple NFs are chained together. The group
by abstraction takes as input the number of groups
into which packets are split and a packet-based UDF
which given a packet returns the ID of the group to
which it belongs. NetBricks also provides a set of
predefined grouping functions that group traffic using
commonly-used criterion (e.g., TCP flow).

• Shuffle: Shuffles is similar to Group By except that
the number of output branches depends on the number
of active cores. The runtime uses the group ID output
by the shuffle node to decide the core on which the
rest of the processing for the packet will be run. Simi-
lar to Group By, NF writers can use both user-defined
functions and predefined functions with shuffle nodes.
Semantically, the main difference lies in the fact that
shuffle outputs are processed on other cores, and the
number of outputs is not known at compile time.

• Merge: Merge provides a node where separate pro-
cessing branches can be merged together. All packets
entering a merge node exit as a single group.

State Abstraction Modern processors can cheaply pro-
vide consistent (serializable) access to data within a core;
however, cross-core access comes at a performance cost be-
cause of the communication required for cache coherence
and the inherent cost of using synchronization primitives
such as locks. As a result, NFs are commonly programmed
to partition state and avoid such cross-core accesses when
possible, or use looser consistency (reducing the frequency
of such accesses) when state is not partitionable in this
way. Rather than requiring NF writers to partition state and
reason about how to implement their desired consistency
guarantees, NetBricks provides state abstractions.

Our state abstractions partition the data across cores.
Accesses within a core are always synchronized, but we
provide several options for other accesses, including (a) no-
external-access, i.e., only one core accesses each partition;
(b) bounded inconsistency where only one core can write
to a partition, but other cores can read these writes within
a user supplied bound (specified as number of updates);
and (c) strict-consistency where we use traditional synchro-
nization mechanisms to support serializable multi-reader,
multi-writer access.

Abstractions for Scheduled Events We also support
invocation nodes, which provide a means to run arbitrary
UDFs at a given time (or periodically), and can be used
to perform tasks beyond packet processing (e.g., collect
statistics from a monitoring NF).

3.2 Execution Environment
Next we describe NetBricks’s runtime environment, which
is responsible for providing isolation between NFs, and
NF placement and scheduling.

Isolation As we discuss in §5, container and VM based
isolation comes at a significant penalty for simple NFs (for
very complex NFs, the processing time inside the NF dom-
inates all other factors, and this is where the efficiency of
the NFs built with NetBricks becomes critical). NetBricks
therefore takes a different tack and uses software isolation.
Previously, Singularity [20] showed that the use of safe
languages (i.e., ones which enforce certain type checks)
and runtimes can be used to provide memory isolation that
is equivalent to what is provided by the hardware mem-
ory management unit (MMU) today. NetBricks borrows
these ideas and builds on a safe language (Rust) and uses
LLVM [28] as our runtime. Safe languages and runtime
environments provide four guarantees that are crucial for
providing memory isolation in software: (a) they disallow
pointer arithmetic, and require that any references acquired
by a code is either generated due to an allocation or a func-
tion call; (b) they check bounds on array accesses, thus
preventing stray memory accesses due to buffer overflows

206 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(and underflows); (c) they disallow accesses to null object,
thus preventing applications from using undefined behav-
ior to access memory that should be isolated; and (d) they
ensure that all type casts are safe (and between compatible
objects). Traditionally, languages providing these features
(e.g., Java, C#, Go, etc.) have been regarded as being too
slow for systems programming.

This situation has improved with recent advances in lan-
guage and runtime design, especially with the widespread
adoption of LLVM as a common optimization backend
for compilers. Furthermore, recent work has helped elimi-
nate bounds checks in many common situations [2], and
recently Intel has announced hardware support [18] to re-
duce the overhead of such checks. Finally, until recently
most safe languages relied on garbage collection to safely
allocate memory. The use of garbage collection results in
occasional latency spikes which can adversely affect per-
formance. However, recent languages such as Rust have
turned to using reference counting (smart pointers) for heap
allocations, leading to predictable latency for applications
written in these languages. These developments prompted
us to revisit the idea of software isolation for NFs; as we
show later in §5, NetBricks achieves throughputs and 99th

percentile latency that is comparable with NFs written in
more traditional system languages like C.

NFV requires more than just memory isolation; NFV
must preserve the semantics of physical networks in the
sense that an NF cannot modify a packet once it has been
sent (we call this packet isolation). This is normally imple-
mented by copying packets as they are passed from NF to
NF, but this copying incurs a high performance overhead
in packet-processing applications. We thus turn to unique
types [13] to eliminate the requirement that packets be
copied, while preserving packet isolation.

Unique types, which were originally proposed as a
means to prevent data races, disallow two threads from
simultaneously having access to the same data. They were
designed so that this property could be statically verified
at compile time, and thus impose no runtime overhead. We
design NetBricks so that calls between NFs are marked to
ensure that the sender looses access to the packet, ensur-
ing that only a single NF has access to the packet. This
allows us to guarantee that packet isolation holds without
requiring any copying. Note that it is possible that some
NFs (e.g., IDSes or WAN optimizers) might require access
to packet payloads after forwarding packets; in this case
the NF is responsible for copying such data.

We refer to the combination of these techniques as Zero-
Copy Soft Isolation (ZCSI), which is the cornerstone of
NetBricks’s execution environment. NetBricks runs as a
single process, which maybe assigned one or more cores

for processing and one or more NICs for packet I/O. We
forward packets between NFs using function calls (i.e., in
most cases there are no queues between NFs in a chain,
and queuing is done by the receiving NF).

Placement and Scheduling A single NetBricks process
is used to run several NFs, which we assume are arranged
in several parallel directed graphs – these parallel graphs
would be connected to different network interfaces, as
might be needed in a multi-tenant scenario where different
tenants are handled by different chains of NFs. In addition
to the nodes corresponding to the abstractions discussed
above, these graphs have special nodes for receiving pack-
ets from a port, and sending packets out a NIC. Before
execution NetBricks must decide what core is used to run
each NF chain. Then, since at any time there can be sev-
eral nodes in this graph with packets to process, NetBricks
must make scheduling decisions about which packet to
process next.

For placement, we envision that eventually external man-
agement systems (such as E2 [37]) would be responsible
for deciding how NFs are divided across cores. At present,
to maximize performance we place an entire NF chain on
a single core, and replicate the processing graph across
cores when scaling. More complex placement policies can
be implemented using shuffle nodes, which allow packets
to be forwarded across cores.

We use run-to-completion scheduling, i.e., once a packet
has entered the NF, we continue processing it until it exits.
This then leaves the question of the order in which we let
packets enter the NF, and how we schedule events that
involve more than one packet. We denote such process-
ing nodes as “schedulable”, and these include nodes for
receiving packets from a port, Window nodes (which need
to schedule their UDF to run when enough data has been
collected), and Group By nodes (which queue up packets
to be processed by each of the branches). Currently, we use
a round-robin scheduling policy to schedule among these
nodes (implementing more complex scheduling is left to
future work).

4 Implementation
While the previous section presented NetBricks’s over-
all design, here we describe some aspects of its use and
implementation.

4.1 Two Example NFs
We use two example NFs to demonstrate how NFs are

written in NetBricks. First, in Listing 1 we present a trivial
NF that decrements the IP time-to-live (TTL) field and
drops any packets with TTL 0. NFs in NetBricks are gen-
erally packaged as public functions in a Rust module, and

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 207

1 pub fn ttl_nf<T: ’static + NbNode>(input: T)
2 -> CompositionNode {
3 input.parse::<MacHeader>()
4 .parse::<IpHeader>()
5 .transform(box |pkt| {
6 let ttl = pkt.hdr().ttl() - 1;
7 pkt.mut_hdr().set_ttl(ttl);
8 })
9 .filter(box |pkt| {

10 pkt.hdr().ttl() != 0
11 })
12 .compose()
13 }

Listing 1: NetBricks NF that decrements TTL, dropping packets with
TTL=0.

1 // cfg is configuration including

2 // the set of ports to use.

3 let ctx = NetbricksContext::from_cfg(cfg);
4 ctx.queues.map(|p| ttl_nf(p).send(p));

Listing 2: Operator code for using the NF in Listing 1

an operator can create a new instance of this NF using
the ttl nf function (line 1), which accepts as input a
“source” node. The NF’s processing graph is connected
to the global processing graph (i.e., the directed graph of
how processing is carried out end-to-end in a NetBricks
deployment) through this node. The NF’s processing graph
first parses the ethernet (MAC) header from the packet
(line 3), and then parses the IP header (line 4). Note that
in this case where the IP header begins depends on the
contents of the ethernet header and can vary from packet
to packet. Once the IP header has been parsed the NF uses
the transform operator to decrement each packet’s TTL.
Finally, we use the filter operator to drop all packets
with TTL 0. The compose operator at the end of this NF
acts as a marker indicating NF boundaries, and allows NFs
to be chained together. This NF includes no shuffle op-
erators, however by default NetBricks ensures that packets
from the same flow are processed by a single core. This is
to avoid bad interactions with TCP congestion control. List-
ing 2 shows how an operator might use this NF. First, we
initialize a NetbricksContext using a user supplied
configuration (Line 2). Then we create pipelines, such that
for each pipeline (a) packets are received from an input
queue; (b) received packets are processed using ttl nf;
and (c) packets are output to the same queue. Placement
of each pipeline in this case is determined by the core to
which a queue is affinitized, which is specified as a part of
the user configuration.

Next, in Listing 3 we present a partial implementation
of Maglev [9], a load balancer built by Google that was
the subject of a NSDI 2016 paper. Maglev is responsible
for splitting incoming user requests among a set of back-
end servers, and is designed to ensure that (a) it can be
deployed in a replicated cluster for scalability and fault
tolerance; (b) it evenly splits traffic between backends;
and (c) it gracefully handles failures, both within the Ma-

1 pub fn maglev_nf<T: ’static + NbNode>(
2 input: T
3 backends: &[str],
4 ctx: nb_ctx,
5 lut_size: usize)
6 -> Vec<CompositionNode> {
7 let backend_ct = backends.len();
8 let lookup_table =
9 Maglev::new_lut(ctx,

10 backends,
11 lut_size);
12 let mut flow_cache =
13 BoundedConsistencyMap::<usize, usize>::new();
14

15 let groups =
16 input.shuffle(BuiltInShuffle::flow)
17 .parse::<MacHeader>()
18 .group_by(backend_ct, ctx,
19 box move |pkt| {
20 let hash =
21 ipv4_flow_hash(pkt, 0);
22 let backend_group =
23 flow_cache.entry(hash)
24 .or_insert_with(|| {
25 lookup_table.lookup(hash)});
26 backend_group
27 });
28 groups.iter().map(|g| g.compose()).collect()
29 } Listing 3: Maglev [9] implemented in NetBricks.

glev cluster and among the backends. Maglev uses a novel
consistent hashing algorithm (based on a lookup table) to
achieve these aims. It however needs to record the mapping
between flows and backends to ensure that flows are not
rerouted due to failures.

The code in Listing 3 represents the packet processing
and forwarding portions of Maglev; our code for generat-
ing the Maglev lookup table and consistent hashing closely
resemble the pseudocode in Section 3.4 of the paper. The
lookup table is stored in a bounded consistency state store,
which allows the control plane to update the set of active
backends over time. An instance of the Maglev NF is in-
stantiated by first creating a Maglev lookup table (Line
8) and a cache for recording the flow to backend server
mappings (Line 12). The latter is unsynchronized (i.e., it is
not shared across cores); this is consistent with the descrip-
tion in the Maglev paper. We then declare the NF (starting
at line 15); we begin by using a shuffle node to indicate
that the NF need all packets within a flow (line 16) to be
processed by the same core, then parse the ethernet header,
and add a group by node (Line 18). The group by node uses
ipv4 flow hash, a convenience function provided by
NetBricks, to extract the flow hash (which is based on both
the IP header and the TCP or UDP header of the packet)
for the packet. This function is also responsible for ensur-
ing that the packet is actually a TCP or UDP packet (the
returned hash is 0 otherwise). The NF then uses this hash
to either find the backend previously assigned to this flow
(line 24) or assigns a new backend using the lookup table
(line 25); this determines the group to which the packet
being processed belongs. Finally, the NF returns a vector

208 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of composition nodes, where the nth composition node cor-
responds to the nth backend specified by the operator. The
operator can thus forward traffic to each of the backends
(or perform further processing) as appropriate. We com-
pare the performance of the NetBricks version of Maglev
to Google’s reported performance in §5.2.

4.2 Operator Interface
As observed in the previous examples, operators running
NetBricks chain NFs together using the same language
(Rust) and tools as used by NF authors. This differs from
current NF frameworks (e.g., E2, OpenMANO, etc.) where
operators are provided with an interface that is distinct
from the language used to write network functions. Our
decision to use the same interface is for two reasons: (a) it
provides many optimization opportunities, in particular we
use the Rust compiler’s optimization passes to optimize the
operator’s chaining code, and can use LLVM’s link-time
optimization passes [28] to perform whole-program opti-
mization, improving performance across the entire packet
processing pipeline; and (b) it provides an easy means for
operators to implement arbitrarily complicated NF chain-
ing and branching.

4.3 Implementation of Abstractions
We now briefly discuss a few implementation details for
abstractions in NetBricks. First, packet processing abstrac-
tions in NetBricks are lazy; i.e., they do not perform com-
putation until the results are required for processing. For
example, parse nodes in NetBricks perform no computa-
tion until a transform, filter, group by, or similar node (i.e.,
a node with a UDF that might access the packet header
or payload) needs to process a packet. Secondly, as is
common in high-performance packet processing, our ab-
stractions process batches of packets at a time. Currently
each of our abstractions implements batching to maximize
common-case performance, in the future we plan on look-
ing at techniques to choose the batching technique based
on both the UDF and abstraction.

4.4 Execution Environment
The NetBricks framework builds on Rust, and we use
LLVM as our runtime. We made a few minor modifica-
tions to the default Rust nightly install: we changed Cargo
(the Rust build tool) to pass in flags that enabled machine
specific optimizations and the use of vector instructions
for fast memory access; we also implemented a Rust lint
that detects the use of unsafe pointer arithmetic inside NFs,
and in our current implementation we disallow building
and loading of NF code that does not pass this lint. Beyond
these minor changes, we found that we could largely im-
plement our execution environment using the existing Rust

toolchain. In the future we plan to use tools developed in
the context of formal verification efforts like RustBelt [7] to
(a) statically verify safety conditions in binary code (rather
than relying on the Lint tool) and (b) eliminate more of the
runtime checks currently performed by NetBricks.

5 Evaluation
5.1 Setup
We evaluate NetBricks on a testbed of dual-socket servers
equipped with Intel Xeon E5-2660 CPUs, each of which
has 10 cores. Each server has 128GB of RAM, which is
divided equally between the two sockets. Each server is
also equipped with an Intel XL710 QDA2 40Gb NIC. For
our evaluation we disabled hyper-threading and adjusted
the power settings to ensure that all cores ran at a constant
2.6GHz2. We also enabled hardware virtualization features
including Intel VT. These changes are consistent with set-
tings recommended for NFV applications. The servers run
Linux kernel 4.6.0-1 and NetBricks uses DPDK version
16.04 and the Rust nightly version. For our tests we relied
on two virtual switches (each configured as recommended
by authors): OpenVSwitch with DPDK (OVS DPDK) [15],
the de-facto virtual switch used in commercial deploy-
ments, and SoftNIC [17], a new virtual switch that has
been specifically optimized for NFV use cases [37].

We run VMs using KVM; VMs connect to the virtual
switch using DPDK’s vhost-user driver. We run con-
tainers using Docker in privileged mode (as required by
DPDK [8]), and connect them to the virtual switch us-
ing DPDK’s ring PMD driver. By default, neither Open-
VSwitch nor SoftNIC copy packets when using the ring
PMD driver and thus do not provide packet isolation (be-
cause an NF can modify packets it has already sent). For
most of our evaluation we therefore modify these switches
to copy packets when connecting containers. However,
even with this change, our approach (using DPDK’s ring
PMD driver) outperforms the commonly recommended
approach of connecting containers with virtual switches
using veth pairs (virtual ethernet devices that connect
through the kernel). These devices entail a copy in the ker-
nel, and hence have significantly worse performance than
the ring based connections we use. Thus, the performance
we report are a strict upper bound on can be achieved using
containers safely.

For test traffic, we use a DPDK-based packet generator
that runs on a separate server equipped with a 40Gb NIC
and is directly connected to the test server without any in-

2In particular we disabled C-state and P-state transitions, isolated
CPUs from the Linux scheduler, set the Linux CPU QoS feature to
maximize performance, and disabled uncore power scaling.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 209

�
�
�
�
�
��
��
��
��
��
��

� � � � �� �� ��

��
��
��
��
��

�
��
�
��
��
��

������ �� ������ �������� ����������

��������
���������

Figure 1: Throughput achieved by a NetBricks NF and an NF written in
C using DPDK as the number of memory accesses in a large array grows.

tervening switches.The generator acts as traffic source and
sink and we report the throughput and latency measured at
the sink. For each run we measure the maximum through-
put we can achieve with zero packet loss, and report the
median taken across 10 runs.

5.2 Building NFs
5.2.1 Framework Overheads

We begin by evaluating the overheads imposed by Net-
Bricks’ programming model when compared to baseline
NFs written more traditionally using C and DPDK. To
ensure that we measure only framework overheads we con-
figure the NIC and DPDK in an identical manner for both
NetBricks and the baseline NF.

Overheads for Simple NFs As an initial sanity check,
we began by evaluating overheads on a simple NF (List-
ing 1) that on receiving a packet, parses the packet until
the IP header, then decrements the packet’s IP time-to-live
(TTL) field, and drops any packets whose TTL equals 0.
We execute both the NetBricks NF and the equivalent C
application on a single core and measure throughput when
sending 64 byte packets. As expected, we find that the
performance for the two NFs is nearly identical: across
10 runs the median throughput for the native NF is 23.3
million packet per-second, while NetBricks achieves 23.2
million packets per second. In terms of latency, at 80%
load, the 99th percentile round trip time for the native NF
is 16.15µs, as compared to 16.16µs for NetBricks.

Overheads for Checking Array Bounds Our use of a
safe language imposes some overheads for array accesses
due to the cost of bounds checking and such checks are
often assumed to be a dominant source of overhead in-
troduced by safe languages.3 While these checks can be
eliminated statically in some cases (e.g., where bounds

3Null-checks and other safety checks performed by the Rust runtime
are harder to separate out; however, these overheads are reflected in the
overall performance we report below.

can be placed on the index statically), this is not always
possible. We measured the impact of these checks using
a network function that updates several cells in a 512KB
array while processing each packet. The set of cells to be
updated depends on the UDP source port number of the
packet being processed, making it impossible to eliminate
array bounds checks. We compare the overheads for our
implementation in NetBricks to a baseline NF written in
C (using DPDK for packet I/O), and behaving identically.
In both cases we use a single-core and use packets with
randomly assigned UDP source ports. Figure 1 shows the
throughput achieved by each NF as the number of mem-
ory accesses per packet is increased. When processing a
packet necessitates a single memory access, NetBricks
imposes a 20% overhead compared to the baseline. We
see that this performance overhead remains for a small
number (1-8) of accesses per packet. However, somewhat
counter-intuitively, with 16 or higher accesses per packet,
the performance overhead of our approach drops; this is
because, at this point, the number of cache misses grows
and the performance impact of these misses dominates that
from our bounds checks.

To test the impact of this overhead in a more realis-
tic application we implemented a longest prefix match
(LPM) lookup table using the DIR-24-8 algorithm [16] in
Rust, and built a NetBricks NF that uses this data struc-
ture to route IP packets. We compare the performance of
this NF to one implemented in C, which uses the DIR-
24-8 implementation included with DPDK [24]. Lookups
using this algorithm require between 1 and 2 array ac-
cesses per packet. For our evaluation we populated this
table with 16000 random rules. We find that NetBricks
can forward 15.73 million packet per second, while the
native NF can forward 18.03 million packets per second
(so the NetBricks NF is 14% slower). We also measure
the 99th percentile round trip time at 80% load (i.e., the
packet generator was generating traffic at 80% of the 0-loss
rate), this value indicates the per-packet latency for the NF
being tested. The 99th percentile RTT for NetBricks was
18.45µs, while it was 16.15µs for the native NF, which
corresponds to the observed difference in throughputs.

5.2.2 Generality of Programming Abstractions

To stress test the generality of our programming abstrac-
tions, we implemented a range of network functions from
the literature:

• Firewall: is based on a simple firewall implemented
in Click [5]; the firewall performs a linear scan of an
access control list to find the first matching entry.

• NAT: is based on MazuNAT [41] a Click based NAT
implemented by Mazu Networks, and commonly used
in academic research.

210 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NF NetBricks Baseline
Firewall 0.66 0.093
NAT 8.52 2.7
Sig, Matching 2.62 0.983
Monitor 5 1.785

Table 1: Throughputs for NFs implemented using NetBricks as compared
to baseline from the literature.

• Signature Matching: a simple NF similar to the core
signature matching component of the Snort intrusion
prevention system [42].

• Monitor: maintains per-flow counters similar to the
monitor module found in Click and commonly used
in academic research [43]

• Maglev: as described in § 4, we implemented a ver-
sion of the Maglev scalable load-balancer design [9].

In Table 1, we report the per-core throughput achieved
by the first four applications listed above, comparing our
NetBricks implementation and the original system on
which we based on our implementation. We see that our
NetBricks implementations often outperform existing im-
plementations – e.g., our NAT has approximately 3⇥ better
performance than MazuNAT [41]. The primary reason for
this difference is that we incorporate many state-of-the-
art optimizations (such as batching) that were not imple-
mented by these systems.

In the case of Maglev, we do not have access to the
source code for the original implementation and hence
we recreate a test scenario similar to that corresponding
to Figure 9 in [9] which measures the packet processing
throughput for Maglev with different kinds of TCP traffic.
As in [9], we generate short-lived flows with an average of
10 packets per flow and use a table with 65,537 entries (cor-
responding to the small table size in [9]). Our test server
has a 40Gbps link and we measure throughput for (min-
size) 64B packets. Table 2 shows the throughput achieved
by our NetBricks implementation for increasing numbers
of cores (in Mpps), together with comparable results re-
ported for the original Maglev system in [9]. We see that
our NetBricks implementation offers between 2.9⇥ and
3.5⇥ better performance than reported in [9]. The median
latency we observed in this case was 19.9µS while 99th

percentile latency was 32µS. We note however that (a) we
ran on different hardware; and (b) we did not have access
to the base implementation and hence comment on parity.
Therefore these numbers are not meant to indicate that
our performance is better, just that NetBricks can achieve
comparable results as obtained by a hand tuned NF.

Our point here is not that NetBricks will outperform
highly optimized native implementations; instead, our re-
sults merely suggest that NetBricks can be used to imple-
ment a wide variety of NFs, and that these implementations

of Cores NetBricks Impl. Reported
1 9.2 2.6
2 16.7 5.7
3 24.5 8.2
4 32.24 10.3

Table 2: Throughputs for the NetBricks implementation of Maglev (Net-
Bricks) when compared to the reported throughput in [9] (Reported) in
millions of packets per second (MPPS).

are both simpler than the native implementations (e.g., our
Maglev implementation is 150 lines of code) and roughly
comparable in performance.

5.3 Execution Environment
NetBricks exploits the isolation properties of safe lan-
guages and runtime checks to avoid the costs associated
with crossing process and/or core boundaries. We first
quantify these savings in the context of a single NF and
then evaluate how these benefits accrue as the length of
a packet’s NF chain increases. Note that these crossing
costs are only important for simple NFs; once the compu-
tational cost of the NF becomes the bottleneck, then our
execution environment becomes less important (though
NetBricks’s ability to simply implement high-performance
NFs becomes more important).

5.3.1 Cost of Isolation: Single NF

We evaluate the overhead of using VMs or containers for
isolation and compare the resultant performance to that
achieved with NetBricks. We first consider the simplest
case of running a single test NF (which is written using
NetBricks) that swaps the source and destination ethernet
address for received packets and forwards them out the
same port. The NetBricks NF adds no additional overhead
when compared to a native C NF, and running the same
NF in all settings (VM, containers, NetBricks) allows us
to focus on the cost of isolation.

The setup for our experiments with containers and VMs
is shown in Figure 2: a virtual switch receives packets from
the NIC, these packets are then forwarded to the NF which
is running within a VM or container. The NF processes the
packet and sends it back to the vSwitch, which then sends
it out the physical NIC. Our virtual switches and NFs run
on DPDK and rely on polling. We hence assign each NF
its own CPU core and assign two cores to the switch for
polling packets from the NIC and the container.4 Isola-
tion introduces two sources of overheads: overheads from
cache and context switching costs associated with crossing
process (and in our case core) boundaries, and overheads

4This configuration has been shown to achieve better performance
than one in which the the switch and NFs share a core [35]. Our own
experiments confirm this, we saw as much as 500% lower throughput
when cores were shared.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 211

NIC

Core 0 Core 1 Core 2 Core 3

vSwitch NF

1

2

3

4

Figure 2: Setup for evaluating single NF per-
formance for VMs and containers.

NIC

Core 0

NF

NetBricks

Core 1

1 2

Figure 3: Setup for evaluating single NF per-
formance using NetBricks.

�

�

��

��

��

��

��
��
��
��
��

�
��
�
��
��
��

���������
������ ������� ���������

������� ���������
��� ���������

���� ��
��� ��

Figure 4: Throughput achieved using a single
NF running under different isolation environ-
ments.

from copying packets. To allow us to analyze these effects
separately we include in our results a case where SoftNIC
is configured to send packets between containers without
copying (0-copy SoftNIC Container), even though this vi-
olates our desired packet isolation property. We compare
these results to NetBricks running in the setup shown in
Figure 3. In this case NetBricks is responsible for receiving
packets from the NIC, processing them using the NF code
and then sending them back out. We run NetBricks on a
single core for this evaluation.

Figure 4 shows the throughput achieved for the dif-
ferent isolation scenarios when sending 64B minimum
sized packets. Comparing the 0-copy SoftNIC throughput
against NetBricks’s throughput, we find that just crossing
cores and process isolation boundaries results in perfor-
mance degradation of over 1.6⇥ when compared to Net-
Bricks (this is despite the fact that our NetBricks results
used fewer cores overall; 1 core for NetBricks vs. 3 in
the other cases). When packets are copied (SoftNIC Con-
tainer) throughput drops further and is 2.7⇥ worse than
NetBricks. Generally the cost for using VMs is higher than
the cost for using Containers; this is because Vhost-user,
a virtualized communication channel provided by DPDK
for communicating with VMs imposes higher overheads
than the ring based communication channel we use with
containers.

The previous results (Figure 9) focused on performance
with 64B packets, and showed that as much as 50% of
the overhead in these systems might be due to copying
packets. We expect that this overhead should increase with
larger packets, hence we repeated the above tests for 1500B
packets and found that the per-packet processing time (for
those scenarios that involve copying packets) increased by
approximately 15% between 64B and 1500B packets (the
small size of the increase is because the cost of allocation
dominates the cost of actually copying the bits).

5.3.2 Cost of Isolation: NF Chains

Next, we look at how performance changes when each
packet is handled by a chain of NFs. For simplicity, we

NIC

Core 0 Core 1 Core 3 Core 4

vSwitch NF 0 NF 1

1

2

3

6

45

Figure 5: Setup for evaluating the performance
for a chain of NFs, isolated using VMs or Con-
tainers.

NIC

Core 0 Core 1

NF 0 NF 1 NF 0 NF 1

NetBricks NetBricks

1

2

3

Figure 6: Setup for evaluating the performance
for a chaining of NFs, running under NetBricks.

generate chains by composing multiple instances of a sin-
gle test NF; i.e., every NF in the chain is identical and we
only vary the length of the chain. Our test NF performs
the following processing: on receiving a packet, the NF
parses the ethernet and IP header, and then decrement the
time-to-live (TTL) field in the IP header. The NF drops any
packets where the TTL is 0.

We use the setup shown in Figure 5 to measure these
overheads when using VMs and containers. As before, we
assign the virtual switch two cores, and we place each VM
or container on a separate core. We evaluate NetBricks
using the setup shown in Figure 6. We ran NetBricks in
two configurations: (a) one where NetBricks was run on a
single core, and (b) another where we gave NetBricks as
many cores as the chain length; in the later case NetBricks
uses as many cores as the container/VM runs.

In Figure 7 we show the throughput as a function of
increasing chain length. We find that NetBricks is up to 7⇥
faster than the case where containers are connected using
SoftNIC and up to 11⇥ faster than the case where VMs
are connected using SoftNIC. In fact NetBricks is faster

212 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

�

�

��

��

��

��

��

� � � � � � � �

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��
��
��
��

�
��
�
��
��
��

����� ������

����� ����� �� ��� ��� ��� �� �� ��� ��

Figure 7: Throughput with increasing chain length when using 64B
packets. In this figure NB-MC represents NetBricks with multiple cores,
NB-1C represents NetBricks with 1 core.

even when run on a single core, we observe that it provides
4⇥ higher throughput than is achieved when containers are
connected through SoftNIC, and up to 6⇥ higher through-
put when compared to the case where VMs are connected
using SoftNIC. Furthermore, by comparing to the 0-copy
SoftNIC case, we find that for 64B packets copying can
result in a performance drop of up to 3⇥. Finally, observe
that there is a dip in NetBricks’s performance with multi-
ple cores once the chain is longer than four elements. This
is because in our setup I/O becomes progressively more
expensive as more cores access the same NIC, and with
more than 4 parallel I/O threads this cost dominates any
improvements from parallelism. We believe this effect is
not fundamental, and is a result of our NIC and the cur-
rent 40Gbps driver in DPDK. NetBricks’s performance
benefits are even higher when we replace SoftNIC with
OpenVSwitch.5

The above results are for 64B packets; as before, we
find that while copying comes at a large fixed cost (up to
3⇥ reduction in throughput), increasing packet sizes only
results in an approximately 15% additional degradation.
Finally, we also measured packet processing latency when
using NetBricks, containers and VMs; Figure 8 shows the
99th percentile round trip time at 80% of the maximum
sustainable throughput as a metric for latency.

Effect of Increasing NF Complexity Finally, we ana-
lyze the importance of our techniques for more complex
NFs. We use cycles required for processing each packet as
a proxy for NF complexity. We reuse the setup for single
NF evaluations (Figure 2, 3), but modify the NF so that it
busy loops for a given number of cycles after modifying
the packet, allowing us to vary the per-packet processing
time. Furthermore, note that in the case where VMs or
containers the setup itself uses 3 cores (1 for the NF and 2

5We were unable to run experiments with more than four VMs chained
together using OpenVSwitch because we ran out of memory in our
configuration.

�

��

��

��

��

���

���

���

� � � � � � � �

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�

��
��
��
�
��
��
��
��
��
��
��

����� ������

����� �� ��� ��� ��� �� �� ��� ��

Figure 8: 99th percentile RTT for 64B packets at 80% load as a function
of chain length.

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��
��
��
��
��

�
��
�
��
��
��

���������� ������ ��� ������

���� �� �����
���� �� �����

������� ���������
��� ���������

���� ��
��� ��

Figure 9: Throughput for a single NF with increasing number of cycles
per-packet using different isolation techniques.

for the vSwitch). Therefore, for this evaluation, in addition
to measuring performance with NetBricks on 1 core, we
also measure performance when NetBricks is assigned 3
cores (equalizing resources across the cases).

Figure 9 shows the throughput as a function of per-
packet processing requirements (cycles). As expected, as
we increase NF complexity, packet processing time starts
to be the dominant factor for determining performance, and
our runtime improvements have minimal effect once an
NF needs more than 300 cycles per packet. This reduction
in benefits when NF processing demands dominate also
applies to fast packet processing libraries such as DPDK.
Note however that the gains when NetBricks is given as
many cores as the traditional approaches (three) continue
to be significant even when NFs need more than 1000
cycles per packet. Thus, NetBricks’ approach to isolation
provides better performance per unit of allocated resource
when compared to current approaches.

6 Related Work
The works most closely related to NetBricks’ programming
model are Click and Snabb switch [14]. We have compared
NetBricks and Click throughout the paper, do not provide
further discussion here. Recent extensions to Click, e.g.,
NBA [26] and ClickNP [29], have looked at how to imple-
ment optimized Click elements through the use of GPUs
(NBA) and FPGAs (ClickNP). While offloading function-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 213

Framework
Memory
Isolation

Packet
Isolation Overheads

xOMB [1] 7 7 Low (function call)
CoMB [43] 7 7 Low (function call)

NetVM [21] 3 7 Very high (VM)
ClickOS [32] 3 3 High (lightweight VM)
HyperSwitch [40] 3 3 Very high (VM)
mSwitch [19] 3 3 Very high (VM)

NetBricks 3 3 Low (function call)

Table 3: A comparison with other NFV frameworks.

ality to such devices can yield great performance improve-
ments, this is orthogonal to our work. Adding the use of
offloads in NetBricks is left to future work. Snabb provides
the same programming model as Click but uses Lua [22]
instead of C++ for programming, which allows the use of
a high-level language but without actually raising the level
of abstraction (in terms of having the programmer deal
with all the low-level packet-handling issues).

There has also been a long line of work on develop-
ing network applications on specialized networking hard-
ware including NPUs [46], FPGAs [33] and programmable
switches [4]. Recent work including P4 [3] and Packet
Transactions [45] have looked at providing high level pro-
gramming tools for such hardware. Our work focuses on
network programming for general purpose CPUs and is
complementary to this work.

In terms of NetBricks’ execution model, work on li-
brary operating systems (e.g., MirageOS [31] and Draw-
bridge [39]) has decreased VM resource overheads and im-
proved VM performance by reducing the amount of code
run within each VM and improving the hypervisor. While
these projects have provided substantial performance im-
provements, they do not eliminate the isolation overheads
we focus on here nor do they address how to perform
efficient I/O in this environment.

As we have noted previously, our execution model is
closely related to software-isolated processes (SIPs) pro-
posed by Singularity [20]. The main difference is that our
work focuses on a single application domain – network
functions – where inter-NF communication is common
and greatly benefits from the use of software isolation. Fur-
thermore, Singularity was designed as a general purpose,
microkernel-based operating system, and focused on pro-
viding an efficient general implementation for application
developers. As a result Singularity’s design choices – e.g.,
the use of a garbage collected language, communication
through an exchange heap and queued channel, etc. – are
not optimized for the NFV use case.

Other work has proposed a variety of execution frame-
works specific to NFV [1,19,21,32,40,43]. We can broadly
divide these frameworks into two groups: Click-like frame-
works that run all NFs in a single process without isolation,

and VM-based frameworks. We present a comparison of
these frameworks and NetBricks in Table 3. As shown,
only NetBricks provides both isolation and low overheads.
Finally, In-Net [47] has looked at providing traffic isolation
for NFs in a network, and is orthogonal to our work.

Several attempts have also been made to offload vSwitch
functionality to NIC hardware. For example, FasTrak [34]
advocates using hardware virtualization (SR-IOV [6]) and
built-in switching capabilities of commodity NICs to inter-
connect VMs. This approach eliminates the cost of copying
packets in software by using hardware DMA. However,
I/O bus bandwidth is an order-of-magnitude lower (a few
GB/s) than cache and memory bandwidth (10s-100s of
GB/s), and this limits the number of packets that can be
transmitted in parallel and thus reduces the throughput that
can be achieved. Offloading switching to hardware also
limits flexibility in how packets are steered across NFs;
e.g., Intel’s 10 G NICs only support basic L2 switching.

IO-Lite [36], Container Shipping [38], and work done
for Solaris [25] have looked at solutions for implementing
zero-copy I/O. IO-Lite provided zero-copy isolation by
making buffers immutable. This necessitates creating a new
buffer on any write (similar to copy-on-write techniques)
and would therefore incur performance degradation when
modifications are required. Container shipping and the
Solaris approach unmap pages from the sending process
to provide zero-copy isolation. Page table modifications
require a trap into the kernel, and come at a significant
penalty [48]. By contrast our implementation of 0-copy
I/O imposes no runtime overheads.

7 Conclusion
As can be seen from our brief review of related work,
NetBricks is the only approach that enables developers to
write in high-level abstractions (thereby easing develop-
ment) while maintaining good performance and memory/-
packet isolation. We are continuing to explore the limits of
NetBricks’s generality – by implementing new NFs – and
increase the range of NetBricks’s low-level optimizations,
some of which are currently rather primitive. In service of
these goals, we have also made NetBricks and our exam-
ples available to the community at netbricks.io.

8 Acknowledgment
We thank our shepherd George Porter and the anonymous
reviewers for their comments. We also thank Ion Stoica,
Amin Tootoonchian and Shivaram Venkatraman for their
helpful feedback, which influenced both the design of
our system and the contents of this paper. This work was
funded in part by a grant from Intel Corporation, and by
NSF awards 1216073 and 1420064.

214 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

netbricks.io

References
[1] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and

A. Vahdat. xOMB: Extensible Open Middleboxes
with Commodity Servers. In ANCS, 2012.

[2] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Elimi-
nating Array Bounds Checks on Demand. In PLDI,
2000.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, et al. P4: Programming Protocol-
Independent Packet Processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95,
2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN. In
SIGCOMM, 2013.

[5] M. Dobrescu, K. Argyraki, and S. Ratnasamy. To-
ward Predictable Performance in Software Packet-
Processing Platforms. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), 2012.

[6] Y. Dong, X. Yang, L. Xiaoyong, J. Li, H. Guan, and
K. Tian. High Performance Network Virtualization
with SR-IOV. In IEEE HPCA, 2012.

[7] D. Dreyer. RustBelt: Logical Foundations for the
Future of Safe Systems Programming. http:
//plv.mpi-sws.org/rustbelt/ (Retrieved
05/05/2016), 2015.

[8] J. Eder. Can you run DPDK in a Container. Redhat
Blog http://goo.gl/UBdZpL, 2015.

[9] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
Fast and Reliable Software Network Load Balancer.
In NSDI, 2016.

[10] ETSI. Network Functions Virtualisation. Retrieved
07/30/2014 http://portal.etsi.org/NFV/
NFV_White_Paper.pdf.

[11] L. Foundation. OPNFV. https://www.opnfv.
org/, 2016.

[12] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A Network-Aware Orchestration Layer for
Middleboxes in the Cloud. http://arxiv.org/
abs/1305.0209, 2013.

[13] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Brom-
field, and J. Duffy. Uniqueness and Reference Im-
mutability for Safe Parallelism. In OOPSLA, 2012.

[14] L. Gorrie. SNABB Switch. https://goo.gl/
8ox9kE retrieved 07/16/2015.

[15] J. Gross. The Evolution of OpenVSwitch. http://
goo.gl/p7QVek retrieved 07/13/2015, 2014. Talk
at LinuxCon.

[16] P. Gupta, S. Lin, and N. McKeown. Routing Lookups
in Hardware at Memory Access Speeds. In INFO-
COM, 1998.

[17] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A Software NIC to Augment
Hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berke-
ley, May 2015.

[18] D. Hansen. Intel Memory Protection Extensions
(Intel MPX) for Linux*. https://01.org/
blogs/2016/intel-mpx-linux retrieved
05/07/2016, 2016.

[19] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
mSwitch: A Highly-Scalable, Modular Software
Switch. In SOSR, 2015.

[20] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the Software Stack. ACM SIGOPS Operating Systems
Review, 41(2):37–49, 2007.

[21] J. Hwang, K. Ramakrishnan, and T. Wood. NetVM:
High Performance and Flexible Networking using
Virtualization on Commodity Platforms. Network
and Service Management, IEEE Transactions on,
12(1):34–47, 2015.

[22] R. Ierusalimschy, L. H. de Figueiredo, and W. Ce-
les Filho. Lua–an Extensible Extension Language.
In Software: Practice & Experience, 1995.

[23] Intel. Data Plane Develpment Kit. http://dpdk.
org/, 2016.

[24] Intel. DPDK: rte table lpm.h reference. http://
goo.gl/YBS4UO retrieved 05/07/2016, 2016.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 215

http://plv.mpi-sws.org/rustbelt/
http://plv.mpi-sws.org/rustbelt/
http://goo.gl/UBdZpL
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.opnfv.org/
https://www.opnfv.org/
http://arxiv.org/abs/1305.0209
http://arxiv.org/abs/1305.0209
https://goo.gl/8ox9kE
https://goo.gl/8ox9kE
http://goo.gl/p7QVek
http://goo.gl/p7QVek
https://01.org/blogs/2016/intel-mpx-linux
https://01.org/blogs/2016/intel-mpx-linux
http://dpdk.org/
http://dpdk.org/
http://goo.gl/YBS4UO
http://goo.gl/YBS4UO

[25] Y. A. Khalidi and M. N. Thadani. An Efficient Zero-
Copy I/O Framework for Unix. Sum Mircrosystems
Laboratories, Inc. Tech Report, 1995.

[26] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. B.
Moon. NBA (Network Balancing Act): A High-
Performance Packet Processing Framework for Het-
erogeneous Processors. In EuroSys, 2015.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transac-
tions on Computer Systems (TOCS), 18(3):263–297,
2000.

[28] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation.
In Code Generation and Optimization. IEEE, 2004.

[29] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, and P. Cheng. ClickNP: Highly flexible
and High-performance Network Processing with Re-
configurable Hardware. In SIGCOMM, 2016.

[30] D. Lopez. OpenMANO: The Dataplane Ready Open
Source NFV MANO Stack. In IETF Meeting Pro-
ceedings, Dallas, Texas, USA, 2015.

[31] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In ASPLOS, 2013.

[32] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and
the Art of Network Function Virtualization. In NSDI,
2014.

[33] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for Exper-
imental Research. In Workshop on Programmable
routers for extensible services of tomorrow, 2008.

[34] R. Niranjan Mysore, G. Porter, and A. Vahdat. Fas-
Trak: Enabling Express Lanes in Multi-Tenant Data
Centers. In CoNEXT, 2013.

[35] OpenVSwitch. Using Open vSwitch with DPDK.
https://github.com/openvswitch/
ovs/blob/master/INSTALL.DPDK.md,
2016.

[36] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. ACM
Transactions on Computer Systems (TOCS), 18(1):37–
66, 2000.

[37] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Framework
for NFV Applications. In SOSP, 2015.

[38] J. Pasquale, E. Anderson, and P. K. Muller. Con-
tainer Shipping: Operating System Support for I/O-
intensive Applications. Computer, 27(3):84–93,
1994.

[39] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the Library OS from the
Top Down. In ASPLOS, 2011.

[40] K. K. Ram, A. L. Cox, M. Chadha, S. Rixner, T. W.
Barr, R. Smith, and S. Rixner. Hyper-Switch: A
Scalable Software Virtual Switching Architecture. In
USENIX ATC, 2013.

[41] Riverbed. Mazu Networks. http://goo.gl/
Y6aeEg, 2011.

[42] M. Roesch et al. Snort: Lightweight Intrusion Detec-
tion for Networks. In LISA, 1999.

[43] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and Implementation of a Consolidated
Middlebox Architecture. In NSDI, 2012.

[44] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service. In SIGCOMM, 2012.

[45] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Lick-
ing, G. Varghese, H. Balakrishnan, M. Alizadeh, and
N. McKeown. Packet Transactions: High-level Pro-
gramming for Line-Rate Switches. In SIGCOMM,
2016.

[46] H. Song. Protocol-Oblivious Forwarding: Unleash
the Power of SDN Through a Future-Proof Forward-
ing Plane. In HotSDN, 2013.

[47] R. Stoenescu, V. A. Olteanu, M. Popovici, M. Ahmed,
J. Martins, R. Bifulco, F. Manco, F. Huici, G. Smarag-
dakis, M. Handley, and C. Raiciu. In-Net: In-Network
Processing for the Masses. In EuroSys, 2015.

[48] L. Torvalds. Linux Page Fault Daemon Performance.
Google+ https://plus.google.com/
+LinusTorvalds/posts/YDKRFDwHwr6,
2014.

216 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md
https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md
http://goo.gl/Y6aeEg
http://goo.gl/Y6aeEg
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6

Efficient Network Reachability Analysis using
a Succinct Control Plane Representation

Seyed K. Fayaz Tushar Sharma Ari Fogel∗

Ratul Mahajan† Todd Millstein‡ Vyas Sekar George Varghese‡

CMU ∗Intentionet †Microsoft Research ‡UCLA

Abstract— To guarantee network availability and se-
curity, operators must ensure that their reachability poli-
cies (e.g., A can or cannot talk to B) are correctly im-
plemented. This is a difficult task due to the complexity
of network configuration and the constant churn in a net-
work’s environment, e.g., new route announcements ar-
rive and links fail. Current network reachability analysis
techniques are limited as they can only reason about the
current “incarnation” of the network, cannot analyze all
configuration features, or are too slow to enable explo-
ration of many environments. We build ERA, a tool for
efficient reasoning about network reachability. Instead of
reasoning about individual incarnations of the network,
ERA directly reasons about the network “control plane”
that generates these incarnations. We address key expres-
siveness and scalability challenges by building (i) a suc-
cinct model for the network control plane (i.e., various
routing protocols and their interactions), and (ii) a reper-
toire of techniques for scalable (taking a few seconds for
a network with > 1000 routers) exploration of this model.
We have used ERA to successfully find both known and
new violations of a range of common intended polices.

1 Introduction
Network operators need to ensure the correct behavior of
their networks. Violations of intended reachability poli-
cies (e.g., “Can A talk to B?”) can compromise availabil-
ity, security, and performance of the network. This risk
has inspired the field of network verification, which aims
to enable operators to systematically reason about their
networks [39].

Reasoning about a network is hard, as a real network
is in a perpetual churn: route advertisements arrive, links
fail, and routers need to be taken offline for maintenance.
Nonetheless, an operator needs assurances on the network
behaviors because a policy violation may be latent and
occur only in a certain future incarnation (e.g., a specific
route advertisement from a peering network may cause
disconnection between A and B [6, 11]). Unfortunately,
today operators do not have proper tools for efficient rea-
soning about the network in different environments.

	
	
	
	
	

data	plane	at)me	t	
A	 B	

data	plane	at)me	t+1	
data	plane	at)me	t+2	

…
	

Network	
control	plane	

…
	

Environment	at)me	t	
Routers		

configura)on	files	

Environment	at)me	t+1	
Environment	at)me	t+2	

Figure 1: Reachability behavior of a network (e.g., A
can talk to B) is determined by its data plane, which,
in turn, is the current incarnation of the control plane.

To highlight this challenge, it is useful to consider prior
work on network verification. A network is composed
of a control plane, which configures the behavior of the
data plane, which in turn, is in charge of forwarding ac-
tual packets (see Figure 1). The control plane, therefore,
can be thought of as a program that takes configuration
files and the current network environment (i.e., route ad-
vertisements) and generates a data plane. The data plane
is conceptually a program that takes a packet and its loca-
tion (i.e., a router port) as input and outputs a packet at a
different location. As a result, if we rest our analysis on
the data plane (e.g., Veriflow [29], HSA [28], NOD [36])
and verify its behavior over its inputs (i.e., packets), we
are inherently able to reason about only the current incar-
nation of the control plane (i.e., the current data plane),
and cannot say anything about the network behavior un-
der a different environment.

While there is prior work on bug-finding and verifica-
tion for the control plane, it suffers from critical limita-
tions. Some tools focus on a single routing protocol (e.g.,
BGP for Bagpipe [41] and rcc [18]) or a limited set of
routing protocol features (e.g., ARC [21]). They can thus
not capture the behavior of the entire control plane that of-
ten uses multiple routing protocols and sophisticated fea-
tures [22,31,38]. On the other hand, Batfish [19] analyzes
the entire control plane in the context of a given environ-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 217

ment, but it does so by simulating the behavior of individ-
ual routing protocols to compute the resulting data plane.
This simulation is expensive (see §9.2), which makes it
prohibitive to iteratively use Batfish to analyze the impact
of many environments.

What is critically missing today is the ability to ef-
ficiently find network reachability bugs across multiple
possible environments. (§3 motivates this need using real-
world examples.) Doing so requires reasoning about net-
work reachability directly at the control plane level, with-
out explicitly computing the data plane that manifests in
each environment. Such reasoning is challenging due to
the complexity of the control plane, which involves vari-
ous routing protocols (e.g., BGP, OSPF, RIP) each with its
own intricacies (e.g., selecting best route to a destination
prefix is different for BGP and OSPF) and cross-protocol
interactions (e.g., route redistribution [32]).

We address these challenges in a tool called ERA (ef-
ficient reachability analysis) by employing several syn-
ergistic ideas. First, we design a unified control plane
model that succinctly captures the key behaviors of vari-
ous routing protocols. In this model, a router is viewed as
a function that accepts a route announcement as input and
produces a set of route announcements for its neighbors.
Second, we use binary decision diagrams (BDDs) [30] to
compactly represent the route announcements that consti-
tute a user-specified environment. Third, we shrink the
BDD representation of route announcements by identify-
ing equivalence classes of announcements that are treated
identically by the given network [42]. Each equivalence
class is given an integer index, and the reachability analy-
sis is transformed to arithmetic operations directly on sets
of these indices. Consequently, we take advantage of vec-
torized instruction sets on commodity CPUs for fast com-
putation of these set operations (§6).

ERA can be used to identify bugs in reachability poli-
cies of the form “A can talk to B” as well as a wide
range of common policies that are expressible in terms
of reachability relationships, such as valley-free routing
and blackhole-freeness (§7). Our implementation of ERA
is available as an open source and extensible toolkit to
which new kinds of analysis can be added (§8).

We evaluate the utility of ERA in a range of real and
synthetic scenarios (§9.1). Across all scenarios, it suc-
cessfully finds both new and known reachability viola-
tions, which were otherwise hard to find using the state
of the art techniques. We also evaluate the scalability of
ERA and find that it can handle a network with over 1,600
routers in 6 seconds. Our evaluations show that our con-
trol plane modeling and exploration techniques yield sig-
nificant speedup.

2 Related Work
There are several strands of related prior work.

Data plane analysis: Verifying the reachability be-
havior of the data plane has been widely studied (e.g.,
Anteater [37], Veriflow [29], HSA [28], NOD [36]). The
result from such verification, however, is valid only for the
specific data plane being analyzed. There has also been
extensive work on testing the data plane (e.g., ATPG [43],
Pingmesh [26]). Data plane verification and testing is fun-
damentally limited, as a network is in a constant churn,
which manifests itself as different data planes. For exam-
ple, a single route advertisement can dramatically change
the network behavior (e.g., see [11]).

Control plane analysis: Moving from the data plane to
the control plane potentially enables more powerful anal-
ysis, as the former is generated by the latter. However,
prior work is limited due to supporting only a single rout-
ing protocol (e.g., BGP in Bagpipe [41] and rcc [18]) or a
limited set of routing protocol features (e.g., ARC [21]).
Batfish [19] can reason about the entire control plane but
its analysis is expensive because it simulates the individ-
ual steps of each routing protocol. In contrast, ERA en-
ables fast exploration using a succinct encoding of control
plane behavior.

Clean-slate control plane design: Metarouting [24],
glue logic [33], and Propane [16] aim to build a correct-
by-design control plane. While worthwhile in the long
term, these efforts cannot reason about existing networks.

To summarize, what is critically missing today is the
ability to efficiently explore the control plane involving
various routing protocols. We illustrate this need below.

3 Motivation: Reachability Bugs
We motivate reasoning about multiple network incarna-
tions using real reachability bugs encountered in a large
cloud provider’s network. These bugs were latent and
manifested only under certain environments.

Maintenance-triggered: Some bugs stem from unex-
pected interactions of different routing protocols and con-
figuration directives. In this example (Figure 2), the in-
teractions are between static routing and BGP. For redun-
dancy, the operator’s goal was to have two paths between
the DCN (datacenter network) and the WAN (wide area
network), one through R1 and the other through R2. One
day, the operator decided to temporarily bring down R2

for maintenance, which she thought was safe because of
the assumed redundancy. However, as soon as R2 was
brought down, the entire DCN was disconnected from the
WAN (and the rest of the Internet).

218 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

kawaguchi

1	

Mgmt.	
Net.	

M

R1	

1.2.3.4

R2	

W	
WAN	 0.0.0.0/0
Datacenter	

DCN	

Figure 2: A bug triggered by maintenance.

Manual investigation revealed that
R1 contained a static default route
ip route 0.0.0.0/0 1.2.3.4 (here 1.2.3.4
is the next-hop of the static route, which is the address
of the management network). Static routes to a prefix
supersede dynamic routes [5, 8]. Thus R1 preferred the
static route over the default BGP route advertised by the
WAN (shown in red). Since static routes are typically not
propagated to neighbors, R1 did not advertise the default
route to the DCN. Thus, the DCN was entirely dependent
on R2 for external connectivity.

The bug inR1’s configuration was that the operator had
forgotten to type keywords to indicate that the static route
belonged to the management network, not data network.
(These keywords were present inR2’s configuration.) The
bug was latent as long as R2 was up, but was triggered
when R2 was brought down.
Announcement-triggered: In Figure 3, DCA had sev-
eral services hosted inside the subprefixes of 10.10.0.0/16.
Instead of announcing the individual subprefixes, R1 was
announcing this aggregate prefix. DCB could reach the
services inside DCA through the WAN. As soon as a new
service with prefix 10.10.1.160/28 was launched inside
DCA, all other services inside the /16 prefix became un-
reachable from DCB .

bug_0500

1	

WAN	
10.10.1.160/28Datacenter	

DCA	 DCB	

R1	 R2	

W	

Figure 3: A bug triggered by a BGP announcement.

Investigation revealed two latent configuration bugs
that combined to create this outage: (1) R1 was not con-
figured to filter 10.10.1.160/28 in its announcements to
the WAN; and (2) R2 was configured with an aggregate
route to 10.10.0.0/16 with DCB as the next hop. The re-
sult of the first bug was that the /28 announcement reached
R2 through the WAN. Then, as a result of the second bug,
the /16 aggregate route was activated at R2. This aggre-
gate route, as a local route to router R2, took precedence
over the /16 being announced through the WAN. When
the aggregate route was activated, R2 started dropping all
traffic to the /16 except for traffic to the /28. These drops
are due to the sinkhole semantics of route aggregation—

Figure 4: A bug triggered by link failure.

the aggregating router drops packets for subprefixes for
which it does not have an active route to prevent routing
loops [34].1 Proper connectivity existed prior to the /28
announcement because the /16 announcement from the
WAN did not activate the aggregate route at R2.

Failure-triggered: In Figure 4, R1 and R2 were config-
ured to announce prefix 10.10.0.0/16 that aggregated the
subprefixes announced by leaf routers (A1,A2,A3). After
link A2—B2 failed, WAN traffic destined to A2’s prefix
(10.10.2.0/24) started getting blackholed (i.e., dropped) at
R1 even though A2 had connectivity via B3 and R2.

This blackhole was created because R1 continued to
make the aggregate announcement after the failure of link
A2–B2, as it was still hearing announcements for the other
two subprefixes corresponding to A1 and A3 (aggregate
routes are announced as long as there is at least one sub-
prefix present). As a result, the WAN sent (some) traffic
for 10.10.2.0/24 toward R1. But R1 dropped those pack-
ets per the sinkhole semantics (see above).

4 ERA Overview
In this section, we present our approach and discuss the
challenges in realizing it. Our target is a (datacenter, en-
terprise, or ISP) network of a realistic size (e.g., a few to
hundreds of routers). As shown in Figure 5, our user is a
network operator responsible for configuring routers. The
operator has a set of intended reachability policies of the
form “Router port A can talk to router port B” (as we will
discuss in §7, several other practical policies are deriva-
tives of “A can talk toB”). ERA allows operators to input
their assumptions on what the network’s environment will
send (e.g., based on relationship with peers/providers).
It then analyzes the network’s behavior under these as-
sumptions and checks whether the behavior satisfies the
intended reachability policies. This process can then be
iterated with other environmental assumptions, in order to
cover a range of possible environments.

1For instance, if W announced the default route to R2, R2 would
forward traffic for 10.10.2.2 to W, which may then forward them to R2
(because R2 announces the aggregate /16 to W), and so on.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 219

router	
configura,ons	

analysis	results	
(success	or	viola0on)	

Operator	
environment	
assump,ons	

control	plane	
model	

model	
explora,on	

ERA	

reachability	
policies	

network	
topology	

Figure 5: High-level vision of ERA.

4.1 Our Approach
Here we give the intuition behind our approach to control
plane analysis.

Relationship between data and control planes: The
data plane takes as input a packet on a router port
and moves the (possibly modified) packet to another
port (on the same or a neighboring router). Thus, we
can think of the data plane as a function of the form
DP : (pkt , port)→ (pkt , port). The data plane itself is
generated by the control plane function given routers’
configuration files, the network topology (i.e., which
router ports are inter-connected), and the current envi-
ronment (which captures the route advertisements sent
to the network by the “outside world”) of the network:
CP : (env ,Topo,Configs)→ DP(.).

Reachability policies via control plane analysis: Since
packets are forwarded by the data plane, it is natural to
think of an intended reachability policy φA→B as a pred-
icate that indicates whether a given packet should be able
to reach from router port A to router port B. We say data
plane DP is policy-compliant if φA→B (pkt ,DP) evalu-
ates to true for all A-to-B packets.

A seemingly natural approach for finding latent bugs is
to produce the data plane associated with a given environ-
ment and then check reachability on that data plane [19].
However, this approach makes it prohibitively expensive
to iteratively check multiple environments (§9.2). This
is because for each possible environment (of which there
are many), to compute the resulting data plane, we need
to account for all low-level message passings and nuances
of routing protocols. Instead, we want to be able to reason
about the network directly at the level of the control plane
and without explicitly computing the data plane.

To this end, our insight is as follows. Rather than pro-
ducing the data plane that results from a given environ-
ment, we can analyze the control plane under that en-
vironment to determine i) the routes that each router in
the network learns via its neighbors (e.g., a BGP adver-
tisement) or its configuration file (e.g., static routes); and
ii) the best route when multiple routes to the same prefix
are learned. We can then use this information to directly

e2e routers ports

1	

R1	1	 2	
3	

R2	4	 5	

R3	6	 7	

X	 Y	R4	9	
8	

10	

Network	 Environment	

route	
adver1sement	

Figure 6: X-to-Y reachability depends on routers con-
figurations and the environment.

check reachability.
An illustrative example: To visualize what it means to
reason about reachability using control plane analysis,
consider the example shown in Figure 6. Here we want
to see what traffic reaches from port X to port Y so that
we can check whether it is policy-compliant. From the
figure we can see that to find the above traffic, we can
try to find the routes that traverse the opposite direction
on each of the two paths. Let T i→j

Router (route) show the
output of the configured router Router on its port j given
the input route on its port i. (Intuitively, route can be
thought of as an abstraction for a route advertisement.
The following section will elaborate on this abstraction.)
If we knew T (.), the answer would be:
T2→1

R1
(T5→4

R2
(T10→8

R4
(env))) ∪ T3→1

R1
(T7→6

R3
(T10→9

R4
(env))).

The argument env here represents the assumptions that
the user makes about the environment.

4.2 Challenges
Control plane-based reachability analysis requires us to
address two key challenges:
• An expressive and tractable control plane model: To

be expressive, this model needs to capture key behav-
iors of diverse protocols (e.g., BGP, OSPF route adver-
tisements). A naive model (e.g., capturing protocol-
specific behaviors verbatim), while expressive, is im-
practical because it will be too complex to explore. On
the other extreme, a very high-level model (e.g., ig-
noring protocol-specific behaviors altogether) may be
tractable to explore, but not expressive (e.g., BGP and
OSPF have different ways of preferring routes).

• Scalable control plane exploration: Once we have a
control plane model, we need the ability to efficiently
explore the model with respect to the environment,
in order to identify violations of intended reachability
policies.
We tackle these challenges in §5 and §6, respectively.

4.3 Scope and Limitations
ERA’s analysis requires the user to provide assumptions
on the environment (or defaults to assuming that the en-
vironment makes all possible route announcements). If
these assumptions are incorrect or overly permissive, then
ERA can produce false positives, identifying purported
errors that in fact will never arise in practice; e.g., a rep-

220 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

utable ISP is not likely to hijack its peer’s traffic. ERA is
designed to have no other source of false positives (i.e., its
control plane model is accurate). Though we have not for-
mally proven this yet, empirically speaking, all the bugs
that ERA has identified were real bugs.

ERA also has several sources of false negatives. First,
ERA will only find bugs under environments specified as
inputs and cannot guarantee the absence of bugs under all
environments (unless exhaustively iterated on all possible
environments). Second, certain classes of errors cannot be
found by ERA by design. Specifically, ERA assumes that
routing will converge and only analyzes this convergent
state, which is key to efficient exploration of the control
plane. Therefore convergence errors as well as reacha-
bility errors in transient states of the network will not be
found (e.g., [23, 25]).

Finally, while ERA supports most of the common con-
figuration directives, our current implementation does not
support certain directives such as regular expressions in
routing filters. Keeping up with configuration directives
is a software engineering challenge due to their large and
growing universe. Such limitations, however, are not fun-
damental to the design of ERA (unlike ARC [21], where
the design itself cannot handle certain routing features).

As we will see in §9, ERA can find a large class of real-
world bugs despite these limitations.

5 Modeling the Control Plane
We now describe our model for the network control plane.
It i) captures all routing protocols using a common ab-
straction; ii) is expressive with respect to routing behav-
iors of individual protocols; and iii) lends itself to scal-
able exploration. At a high level, we identify key behav-
iors of the control plane (e.g., route selection, route aggre-
gation) and compactly encode them using binary decision
diagrams (BDDs) [30].

Since the network control plane is a composition of the
control planes of individual routers, we break down the
problem of modeling the network control plane into mod-
eling (i) the I/O unit of a router’s control plane (§5.1), and
(ii) the processing logic of a router’s control plane (§5.2).

5.1 Route as the Model of Control Plane I/O
A naive way of modeling the I/O unit of the control plane
of a router is to use the actual specification of route ad-
vertisements of different routing protocols, including their
low-level details (e.g., keep-alive messages, sequence
numbers [3,9]). While expressive, such an I/O unit makes
the control plane model too cumbersome. Conversely, if
we completely ignore differences across protocols to sim-
plify our I/O unit model, such a model may not be expres-
sive; e.g., it cannot capture the fact that if a router learns

route data structure

1	

Administra,ve	
distance	(4	bits)	

Protocol	
a7ributes	(87	bits)	

Dst	IP	
(32	bits)	

Dst	mask		
(5	bits)	

Figure 7: route as the model of control plane I/O.
two routes to the same destination prefix from two dif-
ferent routing protocols, the one offered by the protocol
that has a smaller administrative distance (AD) will be se-
lected [5,8]. (We will see an example bug scenario due to
this effect in §9.1.2, Figure 15b.)

To strike a balance between expressiveness and
tractability, we introduce the notion of an abstract route
as a succinct yet expressive I/O unit for the control plane
model. Conceptually, a route mimics a route advertise-
ment. It is a succinct bit-vector conveying key informa-
tion in route advertisements that affects routing decisions
of a router (see Figure 7). While not fundamental to our
design, we have chosen a 128-bit vector to encode a route
to enable fast CPU operations as we will discuss in §6.2.
To accommodate diverse routing protocols, a route unifies
key attributes of various protocols that affect a router’s be-
haviors (i.e., administrative distance and protocol-specific
route attributes).2 To improve scalability, a route abstracts
away the low-level nuances of actual protocols (e.g., seq.
numbers, acknowledgements).

The fields of our route abstraction are:
• Destination IP and mask: Together, they represent the

destination prefix that the route advertises. To make
a route compact, we store the mask in 5 bits (instead
of its naive storage in 32 bits). For completeness, Ap-
pendix A shows the details of how we do this.
• Administrative distance (AD): This is a numerical rep-

resentation of the routing protocol (e.g., BGP, OSPF)
of the route such that ADA < ADB denotes routing
protocol A is preferred to protocol B.
• Protocol attributes: This captures protocol-specific at-

tributes of the routing protocol represented by AD.
For example, if the value of AD corresponds to BGP,
the protocol attributes field encodes the BGP attributes
(i.e., weight, local preference). To enable fast imple-
mentation of route selection in our router model (that
we will discuss in §5.2), we carefully encode the at-
tributes so that preferring a route between two routes
route1 and route2 simply becomes a matter of choos-
ing the smaller of two bit-vectors AD1 .attrs1 and
AD2 .attrs2 when interpreted as unsigned integers (the
symbol . denotes concatenation of the AD and proto-
col attributes fields of a route). For example, since
route selection in BGP involves checking a prioritized
list of BGP attributes (e.g., first checking the weight,
2Since our route model resembles routing messages in distance-

vector protocols, we accommodate link state protocols (e.g., OSPF) by
letting the attributes refer to the routes output by the Dijkstra algorithm.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 221

AND	with	
supported	protocols	

Vin	
Apply	input	filters	

OR	with	routes	
originated	by	router	

OR	with	
redistributed	routes	

Apply	output	filters	
Select	best	route	
per	dst	prefix	

AND	with	NEG.	
of	sta9c	routes	

OR	with		
aggregate	routes	

Vout	

1	 2	 3	

4	5	6	

7	 8	

Figure 8: High-level router model processing boolean
representation of input routes.

then local preference, etc.) [4], for a BGP route, the
highest order bits of the protocol attributes field of the
route encode the complement of the BGP weight at-
tribute, followed by the complement of the local pref-
erence, and so forth. Note that the designated 87 bits
for succinctly capturing protocol attributes have been
sufficient in a range of realistic scenarios we have con-
sidered (§9), but there might be scenarios where more
bits are needed to encode many distinct attributes.

5.2 Control Plane as a Visibility Function
Given the I/O unit of the control plane, next we need to
model the processing logic that a router applies to input
routes. Intuitively the router model is a function that given
a route as its input, computes the corresponding output
route(s). We identify 5 key operations of the router control
plane: (i) Input filtering, which modifies/drops incoming
route advertisements to the router; (ii) Route redistribu-
tion, which is necessary to capture cross-protocol interac-
tions [31,33]; (iii) Route aggregation, which is a common
mechanism to shrink forwarding tables, yet its improper
use can lead to reachability violations [34]; (iv) Route se-
lection, which is in charge of selecting the best route to
a given destination prefix; and (v) Output filtering, which
modifies/drops outgoing route advertisements.

Unfortunately, reasoning about the control plane one
routing announcement at a time is not scalable. In-
stead, we lift our router model to work simultaneously
on a set of route announcements. We refer to our router
model as the visibility function because it captures how
the router control plane processes the routing informa-
tion made visible (i.e., given as input) to it. The input
to the router visibility function, V in, is the set of input
routes sent by its neighbors and configured static routes;
and its output, V out, is the set of corresponding output
routes that are sent downstream by the router. The no-
tation V out

Router = TRouter (V
in
Router) denotes the control

plane visibility function of Router .
For fast exploration, we use BDDs to symbolically en-

code the set of I/O routes in a router model. A BDD is a
compressed representation of a boolean function that en-
ables fast implementation of operations such as conjunc-
tion, disjunction, and negation [30]. Our BDD encoding
enables fast router operations by transforming operations

router as a BDD – step 0 of 3

1	

F	 T	

X1	

(a) RIP.

router as a BDD – step 1 of 3

1	

F	 T	

X3	

X2	

X1	

(b) Static route.

router as a BDD – step 3 of 3

1	F	 T	

X0	

X1	

X3	
X2	

X1	

F	 T	

X0	

(c) Output filter.

Figure 9: Example router model as a BDD. Dashed
and solid lines represent the values 0 and 1 of the cor-
responding binary variable, respectively.

on sets to quick operations on BDDs. For example, tak-
ing the complement of a set simply requires flipping the
true/false leaves of the corresponding BDD.

Figure 8 shows the high-level procedure for processing
a boolean representation of sets of routes. (For complete-
ness, the pseudocode for this is presented in Appendix B.)
The steps to turn V in into V out are as follows:

1. Supported protocols: First, the routing protocols
present in the configuration file are accounted for.

2. Input filtering: Then, the input filters are applied.
3. Originated routes: In addition to the input route, there

are routes that directly stem from the configuration
files, which are conceptually ORed with the input.

4. Route redistribution: A route redistribution command
propagates routing information from a routing protocol
(e.g., BGP) into another protocol (e.g., OSPF).

5. Route aggregation: If the router receives any input
route that is more specific than any configured aggre-
gate route, the aggregate route gets activated.

6. Static routes: A static route is a route locally known to
the router (i.e., not shared with its neighbors). Further,
by default, static routes take precedence over dynamic
routes (e.g., OSPF, BGP, RIP, IS-IS) due to having a
lowerAD value. This behavior is captured by ANDing
the negation of static routes with all other routes.

7. Route selection: Selecting the best of multiple routes to
a destination prefix works as follows: (i) if the routes
belong to different routing protocols, the one with the
lowest AD value is selected, (ii) if the routes belong
to the same routing protocol, the protocol-specific at-
tributes determine the winner.

8. Output filtering: The router applies its output filters.

An illustrative example: We illustrate the procedure of
Figure 8 using a small example. For ease of presentation,
a route here has only 4 bits x3x2x1x0, with two bits x3x2
representing IP prefix, the bit x1 representing AD, and
the bit x0 representing protocol attributes. A bar over a
binary variable denotes its negation. In this example, the
network operator assumes the router accepts all routes as
input, which is captured by setting V in = 1 (i.e., true).

222 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Suppose a router is configured with a static route and
RIP, with AD values of 0 and 1, respectively. Figure 9
shows the BDD representation of the router that has the
following four (simplified) configuration commands:
• RIP, denoting the presence of RIP on the router, is cap-

tured by 1 ∧ x1 = x1, as shown in Figure 9a.
• static 10/2: Since this static route overrides the

RIP routes with the same prefix, the resulting predicate
is (x3 x2)x1=x3 x1 ∨ x2 x1 . This is shown in Figure 9b.

• output filter: if RIP attribute is 0,

make it 1: The effect of the filter is to replace all
occurrences of x1 by x1 x0 . The resulting predicate is
x3 x1 x0 ∨ x2 x1 x0 . This is captured in Figure 9c.
Intuitively, the output V out = x3 x1 x0 ∨ x2 x1 x0 , sim-

plified to V out = (x3 ∨ x2) ∧ x1 x0 , represents the fact
that given every environment as the input, the router out-
puts RIP (noted by x1) with attribute 1 (noted by x0) and
the dest. prefix can be 00, 01, or 11 (noted by x3 ∨ x2).

In the following section, we will discuss how to reason
about the reachability behaviors of the network by explor-
ing the router model we developed in this section.

6 Exploring the Model
Our reachability analysis is based on an exploration of the
control plane model above. We first describe this explo-
ration, and then describe how we leverage our BDD-based
encoding to devise a set of scalable exploration mech-
anisms that use (i) the Karnaugh map, (ii) equivalence
classes, and (iii) vectorized CPU instructions.

6.1 Exploration Method
We present our approach to finding traffic reachable from
portA to portB using a representative example. Consider
the scenario shown in Figure 10. The red path is an A-to-
B path involving routers RA, . . . ,Ri ,Ri+1 , . . . ,RB . For
ease of presentation, in this example, there is only one
path from A to B; the general pseudocode presented in
Appendix C accounts for all A-to-B paths.

To see the effect of the environment, consider router Ri ,
which has three paths to router ports that face the outside
world (namely, outside facing ports of routersR1,R3, and
R5). Unless the operator makes a more specific assump-
tion on an environment input (i.e., what route advertise-
ments the outside world will send to the network), ERA
starts analysis using the boolean value true (represented
by a BDD with only one leaf with the value true), which
represents the fact that every possible route are provided
by the environment. On the other hand, if the operator
is able to make a more scoped assumption about the en-
vironment (e.g., based on expected routes from a neigh-
bor), the starting environment will reflect the assumption.

A to B reachability: steps 1 and 2

1	

Ri	

3	

R3	

R2	

A	

Network	
Environment	

R1	

R4	
R5	

B	RA	 RB	

env1	 env2	

env3	

Ri+1	…	 …	

P	
Rj	

…	

Figure 10: Computing A to B reachability.
Such assumptions can be encoded as a BDD that explic-
itly includes the relevant variables on the assumed prefix,
administrative distance, or attributes values of incoming
routes from the environment.

Computing traffic reachable from A to B involves the
following steps:
1. Applying the effect of the environment: Every router on

a A-to-B path that has a topology path to the environ-
ment, is affected by it. For router Ri in our examples,
it means Ri receives the environment input Ein

i , where

Ein
i = T1(env1) ∨ T2(T3(env2)) ∨ T4(T5(env3))

2. Computing routes reachable from B to A: As we saw
in §4.1, the key to computing traffic prefixes that reach
from A to B using control plane analysis is to compute
what route prefixes are made visible from B back to A.
Let assumedB show the input the operator assumes
about what port B receives from the environment. For
the red path, this is captured by

reachA B =

TA(Ein
A ∨ . . . (Ti+1(E

in
i+1 ∨ . . . TN (Ein

B ∨ assumedB) . . .)))

3. Extracting prefixes reachable from A to B: Since we
are interested in route prefixes reachable from B to A,
we eliminate binary variables in the route fields that
do not correspond to prefix (i.e., AD and protocol at-
tributes) in all boolean terms of reachA B .

4. Accounting for on-path static routes: In addition to the
routes that reach from B to A, which cause traffic to
reach from A to B, there is potentially other traffic that
can reach from A to B due to static routes configured
on on-path routers. This is because while a router does
not advertise its static routes, activated static routes end
up in its forwarding table. We account for such prefixes
and OR them with the answer from step 3.

5. Applying ACL rules affecting A-to-B traffic: While a
router configuration file primarily includes directives
to configure the router control plane, it may include ac-
cess control lists (ACLs) that restrict the actual traffic
that can pass through the data plane of the router. We,
therefore, account for ACLs by taking the result of step
4 and applying the ACLs of the on-path routers.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 223

a4	

a5	 a6	a7	
a1	

a2	

a3	
Y	 Z	

X	

Figure 11: Visualization of predicates X, Y, and Z in
terms of members of equivalence classes a1, . . . , a7.

Once traffic prefixes reachable from A to B are com-
puted, the network is policy-compliant if the prefixes
are equal to φA→B from §4.1. If φ is violated, ERA
applies the Karnaugh map [27] to the DNF representa-
tion of the violating routes to provide the human oper-
ator with fewer distinct items to investigate (§4.1); e.g.,
instead of reporting distinct prefixes 10.20.0.0/17 and
10.20.128.0/17 as violations, ERA summarizes and out-
puts them as 10.20.0.0/16.

The process above finds policy violations in the con-
text of a single set of environmental assumptions. The
user can iterate multiple times with different assumptions
in order to expose more errors. Conceptually, each itera-
tion of ERA over a BDD input analyzes a set of concrete
environments for which the network has an identical be-
havior. The analysis implicitly identifies this set during
exploration, by accumulating constraints from the visibil-
ity function of each router in the network. Thus, the num-
ber of iterations needed for exhaustive exploration using
ERA is far less than those needed with data plane based
analysis tools such as Batfish.

6.2 Scalability Optimizations
To build an interactive tool for network operators, we want
ERA to be able to compute A− to−B reachability in no
more than a few seconds. Even with the tractable control
plane model that we developed in §5, a naive implementa-
tion of the exploration mechanism outlined in §6.1 fails to
satisfy our goal. This is because of the very large range of
possible environments. Here we present three techniques
to scale control plane exploration.

Minimizing collection of routes with the K-map: As
a first step, to minimize the binary representation of the
router I/O, we apply the Karnaugh map (K-map), which
is a common technique in circuit design [27].

Finding equivalence classes: Performing computations
(e.g., conjunction and disjunction) on boolean representa-
tion of a real control plane is cumbersome. For example,
the same or similar destination prefixes may appear on
multiple routers. As such, if we encode prefixes naively,
this may slow down control plane exploration.

Given this observation, before performing reachability
analysis, ERA gets rid of redundant data by finding equiv-
alence classes of routes which are treated identically by

{0,1,4}		 1	 0	 0	 1 1	

{1,3}	 0	 1	 0	 1	 0	
OR	 1	 1	 0	 1	 1	 {0,1,3,4}	∪	

(a) Set union using OR.

1	 0	 0	 1 1	

0	 1	 0	 1	 0	
AND	 0	 0	 0	 1	 0	 {1}		

{0,1,4}		

{1,3}	
∩	

(b) Set intersection using AND.

Figure 12: Fast ∪ and ∩ of two sets of integers.

the network, using which the data can be rebuilt [42].
The advantage of doing so is that now performing dis-
junction and conjunction on boolean terms boils down to
doing union and intersection on sets of integers (known as
atomic predicates [42]). These integers are the indices of
the equivalence classes. We illustrate this technique using
an example. Suppose we need to compute the conjunction
of the boolean termsX , Y , and Z (e.g., representing three
routes). Instead of naively computing the conjunction on
the raw boolean form of these terms, we do the following:
1. Express each term in terms of equivalence classes as

depicted in Figure 11; e.g., X = a2 ∨ a5 ∨ a6 ∨ a7.
2. Represent each term using the indices of members of

equivalence classes, e.g., X is the union of members
2, 5, 6, and 7. (This way, irrespective of how bulky
the raw form of term ai might be, it is represented by
integer value i.)

3. To compute X ∧ Y ∧ Z, intersect the sets of their
corresponding indices: {1, 5, 6, 7} ∩ {1, 4, 5, 7} ∩
{3, 4, 6, 7} = {7}, which indicates the answer to
X ∧ Y ∧ Z is a7.

Implementing fast set operations: As we saw above,
using equivalence classes, reachability analysis involves
computing union and intersection of sets of integers. We
leverage vectorized instructions on recent processors to
perform fast set union and intersection of two sets of in-
tegers (i.e., the indices of the equivalence classes). The
intuition is simple: if a set of integers is represented as a
bit vector where each bit represents the presence/absence
of the corresponding value, then the union (intersection)
of two sets of integers is the bit-wise OR (AND) of the
two bit vectors.

Figure 12 shows this approach using an example. In our
implementation, we use instructions on 256-bit vectors in
our Intel AVX2 implementation [13].

7 Going beyond Reachability
Building on basic A-to-B reachability, ERA can be used
to check a wider range of policies. In §9, we will discuss
scenarios involving these policies.
Valley-free routing: Operators often want to implement
“valley-free” routing [20], which means that traffic from a
neighboring peer or provider must not reach another such
neighbor. This condition is a form of reachability policy
that ERA can easily check.

224 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Equivalence of two routers: Operators often use multi-
ple routers to provide identical connectivity for fault toler-
ance. Checking if they are identically configured (e.g., us-
ing configuration syntax) is hard because the routers may
be from different vendors and many aspects of the con-
figuration (e.g., interface IP addresses) can legitimately
differ across routers of even the same vendor. To check
semantic equivalence of two routers’ policies, we use the
following property of BDDs: if two boolean functions de-
fined over n boolean variables are equivalent (i.e., they
generate the same output for the same input), their Re-
duced Ordered BDDs (ROBDDs) are identical [17]. In
our implementation, we check the equality of the ad-
jacency matrix representations of the BDDs of the two
functions, which takes O(n2). In contrast, a brute force
method will take O(2 n).
Blackhole-freeness: A blackhole is a situation where a
router unintentionally drops traffic. The blackholed traffic
from A to B is the complement of the reachable traffic:
blackholeA B = reachabilityA B . Note that computing
blackholes by ERA having computed reachability takes
O(1), as the negation of a BDD is the same BDD with its
two leaves (corresponding to true and false) flipped.
Waypointing: Operators may want traffic from A to B
to go through an intended sequence of routers (e.g., to
enforce advanced service chaining policies [15,35]). ERA
checks waypointing by explicitly checking whether traffic
reachable from A to B goes through the intended routers.
Loop-freeness: ERA can find permanent forward-
ing loops (e.g., created by static or aggregate routes—
see Figure13c in §9.1) by checking whether the same
router port appears twice in the reachability result.

8 Implementation
Our implementation of ERA [1] supports several config-
uration languages (e.g., Cisco IOS, JunOS, Arista). It
uses Batfish’s configuration parser, which normalizes a
vendor-specific configurations to vendor-agnostic format.
ERA, then, uses this vendor-agnostic format as input.
We implement the control plane model, the K-map, and
atomic predicates in Java. To operate on BDDs, we use
the JDD library [7]. We implement our fast set intersec-
tion and union algorithms in C using Intel AVX2, which
expands traditional integer instructions to 256 bits [13].
A natural question might be how much effort it takes to

add support for various routing protocols to ERA. In our
experience, this effort is minimal. It took two of the au-
thors a few hours to model the common routing protocols
because of two reasons. First, there are fewer than 10
common routing protocols (e.g., BGP, OSPF, RIP, IS-IS).
Second, for each protocol, the key insight for creating the

Ex 2: Back-up link ac0va0on due to route redist.

1	

C	

A	 B	

X	

BGP	

	

1.	We	want	A-X	and	B-X	to	be	the	primary	and	backup	links,	respec@vely.	

ISP	
Customer		
network	

2.	At	!me	t1:	On	A	and	B,	sta@c	routes	are	redistributed	into	BGP,	so	that	the	ISP	
can	adver@se	them	to	the	rest	of	the	 Internet.	B-X	acts	as	a	primary	 link	since	
we	forgot	to	adjust	the	default	AD	values	of	BGP	and	sta@c	routes	on	B.	
	

Example	by	Franck	Le	et	al.,	CoNext’08	

3.	At	!me	t2:	The	admin	fixes	the	problem	by	withdrawing	the	sta@c	route	on	B	
(or	by	overwri@ng	the	default	AD	value	of	sta@c	routes	to	fix	the	problem	is	fixed).	

(a) Violation of way-
pointing [32].

Ex. 3: Blackhole due to route aggrega4on

1	

A	

B	 C	

10.1.2.0/24

10.1.3.0/24

1.  Both	B	and	C	are	configured	to	announce	aggregate	route	10.1.2.0/23	to	A.	

Example	by	Franck	Le	et	al.,	CoNext’11	

2.	One	of	B’s	interfaces	fails,	but	B	conHnues	to	announce	the	aggregate	route.	

3.	A	may	send	packet’s	desHned	to	10.1.2.0/24	to	B,	which	B	will	drop.		
Query:	Is	there	any	negaHve	route	such	that:	

	NOT(route)	∈	TBàneighbor	(route)	

(b) Black-
hole [34].

Ex. 4: Permanent loop due to route aggrega4on

1	

X	

Y	

1.	ISP	adver.ses	the	default	route	to	enterprise	network.		

0.0.0.0/0

Example	by	Franck	Le	et	al.,	CoNext’11	

ISP	

Enterprise	
Network	

3.	Enterprise	network,	however,	adver.ses	the	aggregate	route	128.2.0.0/16	to	ISP.		

10.2.0.0/16

2.	Enterprise	network	has	next	hops	only	for	128.2.1.0/24 and 128.2.2.0/24.		

4.	 ISP	will	 send	 traffic	with	 des.na.on	128.3.0.0/24 to	 enterprise	 network.	 The	
traffic	will	trap	in	a	loop.		

Query:	Is	there	any	nega.ve	route	route	such	that:	
		RIBY	is	a	strict	subset	of	TYàneighbor	(route)	

	

10.2.1.0/24

10.2.2.0/24

(c) Permanent loop [34].

Figure 13: Finding known bugs in synthetic scenarios.

model is to know how the protocol prefers a route over
another in the steady state, which is concisely defined in
protocol specifications.

9 Evaluation
In this section, we evaluate ERA and find that:
• It can help find both known and new reachability vio-

lations (§9.1).
• It can scale to large networks (e.g., it can analyze a

network with over 1,600 routes in 6 seconds), and our
design choices are key to its scalability (§9.2);

9.1 Finding Reachability Bugs with ERA
We show the utility of ERA in finding reachability viola-
tions in scenarios involving known bugs as well as new
bugs across both real and synthetic scenarios. These sce-
narios illustrate violations that are latent and get triggered
only in certain environments (i.e., a certain router adver-
tisement sent to the network by the routers located int
the outside world). Even for scenarios involving only
a small number of routers, existing network verification
techniques lack the ability to find latent bugs (§2), and
trying to extend these tools to enumerate different envi-
ronments poses a serious scalability challenge (e.g., we
will quantify this for Batfish, a recent network verifica-
tion tool, in §9.2). Further, as we will discuss in §9.2,
ERA scales to large networks (e.g., over 1,600 routers).

All experiments below were done under the assumption
that the environment sends all possible route announce-
ments, i.e. the BDD of each environmental input is simply
the predicate true. Though this environmental assump-
tion is not guaranteed to cover all possible environments,
in practice it is effective at rooting out latent bugs due
to its “maximal” nature, as we show below. This points
out an important advantage of ERA over Batfish [19].
While both tools require an environment as input, Bat-
fish’s low-level simulation of routing protocols makes it
prohibitively expensive to run with such a maximal envi-
ronment, so in practice Batfish users must craft specific
environments that are suspected to cause problems.

9.1.1 Finding Known Bugs in Synthetic Scenarios
• Violation of waypointing due to route redistribu-

tion: In this scenario borrowed from [32] and shown

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 225

in Figure 13a, the customer wants to waypoint its traf-
fic through X −A− C and use X − B − C as the
backup path. However, static routes configured on
routers A and B are redistributed into BGP, and the
ISP advertises them into the rest of the Internet. As a
result, B −X acts as a primary link. (One way to pre-
vent this would be for the customer to adjust the default
AD values of BGP and static routes on B.)

• Blackhole due to route aggregation: In this scenario
borrowed from [34] and shown in Figure 13b, both
routers B and C are configured to announce aggregate
route 10.1.2.0/23 to router A. After the marked inter-
face of B fails, B continues to announce the aggre-
gate route, which causes A to send packets destined to
10.1.2.0/24 to B. B will drop this traffic, as the its link
to the 10.1.2.0/24 subnetwork is down.

• Permanent loop due to route aggregation: In this
scenario borrowed from [34] and shown in Figure 13c,
the ISP router X advertises the default route 0.0.0.0/0
to router Y . Even though Y has connectivity to only
10.2.1.0/24 and 10.2.2.0/24, it has been configured to
advertise to the ISP the aggregate route for the entire
10.2.0.0/16 prefix. Now since 10.3.0.0/24 is as sub-
prefix of 10.2.0.0/16, the ISP may send traffic to des-
tination prefix 10.3.0.0/24 to Y . Consequently, since
Y does not know how to reach 10.3.0.0/24, this traffic
will match its default route entry and be bounced back
to the ISP. This traffic, therefore, will trap in a perma-
nent loop between X and Y .
To further evaluate the effectiveness of ERA, we did

a red team-blue team exercise. In each scenario, the red
team introduced misconfigurations that cause a reachabil-
ity violation unbeknownst to the blue team. Then the blue
team uses ERA to check whether the intended policy is
violated. Across all scenarios, the blue team successfully
found the violation. Here is a summary of the scenarios:
• Violation of waypointing: In Figure 14a, the intended

policy is to ensure traffic originating from network E
destined to network C goes through path E − B − C
(so that it is scrubbed by the firewall). However, this
policy is violated because router E receives the pre-
fix of network C from both routers B and D, which
means NetE → NetC traffic may go through path
E −D − C skipping the firewall. The root cause of
the problem was the fact that none of routers C, D, or
E filtered the route advertisement for the 10.1.1.0/24
prefix on the E −D − C path.

• Violation of valley-free routing: In Figure 14b,B and
E are providers for C, which in turn, is a provider
for D. A missing export filter on C caused C to ad-
vertise the prefix for NetE to B. This is a violation

B	

E	C	

D	

BGP	

BGP	

BGP	

BGP	

	WAY	POINTING	

Network	Operator	wants	the	direc=on	to	be	C-B-E	
D	was	misconfigured	and	didn’t	filter	BGP	traffic	to	go	to	
10.1.1.0/24	
It	resulted	in	traffic	going	from	both	direc=ons	

Net	C	 Net	E	FW	
10.1.1.0/24	

(a) Violation of waypointing via B.

C	

B	 E	

D	

Net	D,	Net	E	

Net	D	

Net	E	

Net	B	 Net	E	

Valley	Free	

1.  B,E	are	providers	to	C.	C	is	provider	to	D	
2.  BGP	is	configured	in	all	routers	
3.	D	is	adverAsed	to	E	through	C	
4.	C	is	misconfigured	and	adverAses	E	to	B	instead	of	just	D.		
5.	Violates	valley	free	property		

Net	D	

Net	B	

Net	D	

(b) Not valley-free.

B	

A	 D	

C	

Isola+on	

10.10.10.0/24	

10.10.20.0/24	 10.10.30.0/24	

10.10.40.0/24	
BGP	

BGP	

OSPF	

Redist.	OSPFàBGP	

A,B	are	part	of	a	network	which	uses	only	BGP.	
C,D	are	part	of	a	network	which	uses	only	OSPF.	
D	was	misconfigured	to	redistribute	OSPF	to	BGP	
This	resulted	in	the	C,D	communica+ng	which	violated	isola+on	property	

OSPF	

(c) Violation of isolation between
{A,B} and {C ,D}.

C	

B	

D	

Prefix	list	Errors/Basic	
Reachability	

10.10.0.0/16	

10.20.0.0/16	

10.10.0.0/16	

Goal		-	A	(consumer)	needs	to	reach	P(provider)	
D,B,C	run	BGP	
C	has	a	prefix	list	to	let	through	2	routes	for	bgp	
B	was	misconfigured	to	let	only	1	route	through	for	bgp	
No	one	noLces	because	A	can	sLll	reach	P	through	C-D	
But	if	C	or	C-D	falls	then	we	lose	connecLvity	to	2.2.0.0/16	
due	to	the	bug	

Provider	

A	

10.10.0.0/16	
10.20.0.0/16	

Client	

(d) Misconfigured backup path
D − B −A.

Figure 14: Finding known bugs in synthetic scenarios
using the red-blue teams exercise.

of the valley-free routing property, specifically, due to
customer C providing connectivity between two of its
providers, namely, B and E.
• Violation of intended isolation: In Figure 14c, we

want the traffic from segments {A,B} (running BGP)
and {C ,D} (running OSPF) to remain isolated from
each other. However, this policy is violated due to a
misconfiguration on C whereby OSPF is redistributed
into BGP, that will allow traffic from {A,B} to reach
{C ,D}.
• Misconfigured backup path: In Figure 14d, the client

has two /16 networks connected to A and intends to
maintain two paths to the provider to ensure reachabil-
ity in case of failure on one of them. This policy is vio-
lated because of an incorrect filter configured onB that
drops the advertisement for the 10.20.0.0/16 network.
As a result, if path D − C −A fails, the 10.20.0.0/16
network will be unreachable from the provider.

9.1.2 Finding New Bugs in Synthetic Scenarios

Finding reachability bugs in hybrid networks: Oper-
ators may prefer to opt for a hybrid network, which in-
volves deploying SDN alongside traditional network rout-
ing infrastructure for scalability and fault tolerance [40].
Next we show how ERA can find policy violations arising
in such hybrid deployments.

Fibbing [40] is a recent method to allow an operator
to use an SDN controller to flexibly enforce way-pointing
policies in a network running vanilla OSPF. The key prim-
itive is “fibbing” whereby the SDN controller pretends to
be a neighboring router and makes fake route advertise-
ments with carefully crafted costs. For example, con-
sider the network of Figure 15a, where links are anno-
tated with their OSPF weights. If we run OSPF, both

226 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fibbing bug due to aggrega.on on R2

1	

R2	

R3	

R4	

R5	

D1	

D2	

S1	

S2	

R1	

5	 5	

2	2	

3	 F 2	
1	

(a) Route aggregation on R2.

Fibbing bug due to bgp bea.ng ospf on R1

1	

R1	

R2	

R3	

R4	

OSPF	

S	

5	 3	

1	2	
D	

R5	

F 1	
1	

OSPF	

BGP	

BGP	BGP	

OSPF	OSPF	

(b) Cross-protocol effects.

Figure 15: New bugs in a synthetic scenario involving
hybrid (i.e., SDN-traditional) networks.

source to destination flows will take the cheaper path
R1 − R2 − R4 − R5 . Now, for load balancing purposes,
the operator wants to make S1 → D1 traffic take the
path R1 − R2 − R3 − R5 without fiddling with OSPF
wights. Fibbing will let her accomplish this by using a
fake router F that claims to be able to reach D1 at a cost
of 2. As a result, nowR2 will start sending traffic destined
to D1 through F , as the new cost 1+2=3 is better than the
cost 2+2=4 of going through R4.

A hybrid network is particularly error-prone due to in-
tricate interactions between SDN and traditional proto-
cols. To show the utility of ERA in reasoning about such
networks, we describe two scenarios:

• Interaction between fibbing and aggregate routes:
In Figure 15a, the goal is to use fibbing to enforce the
waypointing denoted by green and orange paths. We
used ERA to find a violation of this policy. The root
cause was an aggregate route configured on R2 to des-
tination prefix D1 ∪D2 pointing to R4 as its next hop.
As a result, both S1 → D1 and S2 → D2 traversed the
orange path, which violated the policy.

• Cross-protocol effects: In Figure 15b, the goal
is to use fibbing to waypoint traffic to D through
R1 − R2 − R4 . We used ERA to find a violation of
this in a red team-blue team exercise. Each router in the
figure is annotated with the routing protocol(s) it runs.
Router R4 had a static route to D that is redistributed
into BGP and OSPF. As a result, router R1 received
route advertisements for D from both OSPF (from R2

and R3) and BGP (from R5). Now since BGP, by de-
fault, has a lower AD value than OSPF, R1 chose the
advertisement offered by R5! Therefore, fibbing here
fails to enforce the waypointing policy.

Fibbing is proven to be correct [40], but only if the net-
work merely runs OSPF. The takeaway from the above
scenarios is that for hybrid networks to be practical, we
need to account for realistic router configurations (e.g.,
route aggregation byR2 in Figure 15a) and cross-protocol
interactions (e.g., BGP/OSPF in Figure 15b).
Note that finding arbitrary SDN bugs is beyond the scope
of ERA. ERA handles SDN only if its behavior can be
abstracted in our control plane model, in a manner similar

Route leak

1	

C	

R1	

R2	
10.20.0.0/16

S	Client	 Service	

Figure 16: R1 leaks the service prefix.
Simplified	view	of	CMU	Network	

Core1	 Core	2	

ISP1	 ISP2	 ISP3	

Departments	

1	

•  (Assumed)	policy	1:	Core0	and	Core255	are	meant	to	be	
“equivalent”	in	that	if	one	of	them	fails,	the	reachability	across	
netowrk	remains	unchanged.	

•  (Assumed)	policy	2:	POD-I-CYH	and	POD-I-NH	are	meant	to	be	
“equivalent”	in	that	they	implement	the	same	peering	policies	with	
the	ISPs.	

Pod1	 Pod2	

Figure 17: A schematic of the analyzed CampusNet.

to what we do for conventional routing protocols.

9.1.3 Finding Known Bugs in Real Scenarios
Bugs reported in a cloud provider: The motivating sce-
narios we saw in §3 are based on bugs in a production
network that we successfully reproduced using ERA.
Finding BGP route leaks: Roughly speaking, a route
leak scenario involves: (i) a router incorrectly advertis-
ing the destination prefix of a service, and (ii) another
router incorrectly accepting it. The combination of these
results in absorbing traffic destined to the service on the
wrong path, which can cause high-impact disruptions.
Route leak is not a new problem (e.g., see AS 7007 in-
cident [2]), but continues to plague the Internet to date
(e.g., Google [6] and Amazon AWS [11] outages in 2015).
To demonstrate the utility of ERA in proactive finding of
route leak-prone configurations, we use a representative
scenario shown in Figure 16. The intended path from the
client to the service is through R2; however, the client’s
traffic ends up taking the wrong path C → R1 because
(i) R1 incorrectly advertises the service prefix, and (ii) C
prefers the route advertisement made by R1 over the one
made by R2. ERA can proactively find route leaks, as a
route leak is essentially a violation of waypointing. In this
example, the traffic from client to server needs to be ex-
clusively waypointed through R2 . We have synthesized
a few route leak scenarios and used ERA to successfully
find violations.

9.1.4 Finding New Bugs in Real Scenarios
Next we show the utility of ERA in finding new bugs in a
campus (CampusNet) and a large cloud (CloudNet).

Finding new bugs in CampusNet: Figure 17 shows a
simplified topology of the core of a large campus network,
with a global footprint and over 10K users. The two core
routers are in charge of interconnecting the three ISPs and
the departments. There are two intended policies involv-
ing these four routers, both of which are violated:
• Equivalence of core routers: Core2 is meant to be
Core1’s backup. ERA revealed that Core1 has OSPF

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 227

configured on one of its interfaces, which is missing on
Core2. As a result, ifCore1 fails, the departments that
rely on OSPF will be disconnected from the Internet.

• Equivalence of pod routers: Pod1 and Pod2, con-
necting the campus to the Internet, are both connected
to ISP2 with the intention that link Pod1 − ISP2 is
active and Pod2 − ISP2 is its backup. ERA revealed
that the ACLs on Pod1 and Pod2 affecting their re-
spective links with ISP2 are different. Specifically,
Pod2 has more restrictive ACLs than Pod1. This
means if link Pod1 − ISP2 fails, a subset of campus-
to-ISP2 traffic will be mistakenly dropped by Pod2.

Finding new bugs in CloudNet: We used ERA to check
equivalence of same-tier routers (analogous to routers R1

andR2 in Figure 2) on configurations of seven production
datacenters of a large cloud provider. ERA revealed that
seven routers in two datacenters had a total of 19 static
routes responsible for violations of equivalence policies.
The operators later removed all of these violating routes.

9.2 Scalability of ERA

Testbed: We run our scalability evaluation experiments
on a desktop machine (4-core 3.50GHz, 16GB RAM).
Why not existing tools? The closest tool to ERA is Bat-
fish [19], which (1) takes a concrete network environment;
(2) runs a high-fidelity model of the control plane (e.g.,
low-level models of various routing protocols) to generate
the data plane (i.e., routers forwarding tables); and (3) per-
forms data plane reachability analysis. To put this in per-
spective, in an example scenario involving a chain topol-
ogy with two routers, Batfish took about 4 seconds. In
contrast, ERA took 0.17 seconds to analyze the same net-
work (a 23X speedup over Batfish). Further, as mentioned
earlier, Batfish’s performance will degrade as the size of
the environment increases, while ERA’s BDD-based ap-
proach allows it to naturally handle even the “maximal”
environment, represented by the BDD true.

Effect of optimizations: Table 1 shows the effect of our
optimizations from §6.2, namely, the K-map, equivalence
classes (EC), and fast set operations compared to a base-
line involving use of BDDs without these optimizations.
The tables shows the average values from 100 runs, each
involving A-to-B reachability analysis between two ran-
domly selected ports. Stanford [12] and Purdue [10] are
campus networks, OTEGlobe [14] is an ISP, and FatTree
is a synthetic datacenter topology. The takeaway here is
that our optimizations yield a speedup of 2.5× to 17×,
making ERA sufficiently fast to be interactively usable.

To see the effect of the type of policy on the analysis
latency, we measured the analysis latency for all proper-
ties from §7 on the Purdue and OTEGlobe topology, none

Topo. #routers/ave
path len.

Reachability analysis latency (sec)

baseline kmap kmap+EC ERA
Stanford 16/2 5 1.8 0.30 0.29
OTEglb 92/3.3 7.8 3.5 1.97 1.84
FatTree 1,024/5.89 13.8 7.01 6.1 5.4
Purdue 1,646/6.8 15 8 6.5 6

Table 1: Effect of our optimizations.

of which took more than 6.1 seconds. This is expected, as
these policies are derivatives of reachability analysis.

10 Conclusions
Since networks are constantly changing (e.g., new route
advertisements, link failures), operators want the ability
to reason about reachability policies across many possible
changes. In contrast to prior work, which either focuses
on a subset of the network’s control plane or focuses on
one incarnation of the network as represented by a sin-
gle data plane, ERA models the entire control plane and
checks network reachability directly in that model. Our
design addresses key expressiveness and scalability chal-
lenges via a unified protocol-invariant routing abstraction,
a compact binary decision diagram based encoding of
the routers’ control plane, and a scalable application of
boolean operations (e.g., vector arithmetic).

We showed that ERA provides near-real-time analysis
capabilities that can scale to datacenter and enterprise net-
works with hundreds of nodes and uncover a range of la-
tent reachability bugs. While ERA does not automatically
reason about all possible of environments, it helps find la-
tent reachability bugs by allowing the users to specify a
rich set environments using BDDs and quickly analyzing
each such set. For instance, a particularly challenging en-
vironment, of all possible routing announcements from a
neighbor, can be captured simply using BDD true.

In future work, we will identify conditions under which
a single run of ERA is guaranteed to cover all possible en-
vironments and extend ERA to automatically explore all
possible environments. Another natural direction for fu-
ture work is to prioritize bug fixing based on the likelihood
of occurrence and severity of aftermath, and to bring the
human operator into the debugging and repair loop.

Acknowledgments
We thank our shepherd George Porter and the OSDI re-
viewers for their constructive feedback. This work was
supported in part by NSF Awards CNS-1552481 and
CNS-1161595 and by a VMware Graduate Fellowship.

228 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix
The goal of the following appendices is to provide details
of our control plane modeling and exploration approach
that we presented in §5 and §6.

A Computing Destination Prefix
To make our route abstraction compact, we store the desti-
nation mask field in 5 bits (instead naively storing it in 32
bits) as we saw in §5.1. Here we concretely describe how
we do this. Let dstIP and dstMask denote a 32-bit desti-
nation IP address and our 5-bit encoding of the destination
mask. To compute the destination prefix that the destina-
tion IP and mask represent, we first transform the mask
to its customary 32-bit representation (e.g., 255.255.0.0),
and then AND it with the IP address:
dstPrefix ← dstIP&((2 32 − 1) << (32 − dstMask))

where <<denotes the shift left operator.

B Route Visibility Function
For completeness, the pseudocode of Figure 18 shows the
details of the router control plane model from §5.2. The
pseudocode describes how a configured router turns the
boolean representation of its input routes to output routes.
Note that we account for per-port (i.e., router interface)
behaviors because, in general, a router can have distinct
routing behaviors configured on its different ports.)
1. The input to the router is the disjunctive normal form

(DNF) boolean representation of input routes. This
represents the input route(s) the environment of the
router (i.e., its neighbors) sends to it (line 1). The out-
put of the pseudocode is the DNF boolean representa-
tion of the output routes (line 2).

2. First, the routing protocols present in the configuration
file are accounted for (lines 6-7).

3. Then, the input filters are applied to the input route
(Lines 8-12).

4. In addition to the input route, there are route adver-
tisements that directly stem from the configuration
files (e.g., the network bgp configuration command).
These are unioned with the input route in lines 13-14.

5. A route redistribution command propagates routing
information from a routing protocol, denoted by
fromProto (e.g., BGP) into another, denoted by
toProto, (e.g., OSPF). This is captured in lines 15-22.

6. A route aggregation (a.k.a. route summarization) com-
mand works as follows: if the router receives any input
route that is more specific than an aggregate route, the
aggregate route is activated (lines 23-28).3

3In line 21 (line 27) of Figure 18, if there are explicit attributes con-
figured for route redistribution (route aggregation), we use those values
instead of default attributes.

1 � Inputs: (1) Configuration information pertaining to router output port
Routerport including: static routes sr[.], route redistribution rr [.], route
aggregation ra[.], supported routing protocols proto[.], input filters if [.],
output filters of [.]
(2) Input to the router is a boolean function in DNF form:
V in = X in

1 ∨ · · · ∨X in
N

2 � Output: Boolean representation of Routerport in DNF

3 � Route bit vector from Figure 7, denoted by X , is concatenation of 3 fields:
X = Xprefix .Xproto .Xattr

4 � We show the length of an array array by size(array[.])
5 V out = V in � Initializing the output

6 � Applying supported routing protocols
7 V out = V out ∧ {

∨
i Xproto[i]}

8 � Applying input filters
9 for i = 1 to size(if [.])

10 for each disjunctive term of V out, denoted by V out
j

11 if V out
j matches if [i].condition

12 apply action if [i].action

13 � Accounting for routes that Router originates, denoted by V local

14 V out = V out ∨ V local

15 � Applying route redistribution
16 for i = 1 to size(rr [.])
17 for each disjunctive term of V out, denoted by V out

j

18 if V out
j .Xproto == rr [i].fromProto

19 newTerm = V out
j

20 newTerm.Xproto = rr [i].toProto
21 newTerm.Xattr = defaultAttr [proto]
22 V out = V out ∨ newTerm

23 � Applying route aggregation
24 for i = 1 to size(ra[.])
25 newTerm.Xprefix = ra[i].prefix
26 newTerm.Xproto = ra[i].proto
27 newTerm.Xattr = defaultAttr [proto]
28 V out = V out ∨ newTerm

29 � Applying static routes
30 for i = 1 to size(sr [.])
31 for each disjunctive term of V out , denoted by V out

j

32 if AD(V out
j .Xproto) > AD(static)

33 V out
j = V out

j ∧ (sr [i].prefix)

34 � Applying route selection
35 for each prefix prfx present in V out

36 precedence = +∞
37 for each disjunctive term of V out , denoted by V out

j

38 if (V out
j .prefix == prfx)&&(V out

j .AD.attr < precedence)

39 precedence = V out
j .AD.attr � Finding best route

40 for each disjunctive term of V out , denoted by V out
j

41 if (V out
j .prefix == prfx)&&(V out

j .AD.attr > precedence)

42 Eliminate V out
j from V out � Eliminating others

43 V out
j = V out

j ∨ prfx .precedence

44 � Applying output filters
45 for i = 1 to size(of [.])
46 for each disjunctive term of V out, denoted by V out

j

47 if V out
j matches of [i].condition

48 apply action of [i].action

49 return V out

Figure 18: Route control plane visibility function.

7. A static route, if present in the configuration file, is a
route locally known to the router (i.e., not shared with
its neighbors). Further, by default, static routes have a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 229

1 � Inputs: (1) router-level topology of network
(2) Set of router ports facing environment Env
(3) routers configurations

2 � Output: Prefix(es) of traffic reaching from router port A to router
port B

3 Parse router configurations into boolean functions (using Figure 18)
4 Initialize assumede on port e (by default, true)
5 initialize assumedB on port B (by default, true)

6 � Accounting for effect of environment on routers on an A-to-B
path

7 for each router routeri on an A− to − B path
8 for each environment-facing port e ∈ Env
9 for each path p from port e to routeri

10 � routerj is the jth router on e i,
where 1 ≤ j ≤ M (j)

11 E in
e→i,p = E in

e→i,p ∨ TM(j)(. . . (T1 (assumede)) . . .)

12 E in
e→i = E in

e→i ∨ V in
e→i,p

13 E in
i = E in

i ∨ E in
e→i

14 � Compute per-path reachability
15 Find all paths from B to A in G:

PathB A = {path1
B A, . . . , pathN

B A}
16 � routerji is the jth router on pathi

B A,
where 1 ≤ j ≤ M (j)

17 reachability
pathi

B A
B A =

TM(j)(. . . (T2 (E
in
2 ∨ (T1 (E

in
1 ∨ assumedB))))

18 Eliminate binary variables in reachabilityA B except those
corresponding to Xprefix

19 � Accounting for static routes
20 staticA B =

∨
i
(
∧
k

(StaticPrefix
Routerk

i
))

21 reachabilityA B = reachabilityA B ∨ staticA B

22 � Accounting for on-path ACLs. Routerki is the kth router on
pathi

A B

23 reachability
pathi

B A
B A =

reachability
pathi

B A
B A ∧ (

∨
k

ACLs
Routerk

i
)

24 � Compute all paths reachability

25 reachabilityA B =
∨
i

reachability
pathi

B A
A B

26 return reachabilityA B

Figure 19: Computing A-to-B reachability.

lower AD value than dynamic routing protocols (e.g.,
OSPF, BGP, RIP, IS-IS), which makes them take prece-
dence over these protocols. These behaviors are cap-
tures in lines 29-33.

8. Route selection is in charge of selecting the best route
out of multiple routes to the same destination prefix: (i)
if the routes belong to different routing protocols, the
routing protocol with the lowest AD value is selected,
(ii) if the routes belong to the same routing protocol,
the protocol-specific attributes determine which one is
selected. We have encoded protocol-specific attributes
in such a way that a smaller value denotes a more pre-
ferred route. Route selection is shown in lines 34-43.

9. As lines 44-48 denote, the last operation of the router

is applying the output filters.

C Computing Traffic Reachable
from A to B

We saw the high-level procedure to compute the traffic
reachable from port A to port B in the network in §6.1.
For concreteness, here we present the pseudocode for do-
ing so (Figure 19).
1. First, we account for the effect of the environment on

the routers that are located on a path from A to B
(lines 6-13).

2. The pseudocode then computes the routes that can
reach fromB toA over all paths between the two ports.
For each path, we sequentially use the visibility func-
tions of the on-path routers (lines 16-17). At this point,
we have computed all route advertisement prefixes that
reach from B to A, which is the traffic prefixes that
reach from A to B.

3. Then, since we are interested in route prefixes reach-
able from B to A, we ignore route fields that do not
correspond to prefix (i.e., AD and attributes) in line 18.

4. In addition to these prefixes, there is potentially other
traffic that can reach from A to B to static routes con-
figured on on-path routers. This is because while a
router does not advertise its static routes, proper static
routes end up in its forwarding table. By a proper static
route we mean a static route that points to the next on-
path router as its next hop. We account for static routes
in lines 19-20.

5. Since routers ACL rules restrict what traffic prefixes
will actually be forwarded, we then account for them
in lines 22-23.
Finally, the computed per-path reachability results are

unioned (lines 24-25).

230 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] ERA. https://github.com/Network-

verification/ERA.

[2] 7007 Explanation and Apology. http://bit.
ly/1e4djtW.

[3] BGP Message Generation and Transport, and
General Message Format. http://bit.ly/
1VMOI0R.

[4] Border Gateway Protocol Path Selection. http:
//bit.ly/1T1w7IH.

[5] Cisco—What Is Administrative Distance? http:
//bit.ly/1OkgevM.

[6] Finding and Diagnosing BGP Route Leaks.
https://blog.thousandeyes.com/
finding-and-diagnosing-bgp-route-
leaks/.

[7] JDD, a pure Java BDD and Z-BDD library.
https://bitbucket.org/vahidi/jdd/
wiki/Home.

[8] Juniper—Route Preferences. http://juni.pr/
1fQC4LY.

[9] OSPF Message Formats. http://bit.ly/
1TvOwwL.

[10] Purdue campus network configuration files.
https://engineering.purdue.edu/

˜isl/network-config/.

[11] Route Leak Causes Amazon and AWS Out-
age. https://blog.thousandeyes.com/
route-leak-causes-amazon-and-aws-
outage/.

[12] Stanford campus network configuration files.
http://bit.ly/1rvoK5h.

[13] The Intel Intrinsics Guide. http://intel.ly/
24sk3uz.

[14] The Internet Topology Zoo. http://www.
topology-zoo.org/dataset.html.

[15] High Performance Service Chaining for Advanced
Software-Defined Networking (SDN) . http://
intel.ly/1ilX5PG, 2014.

[16] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and
D. Walker. Don’t mind the gap: Bridging network-
wide objectives and device-level configurations. In
Proc. SIGCOMM, 2016.

[17] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, 1986.

[18] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In Proc.
NSDI, 2005.

[19] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A gen-
eral approach to network configuration analysis. In
Proc. NSDI, 2015.

[20] L. Gao. On inferring autonomous system relation-
ships in the internet. IEEE/ACM Trans. Netw., 9(6),
Dec. 2001.

[21] A. Gember-Jacobson, R. Viswanathan, A. Akella,
and R. Mahajan. Fast control plane analysis using an
abstract representation. In Proc. SIGCOMM, 2016.

[22] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and
R. Mahajan. Management plane analytics. In Proc.
IMC, 2015.

[23] T. G. Griffin, F. B. Shepherd, and G. Wilfong.
The stable paths problem and interdomain routing.
IEEE/ACM Trans. Netw., 10(2):232–243, Apr. 2002.

[24] T. G. Griffin and J. L. Sobrinho. Metarouting. In
Proc. SIGCOMM, 2005.

[25] T. G. Griffin and G. Wilfong. An analysis of BGP
convergence properties. In Proc. SIGCOMM, 1999.

[26] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-
W. Lin, and V. Kurien. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. SIGCOMM, 2016.

[27] F. J. Hill and G. R. Peterson. Introduction to Switch-
ing Theory and Logical Design. 1981.

[28] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: static checking for networks.
In Proc. NSDI, 2012.

[29] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
Veriflow: verifying network-wide invariants in real
time. In Proc. NSDI, 2013.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 231

[30] D. Knuth. The Art of Computer Programming, Vol-
ume 4A: Combinatorial Algorithms, Part 1. 2011.

[31] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang.
Shedding light on the glue logic of the internet rout-
ing architecture. In Proc. SIGCOMM, 2008.

[32] F. Le, G. G. Xie, and H. Zhang. Instability free
routing: beyond one protocol instance. In Proc.
CoNEXT, 2008.

[33] F. Le, G. G. Xie, and H. Zhang. Theory and new
primitives for safely connecting routing protocol in-
stances. In Proc. SIGCOMM, 2010.

[34] F. Le, G. G. Xie, and H. Zhang. On route aggrega-
tion. In Proc. CoNEXT, 2011.

[35] W. Liu, H. Li, O. Huang, M. Boucadair, N. Ley-
mann, Z. Cao, and J. Hu. Service Function Chaining
(SFC) Use Cases. http://bit.ly/1JTVneh,
2014.

[36] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman,
and G. Varghese. Checking beliefs in dynamic net-
works. In Proc. NSDI, 2015.

[37] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In Proc. SIGCOMM, 2011.

[38] D. A. Maltz, G. Xie, J. Zhan, H. Zhang,
G. Hjálmtýsson, and A. Greenberg. Routing design
in operational networks: A look from the inside. In
Proc. SIGCOMM, 2004.

[39] G. Varghese. Technical perspective: Treating net-
works like programs. Commun. ACM, 58(11):112–
112, Oct. 2015.

[40] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rex-
ford. Central control over distributed routing. In
Proc. SIGCOMM, 2015.

[41] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Kr-
ishnamurthy, and Z. Tatlock. Bagpipe: Verified BGP
configuration checking. In Proc. OOPSLA, 2016.

[42] H. Yang and S. S. Lam. Real-time verification of
network properties using atomic predicates. In IEEE
Transactions on Networking, 2015.

[43] H. Zeng, P. Kazemian, G. Varghese, and N. McK-
eown. Automatic test packet generation. In Proc.
CoNEXT, 2012.

232 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Simplifying Datacenter Network Debugging with PathDump

Praveen Tammana
University of Edinburgh

Rachit Agarwal
Cornell University

Myungjin Lee
University of Edinburgh

Abstract
Datacenter networks continue to grow complex due to
larger scales, higher speeds and higher link utilization.
Existing tools to manage and debug these networks are
even more complex, requiring in-network techniques like
collecting per-packet per-switch logs, dynamic switch
rule updates, periodically collecting data plane snapshots,
packet mirroring, packet sampling, traffic replay, etc.

This paper calls for a radically different approach
to network management and debugging: in contrast to
implementing the functionality entirely in-network, we
should carefully partition the debugging tasks between the
edge devices and the network elements. We present the
design, implementation and evaluation of PathDump, a
minimalistic tool that utilizes resources at edge devices
for network debugging. PathDump currently runs over
a real network comprising only of commodity hardware,
and yet, can support a surprisingly large class of network
debugging problems. Evaluation results show that Path-
Dump requires minimal switch and edge resources, while
enabling network debugging at fine-grained time scales.

1 Introduction
Datacenter networks are essential to online services in-
cluding web search, social media, online commerce, etc.
Network outages and performance degradation, even if
short-lived, can severely impact these services [1, 2, 3, 6].
Unsurprisingly, there has been a tremendous effort in
building tools that allow network operators to efficiently
manage networks and debug (the inevitable) network
problems [17, 22, 24, 26, 30, 36, 39, 41].

As datacenter networks evolve to larger scales, higher
speeds and higher link utilization, new classes of net-
work problems emerge. Accordingly, over the years,
network debugging tools have incorporated increasingly
complex in-network techniques — capturing per-packet
per-switch logs [17], collecting snapshots of entire data
plane state [20, 21, 22, 26], dynamically updating switch
rules [30], selective packet mirroring [33, 41], packet
sampling [8, 16, 39, 41], active packet probes [9, 40, 41],
traffic replay [37], a potpourri [41] — and this list barely
scratches the surface of all the sophisticated techniques

that have been proposed to be implemented on network
switches for debugging purposes.

In this paper, we do not add to this impressive collec-
tion of techniques. Instead, we ask whether there are a
non-trivial number of network debugging problems that
obviate the need of sophisticated in-network techniques.
To explore this question, we argue for a radically differ-
ent approach: in contrast to implementing the debugging
functionality entirely in-network, we should carefully par-
tition the functionality between the edge devices and the
network switches. Thus, our goal is not to beat existing
tools, but to help them focus on a smaller set of nails
(debugging problems) that we need a hammer (debugging
techniques) for. The hope is that by focusing on a smaller
set of problems, the already complex networks1 and the
tools for managing and debugging these networks can be
kept as simple as possible.

We present PathDump, a network debugger that
demonstrates our approach by enabling a large class of de-
bugging problems with minimal in-network functionality.
PathDump design is based on tracing packet trajectories
and comprises of the following:

• Switches are simple; they neither require dynamic rule
updates nor perform any packet sampling or mirroring.
In addition to its usual operations, a switch checks for
a condition before forwarding a packet; if the condition
is met, the switch embeds its identifier into the packet
header (e.g., with VLAN tags).

• An edge device, upon receiving a packet, records the
list of switch identifiers in the packet header on a local
storage and query engine; a number of entries stored
in the engine (used for debugging purposes) are also
updated based on these switch identifiers.

• Entries at each edge device can be used to trigger and
debug anomalous network behavior; a query server can
also slice-and-dice entries across multiple edge devices
in a distributed manner (e.g., for debugging functional-
ities that require correlating entries across flows).

1as eloquently argued in [41]; in fact, our question about simpler
network management and debugging tools was initially motivated by
the arguments about network complexity in [41].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 233

PathDump’s design, by requiring minimal in-network
functionality, presents several benefits as well as raises a
number of interesting challenges. The benefits are rather
straightforward. PathDump not only requires minimal
functionality to be implemented at switches, but also uses
minimal switch resources; thus, the limited switch re-
sources [14, 28] can be utilized for exactly those tasks that
necessitate an in-network implementation2. PathDump
also preserves flow-level locality — information about all
packets in the same flow is recorded and analyzed on the
same end-host. Since PathDump requires little or no data
transfer in addition to network traffic, it also alleviates the
bandwidth overheads of several existing in-network de-
buggers [17, 33, 41].

PathDump resolves several challenges to achieve the
above benefits. First challenge is regarding generality
— what class of network problems can PathDump debug
with minimal support from network switches? To get a
relatively concrete answer in light of numerous possible
network debugging problems, we examined all the prob-
lems discussed in several recent papers [17, 18, 30, 41]
(see Table 2 in the appendix). Interestingly, we find that
PathDump can already support more than 85% of these
problems. For some problems, network support seems
necessary; however, we show that PathDump can help
“pinpoint” these problems to a small part of the network.
We discuss the design, implementation and evaluation of
PathDump for the supported functionality in §2.3 and §4.

PathDump also resolves the challenge of packets not
reaching the edge devices (e.g., due to packet drops or
routing loops). A priori, it may seem obvious that Path-
Dump must not be able to debug such problems without
significant support from network switches. PathDump
resolves the packet drop problem by exploiting the fact
that datacenters typically perform load balancing (using
ECMP or packet spraying [15]); specifically, we show that
the difference between number of packets traversing along
multiple paths allows identifying spurious packet drops.
PathDump can in fact debug routing loops by leveraging
the fact that commodity SDN switches recognize only two
VLAN tags in hardware and processing more than two
tags involves switch CPU (§4.5).

2As PathDump matures, we envision it to incorporate (potentially
simpler than existing) in-network techniques for debugging problems
that necessitate an in-network implementation. As network switches
evolve to provide more powerful functionalities (e.g., on-chip sampling)
and/or larger resource pools, partitioning the debugging functionality be-
tween the edge devices and the network elements will still be useful to
enable capturing network problems at per-packet granularity — a goal
that is desirable and yet, infeasible to achieve using today’s resources.
Existing in-network tools that claim to achieve per-packet granularity
(e.g., Everflow [41]) have to resort to sampling to overcome scalability
issues and thus, fail to achieve per-packet granularity.

Finally, PathDump carefully optimizes the use of data
plane resources (e.g., switch rules and packet header
space) and end-host resources (e.g., CPU and memory).
PathDump extends our prior work, CherryPick [36], for
per-packet trajectory tracing using minimal data plane re-
sources. For end-host resources, we evaluate PathDump
over a wide range of network debugging problems across
a variety of network testbeds comprising of commodity
network switches and end-hosts; our evaluation shows
that PathDump requires minimal CPU and memory at
end-hosts while enabling network debugging over fine-
grained time scales.

Overall, this paper makes three main contributions:
• Make a case for partitioning the network debugging

functionality between the edge devices and the network
elements, with the goal of keeping network switches
free from complex operations like per-packet log gen-
eration, dynamic rule updates, packet sampling, packet
mirroring, etc.

• Design and implementation of PathDump3, a network
debugger that demonstrates that it is possible to support
a large class of network management and debugging
problems with minimal support from network switches.

• Evaluation of PathDump over operational network
testbeds comprising of commodity network hardware
demonstrating that PathDump can debug network
events at fine-grained time-scales with minimal data
plane and end-host resources.

2 PathDump Overview
We start with an overview of PathDump interface (§2.1),
and PathDump design (§2.2). We then provide several ex-
amples on using PathDump interface for debugging net-
work problems (§2.3, §2.4).

2.1 PathDump Interface
PathDump exposes a simple interface for network debug-
ging; see Table 1. We assume that each switch and host
has a unique ID. We use the following definitions:

• A linkID is a pair of adjacent switchIDs (〈Si,Sj〉);
• A Path is a list of switchIDs (〈Si,Sj, . . .〉);
• A flowID is the usual 5-tuple (〈srcIP, dstIP, srcPort,

dstPort, protocol〉);
• A Flow is a (〈flowID, Path〉) pair; this will be useful

for cases when packets from the same flowID may
traverse along multiple Paths.

• A timeRange is a pair of timestamps (〈ti, tj〉);

3Available at: https://github.com/PathDump.

234 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/PathDump

Host API Description

getFlows(linkID, timeRange) Return list of flows that traverse linkID during specified timeRange.
getPaths(flowID, linkID, timeRange)Return list of Paths that include linkID, and are traversed by flowID

during specified timeRange.
getCount(Flow, timeRange) Return packet and byte counts of a flow within a specified timeRange.
getDuration(Flow, timeRange) Return the duration of a flow within a specified timeRange.
getPoorTCPFlows(Threshold) Return the flowIDs for which protocol = TCP and the number of con-

secutive packet retransmissions exceeds a threshold.
Alarm(flowID, Reason, Paths) Raise an alarm regarding flowID with a reason code (e.g., TCP performance

alert (POOR_PERF)), and corresponding list of Paths.

Controller API Description

execute(List〈HostID〉,Query) Execute a Query once at each host specified in list of HostIDs; a Query
could be any of the ones from Host API.

install(List〈HostID〉,Query,Period) Install a Query at each host specified in list of HostIDs to be executed at
regular Periods. If the Period is not set, the query execution is triggered
by a new event (e.g., receiving a packet).

uninstall(List〈HostID〉,Query) Uninstall a Query from each host specified in list of HostIDs

Table 1: PathDump Interface. See §2.1 for definitions and discussion.

PathDump supports wildcard entries for switchIDs
and timestamps. For instance, (〈?,Sj〉) is interpreted
as all incoming links for switch Sj and (〈ti,?〉) is inter-
preted as “since time ti”.

Note that each host exposes the host API in Table 1 and
returns results for “local” flows, that is, for flows that have
this host as their dstIP. To collect the results distributed
across PathDump instances at individual end-hosts, the
controller may use the controller API — to execute a
query, to install a query for periodic execution, or to
uninstall a query.

2.2 PathDump Design Overview
The central idea in PathDump is to trace packet trajecto-
ries. To achieve this, each switch embeds its switchID in
the packet header before forwarding the packet. However,
naïvely embedding all the switchIDs along the packet
trajectory requires large packet header space, especially
when packets may traverse a non-shortest path (e.g., due
to failures along the shortest path) [36]. PathDump uses
the link sampling idea from CherryPick [36] to trace
packet trajectories using commodity switches. However,
CherryPick supports commonly used datacenter network
topologies (e.g., FatTree, VL2, etc.) and does not work
with arbitrary topologies. Note that this limitation on
supported network topologies is merely an artifact of to-
day’s hardware — as networks evolve to support larger
packet header space, PathDump will support more gen-
eral topologies without any modification in its design and
implementation.

An edge device, upon receiving a packet, extracts the
list of switchIDs in the packet header and records them on
a local storage and query engine (along with associated
metadata, e.g., flowID, timestamps, number of packets,
number of bytes, etc.). Each edge device stores:
• A list of flow-level entries that are used for debugging

purposes; these entries are updated upon each event
(e.g., receiving a packet).

• A static view of the datacenter network topology,
including the statically assigned identifiers for each
switch. This view provides PathDump with the “ground
truth” about the network topology and packet paths.

• And, optionally, network configuration files specifying
forwarding policies. These files are also used for mon-
itoring and debugging purposes (e.g., ensuring packet
trajectories conform to specified forwarding policies).
The operator may also push these configuration files to
the end-hosts dynamically using the Query installation
in controller API.

Finally, each edge device exposes the API in Table 1
for identifying, triggering and debugging anomalous net-
work behavior. The entries stored in PathDump (within
an edge device or across multiple edge devices) can be
sliced-and-diced for implementing powerful debugging
functionalities (e.g., correlating entries across flows going
to different edge devices). PathDump currently disregards
packet headers after updating the entries to avoid latency
and throughput bottlenecks in writing to persistent stor-
age; extending PathDump to store and query at per-packet
granularity remains an intriguing future direction.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 235

2.3 Example applications
We now discuss several examples for network debugging
applications using PathDump API.

Path conformance. Suppose the operator wants to check
for policy violations on certain properties of the path taken
by a particular flowID (e.g., path length no more than 6,
or packets must avoid switchID). Then, the controller
may install the following query at the end-hosts:
Paths = getPaths(flowID, <*, *>, *)
for path in Paths:

if len(path)>=6 or switchID in path:
result.append (path)

if len(result) > 0:
Alarm (flowID, PC_FAIL, result)

PathDump executes the query either upon each packet
arrival, or periodically when a Period is specified in the
query; an Alarm() is triggered upon each violation.

Load imbalance. Understanding why load balancing
works poorly is of interest to operators because uneven
traffic splits may cause severe congestion, thereby hurting
throughput and latency performance. PathDump helps di-
agnose load imbalance problems, independent of the un-
derlying scheme used for load balancing (e.g., ECMP or
packet spraying). The following example constructs flow
size distribution for each of two egress ports (i.e., links)
of interest on a particular switch:

result = {}; binsize = 10000
linkIDs = (l1, l2); tRange = (t1, t2)
for lID in linkIDs:

flows = getFlows (lID, tRange)
for flow in flows:

(bytes, pkts) = getCount (flow, tRange)
result[lID][bytes/binsize] += 1

return result

Through cross-comparison of the flow size distributions
on the two egress ports, the operator can tell the degree
of load imbalance. Even finer-grained diagnosis on load
balancing is feasible; e.g., when packet spraying is used,
PathDump can identify whether or not the traffic of a flow
in question is equally spread along various end-to-end
paths. We demonstrate these use cases in §4.2.

Silent random packet drops. This network problem oc-
curs when some faulty interface at switch drops packets at
random without updating the discarded packet counters at
respective interfaces. It is a critical network problem [41]
and is often very challenging to localize.

PathDump allows a network operator to implement a
localization algorithm such as MAX-COVERAGE [23].
The algorithm, as input, requires logs or observations on

a network problem (that is, failure signatures). Using
PathDump, a network operator can install a TCP per-
formance monitoring query at the end-hosts for periodic
monitoring (e.g., period set to be 200 ms):
flowIDs = getPoorTCPFlows()
for flowID in flowIDs:

Alarm (flowID, POOR_PERF, [])

Every time an alarm is triggered, the controller sends
the respective end-host (by parsing flowID) the following
query and collects failure signatures (that is, path(s) taken
by the flow that suffers serious retransmissions):
flowID = (sIP, sPort, dIP, dPort, 6)
linkID = (*, *); tRange = (t1, *)
paths = getPaths (flowID, linkID, tRange)
return paths

The controller receives the query results (that is, paths that
potentially include faulty links), locally stores them, and
runs the MAX-COVERAGE algorithm implemented as
only about 50 lines of Python code. This procedure re-
peats whenever a new alert comes up. As more path data
of suffering TCP flows get accumulated, the algorithm lo-
calizes faulty links more accurately.

Traffic measurement. PathDump also allows to write
queries for various measurements such as traffic matrix,
heavy hitters, top-k flows, and so forth. The following
query computes top-1000 flows at a given end-host:
h = []; linkID = (*, *); tRange = (t1, t2)
flows = getFlows (linkID, tRange)
for flow in flows:

(bytes, pkts) = getCount (flow, tRange)
if len(h) < 1000 or bytes > h[0][0]:

if len(h) == 1000: heapq.heappop (h)
heapq.heappush (h, (bytes, flow))

return h

To obtain top-k flows from multiple end-hosts, the con-
troller can execute this query at the desired subset of
the end-hosts.

2.4 Reducing debugging space
As discussed in §1, some network debugging problems
necessitate an in-network implementation. One such
problem is network switches incorrectly modifying the
packet header — for some corner case scenarios, it seems
hard for any end-host based system to be able to debug
such problems.

One precise example in case of PathDump is switches
inserting incorrect switchIDs in the packet header. In case
of such network anomalies, PathDump may not be able
to identify the problem. For instance, consider the path
conformance application from §2.3 and suppose we want
to ensure that packets do not traverse a switch s1 (that

236 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller

Trajectory Information

Base (TIB)

AgentOVS

Update

Extract

trajectory info

Request

& Reply

Packet carries its trajectory information

in its header

Debugging

Applications

Packet

stream

Raise alarm

TIB

PathDump

APIs

Lookup

TCP Perf

Monitoring

(e.g., loop)

Trap packets traversing

suspiciously long paths

Figure 1: System overview.

is, switchID=s1 in the example). Suppose the packet
trajectory {src,s1,s2,...,dst} actually involves s1
and hence, PathDump must raise an alarm.

The main problem is that if s1 inserts a wrong
switchID, say s′1, then PathDump will not raise an
alarm. However, in many cases, the trajectory
{src,s′1,s2,...,dst} in itself will be infeasible —
either because s′1 is not one of the switchIDs or because
the switch with ID s′1 does not connect directly to either
src or s2. In such cases, PathDump will be able to trig-
ger an alarm stating that one of the switches has inserted
incorrect switchID; this is because PathDump continually
compares the extracted packet trajectory to the ground
truth (network topology) stored in PathDump.

3 PathDump Implementation
PathDump implementation comprises of three main com-
ponents (Figure 1):

• In-network implementation for tracing packet trajec-
tories using packet headers and static network switch
rules (§3.1); PathDump’s current implementation relies
entirely on commodity OpenFlow features for packet
trajectory tracing.
• A server stack that implements a storage and query en-

gine for identifying, triggering and debugging anoma-
lous network behavior (§3.2); we use C/C++ and
Python for implementing the stack.
• A controller running network debugging applications

in conjunction with the server stack (§3.3). The cur-
rent controller implementation uses Flask [5] — a mi-
cro framework supporting a RESTful web service —
for exchange of query-responses messages between the
controller and the end-hosts.

We describe each of the individual components below. As
mentioned earlier, PathDump implementation is available
at https://github.com/PathDump.

3.1 Tracing packet trajectory
PathDump traces packet trajectories at per-packet gran-
ularity by embedding into the packet header the IDs of
switches that a packet traverses. To achieve this, Path-
Dump resolves two related challenges.

First, the packet header space is a scarce resource. The
naïve approach of having each switch embed its switchID
into the header before forwarding the packet would re-
quire large packet header space, especially when packets
can traverse non-shortest paths (e.g., due to failures along
the shortest path). For instance, tracing a 8-hop path on
a 48-ary FatTree topology would require 4 bytes worth of
packet header space, which is not supported using com-
modity network components4. PathDump traces packet
trajectories using close to optimal packet header space by
using the link sampling idea presented in our preliminary
work, CherryPick [36]. Intuitively, CherryPick builds
upon the observation that most frequently used datacen-
ter network topologies are very structured (e.g., FatTree,
VL2) and this structure enables reconstructing an end-to-
end path by keeping track of a few carefully “sampled”
links along any path. We provide more details below.

The second challenge that PathDump resolves is imple-
mentation of packet trajectory tracing using commodity
off-the-shelf SDN switches. Specifically, PathDump uses
the VLAN and the MPLS tags in packet headers along
with carefully constructed network switch rules to trace
packet trajectories. One key challenge in using VLAN
tags is that the ASIC of SDN switch (e.g., Pica8 P-3297)
typically offers line rate processing of a packet carrying
up to two VLAN tags (i.e., QinQ). Hence, if a packet
somehow carries three or more tags in its header, a switch
attempting to match TCP/IP header fields of the packet
would trigger a rule miss and usually forward it to the
controller. This can hurt the flow performance. We show
that PathDump can enable per-packet trajectory tracing
for most frequently used datacenter network topologies
(e.g., FatTree and VL2), even for non-shortest paths (e.g.,
up to 2 hops in addition to the shortest path), using just
two VLAN tags. Note that these limitations on supported
network topologies and path lengths are merely an arti-
fact of today’s hardware — PathDump achieves what is
possible with today’s networks, and as networks evolve to
support larger packet header space, PathDump will sup-
port more general topologies (e.g., Jupiter network [34])
and/or longer path lengths without any modification in its
design and implementation.

4We believe networks will evolve to support larger packet header
space. We discuss how PathDump could exploit this to provide even
stronger functionality. However, we do note that even with availability to
larger packet header space, ideas in PathDump may be useful since this
additional packet header space will be shared by multiple applications.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 237

https://github.com/PathDump

However, not all non-shortest paths need to be saved
and examined at end-hosts. In particular, when a path is
suspiciously long, instant inspection at the controller is
desirable while packets are on the fly; it may indeed turn
out to be a serious problem such as routing loop. Path-
Dump allows the network operator to define the number
of hops that would constitute a suspiciously long path (we
use 4 hops in addition to the shortest path length as de-
fault because packets rarely traverse such a long path in
datacenter networks).

To keep the paper self-contained, we briefly review the
ideas from CherryPick [36] below; we refer the readers
to [36] for more detailed discussion and evaluation. We
then close the subsection with a discussion on identifying
and trapping packets traversing a suspiciously long path.

Tracing technique: CherryPick [36]. The need for tech-
niques like CherryPick is clear; a naïve approach of em-
bedding link ID of each hop into the packet header sim-
ply does not work [36]. Assuming 48-port switches, em-
bedding a 6-hop path requires 36 bits in the header space
whereas two VLAN tags only allow 24 bits.

The core idea of CherryPick is to sample links that suf-
fice in representing an end-to-end path. One key challenge
is that sampling links makes a local identifier inapplicable.
Instead, each link should be assigned a global identifier.
Clearly, the number of physical links is far more than that
of available link IDs (c.f., 4,096 unique link IDs expressed
in a 12 bit VLAN identifier vs. 55,296 physical links in a
48-ary fat-tree topology).

In addressing the issue, the following observation is
used: aggregate switches between different lower level
blocks (e.g., pods) must be interconnected only through
core switches. Therefore, instead of assigning global IDs
for the links in each pod, it becomes possible to share
the same set of global IDs across pods. In addition, the
scheme efficiently assigns IDs to core links by applying
an edge-coloring technique [13]. The following describes
how the links should be picked for fat-tree and VL2:

• Fat-tree: A key observation in it is that given any
4-hop path, when a packet reaches a core switch, the
ToR-aggregate link it traversed becomes easily known,
and there is only a single route to destination from the
core switch. Hence, to build the end-to-end path, it is
sufficient to pick one aggregate-core link that the packet
traverses. When the packet is diverted from its original
shortest path, the technique selects one extra link every
additional 2 hops. Thus, two VLAN tags make it fea-
sible to trace any 6-hop path. The mechanism is easily
converted into OpenFlow rules (see [36]). The number of
rules at switch grows linearly over switch port density.

Topology

Packet

stream

Link ID

extraction

Trajectory

construction

Trajectory

memory

Open vSwitch

User-level

to upper stack

Export per-path flow record

Create/Update per-path flow record with link IDs

Trajectory Information Base (TIB)

Trajectory

cache

Lookup

Update

<flow ID, path, stime, etime, #bytes, #pkts>

TIB record

Figure 2: Trajectory information update procedure.

• VL2: VL2 requires to sample three links for tracing
any 6-hop path. Hence, we additionally use DSCP field.
However, because the field is only 6-bits long, we use it in
order to sample an ToR-aggregate link in pod where there
are only k links. After the DSCP field is spent, VLAN
tags are being used over a subsequent path. If a packet
travels over a 6-hop path, it carries one DSCP value and
two VLAN tags at the end. In this way, rule misses on data
plane is prevented for packets traversing a 6-hop path. We
need two rules per ingress port: one for checking if DSCP
field is unused, and the other to add VLAN tag otherwise,
thus still keeping low switch rule overheads.

Given a 12-bit link ID space (i.e., 4,096 link IDs), the
scheme supports a fat-tree topology with 72-port switches
(about 93K servers). Since DSCP field is additionally
used for VL2, the scheme can support a VL2 topology
with 62-port switches (roughly 19K servers).

Instant trap of suspiciously long path. PathDump by
design supports identifying and trapping packets travers-
ing a suspiciously long path. When a packet traverses one
such path, it cannot help but carry at least three tags. An
attempt to parse IP layer for forwarding at switch ASIC
would cause a rule miss and the packet is sent to the con-
troller. The controller then can immediately identify the
suspiciously long path. We leverage this ability of Path-
Dump to implement a real-time routing loop detection ap-
plication (see §4.5).

3.2 Server stack
The modules in the server stack conduct three tasks
mainly. The first is to extract and store the path infor-
mation embedded in the packet header. Next, a query pro-
cessing module receives queries from the controller, con-
sumes the stored path data and provides responses. The
final task is to do active monitoring of flows’ performance
and prompt raise of alerts to the controller.

238 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Trajectory information management. The trajectory in-
formation base (TIB) is a repository where packet trajec-
tory information is stored. Because storing path informa-
tion of individual packets can waste too much disk space,
we do per-path aggregation given a flow. In other words,
we maintain unique paths and their associated counts for
each flow. First, a packet is classified based on the usual 5-
tuple flow ID (i.e., <srcIP, dstIP, srcPort, dstPort, proto>).
Then, a path-specific classification is conducted. Figure 2
illustrates an overall procedure of updating TIB.

When a packet arrives at a server, we first retrieve its
metadata (flow ID, path information (i.e., link IDs) and
bytes). Because the path information is irrelevant to the
upper layer protocols, we strip it off from the packet
header in Open vSwitch (OVS) before it is delivered to
the upper stack via the regular route. Next, using the flow
ID and link IDs together as a key, we create or update a
per-path flow record in trajectory memory. Note that link
IDs do not represent a complete end-to-end path yet. Each
record contains flow ID, link IDs, packet and byte counts
and flow duration. That is, one per-path flow record cor-
responds to statistics on packets of the same flow that tra-
versed the same path. Thus, at a given point in time, more
than one per-path flow record can be associated with a
flow. Similar to NetFlow, if FIN or RST packet is seen or
a per-path flow record is not updated for a certain time pe-
riod (e.g., 5 seconds), the flow record is evicted from the
trajectory memory and forwarded to the trajectory con-
struction sub-module.

The sub-module then constructs an end-to-end path
with link IDs in a per-path flow record. It first looks up
the trajectory cache with srcIP and link IDs. If there is a
cache hit, it immediately converts the link IDs into a path.
If not, the module maps link IDs to a series of switches by
referring to a physical topology, and builds an end-to-end
path. It then updates the trajectory cache with (srcIP, link
IDs, path). In this process, a “static” physical network
topology graph suffices, and there is no need for dynam-
ically updating it unless the topology changes physically.
Finally, the module writes a record (<flow ID, path, stime,
etime, #bytes, #pkts>) to TIB.

We add to OVS about 150 lines of C code to support the
trajectory extraction and store function, and run the mod-
ified OVS on DPDK [4] for high-speed packet processing
(e.g., 10 Gbps). The module is implemented with roughly
600 lines of C++ code. We build TIB using MongoDB [7].

Query processing. PathDump maintains TIB in a dis-
tributed fashion (across all servers in the datacenter). The
controller sends server agents a query, composed of Path-
Dump APIs (§2.1), which in turn processes the TIB data

Controller

Server

Server

execute

Alarm (..., POOR_PERF, …)

Event-driven

debugging

Applications

On-demand

debugging

Applications

Operator

Figure 3: Workflow of PathDump.

and returns results to the controller. The querying mecha-
nism is composed of about 640 lines of Python code.

Depending on debugging applications, the controller
needs to consult more than one TIB. For instance, to check
path conformance of a packet or flow, accessing only one
TIB is sufficient. On the other hand, some debugging
queries (e.g., load imbalance diagnosis; see §4.2) need
path information from all distributed TIBs.

To handle these different needs properly, we imple-
ment two types of query mechanisms: (i) direct query and
(ii) multi-level query. The former is a query that is di-
rectly sent to one specific TIB by the controller. Inspired
by Dremel [27] and iMR [25], we design a multi-level
query mechanism whereby the controller creates a multi-
level aggregation tree and distributes it alongside a query.
When a server receives query and tree, it performs two
tasks: (i) query execution on local TIB and (ii) redistribu-
tion of both query and tree. The query results are aggre-
gated from the bottom of the tree. However, the current
implementation is not fully optimized yet; and improving
its efficacy is left as part of our future work.

In general, multi-level data aggregation mechanisms
including ours can be ineffective in improving response
times when the data size is not large and there is no much
data reduction during aggregation along the tree. In §5,
we present the tradeoff through two multi-level queries—
flow size distribution and top-k flows.

Finally, when a query is executed, the latest TIB records
relevant to the query may reside in the trajectory memory,
yet to be exported to the TIB. We handle this by creating
an IPC channel and allowing the server agent to look up
the trajectory memory. Not all debugging applications re-
quire to access the trajectory memory. Instead, the alerts
raised by Alarm() trigger the access to the memory for
debugging at even finer-grained time scales.

Active monitoring module. Timely triggering of a de-
bugging process requires fast detection of symptoms on
network problems. Servers are a right vantage point to
instantly sense the symptoms like TCP timeouts, high re-
transmission rates, large RTT and low throughput.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 239

A B

S1

S4

S5

S2 S6

S3 S7

Expected path Actual path

Src MAC S6-S7 S2-S3Dst MAC

Two VLAN tags containing trajectory info

Link failure

X

Figure 4: An example of path conformance check. The
dotted green line is an expected path and the red line
is an actual path that packet traverses.

We thus implement a monitoring module at server that
checks TCP connection performance, and promptly raises
alerts to the controller in the advent of abnormal TCP
behavior. Specifically, by using tcpretrans script in
perf-tools5, the module checks the packet retransmission
of individual flows at regular intervals (configured by in-
stalling a query). If packet retransmissions are observed
more than a configured frequency, an alert is raised to
the controller, which can subsequently take actions in re-
sponse. Thus, this active TCP performance monitoring al-
lows fast troubleshooting. We exploit the alert functional-
ity to expedite debugging tasks such as silent packet drop
localization (§4.3), blackhole diagnosis (§4.4) and TCP
performance anomaly diagnosis (§4.6).

In addition, network behavior desired by operators
can be expressed as network invariants (e.g., maximum
path length), which can be installed on end-hosts using
install(). This module uses Alarm() to inform any
invariant’s violation as depicted in §2.3.

3.3 PathDump controller
PathDump controller plays two roles: installing flow rules
on switches and executing debugging applications.

It installs flow rules in switches that append link IDs
in the packet header (using push_vlan output action)
in order to enable packet trajectory tracing. This is one-
time task when the controller is initialized, and the rules
are not modified once they are installed. We use switches
that support a pipeline of flow tables and that are therefore
compatible with OpenFlow specification v1.3.0.

Debugging applications can be executed under two con-
texts as depicted in Figure 3: (i) event-driven, and (ii) on-
demand. It is event-driven when the controller receives
alerts from the active monitoring module at end-hosts.
The other, obvious way is that the operator executes de-
bugging applications on demand. Queries and results are

5https://github.com/brendangregg/perf-tools

Pod 1 Pod 2 Pod 3 Pod 4

SAgg

SC1 SC2

Link 1

Link 2

(a) SAgg poorly load-balances traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Imbalance rate (%)

(b) Load imbalance rate

 0

 0.2

 0.4

 0.6

 0.8

 1

102 104 106 108

C
D

F

Flow size (bytes)

Link 1
Link 2

(c) Flow size distribution

Figure 5: Load imbalance diagnosis. (a) illustrates a
load imbalance case. (b) shows, as reference, the load
imbalance rate between links 1 and 2. (c) shows the
flow size distribution built by querying all TIBs.

exchanged via direct query or multi-level query. The con-
troller consists of about 650 lines of Python code.

4 Applications
PathDump can support various debugging applications
for datacenter network problems including both persistent
and transient ones (see Table 2 in the appendix for a com-
prehensive list of debugging applications). In this section,
we highlight a subset of those applications.

4.1 Path conformance check
A path conformance test is to check whether an actual
path taken by a packet conforms to operator policy. To
demonstrate that, we create an experimental case shown
in Figure 4. In the figure, the intended path of a packet is
a 4-hop shortest path from server A to B. However, a link
failure between switches S3 and S4 makes S3 forward the
packet to S6 (we implement a simple failover mechanism
in switches with a few flow rules). As a result, the packet
ends up traversing a 6-hop path. The PathDump agent in
B is configured with a predicate, as a query (as depicted
in §2.3), that a 6-hop or longer path is a violation of the
path conformance policy. The agent detects such packets
in real time and alerts the controller to the violation along
with the flow key and trajectory.

240 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brendangregg/perf-tools

 10

 20

 30

 40

 50

Path1 Path2 Path3 Path4

B
y
te

s
 (

M
B

) Balance
Imbalance

Figure 6: Traffic distribution of a flow along four dif-
ferent paths under balanced and imbalanced cases.

4.2 Load imbalance diagnosis
Datacenter networks employ load-balancing mechanisms
such as ECMP and packet spraying [15] to exploit numer-
ous equal-cost paths. However, when these mechanisms
work poorly, uneven load splits can hurt throughput and
flow completion time. PathDump can help narrow down
the root causes of load imbalance problems, which we
demonstrate using two load-balancing mechanisms: (i)
ECMP and (ii) packet spraying.

ECMP load-balancing. This scenario (Figure 5(a)) as-
sumes that a poor hash function always creates collisions
among large flows. For the scenario, we configure switch
SAgg in pod 1 such that it splits traffic based on flow size.
Specifically, if a flow is larger than 1 MB in size, it is
pushed onto link 1. If not, it is pushed onto link 2. Based
on the web traffic model in [10], we generate flows from
servers in pod 1 to servers in the remaining pods. As a
metric, we use imbalance rate, λ = (Lmax/L− 1)× 100
(%) where Lmax is the maximum load on any link and L is
the mean load over all links [31].

Figure 5(b) shows the load imbalance rate between the
two links measured every 5 seconds for 10 minutes. Dur-
ing about 80% of the time, the imbalance rate is 40% or
higher. With the load imbalance diagnosis application in
§2.3, PathDump issues a multi-level query to all servers
and collects byte counts of flows that visited those two
links. As shown in Figure 5(c), flow size distributions on
the two links are sharply divided around 1 MB. With flow
IDs and their sizes in the TIBs, operators can reproduce
this load imbalance scenario for further investigation.

This scenario illustrates how PathDump handles a per-
sistent problem. The application can be easily extended
for tackling transient ECMP hash collisions among long
flows by exploiting the TCP performance alert function.

Packet spraying. In this scenario, packets of a flow
are split among four possible equal-cost paths between a
source and destination. For demonstration, we create two
cases: (i) a balanced case and (ii) an imbalanced case.
In a balanced case, the split process is entirely random,
thereby ensuring fair load-balance, whereas in an imbal-
anced case, we configure switches so that more packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

A
vg

 re
ca

ll

Time (sec)

4
2
1

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

A
vg

 p
re

ci
si

on

Time (sec)

4
2
1

(b) Precision

Figure 7: Performance of the silent random packet
drop debugging algorithm. Average recall and preci-
sion are presented over 10 runs. The network load is
set to 70% and each faulty interface drops packets at
1% rate. The numbers (i.e., 1, 2 and 4) in legend de-
note the number of faulty interfaces.

 0

 20

 40

 60

 80

 1 2 3 4

Ti
m

e
(s

ec
)

Loss rate (%)

4
2
1

(a) Network load = 70%

 0

 40

 80

 120

 160

 200

 30 50 70 90

Ti
m

e
(s

ec
)

Network load (%)

4
2
1

(b) Loss rate = 1%

Figure 8: Time taken to reach 100% recall and preci-
sion. The numbers (i.e., 1, 2 and 4) in legend denote
the number of faulty interfaces. The error bar is stan-
dard error, i.e., σ/

√
n where σ is standard deviation

and n is the number of runs (= 10).

are deliberately forwarded to one of the paths (i.e., Path 3
in Figure 6). The flow size is set to 100 MB. Figure 6 is
drawn using per-path statistics of the flow obtained from
the destination TIB. As shown in the figure, operators can
check whether packet spraying works well or not. In case
of poor load-balancing, they can tell which path (more
precisely, which link) is under- or over-utilized. The per-
packet path tracing ability of PathDump allows this level
of detailed analysis. For real-time monitoring, it is suffi-
cient to install a query (using install()) that monitors
the traffic amount difference among subflows.

4.3 Silent random packet drops
We implement the silent packet drop debugging applica-
tion as described in §2.3 and conduct experiments in a 4-
ary fat-tree topology, where each end-host generates traf-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 241

S1

S2

S3 S5

A B
S6

S4

Controller

(a) A routing loop case

S2-S3

S1

S2

S3 S5

A B
S6

S4

Controller

(b) Step 1

S1

S4-S5 S2-S3

S2

S3 S5

A B
S6

S4

Controller

(c) Step 2

S1 S6

Controller

S2

S3 S5

S4

S4-S5 S2-S3S2-S3

A B

(d) Step 3

Figure 9: Debugging a routing loop. (a) A routing loop is illustrated. (b) A packet carries a VLAN tag whose
value is an ID for link S2− S3 appended by S3. (c) S4 bounces the packet to S5; S5 forwards the packet to one
remaining egress port (to S2) while appending an ID for link S4−S5 to the packet header. (d) S3 appends a third
tag of which the value is a ID for link S2−S3; at S4, the packet is automatically forwarded to the controller since
ASIC in switches only recognizes two VLAN tags whilst the packet carries three; at this stage, the controller
immediately detects the loop by finding the repeated link S2−S3 from the packet header.

fic based on the same web traffic model. We configure
1-4 randomly selected interfaces such that they drop pack-
ets at random. We run the MAX-COVERAGE algorithm
and evaluate its performance based on two metrics: re-
call and precision. Recall is #T Ps

#T Ps+#FNs while precision
is #T Ps

#T Ps+ #FPs where true positive is denoted as TP, false
negative as FN, and false positive as FP.

In our experiment, as time progresses, the number of
alerts received by the controller increases; so does the
number of failure signatures. Hence, from Figure 7, we
observe the accuracy (both recall and precision) also in-
creases accordingly; the recall increases faster than the
precision. It is clear from Figure 8, as loss rate or network
load increase, the controller receives alerts from end-hosts
at higher rate, and thus the algorithm takes less time to
obtain 100% recall and precision, making it possible to
debug the silent random packet drops fast and accurately.

4.4 Blackhole diagnosis
We demonstrate how PathDump reduces a debugging
search space with a blackhole scenario in the network
with a 4-ary fat-tree topology where packet spraying is de-
ployed. Again, we generate the same background traffic
used in §4.3 to create noises in the debugging process. We
create a 100 KB TCP flow and its packets are randomly
routed through four possible paths and test two cases.

Blackhole at an aggregate-core link. Obviously, the
subflow traffic passing the blackhole link is all dropped.
The controller receives an alarm from PathDump agent
at sender in 1 sec, immediately retrieves all TIB records
for the flow and finds one record for the dropped sub-
flow missing. While examining the paths found in TIB
records, it finds that one path did not appear in the TIB.
Since only one path (hence, one subflow) was impacted, it

produces three switches as a potential culprit: core switch,
source and destination aggregate switches (thus avoiding
the search of all 10 switches in the four paths).

Blackhole at a ToR-aggregate link in the source pod.
This blackhole impacts two subflows. The controller iden-
tifies two paths that impacted the two subflows using the
same way as before. By joining the two paths, the con-
troller can pick four common switches, which should be
examined with higher priority.

Note that if more number of flows (and their subflows)
are impacted by the blackhole, PathDump can localize the
exact source of the blackhole.

4.5 Routing loop debugging
PathDump debugs routing loop in real-time by trapping
a suspiciously long path in the network. As discussed in
§3.1, a packet carrying more than two tags is automat-
ically directed to the controller. This feature is a foun-
dation of making routing loops naturally manifest them-
selves at the controller. More importantly, the fact that
the controller has a direct control over suspicious packets
makes it possible to detect routing loops of any size.

Real timeliness. We create a 4-hop routing loop as shown
in Figure 9(a). Specifically, switch S4 is misconfigured
and all core switches are configured to choose an alter-
native egress port except the ingress port of a packet. In
the figure, switches from S2 to S5 constitute the loop. Un-
der this setup, it takes about 47 ms on average until the
controller detects the loop. When the packet trapped in
this loop ends up carrying three tags (see Figures 9(b)–
9(d)) and appears at the controller, two of the tags have
the same link ID (S2−S3 in Figure 9(d)). Hence, the loop
is detected immediately at this stage.

242 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

1 2 3 4 5 6 7 8 9 101112131415

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Flow ID

(a)

T

R

2

4

12

141

15

2

2

4 4

f8 f9 f10f11 f12 f13 f14f15

f2 f3

f1

f4 f5 f6 f7

Outcast flow

2 2 2 2

(b)

Figure 10: Diagnosis of TCP outcast. Unfairness of
throughput is shown in (a). In (b), the communication
graph is mapped onto a physical topology, and edge
weight is the number of flows arriving at an input port.
Both data sets are made available from TIB.

Detecting loops of any size. In this scenario, we create a
6-hop routing loop (not shown for brevity). The controller
finds no repeated link IDs from three tags when it sees
the packet for the first time. The controller locally stores
the three tags, strips them off from the packet header, and
sends the packet back to the switch. Since the packet is
trapped in the 6-hop loop, it will have another set of three
tags and be forwarded to the controller. This time, com-
paring link IDs in previous and current tags, the controller
observes that there is at least one repeated link ID and de-
tects the loop. The whole process took ∼115 ms. Detect-
ing even larger loops involves exactly the same procedure.

4.6 TCP performance anomaly diagnosis
PathDump can diagnose incast [12] and outcast [32] prob-
lems in a fine-grained manner although they are transient.
In particular, we test a TCP outcast scenario. For a realis-
tic setup, we generate the same type of TCP background
traffic used in §4.4. In addition to that, 15 TCP senders
send data to a single receiver for 10 seconds. Thus, as
shown in Figure 10(b), a flow from f1 and 14 flows from
f2− f15 arrive on two different input ports at switch T .
They compete for the same output port at the switch to-
ward receiver R. As a result, these flows experience the
port blackout phenomenon, and the flow from f1 sees the
most throughput loss (see [32] for more details).

Every 200 ms (default TCP timeout value) the server
agents run a query that generates alerts when their TCP
flows repeatedly retransmit packets. The diagnosis appli-
cation at the controller starts to work when it sees a min-
imum of 10 alerts from different sources to a particular
destination. Since all alerts specify R as receiver, the ap-
plication requests flow statistics (i.e., bytes, path) from R
and diagnoses the root cause for high alerts. It first an-
alyzes the throughput for each sender (Figure 10(a)) and
constructs a path tree for all 15 flows (Figure 10(b)). It

then identifies that the flow from f1 (one closest to the
receiver) is most highly penalized. PathDump concludes
the TCP unfairness stems from the outcast because these
patterns fit the outcast’s profile. We observe that the appli-
cation initiates its diagnosis in 2-3 seconds since the onset
of flows and finishes it within next 200 ms.

5 System Evaluation
We first study the performance of direct and multi-level
queries in terms of response time and data overheads. We
then evaluate CPU and memory overheads at end-host in
processing packet stream and in executing queries.

5.1 Experimental setup
We build a real testbed that consists of 28 physical servers;
each server is equipped with Xeon 4-core 3.1 GHz CPU
and a dual-port 1 GbE card. Using the two interfaces,
we separate management channel from data channel.
The controller and servers communicate with each other
through the management channel to execute queries. Each
server runs four docker containers (in total, 112 contain-
ers). Each container is assigned one core and runs a Path-
Dump agent to access TIB in it. In this way, we test up
to 112 TIBs (i.e., 112 end-hosts). We only refer to con-
tainer as end-host during the query performance evalua-
tion. Each TIB has 240K flow entries, which roughly cor-
responds to the number of flows seen at a server for about
an hour. We estimate the number based on the observa-
tion that average flow inter-arrival time seen at server is
roughly 15 ms (∼67 flows/sec) [19].

For multi-level query execution, we construct a logical
4-level aggregation tree with 112 end-hosts. Our Path-
Dump controller sits on the top of the tree (level 0). Right
beneath the controller are 7 nodes or end-hosts (level 1).
Each first-level node has, as its child, four nodes (level 2),
each of which has four nodes at the bottom (level 3).

For the packet progressing overhead experiment, we
use another server equipped with a 10 GbE card. In this
test, we forward packets from all other servers to a virtual
port in DPDK vSwitch via the physical 10GbE NIC.

5.2 Query performance
We compare the performance of direct query with that of
multi-level query. To understand which type of query suits
well to a debugging application, we measure two key met-
rics: i) end-to-end response time, and ii) total data volume
generated. We test two queries—flow size distribution of
a link and top-k flows. For the top-k flows query, we set k
to 10,000. Results are averaged over 20 runs.

Results. Through these experiments, we make two obser-
vations (confirmed via Figures 11 and 12) as follows.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 243

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(K
B

)
No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 11: Average end-to-end response time and traf-
fic amount of a flow size distribution query.

 1
 2
 3
 4
 5
 6
 7
 8

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0

 20

 40

 60

 80

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(M
B

)

No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 12: Average end-to-end response time and traf-
fic amount of a top-10,000 flows query.

1) When more servers are involved in a query, multi-
level query is in general better than direct query.
Figure 11(a) shows that multi-level query initially takes
longer than direct query. However, the response time gap
between the two gets smaller as the number of servers in-
creases. This is due to three reasons. First, the aggre-
gation time (the time to aggregate responses at the con-
troller) of direct query is always larger than that of multi-
level query. Second, the aggregation time of direct query
linearly grows in proportion to the number of end-hosts
whereas that of multi-level query gradually grows. Lastly,
network delays of both queries change little regardless of
the number of servers.

2) If aggregation reduces response data amount sub-
stantially, multi-level query is more efficient than direct
query. When multi-level query is employed for comput-
ing the top-k flows, (ni−1) · k number of key-value pairs
are discarded at level i− 1 during aggregation where ni
is the number of nodes at level i (i < 3). A massive data
reduction occurs through the aggregation tree. Hence, the
data amount exchanged in multi-level query is similar to
that in direct query (Figure 12(b)). Moreover, the compu-
tation overhead for aggregation is distributed across mul-

 0
 2
 4
 6
 8

 10

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

PathDump
vSwitch

(a) Throughput in Gbits per second

 0

 1

 2

 3

 4

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (M

pp
s)

Packet size (Bytes)

PathDump
vSwitch

(b) Throughput in million-packets per second

Figure 13: Forwarding throughput of PathDump and
vSwitch. Each bar represents an average over 30 runs.

tiple intermediate servers. On the contrary, in direct query,
the controller alone has to process a large number of key-
value pairs (i.e., k · n3 where n3 is the total number of
servers used). Hence, the majority of the response time
is attributed to computation at the controller, and the re-
sponse time grows linearly as the number of servers in-
creases (Figure 12(a)). Due to the horizontal scaling na-
ture of multi-level query, its response times remain steady
regardless of the number of servers. In summary, these
results suggest that multi-level query can scale well even
for a large cluster and direct query is recommended when
a small number of servers are queried.

5.3 Overheads

Packet processing. We generate traffic by varying its
packet size from 64 to 1500 bytes. Each packet carries
1-2 VLAN tags. While keeping about 4K flow records
(roughly equivalent to 100K flows/sec at a rack switch
connected to 24 hosts) in the trajectory memory, Path-
Dump does about 0.8–3.6M lookups/updates per second
(0.8M for 1500B packets and 3.6M for 64B). Under these
conditions, we measure average throughput in terms of
bits and packets per second over 30 runs.

From Figure 13, we observe that PathDump introduces
a maximum of 4% throughput loss compared to the
performance of the vanilla DPDK vSwitch. The fig-
ure omits confidence intervals as they are small. In all
cases, the throughput difference is marginal. Note that
due to the limited CPU and memory resources allocated,

244 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DPDK vSwitch itself suffers throughput degradation as
packet size decreases. Nevertheless, it is clear that Path-
Dump introduces minimal packet processing overheads
atop DPDK vSwitch.

Query processing. We measure CPU resource demand
for continuous query processing at end-host. The con-
troller generates a mix of direct and multi-level queries
continuously in a serialized fashion (i.e., a new query af-
ter receiving response for previous one). We observe that
less than 25% of one core cycles is consumed at end-host.
As datacenter servers are equipped with multi-core CPUs
(e.g., 18-core Xeon E5-2699 v3 processor), the query pro-
cessing introduces relatively less overheads.

Storage. PathDump only needs about 10 MB of RAM at
a server for packet trajectory decoding, trajectory memory
and trajectory cache. It also needs about 110 MB of disk
space to store 240K flow entries (roughly equivalent to an
hour’s worth of flows observed at a server).

6 Related Work
There has been a tremendous recent effort in building
tools for efficient management and debugging of tasks.
Each tool works at a unique operating point between sup-
ported classes of network debugging problems, accuracy,
network bandwidth overheads, and desired functionality
from network elements. We summarize the most related
of these tools below.

Generality. Several tools support a fairly general class
of network debugging problems with high accuracy —
PathQuery [30], NetSight [17], NetPlumber [20], Veri-
Flow [22] and several other systems [21, 26]. However,
these systems make arguably strong tradeoffs to achieve
generality with accuracy. In particular, for many network
debugging problems, these systems [20, 21, 22, 26] re-
quire a snapshot of the entire data-plane state and may
only be able to capture events at coarse-grained time-
scales. Netsight [17] captures per-packet per-switch log
for out-of-band analysis; capturing per-packet per-switch
logs leads to very high bandwidth requirements and out-
of-band analysis typically leads to high latency between
the time of occurrence of an event and when the event is
diagnosed. Finally, PathQuery [30] supports network de-
bugging by dynamically installing switch rules and using
SQL-like queries on these switches; this not only requires
dynamic installation of switch rules and large amount of
data plane resources to achieve generality but also debug-
ging at coarse-grained time-scales. PathDump, by push-
ing much of the debugging functionality to the end-hosts,
makes a different tradeoff — it gives up on a small class of
network debugging problems, but alleviates the overheads

of dynamic switch rule installation, per-packet per-switch
log generation and periodic data plane snapshots.

Accuracy. Several recent proposals alleviate the over-
heads of aforementioned systems using sampling [8, 16,
24, 33, 35, 39, 41], mirroring of sampled packets [33, 41],
active packet probes [9, 40, 41], and a potpourri of these
techniques [41]. These tools have two main limitations:
(i) they make the functionality implemented at the net-
work elements (precisely the elements that these tools
are trying to debug) even more complex; and (ii) sam-
pling and/or active probing, by definition, leads to missed
network events (low accuracy). In contrast, PathDump
avoids complex operations like packet sampling, packet
mirroring, and/or active probing, by pushing much of the
network debugging functionality to the end-hosts. Path-
Dump, thus, performs debugging with high accuracy at
finer-grained time-scales without incurring overheads.

End-host based tools. Several recent proposals have
advocated to move the functionality to the edge de-
vices [11, 29, 38]. SNAP [38] logs events (e.g., TCP
statistics and socket-calls) at end-hosts to infer network
problems. Felix [11] proposed a declarative query lan-
guage for end-host based network measurement. Finally,
independent to our work, Trumpet [29] proposes to push
the debugging functionality to the end-hosts. PathDump
differs from and complements these systems along sev-
eral dimensions. First, the core idea of PathDump is to
exploit the packet trajectories to debug a large class of
network problems; capturing and utilizing packet trajecto-
ries for debugging purposes complements the techniques
used in above tools. Second, in addition to the monitoring
functionality of Trumpet [29], PathDump also allows the
network operators to slice-and-dice the captured logs to
debug a network problem.

7 Conclusion
This paper presents PathDump, a network debugger that
partitions the debugging functionality between the edge
devices and the network switches (in contrast to an en-
tirely in-network implementation used in existing tools).
PathDump does not require network switches to perform
complex operations like dynamic switch rule updates, per-
packet per-switch log generation, packet sampling, packet
mirroring, etc., and yet helps debug a large class of net-
work problems over fine-grained time-scales. Evaluation
of PathDump over operational network testbeds compris-
ing of commodity network switches and end-hosts show
that PathDump requires minimal data plane resources
(e.g., switch rules and packet header space) and end-host
resources (e.g., CPU and memory).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 245

Application Description PathDump PathQuery[30] Everflow[41] NetSight[17] TPP[18]

Loop freedom [17] Detect forwarding loops 3 3 3 3 ?

Load imbalance Get fine-grained statistics of
3 3 3 3 3

diagnosis [41] all flows on set of links

Congested link Find flows using a congested
3 3 3 3 3

diagnosis [30] link, to help rerouting

Silent blackhole Find switch that drops all
3 3 3 3 7

detection [41, 30] packets silently

Silent packet Find switch that drops
3 3 3 3 7

drop detection [41] packets silently and randomly

Packet drops Localize packet drop sources
3 3 3 3 3

on servers [41] (network vs. server)

Overlay loop Loop between SLB and
7 3 3 3 ?

detection [41] physical IP

Protocol bugs [41]
Bugs in the implementation

3 3 3 3 ?
of network protocols

Isolation [17]
Check if hosts are allowed

3 3 3 3 3
to talk

Incorrect packet Localize switch that modifies
7 3 ? 3 7

modification [17] packet incorrectly

Waypoint Identify packets not passing
3 3 3 3 3

routing [17, 30] through a waypoint

DDoS Get statistics of DDoS
3 3 3 3 3

diagnosis [30] attack sources

Traffic matrix [30]
Get traffic volume between

3 3 3 3 3
all switch pairs in a switch

Netshark [17]
Nework-wide path-aware

3 3 3 3 3
packet logger

Max path No packet should exceed
3 3 3 3 3

length [17] path length of size n

Table 2: Debugging applications supported by existing tools and PathDump. The table assumes that Everflow
performs per-switch per-packet mirroring. Of course, this will have much higher bandwidth requirements than
the network traffic itself. If Everflow uses the proposed sampling to minimize bandwidth overheads, many of
the above applications will not be supported by Everflow.

Acknowledgments
We would like to thank anonymous reviewers and our
shepherd George Porter for their feedback and sugges-
tions. We would also like to thank Ratul Mahajan for
many interesting discussions. This work was in part sup-
ported by EPSRC grant EP/L02277X/1.

Appendix
Table 2 summarizes the set of applications discussed in
several recent papers, and outlines whether a tool sup-
ports an application or not (the table intentionally ignores
the resource requirements and/or complexity of support-
ing each individual application for the respective tools).

246 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon EBS failure brings down Reddit, Imgur,

others. http://tinyurl.com/oxmugps.

[2] Amazon.com suffers outage: Nearly $5m down the
drain? http://tinyurl.com/od7vhm8.

[3] Azure outage raises questions about public cloud for
mission-critical apps. http://tinyurl.com/
no92ojy.

[4] DPDK: Data Plane Development Kit. http://
dpdk.org/.

[5] Flask. http://flask.pocoo.org/.

[6] Google outage: Internet traffic plunges 40%.
http://tinyurl.com/l7hegn6.

[7] MongoDB. https://www.mongodb.org/.

[8] Sampled NetFlow. http://www.cisco.com/
c/en/us/td/docs/ios/12_0s/feature/
guide/12s_sanf.html, 2003.

[9] K. Agarwal, E. Rozner, C. Dixon, and J. Carter.
SDN Traceroute: Tracing SDN Forwarding With-
out Changing Network Behavior. In ACM HotSDN,
2014.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pFabric: mini-
mal near-optimal datacenter transport. In ACM SIG-
COMM, 2013.

[11] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang. Felix: Implementing traffic
measurement on end hosts using program analysis.
In ACM SIGCOMM SOSR, 2016.

[12] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph. Understanding TCP Incast Throughput Col-
lapse in Datacenter Networks. In ACM Workshop on
Research on Enterprise Networking, 2009.

[13] R. Cole, K. Ost, and S. Schirra. Edge-Coloring Bi-
partite Multigraphs in O(E log D) Time. Combina-
torica, 21(1), 2001.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-
dula, P. Sharma, and S. Banerjee. Devoflow: scaling
flow management for high-performance networks.
In ACM SIGCOMM, 2011.

[15] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.
On the Impact of Packet Spraying in Data Center
Networks. In IEEE INFOCOM, 2013.

[16] N. G. Duffield and M. Grossglauser. Trajectory
Sampling for Direct Traffic Observation. IEEE/ACM
ToN, 9(3), 2001.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot
Networks. In USENIX NSDI, 2014.

[18] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using
Packets for Low Latency Network Programming and
Visibility. In ACM SIGCOMM, 2014.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The Nature of Data Center Traf-
fic: Measurements & Analysis. In ACM IMC, 2009.

[20] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking Using Header Space Analysis. In
USENIX NSDI, 2013.

[21] P. Kazemian, G. Varghese, and N. McKeown.
Header Space Analysis: Static Checking for Net-
works. In USENIX NSDI, 2012.

[22] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-Wide Invari-
ants in Real Time. In USENIX NSDI, 2013.

[23] R. R. Kompella, J. Yates, A. Greenberg, and A. C.
Snoeren. Detection and localization of network
black holes. In IEEE INFOCOM, 2007.

[24] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI,
2016.

[25] D. Logothetis, C. Trezzo, K. C. Webb, and
K. Yocum. In-situ MapReduce for Log Processing.
In USENIX ATC, 2011.

[26] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In ACM SIGCOMM, 2011.

[27] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive analysis of web-scale datasets.
In VLDB, 2010.

[28] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Dream: dynamic resource allocation for software-
defined measurement. In ACM SIGCOMM, 2014.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 247

http://tinyurl.com/oxmugps
http://tinyurl.com/od7vhm8
http://tinyurl.com/no92ojy
http://tinyurl.com/no92ojy
http://dpdk.org/
http://dpdk.org/
http://flask.pocoo.org/
http://tinyurl.com/l7hegn6
https://www.mongodb.org/
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html

[29] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and Precise Triggers in Data Cen-
ters. In ACM SIGCOMM, 2016.

[30] S. Narayana, M. Tahmasbi, J. Rexford, and
D. Walker. Compiling Path Queries. In USENIX
NSDI, 2016.

[31] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz,
and N. M. Amato. Quantifying the Effectiveness of
Load Balance Algorithms. In ACM ICS, 2012.

[32] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The
TCP Outcast Problem: Exposing Unfairness in Data
Center Networks. In USENIX NSDI, 2012.

[33] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for com-
modity networks. In ACM SIGCOMM, 2014.

[34] A. Singh et al. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s
Datacenter Network. In ACM SIGCOMM, 2015.

[35] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. B.
Carter. OpenSample: A Low-Latency, Sampling-
Based Measurement Platform for Commodity SDN.
In IEEE ICDCS, 2014.

[36] P. Tammana, R. Agarwal, and M. Lee. CherryPick:
Tracing Packet Trajectory in Software-defined Dat-
acenter Networks. In ACM SIGCOMM SOSR, 2015.

[37] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling Record and
Replay Troubleshooting for Networks. In USENIX
ATC, 2011.

[38] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling Network Perfor-
mance for Multi-tier Data Center Applications. In
USENIX NSDI, 2011.

[39] M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with OpenSketch. In USENIX NSDI,
2013.

[40] H. Zeng, P. Kazemian, G. Varghese, and N. McKe-
own. Automatic Test Packet Generation. IEEE/ACM
ToN, 22(2):554–566, 2014.

[41] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-Level Telemetry in
Large Datacenter Networks. In ACM SIGCOMM,
2015.

248 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Network Requirements for Resource Disaggregation

Peter X. Gao
UC Berkeley

Akshay Narayan
UC Berkeley

Sagar Karandikar
UC Berkeley

Joao Carreira
UC Berkeley

Sangjin Han
UC Berkeley

Rachit Agarwal
Cornell University

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley/ICSI

Abstract

Traditional datacenters are designed as a collection of servers,
each of which tightly couples the resources required for
computing tasks. Recent industry trends suggest a paradigm
shift to a disaggregated datacenter (DDC) architecture
containing a pool of resources, each built as a standalone
resource blade and interconnected using a network fabric.

A key enabling (or blocking) factor for disaggregation
will be the network – to support good application-level
performance it becomes critical that the network fabric
provide low latency communication even under the increased
traffic load that disaggregation introduces. In this paper, we
use a workload-driven approach to derive the minimum
latency and bandwidth requirements that the network in
disaggregated datacenters must provide to avoid degrading
application-level performance and explore the feasibility of
meeting these requirements with existing system designs and
commodity networking technology.

1 Introduction
Existing datacenters are built using servers, each of which
tightly integrates a small amount of the various resources
needed for a computing task (CPU, memory, storage). While
such server-centric architectures have been the mainstay
for decades, recent efforts suggest a forthcoming paradigm
shift towards a disaggregated datacenter (DDC), where
each resource type is built as a standalone resource “blade”
and a network fabric interconnects these resource blades.
Examples of this include Facebook Disaggregated Rack [8],
HP “The Machine” [13], Intel Rack Scale Architecture [19],
SeaMicro [24] as well as prototypes from the computer
architecture community [31,46,51].

These industrial and academic efforts have been driven
largely by hardware architects because CPU, memory and
storage technologies exhibit significantly different trends in

terms of cost, performance and power scaling [10,21,23,60].
This, in turn, makes it increasingly hard to adopt evolving
resource technologies within a server-centric architecture
(e.g., the memory-capacity wall making CPU-memory
co-location unsustainable [62]). By decoupling these
resources, DDC makes it easier for each resource technology
to evolve independently and reduces the time-to-adoption
by avoiding the burdensome process of redoing integration
and motherboard design.1 In addition, disaggregation
also enables fine-grained and efficient provisioning and
scheduling of individual resources across jobs [40].

A key enabling (or blocking) factor for disaggregation
will be the network, since disaggregating CPU from memory
and disk requires that the inter-resource communication
that used to be contained within a server must now traverse
the network fabric. Thus, to support good application-level
performance it becomes critical that the network fabric
provide low latency communication for this increased
load. It is perhaps not surprising then that prototypes from
the hardware community [8, 13, 19, 24, 31, 46, 51] all rely
on new high-speed network components – e.g., silicon
photonic switches and links, PCIe switches and links, new
interconnect fabrics, etc. The problem, however, is that
these new technologies are still a long way from matching
existing commodity solutions with respect to cost efficiency,
manufacturing pipelines, support tools, and so forth. Hence,
at first glance, disaggregation would appear to be gated on
the widespread availability of new networking technologies.

But are these new technologies strictly necessary for disag-
gregation? Somewhat surprisingly, despite the many efforts
towards and benefits of resource disaggregation, there has
been little systematic evaluation of the network requirements
for disaggregation. In this paper, we take a first stab at eval-

1We assume partial CPU-memory disaggregation, where each CPU has
some local memory. We believe this is a reasonable intermediate step toward
full CPU-memory disaggregation.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 249

uating the minimum (bandwidth and latency) requirements
that the network in disaggregated datacenters must provide.
We define the minimum requirement for the network as that
which allows us to maintain application-level performance
close to server-centric architectures; i.e., at minimum, we aim
for a network that keeps performance degradation small for
current applications while still enabling the aforementioned
qualitative benefits of resource disaggregation.

Using a combination of emulation, simulation, and
implementation, we evaluate these minimum network
requirements in the context of ten workloads spanning
seven popular open-source systems — Hadoop, Spark,
GraphLab, Timely dataflow [26, 49], Spark Streaming,
memcached [20], HERD [42], and SparkSQL. We focus
on current applications such as the above because, as we
elaborate in §3, they represent the worst case in terms of the
application degradation that may result from disaggregation.
Our key findings are:

• Network bandwidth in the range of 40 − 100Gbps is
sufficient to maintain application-level performance
within 5% of that in existing datacenters; this is easily in
reach of existing switch and NIC hardware.

• Network latency in the range of 3 − 5µs is needed to
maintain application-level performance. This is a challeng-
ing task. Our analysis suggests that the primary latency
bottleneck stems from network software rather than hard-
ware: we find the latency introduced by the endpoint is
roughly 66% of the inter-rack latency and roughly 81% of
the intra-rack latency. Thus many of the switch hardware
optimizations (such as terabit links) pursued today can
optimize only a small fraction of the overall latency
budget. Instead, work on bypassing the kernel for packet
processing and NIC integration [33] could significantly
impact the feasibility of resource disaggregation.

• We show that the root cause of the above bandwidth
and latency requirements is the application’s memory
bandwidth demand.

• While most efforts focus on disaggregating at the
rack scale, our results show that for some applications,
disaggregation at the datacenter scale is feasible.

• Finally, our study shows that transport protocols frequently
deployed in today’s datacenters (TCP or DCTCP) fail to
meet our target requirements for low latency communi-
cation with the DDC workloads. However, some recent
research proposals [30, 36] do provide the necessary
end-to-end latencies.

Taken together, our study suggests that resource disaggrega-
tion need not be gated on the availability of new networking

Communication Latency (ns) Bandwidth (Gbps)
CPU – CPU 10 500
CPU – Memory 20 500
CPU – Disk (SSD) 104 5
CPU – Disk (HDD) 106 1

Table 1: Typical latency and peak bandwidth requirements
within a traditional server. Numbers vary between hardware.

hardware: instead, minimal performance degradation can be
achieved with existing network hardware (either commodity,
or available shortly).

There are two important caveats to this. First, while we
may not need network changes, we will need changes in
hosts, for which RDMA and NIC integration (for hardware)
and pFabric or pHost (for transport protocols) are promising
directions. Second, our point is not that new networking tech-
nologies are not worth pursuing but that the adoption of dis-
aggregation need not be coupled to the deployment of these
new technologies. Instead, early efforts at disaggregation can
begin with existing network technologies; system builders
can incorporate the newer technologies when doing so makes
sense from a performance, cost, and power standpoint.

Before continuing, we note three limitations of our work.
First, our results are based on ten specific workloads spanning
seven open-source systems with varying designs; we leave to
future work an evaluation of whether our results generalize
to other systems and workloads.2 Second, we focus primarily
on questions of network design for disaggregation, ignoring
many other systems questions (e.g., scheduler designs or
software stack) modulo discussion on understanding latency
bottlenecks. However, if the latter does turn out to be the
more critical bottleneck for disaggregation, one might view
our study as exploring whether the network can “get out of
the way” (as often advocated [37]) even under disaggregation.
Finally, our work looks ahead to an overall system that does
not yet exist and hence we must make assumptions on certain
fronts (e.g., hardware design and organization, data layout,
etc.). We make what we believe are sensible choices, state
these choices explicitly in §2, and to whatever extent possible,
evaluate the sensitivity of these choices on our results.
Nonetheless, our results are dependent on these choices, and
more experience is needed to confirm their validity.

2 Disaggregated Datacenters

Figure 1 illustrates the high-level idea behind a disaggregated
datacenter. A DDC comprises standalone hardware “blades”

2We encourage other researchers to extend the evaluation with our
emulator. https://github.com/NetSys/disaggregation

250 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

SAN / NAS
Devices

NIC

C C MM

Server 1

DATACENTER NETWORK

IOH

QPI

QPIQPI

CORE NETWORK
/ INTERNET

SATA
PCIe

NIC

C C MM

Server N

IOH

QPI

QPIQPI

SATA
PCIe

(a) Current datacenter

Storage
Devices

UNIFIED INTERCONNECT

NIC

NIC

C C C C M M
M

Shared disaggregated
memoryCPUs

CORE NETWORK
/ INTERNET

GPU FGPA ASIC

Specialized Hardware

(b) Disaggregated datacenter

Figure 1: High-level architectural differences between server-centric and resource-disaggregated datacenters.

for each resource type, interconnected by a network fabric.
Multiple prototypes of disaggregated hardware already exist
— Intel RSA [19], HP “The Machine” [13], Facebook’s Disag-
gregated Rack [8], Huawei’s DC3.0 [12], and SeaMicro [24],
as well as research prototypes like FireBox [31], soN-
UMA [51], and memory blades [46]. Many of these systems
are proprietary and/or in the early stages of development;
nonetheless, in our study we draw from what information is
publicly available to both borrow from and critically explore
the design choices made by existing hardware prototypes.

In this section, we present our assumptions regarding the
hardware (§2.1) and system (§2.2) architecture in a disaggre-
gated datacenter. We close the section by summarizing the
key open design choices that remain after our assumptions
(§2.3); we treat these as design “knobs” in our evaluation.

2.1 Assumptions: Hardware Architecture

Partial CPU-memory disaggregation. In general, disag-
gregation suggests that each blade contains one particular
resource with a direct interface to the network fabric (Fig. 1).
One exception to this strict decoupling is CPU blades: each
CPU blade retains some amount of local memory that acts
as a cache for remote memory dedicated for cores on that
blade3. Thus, CPU-memory disaggregation can be viewed as
expanding the memory hierarchy to include a remote level,
which all CPU blades share.

This architectural choice is reported in prior
work [12, 31, 46, 47]. While we assume that partial
CPU-memory disaggregation will be the norm, we go a step
further and evaluate how the amount of local memory im-
pacts network requirements in terms of network bandwidth
and latency, and transport-layer flow completion times.

Cache coherence domain is limited to a single compute
blade. As articulated by others [12, 13, 31], this has the

3We use “remote memory” to refer to the memory located on a stan-
dalone memory blade.

important implication that CPU-to-CPU cache coherence
traffic does not hit the network fabric. While partial
CPU-memory disaggregation reduces the traffic hitting the
network, cache coherence traffic can not be cached and
hence directly impacts the network. This assumption is
necessary because an external network fabric is unlikely
to support the latency and bandwidth requirements for
inter-CPU cache coherence (Table 1).

Resource Virtualization. Each resource blade must support
virtualization of its resources; this is necessary for resources
to be logically aggregated into higher-level abstractions
such as VMs or containers. Virtualization of IO resources
is widely available even today: many IO device controllers
now support virtualization via PCIe, SR-IOV, or MR-IOV
features [41] and the same can be leveraged to virtualize IO
resources in DDC. The disaggregated memory blade proto-
typed by Lim et al. [46] includes a controller ASIC on each
blade that implements address translation between a remote
CPU’s view of its address space and the addressing used
internally within the blade. Other research efforts assume
similar designs. We note that while the implementation of
such blades may require some additional new hardware, it
requires no change to existing components such as CPUs,
memory modules, or storage devices themselves.

Scope of disaggregation. Existing prototypes limit the
scope of disaggregation to a very small number of racks. For
example, FireBox [31] envisions a single system as spanning
approximately three racks and assumes that the logical
aggregation and allocation of resources is similarly scoped;
i.e., the resources allocated to a higher-level abstraction such
as a VM or a container are selected from a single FireBox.
Similarly, the scope of disaggregation in Intel’s RSA is a sin-
gle rack [19]. In contrast, in a hypothetical datacenter-scale
disaggregated system, resources assigned to (for example) a
single VM could be selected from anywhere in the datacenter.

Network designs. Corresponding to their assumed scope

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 251

Class Application Domain Application System Dataset
Off-disk Batch WordCount Hadoop Wikipedia edit history [27]
Off-disk Batch Sort Hadoop Sort benchmark generator

Class A Graph Processing Collaborative Filtering GraphLab Netflix movie rating data [22]
Point Queries Key-value store Memcached YCSB

Streaming Queries Stream WordCount Spark Streaming Wikipedia edit history [27]
In-memory Batch WordCount Spark Wikipedia edit history [27]
In-memory Batch Sort Spark Sort benchmark generator

Class B Parallel Dataflow Pagerank Timely Dataflow Friendster Social Network [9]
In-memory Batch SQL Spark SQL Big Data Benchmark [6]

Point Queries Key-value store HERD YCSB

Table 2: Applications, workloads, systems and datasets used in our study. We stratify the classes in Section 3.

of disaggregation, existing prototypes assume a different
network architecture for within the rack(s) that form a unit
of disaggregation vs. between such racks. To our knowledge,
all existing DDC prototypes use specialized – even
proprietary [12,19,24] – network technologies and protocols
within a disaggregated rack(s). For example, SeaMicro uses a
proprietary Torus-based topology and routing protocol within
its disaggregated system; Huawei propose a PCIe-based
fabric [14]; FireBox assumes an intra-FireBox network of
1Tbps Silicon photonic links interconnected by high-radix
switches [31,43]; and Intel’s RSA likewise explores the use
of Silicon photonic links and switches.

Rather than simply accepting the last two design choices
(rack-scale disaggregation and specialized network designs),
we critically explore when and why these choices are
necessary. Our rationale in this is twofold. First, these are
both choices that appear to be motivated not by fundamental
constraints around disaggregating memory or CPU at the
hardware level, but rather by the assumption that existing
networking solutions cannot meet the (bandwidth/latency)
requirements that disaggregation imposes on the network.
To our knowledge, however, there has been no published
evaluation showing this to be the case; hence, we seek to
develop quantifiable arguments that either confirm or refute
the need for these choices.

Second, these choices are likely to complicate or delay the
deployment of DDC. The use of a different network archi-
tecture within vs. between disaggregated islands leads to the
complexity of a two-tier heterogeneous network architecture
with different protocols, configuration APIs, etc., for each;
e.g., in the context of their FireBox system, the authors envis-
age the use of special gateway devices that translate between
their custom intra-FireBox protocols and TCP/IP that is used
between FireBox systems; Huawei’s DC3.0 makes similar
assumptions. Likewise, many of the specialized technologies
these systems use (e.g., Si-photonic [59]) are still far from

mainstream. Hence, once again, rather than assume change
is necessary, we evaluate the possibility of maintaining a
uniform “flat” network architecture based on existing com-
modity components as advocated in prior work [28,38,39].

2.2 Assumptions: System Architecture
In contrast to our assumptions regarding hardware which
we based on existing prototypes, we have less to guide us on
the systems front. We thus make the following assumptions,
which we believe are reasonable:

System abstractions for logical resource aggregations. In
a DDC, we will need system abstractions that represent a logi-
cal aggregation of resources, in terms of which we implement
resource allocation and scheduling. One such abstraction in
existing datacenters is a VM: operators provision VMs to
aggregate slices of hardware resources within a server, and
schedulers place jobs across VMs. While not strictly neces-
sary, we note that the VM model can still be useful in DDC.4

For convenience, in this paper we assume that computational
resources are still aggregated to form VMs (or VM-like con-
structs), although now the resources assigned to a VM come
from distributed hardware blades. Given a VM (or VM-like)
abstraction, we assign resources to VMs differently based on
the scope of disaggregation that we assume: for rack-scale
disaggregation, a VM is assigned resources from within a
single rack while, for datacenter-scale disaggregation, a VM
is assigned resources from anywhere in the datacenter.

Hardware organization. We assume that resources are
organized in racks as in today’s datacenters. We assume a
“mixed” organization in which each rack hosts a mix of dif-
ferent types of resource blades, as opposed to a “segregated”
organization in which a rack is populated with a single

4In particular, continuing with the abstraction of a VM would allow exist-
ing software infrastructure — i.e., hypervisors, operating systems, datacenter
middleware, and applications — to be reused with little or no modification.

252 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

type of resource (e.g., all memory blades). This leads to a
more uniform communication pattern which should simplify
network design and also permits optimizations that aim to
localize communication; e.g., co-locating a VM within a rack,
which would not be possible with a segregated organization.

Page-level remote memory access. In traditional servers,
the typical memory access between CPU and DRAM occurs
in the unit of a cache-line size (64B in x86). In contrast,
we assume that CPU blades access remote memory at the
granularity of a page (4KB in x86), since page-level access
has been shown to better exploit spatial locality in common
memory access patterns [46]. Moreover, this requires little
or no modification to the virtual memory subsystems
of hypervisors or operating systems, and is completely
transparent to user-level applications.

Block-level distributed data placement. We assume that
applications in DDC read and write large files at the
granularity of “sectors” (512B in x86). Furthermore, the disk
block address space is range partitioned into “blocks”, that
are uniformly distributed across the disk blades. The latter is
partially motivated by existing distributed file systems (e.g.,
HDFS) and also enables better load balancing.

2.3 Design knobs
Given the above assumptions, we are left with two key sys-
tem design choices that we treat as “knobs” in our study: the
amount of local memory on compute blades and the scope of
disaggregation (e.g., rack- or datacenter-scale). We explore
how varying these knobs impacts the network requirements
and traffic characteristics in DDC in the following section.

The remainder of this paper is organized as follows.
We first analyze network-layer bandwidth and latency
requirements in DDC (§3) without considering contention
between network flows, then in §4 relax this constraint. We
end with a discussion of the future directions in §5.

3 Network Requirements
We start by evaluating network latency and bandwidth
requirements for disaggregation. We describe our evaluation
methodology (§3.1), present our results (§3.2) and then
discuss their implications (§3.3).

3.1 Methodology
In DDC, traffic between resources that was contained within
a server is now carried on the “external” network. As with
other types of interconnects, the key requirement will be low
latency and high throughput to enable this disaggregation.
We review the forms of communication between resources
within a server in Table 1 to examine the feasibility of

such a network. As mentioned in §2, CPU-to-CPU cache
coherence traffic does not cross the external network. For I/O
traffic to storage devices, the current latency and bandwidth
requirements are such that we can expect to consolidate
them into the network fabric with low performance impact,
assuming we have a 40Gbps or 100Gbps network. Thus,
the dominant impact to application performance will come
from CPU-memory disaggregation; hence, we focus on
evaluating the network bandwidth and latency required to
support remote memory.

As mentioned earlier, we assume that remote memory is
managed at the page granularity, in conjunction with virtual
memory page replacement algorithms implemented by the
hypervisor or operating system. For each paging operation
there are two main sources of performance penalty: i) the
software overhead for trap and page eviction and ii) the
time to transfer pages over the network. Given our focus
on network requirements, we only consider the latter in
this paper (modulo a brief discussion on current software
overheads later in this section).

Applications. We use workloads from diverse applications
running on real-world and benchmark datasets, as shown
in Table 2. The workloads can be classified into two classes
based on their performance characteristics. We elaborate
briefly on our choice to take these applications as is, rather
than seek to optimize them for DDC. Our focus in this paper
is on understanding whether and why networking might gate
the deployment of DDC. For this, we are interested in the
degradation that applications might suffer if they were to run
in DDC. We thus compare the performance of an application
in a server-centric architecture to its performance in the
disaggregated context we consider here (with its level of
bandwidth and local memory). This would be strictly worse
than if we compared to the application’s performance if it had
been rewritten for this disaggregated context. Thus, legacy
(i.e., server-centric) applications represent the worst-case in
terms of potential degradation and give us a lower bound
on the network requirements needed for disaggregation (it
might be that rewritten applications could make do with
lower bandwidths). Clearly, if new networking technologies
exceed this lower bound, then all applications (legacy and
“native” DDC) will benefit. Similarly, new programming
models designed to exploit disaggregation can only improve
the performance of all applications. The question of how to
achieve improved performance through new technologies
and programming models is an interesting one but beyond
the scope of our effort and hence one we leave to future work.

Emulating remote memory. We run the following appli-
cations unmodified with 8 threads and reduce the amount
of local memory directly accessible by the applications.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 253

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%
P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

1us/100G 1us/40G 1us/10G 5us/100G 5us/40G 5us/10G 10us/100G 10us/40G 10us/10G

Spark
Wordcount

Spark
Sort

Spark SQL
BDB

Timely Dataflow
Pagerank

HERD
YCSB

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

1us/100G 1us/40G 1us/10G 3us/100G 3us/40G 3us/10G 5us/100G 5us/40G 5us/10G

Figure 2: Comparison of application-level performance in disaggregated datacenters with respect to existing server-centric
architectures for different latency/bandwidth configurations and 25% local memory on CPU blades — Class A apps (top)
and Class B apps (bottom). To maintain application-level performance within reasonable performance bounds (∼5% on an
average), Class A apps require 5µs end-to-end latency and 40Gbps bandwidth, and Class B apps require 3µs end-to-end
latency and 40−100Gbps bandwidth. See §3.2 for detailed discussion.

To emulate remote memory accesses, we implement a
special swap device backed by the remaining physical
memory rather than disk. This effectively partitions main
memory into “local” and “remote” portions where existing
page replacement algorithms control when and how pages
are transferred between the two. We tune the amount of
“remote” memory by configuring the size of the swap device;
remaining memory is “local”. We intercept all page faults
and inject artificial delays to emulate network round-trip
latency and bandwidth for each paging operation. Note that
when a page fault occurs, the page is not actually swapped
over the network; instead, it is swapped to the remaining part
of the memory on the same machine.

We measure relative application-level performance on the
basis of job completion time as compared to the zero-delay
case. Thus, our results do not account for the delay
introduced by software overheads for page operations and
should be interpreted as relative performance degradations
over different network configurations. Note too that the
delay we inject is purely an artificial parameter and hence
does not (for example) realistically model queuing delays
that may result from network congestion caused by the extra
traffic due to disaggregation; we consider network-wide
traffic and effects such as congestion in §4.

Testbed. Each application operates on ∼ 125GB of
data equally distributed across an Amazon EC2 cluster
comprising 5 m3.2xlarge servers. Each of these servers

has 8 vCPUs, 30GB main memory, 2×80GB SSD drives
and a 1Gbps access link bandwidth. We enabled EC2’s
Virtual Private Network (VPC [3]) capability in our cluster
to ensure no interference with other Amazon EC2 instances.

We verified that m3.2xlarge instances’ 1Gbps access
links were not a bottleneck to our experiment in two
ways. First, in all cases where the network approached
full utilization, CPU was fully utilized, indicating that the
CPU was not blocked on network calls. Next, we ran our
testbed on c3.4xlarge instances with 2Gbps access links
(increased network bandwidth with roughly the same CPU).
We verified that even with more bandwidth, all applications
for which link utilization was high maintained high CPU
utilization. This aligns with the conclusions drawn in [53].

We run batch applications (Spark, Hadoop, Graphlab, and
Timely Dataflow) in a cluster with 5 worker nodes and 1
master node; the job request is issued from the master node.
For point-query applications (memcached, HERD), requests
are sent from client to server across the network. All applica-
tions are multi-threaded, with the same number of threads as
cores. To compensate for the performance noise on EC2, we
run each experiment 10 times and take the median result.

3.2 Results

We start by evaluating application performance in a
disaggregated vs. a server-centric architecture. Figure 2 plots
the performance degradation for each application under

254 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

20 40 60 80 100

Bandwidth (Gbps)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n HERD - YCSB

Spark - Wordcount

Spark SQL - BDB

Spark - Sort

Timely Dataflow - Pagerank

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 3: Impact of network bandwidth on the results of Fig-
ure 2 for end-to-end latency fixed to 5µs and local memory
fixed to 25%.

0 5 10 15 20 25 30 35 40

Latency (us)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

180.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n Spark - Wordcount

Sprak SQL - BDB

Timely Dataflow - Pagerank

Spark - Sort

HERD - YCSB

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 4: Impact of network latency on the results of Figure 2
for bandwidth fixed to 40Gbps and local memory fixed to
25%.

20.0% 40.0% 60.0% 80.0% 100.0%

Local Memory Ratio

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n HERD - YCSB

Spark - Sort

Spark - Wordcount

Spark SQL - BDB

Timely Dataflow - Pagerank

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 5: Impact of “local memory” on the results of Figure 2
for end-to-end latency fixed to 5µs and network bandwidth
40Gbps. Negative values are due to small variations in tim-
ings between runs.

different assumptions about the latency and bandwidth
to remote memory. In these experiments, we set the local
memory in the disaggregated scenario to be 25% of that in
the server-centric case (we will examine our choice of 25%
shortly). Note that the injected latency is constant across
requests; we leave studying the effects of possibly high tail

Network Provision Class A Class B
5µs, 40Gbps 20% 35%
3µs, 100Gbps 15% 30%

Table 3: Class B apps require slightly higher local memory
than Class A apps to achieve an average performance penalty
under 5% for various latency-bandwidth configurations.

latencies to future work.
From Figure 2, we see that our applications can be broadly

divided into two categories based on the network latency
and bandwidth needed to achieve a low performance penalty.
For example, for the applications in Fig. 2 (top) — Hadoop
Wordcount, Hadoop Sort, Graphlab and Memcached
— a network with an end-to-end latency of 5µs and
bandwidth of 40Gbps is sufficient to maintain an average
performance penalty under 5%. In contrast, the applications
in Fig. 2 (bottom) — Spark Wordcount, Spark Sort, Timely,
SparkSQL BDB, and HERD — require network latencies
of 3µs and 40 − 100Gbps bandwidth to maintain an
average performance penalty under 8%. We term the former
applications Class A and the latter Class B and examine
the feasibility of meeting their respective requirements in
§3.3. We found that Spark Streaming has a low memory
utilization. As a result, its performance degradation is near
zero in DDC, and we show it only in Figure 6.

Sensitivity analysis. Next, we evaluate the sensitivity of
application performance to network bandwidth and latency.
Fig. 3 plots the performance degradation under increasing
network bandwidth assuming a fixed network latency of
5µs while Fig. 4 plots degradation under increasing latency
for a fixed bandwidth of 40Gbps; in both cases, local
memory is set at 25% as before. We see that beyond 40Gbps,
increasing network bandwidth offers little improvement in
application-level performance. In contrast, performance —
particularly for Class B apps — is very sensitive to network
latency; very low latencies (3− 5µs) are needed to avoid
non-trivial performance degradation.

Finally, we measure how the amount of local memory
impacts application performance. Figure 5 plots the perfor-
mance degradation that results as we vary the fraction of local
memory from 100% (which corresponds to no CPU-memory
disaggregation) down to 10%, assuming a fixed network la-
tency and bandwidth of 5µs and 40Gbps respectively; note
that the 25% values (interpolated) in Figure 5 correspond to
5µs, 40Gbps results in Figure 2. As expected, we see that
Class B applications are more sensitive to the amount of local
memory than Class A apps; e.g., increasing the amount of
local memory from 20% to 30% roughly halves the perfor-
mance degradation in Class B from approximately 15% to

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 255

0 1 2 3 4 5 6
Remote Memory Bandwidth Utilization, Gbps

0.00

0.05

0.10

0.15

0.20

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
ti

o
n

TimelyDataflow
PageRank

Spark
Sort

Hadoop
Sort

Spark Streaming
Wordcount

Hadoop
Wordcount

Spark
Wordcount

Memcached
YCSB

Graphlab
CF

HERD
YCSB

SparkSQL
BDB

(a) Remote Memory Bandwidth Utilization

0 10 20 30 40 50 60
Memory Bandwidth Utilization, Gbps

0.00

0.05

0.10

0.15

0.20

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
ti

o
n

TimelyDataflow
PageRank

Spark
Sort

Hadoop
Sort

Spark Streaming
Wordcount

Hadoop
Wordcount

Spark
Wordcount

Memcached
YCSB

Graphlab
CF

HERD
YCSB

SparkSQL
BDB

(b) Memory Bandwidth Utilization

Figure 6: Performance degradation of applications is correlated with the swap memory bandwidth and overall memory
bandwidth utilization.

7%. In all cases, increasing the amount of local memory be-
yond 40% has little to no impact on performance degradation.

Understanding (and extrapolating from) our results.
One might ask why we see the above requirements – i.e.,
what characteristic of the applications we evaluated led to
the specific bandwidth and latency requirements we report?
An understanding of these characteristics could also allow
us to generalize our findings to other applications.

We partially answer this question using Figure 6, which
plots the performance degradation of the above nine
workloads against their swap and memory bandwidth5.
Figure 6(a) and 6(b) show that an application’s performance
degradation is very strongly correlated with its swap
bandwidth and well correlated with its memory bandwidth.
The clear correlation with swap bandwidth is to be expected.
That the overall memory bandwidth is also well correlated
with the resultant degradation is perhaps less obvious and
an encouraging result as it suggests that an application’s
memory bandwidth requirements might serve as a rough
indicator of its expected degradation under disaggregation:
this is convenient as memory bandwidth is easily measured
without requiring any of our instrumentation (i.e., emulating
remote memory by a special swap device, etc.). Thus it
should be easy for application developers to get a rough
sense of the performance degradation they might expect
under disaggregation and hence the urgency of rewriting
their application for disaggregated contexts.

We also note that there is room for more accurate
predictors: the difference between the two figures (Figs. 6(a)

5We use Intel’s Performance Counter Monitor software [18] to read the
uncore performance counters that measure the number of bytes written to
and read from the integrated memory controller on each CPU. We confirmed
using benchmarks designed to saturate memory bandwidth [4] that we could
observe memory bandwidth utilization numbers approaching the reported
theoretical maximum. As further validation, we verified that our Spark SQL
measurement is consistent with prior work [55].

and 6(b)) shows that the locality in memory access patterns
does play some role in the expected degradation (since
the swap bandwidth which is a better predictor captures
only the subset of memory accesses that miss in local
memory). Building better prediction models that account
for an application’s memory access pattern is an interesting
question that we leave to future work.

Access Granularity. Tuning the granularity of remote mem-
ory access is an interesting area for future work. For example,
soNUMA [51] accesses remote memory at cache-line size
granularity, which is much smaller than page-size. This may
allow point-query applications to optimize their dependence
on remote memory. On the other hand, developers of
applications which use large, contiguous blocks of memory
may wish to use hugepages to reduce the number of page
table queries and thus speed up virtual memory mapping.
Since Linux currently limits (non-transparent) hugepages
from being swapped out of physical memory, exploring this
design option is not currently feasible.

Overall, we anticipate that programmers in DDC will face
a tradeoff in optimizing their applications for disaggregation
depending on its memory access patterns.

Remote SSD and NVM. Our methodology is not limited
to swapping to remote memory. In fact, as long as the 3µs
latency target is met, there is no limitation on the media
of the remote storage. We envision that the remote mem-
ory could be replaced by SSD or forthcoming Non-Volatile
Memory (NVM) technologies, and anticipate different price
and performance tradeoff for these technologies.

Summary of results. In summary, supporting memory dis-
aggregation while maintaining application-level performance
within reasonable bounds imposes certain requirements
on the network in terms of the end-to-end latency and
bandwidth it must provide. Moreover, these requirements

256 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are closely related to the amount of local memory available
to CPU blades. Table 3 summarizes these requirements for
the applications we studied. We specifically investigate a
few combinations of network latency, bandwidth, and the
amount of local memory needed to maintain a performance
degradation under 5%. We highlight these design points
because they represent what we consider to be sweet spots
in achievable targets both for the amount of local memory
and for network requirements, as we discuss next.

3.3 Implications and Feasibility

We now examine the feasibility of meeting the requirements
identified above.

Local memory. We start with the requirement of between
20 − 30% local memory. In our experiments, this corre-
sponds to between 1.50−2.25GB/core. We look to existing
hardware prototypes for validation of this requirement. The
FireBox prototype targets 128GB of local memory shared
by 100 cores leading to 1.28GB/core,6 while the analysis in
[46] uses 1.5GB/core. Further, [47] also indicates 25% local
memory as a desirable setting, and HP’s “The Machine” [2]
uses an even larger fraction of local memory: 87%. Thus
we conclude that our requirement on local memory is
compatible with demonstrated hardware prototypes. Next,
we examine the feasibility of meeting our targets for network
bandwidth and latency.

Network bandwidth. Our bandwidth requirements are
easily met: 40Gbps is available today in commodity
datacenter switches and server NICs [16]; in fact, even
100Gbps switches and NICs are available, though not as
widely [1]. Thus, ignoring the potential effects of congestion
(which we consider next in §4), providing the network
bandwidth needed for disaggregation should pose no
problem. Moreover, this should continue to be the case in
the future because the trend in link bandwidths currently
exceeds that in number of cores [5,7,11].

Network latency. The picture is less clear with respect to
latency. In what follows, we consider the various components
of network latency and whether they can be accommodated
in our target budget of 3µs (for Class B apps) to 5µs (for
Class A apps).

Table 4 lists the six components of the end-to-end latency
incurred when fetching a 4KB page using 40Gbps links,
together with our estimates for each. Our estimates are
based on the following common assumptions about existing
datacenter networks: (1) the one-way path between servers
in different racks crosses three switches (two ToR and

6We thank Krste Asanović for clarification on FireBox’s technical specs.

one fabric switch) while that between servers in the same
rack crosses a single ToR switch, (2) inter-rack distances
of 40m and intra-rack distances of 4m with a propagation
speed of 5ns/m, (3) cut-through switches.7 With this, our
round-trip latency includes the software overheads associated
with moving the page to/from the NIC at both the sending
and receiving endpoints (hence 2x the OS and data copy
overheads), 6 switch traversals, 4 link traversals in each
direction including two intra-rack and two cross-rack, and the
transmission time for a 4KB page (we ignore transmission
time for the page request), leading to the estimates in Table 4.

We start by observing that the network introduces three
unavoidable latency overheads: (i) the data transmission
time, (ii) the propagation delay; and (iii) the switching delay.
Together, these components contribute to roughly 3.14µs
across racks and 1.38µs within a rack.8

In contrast, the network software at the endpoints is a sig-
nificant contributor to the end-to-end latency! Recent work re-
ports a round-trip kernel processing time of 950 ns measured
on a 2.93GHz Intel CPU running FreeBSD (see [56] for de-
tails), while [52] reports an overhead of around 1µs to copy
data between memory and the NIC. With these estimates, the
network software contributes roughly 3.9µs latency — this
represents 55% of the end-to-end latency in our baseline inter-
rack scenario and 73% in our baseline intra-rack scenario.

The end-to-end latencies we estimated in our baseline
scenarios (whether inter- or intra-rack) fail to meet our target
latencies for either Class B or Class A applications. Hence,
we consider potential optimizations and technologies that
can reduce these latencies. Two technologies show promise:
RDMA and integrated NICs.

Using RDMA. RDMA effectively bypasses the packet
processing in the kernel, thus eliminating the OS overheads
from Table 4. Thus, using RDMA (Infiniband [15] or
Omnipath [17]), we estimate a reduced end-to-end latency
of 5.14µs across racks (column #4 in Table 4) and 3.38µs
within a rack.

Using NIC integration. Recent industry efforts pursue the
integration of NIC functions closer to the CPU [33] which
would reduce the overheads associated with copying data
to/from the NIC. Rosenblum et al. [57] estimate that such
integration together with certain software optimizations
can reduce copy overheads to sub-microseconds, which we
estimate at 0.5µs (similar to [57]).

7As before, we ignore the queuing delays that may result from congestion
at switches – we will account for this in §4.

8Discussions with switch vendors revealed that they are approaching the
fundamental limits in reducing switching delays (for electronic switches),
hence we treat the switching delay as unavoidable.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 257

Component Baseline (µs) With RDMA (µs) With RDMA + NIC Integr. (µs)
Inter-rack Intra-rack Inter-rack Intra-rack Inter-rack Intra-rack

OS 2×0.95 2×0.95 0 0 0 0
Data copy 2×1.00 2×1.00 2×1.00 2×1.00 2×0.50 2×0.50
Switching 6×0.24 2×0.24 6×0.24 2×0.24 6×0.24 2×0.24

Propagation (Inter-rack) 4×0.20 0 4×0.20 0 4×0.20 0
Propagation (Intra-rack) 4×0.02 4×0.02 4×0.02 4×0.02 4×0.02 4×0.02

Transmission 1×0.82 1×0.82 1×0.82 1×0.82 1×0.82 1×0.82
Total 7.04µs 5.28µs 5.14µs 3.38µs 4.14µs 2.38µs

Table 4: Achievable round-trip latency (Total) and the components that contribute to the round-trip latency (see discussion in
§3.3) on a network with 40Gbps access link bandwidth (one can further reduce the Total by 0.5µs using 100Gbps access link
bandwidth). The baseline denotes the latency achievable with existing network technology. The fractional part in each cell is
the latency for one traversal of the corresponding component and the integral part is the number of traversal performed in one
round-trip time (see discussion in §3.3).

Using RDMA and NIC integration. As shown in column
#5 in Table 4, the use of RDMA together with NIC
integration reduces the end-to-end latency to 4.14µs across
racks; within a rack, this further reduces down to 2.38µs
(using the same differences as in column #2 and column #3).

Takeaways. We highlight a few takeaways from our analysis:

• The overhead of network software is the key barrier to
realizing disaggregation with current networking technolo-
gies. Technologies such as RDMA and integrated NICs
that eliminate some of these overheads offer promise:
reducing end-to-end latencies to 4.14µs between racks
and 2.38µs within a rack. However, demonstrating such
latencies in a working prototype remains an important
topic for future exploration.

• Even assuming RDMA and NIC integration, the end-to-
end latency across racks (4.14µs) meets our target latency
only for Class A, but not Class B, applications. Our target
latency for Class B apps is only met by the end-to-end
latency within a rack. Thus, Class B jobs will have to
be scheduled within a single rack (or nearby racks).
That is, while Class A jobs can be scheduled at blades
distributed across the datacenter, Class B jobs will need to
be scheduled within a rack. The design and evaluation of
such schedulers remains an open topic for future research.

• While new network hardware such as high-bandwidth
links (e.g., 100Gbps or even 1Tbps as in [31, 43]) and
high-radix switches (e.g., 1000 radix switch [31]) are
certainly useful, they optimize a relatively small piece of
the overall latency in our baseline scenario technologies.
All-optical switches also fall into this category – providing
both potentially negligible switching delay and high
bandwidth. That said, once we assume the benefits of
RDMA and NIC integration, then the contribution of new

links and switches could bring even the cross-rack latency
to within our 3µs target for Class B applications, enabling
true datacenter-scale disaggregation; e.g., using 100Gbps
links reduces the end-to-end latency to 3.59µs between
racks, extremely close to our 3µs.

• Finally, we note that managing network congestion to
achieve zero or close-to-zero queuing within the network
will be essential; e.g., a packet that is delayed such that
it is queued behind (say) 4 packets will accumulate an
additional delay of 4 × 0.82µs! Indeed, reducing such
transmission delays may be the reason to adopt high-speed
links. We evaluate the impact of network congestion in
the following section.

4 Network Designs for Disaggregation
Our evaluation has so far ignored the impact of queuing delay
on end-to-end latency and hence application performance;
we remedy the omission in this section. The challenge is that
queuing delay is a function of the overall network design, in-
cluding: the traffic workload, network topology and routing,
and the end-to-end transport protocol. Our evaluation focuses
on existing proposals for transport protocols, with standard
assumptions about the datacenter topology and routing. How-
ever, the input traffic workload in DDC will be very different
from that in a server-centric datacenter and, to our knowledge,
no models exist that characterize traffic in a DDC.

We thus start by devising a methodology that extends
our experimental setup to generate an application-driven
input traffic workload (§4.1), then describe how we use this
traffic model to evaluate the impact of queuing delay (§4.2).
Finally, we present our results on: (i) how existing transport
designs perform under DDC traffic workloads (§4.3), and (ii)
how existing transport designs impact end-to-end application
performance (§4.4). To our knowledge, our results represent

258 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

Spark
Wordcount

Spark
Sort

TimelyDataflow
PageRank

SparkSQL
BDB

0

1

2

3

4

5
S
lo
w
d
o
w
n

pFabric pHost Fastpass DCTCP TCP

Figure 7: The performance of the five protocols for the case of
100Gbps access link capacity. The results for 40Gbps access
links lead to similar conclusions. See §4.3 for discussion on
these results.

the first evaluation of transport protocols for DDC.

4.1 Methodology: DDC Traffic Workloads

Using our experimental setup from §3.1, we collect a
remote memory access trace from our instrumentation
tool as described in §3.1, a network access trace using
tcpdump [25], and a disk access trace using blktrace.

We translate the accesses from the above traces to network
flows in our simulated disaggregated cluster by splitting each
node into one compute, one memory, and one disk blade and
assigning memory blades to virtual nodes.

All memory and disk accesses captured above are asso-
ciated with a specific address in the corresponding CPU’s
global virtual address space. We assume this address space is
uniformly partitioned across all memory and disk blades re-
flecting our assumption of distributed data placement (§2.2).

One subtlety remains. Consider the disk accesses at a
server A in the original cluster: one might view all these disk
accesses as corresponding to a flow between the compute
and disk blades corresponding to A, but in reality A’s CPU
may have issued some of these disk accesses in response to a
request from a remote server B (e.g., due to a shuffle request).
In the disaggregated cluster, this access should be treated as a
network flow between B’s compute blade and A’s disk blade.

To correctly attribute accesses to the CPU that originates
the request, we match network and disk traces across the
cluster – e.g., matching the network traffic between B and
A to the disk traffic at A – using a heuristic based on both
the timestamps and volume of data transferred. If a locally
captured memory or disk access request matches a local
flow in our tcpdump traces, then it is assumed to be part
of a remote read and is attributed to the remote endpoint
of the network flow. Otherwise, the memory/disk access is
assumed to have originated from the local CPU.

4.2 Methodology: Queuing delay
We evaluate the use of existing network designs for DDC
in two steps. First, we evaluate how existing network designs
fare under DDC traffic workloads. For this, we consider a
suite of state-of-the-art network designs and use simulation
to evaluate their network-layer performance – measured in
terms of flow completion time (FCT) – under the traffic
workloads we generate as above. We then return to actual
execution of our applications (Table 2) and once again
emulate disaggregation by injecting latencies for page misses.
However, now we inject the flow completion times obtained
from our best-performing network design (as opposed to
the constant latencies from §3). This last step effectively
“closes the loop”, allowing us to evaluate the impact of
disaggregation on application-level performance for realistic
network designs and conditions.

Simulation Setup. We use the same simulation setup as
prior work on datacenter transports [29,30,36]. We simulate
a topology with 9 racks (with 144 total endpoints) and a full
bisection bandwidth Clos topology with 36KB buffers per
port; our two changes from prior work are to use 40Gbps
or 100Gbps access links (as per §3), and setting propagation
and switching delays as discussed in §3.3 (Table 4 with
RDMA and NIC integration). We map the 5 EC2-node
cluster into a disaggregated cluster with 15 blades: 5 each
of compute, memory and disk. Then, we extract the flow
size and inter-arrival time distribution for each endpoint
pair in the 15 blades disaggregated cluster, and generate
traffic using the distributions. Finally, we embed the multiple
disaggregated clusters into the 144-endpoint datacenter with
both rack-scale and datacenter-scale disaggregation, where
communicating nodes are constrained to be within a rack
and unconstrained, respectively.

We evaluate five protocols; in each case, we set protocol-
specific parameters following the default settings but adapted
to our bandwidth-delay product as recommended.

1. TCP, with an initial congestion window of 2.
2. DCTCP, which leverages ECN for enhanced perfor-

mance in datacenter contexts.
3. pFabric, approximates shortest-job-first scheduling in a

network context using switch support to prioritize flows
with a smaller remaining flow size [30]. We set pFabric
to have an initial congestion window of 12 packets and a
retransmission timeout of 45µs.

4. pHost, emulates pFabric’s behavior but using only
scheduling at the end hosts [36] and hence allows the
use of commodity switches. We set pHost to have a free
token limit of 8 packets and a retransmission timeout of
9.5µs as recommended in [36].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 259

5. Fastpass, introduces a centralized scheduler that sched-
ules every packet. We implement Fastpass’s [54] schedul-
ing algorithm in our simulator as described in [36] and
optimistically assume that the scheduler’s decision logic
itself incurs no overhead (i.e., takes zero time) and hence
we only consider the latency and bandwidth overhead
of contacting the central scheduler. We set the Fastpass
epoch size to be 8 packets.

4.3 Network-level performance
We evaluate the performance of our candidate transport
protocols in terms of their mean slowdown [30], which is
computed as follows. The slowdown for a flow is computed
by dividing the flow completion time achieved in simulation
by the time that the flow would take to complete if it were
alone in the network. The mean slowdown is then computed
by averaging the slowdown over all flows. Figure 7 plots
the mean slowdown for our five candidate protocols, using
100Gbps links (all other parameters are as in §4.2).

Results. We make the following observations. First, while the
relative ordering in mean slowdown for the different proto-
cols is consistent with prior results [36], their absolute values
are higher than reported in their original papers; e.g. pFabric
and pHost both report close-to-optimal slowdowns with val-
ues close to 1.0 [30,36]. On closer examination, we found that
the higher slowdowns with disaggregation are a consequence
of the differences in our traffic workloads (both earlier studies
used heavy-tailed traffic workloads based on measurement
studies from existing datacenters). In our DDC workload,
reflecting the application-driven nature of our workload, we
observe many flow arrivals that appear very close in time
(only observable on sub-10s of microsecond timescales), lead-
ing to high slowdowns for these flows. This effect is strongest
in the case of the Wordcount application, which is why it
suffers the highest slowdowns. We observed similar results in
our simulation of rack-scale disaggregation (graph omitted).

4.4 Application-level performance
We now use the pFabric FCTs obtained from the above
simulations as the memory access times in our emulation
methodology from §3.

We measure the degradation in application performance
that results from injecting remote memory access times
drawn from the FCTs that pFabric achieves with 40Gbps
links and with 100Gbps links, in each case considering both
datacenter-wide and rack-scale disaggregation. As in §3, we
measure performance degradation compared to the baseline
of performance without disaggregation (i.e., injecting zero
latency).

In all cases, we find that the inclusion of queuing delay

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

Spark
Wordcount

Spark
Sort

Spark SQL
BDB

Timely D.
Pagerank

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

Datacenter Scale

Rack Scale

Figure 8: Application layer slowdown for each of the four
applications at rack-scale and datacenter scale after injecting
pFabric’s FCT with 100Gbps link.

does have a non-trivial impact on performance degradation at
40 Gbps – typically increasing the performance degradation
relative to the case of zero-queuing delay by between 2-3x,
with an average performance degradation of 14% with
datacenter-scale disaggregation and 11% with rack-scale
disaggregation.

With 100Gbps links, we see (in Figure 8) that the
performance degradation ranges between 1-8.5% on average
with datacenter scale disaggregation, and containment to a
rack lowers the degradation to between 0.4-3.5% on average.
This leads us to conclude that 100Gbps links are both
required and sufficient to contain the performance impact
of queuing delay.

5 Future Directions
So far, we used emulation and simulation to evaluate the
minimum network requirements for disaggregation. This
opens two directions for future work: (1) demonstrating an
end-to-end system implementation of remote memory access
that meets our latency targets, and (2) investigating program-
ming models that actively exploit disaggregation to improve
performance. We present early results investigating the above
with the intent of demonstrating the potential for realizing
positive results to the above questions: each topic merits an
in-depth exploration that is out of scope for this paper.

5.1 Implementing remote memory access
We previously identified an end-to-end latency target of 3-
5µs for DDC that we argued could be met with RDMA. The
(promising) RDMA latencies in §4 are as reported by native
RDMA-based applications. We were curious about the fea-
sibility of realizing these latencies if we were to retain our ar-
chitecture from the previous section in which remote memory
is accessed as a special swap device as this would provide a
simple and transparent approach to utilizing remote memory.

We thus built a kernel space RDMA block device driver
which serves as a swap device; i.e., the local CPU can now

260 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Min Avg Median 99.5 Pcntl Max
3394 3492 3438 4549 12254

Table 5: RDMA block device request latency(ns)

swap to remote memory instead of disk. We implemented
the block device driver on a machine with a 3 GHz CPU and
a Mellanox 4xFDR Infiniband card providing 56 Gbps band-
width. We test the block device throughput using dd with
direct IO, and measure the request latency by instrumenting
the driver code. The end-to-end latency of our approach in-
cludes the RDMA request latency and the latency introduced
by the kernel swap itself. We focus on each in turn.

RDMA request latency. A few optimizations were neces-
sary to improve RDMA performance in our context. First, we
batch block requests sent to the RDMA NIC and the driver
waits for all the requests to return before notifying the upper
layer: this gave a block device throughput of only 0.8GB/s
and latency around 4-16us. Next, we merge requests with con-
tiguous addresses into a single large request: this improved
throughput to 2.6GB/s (a 3x improvement). Finally, we
allow asynchronous RDMA requests: we created a data struc-
ture to keep track of outgoing requests and notify the upper
layer immediately for each completed request; this improves
throughput to 3.3GB/s which is as high as a local RamFS, and
reduces the request latency to 3-4us (Table 5). This latency is
within 2x of latencies reported by native RDMA applications
which we view as encouraging given the simplicity of the
design and that additional optimizations are likely possible.

Swap latency. We calculated the software overhead of
swapping on a commodity desktop running Linux 3.13 by
simultaneously measuring the times spent in the page fault
handler and accessing disk. We found that convenient mea-
surement tools such as ftrace and printk introduce
unacceptable overhead for our purposes. Thus, we wrap both
the body of the __do_page_fault function and the call
to the swapin_readahead function (which performs a
swap from disk) in ktime_get calls. We then pack the
result of the measurement for the swapin_readahead
function into the unused upper 16-bits of the return value
of its caller, do_swap_page, which propagates the value
up to __do_page_fault.

Once we have measured the body of __do_page_fault,
we record both the latency of the whole __do_page_fault
routine (25.47µs), as well as the time spent in
swapin_readahead (23.01µs). We subtract these
and average to find that the software overhead of swapping
is 2.46µs. This number is a lower-bound on the software
overhead of the handler, because we assume that all of
swapin_readahead is a “disk access”.

Pagerank
UK

Conn. Comp.
UK

Pagerank
Friendster

Conn. Comp.
Friendster

0

200

400

600

800

1000

1200

R
u
n
ti

m
e
(s

)

COST-DDC, Single Thread, 2GB Local RAM

COST-Server Centric, Single Thread, 8GB Local RAM

GraphX-Server Centric, 128 Threads

Figure 9: Running COST in a simulated DDC. COST-DDC
is 1.48 to 2.05 faster than GraphX-Server Centric except for
one case. We use two datasets in our evaluation, UK-2007-05
(105m nodes, 3.7b edges), and Friendster (65m nodes, 1.8b
edges)

In combination with the above RDMA latencies, these
early numbers suggest that a simple system design for
low-latency access to remote memory could be realized.

5.2 Improved performance via disaggrega-
tion

In the longer term, one might expect to re-architect
applications to actively exploit disaggregation for improved
performance. One promising direction is for applications to
exploit the availability of low-latency access to large pools
of remote memory [46]. One approach to doing so is based
on extending the line of argument in the COST work [48]
by using remote memory to avoid parallelization overheads.
COST is a single machine graph engine that outperforms
distributed graph engines like GraphX when the graph fits
into main memory. The RDMA swap device enables COST
to use “infinite” remote memory when the graph is too large.
We estimate the potential benefits of this approach with
the following experiment. First, to model an application
running in a DDC, we set up a virtual machine with 4 cores,
2GB of local memory, and access to an “infinitely” large
remote memory pool by swapping to an RDMA-backed
block device. Next, we consider two scenarios that represent
server-centric architecture. One is a server with 4 cores and
8GB of local memory (25% larger than the DDC case as in
previous sections) and an “infinitely” large local SSD swap –
this represents the COST baseline in a server-centric context.
Second, we evaluate GraphX using a 16-node m2.4xlarge
cluster on EC2 – this represents the scale-out approach in
current server-centric architecture. We run Pagerank and
Connected Components using COST, a single-thread graph
compute engine over three large graph datasets. COST
mmaps the input file, so we store the input files on another
RDMA-backed block device. Figure 9 shows the application

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 261

runtime of COST-DDC, COST-SSD and GraphX-Server
Centric. In all but one case, COST-DDC is 1.48 to 2.05
times faster than the GraphX (server-centric) scenario and
slightly better than the server-centric COST scenario (the
improvement over the latter grows with increasing data set
size). Performance is worse for Pagerank on the UK-2007-5
dataset, consistent with the results in [48] because the graph
in this case is more easily partitioned.

Finally, another promising direction for improving
performance is through better resource utilization. As argued
in [40,46], CPU-to-memory utilization for tasks in today’s
datacenters varies by three orders of magnitude across tasks;
by “bin packing” on a much larger scale, DDC should achieve
more efficient statistical multiplexing, and hence higher
resource utilization and improved job completion times. We
leave an exploration of this direction to future work.

6 Related Work and Discussion

As mentioned earlier, there are many recent and ongoing
efforts to prototype disaggregated hardware. We discussed
the salient features of these efforts inline throughout this
paper and hence we only briefly elaborate on them here.

Lim et al. [46, 47] discuss the trend of growing peak
compute-to-memory ratio, warning of the “memory capacity
wall” and prototype a disaggregated memory blade. Their
results demonstrate that memory disaggregation is feasible
and can even provide a 10x performance improvement in
memory constrained environments.

Sudan et al. [58] use an ASIC based interconnect fabric
to build a virtualized I/O system for better resource sharing.
However, these interconnects are designed for their specific
context; the authors neither discuss network support for
disaggregation more broadly nor consider the possibility of
leveraging known datacenter network technologies to enable
disaggregation.

FireBox [31] proposes a holistic architecture redesign
of datacenter racks to include 1Tbps silicon photonic
links, high-radix switches, remote nonvolatile memory, and
System-on-Chips (SoCs). Theia [61] proposes a new network
topology that interconnects SoCs at high density. Huawei’s
DC3.0 (NUWA) system uses a proprietary PCIe-based
interconnect. R2C2 [34] proposes new topologies, routing
and congestion control designs for rack-scale disaggregation.
None of these efforts evaluate network requirements based
on existing workloads as we do, nor do they evaluate the
effectiveness of existing network designs in supporting
disaggregation or the possibility of disaggregating at scale.

In an early position paper, Han et al. [40] measure – as
we do – the impact of remote memory access latency on
application-level performance within a single machine. Our

work extends this understanding to a larger set of workloads
and concludes with more stringent requirements on latency
and bandwidth than Han et al. do, due to our consideration
of Class B applications. In addition, we use simulation
and emulation to study the impact of queueing delay and
transport designs which further raises the bar on our target
network performance.

Multiple recent efforts [35,42,45,52] aim to reduce the
latency in networked applications through techniques that
bypass the kernel networking stack, and so forth. Similarly,
efforts toward NIC integration by CPU architects [33]
promise to enable even further latency-saving optimizations.
As we note in §3.3, such efforts are crucial enablers in
meeting our latency targets.

Distributed Shared Memory (DSM) [32,44,50] systems
create a shared address space and allow remote memory to
be accessed among different endpoints. While this is a simple
programming abstraction, DSM incurs high synchronization
overhead. Our work simplifies the design by using remote
memory only for paging, which removes synchronization
between the endpoints.

Based on our knowledge of existing designs and proto-
types [12,13,31,46,47], we assume partial memory disag-
gregation and limit the cache coherence domain to one CPU.
However, future designs may relax these assumptions, caus-
ing more remote memory access traffic and cache coherence
traffic. In these designs, specialized network hardware may
become necessary.

7 Conclusion

This paper is a preliminary study; we have identified
numerous directions for future work before disaggregation
is deployable. Most important among these are the adoption
of low-latency network software and hardware at endpoints,
the design and implementation of a “disaggregation-aware”
scheduler, and the creation of new programming models
which exploit a disaggregated architecture. We believe that
quantified, workload-driven studies such as that presented
in this paper can serve to inform these ongoing and future
efforts to build DDC systems.

Acknowledgements

We thank our shepherd Orran Krieger and the anonymous
reviewers for their excellent feedback. We thank Krste
Asanović for clarification on FireBox’s technical specs.
We thank Kostadin Ilov for his technical support on our
experiments. This work is supported by Intel, NSF Grant
1420064 and Grant 1216073.

262 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] 100G CLR4 White Paper. http://www.
intel.com/content/www/us/en/research/
intel-labs-clr4-white-paper.html.

[2] A look at The Machine. https://lwn.net/
Articles/655437/.

[3] Amazon VPC. https://aws.amazon.com/vpc/.

[4] Bandwidth: a memory bandwidth benchmark. http:
//zsmith.co/bandwidth.html.

[5] Bandwidth Growth and The Next Speed of Ethernet.
http://goo.gl/C5lovt.

[6] Berkeley Big Data Benchmark. https://amplab.
cs.berkeley.edu/benchmark/.

[7] Big Data System research: Trends and Challenges.
http://goo.gl/38qr1O.

[8] Facebook Disaggregated Rack. http://goo.gl/
6h2Ut.

[9] Friendster Social Network. https://snap.
stanford.edu/data/com-Friendster.html.

[10] Graphics Processing Unit. http://www.nvidia.
com/object/what-is-gpu-computing.html.

[11] Here’s How Many Cores Intel Corporation’s Future
14-Nanometer Server Processors Will Have. http:
//goo.gl/y2nWOR.

[12] High Throughput Computing Data Center Ar-
chitecture. http://www.huawei.com/ilink/en/
download/HW_349607.

[13] HP The Machine. http://www.hpl.hp.com/
research/systems-research/themachine/.

[14] Huawei NUWA. http://nuwabox.com.

[15] InfiniBand. http://www.infinibandta.org/
content/pages.php?pg=about_us_infiniband.

[16] Intel Ethernet Converged Network Adapter
XL710 10/40 GbE. http://www.intel.com/
content/www/us/en/network-adapters/
converged-network-adapters/
ethernet-xl710-brief.html.

[17] Intel Omnipath. http://www.
intel.com/content/www/us/en/
high-performance-computing-fabrics/
omni-path-architecture-fabric-overview.
html.

[18] Intel Performance Counter Monitor. https:
//software.intel.com/en-us/articles/
intel-performance-counter-monitor.

[19] Intel RSA. http://www.intel.com/content/
www/us/en/architecture-and-technology/
rsa-demo-x264.html.

[20] Memcached - A Distributed Memory Object Caching
System. http://memcached.org.

[21] Memristor. http://www.memristor.
org/reference/research/13/
what-are-memristors.

[22] Netflix Rating Trace. http://www.select.cs.
cmu.edu/code/graphlab/datasets/.

[23] Non-Volatile Random Access Memory. https:
//en.wikipedia.org/wiki/Non-volatile_
random-access_memory.

[24] SeaMicro Technology Overview. http:
//seamicro.com/sites/default/files/SM_
TO01_64_v2.5.pdf.

[25] "tcpdump". http://www.tcpdump.org.

[26] Timely Dataflow. https://github.com/
frankmcsherry/timely-dataflow.

[27] Wikipedia Dump. https://dumps.wikimedia.
org/.

[28] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture.
SIGCOMM 2008.

[29] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). SIGCOMM 2010.

[30] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-optimal Datacenter Transport. SIGCOMM 2013.

[31] K. Asanović. FireBox: A Hardware Building Block
for 2020 Warehouse-Scale Computers. FAST 2014.

[32] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific
memory coherence. PPOPP 1990.

[33] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt.
Integrated Network Interfaces for High-bandwidth
TCP/IP. ASPLOS 2006.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 263

[34] P. Costa, H. Ballani, K. Razavi, and I. Kash. R2C2: A
Network Stack for Rack-scale Computers. SIGCOMM
2015.

[35] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. NSDI 2014.

[36] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Distributed
Near-optimal Datacenter Transport Over Commodity
Network Fabric. CoNEXT 2015.

[37] A. Greenberg. SDN for the Cloud. SIGCOMM 2015.

[38] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center
Networks. ACM SIGCOMM CCR 2009.

[39] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable
and Flexible Data Center Network. SIGCOMM 2009.

[40] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network Support for Resource Disaggre-
gation in Next-generation Datacenters. HotNets 2013.

[41] Intel LAN Access Division. An Introduction to
SR-IOV Technology. http://goo.gl/m7jP3.

[42] A. Kalia, M. Kaminsky, and D. G. Andersen.
Using RDMA Efficiently for Key-Value Services.
SIGCOMM 2014.

[43] S. Kumar. Petabit Switch Fabric Design. Master’s
thesis, EECS Department, University of California,
Berkeley, 2015.

[44] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. TOCS 1989.

[45] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-memory
Key-Value Storage. NSDI 2014.

[46] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated Memory
for Expansion and Sharing in Blade Servers. ISCA
2009.

[47] K. Lim, Y. Turner, J. R. Santos, A. Auyoung, J. Chang,
P. Ranganathan, and T. F. Wenisch. System-level
Implications of Disaggregated Memory. HPCA 2012.

[48] F. McSherry, M. Isard, and D. G. Murray. Scalability!
But at What Cost? HotOS 2015.

[49] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A Timely Dataflow
System. SOSP 2013.

[50] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Latency-tolerant Software
Distributed Shared Memory. USENIX ATC 2015.

[51] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out NUMA. ASPLOS 2014.

[52] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The RAMCloud Storage System. TOCS 2015.

[53] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun. Making sense of performance in data
analytics frameworks. NSDI 2015.

[54] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. SIGCOMM 2014.

[55] P. S. Rao and G. Porter. Is Memory Disaggregation
Feasible?: A Case Study with Spark SQL. ANCS 2016.

[56] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/O. USENIX ATC 2012.

[57] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout. Its Time for Low Latency.
HotOS 2011.

[58] K. Sudan, S. Balakrishnan, S. Lie, M. Xu, D. Mallick,
G. Lauterbach, and R. Balasubramonian. A Novel
System Architecture for Web Scale Applications Using
Lightweight CPUs and Virtualized I/O. HPCA 2013.

[59] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti,
M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R.
Avizienis, S. Lin, et al. Single-chip Microprocessor that
Communicates Directly Using Light. Nature 2015.

[60] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular Expression Match-
ing on Graphics Hardware for Intrusion Detection.
RAID 2009.

[61] M. Walraed-Sullivan, J. Padhye, and D. A. Maltz.
Theia: Simple and Cheap Networking for Ultra-Dense
Data Centers. HotNets-XIII.

[62] W. A. Wulf and S. A. McKee. Hitting the Memory
Wall: Implications of the Obvious. SIGARCH Comput.
Archit. News, March 1995.

264 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TensorFlow: A system for large-scale machine learning

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

Google Brain

Abstract

TensorFlow is a machine learning system that operates at

large scale and in heterogeneous environments. Tensor-

Flow uses dataflow graphs to represent computation,

shared state, and the operations that mutate that state. It

maps the nodes of a dataflow graph across many machines

in a cluster, and within a machine across multiple com-

putational devices, including multicore CPUs, general-

purpose GPUs, and custom-designed ASICs known as

Tensor Processing Units (TPUs). This architecture gives

flexibility to the application developer: whereas in previ-

ous “parameter server” designs the management of shared

state is built into the system, TensorFlow enables develop-

ers to experiment with novel optimizations and training al-

gorithms. TensorFlow supports a variety of applications,

with a focus on training and inference on deep neural net-

works. Several Google services use TensorFlow in pro-

duction, we have released it as an open-source project, and

it has become widely used for machine learning research.

In this paper, we describe the TensorFlow dataflow model

and demonstrate the compelling performance that Tensor-

Flow achieves for several real-world applications.

1 Introduction

In recent years, machine learning has driven advances in

many different fields [3, 5, 24, 25, 29, 31, 42, 47, 50,

52, 57, 67, 68, 72, 76]. We attribute this success to the

invention of more sophisticated machine learning mod-

els [44, 54], the availability of large datasets for tack-

ling problems in these fields [9, 64], and the develop-

ment of software platforms that enable the easy use of

large amounts of computational resources for training

such models on these large datasets [14, 20].

We have developed the TensorFlow system for ex-

perimenting with new models, training them on large

datasets, and moving them into production. We have

based TensorFlow on many years of experience with our

first-generation system, DistBelief [20], both simplify-

ing and generalizing it to enable researchers to explore

a wider variety of ideas with relative ease. TensorFlow

supports both large-scale training and inference: it effi-

ciently uses hundreds of powerful (GPU-enabled) servers

for fast training, and it runs trained models for inference in

production on various platforms, ranging from large dis-

tributed clusters in a datacenter, down to running locally

on mobile devices. At the same time, it is flexible enough

to support experimentation and research into new machine

learning models and system-level optimizations.

TensorFlow uses a unified dataflow graph to repre-

sent both the computation in an algorithm and the state

on which the algorithm operates. We draw inspiration

from the high-level programming models of dataflow sys-

tems [2, 21, 34] and the low-level efficiency of parame-

ter servers [14, 20, 49]. Unlike traditional dataflow sys-

tems, in which graph vertices represent functional compu-

tation on immutable data, TensorFlow allows vertices to

represent computations that own or update mutable state.

Edges carry tensors (multi-dimensional arrays) between

nodes, and TensorFlow transparently inserts the appropri-

ate communication between distributed subcomputations.

By unifying the computation and state management in a

single programming model, TensorFlow allows program-

mers to experiment with different parallelization schemes

that, for example, offload computation onto the servers

that hold the shared state to reduce the amount of network

traffic. We have also built various coordination protocols,

and achieved encouraging results with synchronous repli-

cation, echoing recent results [10, 18] that contradict the

commonly held belief that asynchronous replication is re-

quired for scalable learning [14, 20, 49].

Over the past year, more than 150 teams at Google have

used TensorFlow, and we have released the system as an

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 265

open-source project.1 Thanks to our large community of

users we have gained experience with many different ma-

chine learning applications. In this paper, we focus on

neural network training as a challenging systems problem,

and select two representative applications from this space:

image classification and language modeling. These ap-

plications stress computational throughput and aggregate

model size respectively, and we use them both to demon-

strate the extensibility of TensorFlow, and to evaluate the

efficiency and scalability of our present implementation.

2 Background & motivation

We begin by describing the limitations of our previous

system (§2.1) and outlining the design principles that we

used in the development of TensorFlow (§2.2).

2.1 Previous system: DistBelief

TensorFlow is the successor to DistBelief, which is

the distributed system for training neural networks that

Google has used since 2011 [20]. DistBelief uses the pa-

rameter server architecture, and here we criticize its lim-

itations, but other systems based on this architecture have

addressed these limitations in other ways [11, 14, 49]; we

discuss those systems in Subsection 2.3.

In the parameter server architecture, a job comprises

two disjoint sets of processes: stateless worker processes

that perform the bulk of the computation when training a

model, and stateful parameter server processes that main-

tain the current version of the model parameters. Dist-

Belief’s programming model is similar to Caffe’s [38]: the

user defines a neural network as a directed acyclic graph

of layers that terminates with a loss function. A layer is

a composition of mathematical operators: for example, a

fully connected layer multiplies its input by a weight ma-

trix, adds a bias vector, and applies a non-linear function

(such as a sigmoid) to the result. A loss function is a scalar

function that quantifies the difference between the pre-

dicted value (for a given input data point) and the ground

truth. In a fully connected layer, the weight matrix and

bias vector are parameters, which a learning algorithm

will update in order to minimize the value of the loss func-

tion. DistBelief uses the DAG structure and knowledge

of the layers’ semantics to compute gradients for each

of the model parameters, via backpropagation [63]. Be-

cause the parameter updates in many algorithms are com-

mutative and have weak consistency requirements [61],

the worker processes can compute updates independently

1Software available from https://tensorflow.org.

and write back “delta” updates to each parameter server,

which combines the updates with its current state.

Although DistBelief has enabled many Google prod-

ucts to use deep neural networks and formed the basis of

many machine learning research projects, we soon began

to feel its limitations. Its Python-based scripting interface

for composing pre-defined layers was adequate for users

with simple requirements, but our more advanced users

sought three further kinds of flexibility:

Defining new layers For efficiency, we implemented

DistBelief layers as C++ classes. Using a separate, less

familiar programming language for implementing layers

is a barrier for machine learning researchers who seek to

experiment with new layer architectures, such as sampled

softmax classifiers [37] and attention modules [53].

Refining the training algorithms Many neural net-

works are trained using stochastic gradient descent

(SGD), which iteratively refines the parameters of the net-

work by moving them in the direction that maximally de-

creases the value of the loss function. Several refinements

to SGD accelerate convergence by changing the update

rule [23, 66]. Researchers often want to experiment with

new optimization methods, but doing that in DistBelief

involves modifying the parameter server implementation.

Moreover, the get() and put() interface for the pa-

rameter server is not ideal for all optimization methods:

sometimes a set of related parameters must be updated

atomically, and in many cases it would be more efficient

to offload computation onto the parameter server, and

thereby reduce the amount of network traffic.

Defining new training algorithms DistBelief workers

follow a fixed execution pattern: read a batch of input data

and the current parameter values, compute the loss func-

tion (a forward pass through the network), compute gra-

dients for each of the parameter (a backward pass), and

write the gradients back to the parameter server. This pat-

tern works for training simple feed-forward neural net-

works, but fails for more advanced models, such as recur-

rent neural networks, which contain loops [39]; adversar-

ial networks, in which two related networks are trained al-

ternately [26]; and reinforcement learning models, where

the loss function is computed by some agent in a separate

system, such as a video game emulator [54]. Moreover,

there are many other machine learning algorithms—such

as expectation maximization, decision forest training, and

latent Dirichlet allocation—that do not fit the same mold

as neural network training, but could also benefit from a

common, well-optimized distributed runtime.

In addition, we designed DistBelief with a single plat-

form in mind: a large distributed cluster of multicore

266 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://tensorflow.org

1. Construct a graph representing the model.

x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.

y = tf.placeholder(tf.float32, [BATCH_SIZE, 10]) # Placeholder for labels.

W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.

b_1 = tf.Variable(tf.zeros([100])) # 100-element bias vector.

layer_1 = tf.nn.relu(tf.matmul(x, W_1) + b_2) # Output of hidden layer.

W_2 = tf.Variable(tf.random_uniform([100, 10])) # 100x10 weight matrix.

b_2 = tf.Variable(tf.zeros([10])) # 10-element bias vector.

layer_2 = tf.matmul(layer_1, W_2) + b_2 # Output of linear layer.

2. Add nodes that represent the optimization algorithm.

loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)

train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)

3. Execute the graph on batches of input data.

with tf.Session() as sess: # Connect to the TF runtime.

sess.run(tf.initialize_all_variables()) # Randomly initialize weights.

for step in range(NUM_STEPS): # Train iteratively for NUM_STEPS.

x_data, y_data = ... # Load one batch of input data.

sess.run(train_op, {x: x_data, y: y_data}) # Perform one training step.

Figure 1: An image classifier written using TensorFlow’s Python API. This program is a simple solution to the MNIST

digit classification problem [48], with 784-pixel images and 10 output classes.

servers [20]. We were able to add support for GPU ac-

celeration, when it became clear that this acceleration

would be crucial for executing convolutional kernels effi-

ciently [44], but DistBelief remains a heavyweight system

that is geared for training deep neural networks on huge

datasets, and is difficult to scale down to other environ-

ments. In particular, many users want to hone their model

locally on a GPU-powered workstation, before scaling the

same code to train on a much larger dataset. After train-

ing a model on a cluster, the next step is to push the

model into production, which might involve integrating

the model into an online service, or deploying it onto a

mobile device for offline execution. Each of these tasks

has some common computational structure, but our col-

leagues found it necessary to use or create separate sys-

tems that satisfy the different performance and resource

requirements of each platform. TensorFlow provides a

single programming model and runtime system for all of

these environments.

2.2 Design principles

We designed TensorFlow to be much more flexible than

DistBelief, while retaining its ability to satisfy the de-

mands of Google’s production machine learning work-

loads. TensorFlow provides a simple dataflow-based pro-

gramming abstraction that allows users to deploy appli-

cations on distributed clusters, local workstations, mo-

bile devices, and custom-designed accelerators. A high-

level scripting interface (Figure 1) wraps the construction

of dataflow graphs and enables users to experiment with

different model architectures and optimization algorithms

without modifying the core system. In this subsection, we

briefly highlight TensorFlow’s core design principles:

Dataflow graphs of primitive operators Both Tensor-

Flow and DistBelief use a dataflow representation for their

models, but the most striking difference is that a Dist-

Belief model comprises relatively few complex “layers”,

whereas the corresponding TensorFlow model represents

individual mathematical operators (such as matrix mul-

tiplication, convolution, etc.) as nodes in the dataflow

graph. This approach makes it easier for users to com-

pose novel layers using a high-level scripting interface.

Many optimization algorithms require each layer to have

defined gradients, and building layers out of simple oper-

ators makes it easy to differentiate these models automat-

ically (§4.1). In addition to the functional operators, we

represent mutable state, and the operations that update it,

as nodes in the dataflow graph, thus enabling experimen-

tation with different update rules.

Deferred execution A typical TensorFlow application

has two distinct phases: the first phase defines the pro-

gram (e.g., a neural network to be trained and the update

rules) as a symbolic dataflow graph with placeholders for

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 267

the input data and variables that represent the state; and

the second phase executes an optimized version of the

program on the set of available devices. By deferring the

execution until the entire program is available, Tensor-

Flow can optimize the execution phase by using global

information about the computation. For example, Tensor-

Flow achieves high GPU utilization by using the graph’s

dependency structure to issue a sequence of kernels to the

GPU without waiting for intermediate results. While this

design choice makes execution more efficient, we have

had to push more complex features—such as dynamic

control flow (§3.4)—into the dataflow graph, so that mod-

els using these features enjoy the same optimizations.

Common abstraction for heterogeneous accelerators

In addition to general-purpose devices such as multicore

CPUs and GPUs, special-purpose accelerators for deep

learning can achieve significant performance improve-

ments and power savings. At Google, our colleagues

have built the Tensor Processing Unit (TPU) specifically

for machine learning; TPUs yield an order of magnitude

improvement in performance-per-watt compared to alter-

native state-of-the-art technology [40]. To support these

accelerators in TensorFlow, we define a common abstrac-

tion for devices. At a minimum, a device must implement

methods for (i) issuing a kernel for execution, (ii) allocat-

ing memory for inputs and outputs, and (iii) transferring

buffers to and from host memory. Each operator (e.g.,

matrix multiplication) can have multiple specialized im-

plementations for different devices. As a result, the same

program can easily target GPUs, TPUs, or mobile CPUs

as required for training, serving, and offline inference.

TensorFlow uses tensors of primitive values as a com-

mon interchange format that all devices understand. At

the lowest level, all tensors in TensorFlow are dense;

sparse tensors can be represented in terms of dense ones

(§3.1). This decision ensures that the lowest levels of the

system have simple implementations for memory alloca-

tion and serialization, thus reducing the framework over-

head. Tensors also enable other optimizations for memory

management and communication, such as RDMA and di-

rect GPU-to-GPU transfer.

The main consequence of these principles is that in

TensorFlow there is no such thing as a parameter server.

On a cluster, we deploy TensorFlow as a set of tasks

(named processes that can communicate over a network)

that each export the same graph execution API and con-

tain one or more devices. Typically a subset of those tasks

assumes the role that a parameter server plays in other

systems [11, 14, 20, 49], and we therefore call them PS

tasks; the others are worker tasks. However, since a PS

task is capable of running arbitrary TensorFlow graphs,

it is more flexible than a conventional parameter server:

users can program it with the same scripting interface that

they use to define models. This flexibility is the key dif-

ference between TensorFlow and contemporary systems,

and in the rest of the paper we will discuss some of the

applications that this flexibility enables.

2.3 Related work

Single-machine frameworks Many machine learning

researchers carry out their work on a single—often GPU-

equipped—computer [43, 44], and several single-machine

frameworks support this scenario. Caffe [38] is a high-

performance framework for training declaratively speci-

fied neural networks on multicore CPUs and GPUs. As

discussed above, its programming model is similar to

DistBelief (§2.1), so it is easy to compose models from

existing layers, but relatively difficult to add new layers

or optimizers. Theano [2] allows programmers to express

a model as a dataflow graph of primitive operators, and

generates efficient compiled code for training that model.

Its programming model is closest to TensorFlow, and it

provides much of the same flexibility in a single machine.

Unlike Caffe, Theano, and TensorFlow, Torch [17] of-

fers a powerful imperative programming model for sci-

entific computation and machine learning. It allows fine-

grained control over the execution order and memory uti-

lization, which enables power users to optimize the per-

formance of their programs. While this flexibility is use-

ful for research, Torch lacks the advantages of a dataflow

graph as a portable representation across small-scale ex-

perimentation, production training, and deployment.

Batch dataflow systems Starting with MapRe-

duce [21], batch dataflow systems have been applied

to a large number of machine learning algorithms [70],

and more recent systems have focused on increasing

expressivity and performance. DryadLINQ [74] adds a

high-level query language that supports more sophisti-

cated algorithms than MapReduce. Spark [75] extends

DryadLINQ with the ability to cache previously com-

puted datasets in memory, and is therefore better suited to

iterative machine learning algorithms (such as k-means

clustering and logistic regression) when the input data fit

in memory. Dandelion extends DryadLINQ with code

generation for GPUs [62] and FPGAs [16].

The principal limitation of a batch dataflow system is

that it requires the input data to be immutable, and all

of the subcomputations to be deterministic, so that the

system can re-execute subcomputations when machines

in the cluster fail. This feature—which is beneficial for

many conventional workloads—makes updating a ma-

268 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input

data
Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic

checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations

Const Var MatMul Conv2D ReLU Queue ...

Shuffle queue Queue

Figure 2: A schematic TensorFlow dataflow graph for a training pipeline, containing subgraphs for reading input data,

preprocessing, training, and checkpointing state.

chine learning model an expensive operation. For ex-

ample, the SparkNet system for training deep neural net-

works on Spark takes 20 seconds to broadcast weights and

collect updates from five workers [55]. As a result, in

these systems, each model update step must process larger

batches, slowing convergence [8]. We show in Subsec-

tion 6.3 that TensorFlow can train larger models on larger

clusters with step times as short as 2 seconds.

Parameter servers As we discuss in Subsection 2.1, a

parameter server architecture uses a set of servers to man-

age shared state that is updated by a set of parallel work-

ers. This architecture emerged in work on scalable topic

modeling [65], and DistBelief showed how it can apply

to deep neural network training. Project Adam [14] fur-

ther applied this architecture for the efficient training of

convolutional neural networks; and Li et al.’s “Parame-

ter Server” [49] added innovations in consistency mod-

els, fault tolerance, and elastic rescaling. Despite earlier

skepticism that parameter servers would be compatible

with GPU acceleration [14], Cui et al. recently showed

that a parameter server specialized for use with GPUs can

achieve speedups on small clusters [18].

MXNet [11] is perhaps the closest system in design

to TensorFlow. It uses a dataflow graph to represent the

computation at each worker, and uses a parameter server

to scale training across multiple machines. The MXNet

parameter server exports a key-value store interface that

supports aggregating updates sent from multiple devices

in each worker, and using an arbitrary user-provided func-

tion to combine incoming updates with the current value.

The MXNet key-value store interface [22] does not cur-

rently allow sparse gradient updates within a single value,

which are crucial for the distributed training of large mod-

els (§4.2), and adding this feature would require modifi-

cations to the core system.

The parameter server architecture meets many of our

requirements, and with sufficient engineering effort it

would be possible to build most of the features that we

describe in this paper into a parameter server. For Tensor-

Flow we sought a high-level programming model that al-

lows users to customize the code that runs in all parts of

the system, so that the cost of experimentation with new

optimization algorithms and model architectures is lower.

In the next section, we describe the building blocks of a

TensorFlow program in more detail.

3 TensorFlow execution model

TensorFlow uses a single dataflow graph to represent

all computation and state in a machine learning algo-

rithm, including the individual mathematical operations,

the parameters and their update rules, and the input pre-

processing (Figure 2). The dataflow graph expresses the

communication between subcomputations explicitly, thus

making it easy to execute independent computations in

parallel and to partition computations across multiple de-

vices. TensorFlow differs from batch dataflow systems

(§2.3) in two respects:

• The model supports multiple concurrent executions

on overlapping subgraphs of the overall graph.

• Individual vertices may have mutable state that can

be shared between different executions of the graph.

The key observation in the parameter server architec-

ture [14, 20, 49] is that mutable state is crucial when

training very large models, because it becomes possible to

make in-place updates to very large parameters, and prop-

agate those updates to parallel training steps as quickly

as possible. Dataflow with mutable state enables Tensor-

Flow to mimic the functionality of a parameter server,

but with additional flexibility, because it becomes pos-

sible to execute arbitrary dataflow subgraphs on the ma-

chines that host the shared model parameters. As a re-

sult, our users have been able to experiment with different

optimization algorithms, consistency schemes, and paral-

lelization strategies.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 269

3.1 Dataflow graph elements

In a TensorFlow graph, each vertex represents a unit of

local computation, and each edge represents the output

from, or input to, a vertex. We refer to the computation

at vertices as operations, and the values that flow along

edges as tensors. In this subsection, we describe the com-

mon types of operations and tensors.

Tensors In TensorFlow, we model all data as tensors

(n-dimensional arrays) with the elements having one

of a small number of primitive types, such as int32,

float32, or string (where string can represent ar-

bitrary binary data). Tensors naturally represent the inputs

to and results of the common mathematical operations in

many machine learning algorithms: for example, a matrix

multiplication takes two 2-D tensors and produces a 2-D

tensor; and a batch 2-D convolution takes two 4-D tensors

and produces another 4-D tensor.

At the lowest level, all TensorFlow tensors are dense,

for the reasons we discuss in Subsection 2.2. TensorFlow

offers two alternatives for representing sparse data: either

encode the data into variable-length string elements of

a dense tensor, or use a tuple of dense tensors (e.g., an

n-D sparse tensor with m non-zero elements can be rep-

resented in coordinate-list format as an m × n matrix of

coordinates and a length-m vector of values). The shape

of a tensor can vary in one or more of its dimensions,

which makes it possible to represent sparse tensors with

differing numbers of elements.

Operations An operation takes m ≥ 0 tensors as input

and produces n ≥ 0 tensors as output. An operation has

a named “type” (such as Const, MatMul, or Assign)

and may have zero or more compile-time attributes that

determine its behavior. An operation can be polymorphic

and variadic at compile-time: its attributes determine both

the expected types and arity of its inputs and outputs.

For example, the simplest operation Const has no in-

puts and a single output; its value is a compile-time at-

tribute. For example, AddN sums multiple tensors of the

same element type, and it has a type attribute T and an

integer attribute N that define its type signature.

Stateful operations: variables An operation can con-

tain mutable state that is read and/or written each time

it executes. A Variable operation owns a mutable

buffer that may be used to store the shared parameters

of a model as it is trained. A Variable has no inputs,

and produces a reference handle, which acts as a typed

capability for reading and writing the buffer. A Read

operation takes a reference handle r as input, and out-

puts the value of the variable (State[r]) as a dense ten-

sor. Other operations modify the underlying buffer: for

example, AssignAdd takes a reference handle r and a

tensor value x, and when executed performs the update

State′[r] ← State[r] + x. Subsequent Read(r) opera-

tions produce the value State′[r].

Stateful operations: queues TensorFlow includes sev-

eral queue implementations, which support more ad-

vanced forms of coordination. The simplest queue is

FIFOQueue, which owns an internal queue of tensors,

and allows concurrent access in first-in-first-out order.

Other types of queues dequeue tensors in random and pri-

ority orders, which ensure that input data are sampled ap-

propriately. Like a Variable, the FIFOQueue opera-

tion produces a reference handle that can be consumed by

one of the standard queue operations, such as Enqueue

and Dequeue. These operations push their input onto the

tail of the queue and, respectively, pop the head element

and output it. Enqueue will block if its given queue is

full, and Dequeue will block if its given queue is empty.

When queues are used in an input preprocessing pipeline,

this blocking provides backpressure; it also supports syn-

chronization (§4.4). The combination of queues and dy-

namic control flow (§3.4) can also implement a form of

streaming computation between subgraphs.

3.2 Partial and concurrent execution

TensorFlow uses a dataflow graph to represent all possible

computations in a particular application. The API for ex-

ecuting a graph allows the client to specify declaratively

the subgraph that should be executed. The client selects

zero or more edges to feed input tensors into the dataflow,

and one or more edges to fetch output tensors from the

dataflow; the runtime then prunes the graph to contain the

necessary set of operations. Each invocation of the API is

called a step, and TensorFlow supports multiple concur-

rent steps on the same graph. Stateful operations allow

steps to share data and synchronize when necessary.

Figure 2 shows a typical training application, with

multiple subgraphs that execute concurrently and interact

through shared variables and queues. The core training

subgraph depends on a set of model parameters and on in-

put batches from a queue. Many concurrent steps of the

training subgraph update the model based on different in-

put batches, to implement data-parallel training. To fill

the input queue, concurrent preprocessing steps transform

individual input records (e.g., decoding images and apply-

ing random distortions), and a separate I/O subgraph reads

records from a distributed file system. A checkpointing

subgraph runs periodically for fault tolerance (§4.3).

Partial and concurrent execution is responsible for

much of TensorFlow’s flexibility. Adding mutable state

270 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and coordination via queues makes it possible to spec-

ify a wide variety of model architectures in user-level

code, which enables advanced users to experiment with-

out modifying the internals of the TensorFlow runtime.

By default, concurrent executions of a TensorFlow sub-

graph run asynchronously with respect to one another.

This asynchrony makes it straightforward to implement

machine learning algorithms with weak consistency re-

quirements [61], which include many neural network

training algorithms [20]. As we discuss later, TensorFlow

also provides the primitives needed to synchronize work-

ers during training (§4.4), which has led to promising re-

sults on some learning tasks (§6.3).

3.3 Distributed execution

Dataflow simplifies distributed execution, because it

makes communication between subcomputations explicit.

It enables the same TensorFlow program to be deployed

to a cluster of GPUs for training, a cluster of TPUs for

serving, and a cellphone for mobile inference.

Each operation resides on a particular device, such as a

CPU or GPU in a particular task. A device is responsible

for executing a kernel for each operation assigned to it.

TensorFlow allows multiple kernels to be registered for

a single operation, with specialized implementations for

a particular device or data type (see §5 for details). For

many operations, such as element-wise operators (Add,

Sub, etc.), we can compile a single kernel implementation

for CPU and GPU using different compilers.

The TensorFlow runtime places operations on devices,

subject to implicit or explicit constraints in the graph.

The placement algorithm computes a feasible set of de-

vices for each operation, calculates the sets of operations

that must be colocated, and selects a satisfying device for

each colocation group. It respects implicit colocation con-

straints that arise because each stateful operation and its

state must be placed on the same device. In addition,

the user may specify partial device preferences such as

“any device in a particular task”, or “a GPU in any task”,

and the runtime will respect these constraints. A typical

training application will use client-side programming con-

structs to add constraints such that, for example, parame-

ters are distributed among a set of “PS” tasks (§4.2).

TensorFlow thus permits great flexibility in how opera-

tions in the dataflow graph are mapped to devices. While

simple heuristics yield adequate performance for novice

users, expert users can optimize performance by manually

placing operations to balance the computation, memory,

and network requirements across multiple tasks and mul-

tiple devices within those tasks. An open question is how

input = ... # A sequence of tensors

state = 0 # Initial state

w = ... # Trainable weights

for i in range(len(input)):

state, out[i] = f(state, w, input[i])

Figure 3: Pseudocode for an abstract RNN (§3.4). The

function f typically comprises differentiable operations

such as matrix multiplications and convolutions [32].

TensorFlow implements the loop in its dataflow graph.

TensorFlow can automatically determine placements that

achieve close to optimal performance on a given set of de-

vices, thus freeing users from this concern. Even without

such automation, it may be worthwhile to separate place-

ment directives from other aspects of model definitions,

so that, for example, it would be trivial to modify place-

ments after a model has been trained.

Once the operations in a graph have been placed, and

the partial subgraph has been computed for a step (§3.2),

TensorFlow partitions the operations into per-device sub-

graphs. A per-device subgraph for device d contains all

of the operations that were assigned to d, with additional

Send and Recv operations that replace edges across de-

vice boundaries. Send transmits its single input to a spec-

ified device as soon as the tensor is available, using a ren-

dezvous key to name the value. Recv has a single output,

and blocks until the value for a specified rendezvous key

is available locally, before producing that value. Send

and Recv have specialized implementations for several

device-type pairs; we describe some of these in Section 5.

We optimized TensorFlow for executing large sub-

graphs repeatedly with low latency. Once the graph for

a step has been pruned, placed, and partitioned, its sub-

graphs are cached in their respective devices. A client

session maintains the mapping from step definitions to

cached subgraphs, so that a distributed step on a large

graph can be initiated with one small message to each par-

ticipating task. This model favors static, reusable graphs,

but it can support dynamic computations using dynamic

control flow, as the next subsection describes.

3.4 Dynamic control flow

TensorFlow supports advanced machine learning algo-

rithms that contain conditional and iterative control flow.

For example, a recurrent neural network (RNN) [39] such

as an LSTM [32] can generate predictions from sequential

data. Google’s Neural Machine Translation system uses

TensorFlow to train a deep LSTM that achieves state-of-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 271

the-art performance on many translation tasks [73]. The

core of an RNN is a recurrence relation, where the output

for sequence element i is a function of some state that ac-

cumulates across the sequence (Figure 3). In this case, dy-

namic control flow enables iteration over sequences that

have variable lengths, without unrolling the computation

to the length of the longest sequence.

As we discussed in Subsection 2.2, TensorFlow uses

deferred execution via the dataflow graph to offload larger

chunks of work to accelerators. Therefore, to imple-

ment RNNs and other advanced algorithms, we add con-

ditional (if statement) and iterative (while loop) program-

ming constructs in the dataflow graph itself. We use

these primitives to build higher-order constructs, such as

map(), fold(), and scan() [2].

For this purpose, we borrow the Switch and

Merge primitives from classic dynamic dataflow archi-

tectures [4]. Switch is a demultiplexer: it takes a data

input and a control input, and uses the control input to

select which of its two outputs should produce a value.

The Switch output not taken receives a special dead

value, which propagates recursively through the rest of

the graph until it reaches a Merge operation. Merge is

a multiplexer: it forwards at most one non-dead input to

its output, or produces a dead output if both of its inputs

are dead. The conditional operator uses Switch to ex-

ecute one of two branches based on the runtime value of

a boolean tensor, and Merge to combine the outputs of

the branches. The while loop is more complicated, and

uses Enter, Exit, and NextIteration operators to

ensure that the loop is well-formed [56].

The execution of iterations can overlap, and Tensor-

Flow can also partition conditional branches and loop

bodies across multiple devices and processes. The par-

titioning step adds logic to coordinate the start and ter-

mination of each iteration on each device, and to decide

the termination of the loop. As we will see in Subsec-

tion 4.1, TensorFlow also supports automatic differenti-

ation of control flow constructs. Automatic differentia-

tion adds the subgraphs for computing gradients to the

dataflow graph, which TensorFlow partitions across po-

tentially distributed devices to compute the gradients in

parallel.

4 Extensibility case studies

By choosing a unified representation for all computation

in TensorFlow, we enable users to experiment with fea-

tures that were hard-coded into the DistBelief runtime. In

this section, we discuss four extensions that we have built

using dataflow primitives and “user-level” code.

4.1 Differentiation and optimization

Many learning algorithms train a set of parameters using

some variant of SGD, which entails computing the gradi-

ents of a loss function with respect to those parameters,

then updating the parameters based on those gradients.

TensorFlow includes a user-level library that differentiates

a symbolic expression for a loss function and produces a

new symbolic expression representing the gradients. For

example, given a neural network as a composition of lay-

ers and a loss function, the library will automatically de-

rive the backpropagation code.

The differentiation algorithm performs breadth-first

search to identify all of the backwards paths from the tar-

get operation (e.g., a loss function) to a set of parameters,

and sums the partial gradients that each path contributes.

Our users frequently specialize the gradients for some op-

erations, and they have implemented optimizations like

batch normalization [33] and gradient clipping [60] to ac-

celerate training and make it more robust. We have ex-

tended the algorithm to differentiate conditional and it-

erative subcomputations (§3.4) by adding nodes to the

graph that record the control flow decisions in the for-

ward pass, and replaying those decisions in reverse during

the backward pass. Differentiating iterative computations

over long sequences can lead to a large amount of inter-

mediate state being accumulated in memory, and we have

developed techniques for managing limited GPU memory

on these computations.

TensorFlow users can also experiment with a wide

range of optimization algorithms, which compute new

values for the parameters in each training step. SGD is

easy to implement in a parameter server: for each param-

eter W , gradient ∂L/∂W , and learning rate α, the update

rule is W ′ ←W − α× ∂L/∂W . A parameter server can

implement SGD by using -= as the write operation, and

writing α× ∂L/∂W to each W after a training step.

However, there are many more advanced optimization

schemes that are difficult to express as a single write op-

eration. For example, the Momentum algorithm accumu-

lates a “velocity” for each parameter based on its gradi-

ent over multiple iterations, then computes the parameter

update from that accumulation; and many refinements to

this algorithm have been proposed [66]. Implementing

Momentum in DistBelief [20], required modifications to

the parameter server implementation to change the rep-

resentation of parameter data, and execute complex logic

in the write operation; such modifications are challeng-

ing for many users. Optimization algorithms are the topic

of active research, and researchers have implemented sev-

eral on top of TensorFlow, including Momentum, Ada-

Grad, AdaDelta, RMSProp, Adam, and L-BFGS. These

272 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input

data
Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic

checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations

Const Var MatMul Conv2D ReLU Queue ...

Shuffle queue Queue

Figure 4: Schematic dataflow for an embedding layer

(§4.2) with a two-way sharded embedding matrix.

can be built in TensorFlow using Variable operations

and primitive mathematical operations without modifying

the underlying system, so it is easy to experiment with

new algorithms as they emerge.

4.2 Training very large models

To train a model on high-dimensional data, such as words

in a corpus of text [7], it is common to use a distributed

representation, which embeds a training example as a pat-

tern of activity across several neurons, and which can be

learned by backpropagation [30]. For example, in a lan-

guage model, a training example might be a sparse vector

with non-zero entries corresponding to the IDs of words

in a vocabulary, and the distributed representation for each

word will be a lower-dimensional vector [6]. “Wide and

deep learning” creates distributed representations from

cross-product transformations on categorical features, and

the implementation on TensorFlow is used to power the

Google Play app store recommender system [12].

Inference begins by multiplying a batch of b sparse vec-

tors against an n × d embedding matrix, where n is the

number of words in the vocabulary, and d is the desired

dimensionality, to produce a much smaller b × d dense

matrix representation; for training, most optimization al-

gorithms modify only the rows of the embedding matrix

that were read by the sparse multiplication. In TensorFlow

models that process sparse data, n × d can amount to gi-

gabytes of parameters: e.g., a large language model may

use over 109 parameters with a vocabulary of 800,000

words [41], and we have experience with document mod-

els [19] where the parameters occupy several terabytes.

Such models are too large to copy to a worker on every

use, or even to store in RAM on a single host.

We implement sparse embedding layers in the Tensor-

Flow graph as a composition of primitive operations. Fig-

ure 4 shows a simplified graph for an embedding layer

that is split across two parameter server tasks. The core

operation of this subgraph is Gather, which extracts a

sparse set of rows from a tensor, and TensorFlow colo-

cates this operation with the variable on which it operates.

The dynamic partition (Part) operation divides the in-

coming indices into variable-sized tensors that contain the

indices destined for each shard, and the dynamic stitching

(Stitch) operation reassembles the partial results from

each shard into a single result tensor. Each of these op-

erations has a corresponding gradient, so it supports au-

tomatic differentiation (§4.1), and the result is a set of

sparse update operations that act on just the values that

were originally gathered from each of the shards.

Users writing a TensorFlow model typically do not con-

struct graphs like Figure 4 manually. Instead TensorFlow

includes libraries that expose the abstraction of a sharded

parameter, and build appropriate graphs of primitive op-

erations based on the desired degree of distribution.

While sparse reads and updates are possible in a pa-

rameter server [49], TensorFlow adds the flexibility to

offload arbitrary computation onto the devices that host

the shared parameters. For example, classification mod-

els typically use a softmax classifier that multiplies the

final output by a weight matrix with c columns, where c
is the number of possible classes; for a language model,

c is the size of the vocabulary, which can be large. Our

users have experimented with several schemes to accel-

erate the softmax calculation. The first is similar to an

optimization in Project Adam [14], whereby the weights

are sharded across several tasks, and the multiplication

and gradient calculation are colocated with the shards.

More efficient training is possible using a sampled soft-

max [37], which performs a sparse multiplication based

on the true class for an example and a set of randomly

sampled false classes. We compare the performance of

these two schemes in §6.4.

4.3 Fault tolerance

Training a model can take several hours or days, even us-

ing a large number of machines [14, 20]. We often need to

train a model using non-dedicated resources, for example

using the Borg cluster manager [71], which does not guar-

antee availability of the same resources for the duration of

the training process. Therefore, a long-running Tensor-

Flow job is likely to experience failure or pre-emption,

and we require some form of fault tolerance. It is un-

likely that tasks will fail so often that individual opera-

tions need fault tolerance, so a mechanism like Spark’s

RDDs [75] would impose significant overhead for little

benefit. There is no need to make every write to the pa-

rameter state durable, because we can recompute any up-

date from the input data, and many learning algorithms do

not require strong consistency [61].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 273

(a) Asynchronous replication (b) Synchronous replication (c) Synchronous w/ backup worker

PS

Worker 1

Worker 2

Worker 3

Figure 5: Three synchronization schemes for parallel SGD. Each color represents a different starting parameter value;

a white square is a parameter update. In (c), a dashed rectangle represents a backup worker whose result is discarded.

We implement user-level checkpointing for fault tol-

erance, using two operations in the graph (Figure 2):

Save writes one or more tensors to a checkpoint file, and

Restore reads one or more tensors from a checkpoint

file. Our typical configuration connects each Variable

in a task to the same Save operation, with one Save per

task, to maximize the I/O bandwidth to a distributed file

system. The Restore operations read named tensors

from a file, and a standard Assign stores the restored

value in its respective variable. During training, a typi-

cal client runs all of the Save operations periodically to

produce a new checkpoint; when the client starts up, it

attempts to Restore the latest checkpoint.

TensorFlow includes a client library for constructing

the appropriate graph structure and for invoking Save

and Restore as necessary. This behavior is customiz-

able: the user can apply different policies to subsets of the

variables in a model, or customize the checkpoint reten-

tion scheme. For example, many users retain checkpoints

with the highest score in a custom evaluation metric. The

implementation is also reusable: it may be used for model

fine-tuning and unsupervised pre-training [45, 47], which

are forms of transfer learning, in which the parameters of

a model trained on one task (e.g., recognizing general im-

ages) are used as the starting point for another task (e.g.,

recognizing breeds of dog). Having checkpoint and pa-

rameter management as programmable operations in the

graph gives users the flexibility to implement schemes like

these and others that we have not anticipated.

The checkpointing library does not attempt to produce

consistent checkpoints: if training and checkpointing ex-

ecute concurrently, the checkpoint may include none, all,

or some of the updates from the training step. This be-

havior is compatible with the relaxed guarantees of asyn-

chronous SGD [20]. Consistent checkpoints require ad-

ditional synchronization to ensure that update operations

do not interfere with checkpointing; if desired, one can

use the scheme in the next subsection to take a checkpoint

after the synchronous update step.

4.4 Synchronous replica coordination

SGD is robust to asynchrony [61], and many systems

train deep neural networks using asynchronous parame-

ter updates [14, 20], which are believed scalable because

they maintain high throughput in the presence of strag-

glers. The increased throughput comes at the cost of us-

ing stale parameter values in training steps. Some have

recently revisited the assumption that synchronous train-

ing does not scale [10, 18]. Since GPUs enable training

with hundreds—rather than thousands [47]—of machines,

synchronous training may be faster (in terms of time to

quality) than asynchronous training on the same platform.

Though we originally designed TensorFlow for asyn-

chronous training, we have begun experimenting with

synchronous methods. The TensorFlow graph enables

users to change how parameters are read and written when

training a model, and we implement three alternatives. In

the asynchronous case (Figure 5(a)), each worker reads

the current values of parameters when each step begins,

and applies its gradient to the (possibly different) current

values at the end: this approach ensures high utilization,

but the individual steps use stale parameter values, making

each step less effective. We implement the synchronous

version using queues (§3.1) to coordinate execution: a

blocking queue acts as a barrier to ensure that all workers

read the same parameter values, and a per-variable queue

accumulates gradient updates from all workers in order to

apply them atomically. The simple synchronous version

(Figure 5(b)) accumulates updates from all workers before

applying them, but slow workers limit overall throughput.

To mitigate stragglers, we implement backup work-

ers (Figure 5(c), [10]), which are similar to MapReduce

backup tasks [21]. Whereas MapReduce starts backup

tasks reactively—after detecting a straggler—our backup

workers run proactively, and the aggregation takes the

first m of n updates produced. We exploit the fact that

SGD samples training data randomly at each step, so each

worker processes a different random batch, and it is not a

274 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input

data
Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic

checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations

Const Var MatMul Conv2D ReLU Queue ...

Shuffle queue Queue

Figure 6: The layered TensorFlow architecture.

problem if a particular batch is ignored. In §6.3 we show

how backup workers improve throughput by up to 10%.

5 Implementation

The TensorFlow runtime is a cross-platform library. Fig-

ure 6 illustrates its architecture: a C API separates user-

level code in different languages from the core runtime.

The core TensorFlow library is implemented in C++ for

portability and performance: it runs on several operating

systems including Linux, Mac OS X, Windows, Android,

and iOS; the x86 and various ARM-based CPU architec-

tures; and NVIDIA’s Kepler, Maxwell, and Pascal GPU

microarchitectures. The implementation is open-source,

and we have accepted several external contributions that

enable TensorFlow to run on other architectures.

The distributed master translates user requests into ex-

ecution across a set of tasks. Given a graph and a step def-

inition, it prunes (§3.2) and partitions (§3.3) the graph to

obtain subgraphs for each participating device, and caches

these subgraphs so that they may be re-used in subsequent

steps. Since the master sees the overall computation for a

step, it applies standard optimizations such as common

subexpression elimination and constant folding; pruning

is a form of dead code elimination. It then coordinates ex-

ecution of the optimized subgraphs across a set of tasks.

The dataflow executor in each task handles requests

from the master, and schedules the execution of the ker-

nels that comprise a local subgraph. We optimize the

dataflow executor for running large graphs with low over-

head. Our current implementation can execute 10,000

subgraphs per second (§6.2), which enables a large num-

ber of replicas to make rapid, fine-grained training steps.

The dataflow executor dispatches kernels to local devices

and runs kernels in parallel when possible, for example by

using multiple CPU cores or GPU streams.

The runtime contains over 200 standard operations, in-

cluding mathematical, array manipulation, control flow,

and state management operations. Many of the operation

kernels are implemented using Eigen::Tensor [36], which

uses C++ templates to generate efficient parallel code for

multicore CPUs and GPUs; however, we liberally use li-

braries like cuDNN [13] where a more efficient kernel

implementation is possible. We have also implemented

quantization, which enables faster inference in environ-

ments such as mobile devices and high-throughput data-

center applications, and use the gemmlowp low-precision

matrix library [35] to accelerate quantized computation.

We specialize Send and Recv operations for each

pair of source and destination device types. Trans-

fers between local CPU and GPU devices use the

cudaMemcpyAsync()API to overlap computation and

data transfer; transfers between two local GPUs use

DMA to relieve pressure on the host. For transfers be-

tween tasks, TensorFlow uses multiple protocols, includ-

ing gRPC over TCP, and RDMA over Converged Ether-

net. We are also investigating optimizations for GPU-to-

GPU communication that use collective operations [59].

Section 4 describes features that we implement com-

pletely above the C API, in user-level code. Typically,

users compose standard operations to build higher-level

abstractions, such as neural network layers, optimization

algorithms (§4.1), and sharded embedding computations

(§4.2). TensorFlow supports multiple client languages,

and we have prioritized Python and C++, because our in-

ternal users are most familiar with these languages. As

features become more established, we typically port them

to C++, so that users can access an optimized implemen-

tation from all client languages.

If it is difficult or inefficient to represent a subcom-

putation as a composition of operations, users can reg-

ister additional kernels that provide an efficient imple-

mentation written in C++. We have found it profitable

to hand-implement fused kernels for some performance

critical operations, such as the ReLU and Sigmoid acti-

vation functions and their corresponding gradients. We

are currently investigating automatic kernel fusion using

a compilation-based approach.

In addition to the core runtime, our colleagues have

built several tools that aid users of TensorFlow. These

include serving infrastructure for inference in produc-

tion [27], a visualization dashboard that enables users to

follow the progress of a training run, a graph visualizer

that helps users to understand the connections in a model,

and a distributed profiler that traces the execution of a

computation across multiple devices and tasks. We de-

scribe these tools in an extended whitepaper [1].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 275

6 Evaluation

In this section, we evaluate the performance of Tensor-

Flow on several synthetic and realistic workloads. Unless

otherwise stated, we run all experiments on a shared pro-

duction cluster, and all figures plot median values with

error bars showing the 10th and 90th percentiles.

In this paper we focus on system performance met-

rics, rather than learning objectives like time to accu-

racy. TensorFlow is a system that allows machine learn-

ing practitioners and researchers to experiment with new

techniques, and this evaluation demonstrates that the sys-

tem (i) has little overhead, and (ii) can employ large

amounts of computation to accelerate real-world applica-

tions. While techniques like synchronous replication can

enable some models to converge in fewer steps overall, we

defer the analysis of such improvements to other papers.

6.1 Single-machine benchmarks

Although TensorFlow is a system for “large-scale” ma-

chine learning, it is imperative that scalability does not

mask poor performance at small scales [51]. Table 1 con-

tains results from Chintala’s benchmark of convolutional

models on TensorFlow and three single-machine frame-

works [15]. All frameworks use a six-core Intel Core i7-

5930K CPU at 3.5 GHz and an NVIDIA Titan X GPU.

Training step time (ms)

Library AlexNet Overfeat OxfordNet GoogleNet

Caffe [38] 324 823 1068 1935

Neon [58] 87 211 320 270

Torch [17] 81 268 529 470

TensorFlow 81 279 540 445

Table 1: Step times for training four convolutional models

with different libraries, using one GPU. All results are for

training with 32-bit floats. The fastest time for each model

is shown in bold.

Table 1 shows that TensorFlow achieves shorter step

times than Caffe [38], and performance within 6% of the

latest version of Torch [17]. We attribute the similar per-

formance of TensorFlow and Torch to the fact that both

use the same version of the cuDNN library [13], which

implements the convolution and pooling operations on

the critical path for training; Caffe uses open-source im-

plementations for these operations that are simpler but

less efficient than cuDNN. The Neon library [58] outper-

forms TensorFlow on three of the models, by using hand-

optimized convolutional kernels [46] implemented in as-

sembly language; in principle, we could follow the same

approach in TensorFlow, but we have not yet done so.

1 2 5 10 25 50 100

Number of workers

1

10

100

1000

10000

B
a
tc

h
e
s
/s

e
c
o
n
d Scalar

Sparse 1GB

Sparse 16GB

Dense 100M

Dense 1GB

Figure 7: Baseline throughput for synchronous replication

with a null model. Sparse accesses enable TensorFlow to

handle larger models, such as embedding matrices (§4.2).

6.2 Synchronous replica microbenchmark

The performance of our coordination implementation

(§4.4) is the main limiting factor for scaling with addi-

tional machines. Figure 7 shows that number of null train-

ing steps that TensorFlow performs per second for vary-

ing model sizes, and increasing numbers of synchronous

workers. In a null training step, a worker fetches the

shared model parameters from 16 PS tasks, performs a

trivial computation, and sends updates to the parameters.

The Scalar curve in Figure 7 shows the best perfor-

mance that we could expect for a synchronous training

step, because only a single 4-byte value is fetched from

each PS task. The median step time is 1.8 ms using a sin-

gle worker, growing to 8.8 ms with 100 workers. These

times measure the overhead of the synchronization mech-

anism, and capture some of the noise that we expect when

running on a shared cluster.

The Dense curves show the performance of a null step

when the worker fetches the entire model. We repeat the

experiment with models of size 100 MB and 1 GB, with

the parameters sharded equally over 16 PS tasks. The me-

dian step time for 100 MB increases from 147 ms with one

worker to 613 ms with 100 workers. For 1 GB, it increases

from 1.01 s with one worker to 7.16 s with 100 workers.

For large models, a typical training step accesses only

a subset of the parameters, and the Sparse curves show

the throughput of the embedding lookup operation from

Subsection 4.2. Each worker reads 32 randomly selected

entries from a large embedding matrix containing 1 GB or

16 GB of data. As expected, the step times do not vary

with the size of the embedding, and TensorFlow achieves

step times ranging from 5 to 20 ms.

276 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 4 8 16 32 50

Number of workers

0

5

10

15

20

25

30

Im
a
g
e
s
/s

e
c
o
n
d
/w

o
rk

e
r

(a) Baseline performance vs. MXNet

TensorFlow

MXNet

25 50 100 200

Number of workers

0

500

1000

1500

2000

2500

3000

Im
a
g
e
s
/s

e
c
o
n
d

(b) Coordination scalability

Asynchronous

Synchronous

0 1 2 3 4 5

Number of backup workers

1.9

2.0

2.1

2.2

2.3

2.4

2.5

S
te

p
ti
m

e
(s

e
c
o
n
d
s
)

Step time

1.00

1.02

1.04

1.06

1.08

1.10

N
o
rm

a
liz

e
d

s
p
e
e
d
u
p

(c) Backup worker effectiveness

Speedup

Figure 8: Results of the performance evaluation for Inception-v3 training (§6.3). (a) TensorFlow achieves slightly

better throughput than MXNet for asynchronous training. (b) Asynchronous and synchronous training throughput

increases with up to 200 workers. (c) Adding backup workers to a 50-worker training job can reduce the overall step

time, and improve performance even when normalized for resource consumption.

6.3 Image classification

Deep neural networks have achieved breakthrough perfor-

mance on computer vision tasks such as recognizing ob-

jects in photographs [44], and these tasks are a key ap-

plication for TensorFlow at Google. Training a network

to high accuracy requires a large amount of computa-

tion, and we use TensorFlow to scale out this computation

across a cluster of GPU-enabled servers. In these experi-

ments, we focus on Google’s Inception-v3 model, which

achieves 78.8% accuracy in the ILSVRC 2012 image clas-

sification challenge [69]; the same techniques apply to

other deep convolutional models—such as ResNet [28]—

implemented on TensorFlow. We investigate the scalabil-

ity of training Inception-v3 using multiple replicas. We

configure TensorFlow with 7 PS tasks, and vary the num-

ber of worker tasks using two different clusters.

For the first experiment, we compare the performance

training Inception using asynchronous SGD on Tensor-

Flow and MXNet, a contemporary system using a pa-

rameter server architecture. For this experiment we use

Google Compute Engine virtual machines running on In-

tel Xeon E5 servers with NVIDIA K80 GPUs, config-

ured with 8 vCPUs, 16Gbps of network bandwidth, and

one GPU per VM. Both systems use 7 PS tasks running

on separate VMs with no GPU. Figure 8(a) shows that

TensorFlow achieves performance that is marginally bet-

ter than MXNet. As expected, the results are largely de-

termined by single-GPU performance, and both systems

use cuDNN version 5.1, so they have access to the same

optimized GPU kernels.

Using a larger internal cluster (with NVIDIA K40

GPUs, and a shared datacenter network), we investigate

the effect of coordination (§4.4) on training performance.

Ideally, with efficient synchronous training, a model such

as Inception-v3 will train in fewer steps, and converge to

a higher accuracy than with asynchronous training [10].

Training throughput improves to 2,300 images per sec-

ond as we increase the number of workers to 200, but

with diminishing returns (Figure 8(b)). As we add more

workers, the step time increases, because there is more

contention on the PS tasks, both at the network interface

and in the aggregation of updates. As expected, for all

configurations, synchronous steps are longer than asyn-

chronous steps, because all workers must wait for the

slowest worker to catch up before starting the next step.

While the median synchronous step is approximately 10%

longer than an asynchronous step with the same workers,

above the 90th percentile the synchronous performance

degrades sharply, because stragglers disproportionately

impact tail latency.

To mitigate tail latency, we add backup workers so that

a step completes when the first m of n tasks produce gra-

dients. Figure 8(c) shows the effect of adding backup

workers to a 50-worker Inception training job. Each addi-

tional backup worker up to and including the fourth re-

duces the median step time, because the probability of

a straggler affecting the step decreases. Adding a fifth

backup worker slightly degrades performance, because

the 51st worker (i.e., the first whose result is discarded)

is more likely to be a non-straggler that generates more

incoming traffic for the PS tasks. Figure 8(c) also plots

the normalized speedup for each configuration, defined as

t(b)/t(0) × 50/(50 + b) (where t(b) is the median step

time with b backup workers), and which discounts the

speedup by the fraction of additional resources consumed.

Although adding 4 backup workers achieves the shortest

overall step time (1.93 s), adding 3 achieves the highest

normalized speedup (9.5%), and hence uses less aggre-

gate GPU-time to reach the same quality.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 277

1 2 4 8 16 32

Number of PS tasks

10
1

10
2

10
3

10
4

10
5

W
o
rd

s
p
ro

c
e
s
s
e
d
/s

e
c
o
n
d

(a) Full softmax

256 workers

32 workers

4 workers

1 2 4 8 16 32

Number of PS tasks

10
1

10
2

10
3

10
4

10
5

W
o
rd

s
p
ro

c
e
s
s
e
d
/s

e
c
o
n
d

(b) Sampled softmax

256 workers

32 workers

4 workers

Figure 9: Increasing the number of PS tasks leads to in-

creased throughput for language model training, by par-

allelizing the softmax computation. Sampled softmax in-

creases throughput by performing less computation.

6.4 Language modeling

Given a sequence of words, a language model predicts the

most probable next word [6]. Therefore, language mod-

els are integral to predictive text, speech recognition, and

translation applications. In this experiment, we investi-

gate how TensorFlow can train a recurrent neural network

(viz. LSTM-512-512 [41]) to model the text in the One

Billion Word Benchmark [9]. The vocabulary size |V |
limits the performance of training, because the final layer

must decode the output state into probabilities for each of

|V | classes [37]. The resulting parameters can be large

(|V | × d for output state dimension d) so we use the tech-

niques for handling large models from Subsection 4.2. We

use a restricted vocabulary of the most common 40,000

words—instead of the full 800,000 words [9]—in order to

experiment with smaller configurations.

Figure 9 shows the training throughput, measured in

words per second, for varying numbers of PS and worker

tasks, and two softmax implementations. The full softmax

(Figure 9(a)) multiplies each output by a 512 × 40,000

weight matrix sharded across the PS tasks. Adding more

PS tasks increases the throughput, because TensorFlow

can exploit distributed model parallelism [20, 43] and per-

form the multiplication and gradient calculation on the PS

tasks, as in Project Adam [14]. Adding a second PS task

is more effective than increasing from 4 to 32, or 32 to

256 workers. Eventually the throughput saturates, as the

LSTM calculations dominate the training step.

The sampled softmax (Figure 9(b)) reduces the data

transferred and the computation performed on the PS

tasks [37]. Instead of a dense weight matrix, it multiplies

the output by a random sparse matrix containing weights

for the true class and a random sample of false classes.

We sample 512 classes for each batch, thus reducing the

softmax data transfer and computation by a factor of 78.

7 Conclusions

We have described the TensorFlow system and its pro-

gramming model. TensorFlow’s dataflow representation

subsumes existing work on parameter server systems, and

offers a set of uniform abstractions that allow users to

harness large-scale heterogeneous systems, both for pro-

duction tasks and for experimenting with new approaches.

We have shown several examples of how the TensorFlow

programming model facilitates experimentation (§4) and

demonstrated that the resulting implementations are per-

formant and scalable (§6).

Our initial experience with TensorFlow is encourag-

ing. A large number of groups at Google have deployed

TensorFlow in production, and TensorFlow is helping our

research colleagues to make new advances in machine

learning. Since we released TensorFlow as open-source

software, more than 14,000 people have forked the source

code repository, the binary distribution has been down-

loaded over one million times, and dozens of machine

learning models that use TensorFlow have been published.

TensorFlow is a work in progress. Its flexible dataflow

representation enables power users to achieve excellent

performance, but we have not yet determined default

policies that work well for all users. Further research

on automatic optimization should bridge this gap. On

the system level, we are actively developing algorithms

for automatic placement, kernel fusion, memory manage-

ment, and scheduling. While the current implementations

of mutable state and fault tolerance suffice for applica-

tions with weak consistency requirements, we expect that

some TensorFlow applications will require stronger con-

sistency, and we are investigating how to build such poli-

cies at user-level. Finally, some users have begun to chafe

at the limitations of a static dataflow graph, especially for

algorithms like deep reinforcement learning [54]. There-

fore, we face the intriguing problem of providing a sys-

tem that transparently and efficiently uses distributed re-

sources, even when the structure of the computation un-

folds dynamically.

Acknowledgments

We gratefully acknowledge contributions from our col-

leagues within Google, and from members of the wider

machine learning community. In particular, we appreci-

ate the feedback we have received from the rest of the

Google Brain team and the many users of DistBelief and

TensorFlow. We thank the anonymous OSDI reviewers

and our shepherd KyoungSoo Park for their suggestions,

which greatly improved the presentation of this paper.

278 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mane, R. Monga,

S. Moore, D. G. Murray, C. Olah, M. Schus-

ter, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. A. Tucker, V. Vanhoucke, V. Vasudevan,

F. B. Viégas, O. Vinyals, P. Warden, M. Watten-

berg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:

Large-scale machine learning on heterogeneous dis-

tributed systems. arXiv preprint, 1603.04467, 2016.

arxiv.org/abs/1603.04467. Software available from

tensorflow.org.

[2] R. Al-Rfou, G. Alain, A. Almahairi, C. Anger-

mueller, D. Bahdanau, N. Ballas, F. Bastien,

J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio,

A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher

Snyder, N. Bouchard, N. Boulanger-Lewandowski,

X. Bouthillier, A. de Brébisson, O. Breuleux, P.-

L. Carrier, K. Cho, J. Chorowski, P. Christiano,

T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,

Y. N. Dauphin, O. Delalleau, J. Demouth, G. Des-

jardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Du-

moulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,

O. Firat, M. Germain, X. Glorot, I. Goodfellow,

M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet,

J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,

K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lam-

blin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois,

S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey,

C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol,

O. Mastropietro, R. T. McGibbon, R. Memisevic,

B. van Merriënboer, V. Michalski, M. Mirza, A. Or-

landi, C. Pal, R. Pascanu, M. Pezeshki, C. Raf-

fel, D. Renshaw, M. Rocklin, A. Romero, M. Roth,

P. Sadowski, J. Salvatier, F. Savard, J. Schlüter,

J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk,

S. Shabanian, E. Simon, S. Spieckermann, S. R.

Subramanyam, J. Sygnowski, J. Tanguay, G. van

Tulder, J. Turian, S. Urban, P. Vincent, F. Visin,

H. de Vries, D. Warde-Farley, D. J. Webb, M. Will-

son, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang.

Theano: A Python framework for fast computa-

tion of mathematical expressions. arXiv preprint,

1605.02688, 2016. arxiv.org/abs/1605.02688.

[3] A. Angelova, A. Krizhevsky, and V. Van-

houcke. Pedestrian detection with a large-

field-of-view deep network. In Proceed-

ings of ICRA, pages 704–711. IEEE, 2015.

www.vision.caltech.edu/anelia/publications/

Angelova15LFOV.pdf.

[4] Arvind and D. E. Culler. Dataflow architectures.

In Annual Review of Computer Science Vol. 1,

1986, pages 225–253. Annual Reviews Inc., 1986.

www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&

doc=GetTRDoc.pdf&AD=ADA166235.

[5] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple ob-

ject recognition with visual attention. arXiv preprint,

1412.7755, 2014. arxiv.org/abs/1412.7755.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Jau-

vin. A neural probabilistic language model. Journal

of Machine Learning Research, 3:1137–1155, 2003.

jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

[7] T. Brants and A. Franz. Web 1T 5-gram version 1,

2006. catalog.ldc.upenn.edu/LDC2006T13.

[8] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu.

Sample size selection in optimization methods for

machine learning. Mathematical Programming,

134(1):127–155, 2012. dx.doi.org/10.1007/s10107-

012-0572-5.

[9] C. Chelba, T. Mikolov, M. Schuster, Q. Ge,

T. Brants, and P. Koehn. One billion word bench-

mark for measuring progress in statistical lan-

guage modeling. arXiv preprint, 1312.3005, 2013.

arxiv.org/abs/1312.3005.

[10] J. Chen, R. Monga, S. Bengio, and R. Joze-

fowicz. Revisiting distributed synchronous SGD.

In Proceedings of ICLR Workshop Track, 2016.

arxiv.org/abs/1604.00981.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang,

M. Wang, T. Xiao, B. Xu, C. Zhang, and

Z. Zhang. MXNet: A flexible and efficient ma-

chine learning library for heterogeneous distributed

systems. In Proceedings of LearningSys, 2015.

www.cs.cmu.edu/˜muli/file/mxnet-learning-sys.pdf.

[12] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked,

T. Chandra, H. Aradhye, G. Anderson, G. Corrado,

W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,

V. Jain, X. Liu, and H. Shah. Wide & deep

learning for recommender systems. arXiv preprint,

1606.07792, 2016. arxiv.org/abs/1606.07792.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 279

http://arxiv.org/abs/1603.04467
http://tensorflow.org
http://arxiv.org/abs/1605.02688
http://www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf
http://www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235
http://arxiv.org/abs/1412.7755
http://jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://catalog.ldc.upenn.edu/LDC2006T13
http://dx.doi.org/10.1007/s10107-012-0572-5
http://dx.doi.org/10.1007/s10107-012-0572-5
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1604.00981
https://www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf
http://arxiv.org/abs/1606.07792

[13] S. Chetlur, C. Woolley, P. Vandermersch, J. Co-

hen, J. Tran, B. Catanzaro, and E. Shelhamer.

cuDNN: Efficient primitives for deep learning. arXiv

preprint, 1410.0759, 2014. arxiv.org/abs/1410.0759.

[14] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalya-

naraman. Project Adam: Building an effi-

cient and scalable deep learning training sys-

tem. In Proceedings of OSDI, pages 571–582,

2014. www.usenix.org/system/files/conference/

osdi14/osdi14-paper-chilimbi.pdf.

[15] S. Chintala. convnet-benchmarks, 2016.

github.com/soumith/convnet-benchmarks.

[16] E. S. Chung, J. D. Davis, and J. Lee. LINQits:

Big data on little clients. In Proceedings of ISCA,

pages 261–272, 2013. www.microsoft.com/en-

us/research/wp-content/uploads/2013/06/ISCA13 -

linqits.pdf.

[17] R. Collobert, S. Bengio, and J. Mariéthoz.

Torch: A modular machine learning soft-

ware library. Technical report, IDIAP, 2002.

infoscience.epfl.ch/record/82802/files/rr02-46.pdf.

[18] H. Cui, H. Zhang, G. R. Ganger, P. B. Gib-

bons, and E. P. Xing. GeePS: Scalable deep

learning on distributed GPUs with a GPU-

specialized parameter server. In Proceedings

of EuroSys, 2016. www.pdl.cmu.edu/PDL-FTP/

CloudComputing/GeePS-cui-eurosys16.pdf.

[19] A. Dai, C. Olah, and Q. V. Le. Document embedding

with paragraph vectors. arXiv preprint, 1507.07998,

2015. arxiv.org/abs/1507.07998.

[20] J. Dean, G. S. Corrado, R. Monga, K. Chen,

M. Devin, Q. V. Le, M. Z. Mao, M. Ran-

zato, A. Senior, P. Tucker, K. Yang, and

A. Y. Ng. Large scale distributed deep net-

works. In Proceedings of NIPS, pages 1232–1240,

2012. research.google.com/archive/large deep net-

works nips2012.pdf.

[21] J. Dean and S. Ghemawat. MapReduce:

Simplified data processing on large clusters.

In Proceedings of OSDI, pages 137–149,

2004. research.google.com/archive/mapreduce-

osdi04.pdf.

[22] DMLC. MXNet for deep learning, 2016.

github.com/dmlc/mxnet.

[23] J. Duchi, E. Hazan, and Y. Singer. Adap-

tive subgradient methods for online learning

and stochastic optimization. Journal of Ma-

chine Learning Research, 12:2121–2159, 2011.

jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

[24] A. Frome, G. S. Corrado, J. Shlens, S. Ben-

gio, J. Dean, T. Mikolov, et al. DeVISE: A

deep visual-semantic embedding model. In Pro-

ceedings of NIPS, pages 2121–2129, 2013. re-

search.google.com/pubs/archive/41473.pdf.

[25] J. Gonzalez-Dominguez, I. Lopez-Moreno,

P. J. Moreno, and J. Gonzalez-Rodriguez.

Frame-by-frame language identification in

short utterances using deep neural networks.

Neural Networks, 64:49–58, 2015. re-

search.google.com/pubs/archive/42929.pdf.

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza,

B. Xu, D. Warde-Farley, S. Ozair, A. C.

Courville, and Y. Bengio. Generative adversar-

ial nets. In Proceedings of NIPS, pages 2672–

2680, 2014. papers.nips.cc/paper/5423-generative-

adversarial-nets.pdf.

[27] Google Research. Tensorflow serving, 2016. tensor-

flow.github.io/serving/.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep

residual learning for image recognition. In

Proceedings of CVPR, pages 770–778, 2016.

arxiv.org/abs/1512.03385.

[29] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen,

M. Ranzato, M. Devin, and J. Dean. Mul-

tilingual acoustic models using distributed

deep neural networks. In Proceedings

of ICASSP, pages 8619–8623, 2013. re-

search.google.com/pubs/archive/40807.pdf.

[30] G. E. Hinton. Learning distributed repre-

sentations of concepts. In Proceedings of

the Eighth Annual Conference of the Cog-

nitive Science Society, pages 1–12, 1986.

www.cogsci.ucsd.edu/˜ajyu/Teaching/Cogs202 -

sp13/Readings/hinton86.pdf.

[31] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl,

A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep

neural networks for acoustic modeling in speech

recognition: The shared views of four research

280 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/1410.0759
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf
https://github.com/soumith/convnet-benchmarks
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/06/ISCA13_linqits.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/06/ISCA13_linqits.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/06/ISCA13_linqits.pdf
http://infoscience.epfl.ch/record/82802/files/rr02-46.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf
http://arxiv.org/abs/1507.07998
http://research.google.com/archive/large_deep_networks_nips2012.pdf
http://research.google.com/archive/large_deep_networks_nips2012.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf
https://github.com/dmlc/mxnet
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://research.google.com/pubs/archive/41473.pdf
http://research.google.com/pubs/archive/41473.pdf
http://research.google.com/pubs/archive/42929.pdf
http://research.google.com/pubs/archive/42929.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://tensorflow.github.io/serving/
https://tensorflow.github.io/serving/
http://arxiv.org/abs/1512.03385
https://research.google.com/pubs/archive/40807.pdf
https://research.google.com/pubs/archive/40807.pdf
http://www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_sp13/Readings/hinton86.pdf
http://www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_sp13/Readings/hinton86.pdf

groups. IEEE Signal Process. Mag., 29(6):82–

97, 2012. www.cs.toronto.edu/˜gdahl/papers/

deepSpeechReviewSPM2012.pdf.

[32] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780,

1997. deeplearning.cs.cmu.edu/pdfs/Hochreiter97 -

lstm.pdf.

[33] S. Ioffe and C. Szegedy. Batch normaliza-

tion: Accelerating deep network training by

reducing internal covariate shift. In Pro-

ceedings of ICML, pages 448–456, 2015.

jmlr.org/proceedings/papers/v37/ioffe15.pdf.

[34] M. Isard, M. Budiu, Y. Yu, A. Birrell, and

D. Fetterly. Dryad: distributed data-parallel

programs from sequential building blocks.

In Proceedings of EuroSys, pages 59–72,

2007. www.microsoft.com/en-us/research/wp-

content/uploads/2007/03/eurosys07.pdf.

[35] B. Jacob et al. gemmlowp: a small self-

contained low-precision GEMM library, 2015.

github.com/google/gemmlowp.

[36] B. Jacob, G. Guennebaud, et al. Eigen library for

linear algebra. eigen.tuxfamily.org.

[37] S. Jean, K. Cho, R. Memisevic, and Y. Ben-

gio. On using very large target vocabulary

for neural machine translation. In Proceed-

ings of ACL-ICJNLP, pages 1–10, July 2015.

www.aclweb.org/anthology/P15-1001.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T. Dar-

rell. Caffe: Convolutional architecture for fast fea-

ture embedding. In Proceedings of ACM Multime-

dia, pages 675–678, 2014. arxiv.org/abs/1408.5093.

[39] M. I. Jordan. Serial order: A parallel dis-

tributed processing approach. ICS report

8608, Institute for Cognitive Science, UCSD,

La Jolla, 1986. cseweb.ucsd.edu/˜gary/PAPER-

SUGGESTIONS/Jordan-TR-8604.pdf.

[40] N. Jouppi. Google supercharges machine

learning tasks with TPU custom chip, 2016.

cloudplatform.googleblog.com/2016/05/Google-

supercharges-machine-learning-tasks-with-custom-

chip.html.

[41] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer,

and Y. Wu. Exploring the limits of language

modeling. arXiv preprint, 1602.02410, 2016.

arxiv.org/abs/1602.02410.

[42] A. Karpathy, G. Toderici, S. Shetty, T. Leung,

R. Sukthankar, and L. Fei-Fei. Large-scale video

classification with convolutional neural networks. In

Proceedings of CVPR, pages 1725–1732, 2014. re-

search.google.com/pubs/archive/42455.pdf.

[43] A. Krizhevsky. One weird trick for paralleliz-

ing convolutional neural networks. arXiv preprint,

1404.5997, 2014. arxiv.org/abs/1404.5997.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton.

ImageNet classification with deep convolutional

neural networks. In Proceedings of NIPS, pages

1106–1114, 2012. papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-

neural-networks.pdf.

[45] H. Larochelle, Y. Bengio, J. Louradour,

and P. Lamblin. Exploring strategies for

training deep neural networks. Journal

of Machine Learning Research, 10:1–40,

2009. jmlr.org/papers/volume10/larochelle09a/

larochelle09a.pdf.

[46] A. Lavin and S. Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of CVPR,

pages 4013–4021, 2016. arxiv.org/abs/1509.09308.

[47] Q. Le, M. Ranzato, R. Monga, M. Devin, G. Cor-

rado, K. Chen, J. Dean, and A. Ng. Building

high-level features using large scale unsupervised

learning. In Proceedings of ICML, pages 81–88,

2012. research.google.com/archive/unsupervised -

icml2012.pdf.

[48] Y. LeCun, C. Cortes, and C. J. Burges. The

MNIST database of handwritten digits, 1998.

yann.lecun.com/exdb/mnist/.

[49] M. Li, D. G. Andersen, J. Park, A. J. Smola,

A. Ahmed, V. Josifovski, J. Long, E. J.

Shekita, and B.-Y. Su. Scaling distributed ma-

chine learning with the Parameter Server. In

Proceedings of OSDI, pages 583–598, 2014.

www.usenix.org/system/files/conference/osdi14/

osdi14-paper-li mu.pdf.

[50] C. J. Maddison, A. Huang, I. Sutskever, and D. Sil-

ver. Move evaluation in Go using deep convolutional

neural networks. arXiv preprint, 1412.6564, 2014.

arxiv.org/abs/1412.6564.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 281

http://www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf
http://www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/03/eurosys07.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/03/eurosys07.pdf
https://github.com/google/gemmlowp
http://eigen.tuxfamily.org
http://www.aclweb.org/anthology/P15-1001
http://arxiv.org/abs/1408.5093
http://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604.pdf
http://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604.pdf
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
http://arxiv.org/abs/1602.02410
https://research.google.com/pubs/archive/42455.pdf
https://research.google.com/pubs/archive/42455.pdf
http://arxiv.org/abs/1404.5997
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf
http://jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf
http://arxiv.org/abs/1509.09308
http://research.google.com/archive/unsupervised_icml2012.pdf
http://research.google.com/archive/unsupervised_icml2012.pdf
http://yann.lecun.com/exdb/mnist/
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
http://arxiv.org/abs/1412.6564

[51] F. McSherry, M. Isard, and D. G. Mur-

ray. Scalability! But at what COST? In

Proceedings of HotOS, HOTOS’15, 2015.

www.usenix.org/system/files/conference/hotos15/

hotos15-paper-mcsherry.pdf.

[52] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Ef-

ficient estimation of word representations in vector

space. In Proceedings of ICLR Workshops Track,

2013. arxiv.org/abs/1301.3781.

[53] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu.

Recurrent models of visual attention. In Pro-

ceedings of NIPS, pages 2204–2212, 2014.

papers.nips.cc/paper/5542-recurrent-models-of-

visual-attention.pdf.

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M. Ried-

miller, A. K. Fidjeland, G. Ostrovski, S. Petersen,

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-

maran, D. Wierstra, S. Legg, and D. Hassabis.

Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, 02 2015.

dx.doi.org/10.1038/nature14236.

[55] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan.

SparkNet: Training deep networks in Spark. In Pro-

ceedings of ICLR, 2016. arxiv.org/abs/1511.06051.

[56] D. G. Murray, F. McSherry, M. Isard, R. Isaacs,

P. Barham, and M. Abadi. Incremental, it-

erative data processing with timely dataflow.

Commun. ACM, 59(10):75–83, Sept. 2016.

dl.acm.org/citation.cfm?id=2983551.

[57] A. Nair, P. Srinivasan, S. Blackwell, C. Alci-

cek, R. Fearon, A. De Maria, V. Panneershel-

vam, M. Suleyman, C. Beattie, S. Petersen, et al.

Massively parallel methods for deep reinforce-

ment learning. arXiv preprint, 1507.04296, 2015.

arxiv.org/abs/1507.04296.

[58] Nervana Systems. Neon deep learning framework,

2016. github.com/NervanaSystems/neon.

[59] NVIDIA Corporation. NCCL: Optimized primitives

for collective multi-GPU communication, 2016.

github.com/NVIDIA/nccl.

[60] R. Pascanu, T. Mikolov, and Y. Bengio. On

the difficulty of training recurrent neural networks.

In Proceedings of ICML, pages 1310–1318, 2013.

jmlr.org/proceedings/papers/v28/pascanu13.pdf.

[61] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild:

A lock-free approach to parallelizing stochas-

tic gradient descent. In Proceedings of NIPS,

pages 693–701, 2011. papers.nips.cc/paper/4390-

hogwild-a-lock-free-approach-to-parallelizing-

stochastic-gradient-descent.pdf.

[62] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Mar-

tin, and D. Fetterly. Dandelion: a com-

piler and runtime for heterogeneous systems.

In Proceedings of SOSP, pages 49–68, 2013.

sigops.org/sosp/sosp13/papers/p49-rossbach.pdf.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.

Learning representations by back-propagating er-

rors. In Cognitive modeling, volume 5, pages

213–220. MIT Press, 1988. www.cs.toronto.edu/

˜hinton/absps/naturebp.pdf.

[64] O. Russakovsky, J. Deng, H. Su, J. Krause,

S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-

Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision,

115(3):211–252, 2015. arxiv.org/abs/1409.0575.

[65] A. Smola and S. Narayanamurthy. An ar-

chitecture for parallel topic models. Proc.

VLDB Endow., 3(1–2):703–710, Sept. 2010.

vldb.org/pvldb/vldb2010/papers/R63.pdf.

[66] I. Sutskever, J. Martens, G. E. Dahl, and

G. E. Hinton. On the importance of initial-

ization and momentum in deep learning. In

Proceedings of ICML, pages 1139–1147, 2013.

jmlr.org/proceedings/papers/v28/sutskever13.pdf.

[67] I. Sutskever, O. Vinyals, and Q. V. Le. Se-

quence to sequence learning with neural net-

works. In Proceedings of NIPS, pages 3104–

3112, 2014. papers.nips.cc/paper/5346-sequence-to-

sequence-learning-with-neural.pdf.

[68] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolu-

tions. In Proceedings of CVPR, pages 1–9, 2015.

arxiv.org/abs/1409.4842.

[69] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna. Rethinking the Inception architecture for

computer vision. arXiv preprint, 1512.00567, 2015.

arxiv.org/abs/1512.00567.

282 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1511.06051
http://dl.acm.org/citation.cfm?id=2983551
http://arxiv.org/abs/1507.04296
http://github.com/NervanaSystems/neon
https://github.com/NVIDIA/nccl
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://sigops.org/sosp/sosp13/papers/p49-rossbach.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/abs/1409.0575
http://vldb.org/pvldb/vldb2010/papers/R63.pdf
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural.pdf
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567

[70] C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu,

G. Bradski, K. Olukotun, and A. Y. Ng.

Map-reduce for machine learning on multi-

core. In Proceedings of NIPS, pages 281–288,

2007. papers.nips.cc/paper/3150-map-reduce-for-

machine-learning-on-multicore.pdf.

[71] A. Verma, L. Pedrosa, M. Korupolu, D. Op-

penheimer, E. Tune, and J. Wilkes. Large-

scale cluster management at Google with

Borg. In Proceedings of EuroSys, 2015. re-

search.google.com/pubs/archive/43438.pdf.

[72] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever,

and G. Hinton. Grammar as a foreign language.

arXiv preprint, 2014. arxiv.org/abs/1412.7449.

[73] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, J. Klingner, A. Shah, M. Johnson,

X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,

H. Kazawa, K. Stevens, G. Kurian, N. Patil,

W. Wang, C. Young, J. Smith, J. Riesa, A. Rud-

nick, O. Vinyals, G. Corrado, M. Hughes, and

J. Dean. Google’s Neural Machine Translation sys-

tem: Bridging the gap between human and ma-

chine translation. arXiv preprint, 1609.08144, 2016.

arxiv.org/abs/1609.08144.

[74] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-

son, P. K. Gunda, and J. Currey. DryadLINQ:

A system for general-purpose distributed data-

parallel computing using a high-level language.

In Proceedings of OSDI, pages 1–14, 2008.

www.usenix.org/legacy/event/osdi08/tech/full pa-

pers/yu y/yu y.pdf.

[75] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-

ica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing.

In Proceedings of NSDI, pages 15–28, 2012.

https://www.usenix.org/system/files/conference/

nsdi12/nsdi12-final138.pdf.

[76] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao,

K. Yang, Q. Le, P. Nguyen, A. Senior, V. Van-

houcke, J. Dean, and G. E. Hinton. On recti-

fied linear units for speech processing. In Pro-

ceedings of ICASSP, pages 3517–3521, 2013. re-

search.google.com/pubs/archive/40811.pdf.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 283

http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf
http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf
http://research.google.com/pubs/archive/43438.pdf
http://research.google.com/pubs/archive/43438.pdf
http://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1609.08144
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://research.google.com/pubs/archive/40811.pdf
http://research.google.com/pubs/archive/40811.pdf

Exploring the Hidden Dimension in Graph Processing

Mingxing Zhang Yongwei Wu Kang Chen Xuehai Qian† Xue Li Weimin Zheng
Tsinghua University∗ †University of Southern California

Abstract
Task partitioning of a graph-parallel system is tradition-
ally considered equivalent to the graph partition problem.
Such equivalence exists because the properties associ-
ated with each vertex/edge are normally considered in-
divisible. However, this assumption is not true for many
Machine Learning and Data Mining (MLDM) problems:
instead of a single value, a vector of data elements is de-
fined as the property for each vertex/edge. This feature
opens a new dimension for task partitioning because a
vertex could be divided and assigned to different nodes.

To explore this new opportunity, this paper presents
3D partitioning, a novel category of task partition al-
gorithms that significantly reduces network traffic for
certain MLDM applications. Based on 3D partitioning,
we build a distributed graph engine CUBE. Our evalua-
tion results show that CUBE outperforms state-of-the-art
graph-parallel system PowerLyra by up to 4.7× (up to
7.3× speedup against PowerGraph).

1 Introduction
Efficient graph-parallel systems require careful task par-
titioning. It plays a pivotal role because the load bal-
ancing and communication cost are largely determined
by the partitioning strategy. All existing partitioning al-
gorithms in current systems assume that the property of
each vertex/edge is indivisible. Therefore, task partition-
ing is equivalent to graph partitioning. But, in reality, the
property associated with a(n) vertex/edge for many Ma-
chine Learning and Data Mining (MLDM) problems is a
vector of data elements, which is not indivisible.

This new feature can be illustrated by a popular ma-
chine learning problem, Collaborative Filtering (CF),
which estimates the missing ratings based on a given in-
complete set of (user, item) ratings. The original problem
is defined in a matrix-centric view: given a sparse rating
matrix R with size N×M, the goal is to find two dense
matrices P (with size N×D) and Q (with size M×D) that
are R’s non-negative factors (i.e., R ≈ P×QT). Here, N
and M are the number of users and items, respectively.
D is the size of feature vector. When formulated in a
graph-centric view, the rows of P and Q correspond to

∗M. Zhang, Y. Wu, K. Chen, X. Li and W. Zheng are with the
Department of Computer Science and Technology, Tsinghua National
Laboratory for Information Science and Technology (TNLIST), Ts-
inghua University, Beijing 100084, China; Technology Innovation
Center at Yinzhou, Yangtze Delta Region Institute of Tsinghua Uni-
versity, Ningbo 315000, Zhejiang.

0 0 q0p0

1 1

0

q1

p0

p1

2 2 q2p2

u v

... ...

Ruv
p qu v

... ...

pu qv

QT

R

()

P≈
qv

(u,v) pu

dx
of

xU
se

rs
N

dxofxItemsM D

(a)xMatrix-basedxView (b)xGraph-basedxView

Figure 1: Collaborative Filtering.

vertices of a bipartite graph. Each vertex is associated
with a property vector with D features. In contrast, the
rating matrix R corresponds to edges. For every non-zero
element (u, v) in matrix R, there is an edge connects ver-
tex pu and vertex qv, and the weight of this edge is Ruv.
An illustration of these two views is given in Figure 1.

One distinct nature of the graph in Figure 1 (b) is
that each vertex is associated with a divisible element
vector, which is a common pattern when modelling
MLDM algorithms as graph computing problems. An-
other good example is Sparse Matrix to Matrix Multi-
plication (SpMM), a prevalently used computation ker-
nel that multiplies a dense feature matrix with a sparse
parameter matrix (see Section 5.2.1 for more details).
SpMM dominates the execution time of most minibatch-
based neural network training algorithms.

In essence, when formulating matrix-based applica-
tions as graph problems, the property of vertex or edge is
usually a vector of elements, instead of a single value.
More importantly, during computation, these property
vectors are mostly manipulated by element-wise oper-
ators, where the computations can be perfectly paral-
lelized without any additional communication when dis-
joint ranges of vector elements are assigned to different
nodes.

Due to the common pattern of vector property and its
amenability to parallelism, this paper considers a new di-
mension of task partitioning, which is assigning disjoint
elements of the same property to different nodes. It is
considered to be a hidden dimension in existing 1D/2D
partitioners used in previous systems [10, 15, 16, 24] be-
cause all of them treat the property as an indivisible com-
ponent. According to our investigation, the 3D partition-
ing principle could significantly reduce network traffic
and improve performance.

The key intuition is that: since each node only pro-
cesses a subset of elements in property vectors, it can
be assigned with more edges and vertices that otherwise
need to be assigned to different nodes. Therefore, on the
bright side, certain communications previously happened

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 285

DC

BA

faLNSampleNgraph. fbLN1-DNpartitioning:NeachNvertexNisN
NNNNNNattachedNwithNallNitsNincomingNedges.

D

BA

Node0

B

Node1

DC

BA

Node2

D

B

Node3

D

BA

Node0

D

B

Node1

C

BA

Node2

DC

Node3

fcLN2-DNpartitioning:NtheNedgesNare
NNNNNequallyNpartitioned.

C0

B0A0

Node0'0

D0C0

B0A0

Node0'1

C1

B1A1

Node1'0

D1C1

B1A1

Node1'1

fdLN3-DNpartitioning:NeachNvertexNisNsplitN
NNNNNNintoNtwoNsub-vertices'NandNaN2-DN
NNNNNNpartitionerNisNusedNforNeachNlayer.

LayerN0

LayerN1

:NVerticesNinNblueNdottedNcirclesNareNNreplicas'NwhileNtheNothersNareNmasters.
NNItNisNaNsub-vertexNthatNcontainsNonlyNaNsubsetNofNpropertiesNifNaNsubscriptNisNattachNtoNtheNvertex,sNID.

B0A

Figure 2: An illustration of 1D, 2D, and 3D partitioning.

between nodes are converted to local value exchanges.
But, on the other side, 3D partitioning may incur extra
synchronizations between sub-vertices/edges. In either
case, with 3D partitioning, programmers are given the
option to carefully choose the partition strategy of this
third dimension. This ability enables them to explore a
new tradeoff that may lead to better performance, which
is prohibited by traditional 1D/2D partitioners. Impor-
tantly, 3D partitioning does not require long property
vector to be effective. Our results show that a network
traffic reduction up to 90.6% can be achieved by parti-
tioning this dimension into just 64 layers. In other words,
our algorithm works very well on property vectors with
modest and reasonable size.

Based on a novel 3D partitioning algorithm, we build
a distributed graph processing engine CUBE, which in-
troduces significantly fewer communication than exist-
ing systems in many real-world cases. To achieve better
performance, CUBE internally uses a matrix-based data
structure for storing and processing graphs while provid-
ing a set of vertex-centric APIs for the users. The matrix-
based design is inspired by a recent graph-processing
system [34], which only works on a single machine. The
design of CUBE achieves both the programming produc-
tivity of vertex programming and the high performance
of a matrix-based backend.

This paper makes the following contributions.
i) We propose the first 3D graph partitioning algorithm

(Section 3.2) for graph-parallel systems. It considers a
hidden dimension that is ignored by all previous systems.
Unlike traditional 1D and 2D partitioning, the new di-
mension allows dividing the elements of property vectors
to different nodes. Our 3D partitioning offers unprece-
dented performance that is not achievable by traditional
graph partitioning strategies in existing systems.

ii) We propose a new programming model UPPS
(Update, Push, Pull, Sink) (Section 3.3) designed for 3D
partitioning. The existing graph-oriented programming
models are insufficient because they implicitly assume
that the entire property of a single vertex is accessed as
an indivisible component.

iii) We build CUBE, a graph processing engine that
adopts 3D partitioning and implements the proposed
vertex-centric programming model UPPS. The system

significantly reduces communication cost and memory
consumption. We use matrix-based data structures in the
backend which reduces the COST metric [25] of our sys-
tem to as low as four (Section 4).

iv) We systematically study the effectiveness of 3D
partitioning with both micro-benchmarks (Section 5.2)
and real-world MLDM algorithms (Section 5.3.3). The
results show that it only trades a negligible growth of
graph partitioning time for a notable reduction of both
communication cost and memory consumption. Overall,
CUBE outperforms state-of-the-art graph-parallel system
PowerLyra by up to 4.7× (up to 7.3× speedup against
PowerGraph).

2 Motivation and Background
An optimal task partitioning algorithm should 1) en-
sure the balance of each node’s computation load; and
2) try to minimize the communication cost across mul-
tiple nodes. As the existing schemes assume that the
property of each vertex is indivisible, the partitioning
of graph-processing task is originally considered equiv-
alent to graph partitioning. More specifically, existing
partitioners try to optimally place the graph-structured
data, including vertices and edges, across multiple ma-
chines, so that 1) the number of edges on each node
(which is roughly proportional to computation loads) is
balanced; and 2) the number of replicas (i.e., the num-
ber of shared vertices/edges which is proportional to the
communication cost) is as small as possible. Two kinds
of approaches exist for solving this problem: 1D parti-
tioning and 2D partitioning.
1D Both GraphLab [22] and Pregel [23] adopt a 1D
partitioning algorithm. It assigns each node a disjoint
set of vertices and all the connected incoming/outcom-
ing edges. This algorithm is enough for randomly gen-
erated graphs, but for real-world graphs that follow the
power law, a 1D partitioner usually leads to considerable
skewness [15].
2D To avoid the drawbacks of 1D partitioning, recent
systems [8, 15] are based on 2D partitioning algorithms,
in which the the graph is partitioned by edge rather than
vertex. With a 2D partitioner, the edges of a graph will
be equally assigned to each node. The system will set

286 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

up replica of vertices to enable computation, and the au-
tomatic synchronization of these replicas requires com-
munication. Various heuristics have been proposed to
reduce communication cost by generating fewer num-
ber of replicas. For example, PowerLyra [10] uses a
hybrid graph partitioning algorithm (named Hybrid-cut)
that combines 1D partitioning and 2D partitioning with
heuristics. By treating high-degree and low-degree ver-
tices differently, Hybrid-cut achieves much lower com-
munication cost on many real-world datasets. However,
Hybrid-cut is still a special case of 2D partitioning that
does not assign the same property vector to different
nodes.
3D In many MLDM problems, a vector of data elements
is associated to each vertex or edge hence the assump-
tion of indivisible property is untrue and not necessary.
This new dimension for task partitioning naturally leads
to a new category of 3D partitioning algorithms. To be
more specific, for an N-node cluster a 3 partitioner will
use L copies of the graph topology, where L is the num-
ber of layers and N is divisible by L. Each of these
copies is partitioned by a regular 2D partitioner among
a layer of only N/L nodes. On the other hand, the vector
data associated to the graph are partitioned across layers
evenly. In this setting, each layer occupies N/L nodes
and the same graph with only subset of elements (1/L
of the original property vector) in its edges/vertices are
partitioned among these N/L nodes by a regular 2D par-
titioner. Therefore, each vertex is split into L sub-vertices
and the ith layer maintains a copy of the graph that com-
prises of all the ith sub-vertices/edges. 3D partitioning
reduces communication cost along edges (e.g., synchro-
nizations caused by element-wise operators), because the
graph is partitioned across fewer nodes in each layer, thus
each node in a layer could be assigned with more vertices
and edges. This essentially converts the otherwise inter-
node communication to local data exchanges.

Figure 2 compares the different partition algorithms
applied on the graph in Figure 2 (a). In 1D partitioning
(Figure 2 (b)), each node is assigned with one vertex and
the incoming edges. There are six replicas in total. In 2D
partitioning (Figure 2 (c)), edges are evenly partitioned,
which leads to the same number of replicas as 1D parti-
tioning.

Figure 2 (d) illustrates the concepts of 3D partitioning,
where N is 4 and L is 2. First, the total of 4 nodes are di-
vided to two layers. We denote each node as Nodei, j,
where i is the layer index and j is the node index within
a layer. Second, the graph is partitioned in the same way
in both layers using a 2D partitioning algorithm. Dif-
ferent from 1D and 2D partitioning, since the number
of nodes for each layer is halved, each node is assigned
with more vertices and edges. In the example, the first
node in all layers (Node0,0 and Node1,0) are assigned

with 3 edges and 3 connected vertices, in which 1 ver-
tex is replica. The second node in all layers (Node0,1 and
Node1,1) are also assigned with 3 edges and 4 connected
vertices, but among which 2 vertices are replicas. The
increased number of vertices and edges in each node (3
edges in each layer of Figure 2 (d) compared to 1 or 2
edges in Figure 2 (b),(c)) translates to the reduced num-
ber of replicas needed for each layer (3 replicas in Fig-
ure 2 (d)) compared to 6 in Figure 2 (b),(c)). Although
the total number of replicas (3 replicas × 2 layers = 6
replicas) in all layers stays the same, the size of each
replica is halved, therefore, the network traffic needed
for replica synchronization is halved1. In essence, a 3D
partitioning algorithm reduces the number of sub-graphs
in each layer and hence reduces the intra-layer replica
synchronization overhead.

However, 3D partitioning will incur a new kind of syn-
chronization not needed before: the inter-layer synchro-
nization between sub-vertices/edges. Therefore, pro-
grammers should carefully choose the number of layers
to achieve the best performance. Nevertheless, the tradi-
tional 1D and 2D partitioning do not allow programmers
to explore this tradeoff. A detailed discussion of this per-
formance tradeoff is given in Section 5.

3 Programming Model
Existing graph-oriented programming models (e.g. GAS
[15], TripletView [16], Pregel [23]) are designed for
1D/2D partitioning algorithms. They are insufficient for
3D partitioning because it is assumed that all elements
of a property vector are accessed as an indivisible com-
ponent. Thus, we adapt the popular GAS model and in-
corporate it with 3D partitioning, which leads to a new
model named UPPS (Update, Push, Pull, Sink) that ac-
commodates 3D partitioning requirements. In this sec-
tion, we first introduce UPPS and describe how a graph
can be partitioned in the 3D fashion using UPPS. Then
we explain the operations of UPPS and demonstrate their
usages with two examples.

3.1 Data
As a vertex-centric model, UPPS models the user-
defined data D as a directed data graph G, which con-
sists of a set of vertices V together with a set of edges
E. Users are allowed to associate arbitrary type of data
with vertices and edges. The data attached to each ver-
tex/edge are partitioned into two classes: 1) an indivisi-
ble property DShare that is represented by a single vari-
able; and 2) a divisible collection of property vector el-
ements DColle, which is stored as a vector of variables.
The detailed specification of UPPS is given in Table 1.

1In some cases, there may be a shared part of every sub-vertices.
We will discuss this situation later.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 287

Table 1: The programming model UPPS.

Data
G — {V , E, D = {DShare, DColle}, SC} Gbipartite — {U, V, E, D = {DShare, DColle}, SC}
DShareu — a single variable DShareu→v — a single variable
DColleu — a vector of variable with size SC DColleu→v — a vector of variable with size SC

DColleu[i] — the ith element of DColleu DColleu→v[i] — the ith element of DColleu→v

Du[i] — abbreviation of {DShareu, DColleu[i]} Du→v[i] — abbreviation of {DShareu→v, DColleu→v[i]}

Computation
UpdateVertex(F) — foreach vertex u ∈V do Dnew

u := F(Du);

UpdateEdge(F) — foreach edge (u,v) ∈ E do Dnew
u→v := F(Du→v);

Push(G, A, ⊕) — foreach vertex v ∈V , index i ∈ [0,SC) do
DCollenew

v [i] :=A(Dv[i],
⊕

(u,v)∈E (G(Du[i], Du→v[i]));

Pull(G, A, ⊕) — foreach vertex u ∈V , index i ∈ [0,SC) do
DCollenew

u [i] :=A(Du[i],
⊕

(u,v)∈E (G(Dv[i], Du→v[i]));

Sink(H) — foreach edge (u,v) ∈ E, index i ∈ [0,SC) do
DCollenew

u→v[i] :=H(Du[i], Dv[i], Du→v[i]);

Users are required to assign an integer SC as the col-
lection size that defines the size of each DColle vector.
When only DShare part of the edge data is used, DColle
of edges can be set to NULL. But, if DColle of ver-
tices and edges are both enabled, UPPS requires that their
length should be equal. This restriction avoids inter-layer
communication for certain operations (see Section 3.3).
Moreover, if the input graph is undirected, the typical
practice is using two directed edges (in each direction)
to replace each of the original undirected edge. But, for
many bipartite graph based MLDM algorithms, only one
direction is needed (see more details in Section 3.6).

3.2 3D Partitioning
By explicitly decoupling the divisible property vec-
tor DColle and the indivisible part DShare, UPPS al-
lows users to divide each vertex/edge into several sub-
vertices/edges so that each of them has a copy of DShare
and a disjoint subset of DColle. Based on UPPS, a 3D
partitioner could be constructed by first dividing nodes
into layers based on a layer count L and then partitioning
the sub-graph in each layer following a 2D partitioning
algorithm P. Thus, a 3D partitioner can be denoted as
(P,L).

Specifically, we should first guarantee that N is divis-
ible by L. Then, the partitioner will 1) equally group
the nodes into L layers so that each layer contains N/L
nodes; 2) partition edge set E into N/L sub-sets with the
2D partitioner P; and 3) randomly separate vertex set
V into N/L sub-sets. In the rest of this paper, we use
Nodei, j to denote the jth node of the ith layer; E j and Vj
to denote the jth subset of E and V , respectively.

With the above definitions, after partition, Nodei, j
contains the following data copies:

• a shared copy of DShareu, if vertex u ∈Vj;

• an exclusive copy of DColleu[k], if vertex u∈Vj and
LowerBound(i)≤ k < LowerBound(i+1);

• a shared copy of DShareu→v, if edge (u,v) ∈ E j;

• an exclusive copy of DColleu→v[k], if edge (u,v) ∈
E j and LowerBound(i)≤ k < LowerBound(i+1);

In the above equations, LowerBound(i) equals to i ∗
(bSC/Lc)+min(i,SC%L). In other words, each layer of
the nodes contains a shared copy of all the DShare data
and an exclusive sub-set of the DColle data.

In a 3D partitioning (P,L), both L and P affect the
communication cost. When L = N, each layer only has
one node which keeps the entire graph and processes
1/L of DColle elements. In this case, no replica for
DColle data is needed, and the intra-layer communica-
tion cost is zero. But, it could potentially incur higher
inter-layer communication due to synchronization be-
tween sub-vertices/edges. When L = 1, there is only one
layer and (P,L) is degenerated to the 2D partitioning P.
Therefore, the communication cost is purely determined
by P. The common practice is to choose the L between
1 and N, so that both L and P will affect communication
cost. The programmers are responsible for investigat-
ing the tradeoff and choosing the best setting. To help
users choose the appropriate L, we provide the equations
to calculate communication costs for different UPPS op-
erations which can be used as building blocks for real
applications (see Section 5.2). Within a layer, one can
choose any 2D partitioning P and it is orthogonal to L.

3.3 Computation
UPPS has four types of operations which resemble the
name of the model: Update, Push, Pull, and Sink. The
definition of these operations are given in Table 1. All
possible variant forms of computations allowed in UPPS
are also encoded in these APIs.

288 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Update This operation takes all the information of each
vertex/edge to calculate the new value. Roughly, Update
operates on all elements of an edge or vertex in verti-
cal direction. Since vertices and edges may be split into
sub-vertices/edges, each node Nodei, j needs to synchro-
nize with nodes in other layers while updating. Note that
Update only incurs inter-layer communicate between a
node and nodes in other layers that share the same subset
of vertices (Vj) or edges (E j) (i.e., Node∗, j).
Push, Pull, Sink These three operations handles updates
in horizontal direction: the updates follow the depen-
dency relations determined by graph structure. For each
edge (u,v) ∈ E: Push operation uses data of vertex u and
edge (u,v) to update vertex v; Pull operation uses data of
vertex v and edge (u,v) to update vertex u; Sink operation
uses data of u and v to update the edge (u,v).

Push/Pull operation resembles the popular GAS
(Gather, Apply, Scatter) operation. In GAS, each ver-
tex reads data from its in-edges with the gather func-
tion G, generates the updated value based on sum func-
tion ⊕, which is used to update the vertex using the ap-
ply function A. UPPS further partitions property vertex,
which is always considered as an indivisible component
in GAS. To avoid inter-layer communication, UPPS re-
stricts that the ith DColle element of each vertex/edge
will only depend on either DShare (which is by defini-
tion replicated in all layers) or the ith DColle element
of other vertices/edges (which is by definition exist in
the same layer). Similar restriction applies to Sink. In
other words, Nodei, j only communicates to Nodei,∗ in
Push/Pull/Sink.

3.4 Bipartite Graph
Many MLDM problems model their input graphs as bi-
partite graphs, where vertices are separated into two dis-
joint sets U and V and edges connect pairs of vertices
from U and V. A recent study [11] demonstrates the
unique properties of bipartite graphs and the special need
of differentiated processing for vertices in U and V. To
capture this requirement, UPPS provides two additional
APIs: UpdateVertexU and UpdateVertexV. They only up-
date the vertices in U and V, respectively. We use the
bipartite-specialized 2D partitioner bi-cut [11] as P for
bipartite graphs.

3.5 Compare with GAS
UPPS also follows the popular “think as a vertex” phi-
losophy so that it is easy for programmers to use. In fact,
the popular GAS model is a special case of UPPS that
has SC ≤ 12. Thus, users only need to make moderate
changes to their original programs if they just want to
take advantage of our efficient matrix backend.

2In this case, the workers can only be partitioned into one layer and
hence our 3D partitioner degenerates to a traditional 1D/2D partitioner.

In contrast, if the users want to reduce the commu-
nication cost by using a 3D partitioner, the workers
should be partitioned into at least two layers. As we will
show, many popular algorithms can benefit from 3D par-
titioning without significant program change. Take the
breadth-first search (BFS) as an example, in GAS, it can
be implemented by: 1) associating a boolean property
to each vertex, which represents whether this vertex has
been accessed or not; 2) propagating this property in the
Scatter phase; and 3) using boolean ‘OR’ operation in
both the Gather and Apply phase. In order to extend
this application to do multi-source BFS, users of GAS
model can simply 1) replacing the original boolean vari-
able of each vertex to a vector of boolean variables with
length k, where k is the number of sources; and 2) using
element-wise ‘OR’ operation in the Gather and Apply
phase. We see that the computation of GAS-based multi-
source BFS is dominated by element-wise operations of
two vectors, which shows a notable sign of optimization
opportunity with 3D partitioning and UPPS. In fact, with
UPPS, the multi-source BFS can be simply implemented
by using the same program as original BFS. The only
difference is that the collection size SC is set to k rather
than one.

Moreover, although it is not used in the above exam-
ple, users of UPPS may want to have a complete view
of the whole vector property of vertices/edges. In 3D
partitioning, this intention results in a new kind of inter-
layer communication, which inevitably leads to addi-
tional APIs (our Update operations). Examples of the
usages of these new APIs are given in the next section.

Algorithm 1 Program for GD.
Data:

SC :— D
DShareu :— NULL; DShareu→v :— {double Rate, double Err}
DColleu, DColleu→v :— vector<double>(SC)

Functions:
F1(ui,vi,ei) :— {return ui.DColle[i]∗ vi.DColle[i];}
F2(e) :— {

e.DShare.Err := sum(e.DColle)− e.DShare.Rate;
return e;

}
F3(ui,ei) :— {return ei.DShare.Err ∗ui.DColle[i]; }
F4(vi,Σ) :— {return vi.DColle[i]+α ∗ (Σ−α ∗ vi.DColle[i]);}

Computation for each iteration:
Sink(F1);
UpdateEdge(F2);
Pull(F3, F4, +);
Push(F3, F4, +);

3.6 Examples
For showcasing the usages of UPPS, we implemented
two different algorithms that both solve the Collabora-
tive filtering (CF) problem. The two algorithms together
cover the usage of all operations in UPPS. In this section,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 289

we only explain at a high-level what UPPS operations do.
The detailed implementation of each UPPS operation is
given in Section 4.

CF is a kind of problems that estimate the missing
ratings based on a given incomplete set of (user, item)
ratings. Specifically, if we use N to denote the number
of users and M to denote the number of items, input of
CF is R = {Ru,v}N×M , which is a sparse user-item ma-
trix where each item Ru,v represents the rating of item v
given from user u. The output of CF is two matrices P
and Q, which are the user feature matrix and item fea-
ture matrix, respectively. Pu and Qv are feature vectors
of user u and item v, and each of them has a size of D.
If we use Erru,v to represent the current prediction error
of user-item pair (u,v), it is calculated by subtracting the
dot product of the corresponding feature vectors with the
actual rate, i.e., Erru,v = <Pu, QT

v > − Ru,v. The object
function of CF is minimizing ∑(u,v)∈R Err2

u,v.
GD Gradient Descent (GD) algorithm [20] is a classi-
cal solution to solve CF problem, which involves ran-
domly initializing feature vectors and improving them it-
eratively. The parameters of this algorithm are updated
by a magnitude proportional to the learning rate α in the
opposite direction of the gradient, which results in the
following update rules:

Pnew
i := Pi +α ∗ (Erri, j ∗Q j−α ∗Pi)

Qnew
j := Q j +α ∗ (Erri, j ∗Pi−α ∗Q j)

The program of GD implemented in UPPS is given by
Algorithm 1, in which + is an abbreviation of the simple
“sum” function. For simplicity, we do not show regular-
ization code used to impose non-negativity on P and Q.
In Algorithm 1, the collection size SC is set to D, hence
each vertex/edge’s DColle part is a vector of double with
length D. For vertices, which are used for modeling the
users and items, these vectors are used to store the corre-
sponding feature vector of the user/item. For edges, these
vectors are temporary buffers for reserving partial results
of the dot production. As for shared data, the DShare
part of each edge (u,v) is a pair of {double Rate, double
Err}, which represents the rating given to item v from
user u and the current error in predicting this rating. In
contrast, DShare for vertices are not used.

With the data defined as above, the computation of
Algorithm 1 is almost an one-to-one translation of the
above equations. In the first step, Algorithm 1 calculates
prediction errors Erru,v for every given rating (i.e., every
edge) by: 1) using a Sink operation to compute the pro-
duction of every aligned feature elements and store the
result in the edge’s DColle vector; and 2) using an Up-
dateEdge operation to sum up each edge’s DColle vec-
tor (i.e., <Pu, QT

v >) and subtract it with the correspond-
ing Rate. After calculating the current errors, the updat-
ing formulas mentioned above can be implemented in a

straightforward way (the Pull and the Push operation in
Algorithm 1).

As shown in Algorithm 1, programmers only need
to define the Push, Pull and Sink operation on one el-
ement of the DColle vector (i.e., the user-defined func-
tions operate only one index i), while the UpdateEdge
and UpdateVertex reads or writes all vector elements.
Importantly, programmers do not need to specify “which
sub-vertex/edge contains which DColle elements”. The
details such as indexes of data elements for each layer
are specified in a decoupled manner and automatically
handled by the framework (Section 4.4).
ALS Alternating Least Squares (ALS) [38] is another
algorithm to solve CF problem. It alternatively fixes one
unknown feature matrix and solves another by minimiz-
ing the object function ∑(u,v)∈R Err2

u,v. This approach
turns a non-convex problem into a quadratic one that can
be solved optimally. A general description of ALS is as
follows:

Step 1 Randomly initialize matrix P.
Step 2 Fix P, calculate the best Q that minimizes the

error function. This can be implemented by setting Qv =
(∑(u,v)∈R PT

u Pu)
−1(∑(u,v)∈R Ru,vPT

u).
Step 3 Fix Q, calculate the best P in a similar way.
Step 4 Repeat Steps 2 and 3 until convergence.
As a typical bipartite algorithm, we implement ALS

with the specialized APIs described in Section 3.4. Al-
gorithm 2 presents our program, where the regularization
code is also omitted. In ALS, the collection size SC is set
to “D+D ∗D” rather than just D. Each of the DColle
vector contains two parts: 1) a feature vector Vec with
size D that stores the corresponding feature vector; and
2) a buffer Mat with size D×D, which is used to keep the
result of VecT ∗Vec.

1 -
2 3

UpdateVertexU

Push

1 2 ? ? ? ?

2 1 ? ? ? ?

Vec Mat

1 2 1 2 2 4

2 1 4 2 2 1

User0

User1

User0

User1

R

? ? ? ? ? ?

? ? ? ? ? ?

Vec Mat

5 4 5 4 4 5

6 3 4 2 2 1

Item0

Item1

Item0

Item1

Figure 3: An illustration of ALS’s Step 2. In this example,
there are two users, two items, and three given ratings.

Figure 3 presents a typical example of ALS’ Step 2.
First, only the users’ feature matrix P is initialized, so
that only the feature vector of every vertex in U con-
tains valid data; and the others are ‘?’. Then, an Update-
VertexU operation is used to calculate VecT ∗Vec for ev-
ery vertex in U, and the results are stored in the cor-
responding Mat area. After that, a Push operation is
used to aggregate the corresponding values. For each
v ∈ V, ∑(u,v)∈R Ru,vPT

u and ∑(u,v)∈R PT
u Pu are calculated

and stored in v’s Vec (i.e., DColle[0:D-1]) and Mat (i.e.,
DColle[D:D+D2-1]) area, respectively. Finally, the opti-
mal value of Qv is calculated by solving a linear equation,

290 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

which is implemented by calling the DSYSV function
in LAPACK [2] (not illustrated in Figure 3). Similarly
to Step 2, Step 3 of ALS can be implemented with the
symmetrical call of UpdateVertexV, Pull, and Update-
VertexU.

Algorithm 2 Program for ALS.
Data:

SC :— D+D∗D
DShareu :— NULL; DShareu→v :— {double Rate}
DColleu :— vector<double>(SC); DColleu→v :— NULL

Functions:
F1(v) :— {

foreach (i, j) from (0,0) to (D−1,D−1) do
v.DColle[D+ i∗D+ j] := v.DColle[i]∗ v.DColle[j];

return v;
}
F2(ui,ei) :— {

if i < D do return ei.DShare.Rate∗ui.DColle[i];
else return ui.DColle[i];

}
F3(v) :— { DSYSV(D,&v.DColle[0],&v.DColle[D]); return v;}

Computation for each iteration:
UpdateVertexU(F1);
Push(F2, +, +);
UpdateVertexV(F3);
UpdateVertexV(F1);
Pull(F2, +, +);
UpdateVertexU(F3);

4 CUBE

To implement UPPS model, we build a new graph com-
puting engine, CUBE. It is written in C++ and based on
MPICH2.

4.1 Graph Loading and Partitioning
In CUBE, each node starts by loading a separate subset of
the graph. The 3D partitioning algorithm in CUBE con-
sists of a 2D partitioning algorithm P and a layer count
L, in which L is assigned by users. Thus, after loading,
the 2D partitioner P is used to calculate an assignment
of edges (i.e., E j defined in Section 3.2); and, similarly,
a random partitioner is used to partitioning the vertices
(i.e., Vj). With these assignments, a global shuffling
phase is followed to dispatch the loaded data to where
they should be according to the partition policy given
in Section 3.2. After shuffling, each Nodei, j contains a
copy of Da[k] and Db→c[k], if vertex a ∈ Vj, edge (b→
c) ∈ E j, and LowerBound(i) ≤ k < LowerBound(i+1).
Moreover, we use Hybrid-cut [10] as the default 2D par-
titioner and Bi-cut [11] is used for bipartite graphs, as
they work well on real-world graphs.

4.2 Update
In an Update, all the elements of DColle properties are
needed. To implement this kind of operation, each vertex
or edge is assigned a node as the master to perform the

Update, which needs to gather all the required data be-
fore execution. The master node then iterates all data el-
ements it collected, applies the user-defined function and
finally scatters the updated values. For bipartite graph
oriented operations, UpdateVertexU and UpdateVertexV,
only a subset of vertex data is gathered.

As defined before, E j and Vj are the subset of edges
and vertices in jth partition determined by a 2D parti-
tioning algorithm, and Node∗, j is the set of nodes in all
layers to process E j and Vj. In Update, each edge or ver-
tex in E j (or Vj) should have one master node Nodei, j,
i∈ [0,L) among Node∗, j that needs to gather all data ele-
ments for the edge or vertex to perform update operation.
We define the set of edges or vertices of which the master
node is Nodei, j as Ei, j or Vi, j. So we have

⋃L−1
i=0 Ei, j = E j

and
⋃L−1

i=0 Vi, j =Vj. For simplicity, we randomly select a
node from Node∗, j for each edge and vertex in E j and Vj.
The inter-layer communications are incurred in Update
by gathering and scattering, which are implemented by
two rounds of AllToAll communication among the same
nodes in different layers (i.e. Node∗, j).

For certain associative operations (e.g. sum), only
the aggregation of the elements in a node is needed.
For example, GD algorithm (Algorithm 1) only requires
the sum of each node’s local DColle elements. We al-
low users to define a local combiner for Update oper-
ations. With the local combiner, each node reduces its
local DColle elements before sending the single value to
its master. Local combiner further reduces communica-
tion because the master node only needs to gather one
rather than SC/L elements from each node in all other
layers. For operations that can be specified by a cus-
tom MPI_OP, we leverage the existing MPI_AllReduce
operation instead of gather and scatter to further reduce
network traffic.

4.3 Push, Pull, Sink
A replica for Du[i] exists at node Nodei, j if ∃v : (u,v) ∈
E j or ∃v : (v,u) ∈ E j. The execution of each operation
starts with replica synchronization within each layer. It
could be implemented by executing L AllToAll commu-
nications among Nodei,∗ concurrently in each layers.

After synchronization, for Push and Pull, the user-
defined gather function G is used to calculate the gather
result for each vertex; for Sink, the user defined func-
tion H is applied to each edge. After that, for Push or
Pull, another L AllToAll communications among Nodei,∗
are used to gather the results reduced by the user defined
sum function ⊕ and then the user defined function A up-
dates the vertex data. Similar to the Update, the sum
function ⊕ is also used as a local combiner, so that the
gather results are locally aggregated before sending. In
bipartite mode, only a subset of vertex data is synchro-
nized in Push and Pull.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 291

Table 2: A collection of real-world graphs.
Dataset |U| |V| |E| Best 2D Partitioner Description
Libimseti 135,359 168,791 17,359,346 Hybrid-cut Dating data from libimseti.cz. [7]
Last.fm 359,349 211,067 17,559,530 Bi-cut Music data from Last.fm. [9]
Netflix 17,770 480,189 100,480,507 Bi-cut Movie review data from Netflix. [38]

4.4 Matrix-based data structure

Vertex-centric programming models are productive for
developing graph programs. But, according to recent
investigations, the performance of a naive vertex-cenric
implementation can be 2×−6× lower than matrix-based
execution engines [19, 34, 37]. Therefore, CUBE uses
matrix-based backend data structures.

In CUBE, both edge and vertex data are stored contin-
uously. The edges are modeled as a sparse matrix and
stored in coordinate list (COO) format, which is a list
of (source vertex ID, destination vertex ID, edge value)
tuples. The vertex data are simply stored in a continu-
ous array. Since each worker only maintains a subset of
graph data, the global ID of its vertices may not be con-
tinuous (e.g., vertex C is missing in sub-graph 1 of Figure
4). Thus we need to implement an efficient mechanism
for index conversion. Many traditional graph engines use
the inefficient hash map based data structure for index-
ing. Instead, CUBE maps the non-continuous global ID
to continuous local ID for each worker. The mechanism
is shown in Figure 4. In each worker, the vertex data
are stored in a dense vector indexed by its local ID; the
row/column ID of its sub-graph is substituted by local ID
to ensure quick and straightforward location of the cor-
responding vertex data for each edge. Moreover, rather
than using the simple dictionary order, we sort the edge
data in Hilbert order [6], which is akin to ordered edges
(a,b) by the interleaving of the bits of a and b. It has
been shown that Hilbert order exhibits locality in both
dimensions rather than one dimension as in the dictio-
nary order, and hence incurs much fewer cache misses.
Note that all the mapping and sorting procedures are per-
formed in the initial preparing stage before the following
many computing iterations. Therefore, the cost of the
preparing procedure is amortized. The system records
all data exchanging information at the preparing phase,
so there is no need for global/local ID converting during
the computation.

DC

BA

A

C
B

D

A DCB

A DB C

A

C
B

D

-----------Local-ID:---0---1---2

---------Global-ID:---A---B---D

Mapped-Edges:--{m0,-1t,--m2,-1t}

-----------Local-ID:---0---1---2

---------Global-ID:---B---C---D

Mapped-Edges:--{m0,-1t,-m1,-2t}

D

BA

DC

B

Sub-Graph-1

Sub-Graph-2

Original-Graph

:-Non-zero-elements,-i.e.,-the-assigned-edges:-Zero-elements

Figure 4: An illustration of the mapping between local
and global IDs.

5 Evaluation
This section presents evaluation results of CUBE and
compares it with two existing frameworks, Power-
Graph [15] and PowerLyra [10]. For each case, we pro-
vide: 1). Mathematical equations that calculate the com-
munication traffic; 2). Experimental performance results
that validate the prediction based on communication traf-
fic. To get a thorough understanding of CUBE, we also
discuss other aspects such as scalability, memory con-
sumption, partitioning cost, and COST metric.

0

5

10

15

20

1 2 4 8 16 32 64

R
ep

lic
at

io
nN

fa
ct

or
N(
λ)

mNofNpartitions

LastFMN(Bi-cut)
NetflixN(Bi-cut)

LibimsetiN(Hybrid-cut)

Figure 5: The best replication factor of each dataset.

5.1 Evaluation setup
We conduct the experiments on an 8-node Intelr Xeonr

CPU E5-2640 based system. All nodes are connected
with a 1Gb Ethernet and each node has 8 cores running
at 2.50 GHz. We use a collection of real-world bipar-
tite graphs gathered by the Stanford Network Analysis
Project [1]. Table 2 shows the basic characteristics of
each dataset.

Since our 3D partitioning algorithm relies on a 2D
partitioner within each layer, we first select the best 2D
partitioner for each dataset. To do so, we evaluated all
existing 2D partitioning algorithms in PowerGraph and
PowerLyra. This includes the heuristic-based Hybrid-cut
[10], the bipartite-graph-oriented algorithm Bi-cut [11]
and many other random/hash partitioning algorithms.
We calculated the average number of replicas for a vertex
(i.e., replication factor, λ) for each algorithm. λ includes
both original vertices and the replicas. We consider the
best partitioner as the one that has the smallest λ . To
capture the number of partitions, we use λx to denote the
average number of replicas for a vertex when a graph is
partitioned into x sub-graphs (e.g., λ1 = 1). Table 2 also
shows the best 2D partitioner for each data set: Hybrid-
cut is the best for Libimseti, while Bi-cut is the best for
LastFM and Netflix. For LastFM, source set (i.e., U)
should be used as the favorite subset, while for Netflix,
target set (i.e., V) should be used as the favorite subset.
Here, “favorite subset” is an input parameter defined by
Bi-cut that usually should be set to the larger vertex set
of the bipartite graph.

292 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10

20

30

40

50

124 8 16 32 64

Libimseti,ESCE=E256
LastFM,ESCE=E256

Libimseti,ESCE=E1024
LastFM,ESCE=E1024

uEofElayersE(L)

E
xe

cu
tio

n
Eti

m
eE

(S
e

c.
)

(a) SpMM

10

20

30

40

50

24 8 16 32 641

Libimseti,ESCE=E256
LastFM,ESCE=E256

Libimseti,ESCE=E1024
LastFM,ESCE=E1024

uEofElayersE(L)

E
xe

cu
tio

n
Eti

m
eE

(S
e

c.
)

(b) SumV

10

20

30

40

50

24 8 16 32 641

Libimseti,ESCE=E256
LastFM,ESCE=E256

Libimseti,ESCE=E1024
LastFM,ESCE=E1024

uEofElayersE(L)

E
xe

cu
tio

n
Eti

m
eE

(S
e

c.
)

(c) SumE
Figure 6: The impact of layer count on average execution time for running the micro benchmarks with 64 workers.

Figure 5 shows the replication factor of each dataset
for the best 2D partitioning algorithm. We see that Bi-cut
is effective if the size of two vertex subsets in a bipar-
tite graph is significantly skewed. It is indeed the case
for Netflix: the size of its target subset (i.e., |V|) is 27
times more than its source subset (i.e., |U|). Therefore,
the replication factor grows moderately with the number
of partitions (e.g., λ64 of Netflix is only 3.09). On the
other side, LastFM is more balanced and its replication
factor grows faster. We show in later sections that, the
faster the replication factor grows the better speedup our
3D partitioning algorithm can achieve. Therefore, the
improvement is the most significant for Libimseti and the
least for Netflix.

5.2 Micro Benchmarks
CUBE allows users to specify the layer count L which is a
key factor determining the tradeoff between the amount
of intra-layer and inter-layer communication. Two ex-
treme values for L are: 1, where the inter-layer com-
munication is zero and 3D partition degenerates to 2D
partitioning; and N (the number of workers), where the
intra-layer communication is zero. In general, as L be-
comes larger, the intra-layer communication decreases
and inter-layer communication increases.

We present the equations to calculate communication
traffic for three micro-benchmarks and show the perfor-
mance results as L changes from 1 to 64. The reason why
we use micro-benchmarks first before discussing full ap-
plications is two-fold. First, each micro-benchmark only
requires a single operation in UPPS so that we can iso-
late it from other impacts. Second, the equations ob-
tained for each case can be used as building blocks to
construct communication traffic equations for real appli-
cations. We will show that the performance results can
be indeed explained by the traffic equations.

5.2.1 SpMM
The Sparse Matrix to Matrix Multiplication (SpMM)
multiplies a dense and small matrix A (size D×H) with
a big but sparse matrix B (size H×W), where D� H,
D�W . This computation kernel is prevalently used in
many MLDM algorithms. For example, in training phase
of some certain kinds of Deep Learning algorithms [14],
the big sparse matrix B is used to represent the network

parameters and the small dense A is a minibatch of train-
ing data, in which D is the batch size (usually ranges
from 20 to 1000).

In UPPS, this problem could be modeled by a bipartite
graph with |V | = H +W , where |U| = H and |V| = W .
The non-zero elements in the big sparse matrix are rep-
resented by an edge i→ j (from a vertex in U to a vertex
in V) with DSharei→ j = bi, j and DCollei→ j = NULL.
On the other side, the dense matrix A is modeled by ver-
tices: the ith column of A is represented as the DColle
vector associated with vertex i in U, where SC = D and
DShare = NULL. The computation of a SpMM opera-
tion is implemented by a single Push (or Pull) operation.

Figure 6a shows the execution time of SpMM on 64
workers with L from 1 to 64. Since the computation
of SpMM is always equally partitioned into each node,
the reduction on execution time is mainly caused by the
reduction on network traffic. Formally, if a 3D parti-
tioner (P,L) is used for partitioning the graph into N
nodes, a total of λN/L ∗ |V | replicas will be used in each
layer. Since the communication of each Push/Pull oper-
ation only involves intra-layer communication and only
the DColle elements of vertices are needed to be syn-
chronized, the total network traffic can be calculated by
summing the number of DColle elements sent in each
layer, which is (SC/L)∗ (λN/L−1)∗ |V |.

For the bipartite graph in SpMM, synchronization is
only needed among replicas in the sub-graph where the
vertices are updated (U or V). If SpMM is implemented
as a Push, the network traffic is (SC/L)∗(λV

N/L−1)∗|V|;
if it is implemented as a Pull, the network traffic is
(SC/L)∗ (λU

N/L−1)∗ |U|. Here λU
N/L and λV

N/L are repli-
cation factor for U and V, respectively.

As a result, the amount of network traffic in a SpMM
operation can be calculated by the following equations,
in which S denotes the size of each DColleu[i]. The traf-
fic is doubled because two rounds of communications
(gather and scatter) are needed in replica synchroniza-
tion.

Traffic(SpMMPush) = 2∗S∗SC ∗ (λV
N/L−1)∗ |V| (1)

Traffic(SpMMPull) = 2∗S∗SC ∗ (λU
N/L−1)∗ |U| (2)

For a general graph, |V | is the total number of syn-
chronized vertices. Thus, we have:

Traffic(Push/Pull) = 2∗S∗SC ∗ (λN/L−1)∗ |V | (3)

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 293

Our results show that, with Hybrid-cut used as P in
partitioning the Libimseti dataset, λ2 equals to 1.93 and
λ64 equals to 11.52. Hence 1− (0.93/10.52) = 91% of
the network traffic is reduced by partitioning the graph
into 32 layers (so that in each layer just has 2 partitions)
rather than 1. Figure 6a shows that the reduction on net-
work traffic incurs a 7.78× and 7.45× speedup on av-
erage execution time when SC is set to 256 and 1024,
respectively.

5.2.2 SumV
In SpMM, the best performance is always achieved by
having as many layers as possible (i.e. best L is the num-
ber of workers). This is because SpMM incurs only intra-
layer communications. In contrast, for operations that
require inter-layer communications, the network traffic
and execution time will increase with large L. To under-
stand this aspect, we consider a micro benchmark SumV,
which computes the sum of all elements in DColle vector
for each vertex and stores the result in the corresponding
DShare of each vertex (i.e., DShareu := sum(DColleu)).
SumV can be implemented by a single UpdateVertex. As
we have mentioned in Section 4.2, a local combiner can
be used to reduce the network traffic of SumV. However,
this optimization is not used in our experiments since we
intend to measure the overhead of general cases.

Figure 6b provides the execution time of SumV on 64
workers with L from 1 to 64. We see that as L increases,
the execution time becomes longer, this validates our pre-
vious analysis. We also see that the slope of this curve is
decreasing when L becomes larger. To explain this phe-
nomenon, we calculate the exact amount of network traf-
fic during the execution of one SumV. Specifically, for
enabling an UpdateVertex operation, each master node
Nodei, j needs to gather all elements of DColle of v, if v∈
Vi, j. Since Vi, j ⊆Vj, the total amount of data that Nodei, j

should gather is SC ∗ |Vi, j|− SC
L ∗ |Vi, j|= L−1

L ∗SC ∗ |Vi, j|.
Then, all master nodes perform the update and scatter a
total amount of (L−1)∗|V |DShare data. As a result, the
total communication cost of a SumV operation is

Traffic(SumV) = Traffic(UpdateVertex)

= 2∗S∗ L−1
L
∗SC ∗ |V |+S∗ (L−1)∗ |V |

(4)

We see that if SC is large enough, the communication
cost will be dominated by the first term, which has an up-
per bound and the slope of its increase becomes smaller
as L becomes larger. Since the execution time is roughly
decided by network traffic, we see the very similar trend
in Figure 6b.

5.2.3 SumE
SumE is a similar micro benchmark to SumV, it does
the same operations for all edges. Figure 6c presents
the average execution time for executing a single Up-
dateEdge, which performs the equation “DShareu→v :=

sum(DColleu→v)”. The communication cost of SumE is
almost the same as SumV, except that DColle of edges
rather than vertices are gathered and scattered. As a re-
sult, the communication cost of a SumE operation is:

Traffic(SumE) = Traffic(UpdateEdge)

= 2∗S∗ L−1
L
∗SC ∗ |E|+S∗ (L−1)∗ |E|

(5)

As we can infer from the equation, data lines in Figure
6c share the same tendency of the lines in Figure 6b.

5.2.4 Summary
We see from the micro benchmarks that, Update be-
comes slower as L increases while Push/Pull/Sink be-
comes faster. Given a real-world algorithm which uses
the basic operations in UPPS as building blocks, pro-
grammers should first obtain the replication factor of the
graphs and plug it into the equations to estimate the best
L that achieves lowest communication cost.

5.3 Real Applications
Besides the micro-benchmarks described above, we also
implemented the GD and ALS algorithm that we ex-
plained in Section 3.6. ALS involves intra-layer com-
munications due to Push/Pull and inter-layer communi-
cations due to UpdateVertex. GD combines the intra-
layer operation Sink with the inter-layer operation Upda-
teEdge. The UpdateEdge of GD can be optimized by the
local combiner while ALS cannot. ALS explores the spe-
cialized APIs for bipartite graphs while GD uses the nor-
mal ones. As a conclusion, the implementation of these
two algorithms covers all common patterns of CUBE, and
hence many other algorithms can be considered as some
weighted combinations of GD and ALS. For example,
the back-propagation algorithm for training neural net-
works can be implemented by combining an ALS-like
round (for calculating the loss function) and a GD-like
round (that updates parameters).

In the following sections, we first demonstrate the per-
formance improvements of CUBE over the existing sys-
tems PowerGraph and PowerLyra. Then, we present a
piecewise breakdown of our performance gain by calcu-
lating the network traffic reductions as in Section 5.2.

5.3.1 Implementation
Both PowerGraph and PowerLyra have provided their
implementation of GD and ALS, we use oblivious [15]
for PowerGraph and the corresponding best 2D partition-
ers (as listed in Table 2) for PowerLyra.

In CUBE, the implementation of GD and ALS are sim-
ilar to those given in Section 3.6. However, some op-
timizations for further reducing network traffic are ap-
plied. For GD, we enable a local combiner for the
UpdateEdge operation. For ALS, we merge successive
UpdateVertexU and UpdateVertexV operations into one
(e.g., the two UpdateVertexV operations at line 3 and line

294 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 3: Results on execution time. Each of the cell gives
data in the format of “PowerGraph / PowerLyra / CUBE” (in
Second/Iteration). The number in parenthesis is the chosen L.

D # of
workers

Libimseti
GD ALS

64
8 9.78 / 9.56 / 2.04 (2) 70.8 / 70.4 / 46.7 (8)
16 8.04 / 8.16 / 1.95 (4) 72.6 / 71.5 / 37.6 (16)
64 6.82 / 6.89 / 2.59 (4) 87.0 / 86.8 / 28.7 (64)

128
8 14.99 / 14.94 / 3.87 (2) 261 / 258 / 193 (8)
16 12.81 / 12.91 / 2.62 (4) 270 / 270 / 135 (16)
64 11.64 / 11.62 / 3.33 (8) 331 / 331 / 109 (64)

D # of
workers

LastFM
GD ALS

64
8 12.0 / 8.98 / 3.45 (2) 124 / 73.5 / 70.9 (8)
16 10.5 / 8.22 / 2.59 (2) 128 / 69.5 / 61.6 (16)
64 10.4 / 9.86 / 2.48 (4) 158 / 111 / 57.6 (64)

128
8 19.0 / 13.8 / 4.74 (2) 465 / 263 / 270 (4)
16 17.6 / 13.5 / 3.35 (4) 490 / 253 / 200 (16)
64 18.6 / 17.8 / 3.47 (8) Failed / Failed / 230 (64)

D # of
workers

Netflix
GD ALS

64
8 34.4 / 27.7 / 6.03 (1) 256 / 204 / 110 (2)
16 26.7 / 17.3 / 3.97 (1) 186 / 107 / 60.4 (2)
64 18.3 / 7.42 / 4.16 (1) 179 / 66.0 / 42.5 (8)

128
8 51.8 / 38.6 / 9.65 (1) 865 / 657 / 463 (1)
16 41.9 / 23.0 / 6.59 (1) 669 / 340 / 258 (2)
64 30.6 / 11.3 / 6.55 (2) Failed / 239 / 118 (8)

4 of Algorithm 2 is actually implemented as one Update-
VertexV operation whose input function successively ex-
ecute F3 and F1). The 2D partitioning algorithm P used
for consisting our 3D partitioner is the listed in Table 2,
and hence is the same as PowerLyra.

5.3.2 Execution Time
Table 3 shows execution time results. D is the size of
the latent dimension, which gives opportunities that were
not exploited in previous systems. In general, a higher D
produces higher accuracy of prediction with higher both
memory consumption and computational cost. We report
the execution time of GD and ALS on three datasets (Li-
bimseti, LastFM and Netflix) with three different number
of workers (8, 16 and 64). For each case, we conduct the
evaluation on three systems: PowerGraph [15], Power-
Lyra [10] and CUBE, the results are shown in the same
order in the table. The number in parenthesis for CUBE
indicates the chosen L for the reported execution time,
which is the one with best performance. “Failed” means
that the execution in this case failed due to exhausted
memory.

As a summary of the results, CUBE outperforms Pow-
erLyra by up to 4.7× and 3.1× on the GD and ALS
algorithm respectively. The speedup over PowerGraph
is even higher (about 7.3×−1.5×). According to our
analysis, the speedup on ALS is mainly caused by the
reduction on network traffic, while the speedup on GD
is caused by both the reduction on network traffic and
the increasing of data locality. This is because that the
computation part of the ALS algorithm is dominated by

the DSYSV kernel, which is a CPU-bounded algorithm
that has an O(N3) complexity. In contrast, the GD algo-
rithm is mainly memory bandwidth bounded and hence
is sensitive to memory locality. Next, we quantitatively
discuss the network traffic of the two applications.

5.3.3 Communication Cost
As we have mentioned above, the improvement of CUBE
is mainly from two aspects: 1) reduction on network
communications; and 2) the adoption of a matrix back-
end. Thus, in order to further understand the perfor-
mance gain, we performed a detailed analysis on the ef-
fect of network reductions, and the rests are resulted from
the matrix backend.

0%

20%

40%

60%

80%

100%

120%

 1 2 4 8 16 32 64R
ed

uc
ed

 C
om

m
un

ic
at

io
n

C
os

t

of layers

Netflix
Lastfm

Libimseti

Figure 7: Reduction on GD (64 workers, D = 128).

GD The network traffic of a CUBE program can be cal-
culated with the equations given in Section 5.2. But,
since a local combiner is used for UpdateEdge, its com-
munication cost is only 2 ∗ 8byte ∗ (L− 1) ∗ |E|3. The
network traffic for a Sink is half of Push/Pull. As a re-
sult, communication cost of each GD iteration is:

Traffic(GD) = (2+2+1)∗8byte∗ (λN/L−1)∗SC ∗ |V |

+2∗8byte∗ (L−1)∗ |E|
(6)

The reduced network traffic is plotted in Figure 7,
which are both the results of mathematical derivation
and experimental evaluation. This is because that, as the
metadata exchanged by workers account for only a neg-
ligible part of the whole communication cost, the mea-
sured results are almost identical to the number calcu-
lated by formulas. As we can see from the figure, the
network traffic reduction for GD is related to replication
factor, density of graph (i.e. |E|/|V |) and SC. If the den-
sity large enough (|E|/|V | � SC), the best choice is to
group all nodes into one layer. It happens to be the case
for Netflix dataset, which has a density of more than 200.
Therefore, the best L is almost always 1 for a small D
(except when D=128 and worker count is 64, i.e., the il-
lustrated case in Figure 7). In contrast, for Libimesti,
whose density is only 57, our 3D algorithm can reduce
about 64% network traffic.

In order to further understand the effectiveness of
our 3D partitioner, we have also performed a piecewise

3This result is based on Equation 5, in which S = 8. The first term is
divided by D/L because we use a local combiner, and the second term
is zero because DShare is NULL

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 295

0

2

4

6

8

10

8 16 64

PowerLyrakvs.kCUBE

CUBEk(L=1)kvs.kCUBE

S
pe

ed
up

#kofkworkers

Figure 8: Evaluating the speedup caused by network re-
duction only for running GD on Libimesti with D = 128.

breakdown analysis of the speedup achieved by CUBE.
This is possible, because we can estimate the perfor-
mance improvements gained by 3D partitioning only
through comparing CUBE with itself that has layer count
L be fixed to 1. Figure 8 illustrates the results on Libi-
mesti. As we can see, 3D partitioner accounts for about
half of the whole speedup (up to about 2×). The results
on Lastfm are quite similar to Libimesti but, as we can
also infer from Figure 7, most of the speedup for Net-
flix is resulted from our matrix backend. This is why, in
Table 3, the best layer count for running GD on Netflix
is usually set to 1. However, if D is set to 2048, even
for Netflix, the best L becomes 8 with 64 workers, which
achieves a 2.5× speedup compared to L = 1.

Moreover, since we use a matrix-based backend that is
more efficient than the graph engine used in PowerGraph
and PowerLyra, the total speedup on memory-bounded
algorithms, such as GD, is still up to 4.7×. A similar
speedup (1.2×−7×) is reported by the single-machine
graph engine GraphMat [34], which also maps a vertex
program to matrix backend.

0%
20%
40%
60%
80%

100%
120%
140%

1 2 4 8 16 32 64

#MofMlayersR
ed

uc
ed

MC
om

m
u

ni
ca

tio
nM

C
o

st

Netflix
LastFM

Libimseti

Figure 9: Reduction on ALS (64 workers, D = 128).
ALS As discussed in Section 5.3.1, we merged the suc-
cessive UpdateVertexU and UpdateVertexV in ALS for
reducing synchronizations. After the merge, each itera-
tion of the ALS algorithm only needs to execute each of
the four operations (i.e., UpdateVertexU, Push, Update-
VertexV and Pull) in bipartite mode once. Thus, based on
the estimating formulas given in Section 5.2 (i.e, Equa-
tion 1, Equation 2 and Equation 4), the network traffic
needed in each iteration is:

Traffic(ALS) =2∗8byte∗ (λN/L−1+
L−1

L
)∗SC ∗ (|U|+ |V|)

+8byte∗ (L−1)∗ (|U|+ |V|)
(7)

According to Equation 7, we can infer that our 3D

partitioner can achieve more significant network traffic
reduction on a graph if it is hard to reduce replicas (i.e.
λN is large). Figure 9 shows the relation between layer
count L and the proportion of reduced network traffics
when executing ALS with 64 workers and D = 128. For
example, λ64 = 11.52 for Libimseti (Figure 5), thus net-
work traffic is drastically reduced by 90.6% by partition-
ing the graph into 64 layers. Table 3 shows that such re-
duction leads to about 3× speedup on the average execu-
tion time. In contrast, the replication factor for the other
two datasets is relatively small and hence the speedup is
also not as significant as the speedup on Libimseti.

Similar to GD, we have also performed the piecewise
breakdown analysis for ALS, the results show that al-
most all (> 90%) of the performance improvements are
from 3D partitioning. As we have mentioned in Sec-
tion 5.3.2, this is because that the computation part of
the ALS algorithm is dominated by the DSYSV kernel.
DSYSV is a CPU-bounded algorithm that computes the
solution to a real system of linear equations, which has
an O(N3) complexity and its state-of-the-art implemen-
tation has already efficiently explored its inner-operation
locality. As a result, there is not much help of adopting a
matrix backend.

5.4 Scalability
For many graph algorithms, the communication cost
grows with the number of nodes used. Therefore, the
scalability could be limited for those algorithms on small
graphs. This is because that the network time may soon
dominate the whole execution time, and the reduction of
computation time could not offset the increase of net-
work time.

While the potential scalability limitations exist, since
our 3D partitioning algorithm reduces the network traf-
fic, CUBE scales better than PowerGraph and PowerLyra.
As we can see from Table 3, for Libimseti and LastFM,
the execution time of PowerLyra actually increases af-
ter the number of workers reaches 16, while CUBE with
lower network traffic can scale to 64 workers in most
cases. Although the scalability of CUBE also becomes
limited for more than 16 workers, we believe that it is
mainly because that the graph size is not large enough.
We expect that for those billion/trillion-edge graphs used
in industry [13], our system will be able to scale to hun-
dreds of nodes. To partially validate our hypothesis,
we tested CUBE on a random generated synthetic graph,
which also follows the power law and contains around
one billion edges. The results show that CUBE can scale
to 128 workers easily (a further 2.2× speedup is achieved
with 128 vs. 32 workers.). Moreover, existing techniques
[3, 21] that could improve Pregel/PowerGraph’s scalabil-
ity can also be used to improve our system.

296 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.5 Memory Consumption
Table 3 shows that, L for the best performance of ALS is
almost always equal to the number of workers on Libi-
mesti and LastFM dataset. However, L affects the total
memory consumption in different ways. On one side,
when L increases, the size of memory for replicas of
DColle is reduced by the partition of property vector.
On the other side, the memory consumption could in-
crease because DShare needs to be replicated on each
layer. Specifically, since each edge has DShare data with
type double in our case, the total memory needed in ALS
is (λN/L ∗SC ∗|V |+L∗|E|)∗8 bytes, where SC =D2+D.
For example, Figure 10 shows the total memory con-
sumption (the sum of the memory needed on all nodes)
with different L when running ALS on Libmesti with 64
workers.

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70T
ot

al
 M

em
or

y
N

ee
de

d
(G

B
)

of layers (L)

Figure 10: Total memory needed for running ALS with
64 workers and D = 32, SC = 1056.

We see that the total memory consumption first de-
creases, but after a point (roughly L = 32) it slightly in-
creases. The memory consumption with L = 64 is larger
than L = 32, because the reduction on replicas of DColle
data cannot offset the increase of shared DShare data.
Therefore, L = 64 is the parameter for the best perfor-
mance at the cost of a slightly increased memory con-
sumption. Nevertheless, we see that the total memory
consumption at L = 1 is much larger than cases when
L > 1. Therefore, CUBE using a 3D partitioning algo-
rithm usually consume less memory than PowerGraph
and PowerLyra.

5.6 Partitioning Time
Some works [18] indicated that intelligent graph par-
titioning algorithms may have a dominating time and
hence actually increase the total execution time. How-
ever, according to Chen et al. [10], this is only partially
true for simple heuristic-based partitioning algorithms.
As we can deduce from the definitions given in section
3.2, the partitioning complexity of a 3D partitioner is al-
most the same as the 2D partitioning algorithm. Thus
it only trades a negligible growth of graph partitioning
time for a notable speedup during graph computation.
Moreover, for those sophisticated MLDM applications
that CUBE focuses on, the ingress time typically only
counts for a small partition of the overall computation
time. As a result, we believe that the partitioning time of
CUBE is negligible.

Specifically, the whole setup procedure of CUBE can
be split into three phases namely loading, assigning and
re-dispatching. 1). In the loading phase, each node reads
an exclusive part of graph data, which is the same as most
existing systems. 2). In the assigning phase, the assign-
ment of each edge is calculated by the 2D partitioner P.
Since both hybrid-cut and bi-cut can calculate the assign-
ment for each edge independently, this phase is also very
fast (at least its cost is not larger than PowerLyra). Fi-
nally, 3). in the re-dispatching phase, each node sends
its loaded data to other nodes if it is necessary (accord-
ing to the data partition policy detailed in Section 3.2).
Typically, the cost of sending edge data is proportional
to L, while the cost of sending vertex data is negatively
related to L as there are fewer replicas. If there are initial
data for vertexes, the total sending cost is approximately
equal to the total memory consumption. As illustrated by
Figure 10, this means that setting L > 1 may actually re-
duce the cost. In contrast, if vertexes data are randomly
initialized, we do have a larger cost with larger L. But,
as mentioned in above, typically this cost will not exceed
the communication cost of one computing iteration, and
hence is acceptable.

5.7 Discussion
COST A recent study [25] shows that some distributed
systems may only scale well when its single-threaded
implementation has a high cost. The paper proposes a
new metric COST (i.e. Configuration that Outperforms a
Single Thread) to capture this type of inefficiency. If the
COST of a system is c, it means that it takes c workers for
this system to outperform a single-threaded implementa-
tion of the same algorithm. We also conduct COST anal-
ysis for CUBE. To do so, we built single-threaded imple-
mentations of both GD and ALS, which are just straight-
forward transformations of the algorithms described in
Section 3.6 to BLAS operators. Based on them, we eval-
uate the COST of CUBE and find that it is only up to
4, which is moderate. In comparison, McSherry et al.
[25] indicates that the data-parallel systems reported in
recent SOSP and OSDI either have “a surprisingly large
COST, often hundreds of cores, or simply underperform
one thread for all of their reported configurations”. Our
results align with recent investigations [31, 34], which
shows that matrix-centric systems usually have a much
better COST than vertex-centric systems.
Faster Network The interconnect of our platform is
using 1Gb Ethernet, which is a common configuration
used in several recent papers [10]. Readers may won-
der that whether the speedups presented is reproducible
on a faster experimental setup, which is becoming more
and more popular. However, according to our evaluation,
when we use 10Gb network, the execution time of Pow-
erGraph/PowerLyra is only reduced by up to 30%, such

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 297

reduction is smaller than our MPI_Alltoallv based sys-
tem. For example, when running ALS on Netflix dataset
with 64 nodes and D = 128, the execution time of Pow-
erLyra only reduces from 239s/iter (1Gb) to 187s/iter
(10Gb). In contrast, our CUBE is accelerated from
118s/iter (1Gb) to 63.9s/iter (10Gb) (in which the time
consumed by MPI_AllToAllv is reduced from 73.1s/iter
to 17.8s/iter). Although counter-intuitive, it seems that
PowerGraph/PowerLyra cannot fully utilize the network
optimization and hence the speedup of CUBE over Pow-
erGraph/PowerLyra is even bigger over a 10Gb network.

Impact of Graph Structure As mentioned in Section
5.1, structure of the input graph does have a great im-
pact of the speedup that can be achieved by our 3D par-
titioning algorithm. Essentially, less skewness in graphs
means that there are fewer opportunities for existing 2D
partitioner (e.g., hybrid-cut, bi-cut) to explore4. Thus,
the replica factor λx increases more faster with the num-
ber of sub-graphs x, which leads to a better speedup of
using 3D partitioning. This is the reason that why we
call a 2D partitioner “better” and use it in the evaluation
if it produces fewer replicas. We want to make sure that
the speedup we achieved is not based on a poor P.

Comparison with Other Systems There are currently a
variety of graph-parallel systems. Here we only concen-
trate on comparing with PowerLyra because its partition-
ing algorithm produces significant fewer replicas than
the others and hence it incurs the lowest network traffic.
Moreover, according to Satish et al. [31], Giraph and
SociaLite [32] is slower than GraphLab, and hence will
be much slower than PowerLyra. As for CombBLAS [8],
due to the restriction of its programming model, both the
ALS and GD algorithm can only be implemented by SC
times of SpMV in ComBLAS [31], which is extremely
slow when SC is large.

Scope of Application In general, our method is appli-
cable to algorithms analyzing relations among divisible
properties. The algorithms presented in this paper are
only examples but not all we can support. As an illustra-
tion, the matrix to matrix multiplication and matrix fac-
torization examples presented above are building blocks
of many other MLDM algorithms. Thus, these problems
(e.g., neural network training, mini-batched SGD, etc.)
can also benefit from our method. Moreover, some algo-
rithms, whose basic version have only indivisible proper-
ties, have advanced versions that involve divisible prop-
erties (e.g., Topic-sensitive PageRank [17], Multi-source
BFS [35], etc), which obviously can also take advantage
of a 3D partitioner.

4Many state-of-the-art 2D partitioning algorithms take advantage
from the fact that most real-world graphs follow power law, hence they
may not work well if the data is not that skewed.

6 Other Related Work
Several graph parallel systems [8, 10, 12, 15, 16, 26, 27,
28, 29, 30, 36, 39] have been proposed for processing the
large graphs and sparse matrices. Although these sys-
tems are different from each other in terms of program-
ming models and backend implementations, our system,
CUBE, is fundamentally different from all of them by
adopting a novel 3D partitioning strategy. As shown in
Section 2, this 3D partitioning reduces network traffic
by up to 90.6%. Besides graph partitioning, there are
also many algorithms have been proposed for partition-
ing large matrices [4, 5]. Our 3D partitioning algorithm
is inspired by the 2.5D matrix multiplication algorithm
presented by Solomonik et al. [33]. However, the 2.5D
algorithm is designed for multiplying two dense matrices
and hence cannot be used in graph processing. Regarding
the backend execution engine, GraphMat [34] provides
a vertex programming frontend and maps it to a matrix
backend. However, it is based on a single-machine sys-
tem that cannot scale out by adding more nodes. Our
system adopts the same strategy as GraphMat while ex-
tending it to a distributed environment.

7 Conclusion
We argue that the popular “task partitioning == graph
partitioning” assumption is untrue for many MLDM al-
gorithms and may result in suboptimal performance. For
those MLDM algorithms, instead of a single value, a vec-
tor of data elements is defined as the property for each
vertex/edge. We explore this feature and propose a cate-
gory of 3D partitioning algorithm that considers the hid-
den dimension to partition the property vector to differ-
ent nodes. Based on 3D partitioning, we built CUBE,
a new graph computation engine that 1) adopts the novel
3D partitioning for reducing communication cost; 2) pro-
vides the users with a new vertex-centric programming
model UPPS; and 3) leverages a matrix-based data struc-
ture in the backend to achieve high performance. Our
evaluation results show that CUBE outperforms the ex-
isting 2D and vertex-based frameworks PowerLyra by up
to 4.7× (up to 7.3× speedup over PowerGraph).

8 Acknowledgments
We want to thank Chuntao Hong and Pin Gao for their
advises, all the anonymous reviewers and our shep-
herd for their detailed and useful reviews. This work
is supported by Natural Science Foundation of China
(61433008, 61373145, 61572280, 61073011, 61133004,
U1435216), National Key Research & Development
Program (2016YFB1000500), National Basic Research
(973) Program of China (2014CB340402). Spanish
Gov. European ERDF under TIN2010-21291-C02-01
and Consolider CSD2007-00050.

298 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] S. N. A. Project. Stanford large network dataset collec-

tion. http://snap.stanford.edu/data/.

[2] ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S.,
DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. LA-
PACK Users’ Guide, third ed. 1999.

[3] AWARA, K., JAMJOOM, H., AND KANLIS, P. To 4,000 compute
nodes and beyond: Network-aware vertex placement in large-
scale graph processing systems. SIGCOMM ’13, pp. 501–502.

[4] BALLARD, G., BULUC, A., DEMMEL, J., GRIGORI, L., LIP-
SHITZ, B., SCHWARTZ, O., AND TOLEDO, S. Communication
optimal parallel multiplication of sparse random matrices. SPAA
’13, pp. 222–231.

[5] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O.
Graph expansion and communication costs of fast matrix multi-
plication: Regular submission. SPAA ’11, pp. 1–12.

[6] BENDER, M. A., BRODAL, G. S., FAGERBERG, R., JACOB, R.,
AND VICARI, E. Optimal Sparse Matrix Dense Vector Multipli-
cation in the I/O-Model. SPAA ’07, pp. 61–70.

[7] BROZOVSKY, L., AND PETRICEK, V. Recommender system for
online dating service. Znalosti ’07.

[8] BULUÇ, A., AND GILBERT, J. R. The combinatorial BLAS:
design, implementation, and applications. IJHPCA 25 (2011),
496–509.

[9] CELMA, O. Music Recommendation and Discovery in the Long
Tail. Springer, 2010.

[10] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs.
EuroSys ’15, pp. 1:1–1:15.

[11] CHEN, R., SHI, J., ZANG, B., AND GUAN, H. Bipartite-
oriented distributed graph partitioning for big learning. APSys
’14.

[12] CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X.,
WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E. Ki-
neograph: Taking the pulse of a fast-changing and connected
world. EuroSys ’12, pp. 85–98.

[13] CHING, A., EDUNOV, S., KABILJO, M., LOGOTHETIS, D.,
AND MUTHUKRISHNAN, S. One trillion edges: Graph process-
ing at facebook-scale. Proc. VLDB Endow. 8, 12 (2015), 1804–
1815.

[14] COATES, A., HUVAL, B., WANG, T., WU, D. J., CATANZARO,
B. C., AND NG, A. Y. Deep learning with COTS HPC systems.
ICML ’13, pp. 1337–1345.

[15] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. OSDI ’12, pp. 17–30.

[16] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing
in a distributed dataflow framework. OSDI ’14, pp. 599–613.

[17] HAVELIWALA, T. H. Topic-sensitive pagerank. In Proceedings
of the 11th International Conference on World Wide Web (New
York, NY, USA, 2002), WWW ’02, ACM, pp. 517–526.

[18] HOQUE, I., AND GUPTA, I. Lfgraph: Simple and fast distributed
graph analytics. In Proceedings of the First ACM SIGOPS Con-
ference on Timely Results in Operating Systems (New York, NY,
USA, 2013), TRIOS ’13, ACM, pp. 9:1–9:17.

[19] HUANG, C.-C., CHEN, Q., WANG, Z., POWER, R., ORTIZ, J.,
LI, J., AND XIAO, Z. Spartan: A distributed array framework
with smart tiling. USENIX ATC ’15, pp. 1–15.

[20] JANNACH, D., ZANKER, M., FELFERNIG, A., AND
FRIEDRICH, G. Recommender systems: an introduction. Cam-
bridge University Press, 2010.

[21] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: A system for dy-
namic load balancing in large-scale graph processing. EuroSys
’13, pp. 169–182.

[22] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-
ROLA, A., AND HELLERSTEIN, J. M. Distributed graphlab: A
framework for machine learning and data mining in the cloud.
Proc. VLDB Endow. 5 (2012), 716–727.

[23] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: A
system for large-scale graph processing. SIGMOD ’10, pp. 135–
146.

[24] MCSHERRY, F. Spectral partitioning of random graphs. FOCS
’01, pp. 529–.

[25] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
But at What Cost? In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems (Berkeley, CA, USA,
2015), HOTOS’15, USENIX Association, pp. 14–14.

[26] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: A timely dataflow system.
SOSP ’13, pp. 439–455.

[27] PRABHAKARAN, V., WU, M., WENG, X., MCSHERRY, F.,
ZHOU, L., AND HARIDASAN, M. Managing large graphs on
multi-cores with graph awareness. USENIX ATC’12, pp. 4–4.

[28] PUNDIR, M., LESLIE, L. M., GUPTA, I., AND CAMPBELL,
R. H. Zorro: Zero-cost reactive failure recovery in distributed
graph processing. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC ’15, pp. 195–208.

[29] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. SOSP ’15, pp. 410–424.

[30] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
Edge-centric graph processing using streaming partitions. SOSP
’13, pp. 472–488.

[31] SATISH, N., SUNDARAM, N., PATWARY, M. M. A., SEO, J.,
PARK, J., HASSAAN, M. A., SENGUPTA, S., YIN, Z., AND
DUBEY, P. Navigating the maze of graph analytics frameworks
using massive graph datasets. SIGMOD ’14, pp. 979–990.

[32] SEO, J., PARK, J., SHIN, J., AND LAM, M. S. Distributed so-
cialite: A datalog-based language for large-scale graph analysis.
Proc. VLDB Endow. 6, 14 (2013), 1906–1917.

[33] SOLOMONIK, E., AND DEMMEL, J. Communication-optimal
Parallel 2.5D Matrix Multiplication and LU Factorization Algo-
rithms. Euro-Par ’11, pp. 90–109.

[34] SUNDARAM, N., SATISH, N., PATWARY, M. M. A., DULLOOR,
S. R., ANDERSON, M. J., VADLAMUDI, S. G., DAS, D., AND
DUBEY, P. GraphMat: High performance graph analytics made
productive. Proc. VLDB Endow. 8, 11 (2015), 1214–1225.

[35] THEN, M., KAUFMANN, M., CHIRIGATI, F., HOANG-VU, T.-
A., PHAM, K., KEMPER, A., NEUMANN, T., AND VO, H. T.
The more the merrier: Efficient multi-source graph traversal.
Proc. VLDB Endow. 8, 4 (Dec. 2014), 449–460.

[36] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,
LIN, H., DAI, Y., AND ZHOU, L. Gram: Scaling graph compu-
tation to the trillions. SoCC ’15, pp. 408–421.

[37] ZHANG, M., WU, Y., CHEN, K., MA, T., AND ZHENG, W.
Measuring and optimizing distributed array programs. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 912–923.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 299

[38] ZHOU, Y., WILKINSON, D., SCHREIBER, R., AND PAN, R.
Large-scale parallel collaborative filtering for the netflix prize.
AAIM ’08, pp. 337–348.

[39] ZHU, X., CHEN, W., ZHENG, W., AND MA, X. Gemini: A
computation-centric distributed graph processing system. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16) (Savannah, GA, Nov. 2016), USENIX As-
sociation.

300 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Gemini: A Computation-Centric Distributed Graph Processing System

Xiaowei Zhu1, Wenguang Chen1,2,∗, Weimin Zheng1, and Xiaosong Ma3

1Department of Computer Science and Technology (TNLIST), Tsinghua University
2Technology Innovation Center at Yinzhou,

Yangtze Delta Region Institute of Tsinghua University, Zhejiang
3Qatar Computing Research Institute, Hamad Bin Khalifa University

Abstract
Traditionally distributed graph processing systems have
largely focused on scalability through the optimizations
of inter-node communication and load balance. How-
ever, they often deliver unsatisfactory overall processing
efficiency compared with shared-memory graph comput-
ing frameworks. We analyze the behavior of several
graph-parallel systems and find that the added overhead
for achieving scalability becomes a major limiting factor
for efficiency, especially with modern multi-core proces-
sors and high-speed interconnection networks.

Based on our observations, we present Gemini, a
distributed graph processing system that applies multi-
ple optimizations targeting computation performance to
build scalability on top of efficiency. Gemini adopts (1)
a sparse-dense signal-slot abstraction to extend the hy-
brid push-pull computation model from shared-memory
to distributed scenarios, (2) a chunk-based partitioning
scheme enabling low-overhead scaling out designs and
locality-preserving vertex accesses, (3) a dual represen-
tation scheme to compress accesses to vertex indices, (4)
NUMA-aware sub-partitioning for efficient intra-node
memory accesses, plus (5) locality-aware chunking and
fine-grained work-stealing for improving both inter-node
and intra-node load balance, respectively. Our eval-
uation on an 8-node high-performance cluster (using
five widely used graph applications and five real-world
graphs) shows that Gemini significantly outperforms all
well-known existing distributed graph processing sys-
tems, delivering up to 39.8× (from 8.91×) improvement
over the fastest among them.

1 Introduction

Graph processing is gaining increasing attentions in both
academic and industrial communities. With the magni-
tude of graph data growing rapidly, many specialized dis-
∗Corresponding author (cwg@tsinghua.edu.cn).

tributed systems [3, 12, 16, 17, 30, 32, 41, 45] have been
proposed to process large-scale graphs.

While these systems are able to take advantage of mul-
tiple machines to achieve scalability, their performance
is often unsatisfactory compared with state-of-the-art
shared-memory counterparts [36, 47, 49, 57]. Further, a
recent study [33] shows that an optimized single-thread
implementation is able to outperform many distributed
systems using many more cores. Our hands-on experi-
ments and performance analysis reveal several types of
design and implementation deficiencies that lead to loss
of performance (details in Section 2).

Based on the performance measurement and code ex-
aminations, we come to recognize that traditional dis-
tributed graph-parallel systems do not fit in today’s pow-
erful multi-core cluster nodes and fast-speed networks.
To achieve better overall performance, one needs to fo-
cus on the performance of both computation and commu-
nication components, compressing the computation time
aggressively while hiding the communication cost, rather
than focusing primarily on minimizing communication
volume, as seen in multiple existing systems’ design.

To bridge the gap between efficient shared-memory
and scalable distributed systems, we present Gemini, a
distributed graph processing system that builds scalabil-
ity on top of efficiency. More specifically, the main con-
tributions of this work are summarized as follows:
• We perform detailed analysis of several existing

shared-memory and distributed graph-parallel sys-
tems and identify multiple design pitfalls.
• We recognize that efficient and scalable distributed

graph processing involves intricate interplay be-
tween the properties of the application, the under-
lying system, and the input graph. In response, we
explore adaptive runtime choices, such as a density-
aware dual-mode processing scheme and multiple
locality-aware data distribution and load balancing
mechanisms. The result is a system that can de-
liver competitive performance on a range of system

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 301

scales, from multi-core to multi-node platforms.
• We identify a simple yet surprisingly effective

chunk-based graph partitioning scheme, which fa-
cilitates exploitation of natural locality in input
graphs and enables seamless hierarchical refine-
ment. We present multiple optimizations enabled
by this new partitioning approach.
• We evaluate our Gemini prototype with extensive

experiments and compared it with five state-of-the-
art systems. Experiments with five applications on
five real-world graphs show that Gemini signifi-
cantly outperforms existing distributed implemen-
tations, delivering up to 39.8× (from 8.91×) im-
provement over the fastest among them. We collect
detailed measurement for performance analysis and
validating internal design choices.

2 Motivation

While state-of-the-art shared-memory graph processing
systems are able to process graphs quite efficiently, the
lack of scalability makes them fail to handle graphs that
do not fit in the memory of a single machine. On the
other hand, while existing distributed solutions can scale
graph processing to larger magnitudes than their shared-
memory counterparts, their performance and cost effi-
ciencies are often unsatisfactory [33, 59, 60].

To study the performance loss, we profiled several rep-
resentative graph-parallel systems, including Ligra [47],
Galois [36], PowerGraph [16], PowerLyra [12], as well
as the optimized single-thread implementation proposed
in the COST paper [33] for reference. We set up ex-
periments on an 8-node high-performance cluster in-
terconnected with Infiniband EDR network (with up to
100Gbps bandwidth), each node containing two Intel
Xeon E5-2670 v3 CPUs (12 cores and 30MB L3 cache
per CPU) and 128 GB DRAM. We ran 20 iterations of
PageRank [38] on the twitter-2010 [28] graph, a test case
commonly used for evaluating graph-parallel systems.

Cores 1 24×1 24×8
System OST Ligra Galois PowerG. PowerL.

Runtime (s) 99.9 21.9 19.3 40.3 26.9
Instructions 525G 496G 482G 7.15T 6.06T
Mem. Ref. 15.8G 32.3G 23.4G 95.8G 87.2G

Comm. (GB) - - - 115 38.1
IPC 1.71 0.408 0.414 0.500 0.655

LLC Miss 8.77% 43.9% 49.7% 71.0% 54.9%
CPU Util. 100% 91.7% 96.8% 65.5% 68.4%

Table 1: Sample performance analysis of existing sys-
tems (20 iterations of PageRank on twitter-2010). OST
refers to the optimized single-thread implementation.

Table 1 gives detailed performance metrics for the five
targeted systems. Overall, systems lose efficiency as

we move from single-thread to shared memory, then to
distributed implementations. Though this is to be ex-
pected with communication/synchronization overhead,
load balance issues, and in general higher software com-
plexities, the large span in almost all measurement cate-
gories across alternative systems indicates a large room
for improvement.

As seen from the profiling results, the network is far
from saturated (e.g., lower than 3Gbps average aggre-
gate bandwidth usage with PowerGraph). Computation,
rather than communication, appears to be the actual bot-
tleneck of evaluated distributed systems, which echoes
recent findings on distributed data analytics frame-
works [37]. Compared with their shared-memory coun-
terparts, they have significantly more instructions and
memory references, poorer access localities, and lower
multi-core utilization. We further dig into the code and
find that such inefficiency comes from multiple sources,
such as (1) the use of hash maps to convert vertex IDs be-
tween global and local states, (2) the maintenance of ver-
tex replicas, (3) the communication-bound apply phase
in the GAS abstraction [16], and (4) the lack of dynamic
scheduling. They either enlarge the working set, produc-
ing more instructions and memory references, or prevent
the full utilization of multi-core CPUs.

We argue that many of the above side-effects could be
avoided when designing distributed graph-parallel sys-
tems, by building scalability on top of efficiency, instead
of focusing on the former in the first place. The subse-
quent distributed system design should pay close atten-
tion to the computation overhead of cross-node operation
over today’s high-speed interconnect, as well as the local
computation efficiency on partitioned graphs.

To this end, we adapt Ligra’s hybrid push-pull com-
putation model to a distributed form, which facilitates
efficient vertex-centric data update and message pass-
ing. A chunk-based partitioning scheme is adopted, al-
lowing low-overhead graph distribution as well as recur-
sive application at multiple system levels. We further de-
ploy multiple optimizations to aggressively compress the
computation time. Finally, we design a co-scheduling
mechanism to overlap computation and inter-node com-
munication tasks.

3 Gemini Graph Processing Abstraction

Viewing modern clusters as small or moderate number
of nodes interconnected with fast networks similar to
a shared-memory multi-core machine, Gemini adopts a
graph processing abstraction that enables a smooth ex-
tension of state-of-the-art single-node graph computation
models to cluster environments.

Before getting to details, let us first give the targeted
graph processing context. Like assumed in many graph-

302 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

parallel systems or frameworks, single-node [47, 59, 60]
or distributed [11, 18, 23, 50] alike, a graph process-
ing problem updates information stored in vertices, while
edges are viewed as immutable objects. Also, like com-
mon systems, Gemini processes both directed and undi-
rected graphs, though the latter could be converted to di-
rected ones by replacing each undirected edge with a pair
of directed edges. The rest of our discussion therefore
assumes all edges are directed.

For a common graph processing application, the pro-
cessing is done by propagating vertex updates along the
edges, until the graph state converges or a given num-
ber of iterations are completed. Vertices with ongoing
updates are called active vertices, whose outgoing edges
collectively form the active edge set for processing.

3.1 Dual Update Propagation Model

At a given time during graph processing, the active edge
set may be dense or sparse, typically determined by its
size (total number of outgoing edges from active ver-
tices) relative to |E|, the total number of edges. For ex-
ample, the active edge set of the CC (connected com-
ponents) application is dense in the first few iterations,
and gets increasingly sparse as more vertices receive
their final labels. SSSP (single-source shortest paths), on
the other hand, starts from a very sparse edge set, get-
ting denser as more vertices become activated by their
in-neighbors, and sparse again when the algorithm ap-
proaches the final convergence.

State-of-the-art shared-memory graph processing sys-
tems [4, 36, 47, 57] have recognized that different active
edge set densities call for different update propagation
models. More specifically, sparse active edge sets prefer
the push model (where updates are passed to neighboring
vertices along outgoing edges), as the system only tra-
verses outgoing edges of active vertices where new up-
dates are made. In contrast, dense active edge sets ben-
efit more from the pull model (where each vertex’s up-
date is done by collecting states of neighboring vertices
along incoming edges), as this significantly reduces the
contention in updating vertex states via locks or atomic
operations.

While Ligra [47] proposed the adaptive switch be-
tween these two modes according to the density of an
active edge set in a shared-memory machine (with the de-
fault threshold |E|/20, which Gemini follows), here we
explore the feasibility of extending such design to dis-
tributed systems. The major difference is that a graph
will be partitioned and distributed across different nodes,
where information and updates are shared using explicit
message passing. To this end, Gemini uses the master-
mirror notion as in PowerGraph [16]: each vertex is as-
signed to (owned by) one partition, where it is a mas-

ter vertex, as the primary copy maintaining vertex state
data. The same vertex may also have replicas, called mir-
rors, on each node/partition that owns at least one of its
neighbors. A pair of directed edges will be created be-
tween each master-mirror pair, though only one of them
will be used in either propagation mode. Note that unlike
in PowerGraph, mirrors in Gemini act like placeholders
only for update propagation and do not hold actual data.

v v

sparseSignal sparseSlot

v

denseSignal

v

denseSlot

communica2on computa2on master mirror

Figure 1: The sparse-dense signal-slot model

With replicated vertices, Gemini adopts a sparse-dense
dual engine design, using a signal-slot abstraction to de-
couple the propagation of vertex states (communication)
from the processing of edges (computation). Borrowed
but slightly different from in the Qt software frame-
work [1], signals and slots denote user-defined vertex-
centric functions describing message sending and receiv-
ing behaviors, respectively. Computation and commu-
nication are handled differentially in the two modes, as
illustrated in Figure 1. In the sparse (push) mode, each
master first sends messages containing latest vertex states
to its mirrors via sparseSignal, who in turn update
their neighbors through outgoing edges via sparseSlot.
In the dense (pull) mode, each mirror first performs lo-
cal computation based on states of neighboring vertices
through incoming edges, then sends an update message
containing the result to its master via denseSignal,
who subsequently updates its own state appropriately via
denseSlot.

An interesting feature of the proposed abstraction is
that message combining [32] is automatically enabled.
Only one message per active master-mirror pair of each
vertex is needed, lowering the number of messages from
O(|E|) to O(|V |). This also allows computation to be
performed locally to aggregate outgoing updates without
adopting an additional “combining pass”, which is nec-
essary in many Pregel-like systems [3, 32, 44].

3.2 Gemini API

Gemini adopts an API design (Figure 2) similar to those
presented by shared-memory systems [47, 57]. Data and
computation distribution details are hidden from users.
A graph is described in its entirety with a type E for edge
data, and several user-defined vertex arrays. A compact
VertexSet data structure (internally implemented with

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 303

class	 Graph<E>	 {	
	 	 	 	 VertexID	 ver2ces;	
	 	 	 	 EdgeID	 edges;	
	 	 	 	 VertexID	 []	 outDegree;	
	 	 	 	 VertexID	 []	 inDegree;	
	 	 	 	 def	 allocVertexArray<V>()	 -‐>	 V	 [];	
	 	 	 	 def	 allocVertexSet()	 -‐>	 VertexSet;	
	 	 	 	 def	 processVer2ces<A>	 (
	 	 	 	 	 	 	 	 work:	 (VertexID)	 -‐>	 A,	
	 	 	 	 	 	 	 	 ac2ve:	 VertexSet,	
	 	 	 	 	 	 	 	 reduce:	 (A,	 A)	 -‐>	 A,	
)	 -‐>	 A;	
	 	 	 	 def	 processEdges<A,	 M>	 (
	 	 	 	 	 	 	 	 sparseSignal:	 (VertexID)	 -‐>	 void,	
	 	 	 	 	 	 	 	 sparseSlot:	 (VertexID,	 M,	 OutEdgeIterator<E>)	 -‐>	 A,	
	 	 	 	 	 	 	 	 denseSignal:	 (VertexID,	 InEdgeIterator<E>)	 -‐>	 void,	
	 	 	 	 	 	 	 	 denseSlot:	 (VertexID,	 M)	 -‐>	 A,	
	 	 	 	 	 	 	 	 reduce:	 (A,	 A)	 -‐>	 A,	
	 	 	 	 	 	 	 	 ac2ve:	 VertexSet	
)	 -‐>	 A;	
	 	 	 	 def	 emit<M>	 (recipient:	 VertexID,	 message:	 M)	 -‐>	 void;	
};	

//

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>	 g	 (…);	 //	 load	 a	 graph	 from	 the	 file	 system
VertexSet activeCurr =	 g.allocVertexSet();
VertexSet activeNext =	 g.allocVertexSet();
activeCurr.fill();	 //	 add	 all	 vertices	 to	 the	 set
VertexID []	 label	 =	 g.allocVertexArray <VertexID>	 ();
def add (VertexID a,	 VertexID b)	 :	 VertexID {
return	 a	 +	 b;

}
def initialize	 (VertexID v)	 :	 VertexID {
label[v]	 =	 v;
return 1;

}
VertexID activated	 =	 g.processVertices <VertexID>	 (
initialize,
activeCurr

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v)	 {
g.emit(v,	 label[v]);

}
def CCSparseSlot (VertexID v,	 VertexID msg,	 OEI	 iter)	 :	 VertexID
{
VertexID activated	 =	 0;
while (iter.hasNext())	 {
VertexID dst =	 iter.next().neighbour;
if (msg <	 label[dst]	 &&	 atomicWriteMin(label[dst],	 msg))	 {
activeNext.add(dst);	 //	 add	 ‘dst’	 to	 the	 next	 frontier
activated	 +=	 1;

}
}
return activated;

}
def CCDenseSignal (VertexID v,	 IEI	 iter)	 :	 void	 {
VertexIDmsg =	 v;
while	 (iter.hasNext())	 {
VertexID src =	 iter.next().neighbour;
msg =	 msg <	 label[src]	 ?	 msg :	 label[src];

}
if (msg <	 v)	 g.emit(v,	 msg);

}
def CCDenseSlot (VertexID v,	 VertexIDmsg)	 :	 VertexID {
if (msg <	 label[v]	 &&	 atomicWriteMin(label[v],	 msg))	 {
activeNext.add(v);	 //	 add	 ‘v’	 to	 the	 next	 frontier
return 1;

}
else	 return 0;

}
while (activated>0)	 {
activeNext.clear();	 //	 make	 an	 empty	 vertex	 set
activated	 =	 g.processEdges <VertexID,	 VertexID>	 (
CCSparseSignal,
CCSparseSlot,
CCDenseSignal,
CCDenseSlot,
activeCurr,
add

);
swap(activeCurr,	 activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-

304 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tion is collected, via aggregating the slot function return
values using add, to determine whether convergence has
been reached.

Note that in Gemini, graph partitioning stops at the
socket level. Cores on the same socket do not commu-
nicate via message passing, but directly perform updates
on shared graph data. Therefore, as shown in the ex-
ample, atomic operations are used in slots to ensure that
vertex states are updated properly.

Not all user-defined functions are mandatory, e.g.,
reduce is not necessary where there is no aggregation.
Also, Gemini’s dual mode processing is optional: users
may choose to supply only the sparse or dense mode al-
gorithm implementation, especially if it is known that
staying at one mode delivers adequate performance (such
as dense mode for PageRank), or when the memory is
only able to hold edges in one direction.

4 Distributed Graph Representation

While Gemini’s computation model presents users with
a unified logical view of the entire graph, when deployed
on a high-performance cluster, the actual graph has to
be partitioned and distributed internally to exploit par-
allelism. A number of partitioning methods have been
proposed, including both vertex-centric [30, 32, 48] and
edge-centric (aka. vertex-cut) [8, 12, 16, 24, 39] solu-
tions. Vertex-centric solutions enable a centralized com-
putation model, where vertices are evenly assigned to
partitions, along with their associated data, such as vertex
states and adjacent edges. Edge-centric solutions, on the
other hand, evenly assign edges to partitions and repli-
cate vertices accordingly.

However, as profiling results in Section 2 demon-
strated, prior studies focused on partitioning for load bal-
ance and communication optimizations, without paying
enough attention on the resulted system complexity and
the implication of partitioning design choices on the ef-
ficiency of computation.

To achieve scalability while maintaining efficiency,
we propose a lightweight, chunk-based, multi-level par-
titioning scheme. We present several design choices
regarding graph partitioning and internal representation
that aim at improving the computation performance in
distributed graph processing.

4.1 Chunk-Based Partitioning
The inspiration of Gemini’s chunk-based partitioning
comes from the fact that many large-scale real-world
graphs often possess natural locality, with crawling be-
ing the common way to collect them in the first place.
Adjacent vertices likely to be stored close to each other.
Partitioning the vertex set into contiguous chunks could

effectively preserve such locality. For example, in typical
web graphs the lexicographical URL ordering guarantees
that most of the edges connect two vertices close to each
other (in vertex ID) [7]; in the Facebook friendship net-
work, most of the links are close in geo-locations [52].
When locality happens to be lost in the input, there also
exist effective and affordable methods to “recover” local-
ity from the topological structure [2, 5], bringing the ben-
efit of chunk-based partitioning for potentially repeated
graph processing at a one-time pre-processing cost.

On a p-node cluster, a given global graph G = (V,E)
will be partitioned into p subgraphs Gi = (V ′i ,Ei) (i from
0 to p−1), where V ′i and Ei are the vertex subset and the
edge subset on the ith partition, respectively. To differen-
tiate master vertices from others, we denote Vi to be the
owned vertex subset on the ith partition.

Gemini partitions G using a simple chunk-based
scheme, dividing V into p contiguous vertex chunks
(V0,V1, ...,Vp−1), whose sizes are determined by addi-
tional optimizations discussed later in this section. Fur-
ther, we use ES

i and ED
i to represent the outgoing and

incoming edge set of partition i, used in the sparse and
dense mode respectively. Each chunk (Vi) is assigned to
one cluster node, which owns all vertices in this chunk.
Edges are then assigned by the following rules:

ES
i = {(src,dst,value) ∈ E|dst ∈Vi}

ED
i = {(src,dst,value) ∈ E|src ∈Vi}

where src, dst, and value represent an edge’s source ver-
tex, destination vertex, and edge value, respectively. In
other words, for the ith partition, the outgoing edge set
ES

i contains edges destined to its owned vertices Vi, while
the incoming edge set ED

i contains edges sourced from Vi.

0 1

2

3

4 5
Node0 Node1 Node2 Example	 Graph

0 1

2

3 5

2 3

0 1

4 5 4 5

0 2

3

V_split	 =	 [2,	 4]

Figure 5: An example of chunk-based partitioning (dense
mode), where the ID-ordered vertex array is split into
three chunks {0,1},{2,3},{4,5}. Again black and white
vertices denote mirrors and masters respectively.

Figure 5 gives an example of chunk-based partition-
ing, showing the vertex set on three nodes, with their
corresponding dense mode edge sets. Here mirrors are
created for all remote vertices that local masters have
out edges to. These mirrors will “pull” local neighboring

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 305

states to update their remote masters. The sparse mode
edge sets are similar and omitted due to space limit.

With chunk-based partitioning, Gemini achieves scal-
ability with little overhead. The contiguous partitioning
enables effortless vertex affiliation queries, by simply
checking partition boundaries. The contiguous feature
within each chunk also simplifies vertex data represen-
tation: only the owned parts of vertex arrays are actu-
ally touched and allocated in contiguous memory pages
on each node. Therefore, the memory footprint is well
controlled and no vertex ID conversions are needed to
compress the space consumption of vertex states.

As accesses to neighboring states generate random ac-
cesses in both push and pull modes, vertex access locality
is often found to be performance-critical. Chunk-based
partitioning naturally preserves the vertex access locality,
which tends to be lost when random-based distribution is
used. Moreover, random accesses to vertex states all falls
into the owned chunk Vi rather than V or V ′i . Gemini can
then benefit from chunk-based partitioning when the sys-
tem scales out, where random accesses could be handled
more efficiently as the chunk size decreases.

Such lightweight chunk-based partitioning does sacri-
fice balanced edge distribution or minimized cut edge set,
but compensates for such deficiency by (1) low-overhead
scaling out designs, (2) preserved memory access locali-
ties, and (3) additional load balancing and task schedul-
ing optimizations to be presented later in the paper.

4.2 Dual-Mode Edge Representation

0

1

2

3

5

0

1

2

4

nbr =	 [1,	 0,	 1,	 0]
idx =	 [0,	 1,	 1,	 3,	 3,	 4,	 4]

nbr =	 [0,	 0,	 1,	 1]
idx =	 [0,	 0,	 1,	 2,	 3,	 3,	 4]

CSC

Sparse	 Mode Dense	 Mode

CSR

vtx =	 [1,	 2,	 3,	 5]
off	 	 =	 [0,	 1,	 2,	 3,	 4]

ext =	 “101010”

Figure 6: Sample representation of sparse/dense mode
edges using CSR/CSC, with Gemini enhancement high-
lighted

Gemini organizes outgoing edges in the Compressed
Sparse Row (CSR) and incoming ones in the Compressed
Sparse Column (CSC) format. Both are compact sparse
matrix data structures commonly used in graph systems,
facilitating efficient vertex-centric sequential edge ac-
cess. Figure 6 illustrates the graph partition on clus-
ter node 0 from the sample graph in Figure 5 and its
CSR/CSC representation to record edges adjacent to
owned vertices (0 and 1). The index array idx records

each vertex’s edge distribution: for vertex i, idx[i]

and idx[i+1] indicate the beginning and ending offsets
of its outgoing/incoming edges to this particular parti-
tion. The array nbr records the neighbors of these edges
(sources for incoming edges or destinations for outgoing
ones).

Yet, from our experiments and performance analysis,
we find that the basic CSR/CSC format is insufficient.
More specifically, the index array idx can become a scal-
ing bottleneck, as its size remains at O(|V |) while the size
of edge storage is reduced proportionally at O(|E|/p) as
p grows. For example, in Figure 6, the partition has only
4 dense mode edges, but has to traverse the 7-element
(|V |+ 1) idx array, making the processing of adjacent
vertices (rather than edges) the bottleneck in dense mode
computation. A conventional solution to this is to com-
press the vertex ID space. This comes at the cost of con-
verting IDs between global and local states, which adds
other non-negligible overhead to the system.

To resolve the bottleneck in a lightweight fashion, we
use two schemes for enhancing the index array in the two
modes, as described below and illustrated in Figure 6:

• Bitmap Assisted Compressed Sparse Row: for
sparse mode edges, we add an existence bitmap
ext, which marks whether each vertex has outgo-
ing edges in this partition. For example, only ver-
tex 0, 2, and 4 are present, indicated by the bitmap
101010.
• Doubly Compressed Sparse Column: for dense

mode edges, we use a doubly-compression scheme
[9] to store only vertices with incoming edges (vtx)
and their corresponding edge offsets (off, where
(off[i+1]-off[i]) indicates the number of local
incoming edges vertex vtx[i] has). For example,
only vertex 1, 2, 3, and 5 has local incoming edges.

Both schemes reduce memory accesses required in
edge processing. In the dense mode, where all the ver-
tices in a local partition has to be processed, the com-
pressed indices enable Gemini to only access O(|V ′i |)
vertex indices reduced from O(|V |). In the sparse mode,
the bitmap eliminates the lookups into idx of vertices
that do not have outgoing edges in the local partition,
which occurs frequently when the graph is partitioned.

4.3 Locality-Aware Chunking
We now discuss how Gemini actually decides where to
make the p− 1 cuts when creating p contiguous vertex
chunks, using a locality-aware criterion.

Traditionally, graph partitioning pursues even distri-
bution of either the vertices (in vertex-centric scenarios)
or the edges (in edge-centric scenarios) to enhance load
balance.

306 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

While Gemini’s chunk-based partitioning is vertex-
centric, we find that balanced vertex distribution exhibits
poor load balance due to the power-law distribution [15]
of vertex degrees exhibited in most real-world graphs, of-
ten considered a disadvantage of vertex-centric solutions
compared with their edge-centric counterparts [16].

However, with chunk-based partitioning, even bal-
anced edge chunking, with |E|/p edges per partition uni-
formly brings significant load imbalance. Our closer ex-
amination finds that vertex access locality (one of the
performance focal points of Gemini’s chunk-based parti-
tioning) differs significantly across partitions despite bal-
anced edge counts, incurring large variation in |Vi|, the
size of vertex chunks.

While dynamic load balancing techniques [26, 41]
such as workload re-distribution might help, they in-
cur heavy costs and extra complexities that go against
Gemini’s lightweight design. Instead, Gemini employs
a locality-aware enhancement, adopting a hybrid met-
ric that considers both owned vertices and dense mode
edges in setting the balancing criteria. More specifically,
the vertex array V is split in a manner so that each par-
tition has a balanced value of α · |Vi|+ |ED

i |. Here α is
a configurable parameter, set empirically to 8 · (p− 1)
as Gemini’s default configuration in our experiments,
which might be adjusted according to hardware configu-
rations or application/input properties.

The intuition behind such hybrid metric is that one
needs to take into account the computation complexity
from both the vertex and the edge side. Here the size of
the partition, in terms of |Vi| and |ED

i |, not only affects
the amount of work (|ED

i |), but also the memory access
locality (|Vi|). To analyze the joint implication of specific
system, algorithm, and input features on load balancing
and enable adaptive chunk partitioning (e.g., automatic
configuration of α) is among our ongoing investigations.

4.4 NUMA-Aware Sub-Partitioning

An interesting situation with today’s high-performance
cluster is that the scale of intra-node parallelisms could
easily match or exceed that of inter-node levels. For in-
stance, our testbed has 8 nodes, each with 24 cores. Ef-
fectively exploiting both intra- and inter-node hardware
parallelism is crucial to the overall performance of dis-
tributed graph processing.

Most modern servers are built on the NUMA (Non-
Uniform Memory Access) architecture, where memory
is physically distributed on multiple sockets, each typi-
cally containing a multi-core processor with local mem-
ory. Sockets are connected through high-speed intercon-
nects into a global cache-coherent shared-memory sys-
tem. Access to local memory is faster than to remote
memory (attached to other sockets), both in terms of

lower latencies and higher bandwidths [14], making it
appealing to minimize inter-socket accesses.

Gemini’s chunk-based graph partitioning demon-
strates another advantage here, by allowing the system to
recursively apply sub-partitioning in a consistent man-
ner, potentially with different optimizations applicable
at each particular level. Within a node, Gemini applies
NUMA-aware sub-partitioning across multiple sockets:
for each node containing s sockets, the vertex chunk Vi is
further cut into s sub-chunks, one for each socket. Edges
are assigned to corresponding sockets, using the same
rules as in inter-node partitioning (Section 4.1).

NUMA-aware sub-partitioning boosts the perfor-
mance on NUMA machines significantly. It retains the
natural locality present in input vertex arrays, as well as
lightweight partitioning and bookkeeping. With smaller
yet densely processed sub-chunks, both sequential ac-
cesses to edges and random accesses to vertices are likely
to fall into the local memory, facilitating faster memory
access and higher LLC (last level cache) utilization si-
multaneously.

5 Task Scheduling

Like most recent distributed graph processing systems
[3, 11, 12, 16, 17, 23, 26, 32, 41, 43], Gemini follows
the Bulk Synchronous Parallel (BSP) model [53]. In
each iteration of edge processing, Gemini co-schedules
computation and communication tasks in a cyclic ring
order to effectively overlap inter-node communication
with computation. Within a node, Gemini employs a
fine-grained work-stealing scheduler with shared pre-
computed chunk counters to enable dynamic load bal-
ancing at a fine granularity. Below we discuss these two
techniques in more detail.

5.1 Co-Scheduling of Computation and
Communication Tasks

Inspired by the well-optimized implementation of collec-
tive operations in HPC communication libraries, such as
AllGather in MPI, Gemini organizes cluster nodes in a
ring, with which message sending and receiving opera-
tions are coordinated in a balanced cyclic manner, to re-
duce network congestion and maximize aggregate mes-
sage passing throughput. Such orchestrated communica-
tion tasks are further carefully overlapped with computa-
tion tasks, to hide network communication costs.

On a cluster node with c cores, Gemini maintains
an OpenMP pool of c threads for parallel vertex-centric
edge processing, performing the signal and slot tasks.
Each thread is bound to specific sockets to work with
NUMA-aware sub-partitioning. In addition, two helper

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 307

threads per node are created for inter-node message send-
ing/receiving operations via MPI.

Here again thanks to Gemini’s chunk-based partition-
ing and CSR/CSC organization of edges, it can naturally
batch messages destined to the same partition in both
sparse and dense modes for high-performance commu-
nication. Moreover, the batched messages enable us to
schedule the tasks in a simple partition-oriented fashion.
Figure 7 illustrates the co-scheduled ordering of the four
types of tasks, using the dense mode in the first partition
(node0) of the previous figure as an example.

0 1
20

31
51

MiniStep0 MiniStep1

denseSignal

sendBatchTo Node1 Node2 Node0

MiniStep2

recvBatchFrom Node2 Node1 Node0

denseSlot MsgFromNode2 MsgFromNode1 MsgFromNode0

Figure 7: Example of co-scheduled computation and
communication tasks on node0

The iteration is divided into p mini-steps, during each
of which nodei communicate with one peer node, start-
ing from nodei+1 back to itself. In the particular exam-
ple shown in Figure 7, there are three such stages, where
node0 communicates with node1, node2, and node0 re-
spectively. In each mini-step, the node goes through lo-
cal denseSignal processing, message send/receive, and
final local denseSlot processing. For example, here
in the first mini-step, local mirrors of vertices 2 and 3
(owned by node1) pull updates from vertices 0 and 1
(owned by self), creating a batched message ready for
node1, after whose transmission node0 expects a simi-
lar batched message from node2 and processes that in
denseSlot. In the next mini-step, similar update is
pulled by all local mirrors owned by node2 (only ver-
tex 5 in this figure), followed by communication and lo-
cal processing. The process goes on until node0 finally
“communicates” with itself, where it simply pulls from
locally owned neighbors (vertex 1 from 0). As sepa-
rate threads are created to execute the CPU-light message
passing tasks, computation is effectively overlapped with
communication.

5.2 Fine-Grained Work-Stealing

While inter-node load balance is largely ensured through
the locality-aware chunk-based partitioning in Gemini,
the hybrid vertex-edge balancing gets more and more
challenging when the partition goes smaller, from nodes

to sockets, then to cores. With smaller partitions, there
are fewer flexibilities for tuning the α parameter to
achieve inter-core load balance, especially for graphs
with high per-vertex degree variances.

Leveraging shared memory not available to inter-node
load balancing, Gemini employs a fine-grained work-
stealing scheduler for intra-node edge processing. While
the per-socket edge processing work is preliminarily par-
titioned with a locality-aware balanced manner across all
the cores as a starting point, each thread only grabs a
small mini-chunk of vertices to process (signal/slot)
during the OpenMP parallel region. Again, due to our
chunk-based partitioning scheme, this refinement retains
contiguous processing, and promotes efficient cache uti-
lization and message batching. Bookkeeping is also easy,
as it only requires one counter per core to mark the cur-
rent mini-chunk’s starting offset, shared across threads
and accessed through atomic operations. The default
Gemini setting of mini-chunk size is 64 vertices, as used
in our experiments.

Each thread first tries to finish its own per-core parti-
tion, then starts to steal mini-chunks from other threads’
partitions. Compared with finely interleaved mini-chunk
distribution from the beginning, this enhances memory
access by taking advantage of cache prefetching. Also,
this delays contention involved in atomic additions on
the shared per-core counters to the epilogue of the whole
computation. At that point, the cost is clearly offset by
improved inter-core load balance.

Vi
cluster

p partitions

V

Vij
per-‐node

S sub-‐partitions

per-‐socket
C	 per-‐core-‐partitions

V’ijk

per-‐core
(|V’ijk|/64)	 mini-‐chunks

V’ij

Data	 Partitioning

Work	 Partitioning

Figure 8: Hierarchical view of Gemini’s chunking

Finally, we summarize Gemini’s multi-level chunk-
based partitioning in Figure 8, all the way from node-
level, to socket-level, core-level, and finally to the mini-
chunk granularity for inter-core work stealing. The illus-
tration depicts the partitioning scenario in our actual test
cluster with 8 nodes, 2 sockets per node, 12 cores per
socket, and 64 vertices per mini-chunk. As shown here,
such simple chunk-based partitioning can be refined in
a hierarchical way, retaining access locality in edge pro-
cessing continuously.

308 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Implementation

Gemini is implemented in around 2,800 lines of C++
code, using MPI for inter-process communication and
libnuma for NUMA-aware memory allocation. Below
we discuss selected implementation details.
Graph Loading: When Gemini loads a graph from in-
put file, each node reads its assigned contiguous portion
in parallel. Edges are loaded sequentially into an edge
buffer in batches, where they undergo an initial pass.
Compared to common practice in existing systems, this
reduces the memory consumption of the loading phase
significantly, making it possible to load graphs whose
scales approach the aggregate memory capacity of the
whole cluster. For symmetric graphs, Gemini only stores
the graph topology data of one mode, as sparse mode
edges in this case are equivalent to the dense mode ones.
Graph Partitioning: When loading edges, each node
calculates the local degree of each vertex. Next, an
AllReduce operation collects such degree information
for chunking the vertex set as discussed in Section 4.
Each node can then determine the cuts locally without
communication. Edges are then re-loaded from file and
distributed to target nodes accordingly for constructing
local subgraphs.
Memory Allocation: All nodes share the the node-level
partitioning boundaries for inter-node message passing,
while the socket-level sub-partition information is kept
node-private. Each node allocates entire vertex arrays
in shared memory. However, Gemini only touches data
within its own vertex chunk, splitting the per-node ver-
tex partition and placing the sub-chunks on correspond-
ing sockets. The sub-partitioned graph topology datasets,
namely edges and vertex indices, also adopts NUMA-
aware allocation to promote localized memory accesses.
Mode Selection: Gemini follows Ligra’s mode switch-
ing mechanism. For each ProcessEdges operation,
Gemini first invokes an internal operation (defined via its
ProcessVertices interface) to get the number of active
edges, then determines the mode to use for the coming
interation of processing.
Parallel Processing: When the program initializes,
Gemini pins each OpenMP thread to specific sockets
to prevent thread migration. For work-stealing, each
thread maintains its status (WORKING or STEALING), cur-
rent mini-chunk’s start offset, and the pre-computed end
offset, which are accessible to other threads and allocated
in a NUMA-aware aligned manner to avoid false-sharing
and unnecessary remote memory accesses (which should
only happen in stealing stages). Each thread starts work-
ing from its own partition, changes the status when fin-
ished, and tries to steal work from threads with higher
ranks in a cyclic manner. Concurrency control is via
OpenMP’s implicit synchronization mechanisms.

Message Passing: Gemini runs one process on each
node, using MPI for inter-node message passing. At
the inter-socket level, each socket produces/consumes
messages through per-socket send and receive buffers in
shared memory to avoid extra memory copies and per-
form NUMA-aware message batching.

7 Evaluation

We evaluate Gemini on the 8-node cluster, whose specifi-
cations are given in Section 2, running CentOS 7.2.1511.
Intel ICPC 16.0.1 is used for compilation.

The graph datasets used for evaluation are shown in
Table 2. Our evaluation uses five representative graph
analytics applications: PageRank (PR), connected com-
ponents (CC1), single source shortest paths (SSSP2),
breadth first search (BFS), and betweenness centrality
(BC). For comparison, we also evaluated state-of-the-art
distributed graph processing systems, including Power-
Graph (v2.2), GraphX (v2.0.0), and PowerLyra (v1.0),
as well as shared-memory Ligra (20160826) and Galois
(v2.2.1). For each system, we make our best effort to
optimize the performance on every graph by carefully
tuning the parameters, such as the partitioning method,
the number of partitions, JVM options (for GraphX), the
used algorithm (for Galois), etc. To get stable perfor-
mance, we run PR for 20 iterations, and run CC, SSSP,
BFS, and BC till convergence. The execution time is re-
ported as elapsed time for executing the above graph al-
gorithms (average of 5 runs) and does not include loading
or partitioning time.

Graph |V| |E|
enwiki-2013 4,206,785 101,355,853
twitter-2010 41,652,230 1,468,365,182
uk-2007-05 105,896,555 3,738,733,648
weibo-2013 72,393,453 6,431,150,494
clueweb-12 978,408,098 42,574,107,469

Table 2: Graph datasets [5, 6, 7, 20] used in evaluation.

7.1 Overall Performance
As Gemini aims to provide scalability on top of effi-
ciency, to understand the introduced overhead, we first
take a zoom-in view of its single-node performance,
using the five applications running on the twitter-2010
graph. Here, instead of using distributed graph-parallel
systems, we compare Gemini with two state-of-the-art
shared-memory systems, Ligra and Galois, which we
have verified to have superior performance compared

1Gemini makes the input graphs undirected when computing CC.
2A random weight between 0 and 100 is assigned to each edge.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 309

with single-node executions of all the aforementioned
distributed systems.

Application Ligra Galois Gemini
PR 21.2 19.3 12.7
CC 6.51 3.59* 4.93

SSSP 2.81 3.33 3.29
BFS 0.347 0.528 0.468
BC 2.45 3.94* 1.88

Table 3: 1-node runtime (in seconds) on input graph
twitter-2010. The best times are marked in bold. “*” in-
dicates where different algorithm is adopted (i.e. union-
find for CC and asynchronous for BC).

Table 3 presents the performance of evaluated sys-
tems. Though with communication complexity designed
for distributed execution, Gemini outperforms Ligra and
Galois for PR and BC, and ranks the second for CC,
SSSP, and BFS. With the use of NUMA-aware sub-
partitioning, Gemini benefits from faster memory access
and higher LLC utilization in edge processing, thanks
to significantly reduced visits to remote memory. Un-
like the NUMA-oblivious access patterns of Ligra and
Galois, Gemini’s threads only visit remote memory for
work-stealing and message-passing.

Meanwhile, the distributed design inevitably brings
additional overhead. The messaging abstraction (i.e.,
batched messages produced by signals and consumed by
slots) introduces extra memory accesses. This creates
a major performance constraint for less computation-
intensive applications like BFS, where the algorithm
does little computation while the numbers of both vis-
ited edges and generated messages are in the order of
O(Σ|Vi|).3 In contrast, most other applications access all
adjacent edges of each active vertex, creating edge pro-
cessing cost proportional to the number of active edges
and sufficient to mask the message generation overhead.

Also, vertex state propagation in shared-memory sys-
tems employs direct access to the latest vertex states,
while Gemini’s BSP-based communication mechanism
can only fetch the neighboring states through message
passing in a super-step granularity. Therefore, its vertex
state propagation lags behind that of shared-memory sys-
tems, forcing Gemini to run more iterations than Ligra
and Galois for label-propagation-style applications like
CC and SSSP.

Overall, with a relatively low cost paid to support
distributed execution, Gemini can process much larger
graphs by scaling out to more nodes and to work quite
efficiently on single-node multi-core machines, allowing
it to handle diverse application-platform combinations.

3In BFS’s dense mode, edge processing at a vertex completes as
soon as it successfully “pulls” from any of its neighbors [4].

Graph PowerG.GraphX PowerL. Gemini Speedup
(×times)

PR
enwiki-2013 9.05 30.4 7.27 0.484 15.0
twitter-2010 40.3 216 26.9 3.02 8.91
uk-2007-05 64.9 416 58.9 1.48 39.8
weibo-2013 117 - 100 8.86 11.3
clueweb-12 - - - 31.1 n/a

CC
enwiki-2013 4.61 16.5 5.02 0.237 19.5
twitter-2010 29.1 104 22.0 1.22 18.0
uk-2007-05 72.1 - 63.4 1.76 36.0
weibo-2013 56.5 - 58.6 2.62 21.6
clueweb-12 - - - 25.7 n/a

SSSP
enwiki-2013 16.5 151 17.1 0.514 32.1
twitter-2010 12.5 108 10.8 1.15 9.39
uk-2007-05 117 - 143 3.45 33.9
weibo-2013 63.2 - 60.6 4.24 14.3
clueweb-12 - - - 56.9 n/a
GEOMEAN 19.1

Table 4: 8-node runtime (in seconds) and improvement
of Gemini over the best of other systems. “-” indicates
failed execution.

Table 4 reports the 8-node performance of Power-
Graph, GraphX, PowerLyra, and Gemini, running PR,
CC, and SSSP on all the tested graphs (BFS and BC re-
sults are omitted as their implementations are absent in
other evaluated systems). The results show that Gemini
outperforms the fastest of other systems in all cases sig-
nificantly (19.1× on average), with up to 39.8× for PR
on the uk-2007-05 graph. For the clueweb-12 graph with
more than 42 billion edges, Gemini is able to complete
PR, CC, and SSSP in 31.1, 25.7, and 56.9 seconds re-
spectively on the 8-node cluster while all other systems
fail to finish due to excessive memory consumption.

Graph Raw PowerGraph Gemini
enwiki-2013 0.755 13.1 4.02
twitter-2010 10.9 138 32.1
uk-2007-05 27.8 322 73.1
weibo-2013 47.9 561 97.5
clueweb-12 318 - 597

Table 5: Peak 8-node memory consumption (in GB). “-”
indicates incompletion due to running out of memory.

The performance gain mostly comes from the largely
reduced distributed overhead. Table 5 compares the
memory consumption of PowerGraph and Gemini. The
raw graph size (with each edge in two 32-bit integers) is
also presented for reference. PowerGraph needs mem-
ory more than 10× the raw size of a graph to process
it. The larger memory footprint brings more instructions

310 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and memory accesses, and lowers the cache efficiency.
In contrast, while Gemini needs to store two copies

of edges (in CSR and CSC respectively) due to its dual-
mode propagation, the actual memory required is well
controlled. Especially, the relative space overhead de-
creases for larger graphs (e.g., within 2× of the raw size
for clueweb-12). Gemini’s abstraction (chunk-based par-
titioning scheme, plus the sparse-dense signal-slot pro-
cessing model) adds very little overhead to the overall
system and preserves (or enhances when more nodes
are used) access locality present in the original graph.
The co-scheduling mechanism hides the communication
cost effectively under the high-speed Infiniband network.
Locality-aware chunking and fine-grained work-stealing
further improves inter-node and intra-node load balance.
These optimizations together enable Gemini to provide
scalability on top of efficiency.

7.2 Scalability
Next, we examine the scalability of Gemini, starting
from intra-node evaluation using 1 to 24 cores to run
PR on the twitter-2010 graph (Figure 9). Overall the
scalability is quite decent, achieving speedup of 1.9, 3.7,
and 6.8 at 2, 4, and 8 cores, respectively. As expected,
as more cores are used, inter-core load balancing be-
comes more challenging, synchronization cost becomes
more visible, and memory bandwidth/LLC contention
becomes intensified. Still, Gemini is able to achieve a
speedup of 9.4 at 12 cores and 15.5 at 24 cores.

1 2 4 8 12 24
of Cores

0

50

100

150

200

R
u
n
ti

m
e
 (

s)

Optimized Single Thread

Gemini

Figure 9: Intra-node scalability (PR on twitter-2010)

To further evaluate Gemini’s computation efficiency,
we compare it with the optimized single-thread imple-
mentation (which sorts edges in a Hilbert curve or-
der [33]), shown as the dashed horizontal line in Fig-
ure 9. Using the COST metric (i.e. how many cores a
parallel/distributed solution needs to outperform the op-
timized single-thread implementation), Gemini’s number
is 3, which is lower than those of other systems mea-
sured [33], though Gemini’s 2-core execution time is
only 3.1% higher than the optimized single-thread im-
plementation. Considering Gemini’s distributed nature, a

COST close to 2 illustrates its optimized computation ef-
ficiency and lightweight distributed execution overhead.

Figure 10 shows the inter-node scalability results,
comparing Gemini with PowerLyra, which we found to
have the best performance and scalability for our test
cases among existing open-source systems. Due to its
higher memory consumption, PowerLyra is not able to
complete in several test cases, as indicated by the missing
data points. All results are normalized to Gemini’s best
execution time of the test case in question. It shows that
though focused on computation optimization, Gemini is
able to deliver inter-node scalability very similar to that
by PowerLyra, approaching linear speedup with large
graphs (weibo-2013). With the smallest graph (enwiki-
2013), as expected, the scalability is poor for both sys-
tems as communication time dominates the execution.

For twitter-2010, Gemini has poor scaling after 4
nodes, mainly due to the emerging bottleneck from ver-
tex indices access and message production/consumption.
This is confirmed by the change of subgraph dimensions
shown in Table 6: when more nodes are used, both |Ei|
and |Vi| scales down perfectly, reducing edge process-
ing cost. The vertex set including mirrors, V ′i , however,
does not shrink accordingly, making its processing cost
increasingly significant.

p · s TPR (s) Σ|Vi|/(p · s) Σ|Ei|/(p · s) Σ|V ′i |/(p · s)
1 ·2 12.7 20.8M 734M 27.6M
2 ·2 7.01 10.4M 367M 19.6M
4 ·2 3.88 5.21M 184M 13.5M
8 ·2 3.02 2.60M 91.8M 10.5M

Table 6: Subgraph sizes with growing cluster size

7.3 Design Choices
Below we evaluate the performance impact of several
major design choices in Gemini. Though it is tempting to
find out the relative significance among these optimiza-
tions themselves, we have found it hard to compare the
contribution of individual techniques, as they often assist
each other (such as chunk-based partitioning and intra-
node work-stealing). In addition, when we incrementally
add these optimizations to a baseline system, the appar-
ent gains measured highly depend on the order used in
such compounding. Therefore we present and discuss
the advantages of individual design decisions, where re-
sults do not indicate their relative strength.

7.3.1 Adaptive Sparse-Dense Dual Mode

Adaptive switching between sparse and dense modes ac-
cording to the density of active edges improves the per-
formance of Gemini significantly. We propose an exper-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 311

PowerL. PR

Gemini PR

PowerL. CC

Gemini CC

PowerL. SSSP

Gemini SSSP

1 2 4 8
of Nodes

1

10

100

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

(a) enwiki-2013

1 2 4 8
of Nodes

1

10

100

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

(b) twitter-2010

1 2 4 8
of Nodes

1

10

100

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

(c) uk-2007-05

1 2 4 8
of Nodes

1

10

100

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

(d) weibo-2013

Figure 10: Inter-node scalability of PowerLyra and Gemini

20
Iteration No.

0

0.4

0.8

R
u
n
ti

m
e
 (

s) sparse

dense

(a) PR

76
Iteration No.

0

0.2

0.4

R
u
n
ti

m
e
 (

s) sparse

dense

(b) CC

172
Iteration No.

0

0.1

0.2

R
u
n
ti

m
e
 (

s) sparse

dense

(c) SSSP

Figure 11: Gemini’s per-iteration runtime in sparse and dense modes (uk-2007-05). Red regions indicate iterations
where Gemini’s adaptive engine chooses sub-optimal modes.

iment by forcing Gemini to run under the two modes for
each iteration respectively to illustrate the necessities of
the dual mode abstraction.

As shown in Figure 11, the performance gap between
sparse and dense modes is quite significant, for all three
applications. For PR, the dense mode consistently out-
performs the sparse one. For CC, the dense mode per-
forms better at the first few iterations when most of the
vertices remain active, while the sparse mode is more ef-
fective when more vertices reach convergence. For SSSP,
the sparse mode outperforms the dense mode in most it-
erations, except in a stretch of iterations where many ver-
tices get updated. Gemini is able to adopt the better mode
in most iterations, except 2 out of 76 for CC and 5 out
of 172 iterations for SSSP. These “mis-predictions” are
slightly sub-optimal as they happen, as expected, around
the intersection of the two modes’ performance curves.

7.3.2 Chunk-Based Partitioning

Next, we examine the effectiveness of Gemini’s chunk-
based partitioning through an experiment comparing it
against hash-based partitioning4.

Figure 12 exhibits the performance of Gemini using
these two partitioning methods on twitter-2010 and uk-

4We integrate the hash-based scheme (assigning vertex x to parti-
tion x%p) into Gemini by re-ordering vertices according to the hashing
result before chunking them.

tw
it
te
r¡
20
10

3.85

3.02

Runtime (s)

106

54.3

Comm. (GB)

36.8

17.4

Mem. Ref. (G)

35.5

27.8

LLC Miss (%)

u
k
¡
20
07
¡
05 8.05

1.48

154

3.98

84.4

5.52

42.2

19.1

Hash Chunk

Figure 12: Hash- vs. chunk-based partitioning (PR on
twitter-2010 and uk-2007-05)

2007-05, sampled to represent social and web graphs,
respectively. Gemini’s chunk-based partitioning outper-
forms the hash-based solution for both graphs. The per-
formance improvement is especially significant for the
web graph uk-2007-05, with more than 5.44× speedup.
The reason behind is the locality-preserving property of
chunk-based partitioning. Hash-based partitioning, in
contrast, loses the natural locality in the original graph.
As a result, hash-based partitioning produces not only
higher LLC miss rates, but also a large number of mirrors
in each partition, higher communication costs, and more

312 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

memory references, for master-mirror message passing
and vertex index accesses.

R
a
n
d
o
m

G
ri

d

O
b
liv

io
u
s

H
D

R
F

H
y
b
ri

d

G
in

g
e
r

C
h
u
n
k0

50

100

150

200

250

300

T
im

e
 (

s)

Preprocessing

Execution

Figure 13: Preprocessing/execution time (PR on twitter-
2010) with different partitioning schemes

Figure 13 shows the preprocessing time (loading plus
partitioning) of different partitioning methods [12, 16,
24, 39] used by PowerGraph, PowerLyra, and Gemini on
twitter-2010, with PR execution time given as reference.
While it appears that preprocessing takes much longer
than the algorithm execution itself, such preprocessing
only poses a one-time cost, while the partitioned graph
data can be re-used repeatedly by different applications
or with different parameters.

NUMA-aware sub-partitioning plays another impor-
tant role, as demonstrated by Figure 14 comparing sam-
ple Gemini performance with and without it. Without
socket-level sub-partitioning, interleaved memory allo-
cation leaves all accesses to the graph topology, vertex
states, and message buffers distributed across both sock-
ets. With socket-level sub-partitioning applied, instead,
remote memory accesses are significantly trimmed, as
they only happen when stealing work from or accessing
messages produced by other sockets. The LLC miss rate
and average memory access latency also decrease thanks
to having per-socket vertex chunks.

7.3.3 Enhanced Vertex Index Representation

Table 7 presents the improvement brought by using
bitmap assisted compressed sparse row and doubly com-
pressed sparse column, with three applications on two
input graphs. Compared with the original CSR/CSC for-
mats, these enhanced data structures reduces memory
consumption by 19-24%. They also eliminate many un-
necessary memory accesses, bringing additional perfor-
mance gain.

7.3.4 Load Balancing

Next, Table 8 portraits the benefit of Gemini’s locality-
aware chunking, by giving the number of owned vertices

tw
it
te
r¡
20
10 5.29

3.02

Runtime (s)

34.7

27.8

LLC Miss (%)

49.9

8.50

RMA Ratio (%)

166

96.0

Latency (ns)

u
k
¡
2
00
7¡
05

3.85

1.48

36.4

19.1

54.8

9.85

256

120

w/o Sub Part. w/ Sub Part.

Figure 14: Impact of socket-level sub-partitioning (PR
on twitter-2010 and uk-2007-05)

Graph twitter-2010 uk-2007-05
Mem. Reduction 19.4% 24.3%

Speedup
PR 1.25 2.76
CC 1.11 1.30

SSSP 1.14 1.98

Table 7: Impact of enhanced vertex index representation

and dense mode edges in the most time-consuming par-
tition. Compared with alternatives that aim at balancing
vertex or edge counts, Gemini improves load balance by
considering both vertex access locality and number of
edges to be processed.

Balanced By Runtime (s) |Vi| |ED
i |

|Vi| 5.51 5.21M 957M
|ED

i | 3.95 18.1M 183M
α · |Vi|+ |ED

i | 3.02 0.926M 423M

Table 8: Impact of locality-aware chunking (PR on
twitter-2010)

Finally, we evaluate the effect of Gemini’s fine-
grained work-stealing by measuring the improvement by
three intra-node load balancing strategies. More specif-
ically, we report the relative speedup of (1) static, pre-
balanced per-core work partitions using our locality-
aware chunking, (2) work-oblivious stealing, and (3) the
integration of both (as adopted in Gemini), over the base-
line using static scheduling. Table 9 lists the results.
As expected, static core-level work partitioning is not
enough to ensure effective multi-core utilization. Yet,
pre-computed per-core work partitions do provide a good
starting point when working jointly with work stealing.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 313

Strategy twitter-2010 uk-2007-05
Balanced partition 1.25 1.66

Stealing 1.55 1.93
Balanced partition + stealing 1.66 2.18

Table 9: PR speedup (over static scheduling) with differ-
ent intra-node load balancing strategies

8 Related Work

We have discussed and evaluated several most closely
related graph-parallel systems earlier in the paper. Here
we give a brief summary of related categories of prior
work.

A large number of graph-parallel systems [3, 10, 11,
12, 16, 17, 21, 22, 23, 26, 29, 30, 32, 36, 41, 42, 43, 44,
47, 49, 55, 56, 57, 59, 60] have been proposed for effi-
cient processing of graphs with increasing scales. Gem-
ini is inspired by prior systems in various aspects, but dif-
fers from them by taking a holistic view on system design
toward single-node efficiency and multi-node scalability.
Push vs. Pull: Existing distributed graph processing sys-
tems either adopt a push-style [3, 26, 32, 43, 44] or a
pull-style [11, 12, 16, 17, 23, 30] model, or provide both
while used separately [13, 19, 22]. Recognizing the im-
portance of a model that adaptively combines push and
pull operators as shown by shared-memory approaches
[4, 36, 47, 57], Gemini extends the hybrid push-pull
model from shared-memory to distributed-memory set-
tings through a signal-slot abstraction to decouple com-
munication from computation, which is novel in the con-
text of distributed graph processing.
Data Distribution: Traditional literature in graph parti-
tioning [8, 12, 16, 24, 25, 30, 32, 39, 48] puts the main fo-
cus on reducing communication cost and load imbalance,
without enough attention on the introduced overhead to
distributed graph processing. Inspired by the implemen-
tation of several single-node graph processing systems
[29, 42, 49, 57, 60], Gemini adopts a chunk-based parti-
tioning scheme that enables a low-overhead scaling out
design. When applying the chunking method in a dis-
tributed fashion, we address new challenges, including
the sparsity in vertex indices, inter-node load imbalance,
and intra-node NUMA issues, with further optimizations
to accelerate computation.
Communication and Coordination: GraM [55] de-
signs an efficient RDMA-based communication stack to
overlap communication and computation for scalability.
Gemini achieves similar goals by co-scheduling compu-
tation and communication tasks in a partition-oriented
ring order, which is inspired by the implementation of
collective operations in MPI [51], and can work effec-
tively without the help of RDMA. PGX.D [22] high-
lights the importance of intra-node load balance to per-

formance and proposes an edge chunking method. Gem-
ini extends the idea by integrating chunk-based core-
level work partitioning into a fine-grained work-stealing
scheduler, which allows it to achieve better multi-core
utilization.

There also exist many systems that focus on query pro-
cessing [40, 46, 54], temporal analytics [13, 19, 27, 31],
machine learning and data mining [50, 58], or more gen-
eral tasks [34, 35, 45] on large-scale graphs. It would be
interesting to explore how Gemini’s computation-centric
design could be applied to these systems.

9 Conclusion

In this work, we investigated computation-centric dis-
tributed graph processing, re-designing critical system
components such as graph partitioning, graph represen-
tation and update propagation, task/message scheduling,
and multi-level load balancing surrounding the theme
of improving computation efficiency on modern multi-
core cluster nodes. Our development and evaluation re-
veal that (1) effective system resource utilization relies
on building low-overhead distributed designs upon opti-
mized single-node computation efficiency, and (2) low-
cost chunk-based partitioning preserving data locality
across multiple levels of parallelism performs surpris-
ingly well, and opens up many opportunities for subse-
quent optimizations throughout the system.

Meanwhile, through the evaluation of Gemini and
other open-source graph processing systems, we have
noticed that performance, scalability, and the location of
bottleneck are highly dependent on the complex inter-
action between algorithms, input graphs, and underlying
systems. Relative performance results comparing multi-
ple alternative systems reported in papers (including this
one) sometimes cannot be replicated with different plat-
form configurations or input graphs. This also highlights
the need of adaptive systems that customizes its deci-
sions based on dynamic application, data, and platform
behaviors.

Acknowledgments

We sincerely thank all the reviewers for their insight-
ful comments and suggestions. We also thank Haibo
Chen, Rong Chen, and Tej Chajed for their valuable
feedback during our preparation of the final paper. This
work is supported in part by the National Grand Funda-
mental Research 973 Program of China under Grant No.
2014CB340402, and the National Science Fund for Dis-
tinguished Young Scholars under Grant No. 61525202.

314 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] https://en.wikipedia.org/wiki/Signals_and_slots.

[2] APOSTOLICO, A., AND DROVANDI, G. Graph compression by
bfs. Algorithms 2, 3 (2009), 1031–1044.

[3] AVERY, C. Giraph: Large-scale graph processing infrastructure
on hadoop. Proceedings of the Hadoop Summit. Santa Clara
(2011).

[4] BEAMER, S., ASANOVIĆ, K., AND PATTERSON, D. Direction-
optimizing breadth-first search. Scientific Programming 21, 3-4
(2013), 137–148.

[5] BOLDI, P., ROSA, M., SANTINI, M., AND VIGNA, S. Layered
label propagation: A multiresolution coordinate-free ordering for
compressing social networks. In Proceedings of the 20th interna-
tional conference on World wide web (2011), ACM, pp. 587–596.

[6] BOLDI, P., SANTINI, M., AND VIGNA, S. A large time-aware
graph. SIGIR Forum 42, 2 (2008), 33–38.

[7] BOLDI, P., AND VIGNA, S. The webgraph framework i: com-
pression techniques. In Proceedings of the 13th international
conference on World Wide Web (2004), ACM, pp. 595–602.

[8] BOURSE, F., LELARGE, M., AND VOJNOVIC, M. Balanced
graph edge partition. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing (2014), ACM, pp. 1456–1465.

[9] BULUÇ, A., AND GILBERT, J. R. On the representation and mul-
tiplication of hypersparse matrices. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium
on (2008), IEEE, pp. 1–11.

[10] BULUÇ, A., AND GILBERT, J. R. The combinatorial
blas: Design, implementation, and applications. International
Journal of High Performance Computing Applications (2011),
1094342011403516.

[11] CHEN, R., DING, X., WANG, P., CHEN, H., ZANG, B., AND
GUAN, H. Computation and communication efficient graph pro-
cessing with distributed immutable view. In Proceedings of the
23rd international symposium on High-performance parallel and
distributed computing (2014), ACM, pp. 215–226.

[12] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), ACM, p. 1.

[13] CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X.,
WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E.
Kineograph: taking the pulse of a fast-changing and connected
world. In Proceedings of the 7th ACM european conference on
Computer Systems (2012), ACM, pp. 85–98.

[14] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Every-
thing you always wanted to know about synchronization but were
afraid to ask. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (2013), ACM, pp. 33–48.

[15] FALOUTSOS, M., FALOUTSOS, P., AND FALOUTSOS, C. On
power-law relationships of the internet topology. In ACM SIG-
COMM Computer Communication Review (1999), vol. 29, ACM,
pp. 251–262.

[16] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In OSDI (2012), vol. 12, p. 2.

[17] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing
in a distributed dataflow framework.

[18] GREGOR, D., AND LUMSDAINE, A. The parallel bgl: A generic
library for distributed graph computations.

[19] HAN, W., MIAO, Y., LI, K., WU, M., YANG, F., ZHOU, L.,
PRABHAKARAN, V., CHEN, W., AND CHEN, E. Chronos: a
graph engine for temporal graph analysis. In Proceedings of the
Ninth European Conference on Computer Systems (2014), ACM,
p. 1.

[20] HAN, W., ZHU, X., ZHU, Z., CHEN, W., ZHENG, W., AND
LU, J. Weibo, and a tale of two worlds. In Proceedings of the
2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015 (2015), ACM, pp. 121–128.

[21] HAN, W.-S., LEE, S., PARK, K., LEE, J.-H., KIM, M.-S.,
KIM, J., AND YU, H. Turbograph: a fast parallel graph engine
handling billion-scale graphs in a single pc. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining (2013), ACM, pp. 77–85.

[22] HONG, S., DEPNER, S., MANHARDT, T., VAN DER LUGT, J.,
VERSTRAATEN, M., AND CHAFI, H. Pgx.d: A fast distributed
graph processing engine. In Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis (New York, NY, USA, 2015), SC ’15, ACM,
pp. 58:1–58:12.

[23] HOQUE, I., AND GUPTA, I. Lfgraph: Simple and fast distributed
graph analytics. In Proceedings of the First ACM SIGOPS Con-
ference on Timely Results in Operating Systems (2013), ACM,
p. 9.

[24] JAIN, N., LIAO, G., AND WILLKE, T. L. Graphbuilder: scalable
graph etl framework. In First International Workshop on Graph
Data Management Experiences and Systems (2013), ACM, p. 4.

[25] KARYPIS, G., AND KUMAR, V. Parallel multilevel series k-
way partitioning scheme for irregular graphs. Siam Review 41, 2
(1999), 278–300.

[26] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: a system for dynamic
load balancing in large-scale graph processing. In Proceedings of
the 8th ACM European Conference on Computer Systems (2013),
ACM, pp. 169–182.

[27] KHURANA, U., AND DESHPANDE, A. Efficient snapshot re-
trieval over historical graph data. In Data Engineering (ICDE),
2013 IEEE 29th International Conference on (2013), IEEE,
pp. 997–1008.

[28] KWAK, H., LEE, C., PARK, H., AND MOON, S. What is Twitter,
a social network or a news media? In WWW ’10: Proceedings of
the 19th international conference on World wide web (New York,
NY, USA, 2010), ACM, pp. 591–600.

[29] KYROLA, A., BLELLOCH, G. E., AND GUESTRIN, C.
Graphchi: Large-scale graph computation on just a pc. In OSDI
(2012), vol. 12, pp. 31–46.

[30] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-
ROLA, A., AND HELLERSTEIN, J. M. Distributed graphlab: a
framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment 5, 8 (2012), 716–727.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 315

[31] MACKO, P., MARATHE, V. J., MARGO, D. W., AND SELTZER,
M. I. Llama: Efficient graph analytics using large multiversioned
arrays. In Data Engineering (ICDE), 2015 IEEE 31st Interna-
tional Conference on (2015), IEEE, pp. 363–374.

[32] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management
of data (2010), ACM, pp. 135–146.

[33] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
but at what cost? In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems (Berkeley, CA, USA, 2015),
HOTOS’15, USENIX Association, pp. 14–14.

[34] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-
tem. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013), ACM, pp. 439–455.

[35] NELSON, J., HOLT, B., MYERS, B., BRIGGS, P., CEZE, L.,
KAHAN, S., AND OSKIN, M. Latency-tolerant software dis-
tributed shared memory. In 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15) (2015), pp. 291–305.

[36] NGUYEN, D., LENHARTH, A., AND PINGALI, K. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 456–471.

[37] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER, S.,
AND CHUN, B.-G. Making sense of performance in data analyt-
ics frameworks. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15) (2015), pp. 293–307.

[38] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web.

[39] PETRONI, F., QUERZONI, L., DAUDJEE, K., KAMALI, S., AND
IACOBONI, G. Hdrf: Stream-based partitioning for power-law
graphs.

[40] QUAMAR, A., DESHPANDE, A., AND LIN, J. Nscale:
neighborhood-centric analytics on large graphs. Proceedings of
the VLDB Endowment 7, 13 (2014), 1673–1676.

[41] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), ACM, pp. 410–424.

[42] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
edge-centric graph processing using streaming partitions. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 472–488.

[43] SALIHOGLU, S., AND WIDOM, J. Gps: A graph processing
system. In Proceedings of the 25th International Conference on
Scientific and Statistical Database Management (2013), ACM,
p. 22.

[44] SEO, S., YOON, E. J., KIM, J., JIN, S., KIM, J.-S., AND
MAENG, S. Hama: An efficient matrix computation with the
mapreduce framework. In Cloud Computing Technology and Sci-
ence (CloudCom), 2010 IEEE Second International Conference
on (2010), IEEE, pp. 721–726.

[45] SHAO, B., WANG, H., AND LI, Y. Trinity: A distributed graph
engine on a memory cloud. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (2013),
ACM, pp. 505–516.

[46] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent rdf queries with rdma-based distributed graph explo-
ration. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (Savannah, GA, Nov. 2016),
USENIX Association.

[47] SHUN, J., AND BLELLOCH, G. E. Ligra: a lightweight graph
processing framework for shared memory. In ACM SIGPLAN
Notices (2013), vol. 48, ACM, pp. 135–146.

[48] STANTON, I., AND KLIOT, G. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and
data mining (2012), ACM, pp. 1222–1230.

[49] SUNDARAM, N., SATISH, N., PATWARY, M. M. A., DULLOOR,
S. R., ANDERSON, M. J., VADLAMUDI, S. G., DAS, D., AND
DUBEY, P. Graphmat: High performance graph analytics made
productive. Proc. VLDB Endow. 8, 11 (July 2015), 1214–1225.

[50] TEIXEIRA, C. H., FONSECA, A. J., SERAFINI, M., SIGANOS,
G., ZAKI, M. J., AND ABOULNAGA, A. Arabesque: a system
for distributed graph mining. In Proceedings of the 25th Sym-
posium on Operating Systems Principles (2015), ACM, pp. 425–
440.

[51] THAKUR, R., RABENSEIFNER, R., AND GROPP, W. Optimiza-
tion of collective communication operations in mpich. Interna-
tional Journal of High Performance Computing Applications 19,
1 (2005), 49–66.

[52] UGANDER, J., KARRER, B., BACKSTROM, L., AND MARLOW,
C. The anatomy of the facebook social graph. arXiv preprint
arXiv:1111.4503 (2011).

[53] VALIANT, L. G. A bridging model for parallel computation.
Communications of the ACM 33, 8 (1990), 103–111.

[54] WANG, K., XU, G., SU, Z., AND LIU, Y. D. Graphq: Graph
query processing with abstraction refinementscalable and pro-
grammable analytics over very large graphs on a single pc. In
2015 USENIX Annual Technical Conference (USENIX ATC 15)
(2015), pp. 387–401.

[55] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,
LIN, H., DAI, Y., AND ZHOU, L. G ra m: scaling graph com-
putation to the trillions. In Proceedings of the Sixth ACM Sympo-
sium on Cloud Computing (2015), ACM, pp. 408–421.

[56] YUAN, P., ZHANG, W., XIE, C., JIN, H., LIU, L., AND LEE,
K. Fast iterative graph computation: a path centric approach. In
High Performance Computing, Networking, Storage and Analy-
sis, SC14: International Conference for (2014), IEEE, pp. 401–
412.

[57] ZHANG, K., CHEN, R., AND CHEN, H. Numa-aware graph-
structured analytics. In Proc. PPoPP (2015).

[58] ZHANG, M., WU, Y., CHEN, K., QIAN, X., LI, X., AND
ZHENG, W. Exploring the hidden dimension in graph processing.
In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016), USENIX
Association.

[59] ZHENG, D., MHEMBERE, D., BURNS, R., VOGELSTEIN, J.,
PRIEBE, C. E., AND SZALAY, A. S. Flashgraph: Processing
billion-node graphs on an array of commodity ssds. In 13th
USENIX Conference on File and Storage Technologies (FAST 15)
(Santa Clara, CA, Feb. 2015), pp. 45–58.

[60] ZHU, X., HAN, W., AND CHEN, W. Gridgraph: Large scale
graph processing on a single machine using 2-level hierarchical
partitioning. In USENIX ATC (2015).

316 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fast and Concurrent RDF Queries with RDMA-based

Distributed Graph Exploration

Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems,

Shanghai Jiao Tong University

Feifei Li

School of Computing,

University of Utah

Contacts: {rongchen, haibochen}@sjtu.edu.cn

Abstract

Many public knowledge bases are represented and stored

as RDF graphs, where users can issue structured queries

on such graphs using SPARQL. With massive queries

over large and constantly growing RDF data, it is im-

perative that an RDF graph store should provide low la-

tency and high throughput for concurrent query process-

ing. However, prior systems still experience high per-

query latency over large datasets and most prior designs

have poor resource utilization such that each query is

processed in sequence.

We present Wukong1, a distributed graph-based RDF

store that leverages RDMA-based graph exploration to

provide highly concurrent and low-latency queries over

large data sets. Wukong is novel in three ways. First,

Wukong provides an RDMA-friendly distributed key/-

value store that provides differentiated encoding and

fine-grained partitioning of graph data to reduce RDMA

transfers. Second, Wukong leverages full-history prun-

ing to avoid the cost of expensive final join opera-

tions, based on the observation that the cost of one-sided

RDMA operations is largely oblivious to the payload

size to a certain extent. Third, countering conventional

wisdom of preferring migration of execution over data,

Wukong seamlessly combines data migration for low la-

tency and execution distribution for high throughput by

leveraging the low latency and high throughput of one-

sided RDMA operations, and proposes a worker-obliger

model for efficient load balancing.

Evaluation on a 6-node RDMA-capable cluster shows

that Wukong significantly outperforms state-of-the-art

systems like TriAD and Trinity.RDF for both latency and

throughput, usually at the scale of orders of magnitude.

1Short for Sun Wukong, who is known as the Monkey King and is a main

character in the Chinese classical novel “Journey to the West”. Since Wukong

is known for his extremely fast speed (21,675 kilometers in one somersault) and

the ability to fork himself to do massive multi-tasking, we term our system as

Wukong. The source code and a brief instruction on how to install Wukong is

available at http://ipads.se.sjtu.edu.cn/projects/wukong.

1 Introduction

Many large datasets are continuously published us-

ing the Resource Description Framework (RDF)

format, which represents a dataset as a set of

〈sub ject, predicate,ob ject〉 triples that form a di-

rected and labeled graph. Examples include Google’s

knowledge graph [20] and a number of public knowledge

bases including DBpedia [1], Probase [51], PubChem-

RDF [32] and Bio2RDF [7]. There are also a number of

public and commercial websites like Google and Bing

providing online queries through SPARQL2 to such

datasets.

With the increasing scale of RDF datasets and the

growing number of queries per second, it is highly de-

manding that an RDF store provides low latency and

high throughput over highly concurrent queries. In re-

sponse, much recent research has been devoted to de-

veloping scalable and high performance systems to in-

dex RDF data and process SPARQL queries. Early

RDF stores like RDF-3X [33], SW-Store [8], HexaS-

tore [49] usually use a centralized design, while later de-

signs such as TriAD [21], Trinity.RDF [54], H2RDF [38]

and SHARD [40] use a distributed store in response to

the growing data sizes.

An RDF dataset is essentially a labeled, directed

multigraph. Hence, it may be either stored as a set

of triples as elements in relational tables (i.e., a triple

store) [33, 21, 38, 53], or managed as a native graph (i.e.,

a graph store) [9, 58, 52, 54]. Prior work [54] shows that

while using a triple store may enjoy query optimizations

designed for relational database queries, query process-

ing intensively relies on join operations over potentially

large tables, which usually generates huge redundant in-

termediate data. Besides, using relational tables to store

triples may limit the generality such that existing sys-

tems can hardly support general graph queries over RDF

data such as reachability analysis and community detec-

2A recursive acronym for SPARQL Protocol and RDF Query Language.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 317

http://ipads.se.sjtu.edu.cn/projects/wukong

tion [44].

In this paper, we describe Wukong, a distributed in-

memory RDF store that provides low-latency, concur-

rent queries over large RDF datasets. To make it easy

to scale out, Wukong follows a graph-based design by

storing RDF triples as a native graph and leverages graph

exploration to handle queries. Unlike prior graph-based

RDF stores that are only designed to handle one query at

a time, Wukong is also designed to provide high through-

put such that it can handle hundreds of thousands of

concurrent queries per second. The key techniques of

Wukong are centered around using one-sided RDMA to

provide fast and concurrent graph exploration.

RDMA-friendly Graph Model and Store (§4). Be-

sides storing RDF triples as a graph by treating ob-

ject/subject as vertices and predicate as edges, Wukong

extends an RDF graph by introducing index vertices so

that indexes are naturally parts of the graph. To partition

and distribute data among multiple machines, Wukong

applies a differentiated partition scheme [13] to embrace

both locality (for normal vertices) and parallelism (for

index vertices) during query processing. Based on the

observation that RDF queries only touch a small subset

of graph data (e.g., a subset of vertices and/or a subset of

a vertex’s data), Wukong further incorporates predicate-

based finer-grained vertex decomposition and stores the

decomposed graph data into a refined, RDMA-friendly

distributed hashtable inherited from DrTM-KV [48] to

reduce RDMA transfers.

RDMA-based Full-history Pruning (§5.2). Being

aware of the cost-insensitivity of one-sided RDMA op-

erations with respect to data size, Wukong leverages full-

history pruning such that it can precisely prune unneces-

sary intermediate data. Consequently, Wukong can avoid

the costly centralized final join on the results aggregated

from multiple machines.

RDMA-based Query Distribution (§5.3). Depend-

ing on the selectivity and complexity of queries, Wukong

decomposes a query into a sequence of sub-queries

and handles multiple independent sub-queries simulta-

neously. For each sub-query, Wukong adopts an RDMA

communication-aware mechanism: for small (selective)

queries, it uses in-place execution that leverages one-

sided RDMA read to fetch necessary data so that there

is no need to move intermediate data; for large (non-

selective) queries, it uses one-sided RDMA WRITE to

distribute the query processing to all related machines.

To prevent large queries from blocking small queries

when handling concurrent queries, Wukong provides a

latency-centric work stealing scheme (namely worker-

obliger model) to dynamically oblige queries in strag-

gling workers.

We have implemented Wukong and evaluated it on a

6-node cluster using a set of common RDF query bench-

R-Group

Course

Student

Professor
mo

ad

mo:memberOf

tc:takesCourse

to:teacherOf

ad:advisor

ty:type (not incl.)

...

...

X-Lab

OS

DS

Kurt

Erik

Raven

Marie

Logan

tc

...

Bobby

tc
to

mo
mo

mo
mo

mo

mo

to

tc

tc

...

ad

ad

ad

...

tc
tc

Steve
...

mo

Fig. 1: An example RDF graph.

marks over a set of synthetic (e.g., LUBM and WSDTS)

and real-life (e.g., DBPSB and YAGO2) datasets. Our

experiment shows that Wukong provides orders of mag-

nitude lower latency compared to state-of-the-art central-

ized (e.g., RDF-3X and BitMat) and distributed (e.g.,

TriAD and Trinity.RDF) systems. An evaluation using

a mixture of queries on LUBM [3] shows that Wukong

can achieve up to 269K queries per second on 6 machines

with 0.80 milliseconds median latency.

2 Background

2.1 RDF and SPARQL

An RDF dataset is a graph (aka RDF graph) com-

posed by triples, where a triple is formed by

〈sub ject, predicate,ob ject〉. A triple can be regarded as

a directed edge (predicate) connecting two vertices (from

subject to object). Thus, an RDF graph can be alterna-

tively viewed as a directed graph G = (V,E), where V is

the collection of all vertices (subjects and objects), and

E is the collection of all edges, which are categorized

by their labels (predicates). W3C has provided a set of

unified vocabularies (as part of the RDF standard) to en-

code the rich semantics, where the rdfs:type predicate (or

type for short) provides a classification of vertices of an

RDF graph into different groups. As shown in Figure 1,

a simplified sample RDF graph of LUBM dataset [3], the

entity Steve has type Professor3, and there are four cate-

gories of edges linking entities, namely, memberOf (mo),

takesCourse (tc), teacherOf (to), and advisor (ad).

SPARQL, a W3C recommendation, is the standard

query language for RDF datasets. The most common

type of SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where, GP is a set of triple patterns and RD is a re-

sult description. Each triple pattern is of the form

〈sub ject, predicate,ob ject〉, where each of the subject,

predicate and object may denote either a variable or a

constant. Given an RDF data graph G, the triple pat-

tern GP searches on G for a set of subgraphs of G, each

of which matches the graph pattern defined by GP (by

binding pattern variables to values in the subgraph). The

result description RD contains a subset of variables in the

graph patterns.

3To save space, we use color circles to represent the type of entities.

318 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mo

toSELECT ?Y WHERE {
?X memberOf X-Lab .
?X type Professor .
?X teacherOf ?Y .

}
X-Lab

Prof

?X
ty

?Y
OS

DS

SPARQL Graph Results

Fig. 2: A SPARQL query (Q1) on sample RDF graph.

For example, as shown in Figure 2, the query Q1 re-

trieves all objects that were taught (to) by a Professor

who is a member (mo) of X-Lab. The query can also be

graphically represented by a query graph, in which ver-

tices represent the subjects and objects of the triple pat-

terns; the black vertices represent constants, and the red

vertices represent variables; The edges represent pred-

icates in the required patterns (GP). The query results

(?Y, described in RD) include DS and OS.

Difference from graph analytics. Readers might be

curious about the relationship between RDF queries and

graph analytics [28, 18, 31, 19, 13, 41, 55, 56], especially

a recent design [50] used one-sided RDMA to implement

message-passing primitives. However, there are several

fundamental differences between RDF queries and graph

analytics.

First, RDF queries are user-centric; thus minimizing

the roundtrip latency is more important than maximizing

network throughput. Second, RDF queries only touch a

small subset of a graph instead of processing the entire

graph, making it not worthwhile to dedicate all resources

to run a single query. Third, graph-analytics is usually

done in a batch-oriented manner in contrast to concur-

rently serving multiple RDF queries.

2.2 Existing Solutions

We then discuss two representative approaches adopted

in existing state-of-the-art RDF systems.

Triple store and triple join: A majority of existing

systems store and index RDF data as a set of triples in

relational databases, and excessively leverage triple join

operations to process SPARQL queries. Generally, query

processing consists of two phases: Scan and Join. In

the Scan phase, the RDF engine decomposes a SPARQL

query into a set of triple patterns. For the query in Fig-

ure 2, the triple patterns are {?X memberOf X-Lab}, {?X

type Professor} and {?X teacherOf ?Y}. For each triple

pattern, it generates a temporary query table with bind-

ings by scanning the triple store. In the Join phase, the

query tables are joined to produce the final query results.

Some prior work [54] has summarized the inherent

limitations of triple-store based approach. First, triple

stores rely excessively on costly join operations, espe-

cially for distributed merge/hash-join. Second, the scan-

join approach may generate large redundant intermediate

results. Finally, while using redundant six primary SPO4

4S, P and O stand for subject, predicate and object accordingly.

SELECT ?X ?Y ?Z WHERE {
?X teacherOf ?Y .
?Z takesCourse ?Y .
?Z advisor ?X .

}
OS

tc

to

ad

Logan

Marie

ad
tc

?X
?Y

to

?Z

SPARQL Graph Results

Fig. 3: A SPARQL query (Q2) on sample RDF graph.

permutation indexes [49] can accelerate scan operations,

such indexes lead to heavy memory pressure.

Graph store and graph exploration: Instead of join-

ing query tables, Trinity.RDF [49] stores RDF data in a

native graph model on top of a distributed in-memory

key/value store, and leverages fast graph-exploration

strategy for query processing. It further adopts one-step

pruning (i.e., the constraint in the immediately prior step)

to reduce the intermediate results. As an example, con-

sidering Q1 in Figure 2 over the data in Figure 1, after

exploring the type of Professor for each member of X-

Lab with respect to the data in Figure 1, we find that the

possible binding for ?X is only Erik and Logan, and the

rest of members are pruned.

However, the graph exploration in Trinity.RDF relies

on a final centralized join to filter out non-matching re-

sults. For example, the query Q2 in Figure 3 asks for ad-

visors (?X), courses (?Y) and students (?Z) such that the

advisor advises (ad) the student who also takes a course

(tc) taught by (to) the advisor. After exploring all three

triple patterns in Q2 with respect to the data in Figure 1,

the non-matching bindings, namely, Logan
−→
to OS, OS

←−
tc

Raven and Raven
−→
ad Erik will not be pruned until a final

join. Prior work [21, 37] indicates that the final join is

a potential bottleneck, especially for queries with cycles

and/or large intermediate results.

2.3 RDMA and Its Characteristics

Remote Direct Memory Access (RDMA) is a cross-node

memory access technique with low-latency and low CPU

overhead, due to complete bypassing of target OS ker-

nel and/or CPU. RDMA provides both two-sided mes-

sage passing interfaces like SEND/RECV Verbs as well

as one-sided operations such as READ, WRITE and

two atomic operations (fetch-and-add and compare-and-

swap). As noted in prior work [30, 16, 48], one-sided

operations are usually less disruptive than its two-sided

counterparts due to no CPU involvement to the target

machine. To minimize interference among multiple ma-

chines during query processing, we focus on one-sided

RDMA operations in this paper. However, it should be

straightforward to use two-sided RDMA operations in

Wukong as well.

Figure 4(a) shows the throughput (in Kbps) of dif-

ferent communication primitives. RDMA undoubtedly

achieves the highest throughput for all payload sizes,

while the throughput of TCP/IP over IPoIB (IP over In-

finiBand) or 10GbE approaches that of one-sided RDMA

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 319

10
4

10
5

10
6

10
7

10
8

10
9

16 256 4K 64K 1M

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Size of Payload (Bytes)

RDMA

IPoIB

10GbE

10
2

10
3

10
4

10
5

 1

 10

16 256 4K 64K 1M

L
a

te
n

c
y
 (

µ
s
)

Size of Payload (Bytes)

RDMA

IPoIB

10GbE

Fig. 4: (a) The throughput and (b) the latency of random

reads using one-sided RDMA and TCP/IP with the increase

of payload sizes.

with the increase of payload sizes. For payload sizes

larger than 4K bytes, the difference is limited to 4 times.

In contrast, the gap of roundtrip latencies is always more

than an order-of-magnitude, as shown in Figure 4(b).

Therefore, it is imperative to leverage one-sided RDMA

operations (i.e., READ and WRITE) to boost latency-

oriented query processing. Further, an interesting feature

is that the latency of RDMA is relatively insensitive to

payload sizes, because small-sized requests cannot satu-

rate the high-bandwidth network card5. For example, the

latency only increases slightly (from 1.56µs to 2.25µs)

even if the payload size increases 256X (from 8 bytes to

2K bytes).

3 Overview

Setting: Wukong assumes a cluster that is connected

with a high-speed, low-latency network with RDMA fea-

tures. Wukong targets SPARQL queries over a large vol-

ume of RDF data; it scales by partitioning an RDF graph

into a large number of shards across multiple machines.

Wukong may duplicate edges to make sure each ma-

chine contains a self-contained subgraph (e.g., no dan-

gling edges) of the input RDF graph, for better locality.

Wukong also creates index vertices to assist queries. In

each machine, Wukong employs a worker-thread model

by running n worker threads atop n cores; each worker

thread executes a query at a time.

Architecture: An overview of Wukong’s architecture

is shown in Figure 5. Wukong follows a decentralized

model on the server side, where each machine can di-

rectly serve clients’ requests. Each client6 contains a

client library that parses SPARQL queries into a set of

stored procedures, which are sent to the server side to

handle the request. Alternatively, Wukong can also use a

set of dedicated proxies to run the client-side library and

balance client requests. Some sophisticated mechanisms

like congestion control [57] and load balancing [36] can

also be implemented at the proxy, which are beyond the

scope of this paper. Moreover, to avoid sending and

storing long strings and thus save network bandwidth

5Note that this features also applies to other communication primi-

tives (e.g., TCP/IP over IPoIB or 10GbE).
6The client may be not the end user but the front-end of Web service.

Fig. 5: The architecture overview of Wukong.

and memory consumption, each string is first converted

into a unique ID by the string server, similar to prior

work [54, 21].

Each server consists of two separate layers: query en-

gine and graph store. The query engine layer binds a

worker thread on each core with a logical task queue

to continuously handle requests from clients or other

servers. The graph store layer adopts an RDMA-friendly

key/value store over distributed hashtable to support a

partitioned global address space. Each machine stores

a partition of the RDF graph, which is shared by all of

worker threads on the same machine.

Query processing: Wukong is designed to provide

low-latency to multiple concurrent queries from clients.

The client or the proxy decides which server a request

will be first sent to according to the request types. For

a query starting with a constant vertex, Wukong sends

the request to the server holding the vertex. For a query

starting with a set of vertices with a specific type or pred-

icate, Wukong then sends the request to all replicas of the

corresponding index vertex.

Wukong parses a query into an operator tree, the same

as other systems. Each query may be represented as a

chain of sub-queries. Each machine handles a sub-query

and then dispatches the remaining sub-queries to other

machines when necessary. A sub-query will be pushed

into the task queue to be scheduled and executed asyn-

chronously.

4 Graph-based RDF Data Modeling

This section provides a detailed description of the graph

indexing, partitioning and storing strategies employed by

Wukong, which are the basis to sequentially and concur-

rently process SPARQL queries on RDF data.

4.1 Graph Model and Indexes

Wukong uses a directed graph to model and store RDF

data, where each vertex corresponds to an entity in an

RDF triple (subject or object) and each edge is labeled

as a predicate and points from subjects to objects. As

SPARQL queries may rely on retrieving a set of subject-

s/object vertices connected by edges with certain pred-

icates, we provide two kinds of index vertices to assist

320 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Prof
ty

ty
ty Logan

Steve
to

OS to
Erik

Logan

to

DS

Erik
ty:type

to:teacherOf

Prof:Professor

Fig. 6: Two types of index vertex of Wukong.

such queries, as shown in Figure 6. To avoid confusion,

we use the normal vertex to refer to subjects and objects.

For the query pattern with a certain predicate, like {?Y

teacherOf ?Z} (see Q2 in Figure 3), we propose the pred-

icate index (P-idx) to maintain all subjects and objects

labeled with the particular predicate using its in and out

edges respectively. The index vertex essentially serves as

an inverted index from the predicate to the corresponding

subjects or objects. For example, in Figure 6, a predicate

index teacherOf (to) links to all normal vertices whose

in-edges (DS and OS) or out-edges (Erik and Logan) con-

tain the label to. This corresponds to the PSO and POS

indexes in the triple store approaches.

Further, the special predicate type (ty) is used to group

a set of subjects that belong to a certain type, like {?X

type Prof} (see Q1 in Figure 2). Therefore, we treat the

objects of such predicate as the type index (T-idx), in-

stead of providing a uniform but useless predicate index

type to link all objects and subjects. For example, a type

index Prof in Figure 6(b) maintains all normal vertices

which are of the type of professors.

Unlike prior graph-based approaches that manage in-

dexes using separate data structures, Wukong treats in-

dexes as essential parts (vertices and edges) of an RDF

graph and also takes into consideration the partitioning

and storing of such indexes. This has two benefits. First,

this eases query processing using graph exploration such

that the graph exploration can directly start from an in-

dex vertex. Second, this makes it easy and efficient to

distribute the indexes among multiple servers, as shown

in the following sections.

4.2 Differentiated Graph Partitioning

One key step of supporting distributed query is partition-

ing a graph among multiple machines, while still pre-

serving good access locality and enabling parallelism.

We observe that complex queries usually involve a large

number of vertices through a certain predicate or type,

which should be executed on multiple machines to ex-

ploit parallelism.

Inspired by PowerLyra [13], Wukong adopts differen-

tiated partitioning algorithms to normal and index ver-

tices. One difference is that unlike PowerLyra, Wukong

does not use the degrees to differentiate vertices, because

an RDF query only navigates through a vertex and then

routes to only a portion of its neighbors. Therefore,

unlike graph analytics, a high-degree vertex in skewed

X-Lab OS

MarieLogan

Bobby

admo to tc

R P S C

Steve DS

KurtErik

Raven

admo to tc

P S C
ty

ty
ty

ty
ty ty

ty
ty

ty
ty

R:R-Group P:Professor S:Student C:course

ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse

T-idx

P-idx

normal

Fig. 7: A hybrid graph partitioning on two servers.

graphs does not necessarily incur significant imbalance

for query processing, and it can be handled by fork-join

execution appropriately (§ 5.3).

As shown in Figure 7, each normal vertex (e.g., DS)

will be randomly assigned (i.e., by hashing the vertex

ID) to only one machine with all of its edges (IDs of

neighbors). Note that the edges linked to predicate index

(i.e., dotted arrows) will not be included in the edge list

of normal vertices, since there is no need to find a pred-

icate index vertex via normal vertices and this can save

plenty of memory. Different from a normal vertex, each

index vertex (e.g., takesCourse and Course) will be split

and replicated to multiple machines with edges linked to

normal vertices on the same machine. This naturally dis-

tributes the indexes and their load among each machine.

4.3 RDMA-friendly Predicate-based Store

Similar to Trinity.RDF [54], Wukong uses a distributed

key/value store to physically store the graph. However,

unlike prior work that simply uses vertex ID (vid) as

the key, and the in and out edge list (each element is

a 〈predicate,vid〉 pair) as the value, Wukong uses a

combination of the vertex ID (vid), predicate/type ID

(p/tid) and in/out direction (d) as the key (in the form of

〈vid, p/tid,d〉), and the list of neighboring vertex IDs or

predicate/type IDs as the value. The main observation is

that an SPARQL query is usually concerned with query-

ing upon partial neighboring vertices satisfying a partic-

ular predicate (e.g., X predicate ?Y). Therefore, missing

the predicate and direction information in the key would

lead to plenty of unnecessary computation cost and net-

working traffic. The finer-grained vertex decomposition

using predicates also makes it possible to build local

predicate indexing, which corresponds to the PSO and

POS indexes in triple store approaches.

To uniformly store normal and index vertices and

adapt differentiated partitioning strategies, Wukong sep-

arates the ID mapping for vertex ID (vid) and predicate/-

type ID (p/tid). The ID 0 of vid (INDEX) is reserved for

the index vertex, while the ID 0 and 1 of p/tid are re-

served for the predicate and type indexes respectively.

Figure 8 illustrates part of detailed cases on the sample

graph. The key of normal vertex starts from a nonzero vid

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 321

p/tid

vid

Key:�vid|p/tid|d� Value:�v/p/tid�

0|6|0 1,2

0 INDEX
1 Steve
2 Erik
3 Raven
4 Kurt
5 DS
6 X-Lab
7 Logan
8 Bobby
9 Marie

10 OS

0 pred
1 ty
2 ad
3 to
4 tc
5 mo
6 Prof
7 Std
8 Crs
9 R-Grp

2|0|1 1,3,5

0|5|0 2,3,4

2|1|1 6

0 in
1 out

0|6|0 7

7|1|1 6

3,9

T-idx

P-idx

normal

0|5|0 7,8,9

2|5|1 6

10|0|0 4

10|4|0

Fig. 8: The design of predicate-based key/value store.

and relies on p/tid to distinguish different meanings of the

value. The p/tid ID 0 and 1 represent the value as a list of

predicate IDs and a type ID for the vertex respectively;

otherwise the value is a list of normal vertices linked to

the normal vertex with a certain predicate (p/tid). For ex-

ample, the predicates labeled on out-edges of vertex Erik

is represented as the key 〈2|0|1〉, and the value 〈1,3,5〉
means type, teacherOf and memberOf. While the type

of vertex Erik is represented as the key 〈2|1|1〉, and the

value 〈6〉 means Professor. The key of an index vertex

always starts from a zero vid, and linked to a list of local

normal vertices. For example, all subjects of the predi-

cate memberOf on Server 0 (Erik, Raven and Kurt) and

Server 1 (Logan, Bobby and Marie) are stored with the

same key 〈0|5|0〉 but on different servers.

Finally, due to the goal of leveraging the advanced

networking features such as RDMA, Wukong is built

upon an RDMA-friendly distributed hashtable derived

from DrTM-KV [48] and thus enjoys its nice features

like RDMA-friendly cluster hashing and location-based

cache. However, as the key/value store in Wukong is

designed for query processing instead of transaction pro-

cessing, we notably simplify the design by removing un-

necessary metadata for checking consistency and sup-

porting transactions. Likewise, other symmetric RDMA-

friendly stores [16] can also work with Wukong to store

RDF graph and support query processing (§5).

5 Query Processing

5.1 Basic Query Processing

An RDF query can be represented as a subgraph with

free variables (i.e., not bound to specific subjects/ob-

jects yet). The goal of the query is to find bindings of

specific subjects/objects to the free variables while re-

specting the subgraph pattern. However, it is well-known

that using subgraph matching would be very costly due

to the frequent yet costly joins [54]. Hence, like prior

work [54], Wukong leverages graph exploration by walk-

ing the graph in specific orders according to each edge of

the subgraph.

There are several cases for each edge in a graph query,

depending on whether the subject, the predicate or the

object is a free variable. For the common cases where the

predicate is known but the subject/object are free vari-

to

to

to

to

H:Erik to H:Logan to
Erik Logan

H:Erik to DS
DS OS

Kurt Raven

H:Logan to OS

H:Erik to DS
tc Kurt

H:Logan to OS tc Raven
Logan to OS tc Marie

tc tctc

ad

Erik
Logan

ad

Marie

Logan to OS tc
Marie ad Logan

Raven

ad
Logan to OS tc
Raven ad Erik

INDEX|to Erik

Erik|to DS

DS|tc Kurt

Raven|ad Erik

INDEX|to Logan

Logan|to OS

OS|tc Raven,Marie

Marie|ad Logan

Fig. 9: A sample of execution flow on Wukong. The blue

label H: shows the full history.

ables, Wukong can leverage the predicate index to begin

the graph exploration. Take Q2 in Figure 3 as an exam-

ple, which aims at querying advisors, courses and stu-

dents such that the advisor advises the student who also

takes a course taught by the advisor. The query forms a

cyclic subgraph containing three free variables. Wukong

chooses an order of exploration according to a cost-based

approach with some heuristics.

As shown in Figure 9, Wukong starts exploration from

the teacherOf predicate (to). Since Wukong extends the

graph with predicate indexes, it can start exploration

from the index vertex for teacherOf in each machine in

parallel, whose neighbors contain Erik and Logan in each

server accordingly. In Step2, Wukong combines Erik and

Logan with teacherOf to form the key to get the corre-

sponding courses, which are {Erik
−→
to DS} and {Logan

−→
to

OS} accordingly. In Step3, Wukong continues to explore

the graph from the course vertex for each tuple in parallel

and tries to get all students that take the course. Thanks

to the differentiated graph partitioning, there is no com-

munication through Step1-3. In Step4, Wukong lever-

ages the constraint information to filter out non-matching

results to get the final result.

For (rare) cases where the predicate is unknown,

Wukong starts graph exploration from a constant vertex

(in cases where either subject or object is known) with a

reserved p/tid 0 (pred). The value is the list of predicates

associated with the vertex, and then Wukong iterates over

them one by one. The remaining process is similar to

those described above.

5.2 Full-history Pruning

Note that there could be tuples that should be filtered out

during the graph exploration. For example, since there

is no expected advisor predicate (ad) for Kurt, the re-

lated tuples should be filtered out to minimize redundant

computation and communication. Further, in Step 4, as

Raven’s advisor is Erik instead of Logan, the graph ex-

ploration path also should be pruned as well.

Prior graph-exploration strategies [54] usually use a

one-step pruning approach by leveraging the constraint

322 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

in the immediately prior step to filter out unnecessary

data (e.g., only DS and OS in Step 3). In the final step,

it leverages a single machine to aggregate and conduct a

final join over the results to filter out non-matching re-

sults. However, recent study [21, 37] found that, the final

join can easily become the bottleneck of a query since all

results need to be aggregated into a single machine for

joining. Our experiment on LUBM [3] shows that some

query spends more than 90% of execution time on the

final join (details in §7.3).

Instead, Wukong adopts a full-history pruning ap-

proach such that Wukong passes the full exploration his-

tory to the next step within or across machines. The main

observation is that, the cost of RDMA operations is in-

sensitive to the payload size when it is smaller than a cer-

tain size (e.g., 2K bytes). Besides, the steps and variables

in an RDF query are usually not many (i.e., less than

10), and each history item only contains subject/objec-

t/predicate IDs. Thus there won’t be too much informa-

tion carried even for the final few steps. Consequently,

the cost remains low even passing more history informa-

tion across machines. Further, improving the locality of

graph exploration can also avoid additional network traf-

fic from the full-history pruning.

As shown in Figure 9, Wukong passes {Erik
−→
to}, {Erik

−→
to DS} and {Erik

−→
to DS

←−
tc Kurt} locally on Server 0

in each step; Kurt can be simply pruned without using

history information due to no expected predicate (ad).

Server 0 can leverage the full history ({Logan
−→
to OS

←−
tc

Raven}) from Server 1 to prune Raven as Raven’s advi-

sor is not Logan.

As Wukong has the full history during graph explo-

ration, there is no need of a final join to filter out non-

matching results. Though it appears that Wukong may

bring additional network traffic when fetching cross-

machine history, the fact that Wukong can prune non-

matching results early may save network traffic as well.

For example, the query L1 on LUBM-10240 can bene-

fit from early pruning to save about 96% network traffic

(462MB vs. 18MB). Besides, many query histories are

passed within a single machine and thus do not cause

additional network traffic. In case the full history size

is excessively large, Wukong can adaptively fall back to

one-step pruning for the sub-query. However, we did not

encounter such a case during our evaluation.

5.3 Migrating Execution or Data

During the graph exploration process, there will be dif-

ferent tradeoffs on whether migrating data or execution.

Wukong provides in-place and fork-join executions ac-

cordingly. For a query step, if only a few vertices need

to be fetched from remote machines, Wukong uses in-

place execution mode that synchronously leverages one-

sided RDMA READ to directly fetch vertices from re-

Fig. 10: A sample of (a) in-place and (b) fork-join execution.

mote machines, as shown in Figure 10(a). Using one-

sided RDMA READ can enjoy the benefit of bypassing

remote CPU and OS. For example, in Figure 9, Server 1

can directly read the advisor of Raven (i.e., Erik) by one

RDMA READ, and locally generate ({Logan
−→
to OS

←−
tc

Raven
−→
ad Erik}).

For a query step, if many vertices may be fetched,

Wukong leverages a fork-join execution mode that

asynchronously splits the following query computation

into multiple sub-queries running on remote machines.

Wukong leverages one-sided RDMA WRITE to directly

push a sub-query with full history into the task queue of

a remote machine, as shown in Figure 10(b). This can

also be done without bothering remote CPU and OS. For

example, in Figure 9, Server 1 can send a sub-query with

the full history ({Logan
−→
to OS

←−
tc Raven}) to Server 0.

Server 0 will locally execute the sub-query to generate

({Logan
−→
to OS

←−
tc Raven

−→
ad Erik}). Note that, depend-

ing on the sub-query, the target machine may further do a

fork-join operation to remote machines, forming a query

tree. Each fork point then joins its forked sub-queries and

returns the results to the parent fork point. In addition,

all of sub-queries will be executed asynchronously with-

out any global barrier and communication among worker

threads. Even if two sub-queries access the same vertex,

they are still independent due to working on different ex-

ploration paths.

Since the cost of RDMA operations is insensitive to

the size of the payload, for each query step, Wukong de-

cides on the execution mode at runtime according to the

number of RDMA operations (|N|) for the next step. for

the fork-join mode, |N| is twice the number of servers;

for the in-place mode, |N| is equal to the number of

required vertices. Each server will decide individually.

Wukong simply uses a heuristic threshold according to

the setting of cluster. Further, some vertices have a sig-

nificant large number of edges with the same predicate,

resulting in slower RDMA READ due to oversized pay-

load. Wukong can label such vertices associated with

the predicate to force the use of the fork-join mode when

partitioning the RDF graph.

5.4 Concurrent Query Processing

Depending on the complexity and selectivity, the la-

tency (i.e., execution time) of a query may vary signifi-

cantly. For example, the latency differences among seven

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 323

1 int next = 1

OBLIGER()
2 s = state[(tid+next)%N]

3 q = NULL

4 s.lock()

5 if (s.cur == tid //reentry

6 || s.end < now)

7 s.cur = tid;

8 s.end = now + T

9 next++

10 q = s.dequeue()

11 s.unlock()

12 return q

SELF()
13 s = state[tid]

14 s.lock()

15 s.cur = tid

16 s.end = now + T

17 next = 1

18 q = s.dequeue()

19 s.unclock()

20 return q

NEXT_QUERY()
21 if (q = OBLIGER())

22 return q

23 return SELF()

Fig. 11: The pseudo-code of worker-obliger algorithm.

queries in LUBM [3] can reach around 3,000X (0.17ms

and 516ms for L5 and L1 queries accordingly). Hence,

dedicating an entire cluster for a single query, as done in

prior approaches [54, 21], is not cost-effective.

Wukong is designed to handle a massive number of

queries concurrently while trying to parallelize a single

query to reduce the query latency. The difficulty is that,

given the significantly varied query latencies, how to

minimize inter-query interference while providing good

utilization of resources, e.g., a lengthy query should not

significantly extend the latency of a fast query.

The online sub-query decomposition and the dynamic

execution mode switching serve as a keystone to support

massive queries in parallel. Specifically, Wukong uses a

private FIFO queue to schedule queries for each worker

thread, which works well for small queries. However, if

there is a lengthy query, it will monopolize the worker

thread and impose queuing delays on the execution of

small waiting queries. This will incur much higher la-

tency than necessary. Worse even, a lengthy query with

multi-threading enabled (Section 6) may monopolize the

entire cluster.

The work stealing mechanism [10] is widely used to

provide load balance in parallel systems, which allows

tasks can be stolen from any queue of worker threads.

However, the traditional algorithm is inefficient as the

stolen tasks in Wukong are mostly sub-millisecond la-

tency queries. Further, the unrestricted stealing among

all workers may incur large overhead due to high con-

tention.

To this end, Wukong uses a worker-obliger work steal-

ing algorithm for multiple workers on each machine, as

shown in Figure 11. Each worker is designated to oblige

next few neighboring workers in case they are busy with

processing a lengthy (sub-)query. After finishing a (sub-

)query, a worker first checks a neighboring worker in turn

if its (sub-)query has a timeout (i.e., s.end < now).

If so, that worker might be handling a lengthy query

and thus its following up queries may be delayed. In

this case, this obliging worker steals one query from that

worker’s queue to process. After obliging its neighbor-

ing workers (until seeing a non-busy one), the worker

Fig. 12: The logical task queue in Wukong.

will then continue to handle its own queries by dequeu-

ing from its own worker queue.

Note that, when all workers can handle their queries

within a time threshold (i.e., T), each worker only needs

to handle queries in its own queue. The checking

code is also very lightweight and the state lock (i.e.,

s.lock()) won’t be contended as there will only at

most two workers (i.e., SELF and OBLIGER) may try to

acquire the lock in usual. It could be possible that an

obliger get stucked in handling a lengthy query for oth-

ers; in this case, another worker may oblige this worker

similarly.

6 Implementation

The Wukong prototype comprises around 6,000 lines of

C++ code. It currently runs atop an RDMA-capable clus-

ter. This section describes some implementation issues.

Task queues Wukong binds a worker thread on each

core with a logical private task queue, which is used by

both clients and worker threads on other servers to sub-

mit (sub-)queries. Wukong leverages RDMA operations

(especially one-sided RDMA) to accelerate the commu-

nication among worker threads; however, the clients may

still connect servers using general interconnects.

The logical queue per thread in Wukong consists of

one client queue (Client-Q) and multiple server queues

(Server-Q). For the client queue, Wukong follows tradi-

tional concurrent queue to serve the queries from many

clients. But due to the lack of expressiveness of one-

sided RDMA operations, implementing RDMA-based

concurrent queue may incur large overhead. On the con-

trary, using separate task queues for each worker threads

of each remote machine may exponentially increase the

number of queues. Fortunately, we observe that there is

no need to allow all worker threads on a remote machine

sending queries to all local worker threads. To remedy

this, Wukong only provides a one-to-one mapping be-

tween the work threads on different machines, as shown

in Figure 12. This can avoid not only the burst of task

queues but also complicated concurrent mechanisms.

Launching query To launch a query, the start point of

a query can be a normal vertex (e.g., {?X memberOf X-

Lab}) or a predicate or type index (e.g., {?X teacherOf

?Y}). Since the index vertex is replicated to multiple

servers, Wukong allows the client library to send the

same query to all servers such that the query can be dis-

324 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S1

S0

IM
vid|p/tid|d

v0key v1

sn|offset

add-triple

wait-query

write-v

inc-csn

start(csn:X)

allocated

free

value-region

ptr

X X+1

sn|cnt

sn|cnt

sn

cnt_v0

cnt_v1

csn

Fig. 13: The extension of graph store and the execution flow

of injection for evolving RDF graphs.

tributed from the beginning. However, distributed ex-

ecution may not be worthwhile for a low-degree index

vertex. Therefore, Wukong will decide whether repli-

cas of an index vertex need to process the query or not

when partitioning the RDF graph. For low-degree index

vertices, the master will process the query alone by ag-

gregating data from replicas through one-sided RDMA

READ, and the replicas will simply discard queries. For

high-degree index vertices, both the master and replicas

will individually process the query on local graph.

Multi-threading By default, Wukong processes a

(sub-)query using only a single thread on each server.

To reduce latency of a query, Wukong also allows run-

ning a time-consuming query with multiple threads on

each server, at the requests of the client. A worker thread

received the multi-threaded (MT) query will invite other

worker threads on the same server to process the query

in parallel. Wukong adopts a data-parallel approach to

automatically parallelize the query after the first graph

exploration. Each worker thread will individually pro-

cess the query on a part of subgraph. Note that the max-

imum number of participants for a query is claimed by

the client, but finally restricted by the MT threshold of

the server.

Evolving graph While most prior RDF stores only

support read-only queries, Wukong is also built with pre-

liminary support to incrementally update the graph with

concurrent queries. New triples will be periodically in-

gested to the RDF store, and all queries will run a con-

sistent snapshot. Figure 13 illustrates three extensions to

Wukong to support incremental update.

RDF Store. To support the dynamic increase of value,

Wukong provides a buddy memory allocator. When the

value space is full, the allocator will find a free value

with double capacity, copy all data of the old value to

the new one, and replace the pointer of the key using

an atomic instruction. Further, to provide a consistent

snapshot to above queries, each key should be extended

with two versions (v0 and v1) that consist of its snapshot

number and the offset within its value. The left part of

Figure 13 illustrate the extension of RDF store.

Query processing. On each machine, there are two

global reference counters (cnt v0 and cnt v1) to record

Table 1: A collection of real-life and synthetic datasets.

Dataset #Triples #Subjects #Objects #Predicates

LUBM-10240 1,410 M 222 M 165 M 17

WSDTS 109 M 5.2 M 9.8 M 86

DBPSB 15 M 0.3 M 5.2 M 14,128

YAGO2 190 M 10.5 M 54.0 M 99

the number of outstanding queries on two latest snap-

shots, and a current snapshot number (csn). Each query

will first read the current snapshot number, and actively

increase and decrease the corresponding counter before

and after execution. The snapshot number of a query will

be used to fetch a consistent version of all values and be

inherited by all of its sub-queries.

RDF data injection. The added RDF triples in the new

graph will be locally injected into all servers, which is

coordinated by a single injection master (IM). Wukong

performs the injection by executing the following steps.

First, all triples are added in the background and remain

invisible to concurrent queries. Meanwhile, all outstand-

ing queries on the older snapshot (between v0 and v1)

should be completed in advance. After they are done,

each server will safely overwrite the older version within

the keys by the new one and notify IM. When all servers

are ready, IM will finally ask all servers to finish the

injection of the new snapshot by atomically increasing

the current snapshot number (csn) and the older global

counter (between cnt v0 and cnt v1). The right part of

Figure 13 shows the execution flow of the injection of

the snapshot X+1 on two servers (S0 and S1).

7 Evaluation

7.1 Experimental Setup

Hardware configuration: All evaluations were con-

ducted on a rack-scale cluster with 6 machines. Each ma-

chine has two 10-core Intel Xeon E5-2650 v3 processors

and 64GB of DRAM. Each machine is equipped with

two ConnectX-3 MCX353A 56Gbps InfiniBand NICs

via PCIe 3.0 x8 connected to a Mellanox IS5025 40Gbps

IB Switch, and an Intel X520 10GbE NIC connected

to a Force10 S4810P 10GbE Switch. All machines run

Ubuntu 14.04 with Mellanox OFED v3.0-2.0.1 stack.

In all experiments, we reserve two cores on each pro-

cessor to generate requests for all machines to avoid

the impact of networking between clients and servers as

done in prior OLTP work [48, 17, 47, 46]. For a fair

comparison, we measure the query execution time by ex-

cluding the cost of literal/ID mapping. All experimental

results are the average of five runs.

Benchmarks: We use two synthetic and two real-life

datasets, as shown in Table 1. The synthetic datasets are

the Leigh University Benchmark (LUBM) [3] and the

Waterloo SPARQL Diversity Test Suite (WSDTS) [5].

For LUBM, we generate 5 datasets with different sizes

using the generator v1.7 in NT format. For queries, we

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 325

Table 2: The query performance (msec) on a single machine.

LUBM

2560
Wukong TriAD

TriAD-SG RDF-3X BitMat

(50K) (mem) (mem)

L1 752 621 3,315 2.3E5 abort

L2 120 149 221 4,494 36,256

L3 306 316 3,101 3,675 752

L4 0.19 3.38 3.34 2.2 55,451

L5 0.11 2.34 1.36 1.0 52

L6 0.56 20.7 6.06 37.5 487

L7 671 2,176 2,753 9,927 19,323

Geo. M 15.7 72.3 108 441 –

Table 3: The query performance (msec) on a 6-node cluster.

LUBM

10240
Wukong TriAD

TriAD-SG Trinity
SHARD

(200K) .RDF

L1 516 2,110 1,422 12,648 19.7E6

L2 78 512 695 6,081 4.4E6

L3 203 1,252 1,225 8,735 12.9E6

L4 0.41 3.4 3.9 5 10.6E6

L5 0.17 3.1 4.5 4 4.2E6

L6 0.89 63 4.6 9 8.7E6

L7 464 10,055 11,572 31,214 12.0E6

Geo. M 16 190 141 450 9.1E6

use the benchmark queries published in Atre et al. [9],

which were widely used by many distributed RDF sys-

tems [21, 54, 27]. WSDTS publishes a total of 20 queries

in four categories. The real-life datasets are the DBpe-

dia’s SPARQL Benchmark (DBPSB) [1] and YAGO2 [6,

22]. For DBPSB, we choose 5 queries provided by its

official website. YAGO2 is a semantic knowledge base,

derived from Wikipedia, WordNet and GeoNames. We

follow the queries defined in H2RDF+ [37].

Comparing targets: We compare the query perfor-

mance of Wukong against several state-of-the-art sys-

tems. 1) centralized systems: RDF-3X [33] and Bit-

Mat [9]; 2) distributed systems: TriAD [21], Trin-

ity.RDF [54] and SHARD [40]. Since Trinity.RDF is

not publicly available and TriAD reported superior per-

formance over it, we only directly compare the results

published in their paper [54] with the same workload.

Except Wukong, all systems run over InfiniBand using

IPoIB. We also enable string server for all systems to

save memory consumption, reduce network bandwidth,

and boost string matching.

7.2 Single Query Performance

We first study the performance of Wukong for a single

query using the LUBM dataset.

For a fair comparison to centralized systems, we run

Wukong and TriAD on a single machine and report the

in-memory performance of RDF-3X and BitMat. As

shown in Table 27, Wukong has significantly outper-

formed RDF-3X and BitMat by several orders of mag-

nitude, due to fast graph exploration for simple queries

and efficient multi-threading for complex queries. Note

that L3 has an empty final result even with huge interme-

diate results and thus there is no significant performance

7LUBM-2560 is used due to limited main memory of a single machine, where

the average (geometric mean) latency of Wukong on 6 machines is 7.5 msec.

difference between Wukong and BitMat. TriAD also en-

ables multi-threading and provides similar performance

compared to Wukong for large (non-selective) queries.

However, for small (selective) queries, Wukong is still at

least an order-of-magnitude faster than TriAD due to the

fast graph exploration, even without the optimizations

aiming at distributed environment.

We further compare Wukong with distributed systems

with multi-threading enabled using LUBM-10240 in Ta-

ble 3. For small queries (L4, L5 and L6), Wukong out-

performs TriAD by up to 70.6X (from 8.4X) mainly due

to the in-place execution with one-sided RDMA READ.

For large queries (L1, L2, L3 and L7), Wukong still out-

performs TriAD by up to 21.7X (from 4.1X), thanks to

the fast graph exploration with indexing vertex and full-

history pruning. The join-ahead pruning with summary

graph (SG) improves the performance of TriAD, espe-

cially for L1 and L6, while Wukong still outperforms

the average (geometric mean) latency of TriAD-SG by

9.0X (ranging from 2.8X to 26.6X). Compared to Trin-

ity.RDF, which also uses graph-exploration strategy, the

improvement of Wukong is at least one order of mag-

nitude (from 10.1X to 78.0X), thanks to the full-history

pruning that avoids redundant computation and commu-

nication as well as the time-consuming final join. Note

that the result of Trinity.RDF is evaluated on a cluster

with similar interconnects and twice the number of ma-

chines. SHARD is several orders of magnitude slower

than other systems since it randomly partitions the RDF

data and employs Hadoop as a communication layer for

handling queries.

Table 4: The query latency (msec) of Wukong on evolving

LUBM with 1 million triples/second ingestion rate.

LUBM-10240 L1 L2 L3 L4 L5 L6 L7

Wukong 587 87 222 0.43 0.18 0.95 516

Overhead (%) 12.0 10.3 8.6 4.7 5.6 6.3 10.1

Evolving RDF Graphs: To investigate the perfor-

mance of Wukong on a continually growing graph, we

ingest triples to the LUBM-10240 with the rate of 1

million triples per second on our 6-node cluster, while

simultaneously handling queries. Currently, Wukong

adopts a queries-friendly design, which minimizes the

impact on query processing. The main overhead is from

the versioning read. As shown in Table 4, the perfor-

mance overhead of latency is only about 10.3% and 5.5%

for large (L1, L2, L3 and L7) and small (L4, L5 and L6)

queries respectively, depending on the number of data

accessing.

7.3 Factor Analysis of Improvement

To study the impact of each design decision and how

they affect the query performance, we iteratively enable

each optimization and collect the query latency using the

LUBM-10240 dataset, as shown in Table 5:

326 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 5: The contribution of optimizations to query latency

(msec) of Wukong. Optimizations are cumulative.

LUBM

10240
BASE +RDMA +FHP +IDX +PBS +DYN

L1 9,766 9,705 888 853 814 516

L2 2,272 2,161 1,559 84 79 78

L3 421 404 404 205 203 203

L4 1.49 0.79 0.78 0.78 0.56 0.41

L5 1.00 0.39 0.39 0.39 0.31 0.17

L6 3.84 1.40 1.37 1.37 1.17 0.89

L7 2,176 2,041 657 494 466 464

Geo. M 102.3 69.1 39.6 22.6 19.9 15.7

• BASE: leverages graph-exploration strategy with

one-step pruning. The communication adopts

message passing over TCP/IP.

• +RDMA: uses one-sided RDMA operations to

improve the communication.

• +FHP: enables full-history pruning (§5.1 and 5.2).

• +IDX: adds two types of index vertex (§4.1) and

differentiated graph partitioning (§4.2).

• +PBS: leverages predicate-based finer-grained

vertex decomposition (§4.3).

• +DYN: supports in-place execution and dy-

namically switches between data migration and

execution distribution (§5.3).

Overall, all optimizations (+DYN) improves the av-

erage (geometric mean) latency by 6.5X over the basic

version (BASE). The basic version already outperforms

TriAD for small queries by leveraging graph exploration,

while having inferior performance for large queries due

to the overhead of the (expensive) final join operations.

Note that Wukong can detect the empty final result of L3

in early steps and thus avoid the final join.

Leveraging RDMA for communication (+RDMA)

improves the baseline performance slightly (ranging

from 1% to 7%) for large queries and about twice (rang-

ing from 1.9X to 2.7X) for small queries, depending on

the proportion of communication cost. By skipping the

costly final join, enabling full-history pruning (+FHP)

notably accelerates the non-selective queries. The index

vertex with differentiated partitioning (+IDX) can im-

prove the parallelism and reduce network traffic for large

queries launching from a set of entities (subject/object)

with a certain predicate or type, especially for L2. L2

collects a large number of entities (i.e., Courses) on each

machine, which can be avoided by decentralizing index

vertex. Using predicate-based graph store (+PBS) fur-

ther notably reduces the latency of small queries (rang-

ing from 1.2X to 1.4X), due to finer-grained vertex de-

composition by predicates. Finally, the in-place execu-

tion can bypass remote CPU and OS and avoid the over-

head of task scheduling by leveraging one-sided RDMA

READ to fetch remote data. Therefore, the optimization

(+DYN) improves the performance by up to 1.8X.

Table 6: A comparison of query latency (msec) with different

execution modes.

LUBM

10240
L1 L2 L3 L4 L5 L6 L7

In-place 21,859 80 204 0.42 0.17 2.43 12,068

Fork-join 813 79 203 0.63 0.47 1.27 466

Dynamic 516 78 203 0.41 0.17 0.89 464

To further study the benefit of dynamic execution

mode switching in each step, we configure Wukong with

a fixed mechanism (i.e. in-place or fork-join). As shown

in Table 6, in-place mode is beneficial for L4 and L5,

while fork-join execution is beneficial for L7. In addi-

tion, L2 and L3 are not sensitive to the choice of execu-

tion modes. L1 and L6 are relatively special, in which

different steps require different modes for achieving op-

timal performance. Wukong can always choose the right

mode in runtime and thus outperform in-place and fork-

join mode alone by up to 42.3X and 2.8X. Note that the

poor performance of L1 and L7 with in-place mode is

caused by massive small-sized RDMA READs.

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
0

2
1

2
2

2
3

2
4

L
a

te
n

c
y
 (

m
s
e

c
)

Number of Threads

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

2
0

2
1

2
2

2
3

2
4

L
a

te
n

c
y
 (

m
s
e

c
)

Number of Threads

L4

L5

L6

Fig. 14: The latency of queries in group (I) and (II) with the

increase of threads on LUBM-10240.

7.4 Scalability

We evaluate the scalability of Wukong in three aspects by

scaling the number of threads, the number of machines,

and the size of dataset accordingly. We categorize seven

queries on LUBM dataset into two groups according to

the sizes of intermediate and final results as done in prior

work [54]. Group (I): L1, L2, L3, and L7; the results of

such queries increase with the growing of dataset. Group

(II): L4, L5, and L6; such queries are quite selective and

produce fixed-size results regardless of the data size.

Scale-up: We first study the performance impact of

multi-threading on LUBM-10240 using fixed 6 servers.

Figure 14 shows the latency of queries on a logarithmic

scale with the logarithmic increase of threads. For group

(I), the speedup of Wukong ranges from 9.9X to 14.3X

with the increase of threads from 1 to 16. For group

(II), since the queries just involve a small subgraph and

are not CPU-intensive, Wukong always adopts a single

thread for the query and provides a stable performance.

Scale-out: We also evaluated the scalability of

Wukong with respect to the number of servers. Note

that we omit the evaluation on a single server as LUBM-

10240 (amounting to 230GB in raw NT format) cannot

fit into memory. Figure 15(a) shows a linear speedup of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 327

 0

 500

 1000

 1500

 2000

 2 3 4 5 6

L
a

te
n

c
y
 (

m
s
e

c
)

Number of Machines

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

 2 3 4 5 6

L
a

te
n

c
y
 (

m
s
e

c
)

Number of Machines

L4

L5

L6

Fig. 15: The latency of queries in group (I) and (II) with the

increase of machines on LUBM-10240.

2
0

2
2

2
4

2
6

2
8

2
10

2
2

2
4

2
6

2
8

2
10

L
a

te
n

c
y
 (

m
s
e

c
)

Size of Datasets [x10 Univ.]

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

2
2

2
4

2
6

2
8

2
10

L
a

te
n

c
y
 (

m
s
e

c
)

Size of Datasets [x10 Univ.]

L4

L5

L6

Fig. 16: The latency of queries in group (I) and (II) with the

increase of LUBM datasets (40-10240).

Wukong for group (I) ranging from 2.46X to 3.54X, with

the increase of servers from 2 to 6. It implies Wukong

can efficiently utilize the parallelism of a distributed sys-

tem by leveraging fork-join execution mode. For group

(II), since the intermediate and final results are relatively

small and fixed-size, using more machines does not im-

prove the performance as expected, but the performance

is still stable by using in-place execution to restrict the

network overhead.

Data size: We further evaluated Wukong with the in-

crease of dataset size from LUBM-40 to LUBM-10240

while keeping the number of threads and servers fixed.

As shown in Figure 16, for group (I), Wukong scales

quite well with the growing of dataset, due to efficiently

passing full history and the elimination of the final join.

For group (II), Wukong can achieve stable performance

regardless of the increasing dataset size, due to the in-

place execution with one-sided RDMA READ.

Wukong is a good practicer of the COST metric [29],

which pursues scalable parallelism for large queries and

efficient use of resources for small queries.

7.5 Throughput of Mixed Workloads

Unlike prior RDF stores [54, 21] that are only designed

to handle one query at a time, Wukong is also designed to

provide high throughput such that it can handle hundreds

of thousands of concurrent queries per second. There-

fore, we build emulated clients and a mixed workload

to study the behavior of RDF stores serving concurrent

queries.

For Wukong, each server runs up to 4 emulated clients

on dedicated cores. All clients will send as many queries

as possible periodically until the throughput saturated.

For TriAD8, a single client will send queries one by one

8We are not aware of open-sourced RDF systems supporting concurrent

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(q

u
e
ry

/s
e
c
)

Number of Machines

Wukong

TriAD

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1

A2

A3

L4

L5

L6

Fig. 17: (a) The throughput of a mixture of queries with the

increase of machines, and (b) the CDF of latency for 6 classes

of queries on 6 machines.

since it only can handle one query at a time.

We first use a mixture workload consisting of 6 classes

of queries9, all of which disable multi-threading. The

query in each class has a similar behavior except that the

start point is randomly selected from the same type of

vertices (e.g., Univ0, Univ1, etc.). The distribution of

query classes follows the reciprocal of their average la-

tency. As shown in Figure 17, Wukong achieves a peak

throughput of 269K queries/second on 6 machines (97K

queries/second on 2 machines), which is at least two

orders of magnitude higher than TriAD (from 278X to

740X). Under the peak throughput, the geometric mean

of 50th (median) and 99th percentile latency is just 0.80

and 5.90 milliseconds respectively.

 50

 100

 150

 200

 250

 300

[2]X[4] [3]X[4] [4]X[4] [5]X[4] [6]X[4]

T
h

ro
u

g
h

p
u

t
(K

 q
u

e
ry

/s
e

c
)

Number of (Logical) Nodes

Wukong

 50

 100

 150

 200

 250

 300

[6]X[1] [6]X[2] [6]X[3] [6]X[4]

T
h

ro
u

g
h

p
u

t
(K

 q
u

e
ry

/s
e

c
)

Number of (Logical) Nodes

Wukong

Fig. 18: The throughput of a mixture of queries with the

increase of logical nodes. The tick labels of x-axis are the

configuration, and the symbol of [m]X[n] corresponds with

#machines and #nodes/machine.

Scalability with logical nodes: To overcome the re-

striction of cluster size, we emulate a large cluster by

scaling the logical nodes on each machine and evaluate

the throughput of Wukong along with the increase of log-

ical nodes. Each logical node has 4 worker threads and

the interaction between logical nodes still uses one-sided

RDMA operations even on the same machine. As shown

in Figure 18, Wukong scales out to 24 nodes by both the

number of machines and the number of nodes per ma-

chine; the throughput reaches 282K queries per second.

Multi-threading query: To further study the impact

of enabling multi-threading (MT) for time-consuming

queries. We dedicate a client to continually send MT

query processing. On the other hand, existing graph databases or graph-analytics

systems have even worse performance compared to TriAD due to the lack of RDF

and SPARQL supporting.
9The templates of 6 classes of queries are based on group (II) queries (L4, L5,

and L6) and three additional queries (A1, A2, and A3) from the official LUBM

website (#1, #3, and #5).

328 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(K

 q
u
e
ry

/s
e
c
)

Number of Threads

mixed workload

1 2 4 8 16
MT Threshold

w/ MT query

2
8

2
10

2
12

2
14

1 2 4 8 16

L
a
te

n
c
y
 (

m
s
e
c
)

MT Threshold

MT query

Fig. 19: (a) The throughput of a mixture of queries with the

increase of threads, (b) the throughput with multi-threaded

(MT) queries under various MT thresholds, and (c) the av-

erage latency of multi-threaded (MT) queries.

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1
A2
A3
L4
L5
L6

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1
A2
A3
L4
L5
L6

Fig. 20: The CDF of latency for 6 classes of queries on 6

machines (a) w/o and (b) w/ worker-obliger mechanism. Each

server uses fixed 8 threads (threshold=4).

queries (i.e., L1) and configure Wukong with different

MT thresholds. As shown in Figure 19(b) and (c), with

the increase of the MT threshold, both the throughput of

Wukong and the time of interference (the latency of MT

query) will degrade. For example, under the threshold 8,

Wukong can still perform 186K queries/second and the

average latency of MT query is about 1,118 msec.

Worker-obliger mechanism: The MT query will also

influence the latency of other small queries in the wait-

ing queues. Figure 20(a) show the CDF graph of latency

for 6 classes of non-MT queries. The 80th percentile

latency increases at least two orders of magnitude and

the 99th percentile latency reaches several thousands of

msec. With the worker-obliger mechanism, as shown in

Figure 20(b), Wukong can notably reduce the query la-

tency while preserving the throughput.

LUBM

2560

MEM

(GB)

Wukong 18.5

BASE 12.3

TriAD 30.7

RDF-3X 24.2

BitMat 27.4
0 20 40 60 80 100 120 140

Wukong

BASE

TriAD

Memory Usage (GB)

RDF Unused

Other RDMA

P-idx T-idx

Fig. 21: A comparison of memory usage and breakdown on

various systems for (a) LUBM-2560 and (b) LUBM-10240.

The storage size is 6.2GB and 25GB respectively.

7.6 Memory Consumption

Readers might be interested in how the memory con-

sumption of Wukong compares to other state-of-the-art

systems. Triple stores, including TriAD, RDF-3X, and

BitMat, rely on redundant six primary SPO permuta-

tion indexes [49] to accelerate querying, which, however,

lead to high memory pressure. In contrast, managing

RDF data in native graph form is much space-efficient,

which only doubles the triples in RDF for subjects and

objects. Figure 21(a) compares the memory usage of var-

ious systems for LUBM-2560 on a single machine. All

triple stores consume much more memory compared to

Wukong, especially for its basic version (i.e., BASE).

Figure 21(b) further shows a breakdown of memory

usage in Wukong for LUBM-10240 on the 6-node clus-

ter. Compared to the base version, Wukong adds about

3.9GB and 0.9GB memory for predicate index (P-idx)

and type index (T-idx), as well as additional 15.5GB

memory for RDF to support predicate-based store. Fur-

thermore, 9.0GB memory (1.5GB per machine) is re-

served for one-sided RDMA operations. Note that the

underlying key/value store of Wukong is a hashtable with

less than 75% occupancy, because Wukong is currently

not well tuned for high space-efficiency.

7.7 Other Datasets

We further study the performance of Wukong and TriAD

over more other synthetic and real-life datasets. Note

that we do not provide the performance of TriAD-SG be-

cause the hand-tuned parameter of summary graph is not

known and it only improves performance in few cases.

Table 7: The latency (msec) of queries on WSDTS

WSDTS
L1-L5 S1-S7 F1-F5 C1-C3

(Geo. M) (Geo. M) (Geo. M) (Geo. M)

TriAD 4.5 5.3 17.5 36.6

Wukong 1.0 0.9 3.6 10.3

WSDTS: We first compare the performance of TriAD

and Wukong over WSDTS dataset using 20 diverse

queries, which are classified into linear (L), star (S),

snowflake (F) and complex (C). Table 7 shows the

geometric mean of latency for various query classes.

Wukong always outperforms TriAD by up to 58.2X

(from 1.6X). For L1, L3, S1, S7 and F5, Wukong is at

least one order of magnitude faster than TriAD since the

queries are quite selective and appropriate for graph ex-

ploration. For only two queries, F1 and C3, the improve-

ment of Wukong is less than 2.0X.

Table 8: The latency (msec) of queries on DBPSB

DBPSB D1 D2 D3 D4 D5 Geo. M

TriAD 4.93 4.10 5.56 7.68 3.51 4.97

Wukong 1.75 0.48 0.41 3.70 1.14 1.16

DBPSB: Table 8 shows the performance of five rep-

resentative queries on DBPSB, which is a relative small

real-life dataset, but has quite more predicates. Wukong

outperforms TriAD by at least 2X (up to 13.6X), and

the improvement of geometric mean reaches 4.3X. For

D2 and D3, the speedup reaches 8.6X and 13.6X respec-

tively since the queries are relatively selective.

YAGO2: Table 9 compares the performance of TriAD

and Wukong on a large real-life dataset YAGO2. For the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 329

Table 9: The latency (msec) of queries on YAGO2

YAGO2 Y1 Y2 Y3 Y4 Geo. M

TriAD 1.13 2.14 68,841 6,193 179

Wukong 0.12 0.17 38,571 3,501 41

simple queries, Y1 and Y2, Wukong is one order of mag-

nitude faster than TriAD due to fast in-place execution.

For the complex queries, Y3 and Y4, Wukong can still

notably outperforms TriAD by about 1.8X due to full-

history pruning and RDMA-friendly task queues.

8 Related Work

RDF query over triple and relational store: There

have been a large number of triple-based RDF stores that

use relational approaches to storing and indexing RDF

data [33, 34, 8, 49, 42, 11]. Since join is expensive and

a key step for query processing in such triple stores, they

perform various query optimizations including heuristic

optimizations [33], join-ordering exploration [33], join-

ahead pruning [34], and query caching [39]. Specially,

TriAD [21] is a recent distributed in-memory RDF en-

gine that leverages join-ahead pruning and graph sum-

marization with asynchronous message passing for par-

allelization. SHAPE [27] is a distributed engine upon

RDF-3X by statically replicating and prefetching data.

As shown in prior work [54], graph exploration avoids

many redundant immediate results generated during ex-

pensive join operations and thus typically delivers better

performance. A recent study, SQLGraph [45], leverages

a relational store to store RDF data but processes RDF

queries as a graph store. Yet, it focuses on query rewrit-

ing and schema refinement to support ACID-style trans-

actions and thus has different objectives from Wukong.

RDF query over graph store: There is an increasing

interest in using native graph model to store and query

RDF data [9, 53, 58, 52, 54]. BitMat [9], gStore [58] and

TripleBit [53] are centralized graph stores with sophisti-

cated indexes to improve query performance. Sedge [52]

is a distributed SPARQL query engine based on a sim-

ple Pregel implementation, which tries to minimize the

inter-machine communication by group-based commu-

nication. The most related work is Trinity.RDF [54], a

distributed in-memory RDF store that leverages graph

exploration to process queries. Wukong’s design centers

around the usage of fast interconnect with RDMA fea-

tures to allow fast graph exploration. Wukong also intro-

duces novel graph-based indexes as well as differentiated

graph partitioning and query processing to improve the

overall system performance.

RDF query over MapReduce: Several distributed

RDF systems are built atop existing frameworks like

MapReduce [38, 37, 40, 43], e.g., H2RDF [38, 37] and

SHARD [40]. PigSPARQL [43] maps SPARQL op-

erations into PigLatin [35] queries, which in turn is

translated into MapReduce programs. However, due

to the lack of efficient iterative computation support,

MapReduce-based computation is usually sub-optimal

for SPARQL execution, as shown in prior work [21, 54].

Graph databases and query systems: Neo4j [2] and

HyperGraphDB [24] focus on supporting online transac-

tion processing (OLTP) on graph data; however they are

not distributed and cannot support web-scale graphs par-

titioned over multiple machines. Titan [4] instead sup-

ports distributed graph traversals over multiple machines,

which, however, does not support SPARQL queries.

Facebook’s TAO [12] provides a simple API and data

model to store and query geographically distributed data.

Unicorn [15] further leverages TAO as the storage layer

to support searching over the social data. To our knowl-

edge, none of the above systems exploit RDMA as well

as the optimization techniques in Wukong to boost query

latency and throughput.

RDMA-centric stores: The low latency and high

throughput of RDMA-based networking stimulate much

work on RDMA-centric key/value stores [30, 25], OLTP

platforms [48, 17, 14] and graph analytics engines [50,

23]. Specifically, GraM [50] is an efficient and scal-

able graph analytics engine that leverages multicore and

RDMA to provide fast batch-oriented graph analytics.

However, handling SPARQL queries is significantly dif-

ferent from graph analytics and thus Wukong can hardly

benefit from the design of GraM. Further, Wukong is de-

signed to handle highly concurrent queries while GraM

is designed to handle one graph-analytics task at a time.

Recently, Kalia et al. [26] provide several of RDMA de-

sign space for system designers.

9 Conclusion

This paper describes Wukong, a distributed in-memory

RDF store that leverages RDMA-based graph explo-

ration to support fast and concurrent SPARQL queries.

Wukong significantly outperforms state-of-the-art sys-

tems and can process a mixture of small and large queries

at 269K queries/second on a 6-node RDMA-capable

cluster. Currently, we only consider the SPARQL query

over timeless RDF datasets; our future work may extend

Wukong to support RDF stream processing (RSP)10.

10 Acknowledgments

We sincerely thank our shepherd Dushyanth Narayanan

and the anonymous reviewers for their insightful sugges-

tions, as well as Yunhao Zhang for sharing his experience

to support evolving RDF graphs. This work is supported

in part by the National Key Research & Development

Program (No. 2016YFB1000500), the National Natural

Science Foundation of China (No. 61402284, 61572314)

and the Zhangjiang Hi-Tech program (No. 201501-YP-

B108-012).

10https://www.w3.org/community/rsp/

330 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.w3.org/community/rsp/

References

[1] DBpedias SPARQL Benchmark. http://aksw.org/

Projects/DBPSB.

[2] Neo4j Graph Database. http://neo4j.org/.

[3] SWAT Projects - the Lehigh University Benchmark (LUBM).

http://swat.cse.lehigh.edu/projects/lubm/.

[4] Titan: Distributed Graph Database. http://titan.

thinkaurelius.com/.

[5] Waterloo SPARQL Diversity Test Suite (WSDTS). https://

cs.uwaterloo.ca/˜galuc/wsdts/.

[6] YAGO: A High-Quality Knowledge Base. http://

www.mpi-inf.mpg.de/departments/

databases-and-information-systems/

research/yago-naga/yago.

[7] Bio2RDF: Linked Data for the Life Science. http://

bio2rdf.org/, 2014.

[8] ABADI, D. J., MARCUS, A., MADDEN, S. R., AND HOLLEN-

BACH, K. Sw-store: a vertically partitioned dbms for seman-

tic web data management. The VLDB JournalThe International

Journal on Very Large Data Bases 18, 2 (2009), 385–406.

[9] ATRE, M., CHAOJI, V., ZAKI, M. J., AND HENDLER, J. A.

Matrix ”bit” loaded: A scalable lightweight join query processor

for rdf data. In Proceedings of the 19th International Conference

on World Wide Web (New York, NY, USA, 2010), WWW ’10,

ACM, pp. 41–50.

[10] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling mul-

tithreaded computations by work stealing. J. ACM 46, 5 (Sept.

1999), 720–748.

[11] BORNEA, M. A., DOLBY, J., KEMENTSIETSIDIS, A., SRINI-

VAS, K., DANTRESSANGLE, P., UDREA, O., AND BHAT-

TACHARJEE, B. Building an efficient rdf store over a relational

database. In Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of Data (New York, NY, USA,

2013), SIGMOD ’13, ACM, pp. 121–132.

[12] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-

MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,

S., LI, H., ET AL. Tao: Facebooks distributed data store for the

social graph. In Presented as part of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13) (2013), pp. 49–60.

[13] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra:

Differentiated graph computation and partitioning on skewed

graphs. In Proceedings of the Tenth European Conference on

Computer Systems (New York, NY, USA, 2015), EuroSys ’15,

ACM, pp. 1:1–1:15.

[14] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast and

general distributed transactions using rdma and htm. In Proceed-

ings of the Eleventh European Conference on Computer Systems

(2016), ACM, p. 26.

[15] CURTISS, M., BECKER, I., BOSMAN, T., DOROSHENKO, S.,

GRIJINCU, L., JACKSON, T., KUNNATUR, S., LASSEN, S.,

PRONIN, P., SANKAR, S., SHEN, G., WOSS, G., YANG, C.,

AND ZHANG, N. Unicorn: A system for searching the social

graph. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1150–1161.

[16] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-

TRO, M. FaRM: Fast remote memory. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Imple-

mentation (2014), NSDI’14, USENIX Association, pp. 401–414.

[17] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,

RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,

M. No compromises: Distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th Sym-

posium on Operating Systems Principles (New York, NY, USA,

2015), SOSP’15, ACM, pp. 54–70.

[18] GONZALEZ, J., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. PowerGraph: Distributed graph-parallel compu-

tation on natural graphs. In OSDI (2012).

[19] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,

FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing

in a distributed dataflow framework. In OSDI (2014).

[20] GOOGLE INC. Introducing the knowledge

graph: things, not strings. https://

googleblog.blogspot.co.uk/2012/05/

introducing-knowledge-graph-things-not.

html, 2012.

[21] GURAJADA, S., SEUFERT, S., MILIARAKI, I., AND

THEOBALD, M. Triad: A distributed shared-nothing rdf en-

gine based on asynchronous message passing. In Proceedings of

the 2014 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2014), SIGMOD ’14, ACM,

pp. 289–300.

[22] HOFFART, J., SUCHANEK, F. M., BERBERICH, K., LEWIS-

KELHAM, E., DE MELO, G., AND WEIKUM, G. Yago2: Explor-

ing and querying world knowledge in time, space, context, and

many languages. In Proceedings of the 20th International Con-

ference Companion on World Wide Web (New York, NY, USA,

2011), WWW’11, ACM, pp. 229–232.

[23] HONG, S., DEPNER, S., MANHARDT, T., VAN DER LUGT, J.,

VERSTRAATEN, M., AND CHAFI, H. Pgx.d: A fast distributed

graph processing engine. In Proceedings of the International

Conference for High Performance Computing, Networking, Stor-

age and Analysis (New York, NY, USA, 2015), SC ’15, ACM,

pp. 58:1–58:12.

[24] IORDANOV, B. Hypergraphdb: a generalized graph database. In

Web-Age information management. Springer, 2010, pp. 25–36.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using

rdma efficiently for key-value services. In Proceedings of the

2014 ACM Conference on SIGCOMM (2014), SIGCOMM’14,

ACM, pp. 295–306.

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design

guidelines for high performance rdma systems. In Proceedings of

the 2016 USENIX Conference on Usenix Annual Technical Con-

ference (2016), USENIX ATC’16.

[27] LEE, K., AND LIU, L. Scaling queries over big rdf graphs with

semantic hash partitioning. Proc. VLDB Endow. 6, 14 (Sept.

2013), 1894–1905.

[28] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,

J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:

a system for large-scale graph processing. In SIGMOD (2010),

pp. 135–146.

[29] MCSHERRY, F., ISARD, M., AND MURRAY, D. Scalability! But

at what COST? In HotOS ’15 (2015).

[30] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma

reads to build a fast, cpu-efficient key-value store. In USENIX

Annual Technical Conference (2013), pp. 103–114.

[31] MURRAY, D., MCSHERRY, F., ISAACS, R., ISARD, M.,

BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-

tem. In SOSP (2013).

[32] NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION.

PubChemRDF. https://pubchem.ncbi.nlm.nih.

gov/rdf/, 2014.

[33] NEUMANN, T., AND WEIKUM, G. Rdf-3x: A risc-style engine

for rdf. Proc. VLDB Endow. 1, 1 (Aug. 2008), 647–659.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 331

http://aksw.org/Projects/DBPSB
http://aksw.org/Projects/DBPSB
http://neo4j.org/
http://swat.cse.lehigh.edu/projects/lubm/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://cs.uwaterloo.ca/~galuc/wsdts/
https://cs.uwaterloo.ca/~galuc/wsdts/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://bio2rdf.org/
http://bio2rdf.org/
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://pubchem.ncbi.nlm.nih.gov/rdf/
https://pubchem.ncbi.nlm.nih.gov/rdf/

[34] NEUMANN, T., AND WEIKUM, G. Scalable join processing on

very large rdf graphs. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data (New York,

NY, USA, 2009), SIGMOD ’09, ACM, pp. 627–640.

[35] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig latin: a not-so-foreign language for data pro-

cessing. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data (2008), ACM, pp. 1099–

1110.

[36] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STO-

ICA, I. Sparrow: Distributed, low latency scheduling. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2013), SOSP ’13,

ACM, pp. 69–84.

[37] PAPAILIOU, N., KONSTANTINOU, I., TSOUMAKOS, D., KAR-

RAS, P., AND KOZIRIS, N. H2rdf+: High-performance dis-

tributed joins over large-scale rdf graphs. In 2013 IEEE Interna-

tional Conference on Big Data (2013), IEEE BigData ’13, IEEE,

pp. 255–263.

[38] PAPAILIOU, N., KONSTANTINOU, I., TSOUMAKOS, D., AND

KOZIRIS, N. H2rdf: Adaptive query processing on rdf data in

the cloud. In Proceedings of the 21st International Conference

on World Wide Web (New York, NY, USA, 2012), WWW ’12

Companion, ACM, pp. 397–400.

[39] PAPAILIOU, N., TSOUMAKOS, D., KARRAS, P., AND KOZIRIS,

N. Graph-aware, workload-adaptive sparql query caching. In

Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data (New York, NY, USA, 2015), SIG-

MOD ’15, ACM, pp. 1777–1792.

[40] ROHLOFF, K., AND SCHANTZ, R. E. High-performance, mas-

sively scalable distributed systems using the mapreduce software

framework: The shard triple-store. In Programming Support In-

novations for Emerging Distributed Applications (New York, NY,

USA, 2010), PSI EtA ’10, ACM, pp. 4:1–4:5.

[41] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND

ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-

ondary storage. In Proceedings of the 25th Symposium on Op-

erating Systems Principles (New York, NY, USA, 2015), SOSP

’15, ACM, pp. 410–424.

[42] SAKR, S., AND AL-NAYMAT, G. Relational processing of rdf

queries: A survey. SIGMOD Rec. 38, 4 (June 2010), 23–28.

[43] SCHÄTZLE, A., PRZYJACIEL-ZABLOCKI, M., AND LAUSEN,

G. Pigsparql: Mapping sparql to pig latin. In Proceedings of the

International Workshop on Semantic Web Information Manage-

ment (2011), ACM, p. 4.

[44] SHAO, B., WANG, H., AND LI, Y. Trinity: A distributed graph

engine on a memory cloud. In SIGMOD (2013).

[45] SUN, W., FOKOUE, A., SRINIVAS, K., KEMENTSIETSIDIS, A.,

HU, G., AND XIE, G. Sqlgraph: An efficient relational-based

property graph store. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (New York,

NY, USA, 2015), SIGMOD ’15, ACM, pp. 1887–1901.

[46] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,

P., AND ABADI, D. J. Calvin: Fast distributed transactions

for partitioned database systems. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of

Data (2012), SIGMOD’12, ACM, pp. 1–12.

[47] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,

S. Speedy transactions in multicore in-memory databases. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (2013), SOSP’13, ACM, pp. 18–32.

[48] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

in-memory transaction processing using rdma and htm. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles

(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[49] WEISS, C., KARRAS, P., AND BERNSTEIN, A. Hexastore: Sex-

tuple indexing for semantic web data management. Proc. VLDB

Endow. 1, 1 (Aug. 2008), 1008–1019.

[50] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,

LIN, H., DAI, Y., AND ZHOU, L. Gram: Scaling graph computa-

tion to the trillions. In Proceedings of the Sixth ACM Symposium

on Cloud Computing (New York, NY, USA, 2015), SoCC ’15,

ACM, pp. 408–421.

[51] WU, W., LI, H., WANG, H., AND ZHU, K. Q. Probase: A prob-

abilistic taxonomy for text understanding. In Proceedings of the

2012 ACM SIGMOD International Conference on Management

of Data (2012), ACM, pp. 481–492.

[52] YANG, S., YAN, X., ZONG, B., AND KHAN, A. Towards ef-

fective partition management for large graphs. In Proceedings of

the 2012 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2012), SIGMOD ’12, ACM,

pp. 517–528.

[53] YUAN, P., LIU, P., WU, B., JIN, H., ZHANG, W., AND LIU,

L. Triplebit: A fast and compact system for large scale rdf data.

Proc. VLDB Endow. 6, 7 (May 2013), 517–528.

[54] ZENG, K., YANG, J., WANG, H., SHAO, B., AND WANG, Z. A

distributed graph engine for web scale rdf data. In Proceedings

of the 39th international conference on Very Large Data Bases

(2013), PVLDB’13, VLDB Endowment, pp. 265–276.

[55] ZHANG, M., WU, Y., CHEN, K., QIAN, X., LI, X., AND

ZHENG, W. Exploring the hidden dimension in graph processing.

In OSDI (2016).

[56] ZHU, X., CHEN, W., ZHENG, W., AND XIAOSONG, M. Gem-

ini: A computation-centric distributed graph processing system.

In OSDI (2016).

[57] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN,

M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND

ZHANG, M. Congestion control for large-scale rdma deploy-

ments. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication (New York, NY, USA,

2015), SIGCOMM ’15, ACM, pp. 523–536.

[58] ZOU, L., MO, J., CHEN, L., ÖZSU, M. T., AND ZHAO, D.

gstore: Answering sparql queries via subgraph matching. Proc.

VLDB Endow. 4, 8 (May 2011), 482–493.

332 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

REX: A Development Platform and Online Learning Approach
for Runtime Emergent Software Systems

Barry Porter†, Matthew Grieves†, Roberto Rodrigues Filho† and David Leslie‡

†School of Computing and Communications; ‡Department of Mathematics and Statistics
Lancaster University, UK

Abstract: Conventional approaches to self-adaptive
software architectures require human experts to specify
models, policies and processes by which software can
adapt to its environment. We present REX, a complete
platform and online learning approach for runtime emer-
gent software systems, in which all decisions about the as-
sembly and adaptation of software are machine-derived.
REX is built with three major, integrated layers: (i) a novel
component-based programming language called Dana,
enabling discovered assembly of systems and very low
cost adaptation of those systems for dynamic re-assembly;
(ii) a perception, assembly and learning framework (PAL)
built on Dana, which abstracts emergent software into
configurations and perception streams; and (iii) an online
learning implementation based on a linear bandit model,
which helps solve the search space explosion problem in-
herent in runtime emergent software. Using an emergent
web server as a case study, we show how software can
be autonomously self-assembled from discovered parts,
and continually optimized over time (by using alternative
parts) as it is subjected to different deployment conditions.
Our system begins with no knowledge that it is specifi-
cally assembling a web server, nor with knowledge of the
deployment conditions that may occur at runtime.

1 Introduction
Modern software systems are increasingly complex,

and are deployed into increasingly dynamic environ-
ments. The result is systems comprising millions of lines
of code that are designed, analyzed and maintained by
large teams of software developers at significant cost. It is
broadly acknowledged that this level of complexity is un-
sustainable using current practice [15]. In recent years this
has driven research in autonomic, self-adaptive and self-
organizing software systems [26, 31, 14], aiming to move
selected responsibility for system management into the
software itself. While showing promise, work to date re-
tains a very high degree of human involvement – either in
creating models to describe systems and their adaptation
modes [10, 13], policies to control adaptation at runtime
[20], or designing and running courses of offline training
with available historical data [12]. These are human-led
approaches to the above complexity problem, designed to
fit well with current software development practice.

We push these concepts to their limits with a novel
machine-led approach, in which a software system au-
tonomously emerges from a pool of available building
blocks that are provided to it. We demonstrate the first
such example of a software system able to rapidly self-
assemble into an optimal form, at runtime, using online
learning. This is done with no models or architecture
specifications, and no policies for adaptation. Instead,
the live system learns by assembling itself from needed
behaviors and continually perceiving their effectiveness,
such as response time or compression ratio, in the envi-
ronments to which the system is subjected. The build-
ing blocks of our approach are based on micro-variation:
different implementations of small software components
such as memory caches with different cache replacement
strategies or stream handlers that do or do not use caching.
As we use relatively small components, this kind of im-
plementation variant is easy to create. By autonomously
assembling systems from these micro-variations, and their
various combinations, we then see emergent designs to
suit the conditions observed at runtime.

Implemented as a development platform called REX,
we present three major integrated contributions, each a
key part of the solution to emergent computer software:

• An implementation platform: We present the key
features of Dana, a programming language with
which to create small software components that can
be assembled into emergent software systems. Dana
offers a uniform way to express systems in these
terms, and near-zero-cost runtime adaptation.

• A perception, assembly and learning framework:
We present the details of PAL, a framework built with
Dana that controls the dynamic discovery and assem-
bly of emergent software, perceives the effectiveness
and deployment conditions of that software (such as
input patterns and system load characteristics), and
feeds perception data to an online learning module.

• An online learning approach: We present an appli-
cation of statistical linear bandits, using Thompson
sampling, as an effective online learning algorithm
that helps to solve the search space explosion inher-
ent in emergent software. This is done by sharing
beliefs about individual components across the con-
figurations in which they can appear.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 333

Using a prototype emergent web server as an exam-
ple, we show how a system can be autonomously as-
sembled from discovered parts, and how that system can
subsequently be optimized to its task by seamlessly re-
assembling it from alternative parts. We evaluate our ap-
proach by subjecting our web server to various usage pat-
terns, demonstrating how different designs rapidly emerge
over time as conditions change. This emergence occurs
through online learning, based on perception streams that
indicate the internal well-being of the software and the ex-
ternal conditions to which it is currently being subjected.
We also show how a simple classifier adds “memory” to
the system, avoiding re-learning of environmental change.
In our current implementation this classifier is manually
defined; further automation here is a topic of future work.

Our work paves the way to: (i) significantly reducing
human involvement in software development, thereby re-
ducing the scale of modern development processes; and
(ii) creating systems that are far more responsive to the
actual conditions that they encounter at runtime, therefore
offering higher performance in those conditions.

The remainder of this paper is structured as follows. In
Sec. 2 we discuss our approach in detail, presenting the
above three contributions and how they integrate into a
complete platform for emergent computer software. In
Sec. 3 we then evaluate the system in terms of its ability
to continuously (and rapidly) assemble optimal software
compositions as external stimulus changes. In Sec. 4 we
discuss related work and we conclude the paper in Sec. 5.

2 Approach
Our approach has three major contributions that build

on each other to provide an integrated solution for emer-
gent software. An overview is shown in Fig. 1.

At the bottom layer is our implementation platform
(Dana) for creating software components that can be as-
sembled / re-assembled in various ways into different sys-
tems. This layer provides an API to control the loading,
unloading and interconnection of these components. The
upper two layers then contain our perception, assembly
and learning (PAL) framework. Specifically, at the middle
layer are our assembly and perception modules, respon-
sible for assembling entire systems from available com-
ponents and perceiving the state of those systems. To-
gether these two modules offer an API to control the way
in which the system is currently assembled, and to view
the perception streams that the system is emitting. The
top layer contains our learning module, which uses the
assembly and perception API. This module learns corre-
lations between particular assemblies of behavior and the
way that the system perceives its own well-being, under
different external stimuli of input patterns or deployment
environment conditions such as CPU load.

Our overall approach uses dynamic micro-variation of

load | unload | getInterfaces | connect | adapt

implementation
platform

setMain | getConfigs | setConfig | getPerception

assembly
module

perception
module

learning
module

co
m

p
on

en
t

p
oo

l

API

API

REX

D
an
a

PA
L

Figure 1 – Overview of our approach.

behavior: the ability to continually discover and configure
components in and out of a live system that perform the
same overall task but do so in different ways. By experi-
menting with these variations, and their combinations, we
see the ideal system emerging over time for the current
usage pattern and deployment environment conditions1.

In the following sections we present Dana; our PAL
framework; and the online learning approach used in PAL.

2.1 Dana: An implementation platform for
runtime adaptive micro-variation

A platform for emergent software must enable us to
build small units of behavior, and to express the interre-
lationships between them, such that we can create micro-
variations of these units that can be autonomously assem-
bled, and seamlessly re-assembled, in a live system. To
do this we started from the component-based software
development paradigm [29], well-established in forging
adaptive systems. We designed a programming language
around this, in which all elements of a system (from ab-
stract data types to GUI widgets) are runtime-replaceable
components. Our language is called Dana2 and is freely
available [1], with a large standard library of components.
It is currently used across a range of ongoing projects.

Dana is a multi-threaded imperative programming lan-
guage, but one that frames these concepts in a component-
based structural paradigm. In these terms, Dana has three
novel features for our needs that we now present in detail,
along with the API that Dana provides to higher layers of
REX for assembling and perceiving emergent software.

1Throughout this paper we use the simplifying assumption that all
possible assemblies of an emergent system are valid; in reality an auto-
mated unit testing system could potentially provide this validation before
particular assemblies are made available for use in the live system.

2Dynamic Adaptive Nucleic Architectures: named for its highly dy-
namic systems of small components with linked internal sub-structures.

334 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

interface File {

 transfer char path[]

 transfer int pos, mode

component provides App requires File {

 int App:main(AppParam args[]) {

 File ifd = new File(args[0].str, File.READ)

 File ofd = new File(args[1].str, File.WRITE)

 while (!ifd.eof()) ofd.write(ifd.read(128))

 ofd.close()

 ifd.close()

 return 0

 }

}

 File(char path[], int mode)

 byte[] read(int numBytes)

 int write(byte data[])

 bool eof()

 void close()

}

Figure 2 – Example interface to open, read and write files (top);
and a component that uses this interface to copy a file (bottom).

2.1.1 Fusing third-party system composition with
first-party instantiation

Our first observation is that state-of-the-art realizations
of the component-based paradigm are almost completely
disjoint from object orientation. Specifically, component
models enable third-party instantiation and (re)wiring
whereby a so-called meta-level controls the composition
of a software system by modelling that system as a graph
of components (nodes) and wirings (edges). However,
within this model they fundamentally lack support for
first-party instantiation and reference passing – i.e., the
ability to instantiate objects with their own private state
and pass references to those objects as parameters. In
our experience with existing runtime component models
(such as OSGi [3], OpenCom [11] and Fractal [8]), this
shortcoming makes it very hard to express many simple
modern programming concepts. By contrast, Dana en-
ables first-party instantiation within a paradigm in which
a meta-level controls software composition as a graph of
components and wirings that can be adapted at runtime.

An example Dana component is shown in the lower
half of Fig. 2. This component provides an App inter-
face and requires a File interface (defined in the top half
of Fig. 2). The component instantiates the File inter-
face twice with different parameters, yielding two File
objects, and copies data from the first file to the second
by reading and writing chunks of data. The full system
is created by a meta-level which first loads the example
component (CA) into memory, queries its required inter-
faces, then loads a desired implementing component of
File into memory and wires CA’s required interface to
the respective provided interface of that component. The
resulting system is illustrated in Fig. 3. At any point dur-
ing program execution, the meta-level can choose to re-
wire the File required interface of CA to point to a corre-

component

required interface
(File)

wiring
proxy object

transfer state
(path, pos, mode)

implementation object

provided interface
(File)

component

component
implementing

App

component
implementing

File

Figure 3 – Internal structure of components and objects. For
each instantiated object, a proxy is created with an internal ref-
erence to the implementing object from the component of the
connected provided interface. Required interfaces maintain a
list of all (proxy) objects that were instantiated through them.

sponding provided interface on a different implementing
component, thereby adapting the system’s behavior.

Formally, the runtime component model that enables
the above is defined as follows. An interface i is a set of
function prototypes, each comprising a function name, re-
turn type and parameter types; and a set of transfer fields,
typed pieces of state that persist across alternate imple-
mentations of the interface during runtime adaptation.

A component c provides one or more such interfaces,
where each such provided interface has an implementa-
tion scope isc. An isc has an implementation of every
function of its provided interface (plus other internal func-
tions) and [0..n] global variables (each of which is private,
i.e., not visible outside c). A provided interface (and its
underlying isc) of a component must be instantiated be-
fore use; we refer to these instances as objects. A compo-
nent c also requires zero or more interfaces, each of which
must be connected to a compatible provided interface on
another component to satisfy the dependency. These inter-
component connections are referred to as wirings.

At an implementation level, a required interface can be
thought of simply as a list of function pointers; when a
required interface r is wired to a provided interface p, r’s
function pointers are updated to point at the corresponding
functions in the component behind p. On top of this basic
mechanism, Dana provides an abstraction of objects such
that a required interface can be instantiated many times.

When the code inside a component instantiates one of
its required interfaces r (using the language’s new oper-
ator), this results in the instantiation firstly of a special
proxy object and secondly an isc instance relative to the
provided interface of the component to which r is wired.
The isc has a fresh copy of any (private) global state fields,
and of its interface’s transfer fields. The proxy object has
an internal link to the corresponding isc. A reference to the
proxy object, initially held by the instantiator, can then be
passed as a parameter to other functions as desired.

The use of proxy objects allows the implementing com-
ponent(s) of those objects to be adapted, resulting in a
change to the internal links within the proxy objects, with-
out affecting any references to the proxy objects.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 335

2.1.2 A protocol for seamless runtime adaptation
An emergent software system must be able to contin-

ually experiment online with different combinations of
components without disrupting the system’s primary task.
To enable this we need a low-overhead runtime adaptation
protocol that works with our component model.

We have therefore designed a protocol that uses trans-
parent hot-swapping (similar to that proposed by Soules
et al. [28]) for zero down-time; and that supports ob-
ject reference persistence across implementation changes.
In addition, it yields fast adaptation for both stateful and
stateless components by using a modular protocol de-
sign in which different command orderings give differ-
ent semantics for these two cases, as we explain below.
This is much more lightweight than classic ‘quiescence’-
based approaches for coarse-grained component models,
in which potentially large portions of a running system
must be deactivated before adaptation proceeds [21, 32].

Algorithm 1 Adaptation protocol

1: srcCom . Comp. to rewire a required interface of
2: sinkCom . Comp. with provided interface to wire to
3: intfName . Interface name being adapted
4: pause(srcCom.intfName)
5: rob js = getObjects(srcCom.intfName)
6: rewire(srcCom.intfName,sinkCom)
7: resume(srcCom.intfName)
8: for i = 0 to rob js.arrayLength−1 do
9: if pauseObject(rob js[i]) then

10: a = adaptConstruct(sinkCom.intfName, rob js[i])
11: b = rewireObject(rob js[i], a)
12: resumeObject(rob js[i])
13: waitForObject(b)
14: adaptDestroy(b)
15: end if
16: end for

Pseudocode of our protocol is given in Alg. 1. All adap-
tation in Dana is performed by changing a component
srcCom’s required interface r from its current wiring to
instead be wired against a compatible provided interface
of a different component sinkCom.

In simple terms, our two flavours of adaptation proceed
as follows. For stateless objects, any new calls on those
objects are immediately routed to their new implementa-
tion from sinkCom, while any existing calls active in the
old implementation are (concurrently) allowed to finish.

For stateful objects, any existing calls active in their old
implementations are allowed to finish while any new calls
are temporarily held at the point of invocation, allowing
existing calls to finish potential updates to transfer state
fields. When all existing calls finish, all held calls, and
any new calls, are then allowed to proceed and are routed
to the objects’ new implementations from sinkCom.

1:getObjects
2:rewire

for each robjs

3:adaptDestroy

2:rewireObject
1:adaptConstruct

r
robjs

b a

=

robjs

sinkCom

srcCom

Figure 4 – Adaptation sequence overview. A selected required
interface r is rewired, followed by each object in the set rob js.

To achieve these effects, the operations used in our
adaptation protocol are defined in detail as follows.
pause prevents new objects from being instantiated

via r, and prevents any existing instances from being de-
stroyed. Specifically, any Dana language instructions that
attempt to instantiate or destroy an object become held at
the respective language operator, after checking whether
or not r is paused. We call this set of held threads rht .
getObjects acquires a list of all existing objects that

have been instantiated via r, giving the list rob js. Be-
cause r is currently paused, it is assured that rob js contains
all objects whose implementations are (and ever will be)
sourced from the component to which r is currently wired.
rewire changes the current wiring of r to point to the

equivalent provided interface of sinkCom.
resume removes the paused status from r and allows

the set of threads in rht to resume execution, thereby en-
abling any held object instantiation or destruction opera-
tions to proceed. After this point, any instantiation opera-
tors will resolve against the component to which r is now
wired, rather than to its previous wiring.

Our adaptation protocol uses the above four operations
on lines 4–7. The result is that the wiring graph at the
component level has been adapted, illustrated in the left
half of Fig. 4. The protocol is then left with a set of ob-
jects rob js whose implementations belong to the previous
wiring of r. To complete the adaptation, each such object
must have its implementation updated to be from the cur-
rent wiring of r. This procedure is performed in the loop
from lines 8–16 and is illustrated on the right of Fig. 4.
pauseObject first checks if the given object has

been destroyed by this point (recall that object destruc-
tion was re-enabled by resume). If not, this individual
object’s destruction is prevented by setting a flag on the
object such that a destruction operator will be held until
the flag is unset; pauseObject then returns true. The
remaining set of operations on lines 10–14 can then pro-
ceed in the knowledge that the object they operate on will
not be destroyed in the meantime. A successful invoca-
tion of pauseObject also prevents any new function
calls from being made on the given object, holding any
such calls at their invocation operator in a set oht .

336 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

adaptConstruct dynamically creates a new object
from the component to which r is now wired (by rewire
as described above). This object, a, is specially created in
such a way that it shares the transfer state fields (if any
exist) of rob js[i], instead of having its own fresh copy.
rewireObject changes the internal link of the proxy

object to which rob js[i] refers (recall that all references to
objects actually refer to their proxy object), pointing that
link at a instead of its previous location. As a return value,
rewireObject gives a different proxy object b, the internal
link of which refers to the object implementation to which
the proxy object of rob js[i] used to refer.
resumeObject allows any function calls held in oht

to proceed into the object (whose implementation object is
now one sourced from sinkCom), also allowing all future
calls to immediately proceed into the object.
waitForObject blocks until all function calls cur-

rently operating within the given object complete.
adaptDestroy destroys the given object in such a

way that its transfer state fields are not also destroyed.
For adaptations of stateless objects, used in cases when

the corresponding interface has no state transfer fields, our
adaptation protocol is arranged as in Alg. 1. For state-
ful objects, the waitForObject operator instead ap-
pears just before line 10 and is given rob js[i] as its param-
eter. This ensures that the previous implementation has
finished any potential modifications to an object’s transfer
fields before any logic in the new implementation occurs.
2.1.3 Structuring for discoverable code

An emergent software system must be able to au-
tonomously discover usable components for different
parts of itself. We wanted to support this without any
extra wiring specifications or manifest files, as are com-
mon in many component models [19, 16]. In doing so
we avoid developers having to do any work beyond writ-
ing component functionality. Instead, we chose to make
discoverable code an inherent feature of our platform.

Our solution here is simply to define a fixed structure
for projects. The root folder of a project therefore contains
a ‘resources’ directory tree containing the source code of
all interface types, and a symmetrical directory tree con-
taining all components that implement those interfaces.
For a component that declares a required interface of type
io.File, we then know to look in the directory ‘io’ for
all potential implementation components of this interface.
2.1.4 Interface to higher system layers

To higher layers of REX, Dana provides the following
API: load and unload a component into or out of mem-
ory; get the set of interfaces (provided and required) of a
component; connect a component’s required interface to
another component’s provided interface (for initial system
assembly); and adapt a component’s required interface to
connect to an equivalent provided interface on a different
component (via the above adaptation protocol).

2.2 Perception, Assembly and Learning
Whereas Dana provides the fundamental mechanisms

to build systems, our perception, assembly and learning
framework (PAL) abstracts over entire systems for online
learning. Specifically, PAL assembles sets of discovered
components into working systems; perceives the health
of those systems and the conditions of their deployment
environment; and learns correlations between a system’s
health, its current environment conditions, and its current
assembly. Each of these elements operates at runtime,
while the target emergent software system is executing.
Unlike existing work, we use no models or architectural
representations of software [12, 23], instead enabling sys-
tems to emerge autonomously as a continuous process.

2.2.1 Assembly
The assembly module of our framework is responsible

for discovering the possible units of logic (i.e., compo-
nents) that can form a given system; assembling a particu-
lar configuration of those components to create a working
system; and re-assembling the running system to a differ-
ent configuration using our adaptation protocol.

The assembly module starts with a ‘main component’
of a target software system (such as that shown in Fig. 2).
The required interfaces of this component are read, and all
available components that offer compatible provided in-
terfaces are then discovered. This is done using Dana’s in-
herent structuring for discoverable code: the package path
of each required interface is converted to a local directory
path, which is scanned for any components that provide
this interface type. For each component found, the re-
quired interfaces of those components are read, and fur-
ther components are discovered with corresponding pro-
vided interfaces. This procedure continues recursively un-
til a full set of possible system compositions is discovered,
and can be re-run periodically to detect new components.

We expect there to be multiple different implementa-
tions of each provided interface because there are typi-
cally several ways to solve a given problem, such as the
use of different memory cache replacement algorithms
or different search algorithms. Each such variant offers
equally valid functionality relative to a provided interface,
but implementation differences imply that their respective
performance characteristics will differ according to differ-
ent input ranges or deployment environment characteris-
tics that are encountered by the system.

When the discovery procedure is complete, the assem-
bly module provides a list of strings, each of which is a
full description of one configuration of components. The
assembly module can then be instructed to assemble the
target system into one such configuration. If the system is
not yet assembled, this means simply loading each com-
ponent into memory and connecting the appropriate re-
quired and provided interfaces together, then calling the
main method of the main component to start the system.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 337

If the target system is already assembled in a particular
configuration, a command to re-assemble it into a differ-
ent one uses our adaptation protocol to seamlessly shift
to the alternative. In detail, starting from the main com-
ponent of the target system, the assembly module walks
through the inter-component wiring graph to discover the
difference points between the current configuration and
the new one. For each such difference, the corresponding
alternative component is loaded into memory, along with
all components (recursively) that it requires, and the adap-
tation protocol is used to adapt to that component. The old
component (and components that it required and that are
not in use by other parts of the system) is then removed.

2.2.2 Perception
The ability to assemble and re-assemble a software sys-

tem into different configurations of components must be
guided in some way. Key to this is an ability to perceive
the way the software ‘feels’ at a given point in time, and
the way the software’s deployment environment ‘looks’ at
correlated points in time. These streams of perception can
then be mapped to the software’s current assembly (i.e.,
the way it is behaving) to understand how different be-
haviors make the software feel in different environments.

This is achieved using our perception module. To en-
able perception throughout a system we use a Recorder
interface. Any component can declare a required interface
of this type and then use it to report one (or both) of two
kinds of data as it sees fit: events and metrics.

Events represent the way individual software compo-
nents are perceiving the outside world – their inputs or de-
ployment environment conditions. Events have a standard
structure, with a name, descriptor, and value. When an
event is reported to a Recorder, a timestamp is added.

Metrics represent the way individual software compo-
nents are perceiving themselves – how they ‘feel’. Metrics
again have a standard structure, including a name, a value,
and a boolean flag indicating whether a high or low value
of this metric is desirable. As with events, a timestamp is
added to a metric when reported to a Recorder.

When a new configuration of the software system is se-
lected via the assembly module, the perception module
uses Dana’s getInterfaces API to check the com-
ponents of that configuration for any with a Recorder
required interface. For all such components, their at-
tached Recorder implementation component is periodi-
cally polled to collect any recently reported events or met-
rics, noting the component from which they originated.

2.2.3 Learning
Finally, our learning module is tasked with understand-

ing the data from the perception module, and exploring
different assembly configurations of the target system to
understand how different behavior sets cause the software
to react to different external stimuli. We describe the full
details of our learning approach in the next section.

2.2.4 Interface to higher system layers
The perception and assembly modules provide the fol-

lowing API to the learning module: setMain(), selecting
a ‘main’ component of a program to assemble; getCon-
figs(), returning a list of strings describing every possible
configuration of components; setConfig(), taking a con-
figuration string to assemble/re-assemble the system to;
and getPerception(), returning all events and metrics that
have been collected since this function was last called.

2.3 Linear bandits for rapid emergence
In this section we describe our approach to efficiently

learning the correlations between perception of internal
state and external environment, and the currently selected
behavior of a system. We first define this problem more
precisely with a case study of an emergent web server, and
then we describe our learning approach in detail.

2.3.1 Problem definition
For our evaluation in this paper we use a web server

as an example emergent software system. A partial struc-
ture of this is shown in Fig. 5, illustrating the set of possi-
ble configurations that each represent a valid system. For
simplicity here we only show components that have vari-
ations – in reality, the set of components used to form this
system is much larger, at over 30 components (of which
only 15 are shown). The components not shown here in-
clude those for file system and socket operations, string
handling utilities, abstract data type implementations, etc.

From this set of components, there are 42 possible as-
semblies in total, each of which results in a functional web
server system but with differing behaviors. As examples,
some such assemblies use a memory cache (of which there
are several variants) while others use a compression algo-
rithm; and some use a thread-per-client approach to con-
currency while others use a thread-pool approach.

We must then establish which of these 42 options best
suits the current external stimuli to which the software is
being subjected. These external stimuli may also change,
invalidating what has been learned to date and requiring
further search iterations. An exhaustive search approach
is clearly undesirable, causing the system to spend too
long in sub-optimal configurations; we therefore need a
way to balance exploration of untested parts of the search
space with exploitation of solutions known to be good.

The components of our web server generate two kinds
of perception data to inform this. RequestHandler im-
plementations report a metric of their average response
time to client requests, providing an internal perception of
self. Implementations of the HTTPHandler interface re-
port events of the resources being requested and their size.
This represents the system’s perception of its deployment
environment. For each set of client request patterns that
are input to the system, there then exists one composition
of components (behavior) that optimizes the reward value

338 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

App <interface>

WebServer

RequestHandler <interface>

RequestHandler RequestHandlerPT

HTTPHandler <interface>

HTTPHandler

HTTPHandlerCMP HTTPHandlerCHCMP HTTPHandlerCH

Compressor <interface>

GZip

Deflate

Cache <interface>

Cache

CacheLFU

CacheLRU

CacheFS

CacheMRU

CacheRR

Thread pool
implementation

Thread per client
implementation Implementation without

caching or compression

Implementation with
compression

Implementation with
caching

Main method: opens a server
socket and accepts client
connetions, each of which is
passed to a request handler.

Takes a client socket,
applies a concurrency
approach, and passes
the socket on to the
HTTP handler.

Takes a client
socket, parses
HTTP request
headers and
formulates a
response.

Implementation with
caching and compression

Figure 5 – The set of components from which our web server
can emerge. Boxes with dotted lines are interfaces, and those
with solid lines are components implementing an interface. Ar-
rows show required interfaces of particular components. The
general purpose of each interface’s implementations is noted by
the interface, and a description of how the available implemen-
tation variations of that interface work is also indicated.

(i.e., minimizes response time) for a given environment.
In future we expect multiple reward values (from different
components) and dimensions of external perception (for
example including resource levels of the host machine),
but for now the above values are sufficient to explore the
concept of runtime emergent software systems.

Our solution to this configuration search and learning
problem is based on the statistical learning approach pro-
posed by Scott [27]. In the remainder of this section we
present the details of how we apply this approach.

We first cast our fundamental problem as a ‘multi-
armed bandit’, for which the learning approach is in-
tended. We then discuss the concept of Thompson sam-
pling and how we use it to simultaneously update perfor-
mance estimates of multiple configurations after experi-
menting with just one of them, and how we use Bayesian
regression to derive beliefs about individual component
performance within a configuration. Besides adapting
the approach for our particular problem, we make two
changes: (i) we use Bayesian linear regression instead of
probit regression, enabling us to handle continuously dis-
tributed results; and (ii) we add a simple classifier system
to provide memory of environment changes over time.

2.3.2 The Multi-armed Bandit Formulation
Online learning must balance the exploration of under-

tested configurations with exploiting configurations al-
ready known to perform well [27]. The canonical form of
this is the multi-armed bandit problem, devised for clin-
ical trials [30, 7], and recently a dominant paradigm for
optimization on the web [27, 9]. A multi-armed bandit
has a set of available actions called arms. Each time an
arm is chosen, a random reward is received, which de-
pends (only) on the selected arm. The objective is to max-
imize the total reward obtained. While short-term reward
is maximized by playing arms currently believed to have
high reward, long-term benefit is maximized by exploring
to ensure that we don’t fail to find the best arm.

In the case of our emergent software, each possible con-
figuration is considered an arm, and the reward given by
playing an arm (i.e., selecting a particular configuration of
the web server) is defined by our metrics (i.e., the average
response time of this configuration to client requests).

One general method for tackling the multi-armed ban-
dit problem is Thompson sampling. Theoretical perfor-
mance guarantees exist for Thompson sampling in general
settings [22, 5, 25], and the technique has been empiri-
cally shown to perform extremely well [9, 27]. The key
feature of Thompson sampling is that each arm is played
with the probability it is the best arm given the informa-
tion to date. This requires the use of Bayesian inference
to produce ‘posterior distributions’ that code our beliefs
about unknown quantities of interest, in this case the ex-
pected values of the arms (see Sec. 2.3.3). With this infer-
ence, it has been shown that Thompson sampling can be
efficiently implemented by drawing a single random sam-
ple from the posterior distribution of all unknown quan-
tities, then selecting the arm which performs best condi-
tional on this sampled value being the truth [22].

For example, suppose our unknown quantities are the
expected value of each arm, and beliefs about these quan-
tities are encoded as (posterior) probability distributions
with densities given by bell curves. The center of the bell
curve is then the average reward seen on that arm to date,
and the spread is our level of uncertainty (with high uncer-
tainty a result of few observations). For an arm to be se-
lected with Thompson sampling, the random sample from
its bell curve must be higher than corresponding samples
from all other arms; to have a non-negligible probability
of being selected, the distribution must be capable of pro-
ducing high samples. This is true if either the center point
is high or if the spread is large, corresponding respectively
to high average observed rewards or high uncertainty.

The effect is that the arms most likely to be played
are those that experience suggests are likely to perform
well, and those that may perform well but we have insuf-
ficient information about. Arms for which we have good
information that they will perform badly are played with

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 339

very low probability. As more information is gained, and
beliefs concentrate on the truth, no arms will remain for
which there is insufficient information. Thus, in the long
term, optimal arms are played with very high probability.

2.3.3 Forming beliefs
Thompson sampling balances exploration and exploita-

tion in the presence of a Bayesian estimate of arm values.
In traditional bandit settings, the value of each arm is esti-
mated independently. However, the combinatorial explo-
sion in the total number of available configurations ren-
ders this approach undesirable since each arm will need to
be experimented with multiple times. Our emergent soft-
ware example described above results in 42 such arms;
and for example introducing just one further caching vari-
ation (see Fig. 5) would increase this to 48. As the com-
plexity of an emergent software system grows, it quickly
becomes undesirable to consider all configurations and
test each one at runtime. Furthermore, estimating the per-
formance of each configuration independently ignores the
fact that many configurations share components, and so
are likely to have related performance characteristics.

We therefore follow and use a regression framework
based on classical experimental design to share informa-
tion across the different arms available to us [27]. The in-
tuition behind this scheme is that the performance of any
configuration using the HTTPHandlerCH component is
in some way informative for any other configuration in-
volving that component. This is formalized by modelling
the expected reward for a given configuration as a function
of the components deployed within that configuration. In
detail, we code each interface as a factor variable, with
number of levels equal to the number of available compo-
nents for that interface. Standard dummy coding is used,
so that each level of the factor is compared to a fixed base-
line level. For our web server example the effect of this is
to model the expected reward of a configuration as

β0+β1IRequestPT

+β2IHttpCMP +β3IHttpCH +β4IHttpCHCMP

+β5IDeflate (1)
+β6ICacheFS +β7ICacheLFU +β8ICacheMRU

+β9ICacheLRU +β10ICacheRR

where βi are unknown real numbers to be estimated, and
indicator functions IX take value 1 if component X is used
in the configuration, and 0 otherwise. Note that coeffi-
cients for RequestHandler, HttpHandler, GZip
and Cache are implicitly coded as baseline levels for the
factors, so the above coefficients are interpreted as devi-
ations from this baseline performance. In other words, if
for example all of HttpCMP, HttpCH and HttpCHCMP
are set to 0, this implies the default HttpHandler is in
use and its reward is encoded in β0. The model in Equa-
tion 1 can be automatically derived by our learning mod-
ule, and has only 11 elements to estimate, instead of 42.

The standard linear regression model assumes observed
rewards are equal to expected rewards (1) plus a ‘noise’
term for un-modelled variability. If we denote the vector
of binary indicator variables for a given configuration as

xconf = (1,IRequestPT,IHttpCMP,IHttpCH,IHttpCHCMP,

IDeflate,ICacheFS,ICacheLFU,ICacheMRU,

ICacheLRU,ICacheRR),
3

with the vector of unknown coefficients denoted as β =
(β0,β1, . . . ,β10), and observed reward as y, the assumed
model of linear regression is then that

y = xconfβ + ε,
where ε is a zero-mean Gaussian random value indepen-
dent of all other observed quantities, with unknown vari-
ance σ2. After observing multiple configurations and
their rewards, we have a list of (xconf,y) pairs; regression
then finds the single β value which makes all xconfβ val-
ues as close as possible to their relative observed y values.

The Bayesian approach to regression is used so that
we can support Thompson sampling for action selection;
specifically the Bayesian approach produces a posterior
probability distribution over β and σ2 as its output from
which to then sample [24]. We use the standard conju-
gate prior distribution, with σ2 having an inverse-gamma
prior with parameters a0 and b0, and β having a multi-
variate Gaussian prior conditional on σ2 with parameters
β̃ and σ2Λ

−1
0 . The parameters of the prior are specified

in Sec. 2.3.4. The posterior distribution of σ2 is again an
inverse-gamma distribution with parameters updated by
the data, and the posterior for β conditional on σ2 is a
multivariate Gaussian distribution dependent on the data.

2.3.4 Implementation
The above approach is implemented in our learning

module. This maintains information about the history of
selected configurations and the rewards obtained. It also
stores an m× k ‘action matrix’, where m is the number
of valid configurations (in our case 42), and k is the num-
ber of unknown regression coefficients βi (in our case 11).
Each row corresponds to a valid configuration, and con-
sists of the vector xconf of indicators for the configuration.
Multiplying this action matrix by a vector of coefficients
β returns a vector of xconfβ values, and thus simultane-
ously evaluates Equation 1 for all valid configurations.

This action matrix is used when selecting which config-
uration to deploy. A single β and σ2 are sampled from the
posterior distribution resulting from linear regression and
β is then multiplied by the action matrix to get Thompson-
sampled values for each arm. The configuration corre-
sponding to the row with the highest resulting value is
then chosen and deployed. After a ten second observa-
tion window, the resulting reward y is observed, and the
(xconf,y) pair is stored. The posterior distribution is then

3The initial 1 is included as the intercept term which multiplies β0
and is present for all configurations.

340 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

updated before repeating the process. Pseudocode for this
is given in Alg. 2, in which the formulae for sampling
from the posterior is given in lines 8–13.

When initializing the system, appropriate values must
be chosen for the prior parameters so that the algorithm
explores sufficiently without immediately dismissing con-
figurations. We choose a0 = 1 to give a weakly infor-
mative prior distribution. b0 is then chosen so that the
range of values supported by the inverse-gamma(a0,b0)
distribution includes the reward variance in the data; we
choose b0 such that the a priori most likely standard de-
viation,

√
b0/2, is approximately equal to the expected

standard deviation of reward. For β , we use a prior mean
β̃ with all values except the first equal to zero, as it is un-
known how each component affects the performance of
the web server. The value of β0 encodes the base per-
formance of the server; optimistic prior beliefs that β0 is
higher than rewards we actually observe encourages ini-
tial exploration as, before a lot of data has been observed,
the belief will remain that unexplored configurations have
higher rewards than those that have been observed. Thus
we take β̃0 (the first component of β̃) to be slightly higher
than the reward level we actually expect from the system.
For Λ0, the inverse of the prior covariance, we take a de-
fault weakly informative prior and set Λ0 to be the identity
matrix multiplied by a small constant value, equal to 0.1
throughout this article. The particular values of β̃0 and b0
used for our experiments are reported in Sec. 3.

2.3.5 Handling deployment environment changes
In a traditional multi-armed bandit problem the reward

distributions of each arm, while unknown to the player,
do not change their distribution over time. Thus, if the
optimal arm is found, playing that arm forever carries no
disadvantage. In a software system, however, the rewards
of the respective arms (i.e., configurations) may change
over time as the deployment environment of the system
changes. In our example, if the request pattern experi-
enced by the web server changes, then the effectiveness of
a given configuration may diverge from current estimates.
Without accommodating for this, when the request pattern
changes the system must take time to first ‘unlearn’ what
it knows about the effectiveness of the available configu-
rations and their constituent components, and then learn
new estimates. If the request pattern then reverts back to
its old form, the entire procedure must be repeated.

To optimize this, we augment our algorithm with the
ability to categorize request pattern features, and to update
its estimates accordingly. However, automatically deriv-
ing such categorizations in real-time is itself a challenging
problem. For this paper we manually define two features,
based on how we presume they will affect the web server.

The first feature is entropy, describing the number
of different resources requested in a given time frame.
High entropy indicates many different resources, while

Algorithm 2 Learning Algorithm

1: //matrix of all available xconf vectors (configurations)
2: actionMatrix = assembly.getConfigs()
3: X = new Matrix() //list of observed xconf’s to date
4: y = new Vector() //list of rewards seen for each X
5: n = 0
6: while running do
7: //do linear regression & sample from posterior
8: Λ = XT X +Λ0
9: β = Λ−1(Λ0β̃ +XT y)

10: a = a0 +(n/2)
11: b = b0 +(yT y+ β̃ T Λ0β̃ −β T Λβ)×0.5
12: σ2 = new InverseGamma(a,b).sample()
13: sample = new Normal(β ,σ2Λ−1).sample()
14:
15: //select the new configuration to use
16: i = argmax(actionMatrix∗ sample)
17: assembly.setConfig(i)
18:
19: //wait for 10 seconds, then record observations
20: result = 1/perception.getAverageMetric()
21: add row i of actionMatrix as new row of X
22: add result as new element of y
23: n++
24: end while

zero entropy indicates a single resource requested re-
peatedly. A pattern with low entropy, where many re-
quests are the same, may benefit from configurations us-
ing a caching component, while for high entropy patterns
caching would not help, and may even be detrimental.

The second feature is text volume, describing how much
of the content requested in a given time frame was textual
(i.e., HTML, CSS or other text-based content). A request
pattern with high text content will likely be served better
by a configuration that makes use of a compression com-
ponent, as text is highly compressible, whereas a request
pattern with high image or video content would waste re-
sources by using compression and achieve little as a result.

We have implemented a simple pattern-matching mod-
ule that observes the stream of events from our perception
module and classifies them as follows: if one type of re-
quest (video, text, or image) makes up more than half of
the requests in an observation window, it is assumed the
request pattern has ‘low’ entropy, and otherwise ‘high’.
If more than half of the requests made in an observation
window are for text items, it is assumed that the request
pattern currently is ‘high’ text, otherwise ‘low’.

To incorporate these environment features in our learn-
ing approach, we add terms to Equation 1 corresponding
to these features, and also interaction terms between en-
vironmental indicators and components we believe to be
relevant. In particular, we expect text volume to affect the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 341

benefit of compression, and entropy to affect the benefit of
caching. Equation 1 is therefore modified to consist of the
following indicators, each with a regression coefficient βi:

(1,IRequestPT,IHiEnt,IHiTxt,IHttpCMP(LowTxt),

IHttpCMP(HiTxt),IHttpCH(LowEnt),IHttpCH(HiEnt),

IHttpCHCMP(LowTxt,LowEnt),IHttpCHCMP(HiTxt,LowEnt),

IHttpCHCMP(LowTxt,HiEnt),IHttpCHCMP(HiTxt,HiEnt),

IDeflate,ICacheFS,ICacheLFU,ICacheMRU,

ICacheLRU,ICacheRR). (2)
Adding the environment indicators, and splitting the in-

dicators for different HTTP handlers by the environment,
adds 7 extra regression coefficients. It also increases the
number of possible ‘configurations’ to 42× 4 = 168, as
each configuration can now be observed in 4 environment
states. After a configuration is deployed, the resulting
vector xconf of an observation window includes the envi-
ronment indicators and interaction indicators (i.e., all the
indicators in Equation 2). The linear regression proceeds
as before, but with k increased so that we still have one
regression coefficient per indicator (in this case k = 18).

When it is time to select an action, we sample a β value
from our posterior distribution as before, and multiply the
action matrix by β to give the predicted value. However,
not all configurations are available to us, since some are
determined by the environment. We make the simplifying
assumption that the environmental context in the current
time period will be the same as in the previous period, and
restrict our configuration to those that correspond to that
environment. It is plausible that a model of the evolution
of the environment could be built and used to improve the
prediction of values, but is beyond the scope of this paper.

The effect of this enhancement is that components’ per-
formance levels in different environments may be updated
without having to forget information when the environ-
ment changes. We see the benefit of this in Sec. 3.3.

3 Experimental Evaluation
The goal of our evaluation is to investigate whether op-

timal designs of a software system emerge rapidly using
real-time learning. Specifically, we evaluate our approach
in three key ways. We first examine the speed with which
runtime adaptation occurs. This helps to show the via-
bility of emergent software at runtime, which may fre-
quently adapt in exploration periods. Second, we man-
ually analyze the different possible compositions of our
web server as a baseline, demonstrating that different op-
timals exist in different operating environments as a result
of micro-variation. This validates our emergent software
approach. Third, we examine REX in operation, particu-
larly the effectiveness of our online learning approach to
discover optimal compositions of behavior in real time.

Our evaluation is conducted using a real, live im-
plementation of the emergent web server described in

Average Maximum Minimum

setConfig (idle) 509.60 ms 615.00 ms 397.00 ms

setConfig (busy) 1350.32 ms 5811.00 ms 510.00 ms

pause/resume (idle) 8.50 µs 9.94 µs 7.81 µs

pause/resume (busy) 13.22 µs 31.21 µs 8.51 µs

pauseObject/resumeObject (idle) 4.51 µs 5.34 µs 3.84 µs

pauseObject/resumeObject (busy) 28.54 µs 387.17 µs 4.35 µs

components adapted in setConfig() 1.22 3.00 1.00

Table 1 – Adaptation speed measured in different ways, from
full configuration changes to individual component adaptations.

Sec. 2.3.1, orchestrated by REX. We run our system on
commodity rackmount servers, hosted in a production dat-
acenter, of a similar design to many datacenters around
the world. In particular we used servers with Intel Xeon
Quad Core 3.60 GHz CPUs and 16 GB of RAM, run-
ning Ubuntu Server 14.04. Similar machines were used as
clients when generating workloads for our system, where
client machines were situated on a different subnet (in a
different physical building) to the server machines.

All of our source code, with instructions on how to re-
produce all results reported here, is available online at [4].

3.1 Adaptation characteristics
We use our highly adaptive Dana programming lan-

guage (see Sec. 2.1) to support low-cost adaptation. This
is a key enabler of emergent software systems, which
must be able to experiment with various configurations
and adapt to those configurations when appropriate dur-
ing program execution. In this section we evaluate the
time taken to perform runtime adaptation in detail.

We consider two factors in performing runtime adap-
tation: the overall time taken by REX to move from one
complete configuration to another; and the time taken to
perform a single adaptation between two components. For
each test we perform 100 configuration changes (moving
to each of our 42 configurations at least twice) with a 5
second gap between each configuration change. Across
all tests we assume that any components needed are al-
ready loaded into memory and ready for use.

The first of the factors we consider, moving from one
complete configuration to another, involves parsing a con-
figuration string passed to setConfig(), verifying the
validity of a configuration, and performing the staged
adaptation procedure for each point at which the new
configuration differs from the current one. The first two
rows in Table 1 show the average, maximum and mini-
mum time taken to do this across 100 tests. The first row,
marked ‘idle’, shows results when the web server is given
no workload, while the second row marked ‘busy’ shows
results when the web server is given a workload that
causes it to use 100% CPU capacity. This indicates that
the use of setConfig() is generally slower when the

342 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

web server is busy. There are two reasons for this: first,
setConfig() is processed on the same physical ma-
chine as the system under its control and so is given less
CPU time when that system is busy; and second, when
more requests are in progress at the web server, the adap-
tation protocol must wait longer for in-progress cross-
component calls to finish (i.e., at waitForObject).

We now examine the time taken to perform a single
adaptation between two components, using the adaptation
protocol described in Sec. 2.1.2. This reveals the time that
a part of the web server is actually paused and will there-
fore delay performance of one or more of its tasks. This
can happen for two reasons: the pause operation on a re-
quired interface, which temporarily prevents new objects
from being instantiated until resume is called, or the
pauseObject operation on a particular object, which
temporarily prevents any new function calls being made
into that object until resumeObject is called. For these
results we first note the difference in time unit compared
to the above: pause durations are on the order of microsec-
onds. With an idle web server, pause durations are higher
across pause/resume as the base complexity of these
instructions is higher (in particular building the object list
rob js). Under load, however, pause durations are domi-
nated by pauseObject/resumeObject, as the list of
held inter-object threads oht grows quickly and must then
be iterated over to release each one (see Sec. 2.1.2).

The final row in Table 1 shows the average, maximum
and minimum number of adaptations made during one
setConfig() operation, indicating how many of the
above microsecond pauses will occur for our web server
during a configuration change. This is very low in our sys-
tem, with a maximum of just three adaptations. This indi-
cates that system configuration changes during emergent
software exploration – which occur at 10 second intervals
under our learning algorithm – will be of low impact.

3.2 Manual analysis of divergent optimality
Our approach to emergent software uses small software

components, with differing implementations of the same
features such as varied cache replacement algorithms, to
enable optimal software to emerge by trying differing
combinations of these components at runtime.

In this section we validate this approach, in particular
showing that there are different configurations of our web
server with different performance profiles under different
operating environment ranges – necessitating the need to
switch between them in order to maintain optimality over
time. We refer to this property as divergent optimality. To
understand whether or not divergent optimal configura-
tions exist for our web server, we run every possible con-
figuration against various client workload patterns. We
then examine the resulting performance of each configu-
ration, measured at the server as the time between receiv-
ing a request and sending the last byte of the response.

Request
pattern

File size (b)
[GZ] Default Caching

Caching &
compression

Text
low entropy

156,983
[12,757] 11.94 ms 9.56 ms 0.70 ms

Text
low entropy

82,628
[11,949] 4.05 ms 0.60 ms 0.66 ms

Text
low entropy

3,869
[1,930] 1.18 ms 0.59 ms 0.63 ms

Image
low entropy

1,671,167
[1,667,464] 160.81 ms 150.72 ms 154.42 ms

Image
low entropy

84,760
[66,914] 4.02 ms 0.66 ms 0.74 ms

Image
low entropy

4,001
[3,895] 1.22 ms 0.55 ms 0.62 ms

Text
high entropy

156,983
[12,757] 19.27 ms 19.66 ms 3.04 ms

Text
high entropy

82,628
[11,949] 4.61 ms 3.27 ms 3.07 ms

Text
high entropy

3,869
[1,930] 1.25 ms 2.93 ms 2.52 ms

Image
high entropy

1,671,167
[1,667,464] 156.50 ms 156.64 ms 157.66 ms

Image
high entropy

84,760
[66,914] 4.48 ms 3.19 ms 2.94 ms

Image
high entropy

4,001
[3,895] 1.30 ms 2.90 ms 2.67 ms

Table 2 – Results of different configurations under different re-
quest patterns, showing average response times. The standard
deviation throughout these results is low, at around 0.2.

Our results are shown in Table 2, which lists the fastest
configuration from each group of configurations (i.e., the
fastest configuration that uses neither caching nor com-
pression, the fastest that uses caching, and the fastest that
uses both caching and compression). We do not show re-
sults for configurations that only use compression, as they
reliably perform worst across all of our experiments.

First we subject all configurations to client request pat-
terns with low entropy. We divide this into two sub-
categories: text-dominated and image-dominated. The
results are shown in the top half of Table 2, which
also shows the general size of the files being requested
along with the compressed size of these files using the
GZip algorithm. For almost all of these low entropy re-
quest patterns, configurations with caching perform best –
marginally better than those with both caching and com-
pression. On investigation, this is because our configura-
tions that use both compression and caching actually use
slightly more instructions to check if a compressed ver-
sion of a file is in the cache (i.e., they append ‘.gz’ to the
resource name before checking if that resource is in the
cache). In most cases this slight delay is larger than the
added network delay of sending the uncompressed ver-
sion of the file. When the compression win is big enough,
however, as in the first row of Table 2, the reverse is true
and the caching plus compression solution is faster.

Next we subject all configurations to client request pat-
terns with high entropy; specifically patterns that cycle
through a set of 20 popular files. The corresponding re-
sults are shown in the lower half of Table 2, again divided
into text-dominated and image-dominated requests. Here
we see a different picture: in half of the tests, configu-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 343

rations without caching or compression are fastest. This
is because, in these cases, reading from the local disk is
very slightly faster than searching the cache. On investi-
gation, in cache implementations that use a hash table this
is caused by collisions in the hash function which then
result in a linear search of a hash table bucket, adding la-
tency. However, this result is reversed for the other half of
these results, when the average compression ratio of the
files being requested is sufficiently high that the network
bandwidth saving overtakes the cache search latency.

These results confirm there are different optimal config-
urations of components that can form our target system in
different environments. Low entropy and high text condi-
tions favor configurations with caching and compression;
low entropy and low text conditions favor configurations
with caching only; and high entropy conditions favor a
mixture of configurations. The subtleties within these re-
sults, and the fact that issues such as disk/memory latency
will vary across machines, further motivate a real-time,
machine-learning-based solution to building software.

3.3 Learning evaluation
We now examine the efficacy of REX at discovering the

above results, on a live system, starting from no informa-
tion. While some of these results may be obvious to a
human observer, we provide the first example of an au-
tonomous system able to rapidly assemble a correspond-
ing solution at runtime. Our learning system uses only
events and metrics reported by components of the live web
server (Sec. 2.3.1), alongside the ability to dynamically
assemble different configurations of discovered compo-
nents, to find the best course of action over time.

By default our learning approach tries to maximize
1/responseTime. Accordingly, we configure our learning
algorithm with β̃0 = 1, which is larger than the reciprocal
of the response times in Table 2. The standard deviations
in this data are on the order of 0.2, and we thus set b0 = 0.1
so these are on a similar scale to

√
b0/2.

As a theoretical baseline learning comparison, consider
an approach that tests each configuration once before se-
lecting the one that performed best. This takes 42 testing
iterations before there is a chance of reaching optimal-
ity (as there are 42 available configurations), even with-
out any noise in the observations whereby a configuration
may need to be tested multiple times. Assuming each such
test takes 10 seconds to get an average response time, this
means a total of 420 seconds (7 minutes) to reach opti-
mality. If successful, our approach should perform signif-
icantly better than this baseline in most cases.

We use a range of request patterns to evaluate our
emergent software system, starting with simpler patterns.
Each experiment is repeated 1,000 times and the in-
terquartile ranges plotted. Each graph is plotted as re-
gret, which is calculated as (1/responseTime)chosenAction−
(1/responseTime)optimalAction for each point in time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80

R
eg

re
t

Test iteration

Figure 6 – Learning using response times to small text files.

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80

R
eg

re
t

Test iteration

Figure 7 – Learning using response times to large text files, with
adjusted prior values for β̃0 and b0.

(where knowledge of the optimal actions over time is
based on our manual analysis of these request patterns).
Specifically, the shaded boxes on these graphs show the
size of the interquartile range from the distribution of re-
gret results at each time step across all 1,000 experiments.
The horizontal line dividing each shaded box is the me-
dian value. The whiskers above / below the shaded boxes
show the highest / lowest results across all experiments.

Fig. 6 shows results for request patterns of small HTML
files with low entropy. Here we see a dramatic reduction
in regret after only a few iterations (where one ‘iteration’
represents a 10-second observation window). Although
high regret is occasionally seen after this point, this is an
inevitable artefact of continual exploration. Very good re-
sponse times are learned here after just 50 seconds, which
is significantly faster than the baseline described above.
This demonstrates that our learning approach, based on
estimating individual component contribution and then
sharing information across all potential configurations, is
very effective at avoiding exhaustive experimentation.

In Fig. 7 we show results for request patterns of large
HTML files with low entropy. Here we see that the scale
of our rewards has changed – i.e., the average response
time for larger files is higher (almost 10 times) and as
such our prior parameters were observed not to match

344 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

0.5

1

1.5

2

2.5

0 20 40 60 80

R
eg

re
t

Test iteration

0

0.5

1

1.5

2

2.5

0 20 40 60 80

R
eg

re
t

Test iteration

Figure 8 – Learning without (left) and with (right) categorization on a request pattern that changes every ten iterations.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80

R
eg

re
t

Test iteration

Figure 9 – Learning using response times to a realistic (and
highly varying) request pattern, using the NASA server trace [2].

the data. For this experiment we therefore used adjusted
prior parameters β̃0 and b0 that were each divided by 10
compared to the previous test. Again we see rapid con-
vergence on an optimal software assembly, this time at
around 20 iterations of the learning algorithm (roughly
200 seconds). The longer convergence time here is due to
there being fewer samples from which to draw informa-
tion (i.e., serving each request takes longer, providing less
data per observation time window). Note that good prior
values can easily be chosen automatically by sampling re-
sponse times and calculating their mean and variance.

In Fig. 9 we show results from a real-world web server
workload of highly mixed resource requests, taken from
the publicly available NASA server trace [2]. This is a
challenging request pattern due to its high variance over
time, in which different kinds of resource are requested in
very different volumes. As a result our learning approach
finds it more difficult to compare like-for-like results as
different configurations are tested. Initially regret here is
generally high, but decreases steadily up to the 40th iter-
ation mark. Overall the system still shows increased per-
formance at least as well as our baseline.

Finally, we examine situations in which request pat-
terns change between different characteristics of entropy

and text volume, showing the ability of our platform to
adjust to new external stimuli and remember historical in-
formation. This is demonstrated in Fig. 8, showing the
results of tests in which the request pattern is alternated
every ten iterations. When the system operates without
categorization, shown on the left of Fig. 8, there is no clear
change in regret as it must constantly ‘forget’ and ‘re-
learn’ estimates due to the shifting performance of config-
urations that it observes. However, with categorization the
system exhibits learning behavior for the first two changes
in request pattern, and then consistently makes low-regret
choices despite the alternation between patterns. There
is a brief increase in regret each time the request pat-
tern changes, caused by the learning algorithm needing
one observation window in which to observe the changes.
This demonstrates that our addition of a simple pattern-
matching system achieves the desired effect.

Overall, our results show rapid convergence on optimal
software which emerge from online experimentation with
different available configurations, with very little informa-
tion about the nature of the target software system and the
deployment conditions that it may experience. REX can
be deployed on any hardware configuration (which may
change the effects seen in Sec. 3.2), and in any deploy-
ment environment conditions, and will continually find
the most effective system design. More broadly, REX can
also show the rationale behind its choices to human devel-
opers, potentially leading to new development directions.

4 Related Work
While autonomic, self-adaptive and self-organizing

computing are now well established, there is relatively
little work at the level of autonomous runtime software
composition (compared to a much larger body of work
on autonomous parametric tuning). The majority of this
work is model-driven – relying on substantial human-
specification or offline training cycles, or using simple
online heuristic search algorithms over carefully specified
models. We survey the most closely related work below.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 345

Grace et al. propose the use of human-specified adap-
tation policies to select between different communication
interfaces in a river-monitoring scenario [17]. While the
use of such adaptation policies is viable in simpler archi-
tectures, this becomes infeasible in more complex config-
urations where the set of component interactions is much
larger. We therefore use an online learning approach to
effectively discover the adaptation policy at runtime.

Chen et al. propose a weighted decision graph of ser-
vice levels to generate model transformations in an online
shopping system [10]. Wang et al., meanwhile, propose
a framework that exploits variability of software config-
urations for self-repair, using a goal model based on for-
mal requirements [33]. By contrast we use a model-free
approach in which components report their own current
status from which we then infer global properties.

Bencomo et al. propose dynamic decision networks (a
form of state machine), alongside a models-at-runtime
approach to software composition, to decide at runtime
between different network topologies for a remote data
mirroring system based on perceived resilience levels [6].
This requires pre-specification of the decision network to
determine configuration selection, rather than the online
learning approach we take for emergent software.

Kouchnarenko and Weber propose the use of
temporally-dependent logic to control software con-
figuration, with a domain-specific notation to model
temporal dependencies between adaptation actions in
a self-driving vehicle control system [20]. While such
temporal models may be a useful addition to constrain
adaptation, they are again specified by human developers
at design time rather than learned at runtime.

In FUSION [12], a feature-model framework is pre-
sented that uses offline training combined with online tun-
ing to activate and deactivate selected feature modules at
runtime (such as security or logging). Dynamic Software
Product Lines [18] generalize the feature model approach
as part of the software development process, typically us-
ing a pre-specified set of rules to trigger feature activation
/ deactivation at runtime. Our approach does not use a
feature model, instead emerging a working system from a
pool of components using online learning.

In SASSY [23], a self-adaptive architecture framework
for service-oriented software is presented, using a set
of models to describe software architecture and its QoS
traits. Further work by Ewing and Menascé [13] applies
a set of runtime heuristic search algorithms to the config-
uration search problem, including hill climbing and ge-
netic algorithms. Our work differs in two ways: first
we use a model-free approach, in which system compo-
sition is autonomously driven from a ‘main’ component;
and second we apply a statistical machine learning ap-
proach to configuration search, based on sharing inferred
per-component performance data across configurations.

Finally, we note that Thompson sampling with regres-
sion was first proposed by Scott [27] to select likely high
performing versions of websites (i.e., with high vs. low
quality images), updating beliefs on similar versions with-
out needing to try each individually. We have applied this
concept to runtime emergent software, but using Bayesian
linear regression (rather than probit regression) to han-
dle continuously distributed results, and a simple pattern
matching approach to account for distinct workload pat-
terns that cause different optimal software configurations.

5 Conclusion
Current approaches to self-adaptive software architec-

tures require significant expertise in building models,
policies and processes to define how and when software
should adapt to its environment. We have presented
a novel approach to runtime emergent software which
avoids all such expertise, using purely machine-driven de-
cisions about the assembly and adaptation of software.
The result is to almost entirely remove human involve-
ment in how self-adaptive systems behave, making this
machine-led; and to produce systems that are responsive
to the actual conditions that they encounter at runtime, and
the way they perceive their behavior in these conditions.

Our approach has three major contributions that form
our REX platform: a programming language for highly-
adaptive assemblies of behaviors; a perception, assembly
and learning framework to discover, monitor and control
available assemblies; and a learning approach based on
linear bandits that solves the resulting search space explo-
sion by sharing information across assemblies.

Our results show that our approach is highly effective
at rapidly discovering optimal compositions of behavior
in a web server example, balancing exploration with ex-
ploitation, and is also highly responsive to changes in the
software’s deployment environment conditions over time.

In our future work we will broaden our approach to
other types of application, and will also explore the auto-
mated generation of component variants, and further au-
tomation in environment classification. In the longer term
we will continue to work towards shifting the system de-
sign paradigm even further into software itself – making
software a leading member of its own development team.

Acknowledgements
This work was partially supported by the EPSRC Deep

Online Cognition project, grant number EP/M029603/1.
Roberto Rodrigues Filho would like to thank his sponsor,
CAPES Brazil, for scholarship grant BEX 13292/13-7.
The feedback of Prof. Gordon Blair and Dr. Sarah Clinch
was very helpful in preparing this paper for submission.
We also thank all of our reviewers for their thoughtful
comments which helped to further improve the published
version, and particularly our shepherd Dr. Petros Maniatis
for his detailed feedback across several final iterations.

346 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Dana language: http://www.projectdana.com/.

[2] NASA web server trace: http://ita.ee.lbl.gov/html/
contrib/NASA-HTTP.html.

[3] OSGI alliance: https://www.osgi.org/.

[4] Source code and experiments from this paper:
http://research.projectdana.com/osdi2016porter.

[5] S. Agrawal and N. Goyal. Thompson sampling
for contextual bandits with linear payoffs. arXiv
preprint arXiv:1209.3352, 2012.

[6] N. Bencomo, A. Belaggoun, and V. Issarny. Dy-
namic decision networks for decision-making in
self-adaptive systems: A case study. In Software En-
gineering for Adaptive and Self-Managing Systems
(SEAMS), 2013 ICSE Workshop on, pages 113–122,
May 2013.

[7] D. A. Berry and B. Fristedt. Bandit problems: se-
quential allocation of experiments (Monographs on
statistics and applied probability). Springer, 1985.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. An open component model and
its support in java. In Component-Based Software
Engineering, volume 3054 of LNCS, pages 7–22.
Springer Berlin Heidelberg, 2004.

[9] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In Advances in neural informa-
tion processing systems, pages 2249–2257, 2011.

[10] B. Chen, X. Peng, Y. Yu, B. Nuseibeh, and
W. Zhao. Self-adaptation through incremental gen-
erative model transformations at runtime. In Pro-
ceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 676–687,
New York, NY, USA, 2014. ACM.

[11] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joo-
lia, K. Lee, J. Ueyama, and T. Sivaharan. A
generic component model for building systems soft-
ware. ACM Trans. on Comp. Systems, 26(1):1:1–
1:42, Mar. 2008.

[12] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: A
framework for engineering self-tuning self-adaptive
software systems. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE ’10, pages 7–
16, New York, NY, USA, 2010. ACM.

[13] J. M. Ewing and D. A. Menascé. A meta-controller
method for improving run-time self-architecting in
SOA systems. In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineer-
ing, ICPE ’14, pages 173–184, New York, NY, USA,
2014. ACM.

[14] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao. Ar-
chitecting self-aware software systems. In Software
Architecture (WICSA), 2014 IEEE/IFIP Conference
on, pages 91–94, April 2014.

[15] A. G. Ganek and T. A. Corbi. The dawning of the
autonomic computing era. IBM Syst. J., 42(1):5–18,
Jan. 2003.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesc language: A
holistic approach to networked embedded systems.
In Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Imple-
mentation, PLDI ’03, pages 1–11, New York, NY,
USA, 2003. ACM.

[17] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coul-
son, and F. Taiani. Experiences with open overlays:
a middleware approach to network heterogeneity. In
Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008, pages
123–136, April 2008.

[18] M. Hinchey, S. Park, and K. Schmid. Building dy-
namic software product lines. Computer, 45(10):22–
26, Oct 2012.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[20] O. Kouchnarenko and J.-F. Weber. Adapting
component-based systems at runtime via policies
with temporal patterns. In Formal Aspects of Com-
ponent Software, pages 234–253. Springer, 2014.

[21] J. Kramer and J. Magee. The evolving philoso-
phers problem: dynamic change management.
IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[22] B. C. May, N. Korda, A. Lee, and D. S. Leslie. Opti-
mistic bayesian sampling in contextual-bandit prob-
lems. The Journal of Machine Learning Research,
13(1):2069–2106, 2012.

[23] D. Menascé, H. Gomaa, S. Malek, and J. Sousa.
SASSY: A Framework for Self-Architecting
Service-Oriented Systems. Software, IEEE,
28(6):78–85, Nov 2011.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 347

http://www.projectdana.com/
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://www.osgi.org/
http://research.projectdana.com/osdi2016porter

[24] A. O’Hagan. Kendall’s Advanced Theory of Statis-
tics: Bayesian inference. vol. 2B. Number v. 2, pt.
2 in Kendall’s library of statistics. Edward Arnold,
1994.

[25] D. Russo and B. Van Roy. Learning to optimize via
posterior sampling. Mathematics of Operations Re-
search, 39(4):1221–1243, 2014.

[26] M. Salehie and L. Tahvildari. Self-adaptive soft-
ware: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):14, 2009.

[27] S. L. Scott. A modern bayesian look at the multi-
armed bandit. Applied Stochastic Models in Busi-
ness and Industry, 26(6):639–658, 2010.

[28] C. Soules, J. Appavoo, K. Hui, R. Wisniewski,
D. Da Silva, G. Ganger, O. Krieger, M. Stumm,
M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis. System support for online reconfigura-
tion. In Proceedings of the USENIX Annual Techni-
cal Conference, pages 141–154, June 2003.

[29] C. Szyperski, D. Gruntz, and S. Murer. Compo-
nent Software: Beyond Object-Oriented Program-
ming. Acm Press Series. ACM Press, 2002.

[30] W. R. Thompson. On the Likelihood that one un-
known probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–
294, 1933.

[31] S. Tomforde, J. Hähner, and C. Müller-Schloer. In-
cremental design of organic computing systems -
moving system design from design-time to runtime.
In Proceedings of the 10th International Conference
on Informatics in Control, Automation and Robotics,
pages 185–192, 2013.

[32] Y. Vandewoude, P. Ebraert, Y. Berbers, and
T. D’Hondt. Tranquility: A low disruptive alter-
native to quiescence for ensuring safe dynamic up-
dates. IEEE Transactions on Software Engineering,
33(12):856–868, 2007.

[33] Y. Wang and J. Mylopoulos. Self-repair through
reconfiguration: A requirements engineering ap-
proach. In Proceedings of the 2009 IEEE/ACM In-
ternational Conference on Automated Software En-
gineering, pages 257–268. IEEE Computer Society,
2009.

348 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Yak: A High-Performance Big-Data-Friendly Garbage Collector

Khanh Nguyen† Lu Fang† Guoqing Xu† Brian Demsky†

Shan Lu‡ Sanazsadat Alamian† Onur Mutlu§

University of California, Irvine† University of Chicago‡ ETH Zürich§

Abstract
Most “Big Data” systems are written in managed lan-

guages, such as Java, C#, or Scala. These systems suffer

from severe memory problems due to the massive volume

of objects created to process input data. Allocating and

deallocating a sea of data objects puts a severe strain on

existing garbage collectors (GC), leading to high memory

management overheads and reduced performance.

This paper describes the design and implementation

of Yak, a “Big Data” friendly garbage collector that pro-

vides high throughput and low latency for all JVM-based

languages. Yak divides the managed heap into a control

space (CS) and a data space (DS), based on the obser-

vation that a typical data-intensive system has a clear

distinction between a control path and a data path. Ob-

jects created in the control path are allocated in the CS

and subject to regular tracing GC. The lifetimes of objects

in the data path often align with epochs creating them.

They are thus allocated in the DS and subject to region-

based memory management. Our evaluation with three

large systems shows very positive results.

1 Introduction
It is clear that Big Data analytics has become a key com-

ponent of modern computing. Popular data processing

frameworks such as Hadoop [4], Spark [67], Naiad [48],

or Hyracks [12] are all developed in managed languages,

such as Java, C#, or Scala, primarily because these lan-

guages 1) enable fast development cycles and 2) provide

abundant library suites and community support.

However, managed languages come at a cost [36,

37, 39, 47, 51, 59, 60, 61, 62, 63]: memory manage-

ment in Big Data systems is often prohibitively expen-

sive. For example, garbage collection (GC) can account

for close to 50% of the execution time of these sys-

tems [15, 23, 49, 50], severely damaging system per-

formance. The problem becomes increasingly painful

in latency-sensitive distributed cloud applications where

long GC pause times on one node can make many/all

other nodes wait, potentially delaying the processing of

user requests for an unacceptably long time [43, 44].

Multiple factors contribute to slow GC execution. An

obvious one is the massive volume of objects created by

Big Data systems at run time. Recent techniques propose

to move a large portion of these objects outside the man-

aged heap [28, 50]. Such techniques can significantly

reduce GC overhead, but inevitably substantially increase

the burden on developers by requiring them to manage

the non-garbage-collected memory, which negates much

of the benefit of using managed languages.

A critical reason for slow GC execution is that ob-

ject characteristics in Big Data systems do not match the

heuristics employed by state-of-the-art GC algorithms.

This issue could potentially be alleviated if we can design

a more suitable GC algorithm for Big Data systems. Intel-

ligently adapting the heuristics of GC to object character-

istics of Big Data systems can enable efficient handling of

the large volume of objects in Big Data systems without

relinquishing the benefits of managed languages. This is

a promising yet challenging approach that has not been

explored in the past, and we explore it in this work.

1.1 Challenges and Opportunities
Two Paths, Two Hypotheses The key characteristics

of heap objects in Big Data systems can be summarized

as two paths, two hypotheses.

Evidence [15, 28, 50] shows that a typical data pro-

cessing framework often has a clear logical distinction

between a control path and a data path. As exemplified by

Figure 1, the control path performs cluster management

and scheduling, establishes communication channels be-

tween nodes, and interacts with users to parse queries and

return results. The data path primarily consists of data

manipulation functions that can be connected to form a

data processing pipeline. Examples include data partition-

ers, built-in operations such as Join or Aggregate, and

user-defined data functions such as Map or Reduce.

These two paths follow different heap usage patterns.

On the one hand, the behavior of the control path is similar

to that of conventional programs: it has a complicated

logic, but it does not create many objects. Those created

objects usually follow the generational hypothesis: most

recently allocated objects are also most likely to become

unreachable quickly; most objects have short life spans.

On the other hand, the data path, while simple in code

logic, is the main source of object creation. And, objects

created by it do not follow the generational hypothesis.

Previous work [15] reports that more than 95% of the

objects in Giraph [3] are created in supersteps that rep-

resent graph data with Edge and Vertex objects. The

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 349

Data Loads
and Feeds

Queries and
Results

Data
Publishing

Cloud

Cluster Controller

Node
Controller ... Node

Controller

Aggregate Join UDF Aggregate Join UDF

Partitioner

Control path Data path

Figure 1: Graphical illustration of control and data paths.

execution of the data path often exhibits strong epochal
behavior — each piece of data manipulation code is re-

peatedly executed. The execution of each epoch starts

with allocating many objects to represent its input data

and then manipulating them. These objects are often held

in large arrays and stay alive throughout the epoch (cf.
§3), which is often not a short period of time.

State-of-the-art GC State-of-the-art garbage collec-

tion algorithms, such as generational GC, collect the heap

based on the generational hypothesis. The GC splits ob-

jects into a young and an old generation. Objects are

initially allocated in the young generation. When a nurs-
ery GC runs, it identifies all young-generation objects that

are reachable from the old generation, promotes them to

the old generation, and then reclaims the entire young

generation. Garbage collection for the old generation oc-

curs infrequently. As long as the generational hypothesis

holds, which is true for many large conventional applica-

tions that make heavy use of short-lived temporary data

structures, generational GCs are efficient: a small number

of objects escape to the old generation, and hence, most

GC runs need to traverse only a small portion of the heap

to identify and copy these escaping objects.

The Hypothesis Mismatch We find that, while the gen-

erational hypothesis holds for the control path of a data-

intensive application, it does not match the epochal be-

havior of the data path, where most objects are created.

This mismatch leads to the fundamental challenge en-

countered by state-of-the-art GCs in data-intensive appli-

cations. Since newly-created objects often do not have

short life spans, most GC runs spend significant time for

identifying and moving young-generation objects into

the old generation, while reclaiming little memory space.

As an example, in GraphChi [41], a disk-based graph

processing system, graph data in the shard defined by a

vertex interval is first loaded into memory in each iter-

ation, followed by the creation of many vertex objects

to represent the data. These objects are long-lived and

frequently visited to perform vertex updates. They cannot

be reclaimed until the next vertex interval is processed.

There can be dozens to hundreds of GC runs in each inter-

val. Unfortunately, these runs end up moving most objects

to the old generation and scanning almost the entire heap,

while reclaiming little memory.

The epochal behavior of the data path also points to

an opportunity not leveraged by existing GC algorithms –

many data-path objects have the same life span and can be

reclaimed together at the end of an epoch. We call this the

epochal hypothesis. This hypothesis has been leveraged

in region-based memory management [1, 8, 14, 25, 26,

28, 29, 30, 32, 40, 49, 50, 58], where objects created in

an epoch are allocated in a memory region and efficiently

deallocated as a whole when the epoch ends.

Unfortunately, existing region-based techniques need

either sophisticated static analyses [1, 8, 14, 25, 26, 28,

29], which cannot scale to large systems, or heavy manual

refactoring [28, 50], to guarantee that objects created in

an epoch are indeed unreachable at the end of the epoch.

Hence, such techniques have not been part of any garbage

collector, to our knowledge.

1.2 Our Solution: The Yak GC
This paper presents Yak,1 a high-throughput, low-latency

GC tailored for managed Big Data systems. While GC

has been extensively studied, existing research centers

around the generational hypothesis, improving various as-

pects of the collection/application performance based on

this hypothesis. Yak, in contrast, tailors the GC algorithm

to the two very different types of object behavior (gener-

ational and epochal) observed in modern data-intensive

workloads. Yak is the first hybrid GC that splits the heap

into a control space (CS) and a data space (DS), which

respectively employ generation-based and region-based

algorithms to automatically manage memory.

Yak requires the developer to mark the beginning and

end points of each epoch in the program. This is a sim-

ple task that even novices can do in minutes, and is al-

ready required by many Big Data infrastructures (e.g., the

setup/cleanup APIs in Hadoop [4]). Objects created

inside each epoch are allocated in the DS, while those

created outside are allocated in the CS. Since the number

of objects to be traced in the CS is very small and only

escaping objects in the DS need tracing, the memory man-

agement cost can be substantially reduced compared to a

state-of-the-art generational GC.

While the idea appears simple, there are many chal-

lenges in developing a practical solution. First, we need

to make the two styles of heap management for CS and

DS smoothly co-exist inside one GC. For example, the

generational collector that manages the CS in normal

1Yak is a wild ox that digests food with multiple stomachs.

350 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ways should ignore some outgoing references to avoid

getting in the way of DS management, and also keep track

of incoming references to avoid deallocating CS objects

referenced by DS objects (§5.4).

Second, we need to manage DS regions correctly. That

is, we need to correctly handle the small number of objects

that are allocated inside an epoch but escape to either

other epochs or the control path. Naı̈vely deallocating

the entire region for an epoch when the epoch ends can

cause program failures. This is exactly the challenge

encountered by past region-based memory management

techniques.

Existing Big Data memory-management systems, such

as Facade [50] and Broom [28], require developers to

manually refactor both user and system programs to take

control objects out of the data path, which, in turn, re-

quires a deep understanding of the life spans of all objects
created in the data path. This is a difficult task, which

can take experienced developers weeks of effort or even

longer. It essentially brings back the burden of manual

memory management that managed languages freed de-

velopers from, imposing substantial practical limitations.

Yak offers an automated and systematic solution, re-

quiring zero code refactoring. Yak allocates all objects

created in an epoch in the DS, automatically tracks and

identifies all escaping objects, and then uses a promotion
algorithm to migrate escaping objects during region deal-

location. This handling completely frees the developers

from the stress of understanding object life spans, making

Yak practical enough to be used in real settings (§5).

Third, we need to manage the DS region efficiently.

This includes efficiently tracking escaping objects and

migrating them. Naı̈vely monitoring every heap access to

track escaping objects would lead to prohibitive overhead.

Instead, we require light checking only before a heap

write, but not on any heap read (§5.2). To guarantee mem-

ory correctness (i.e., no live object deallocation), Yak also

employs a lightweight “stop-the-world” treatment when

a region is deallocated, without introducing significant

stalls (§5.3).

1.3 Summary of Results
We implemented Yak inside Oracle’s production JVM,

OpenJDK 8. The JVM-based implementation enables

Yak to work for all JVM-based languages, such as Java,

Python, or Scala, while systems such as Facade [50] and

Broom [28] work only for the specific languages they

are designed for. We have evaluated Yak on three pop-

ular frameworks, i.e., Hyracks [12], Hadoop [4], and

GraphChi [41], with various types of applications and

workloads. Our results show that Yak reduces GC latency

by 1.4 – 44.3× and improves overall application perfor-

mance by 12.5% – 7.2×, compared to the default Parallel

Scavenge production GC in the JVM.

2 Related Work
Garbage Collection Tracing garbage collectors are the

mainstream collectors in modern systems. A tracing GC

performs allocation of new objects, identification of live

objects, and reclamation of free memory. It traces live

objects by following references, starting from a set of

root objects that are directly reachable from live stack

variables and global variables. It computes a transitive
closure of live objects; objects that are unreachable during

tracing are guaranteed to be dead and will be reclaimed.

There are four kinds of canonical tracing collec-

tors: mark-sweep, mark-region, semi-space, and mark-
compact. They all identify live objects the same way as

discussed above. Their allocation and reclamation strate-

gies differ significantly. Mark-sweep collectors allocate

from a free list, mark live objects, and then put reclaimed

memory back on the free list [24, 46]. Since a mark-sweep

collector does not move live objects, it is time- and space-

efficient, but it sacrifices locality for contemporaneously

allocated objects. Mark-region collectors [7, 11, 13] re-

claim contiguous free regions to provide contiguous allo-

cation. Some mark-region collectors such as Immix [11]

can also reduce fragmentation by mixing copying and

marking. Semi-space [5, 6, 10, 17, 22, 34, 56] and mark-

compact [19, 38, 55] collectors both move live objects.

They put contemporaneously-allocated objects next to

each other in a space, providing good locality.

These canonical algorithms serve as building blocks for

more sophisticated algorithms such as the generational

GC (e.g., [56]), which divides the heap into a young and

an old generation. Most GC runs are nursery (minor)
collections that only scan references from the old to the

young generation, move reachable objects into the old

generation, and then free the entire young generation.

When nursery GCs are not effective, a full-heap (major)
collection scans both generations.

At first glance, Yak is similar to generational GC in

that it promotes objects reachable after an epoch and then

frees the entire epoch region. However, the regions in

Yak have completely different and much richer semantics

than the two generations in a generational GC. Conse-

quently, Yak encounters completely different challenges

and uses a design that is different from a generational

GC. Specifically, in Yak, regions are thread-private; they

reflect nested epochs; many regions could exist at any sin-

gle moment. Therefore, to efficiently check which objects

are escaping, we cannot rely on a traditional tracing al-

gorithm; escaping objects may have multiple destination

regions, instead of just the single old generation.

Connectivity-based garbage collection (CBGC) [33] is

a family of algorithms that place objects into partitions by

performing connectivity analyses on the object graph. A

connectivity analysis can be based on types, allocations,

or the partitioning introduced by Harris [31]. Garbage

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 351

First (G1) [22] is a generational algorithm that divides the

heap into many small regions and gives higher collection

priority to regions with more garbage. While CBGC, G1,

and Yak each uses a notion of region, each has completely

different semantics for the region and hence a different

design. For example, objects inside a G1 region are not
expected to have lifespans that are similar to each other.

Region-based Memory Management Region-based

memory management was first used in the implemen-

tations of functional languages [1, 58] such as Stan-

dard ML [30], and then was extended to Prolog [45],

C [25, 26, 29, 32], Java [18, 54], as well as real-time

Java [8, 14, 40]. Existing region-based techniques rely

heavily on static analyses. Unfortunately, these analy-

ses either examine the whole program to identify region-

allocable objects, which cannot scale to Big Data systems

that all have large codebases, or require developers to

use a brand new programming model, such as region

types [8, 14]. In contrast, Yak is a pure dynamic tech-

nique that easily scales to large systems and requires only

straightforward marking of epochs from users.

Big Data Memory Optimizations A variety of data

computation models and processing systems have been

developed in the past decade [4, 12, 16, 20, 21, 35, 52, 53,

57, 64, 65, 66, 67]. All of these frameworks were devel-

oped in managed languages and can benefit immediately

from Yak, as demonstrated in our evaluation (cf. §6).

Bu et al. studied several data processing systems [15]

and showed that a “bloat-free” design (i.e., no objects

allowed in data processing units), which is unfortunately

impractical in modern Big Data systems, can make the

system orders of magnitude more scalable.

This insight has inspired recent work, like Facade [50],

Broom [28], lifetime-based memory management [42],

as well as Yak. Facade allocates data items into native

memory pages that are deallocated in batch. Broom aims

to replace the GC system by using regions with different

scopes to manipulate objects with similar lifetimes. While

promising, they both require extensive programmer inter-

vention, as they move most objects out of the managed

heap. For example, users must annotate the code and

determine “data classes” and “boundary classes” to use

Facade or explicitly use Broom APIs to allocate objects

in regions. Yak is designed to free developers from the

burden of understanding object lifetimes to use regions,

making region-based memory management part of the

managed runtime.

NumaGiC [27] is a new GC for “Big Data” on NUMA

machines. It considers data location when performing (de-

)allocation. However, as a generational GC, NumaGiC

shares with modern GCs the problems discussed in §1.

Another orthogonal line of research on reducing GC

pauses is building a holistic runtime for distributed Big

Data systems [43, 44]. The runtime collectively manages

the heap on different nodes, coordinating GC pauses to

make them occur at times that are convenient for appli-

cations. Different from these techniques, Yak focuses on

improving per-node memory management efficiency.

3 Motivation
We have conducted several experiments to validate our

epochal hypothesis. Figure 2 depicts the memory foot-

print and its correlation with epochs when PageRank was

executed on GraphChi to process a sample of the twitter-

2010 graph (with 100M edges) on a server machine with

2 Intel(R) Xeon(R) CPU E5-2630 v2 processors running

CentOS 6.6. We used the state-of-the-art Parallel Scav-

enge GC. In GraphChi, we defined an epoch as the pro-

cessing of a sub-interval. While GraphChi uses multiple

threads to perform vertex updates in each sub-interval,

different sub-intervals are processed sequentially.

Figure 2: Memory footprint for GraphChi [41] execution

(GC consumes 73% of run time). Each dot in (a) repre-

sents the memory consumption measured right after a GC;

each bar in (b) shows how much memory is reclaimed by

a GC; dotted vertical lines show the epoch boundaries.

In the GraphChi experiment, GC takes 73% of run

time. Each epoch lasts about 20 seconds, denoted by

dotted lines in Figure 2. We can observe clear correlation

between the end point of each epoch and each significant

memory drop (Figure 2 (a)) as well as each large memory

reclamation (Figure 2 (b)). During each epoch, many GC

runs occur and each reclaims little memory (Figure 2 (b)).

For comparison, we also measured the memory usage

of programs in the DaCapo benchmark suite [9], widely-

used for evaluating JVM techniques. Figure 3 shows the

memory footprint of Eclipse under large workloads pro-

vided by DaCapo. Eclipse is a popular development IDE

and compiler frontend. It is an example of applications

that have complex logic but process small amounts of

data. GC performs well for Eclipse, taking only 2.4%

of total execution time and reclaiming significant mem-

ory in each GC run. We do not observe epochal patterns

in Figure 3. While other DaCapo benchmarks may ex-

hibit some epochal behavior, epochs in these programs

are often not clearly defined and finding them is not easy

352 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for application developers who are not familiar with the

system codebase.

Figure 3: Eclipse execution (GC takes 2.4% of time).

Strawman Can we solve the problem by forcing GC

runs to happen only at the end of epochs? This simple

approach would not work due to the multi-threaded nature

of real systems. In systems like GraphChi, each epoch

spawns many threads that collectively consume a huge

amount of memory. Waiting until the end of an epoch to

conduct GC could easily cause out-of-memory crashes.

In systems like Hyracks [12], a distributed dataflow en-

gine, different threads have various processing speeds and

reach epoch ends at different times. Invoking the GC

when one thread finishes an epoch would still make the

GC traverse many live objects created by other threads,

leading to wasted effort. This problem is illustrated in

Figure 4, which shows memory footprint of one slave

node when Hyracks performs word counting over a 14GB

text dataset on an 11-node cluster. Each node was config-

ured to run multiple Map and Reduce workers and have a

12GB heap. There are no epochal patterns in the figure,

exactly because many worker threads execute in parallel

and reach the end of an epoch at different times.

Figure 4: Hyracks WordCount (GC takes 33.6% of time).

4 Design Overview
The overall idea of Yak is to split the heap into a con-

ventional CS and a region-based DS, and use different

mechanisms to manage them.

When to Create & Deallocate DS Regions? A region

is created (deallocated) in the DS whenever an epoch

starts (ends). This region holds all objects created inside

the epoch. An epoch is the execution of a block of data

transformation code. Note that the notion of an epoch

is well-defined in Big Data systems. For example, in

Hyracks [12], the body of a dataflow operator is enclosed

by calls to open and close. Similarly, a user-defined

(Map/Reduce) task in Hadoop [4] is enclosed by calls to

setup and cleanup.

To enable a unified treatment across different Big

Data systems, Yak expects a pair of user annotations,

epoch start and epoch end. These annotations are trans-

lated into two native function calls at run time to inform

the JVM of the start/end of an epoch. Placing these anno-

tations requires negligible manual effort. Even a novice,

without much knowledge about the system, can easily find

and annotate epochs in a few minutes. Yak guarantees ex-

ecution correctness regardless of where epoch annotations

are placed. Of course, the locations of epoch boundaries

do affect performance: if objects in a designated epoch

have very different life spans, many of them need to be

copied when the epoch ends, creating overhead.

In practice, we need to consider a few more issues

about the epoch concept. One is the nested relationships
exhibited by epochs in real systems. A typical exam-

ple is GraphChi [41], where a computational iteration

naturally represents an epoch. Each iteration iteratively

loads and processes all shards, and hence, the loading

and processing of each memory shard (called interval in

GraphChi) forms a sub-epoch inside the computational

iteration. Since a shard is often too large to be loaded en-

tirely into memory, GraphChi further breaks it into several

sub-intervals, each of which forms a sub-sub-epoch.

Yak supports nested regions for performance benefits

– unreachable objects inside an inner epoch can be re-

claimed long before an outer epoch ends, preventing the

memory footprint from aggressively growing. Specifi-

cally, if an epoch start is encountered in the middle of an

already-running epoch, a sub-epoch starts; subsequently

a new region is created, and considered a child of the ex-

isting region. All subsequent object allocations take place

in the child region until an epoch end is seen. We do

not place any restrictions on regions; objects in arbitrary

regions are allowed to mutually reference one another.

The other issue is how to create regions when mul-

tiple threads execute the same piece of data-processing

code concurrently. We could allow those threads to share

one region. However, this would introduce complicated

thread-synchronization problems; and might also delay

memory recycling when multiple threads exit the epoch

at different times, causing memory pressure. Yak creates

one region for each dynamic instance of an epoch. When

two threads execute the same piece of epoch code, they

each get their own regions without having to worry about

synchronization.

Overall, at any moment of execution, multiple epochs

and hence regions could exist. They can be partially

ordered based on their nesting relationships, forming a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 353

semilattice structure. As shown in Figure 5, each node

on the semilattice is a region of form 〈ri j, tk〉, where ri j
denotes the j-th execution of epoch ri and tk denotes the

thread executing the epoch. For example, region 〈r21, t1〉
is a child of 〈r11, t1〉, because epoch r2 is nested in epoch

r1 in the program and they are executed by the same thread

t1. Two regions (e.g., 〈r11, t1〉 and 〈r12, t2〉) are concurrent
if their epochs are executed by different threads.

for (…) {
epoch_start();

 while (…) {
epoch_start();

 for (…) {
epoch_start();
…
epoch_end();

 }
epoch_end();

 }
epoch_end();

}

r2 r3r1
<r11,t1>

<r21,t1>

<r33,t1>

<r12,t2>

<r23,t2>

<r37,t2>

… <r1u,tn>
<r2v,tn>

<r3w,tn>

<CS, *>

Figure 5: An example of regions: (a) a simple program

and (b) its region semilattice at some point of execution.

How to Deallocate Regions Correctly and Efficiently?
As discussed in §1, a small number of objects may out-

live their epochs, and have to be identified and carefully

handled during region deallocation. As also discussed in

§1, we do not want to solve this problem by an iterative

manual process of code refactoring and testing, which is

labor-intensive as was done in Facade [50] or Broom [28].

Yak has to automatically accomplish two key tasks: (1)

identifying escaping objects and (2) deciding the reloca-

tion destination for these objects.

For the first task, Yak uses an efficient algorithm to

track cross-region/space references and records all incom-
ing references at run time for each region. Right before

a region is deallocated, Yak uses these references as the

root set to compute a transitive closure of objects that can

escape the region (details in §5.2).

For the second task, for each escaping object O, Yak

tries to relocate O to a live region that will not be deallo-

cated before the last (valid) reference to O. To achieve

this goal, Yak identifies the source regions for each in-

coming cross-region/space reference to O, and joins them

to find their least upperbound on the region semilattice.

For example, in Figure 5, joining 〈r21, t1〉 and 〈r11, t1〉
returns 〈r11, t1〉, while joining any two concurrent regions

returns the CS. Intuitively, if O has references from its

parent and grand-parent regions, O should be moved up

to its grand-parent. If O has two references coming from

regions created by different threads, it has to be moved to

the CS.

Upon deallocation, computing a transitive closure of

escaping objects while other threads are accessing them

may result in an incomplete closure. In addition, mov-

ing objects concurrently with other running threads is

dangerous and may give rise to data races. Yak employs

a lightweight “stop-the-world” treatment to guarantee

memory safety in deallocation. When a thread reaches

an epoch end, Yak pauses all running threads, scans their

stacks, and computes a closure that includes all potential

live objects in the deallocating region. These objects are

moved to their respective target regions before all mutator

threads are resumed.

5 Yak Design and Implementation
We have implemented Yak in Oracle’s production JVM

OpenJDK 8 (build 25.0-b70). In addition to implementing

our own region-based technique, we have modified the

two JIT compilers (C1 and Opto), the interpreter, the

object/heap layout, and the Parallel Scavenge collector (to

manage the CS). Below, we discuss how to split the heap

and create regions (§5.1); how to track inter-region/space

references, how to identify escaping objects, and how to

determine where to move them (§5.2); how to deallocate

regions correctly and efficiently (§5.3); and how to modify

the Parallel Scavenge GC to collect the CS (§5.4).

5.1 Region & Object Allocation
Region Allocation When the JVM is launched, it asks

the OS to reserve a block of virtual addresses based on

the maximum heap size specified by the user (i.e., -Xmx).

Yak divides this address space into the CS and the DS,

with the ratio between them specified by the user via JVM

parameters. Yak initially asks the OS to commit a small

amount of memory, which will grow if the initial space

runs out. Once an epoch start is encountered, Yak creates

a region in the DS. A region contains a list of pages whose

size can be specified by a JVM parameter.

Heap Layout Figure 6 illustrates the heap layout main-

tained by Yak. The CS is the same as the old Java heap

maintained by a generational GC, except for the newly

added remember set. The DS is much bigger, containing

multiple regions, with each region holding a list of pages.

Figure 6: The heap layout in Yak.

The remember set is a bookkeeping data structure main-

tained by Yak for every region and the CS space. It is used

to determine what objects escape a region r and where

to relocate them. The remember set of CS helps identify

live objects in the CS. The remember set of a region/s-

354 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

pace r is implemented as a hash table that maps an object

O in r to all references to O that come from a different

region/space.

Note that a remember set is one of the many possible

data structures to record such references. For example,

the generational GC uses a card table that groups objects

into fixed-sized buckets and tracks which buckets contain

objects with pointers that point to the young generation.

Yak uses remember sets, because each region has only

a few incoming references; using a card table instead

would require us to scan all objects from the CS and other

regions to find these references.

Allocating Objects in the DS When the execution is

in an epoch, we redirect all allocation requests made

to the Eden space (e.g., young generation) to our new

Region Alloc function. Yak filters out JVM meta-data

objects, such as class loader and class objects, from get-

ting allocated in the region. Using a quick bump pointer
algorithm (which uses a pointer that points to the starting

address of free space and bumps it up upon each alloca-

tion), the region’s manager attempts to allocate the object

on the last page of its page list. If this page does not

have enough space, the manager creates a new page and

appends it to the list. For a large object that cannot fit into

one page, we request a special page that can fit the object.

For performance, large objects are never moved.

5.2 Tracking Inter-region References
Overview As discussed in §4, Yak needs to efficiently

track all inter-region/space references. At a high level,

Yak achieves this in three steps. First, Yak adds a 4-byte

field re into the header space of each object to record

the region information of the object. Upon an object

allocation, its re field is updated to the corresponding

region ID. A special ID is used for the CS.

Second, we modify the write barrier (i.e., a piece of

code executed with each heap write instruction a. f = b)

to detect and record heap-based inter-region/space ref-

erences. Note that, in OpenJDK, a barrier is already

required by a generational GC to track inter-generation

references. We modify the existing write barrier as shown

in Algorithm 1.

Algorithm 1: The write barrier a. f = b.

Input: Expression a.f , Variable b

1 if ADDR(Oa) /∈ SPACE(CS) OR ADDR(Ob) /∈ SPACE(CS)
then

2 if REGION(Oa) �= REGION(Ob) then
3 Record the reference ADDR(Oa) + OFFSET(f)

REGION(Oa)−−−−−−−→ ADDR(Ob) in the remember set rs of

Ob’s region

4 ... // Normal OpenJDK logic (for marking the card table)

Finally, Yak detects and records local-stack-based inter-

region references as well as remote-stack-based refer-

ences when epoch end is triggered. These algorithms are

shown in Lines 1 – 4 and Lines 5 – 10 in Algorithm 2.

Details We describe in detail how Yak can track all inter-

region references, following the three places where the

reference to an escaping object can reside in – the heap,

the local stack, and a remote stack. The semantics of

writes to static fields (i.e., globals) as well as array stores

are similar to that of instance field accesses; we omit the

details of their handling. Copies of large memory regions

(e.g., System.arraycopy) are also tracked in Yak.

(1) In the heap. An object Ob can outlive its region r
if its reference is written into an object Oa allocated in

another (live) region r′. Algorithm 1 shows the write bar-

rier to identify such escaping objects Ob. The algorithm

checks whether the reference is an inter-region/space ref-

erence (Line 2). If it is, the pointee’s region (i.e., RE-

GION(Ob)) needs to update its remember set (Line 3).

Each entry in the remember set is a reference which

has a form a r−→ b where a and b are the addresses of

the pointer and pointee, respectively, and r represents the

region the reference comes from. In most cases (such

as those represented by Algorithm 1), r is the region in

which a resides and it will be used to compute the target

region to which b will be moved. However, if a is a stack

variable, we need to create a placeholder reference with a

special r, determined based on which stack a comes from.

We will shortly discuss such cases in Algorithm 2.

To reduce overhead, we have a check that quickly filters

out references that do not need to be remembered. As

shown in Algorithm 1, if both Oa and Ob are in the same

region, including the CS (Lines 1 – 2), we do not need to

track that reference, and thus, the barrier proceeds to the

normal OpenJDK logic.

(2) On the local stack. An object can escape by being

referenced by a stack variable declared beyond the scope

of the running epoch. Figure 7 (a) shows a simple exam-

ple. The reference of the object allocated on Line 3 is

assigned to the stack variable a. Because a is still alive

after epoch end, it is unsafe to deallocate the object.

Yak identifies this type of escaping objects through

an analysis at each epoch end mark. Specifically, Yak

scans the local stack of the deallocating thread for the

set of live variables at epoch end and checks if an object

in r can be referenced by a live variable (Lines 1 – 4 in

Algorithm 2). For each such escaping object Ovar, Yak

adds a placeholder incoming reference, whose source is

from r’s parent region (say p), into the remember set rs
of r (Line 4). This will cause Ovar to be relocated to p. If

the variable is still live when p is about to be deallocated,

this would be detected by the same algorithm and Ovar
would be further relocated to p’s parent.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 355

1 a = . . . ;

2 / / epoch start
3 b = new B () ;

4 i f (/∗ condition ∗ /) {
5 a = b ;

6 }
7 / / epoch end
8 c = a ;

1 Thread t :

2 / / epoch start
3 a = A. f ;

4 a . g = new O() ;

5 / / epoch end
6

7 Thread t′ :

8 / / epoch start
9 p = A. f ;

10 b = p . g ;

11 p . g = c ;

12 / / epoch end
(a) (b)

Figure 7: (a) An object referenced by b escapes its epoch

via the stack variable a; (b) An object O created by thread

t and referenced by a.g escapes to thread t ′ via the load

statement b = p.g.

(3) On the remote stack. A reference to an object O
created by thread t could end up in a stack variable in

thread t ′. For example, in Figure 7 (b), object O created

on Line 4 escapes t through the store at the same line and

is loaded to the stack of another thread t ′ on Line 10. A

naı̈ve way to track these references is to monitor every

read (i.e., a read barrier), such as the load on Line 10 in

Figure 7 (b).

Yak avoids the need for a read barrier, whose large over-

head could affect practicality and performance. Before

proceeding to discuss the solution, let us first examine the

potential problems of missing a read barrier. The purpose

of the read barrier is for us to understand whether a region

object is loaded on a remote stack so that the object will

not be mistakenly reclaimed when its containing region is

deallocated. Without it, a remote thread which references

an object O in region r, may cause two potential issues

when r is deallocated (Figure 8).

D

C
<r11,t1>

3

<CS,*>

<r21,t1>

1

A

 t2's StackB2

4 V D

C
<r11,t1>

3

<CS,*>

<r21,t1>

1

A

 t2's StackB2

4 VE5

Figure 8: Examples showing potential problems with

references on a remote stack: (a) moving object D is

dangerous; and (b) object E, which is also live, is missed

in the transitive closure.

Problem 1: Dangerous object moving. Figure 8 (a)

illustrates this problem. Variable v on the stack of thread

t2 contains a reference to object D in region 〈r21, t1〉 (by

following the chain of references starting at object A in

the CS). When this region is deallocated, D is in the es-

caping transitive closure; its target region, as determined

by the semilattice, is its parent region 〈r11, t1〉. Obviously,

moving D at the deallocation of 〈r21, t1〉 is dangerous, be-

cause we are not aware that v references it and thus cannot

update v with D’s new address after the move.

Problem 2: Dangerous object deallocation. Figure 8

(b) shows this problem. Object E is first referenced by

D in the same region 〈r21, t1〉. Hence, the remote thread

t2 can reach E by following the reference chain starting

at A. Suppose t2 loads E into a stack variable v and then

deletes the reference from D to E. When region 〈r21, t1〉
is deallocated, E cannot be included in the escaping tran-

sitive closure while it is being accessed by a remote stack.

E thus becomes a “dangling” object that would be mistak-

enly treated as a dead object and reclaimed immediately.

Solution Summary Yak’s solution to these problems

is to pause all other threads and scan their stacks when

thread t deallocates a region r. Objects in r that are also on

a remote stack need to be explicitly marked as escaping
roots before the escaping closure computation because

they may be dangling objects (such as E in Figure 8 (b))

that are already disconnected from other objects in the

region. §5.3 provides the detailed algorithms for region

deallocation and thread stack scanning.

5.3 Region Deallocation
Algorithm 2 shows our region deallocation algorithm that

is triggered at each epoch end. This algorithm computes

the closure of escaping objects, moves escaping objects

to their target regions, and then recycles the whole region.

Algorithm 2: Region deallocation.

Input: Region r, Thread t

1 Map〈Var,Object〉 stackObjs← SCANSTACK(t,r)
2 foreach 〈var,Ovar〉 ∈ stackObjs do
3 if REGION(Ovar) = r then
4 Record a placeholder reference ADDR(var)

r.parent−−−−→ ADDR(Ovar) in r’s remember set rs

5 PAUSEOTHERTHREADS()

6 foreach Thread t′ ∈ THREADS() : t ′ �= t do
7 Map〈Var,Object〉remoteObjs← SCANSTACK(t ′, r)

8 foreach 〈var,Ovar〉 ∈ remoteObjs do
9 if REGION(Ovar) = r then

10 Record a placeholder reference ADDR(var)
CS−→ADDR(Ovar) in r’s remember set rs

11 CLOSURECOMPUTATION()

12 RESUMEPAUSEDTHREADS()

13 Put all pages of r back onto the available page list

Finding Escaping Roots There are three kinds of es-

caping roots for a region r. First, pointees of inter-

356 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

region/space references recorded in the remember set of

r. Second, objects referenced by the local stack of the

deallocating thread t. Third, objects referenced by the

remote stacks of other threads.

Since inter-region/space references have already been

captured by the write barrier (§5.2), here we first identify

objects that escape the epoch via t’s local stack, as shown

in Lines 1 – 4 of Algorithm 2.

Next, Yak identifies objects that escape via remote

stacks. To do this, Yak needs to synchronize threads

(Line 5). When a remote thread t ′ is paused, Yak scans

its stack variables and returns a set of objects that are

referenced by these variables and located in region r.

Each such (remotely referenced) object needs to be ex-

plicitly marked as an escaping root to be moved to the

CS (Line 10) before the transitive closure is computed

(Line 11).

No threads are resumed until t completes its closure

computation and moves all escaping objects in r to their

target regions. Note that it is unsafe to let a remote thread

t ′ proceed even if the stack of t ′ does not reference any

object in r. To illustrate, consider the following scenario.

Suppose object A is in the CS and object B is in region r,

and there is a reference from A to B. Only A but not B is

on the stack of thread t ′ when r is deallocated. Scanning

the stack of t ′ would not find any new escaping root for r.

However, if t ′ is allowed to proceed immediately, t ′ could

load B onto its stack through A and then delete the refer-

ence between A and B. If this occurs before t completes

its closure computation, B would not be included in the

closure although it is still live.

After all escaping objects are relocated, the entire re-

gion is deallocated with all its pages put back onto the

free page list (Line 13).

Closure Computation Algorithm 3 shows the details

of our closure computation from the set of escaping roots

detected above. Since all other threads are paused, closure

computation is done together with object moving. The

closure is computed based on the remember set rs of the

current deallocating region r. We first check the remem-

ber set rs (Line 1): if rs is empty, this region contains

no escaping objects and hence is safe to be reclaimed.

Otherwise, we need to identify all reachable objects and

relocate them.

We start off by computing the target region to which

each escaping root Ob needs to be promoted (Lines 2 –

4). We check each reference addr r′−→ Ob in the remember

set and then join all the regions r′ based on the region

semilattice. The results are saved in a map promote.

We then iterate through all escaping roots in topological

order of their target regions (the loop at Line 5).2 For each

2The order is based on the region semilattice. For example, CS is

ordered before any DS region.

Algorithm 3: Closure computation.
Input: Remember Set rs of Region r

1 if The remember set rs of r is NOT empty then
2 foreach Escaping root Ob ∈ rs do
3 foreach Reference addr r′−→ADDR(Ob) in rs do
4 promote[Ob]← JOIN (r′, promote[Ob])

5 foreach Escaping root Ob in topological order of
promote[Ob] do

6 Region tgt ← promote[Ob]

7 Initialize queue gray with {Ob}
8 while gray is NOT empty do
9 Object O← DEQUEUE(gray)

10 Write tgt into the region field of O
11 Object O∗ ←MOVE(O, tgt)
12 Put a forward reference at ADDR(O)

13 foreach Reference addr x−→ADDR(O) in r’s rs
do

14 Write ADDR(O∗) into addr
15 if x �= tgt then
16 Add reference addr x−→ADDR(O∗)

into the remember set of region tgt

17 foreach Outgoing reference e of O∗ do
18 Object O′ ← TARGET(e)
19 if O′ is a forward reference then
20 Write the new address into O∗

21 Region r′ ← REGION(O′)
22 if r′ = r then
23 ENQUEUE(O′, gray)

24 else if r′ �= tgt then
25 Add reference ADDR(O∗) tgt−→

ADDR(O′) into the remember set of

region r′

26 Clear the remember set rs of r

escaping root Ob, we perform a breadth-first traversal in-

side the current region to identify a closure of transitively
escaping objects reachable from Ob and put all of them

into a queue gray. During this traversal (Lines 8 – 23), we

compute the regions to which each (transitively) escaping

object should be moved and conduct the move. We will

shortly discuss the details.

Identifying Target Regions When a transitively escap-

ing object O′ is reachable from only one escaping root

Ob, we simply use the target region of Ob as the target of

O′. When O′ is reachable from multiple escaping roots,

which may correspond to different target regions, we use

the “highest-ranked” one among them as the target region

of O′.
The topological order of our escaping root traversal is

key to our implementation of the above idea. By com-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 357

puting closure for a root with a “higher-ranked” region

earlier, objects reachable from multiple roots need to be

traversed only once – the check at Line 22 filters out those

that already have a region r′ (�= r) assigned in a previous

iteration of the loop because the region to be assigned in

the current iteration is guaranteed to be “lower-ranked”

than r′. When this case happens, the traversal stops further

tracing the outgoing references from O′.
Figure 9 (a) shows a simple heap snapshot when re-

gion 〈r21, t1〉 is about to be deallocated. There are two

references in its remember set, one from region 〈r11, t1〉
and a second from 〈r12, t2〉. The objects C and D are the

escaping roots. Initially, our algorithm determines that

C will be moved to 〈r11, t1〉 and D to the CS (because

it is reachable from a concurrent region 〈r12, t2〉). Since

the CS is higher-ranked than 〈r11, t1〉 in the semilattice,

the transitive closure computation for D occurs before C,

which sets E’s target to the CS. Later, when the transitive

closure for C is computed, E will be ignored (since it has

been visited).

C E

A

D

F

<r11,t1>
1

<r12,t2>

<r21,t1>

2
3 4

5

B

rs<r ,t > = {1,2}21 1

rs<CS,*> = {}

<cs,*>
E

CA

D

F

<r11,t1>
1

<r12,t2>

<r21,t1>

23

4

B

rs<CS,*> = {2,3}

<cs,*>

rs<r ,t > = {}21 1

Freed

Figure 9: An example heap snapshot (a) before and (b)

after the deallocation of region 〈r21, t1〉.

Updating Remember Sets and Moving Objects Be-

cause we have pause all threads, object moving is safe

(Line 11). When an object O is moved, we need to update

all (stack and heap) locations that store its references.

There can be three kinds of locations from which it is ref-

erenced: (1) intra-region locations (i.e., referenced from

another object in r); (2) objects from other regions or the

CS; and (3) stack locations. We discuss how each of these

types is handled by Algorithm 3.

(1) Intra-region locations. To handle intra-region ref-

erences, we follow the standard GC treatment by putting

a special forward reference at O’s original location (Line

12). This will notify intra-region incoming references

of the location change – when this old location of O is

reached from another reference, the forward reference

there will be used to update the source of that reference

(Line 20).

(2) Objects from another region. References from these

objects must have been recorded in r’s remember set.

Hence, we find all inter-region/space references of O in

the remember set rs and update the source of each such

reference with the new address O∗ (Line 14). Since O∗
now belongs to a new region tgt, the inter-region/space

references that originally went into region r now go into

region tgt. If the regions contain such a reference are not

tgt, such references need to be explicitly added into the

remember set of tgt (Line 16).

When O’s outgoing edges are examined, moving O to

region tgt may result in new inter-region/space references

(Lines 24 – 25). For example, if the target region r′ of

a pointee object O′ is not tgt (i.e., O′ has been visited

from another escaping root), we need to add a new entry

ADDR(O∗) tgt−→ADDR(O′) into the remember set of r′.
(3) Stack locations. Since stack locations are also

recorded as entries of the remember set, updating them

is performed in the same way as updating heap locations.

For example, when O is moved, Line 14 would update

each reference going to O in the remember set. If O has

(local or remote) stack references, they must be in the

remember set and updated as well.

After the transitive closure computation and object

promotion, the remember set rs of region r is cleared

(Line 26).

Figure 9 (b) shows the heap after region 〈r21, t1〉 is

deallocated. The objects C, D, and E are escaping objects

and will be moved to the target region computed. Since D
and E belong to the CS, we add their incoming references

2 and 3 into the remember set of the CS. Object F does

not escape the region, and hence, is automatically freed.

5.4 Collecting the CS

We implement two modifications to the Parallel Scavenge

GC to collect the CS. First, we make the GC run locally in

the CS. If the GC tracing reaches a reference to a region

object, we simply ignore the reference.

Second, we include references in the CS’ remember set

into the tracing roots, so that corresponding CS objects

would not be mistakenly reclaimed. Before tracing each

such reference, we validate it by comparing the address of

its target CS object with the current content in its source

location. If they are different, this reference has become

invalid and is discarded. Since the Parallel Scavenge GC

moves objects (away from the young generation), Yak

also needs to update references in the remember set of

each region when their source in the CS is moved.

Yak also implements a number of optimizations on the

remember set layout, large object allocation, as well as

region/thread ID lookup. We omit the details of these

optimizations for brevity.

358 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Evaluation
This section presents an evaluation of Yak on widely-

deployed real-world systems.

6.1 Methodology and Benchmarks
We have evaluated Yak on Hyracks [12], a parallel

dataflow engine powering the Apache AsterixDB [2]

stack, Hadoop [4], a popular distributed MapReduce [21]

implementation, and GraphChi [41], a disk-based graph

processing system. These three frameworks were se-

lected due to their popularity and diverse characteristics.

For example, Hyracks and Hadoop are distributed frame-

works while GraphChi is a single-PC disk-based system.

Hyracks runs one JVM on each node with many threads

to process data while Hadoop runs multiple JVMs on each

node, with each JVM using a small number of threads.

For each framework, we selected a few representative

programs, forming a benchmark set with nine programs

– external sort (ES), word count (WC), and distributed

grep (DG) for Hyracks; in-map combiner (IC), top-word

selector (TS), and distributed word filter (DF) for Hadoop;

connected components (CC), community detection (CD),

and page rank (PR) for GraphChi. Table 1 provides the

descriptions of these programs.

FW P Description
ES Sort a large array of data that cannot fit in main memory

Hyracks WC Count word occurrences in a large document

DG Find matches based on user-defined regular expressions

IC Count word frequencies in a corpus using local aggregation

Hadoop TS Select a number of words with most frequent occurrences

DF Return text with user-defined words filtered out

PR Compute page ranks (SpMV kernel)

GraphChi CC Identify strongly connected components (label propagation)

CD Detect communities (label propagation)

Table 1: Our benchmarks and their descriptions.

Table 2 shows the datasets and heap configurations in

our experiments. For Yak, the heap size is the sum of the

sizes of both CS and DS. Since we fed different datasets to

various frameworks, their memory requirements were also

different. Evidence [11] shows that in general the heap

size needs to be at least twice as large as the minimum

memory size for the GC to perform well. We selected

the heap configurations shown in Table 2 based on this

observation – they are roughly 2× – 3× of the minimum

heap size needed to run the original JVM.

FW Dataset Size Heap Configs
Hyracks Yahoo Webmap 72GB 20GB, 24GB

Hadoop StackOverflow 37GB 2&1GB, 3&2GB

GraphChi Sample twitter-2010 E = 100M 6GB, 8GB

V = 62M

Table 2: Datasets and heap configurations used to run our

programs; for Hadoop, the configurations a&b GB are

the max heap sizes for each map (a) and reduce task (b).

In a small number of cases, the JVM uses hand-crafted

assembly code to allocate objects directly into the heap

without calling any C/C++ function. While we have spent

more than a year on development, we have not yet per-

formed any assembly-based optimizations for Yak. Thus,

this assembly-based allocation in the JVM would allow

some objects in an epoch to bypass Yak’s allocator. To

solve the problem, we had to disable this option and force

all allocation requests to go through the main allocation

entrance in C++. For a fair comparison, we kept the

assembly-level allocation option disabled for all experi-

ments including both Yak and original GC runs. We saw

a small performance degradation (2–6%) after disabling

this option in the JVM.

We ran Hyracks and Hadoop on an 11-node cluster,

each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB

memory, 1 SSD, running CentOS 6.6. We ran GraphChi

on one node of this cluster, since it is a single-PC system.

For Yak, we let the ratio between the sizes of the CS

and the DS be 1/10. We did not find this ratio to have

much impact on performance as long as the DS is large

enough to contain objects created in each epoch. The

page size in DS is 32KB by default. We performed ex-

periments with different DS-page sizes and report these

results shortly. We focus our comparison between Yak

and Parallel Scavenge (PS) – the Oracle JVM’s default

production GC.

We ran each program for three iterations. The first

iteration warmed up the JIT. The performance difference

between the last two iterations were negligible (e.g., less

than 5%). This section reports the medians. We also

confirmed that no incorrect results were produced by Yak.

6.2 Epoch Specification
We performed our annotation by strictly following exist-
ing framework APIs. For Hyracks, an epoch covers the

lifetime of a (user-defined) dataflow operator (i.e., via

open/close); for Hadoop, it includes the body of a Map

or Reduce task (i.e., via setup/cleanup). For GraphChi,

we let each epoch contain the body of a sub-interval spec-

ified by a beginSubInterval callback, since each sub-

interval holds and processes many vertices and edges as

illustrated in §3. A sub-interval creates many threads to

load sliding shards and execute update functions. The

body of each such thread is specified as a sub-epoch. It

took us about ten minutes to annotate all three programs

on each framework. Note that our optimization for these

frameworks only scratches the surface; vast opportunities

are possible if both user-defined operators and system’s

built-in operators are epoch-annotated.

6.3 Latency and Throughput
Figure 10 depicts the detailed performance comparisons

between Yak and PS. Table 3 summarizes Yak’s perfor-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 359

Figure 10: Performance comparisons on various programs; each group compares performance between Parallel

Scavenge (PS) and Yak on a program with two “fat” and two “thin” bars. The left and right fat bars show the running

times of PS and Yak, respectively, which is further broken down into three components: GC (in red), region deallocation

(in orange), application computation (in blue) times. The left and right thin bars show maximum memory consumption

of PS and Yak, collected by periodically running pmap.

FW Overall GC App Mem
Hyracks 0.14 ∼ 0.64 0.02 ∼ 0.11 0.31 ∼ 1.05 0.67 ∼ 1.03

(0.40) (0.05) (0.77) (0.78)

Hadoop 0.73 ∼ 0.89 0.17 ∼ 0.26 1.03 ∼ 1.35 1.07 ∼ 1.67

(0.81) (0.21) (1.13) (1.44)

GraphChi 0.70 ∼ 0.86 0.15 ∼ 0.56 0.91 ∼ 1.13 1.07 ∼ 1.34

(0.77) (0.38) (1.01) (1.21)

Table 3: Summary of Yak performance normalized to

baseline PS in terms of Overall run time, GC time, in-

cluding Yak’s region deallocation time, Application (non-

GC) time, and Memory consumption across all settings

on each framework. The values shown depict Min ∼Max

and (Mean), and are normalized to PS. A lower value

indicates better performance versus PS.

mance improvement by showing Overall run time, as well

as GC and Application time and Memory consumption,

all normalized to those of PS.

For Hyracks, Yak outperforms PS in all evaluated met-

rics. The GC time is collected by identifying the max-

imum GC time across runs on all slave nodes. Data-

parallel tasks in Hyracks are isolated by design and they

do not share any data structures across task instances.

Hence, while Yak’s write barrier incurs overhead, almost

all references captured by the write barrier are intra-region

references and thus they do not trigger the slow path of

the barrier (i.e., updating the remember set). Yak also

improves the (non-GC) application performance — this

is because PS only performs thread-local allocation for

small objects and the allocation of large objects has to be

in the shared heap, protected by locks. In Yak, however,

all objects are allocated in thread-local regions and thus

threads can allocate objects completely in parallel. Lock-

free allocation is the major reason why Yak improves ap-

plication performance because large objects (e.g., arrays

in HashMaps) are frequently allocated in such programs.

For Hadoop and GraphChi, while Yak substantially

reduces the GC time and the overall execution time, it

increases the application time and memory consumption.

Longer application time is expected because (1) memory

reclamation (i.e., region deallocation) shifts from the GC

to the application execution, with Yak, and (2) the write

barrier is triggered to record a large number of references.

For example, Hadoop has a state object (i.e., context) in

the control path that holds objects created in the data path,

generating many inter-space references. In GraphChi,

a number of large data structures are shared among dif-

ferent data-loading threads, leading to many inter-region
references (e.g., reported in Table 4). Recording all these

references makes the barrier overhead stand out.

We envision two approaches that can effectively re-

duce the write barrier cost. First, existing GCs all have

manually crafted/optimized assembly code to implement

the write barrier. As mentioned earlier, we have not yet

investigated assembly-based optimizations for Yak. We

expect the barrier cost to be much lower when these op-

timizations are implemented. Second, adding extra an-

notations that define finer-grained epochs may provide

further performance improvement. For example, if ob-

jects reachable from the state object can be created in the

CS in Hadoop, the number of inter-space references can

be significantly reduced. In this experiment, we did not

perform any program restructuring, but we believe sig-

nificant performance potential is possible with that: it is

up to the developer to decide how much annotation effort

she can afford to expend for how much extra performance

gain she would like to achieve.

Yak greatly shortens the pauses caused by GC. When

Yak is enabled, the maximum (deallocation or GC) pauses

in Hyracks, Hadoop, and GraphChi are, respectively, 1.82,

0.55, and 0.72 second(s), while the longest GC pauses

under PS are 35.74, 1.24, and 9.48 seconds, respectively.

As the heap size increases, there is a small performance

improvement for PS due to fewer GC runs. The heap

360 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: Memory footprints collected from pmap.

increase has little impact on Yak’s overall performance,

given that the CS is small anyways.

6.4 Memory Usage
We measured memory usage by periodically running

pmap to understand the overall memory consumption of

the Java process (for both the application and GC data).

Figure 11 compares the memory footprints of Yak and

PS under different heap configurations. For Hyracks and

GraphChi, memory footprints are generally stable, while

Hadoop’s memory consumption fluctuates. This is be-

cause Hadoop runs multiple JVMs and different JVM

instances are frequently created and destroyed. Since the

JVM never returns claimed memory back to the OS un-

til it terminates, the memory consumption always grows

for Hyracks and GraphChi. The amount of memory con-

sumed by Hadoop, however, drops frequently due to the

frequent creation and termination of its JVM processes.

Note that the end times of Yak’s memory traces on

Hadoop in Figure 11 are earlier than the execution finish

time reported in Figure 10. This is because Figure 11

shows the memory trace of the node that has the highest
memory consumption; the computation on this node often

finishes before the entire program finishes.

Yak constantly has lower memory consumption than

PS for Hyracks. This is primarily because Yak can recycle

memory immediately when a data processing thread fin-

ishes, while there is often a delay before the GC reclaims

memory. For Hadoop and GraphChi, Yak has slightly

higher memory consumption than PS. The main reason is

that there are many control objects created in the data path

and allocated in regions. Those objects often have shorter

lifespans than their containing regions and, therefore, PS

can reclaim them more efficiently than Yak.

Space Overhead To understand the overhead of the

extra 4-byte field re in each object header, we ran

the GraphChi programs with the unmodified HotSpot

1.8.0 74 and compared peak heap consumption with that

of Yak (by periodically running pmap). We found that the

difference (i.e., the overhead) is relatively small. Across

the three GraphChi benchmarks, this overhead varies from

1.1% to 20.8%, with an average of 12.2%.

6.5 Performance Breakdown
To provide a deeper understanding of Yak’s performance,

Table 4 reports various statistics on Yak’s heap. Yak was

built based on the assumption that in a typical Big Data

system, only a small number of objects escape from the

data path to the control path. This assumption has been

validated by the fact that the ratios between numbers in

#CSR and #TR are generally very small. As a result, each

region has only very few objects (%CSO) that escape to

the CS when the region is deallocated.

Figure 12 (a) depicts execution time and memory per-

formance with Yak, when different page sizes are used.

Execution time under different page sizes does not vary

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 361

Figure 12: Performance comparisons between (a) different page sizes when Yak ran on GraphChi PR with a 6GB heap;

(b) Yak and PS when datasets of various sizes were sorted by Hyracks ES on a 24GB heap.

Program #CSR #CRR #TR %CSO #R
Hyracks-ES 2051 243 3B 0.0028% 103K

Hyracks-WC 2677 4221 213M 0.0043% 148K

Hyracks-DG 2013 16 2B 0.0034% 101K

Hadoop-IC 60K 0 2B 0% 598

Hadoop-TS 60K 0 2B 0% 598

Hadoop-DF 33K 0 1B 0% 598

GraphChi-CC 53K 25K 653M 0.044% 2699

GraphChi-CD 52K 14M 614M 1.3% 2699

GraphChi-PR 54K 24K 548M 0.060% 2699

Table 4: Statistics on Yak’s heap: numbers of cross-space

references (CSR), cross-region references (CRR), and

total references generated by stores (TR); average per-

centage of objects escaping to the CS (CSO) among all

objects in a region when the region retires; and total num-

ber of regions created during execution (R).

much (e.g., all times are between 149 and 153 seconds),

while the peak memory consumption generally goes up

when page size increases (except for the 256KB case).

The write barrier and region deallocation are the two

major sources of Yak’s application overhead. As shown

in Figure 10, region deallocation time accounts for 2.4%-

13.1% of total execution time across the benchmarks.

Since all of our programs are multi-threaded, it is difficult

to pinpoint the exact contribution of the write barrier to

execution time. To get an idea of the sensitivity to this

barrier’s cost, we manually modified GraphChi’s execu-

tion engine to enforce a barrier between threads that load

sliding shards and execute updates. This has the effect of

serializing the threads and making the program sequen-

tial. For all three programs on GraphChi, we found that

the mutator time (i.e., non-pause time) increased by an

overall of 24.5%. This shows that the write barrier is a

major bottleneck, providing strong motivation for us to

hand optimize it in assembly code in the near future.

Scalability To understand how Yak and PS perform

when datasets of different sizes are processed, we ran

Hyracks ES with four subsets of the Yahoo Webmap with

sizes of 9.4GB, 14GB, 18GB, and 44GB respectively.

Figure 12 (b) shows that Yak consistently outperforms PS

and its performance improvement increases with the size

of the dataset processed.

7 Conclusion

We present Yak, a new hybrid Garbage Collector (GC)

that can efficiently manage memory in data-intensive ap-

plications. Yak treats the data space and control space

differently for GC purposes since objects in modern data-

processing frameworks follow two vastly-different types

of lifetime behavior: data space shows epoch-based ob-

ject lifetime patterns, whereas the much-smaller control

space follows the classic generational lifetime behavior.

Yak manages all data-space objects using epoch-based re-

gions and deallocates each region as a whole at the end of

an epoch, while efficiently tracking the small number of

objects whose lifetimes span region boundaries. Doing so

greatly reduces the overheads of traditional generational

GC. Our experiments on several real-world applications

demonstrate that Yak outperforms the default production

GC in OpenJDK on three widely-used real Big Data sys-

tems, requiring almost zero user effort.

Acknowledgments

We would like to thank the many OSDI reviewers for their

valuable and thorough comments. We are especially grate-

ful to our shepherd Dushyanth Narayanan for his tireless

effort to read many versions of the paper and provide sug-

gestions, helping us improve the paper substantially. We

thank Kathryn S. McKinley for her help with the prepara-

tion of the final version. We also appreciate the feedback

from the MIT PDOS group (especially Tej Chajed for

sending us the feedback).

This work is supported by NSF grants CCF-

0846195, CCF-1217854, CNS-1228995, CCF-1319786,

CNS-1321179, CCF-1409423, CCF-1409829, CCF-

1439091, CCF-1514189, CNS-1514256, IIS-1546543,

CNS-1613023, by ONR grants N00014-16-1-2149 and

N00014-16-1-2913, and by a Sloan Fellowship.

362 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] AIKEN, A., FÄHNDRICH, M., AND LEVIEN,

R. Better static memory management: improving

region-based analysis of higher-order languages. In

PLDI (1995), pp. 174–185.

[2] ALSUBAIEE, S., ALTOWIM, Y., ALTWAIJRY, H.,

BEHM, A., BORKAR, V. R., BU, Y., CAREY,

M. J., CETINDIL, I., CHEELANGI, M., FARAAZ,

K., GABRIELOVA, E., GROVER, R., HEILBRON,

Z., KIM, Y., LI, C., LI, G., OK, J. M., ONOSE,

N., PIRZADEH, P., TSOTRAS, V. J., VERNICA, R.,

WEN, J., AND WESTMANN, T. AsterixDB: A scal-

able, open source BDMS. Proc. VLDB Endow. 7,

14 (2014), 1905–1916.

[3] Giraph: Open-source implementation of Pregel.

http://incubator.apache.org/giraph/.

[4] Hadoop: Open-source implementation of MapRe-

duce. http://hadoop.apache.org.

[5] APPEL, A. W. Simple generational garbage collec-

tion and fast allocation. Softw. Pract. Exper. 19, 2

(1989), 171–183.

[6] BAKER, JR., H. G. List processing in real time

on a serial computer. Commun. ACM 21, 4 (1978),

280–294.

[7] BEA SYSTEMS INC. Using the Jrockit runtime

analyzer. http://edocs.bea.com/wljrockit/
docs142/usingJRA/looking.html, 2007.

[8] BEEBEE, W. S., AND RINARD, M. C. An imple-

mentation of scoped memory for real-time Java. In

EMSOFT (2001), pp. 289–305.

[9] BLACKBURN, S. M., GARNER, R., HOFFMAN,

C., KHAN, A. M., MCKINLEY, K. S., BENTZUR,

R., DIWAN, A., FEINBERG, D., FRAMPTON, D.,

GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP,

M., LEE, H., MOSS, J. E. B., PHANSALKAR, A.,

STEFANOVIĆ, D., VANDRUNEN, T., VON DINCK-

LAGE, D., AND WIEDERMANN, B. The DaCapo

benchmarks: Java benchmarking development and

analysis. In OOPSLA (2006), pp. 169–190.

[10] BLACKBURN, S. M., JONES, R., MCKINLEY,

K. S., AND MOSS, J. E. B. Beltway: Getting

around garbage collection gridlock. In PLDI (2002),

pp. 153–164.

[11] BLACKBURN, S. M., AND MCKINLEY, K. S. Im-

mix: a mark-region garbage collector with space

efficiency, fast collection, and mutator performance.

In PLDI (2008), pp. 22–32.

[12] BORKAR, V. R., CAREY, M. J., GROVER, R.,

ONOSE, N., AND VERNICA, R. Hyracks: A flexible

and extensible foundation for data-intensive com-

puting. In ICDE (2011), pp. 1151–1162.

[13] BORMAN, S. Sensible sanitation under-

standing the IBM Java garbage collector.

http://www.ibm.com/developerworks/
ibm/library/i-garbage1/, 2002.

[14] BOYAPATI, C., SALCIANU, A., BEEBEE, JR., W.,

AND RINARD, M. Ownership types for safe region-

based memory management in real-time Java. In

PLDI (2003), pp. 324–337.

[15] BU, Y., BORKAR, V., XU, G., AND CAREY, M. J.

A bloat-aware design for big data applications. In

ISMM (2013), pp. 119–130.

[16] CHAIKEN, R., JENKINS, B., LARSON, P.-A.,

RAMSEY, B., SHAKIB, D., WEAVER, S., AND

ZHOU, J. SCOPE: easy and efficient parallel pro-

cessing of massive data sets. Proc. VLDB Endow. 1,

2 (2008), 1265–1276.

[17] CHENEY, C. J. A nonrecursive list compacting

algorithm. Commun. ACM 13, 11 (1970), 677–678.

[18] CHEREM, S., AND RUGINA, R. Region analysis

and transformation for Java programs. In ISMM
(2004), pp. 85–96.

[19] COHEN, J., AND NICOLAU, A. Comparison of

compacting algorithms for garbage collection. ACM
Trans. Program. Lang. Syst. 5, 4 (1983), 532–553.

[20] CONDIE, T., CONWAY, N., ALVARO, P., HELLER-

STEIN, J. M., ELMELEEGY, K., AND SEARS, R.

MapReduce online. In NSDI (2010), pp. 21–21.

[21] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-

plified data processing on large clusters. In OSDI
(2004), pp. 137–150.

[22] DETLEFS, D., FLOOD, C., HELLER, S., AND

PRINTEZIS, T. Garbage-first garbage collection.

In ISMM (2004), pp. 37–48.

[23] FANG, L., NGUYEN, K., XU, G., DEMSKY, B.,

AND LU, S. Interruptible tasks: Treating mem-

ory pressure as interrupts for highly scalable data-

parallel programs. In SOSP (2015), pp. 394–409.

[24] FENG, Y., AND BERGER, E. D. A locality-

improving dynamic memory allocator. In MSP
(2005), pp. 68–77.

[25] GAY, D., AND AIKEN, A. Memory management

with explicit regions. In PLDI (1998), pp. 313–323.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 363

[26] GAY, D., AND AIKEN, A. Language support for

regions. In PLDI (2001), pp. 70–80.

[27] GIDRA, L., THOMAS, G., SOPENA, J., SHAPIRO,

M., AND NGUYEN, N. NumaGiC: A garbage col-

lector for big data on big NUMA machines. In

ASPLOS (2015), pp. 661–673.

[28] GOG, I., GICEVA, J., SCHWARZKOPF, M.,

VASWANI, K., VYTINIOTIS, D., RAMALINGAM,

G., COSTA, M., MURRAY, D. G., HAND, S., AND

ISARD, M. Broom: Sweeping out garbage collec-

tion from big data systems. In HotOS (2015).

[29] GROSSMAN, D., MORRISETT, G., JIM, T., HICKS,

M., WANG, Y., AND CHENEY, J. Region-based

memory management in Cyclone. In PLDI (2002),

pp. 282–293.

[30] HALLENBERG, N., ELSMAN, M., AND TOFTE, M.

Combining region inference and garbage collection.

In PLDI (2002), pp. 141–152.

[31] HARRIS, T. Early storage reclamation in a tracing

garbage collector. SIGPLAN Not. 34, 4 (Apr. 1999),

46–53.

[32] HICKS, M., MORRISETT, G., GROSSMAN, D.,

AND JIM, T. Experience with safe manual memory-

management in Cyclone. In ISMM (2004), pp. 73–

84.

[33] HIRZEL, M., DIWAN, A., AND HERTZ, M.

Connectivity-based garbage collection. In OOPSLA
(2003), pp. 359–373.

[34] HUDSON, R. L., AND MOSS, J. E. B. Incremen-

tal collection of mature objects. In IWMM (1992),

pp. 388–403.

[35] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A.,

AND FETTERLY, D. Dryad: distributed data-parallel

programs from sequential building blocks. In Eu-
roSys (2007), pp. 59–72.

[36] JOAO, J. A., MUTLU, O., KIM, H., AGARWAL,

R., AND PATT, Y. N. Improving the performance of

object-oriented languages with dynamic predication

of indirect jumps. In ASPLOS (2008), pp. 80–90.

[37] JOAO, J. A., MUTLU, O., AND PATT, Y. N. Flexi-

ble reference counting-based hardware acceleration

for garbage collection. In ISCA (2009), pp. 418–428.

[38] KERMANY, H., AND PETRANK, E. The Com-

pressor: Concurrent, incremental, and parallel com-

paction. In PLDI (2006), pp. 354–363.

[39] KIM, H., JOAO, J. A., MUTLU, O., LEE, C. J.,

PATT, Y. N., AND COHN, R. VPC prediction: Re-

ducing the cost of indirect branches via hardware-

based dynamic devirtualization. In ISCA (2007),

pp. 424–435.

[40] KOWSHIK, S., DHURJATI, D., AND ADVE, V. En-

suring code safety without runtime checks for real-

time control systems. In CASES (2002), pp. 288–

297.

[41] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C.

GraphChi: Large-Scale Graph Computation on Just

a PC. In OSDI (2012), pp. 31–46.

[42] LU, L., SHI, X., ZHOU, Y., ZHANG, X., JIN, H.,

PEI, C., HE, L., AND GENG, Y. Lifetime-based

memory management for distributed data processing

systems. Proc. VLDB Endow. 9, 12 (2016), 936–

947.

[43] MAAS, M., HARRIS, T., ASANOVIĆ, K., AND KU-

BIATOWICZ, J. Trash Day: Coordinating garbage

collection in distributed systems. In HotOS (2015).

[44] MAAS, M., HARRIS, T., ASANOVIĆ, K., AND

KUBIATOWICZ, J. Taurus: A holistic language run-

time system for coordinating distributed managed-

language applications. In ASPLOS (2016), pp. 457–

471.

[45] MAKHOLM, H. A region-based memory manager

for Prolog. In ISMM (2000), pp. 25–34.

[46] MCCARTHY, J. Recursive functions of symbolic

expressions and their computation by machine, part

i. Commun. ACM 3, 4 (Apr. 1960), 184–195.

[47] MITCHELL, N., AND SEVITSKY, G. The causes

of bloat, the limits of health. In OOPSLA (2007),

pp. 245–260.

[48] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,

ISARD, M., BARHAM, P., AND ABADI, M. Naiad:

A timely dataflow system. In SOSP (2013), pp. 439–

455.

[49] NGUYEN, K., FANG, L., XU, G., AND DEMSKY,

B. Speculative region-based memory management

for big data systems. In PLOS (2015), pp. 27–32.

[50] NGUYEN, K., WANG, K., BU, Y., FANG, L., HU,

J., AND XU, G. FACADE: A compiler and runtime

for (almost) object-bounded big data applications.

In ASPLOS (2015), pp. 675–690.

[51] NGUYEN, K., AND XU, G. Cachetor: detecting

cacheable data to remove bloat. In FSE (2013),

pp. 268–278.

364 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[52] OLSTON, C., REED, B., SRIVASTAVA, U., KU-

MAR, R., AND TOMKINS, A. Pig Latin: a not-so-

foreign language for data processing. In SIGMOD
(2008), pp. 1099–1110.

[53] PIKE, R., DORWARD, S., GRIESEMER, R., AND

QUINLAN, S. Interpreting the data: Parallel analysis

with Sawzall. Sci. Program. 13, 4 (2005), 277–298.

[54] QIAN, F., AND HENDREN, L. An adaptive, region-

based allocator for Java. In ISMM (2002), pp. 127–

138.

[55] SACHINDRAN, N., MOSS, J. E. B., AND BERGER,

E. D. Mc2: High-performance garbage collection

for memory-constrained environments. In OOPSLA
(2004), pp. 81–98.

[56] STEFANOVIĆ, D., MCKINLEY, K. S., AND MOSS,

J. E. B. Age-based garbage collection. In OOPSLA
(1999), pp. 370–381.

[57] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z.,

CHAKKA, P., ANTHONY, S., LIU, H., WYCKOFF,

P., AND MURTHY, R. Hive: a warehousing solution

over a map-reduce framework. Proc. VLDB Endow.
2, 2 (2009), 1626–1629.

[58] TOFTE, M., AND TALPIN, J.-P. Implementation of

the typed call-by-value lamda-calculus using a stack

of regions. In POPL (1994), pp. 188–201.

[59] XU, G. Finding reusable data structures. In OOP-
SLA (2012), pp. 1017–1034.

[60] XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV,

A., SCHONBERG, E., AND SEVITSKY, G. Finding

low-utility data structures. In PLDI (2010), pp. 174–

186.

[61] XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV,

A., AND SEVITSKY, G. Go with the flow: Profil-

ing copies to find runtime bloat. In PLDI (2009),

pp. 419–430.

[62] XU, G., MITCHELL, N., ARNOLD, M., ROUN-

TEV, A., AND SEVITSKY, G. Software bloat analy-

sis: Finding, removing, and preventing performance

problems in modern large-scale object-oriented ap-

plications. In FoSER (2010), pp. 421–426.

[63] XU, G., AND ROUNTEV, A. Detecting inefficiently-

used containers to avoid bloat. In PLDI (2010),

pp. 160–173.

[64] YANG, H.-C., DASDAN, A., HSIAO, R.-L., AND

PARKER, D. S. Map-reduce-merge: simplified rela-

tional data processing on large clusters. In SIGMOD
(2007), pp. 1029–1040.

[65] YU, Y., GUNDA, P. K., AND ISARD, M. Dis-

tributed aggregation for data-parallel computing:

Interfaces and implementations. In SOSP (2009),

pp. 247–260.

[66] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M.,

ERLINGSSON, U., GUNDA, P. K., AND CURREY,

J. DryadLINQ: a system for general-purpose dis-

tributed data-parallel computing using a high-level

language. In OSDI (2008), pp. 1–14.

[67] ZAHARIA, M., CHOWDHURY, M., FRANKLIN,

M. J., SHENKER, S., AND STOICA, I. Spark: Clus-

ter computing with working sets. HotCloud, p. 10.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 365

Shuffler: Fast and Deployable Continuous Code Re-Randomization

David Williams-King1 Graham Gobieski1 Kent Williams-King2

James P. Blake1 Xinhao Yuan1 Patrick Colp2 Michelle Zheng1

Vasileios P. Kemerlis3 Junfeng Yang1 William Aiello2

1Columbia University 2University of British Columbia 3Brown University

Abstract
While code injection attacks have been virtually elim-

inated on modern systems, programs today remain vul-
nerable to code reuse attacks. Particularly pernicious are
Just-In-Time ROP (JIT-ROP) techniques, where an at-
tacker uses a memory disclosure vulnerability to discover
code gadgets at runtime. We designed a code-reuse de-
fense, called Shuffler, which continuously re-randomizes
code locations on the order of milliseconds, introducing
a real-time deadline on the attacker. This deadline makes
it extremely difficult to form a complete exploit, partic-
ularly against server programs that often sit tens of mil-
liseconds away from attacker machines.

Shuffler focuses on being fast, self-hosting, and non-
intrusive to the end user. Specifically, for speed, Shuffler
randomizes code asynchronously in a separate thread and
atomically switches from one code copy to the next. For
security, Shuffler adopts an “egalitarian” principle and
randomizes itself the same way it does the target. Lastly,
to deploy Shuffler, no source, kernel, compiler, or hard-
ware modifications are necessary.

Evaluation shows that Shuffler defends against all
known forms of code reuse, including ROP, direct JIT-
ROP, indirect JIT-ROP, and Blind ROP. We observed
14.9% overhead on SPEC CPU when shuffling every
50 ms, and ran Shuffler on real-world applications such
as Nginx. We showed that the shuffled Nginx scales up
to 24 worker processes on 12 cores.

1 Introduction
At present, programs hardened with the latest mainline
protection mechanisms remain vulnerable to code reuse
attacks. In a typical scenario, the attacker seizes con-
trol of the instruction pointer and executes a sequence
of existing code fragments to form an exploit [54]. This
is fundamentally very difficult to defend against, as the
program must be able to run its own code, and yet the
attacker should be prevented from running out-of-order
instruction sequences of that same code. One popular

mitigation is to deny the attacker knowledge about the
program’s code through randomization. Unfortunately,
memory disclosure vulnerabilities are common in the
real world, with 500–2000 discovered per year over the
last three years [20]. Such vulnerabilities can be used
to read the program’s code, at runtime, and unravel any
static randomization in a so-called Just-In-Time ROP
(JIT-ROP) attack [55].

We propose a system, called Shuffler, which provides a
deployable defense against JIT-ROP and other code reuse
attacks. Other such defenses have appeared in the lit-
erature, but all have had significant barriers to deploy-
ment: some utilize a custom hypervisor [4, 17, 33, 57];
others involve a modified compiler [7,10,13,40,42], run-
time [10, 42], or operating system kernel [4, 7, 17]. Note
that there is a security risk in any solution that requires
additional privileges, as an attacker can potentially gain
access to that elevated privilege level. Also, modified
components present a large barrier to the adoption of the
system and have less chance of incorporating upstream
patches and updates, so users may continue to run vul-
nerable software versions. In comparison, Shuffler runs
in userspace alongside the target program, and requires
no system modifications beyond a minimal patch to the
loader. Shuffler can be deployed amongst existing cloud
infrastructure, adopted by software distributors, or used
at small scale by individual security-conscious users.

Shuffler operates by performing continuous code re-
randomization at runtime, within the same address space
as the programs it defends. Most defenses operating at
the same level of privilege as their target do not consider
defending their own attack surface. In contrast, we boot-
strap into a self-hosted and self-modifying egalitarian
environment—Shuffler actually shuffles itself. We also
defend all of a program’s shared libraries, and handle
multithreading and process forks, shuffling each child
independently. Our current prototype does not handle
certain hand-coded assembly, but in principle, all exe-
cutable code in a process’s address space can be shuffled.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 367

With Shuffler, we aim to rapidly obsolete leaked infor-
mation by rearranging memory as fast as possible. Shuf-
fler operates within a real-time deadline, which we call
the shuffle period. This deadline constrains the total ex-
ecution time available to any attack, since no informa-
tion about the memory layout transfers from one shuf-
fle period to the next. We achieve a shuffle period on
the order of tens of milliseconds, so fast that it is nearly
impossible to form a complete exploit. Shuffler creates
new function permutations asynchronously in a separate
thread, and then atomically migrates program execution
from one copy of code to the next. This migration re-
quires a vanishingly small global pause time, as program
threads continue to execute unhindered 99.7% of the time
(according to SPEC CPU experiments). Thus, if the host
machine has a spare CPU core, shuffling at faster rates
does not significantly impact the target’s performance.
Shuffler’s default behaviour is to use a fixed shuffling
rate, but it can work with different policies. For instance,
if the system is under reduced load, a new vulnerability
is announced, or an intrusion detection system raises an
alarm, the shuffling rate can be increased dynamically.

Our system operates on program binaries, analyzing
them and performing binary rewriting. This analysis
must be complete and precise; missing even a single code
pointer and failing to update it upon re-randomization
can cause correctness issues. Because of the difficulty
of binary analysis, we leverage existing compiler and
linker flags to preserve symbols and relocations. Some
(but not all [46]) vendors strip symbol information from
binaries to impede reverse engineering, but reversing
stripped binaries is still feasible using disassemblers like
IDA Pro [27]. We anticipate that vendors would be will-
ing to include (obfuscated) symbols and relocations in
their binaries, given the additional defensive possibili-
ties. For instance, relocations enable shuffling but are
also required for executable base address randomization
on Windows. In the open-source Linux world, high-
level build systems are already designed to support the
introduction of additional compiler flags [26], allowing
distribution-wide security hardening [25, 29, 58].

Evaluation shows that our system successfully defends
against all known forms of code reuse, including ROP,
direct JIT-ROP, indirect JIT-ROP, and Blind ROP. We ran
Shuffler on a range of programs including web servers,
databases, and Mozilla’s SpiderMonkey Javascript inter-
preter. We successfully defend against a Blind ROP at-
tack on Nginx, and against a JIT-ROP attack on a toy web
server. Shuffler incurs 14.9% overhead on SPEC CPU
when shuffling every 50 ms, and has good scalability on
Nginx when shuffling up to 24 workers every 50 ms. We
show that a 50 ms shuffle period is orders of magnitude
faster than the time required by existing JIT-ROP attacks,
which take 2.3 to 378 seconds to complete [52, 55].

Our main contributions are as follows:

1. Deployability: We design a re-randomization de-
fense against JIT-ROP and code reuse, which runs
without modification to the source, compiler, linker,
or kernel, and with minimal changes to the loader.

2. Speed: We introduce a real-time deadline on the or-
der of milliseconds for any disclosure-based attack,
using a new asynchronous re-randomization archi-
tecture that has low latency and low overhead.

3. Egalitarianism: We describe how we bootstrap our
defense into a self-hosting environment, thus avoid-
ing any expansion of the trusted computing base.

4. Augmented binary analysis: We show that com-
plete and precise analysis is possible on binaries by
leveraging information available from today’s com-
pilers (namely, symbols and relocations).

2 Background and Threat Model
Attack taxonomy Many attacks seen in the wild
against running programs are based on control-flow hi-
jacking. An attacker uses a memory corruption vulner-
ability to overwrite control data, like return addresses
or function pointers, and branches to a location of their
choosing [2]. In the early days, that location could be
a buffer where the attacker had directly written their de-
sired exploit code, thus enacting a so-called code injec-
tion attack. Nowadays, the widespread deployment of
Write-XOR-Execute (W^X) [15] ensures that pages can-
not be both executable and writable, which has led to the
effective demise of code injection.

In response, attackers began to create code reuse at-
tacks, stitching together pieces of code already present
in a program’s code section. The first and simplest such
attack was return-to-libc (ret2libc) [51,56], where an
attacker redirects control flow to reuse whole libc func-
tions, such as system, after setting up arguments on
the stack. A more sophisticated technique called Return-
Oriented Programming (ROP) [54] was soon discovered,
where an attacker stitches together very short instruction
sequences ending with a return instruction (or other in-
direct branch instructions [9, 36])—sequences known as
gadgets. The terminating return instruction allows the at-
tacker to jump to the next gadget, and the attacker may
set up the stack to contain the addresses of a desired
“chain” of gadgets. ROP has been shown to be Turing-
complete, and there are tools known as ROP compilers
which can automatically generate ROP chains [52].

Defenses against code reuse The research community
has proposed two main categories of defenses against
code reuse. The first is Control Flow Integrity (CFI) [1],
which tries to ensure that every indirect branch taken

368 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by the program is in accordance with its control-flow
graph. However, both coarse-grained CFI [61, 62] and
fine-grained CFI [47] can be bypassed through careful
selection of gadgets [11, 23, 28].

The second category of defense is code randomization,
performed at load-time to make the addresses of gad-
gets unpredictable. Module-level Address Space Lay-
out Randomization (ASLR) is currently deployed in all
major operating systems [49, 60]. Fine-grained random-
ization schemes have been proposed at the function [6],
basic block [59], and instruction [38] level. These de-
fenses spurred a noteworthy new attack called Just-In-
Time ROP (JIT-ROP) in 2013 [55]. In JIT-ROP, the at-
tacker starts with one known code address, recursively
reads code pages at runtime with a memory disclosure
vulnerability, then compiles an attack using gadgets in
the exfiltrated code. The authors conclude that no load-
time randomization scheme can stand against this attack.

Defenses in the JIT-ROP era The first defenses
against JIT-ROP concentrated on preventing recursive
gadget harvesting. Oxymoron [5] and Code Pointer In-
tegrity [40] proposed an inaccessible table to hide the
true destination of call instructions. Other works pro-
posed execute-only memory, either with a custom hy-
pervisor [17, 57] or software emulation [4, 33]. Un-
fortunately, preventing the direct disclosure of memory
pages is insufficient. Indirect JIT-ROP [14, 24] shows
that harvesting code pointers from data pages allows the
location of gadgets to be inferred, without ever being
read. Leakage-resilient diversification [10, 17] combines
execute-only memory with fine-grained ASLR and func-
tion trampolines. Thus, code pages cannot be read and
their contents cannot be inferred through pointers. This
defense is currently still effective, though implementing
execute-only memory without extensive system modifi-
cations remains challenging.

Continuous re-randomization Following a handful
of early re-randomization schemes [19, 34], researchers
began to realize that continuous re-randomization can de-
fend against JIT-ROP. If code is re-randomized between
the time it is leaked and when a gadget chain is invoked,
the attack will fail because the gadgets no longer exist.

For instance, Remix [13] continuously re-randomizes
the basic block ordering within functions, so that gadgets
no longer stay at constant offsets. The system utilizes an
LLVM compiler pass to add padding NOPs so that there
will be enough space to reorder blocks. However, this
intra-function randomization is vulnerable to attacks that
leverage function locations or reuse function pointers.

The closest system to Shuffler is TASR [7]. TASR is a
source-level technique which performs re-randomization
based on pairs of read/write system calls, between any
program output (which may leak information) and any

program input (which may contain an exploit). How-
ever, TASR requires kernel and compiler modifications,
is currently only applicable to C programs, and has high
performance overhead, as we discuss in Section 5.5.

Finally, another form of ROP called Blind ROP [8] tar-
gets servers that fork workers. Since the workers inherit
the parent’s address space layout, Blind ROP brute forces
them without worrying about causing crashes. Run-
timeASLR [42] uses heavyweight instrumentation to al-
low re-randomization of the child process on fork.

2.1 Threat Model
Shuffler is built upon continuous re-randomization. We
aim to defend against all known forms of code reuse at-
tacks, including ROP, direct JIT-ROP, indirect JIT-ROP,
and Blind ROP. We assume that protection against code
injection (W^X) is in place, and that an x86-64 architec-
ture is in use. Our system does not require (and, in fact,
is orthogonal to) other defensive techniques like intra-
function ASLR, stack smashing protection, or any other
compiler hardening technique.

On the attacker’s side, we assume:

1. The attacker is performing a code reuse attack, and
not code injection (handled by W^X [15]) or a data-
only attack [12] (outside the scope of Shuffler).

2. The attacker has access to 1) a memory disclosure
vulnerability that may be invoked repeatedly to read
arbitrary memory locations, and 2) a memory cor-
ruption vulnerability for bootstrapping exploits.

3. Any memory read or write that violates memory
permissions (or targets an unmapped page) will
cause a detectable crash, and the attacker has no
meta-information about page mappings.1

4. The attacker knows the re-randomization rate and
can time their attack to start at the very beginning
of a shuffling period, maximizing the time that code
addresses remain the same.

Our technique is particularly effective when defend-
ing long-lived processes and network-facing applica-
tions, such as servers. Note that network-based attack-
ers have additional latency induced by communication
delays, each time they invoke a vulnerability; see Sec-
tion 6.3 for details.

3 Design
This section presents the design goals of Shuffler, along
with its architecture, and outlines significant technical
challenges.

1Such as access to /proc/<pid>/maps.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 369

Figure 1: Shuffler architecture. We use symbols and re-
locations (0) for augmented binary analysis (1), rewrite
code into shufflable form (2), and asynchronously create
new code copies at runtime (3), while self-hosting (4).

3.1 Goals
The main goals of Shuffler are:

• Deployability: We aim to reduce the burden on
end-users as much as possible. Thus, we require no
direct access to source code, no static binary rewrit-
ing on disk, and no modifications to system compo-
nents (except our small loader patch).

• Security: Our goal is to defeat all known code reuse
attacks, without expanding the trusted computing
base. We constrain the lifetime of leaked informa-
tion by providing a configurable shuffling period,
mitigating code reuse and JIT-ROP attacks.

• Performance: Because time is an integral part of
our security model, speed is of the essence. We aim
to provide low runtime overhead, and also low total
shuffling latency to allow for high shuffling rates.

3.2 Architecture
Shuffler is designed to require minimal system modi-
fications. To avoid kernel changes, it runs entirely in
userspace; to avoid requiring source or a modified com-
piler, it operates on program binaries. Performing re-
randomization soundly requires complete and precise
pointer analysis. Rather than attempting arbitrary binary
analysis, we leverage symbol and relocation information
from the (unmodified) compiler and linker. Options to
preserve this information exist in every major compiler.
Thus, we are able to achieve completely accurate disas-
sembly in what we call augmented binary analysis—as
shown in Figure 1 part (1) and detailed in Section 3.3.

At load-time, Shuffler transforms the program’s code
using binary rewriting (Figure 1 part (2)). The goal of
rewriting is to be able to track and update all code point-
ers at runtime. We avoid the taint tracking used by related
work [7,42] because it is expensive and would introduce
races during asynchronous pointer updates. Instead, we
leverage our complete and accurate disassembly to trans-
form all code pointers into unique identifiers—indices

into a code pointer table. These indices cannot be altered
after load time (the potential security implications of this
choice are discussed in Section 6), but they trade off very
favorably against performance and ease of implementa-
tion. We handle return addresses (dynamically generated
code pointers) differently, encrypting them on the stack
rather than using indices, thereby preventing disclosure
while maintaining good performance.

Our system performs re-randomization at the level of
functions within a specific shuffle period, a randomiza-
tion deadline specified in milliseconds. Shuffler runs in a
separate thread and prepares a new shuffled copy of code
within this deadline, as shown in Figure 1 part (3). This
step is accelerated using a Fenwick tree (see Section 4.4).
The vast majority of the re-randomization process is per-
formed asynchronously: creating new copies of code,
fixing up instruction displacements, updating pointers in
the code table, etc. The threads are globally paused only
to atomically update return addresses. Since any existing
return addresses reference the old copy of code, we must
revisit saved stack frames and update them. Each thread
walks its own stack in parallel, following base point-
ers backwards to iterate through stack frames (a process
known as stack unwinding); see Section 3.3 for details.

Shuffler runs in an egalitarian manner, at the same
level of privilege as target programs, and within the same
address space. To prevent our own code from being used
in a code reuse attack, Shuffler randomizes it the same
way it does all other code (Figure 1 part (4)). In fact,
our scheme uses binary rewriting to transform all code
in a userspace application (the program, Shuffler, and all
shared libraries) into a single code sandbox, essentially
turning it into a statically linked application at runtime.
Bootstrapping from original code into this self-hosting
environment is challenging, particularly without substan-
tially changing the system loader.

3.3 Challenges
Changing function pointer behaviour Normal binary
code is generated under the assumption that the pro-
gram’s memory layout remains consistent and function
pointers have indefinite lifetime. Re-randomization in-
troduces an arbitrary lifetime for each block of code,
and so re-randomization becomes an exercise in avoid-
ing dangling code pointers. Failing to update even one
such pointer may cause the program to crash, or worse,
fall victim to a use-after-free attack.

Hence, we need to accurately track and update every
code pointer during the re-randomization process. We
opt to statically transform all code pointers into unique
identifiers—namely, indices into a hidden code pointer
table. Relying on accurate and complete disassembly
(discussed next), we transform all initialization points to
use indices. Then, wherever the code pointer is copied

370 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

throughout memory, it will continue to refer to the same
entry in the table. This scheme does not affect the seman-
tics of function pointer comparison. Iterating through
and updating the pointer values stored in the table can
be done quickly and asynchronously.

Some code pointers are dynamically generated, in par-
ticular, return addresses on the stack. We could dy-
namically allocate table indices, but on the x86 architec-
ture, call/ret pairs are highly optimized, and replac-
ing them with the table mechanism would involve a large
performance degradation [22, 43]. Instead, we allow or-
dinary calls to proceed as usual, and at re-randomization
time we unwind the stack and update return addresses
to new values. Rather than leave return addresses ex-
posed on the stack, we encrypt each address with an
XOR cipher. Every callee is responsible for disguising
the return address on the top of the stack, encrypting it at
function entry and decrypting before any function exit.
Callers, meanwhile, are responsible for erasing the (now
unencrypted) return address immediately after the called
function returns. Even though the address is never used
by the program, it is still a (leakable) dangling reference.
The encryption key can be unique to each function and
changed during each stack unwind; see Section 4.1.

Augmented binary analysis The commonly accepted
wisdom is that program analysis can be performed at the
source level (requiring access to source code) or at the
binary level (plagued with completeness issues). In this
work, we propose a middle ground, augmented binary
analysis, which involves analyzing program binaries that
have additional information included by the compiler.
Compiler-generated binaries are much more amenable
to analysis than hand-crafted binaries. We use existing
compiler flags and have no visibility into the source code,
and yet can achieve complete disassembly.

The common problems with binary analysis are dis-
tinguishing code from data, and distinguishing pointers
from integers. To tackle these issues, we require that
(a) the compiler preserve the symbol table, and (b) that
the linker preserve relocations. The symbol table in-
dicates all valid call targets and makes disassembly
straightforward—we iterate through symbols and disas-
semble each one independently; there is no need for a
linear sweep or recursive traversal algorithm [53]. Relo-
cations are used to indicate portions of an object file (or
executable) that need to be patched up once its base ad-
dress is known. Since each base address is initially zero,
every absolute code pointer must have a relocation—but
as object files are linked together, most code pointers get
resolved and their relocations are discarded. We simply
ask the linker to preserve these relocations.

These two augmentations enable complete and accu-
rate disassembly, for any optimization level—at least on
the ∼30 programs that we tested, many of which have

sizable codebases. We describe the details of our aug-
mented binary analysis in Section 4.2.

Bootstrapping into shuffled code As stated above,
Shuffler defends its own code the same way it defends
all other code—leading to a difficult bootstrapping prob-
lem. Shuffled code cannot start running until the code
pointer table is initialized, requiring some unshuffled
startup code. Shuffled and original code are incompati-
ble if they use code pointers; the process of transforming
code pointers to indices overwrites data that the original
code accesses, and then the original code will no longer
execute correctly. For example, if Shuffler naïvely be-
gan fixing code pointers while making code copies with
memcpy, it would at some point break the memcpy im-
plementation, because the latter uses code pointers for a
jump table.2 Hence, we would have to call new func-
tions as they became available, and carefully order the
function-pointer rewrite process to avoid invalidating any
functions currently on the call stack.

Instead, we opted for a simpler and more general so-
lution. Shuffler is split into two stages, a minimal and
a runtime stage. The minimal stage is completely self-
contained, and it can safely transform all other code,
including libc and the second-stage Shuffler. Then it
jumps to the shuffled second stage, which erases the pre-
vious stage (and all other original code). The second
stage inherits all the data structures created in the first so
that it can easily create new shuffled code copies. From
this point on, Shuffler is fully self-hosting.

4 Implementation
Shuffler runs in userspace on x86-64 Linux. It shuffles
binaries, all the shared libraries that a binary depends
on, as well as itself. The shuffling process runs asyn-
chronously in a thread, without impeding the execution
of the program’s threads. Figure 2 shows a running snap-
shot of shuffled code. Code pointers are directed through
the code pointer table and return addresses are stored on
the stack, encrypted with an XOR cipher. In each shuf-
fle period, Shuffler makes a new copy of code, updates
the code pointer table and sends a signal to all threads
(including itself); each thread unwinds and fixes up its
stack. Shuffler waits on a barrier until all threads have
finished unwinding, then erases the previous code copy.

Our Shuffler implementation supports many system-
level features, including shared libraries, multiple
threads, forking (each child gets it own Shuffler thread),
{set,long}jmp, system call re-entry, and signals.
Shuffler does not currently support dlopen or C++ ex-
ceptions. Yet, it does expose several debugging features,
notably, exporting shuffled symbol tables to GDB and
printing shuffled stack traces on demand.

2This crash took place in an earlier prototype of Shuffler.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 371

Figure 2: Overview of shuffled code at runtime, as Shuf-
fler executes a shuffle pass. The old code is shown with
solid lines and the new code with dotted lines.

4.1 Transformations to Support Shuffling
Code pointer abstraction We allocate the code
pointer table at load-time and set the base address of the
GS segment (selected by the %gs register) at it. Then, we
transform every function pointer at its initialization point
from an address value to an index into this table. We use
relocations generated by the compiler and preserved by
the linker flag -q to find all such code pointers. Pointer
values are deduplicated as they are assigned indices in
the table, for more efficient updating. Jump tables are
handled similarly, with indices assigned to each offset
within a function that is used as a target. Note that in-
dices may also be assigned dynamically by Shuffler (e.g.,
so that setjmp works across shuffle periods).

We must also transform the code so that indices are in-
voked properly. As shown in the Figure 3a, every instruc-
tion which originally used a function pointer value is
rewritten to instead indirect through the %gs table. This
adds an extra memory dereference. Since x86 instruc-
tions can contain at most one memory reference, if there
is already a memory dereference, we use the caller-saved
register %r11 as scratch space. For (position-dependent)
jump tables, there is no register we can safely overwrite,
so we use a thread-local variable allocated by Shuffler as
a scratch space (denoted as %fs:0x88).

Return-address encryption We encrypt return ad-
dresses on the stack with a per-thread XOR key. We
reuse the stack canary storage location for our key; our
scheme operates similarly to stack canaries, but does not
affect the layout of the stack frame. As shown in Fig-
ure 3b, we add two instructions at the beginning of every
function (to disguise the return address) and before every
exit jump (to make it visible again); after each call, we

Source instruction Transformation
lea funcptr, %rax → lea index, %rax
call *%rax → callq *%gs:(%rax)

callq *(%rax,%rbx,8) →
mov (%rax,%rbx,8),%r11
callq *%gs:(%r11)

jmp *%rax → jmpq *%gs:(%rax)

jmpq *(%rax,%rbx,8) →

mov %r11, %fs:0x88
mov (%rax,%rbx,8),%r11
mov %gs:(%r11),%r11
xchg %r11, %fs:0x88
jmpq *%fs:0x88

(a) Transforms to support the code pointer table.

Source instruction Transformation

function begin →
mov %fs:0x28,%r11
xor %r11,(%rsp)
function begin

ret / jmp *%rax →
mov %fs:0x28,%r11
xor %r11,(%rsp)
ret / jmp *%rax

call anything → call anything
mov $0x0, -8(%rsp)

(b) Transforms to support return address encryption.

Figure 3: Binary rewriting transformations performed
by Shuffler. %fs:0x28 is the stack canary, %r11 is
a scratch register, and %fs:0x88 is a scratch variable.

insert a mov instruction to erase the now-visible return
address on the stack. We again use %r11 as a scratch
register, since it is a caller-saved register according to
the x86-64 ABI, and thus safe to overwrite.

Displacement reach A normal call instruction has a
32-bit displacement and must be within± 2GB of its tar-
get to “reach” it. Shared libraries use Procedure Linkage
Table trampolines to jump anywhere in the 64-bit address
space. We wish to use only 32-bit calls and still enable
function permutation; thus, we place all shuffled code at
most 2GB apart, and transform calls through the PLT into
direct function calls. Essentially, we convert dynamically
linked programs into statically linked ones at runtime.

4.2 Completeness of Disassembly
We demonstrate the complete and precise disassembly
of binaries that have been augmented with a symbol table
and relocations. The techniques shown here are sufficient
to analyze libc, libm, libstdc++, the SPEC CPU
binaries, and the programs listed in our performance
evaluation section. While shuffling these libraries and
programs, we encountered myriad special cases. Fig-
ure 4 lists the main issues we faced, which would also
need to be handled by other systems performing similar
analyses. The issues boil down to: (a) dealing with inac-
curate/missing metadata, especially in the symbol table;
(b) handling special types of symbols and relocations;
and (c) discovering jump table entries and invocations.

372 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Issue Description How to handle
Missing symbol sizes Internal GCC functions have a symbol size of zero. Hard-code sizes; _start is 42 bytes.
Fall-through symbols Functions implicitly fall through to the following function. Attach a copy of the following code.
Overlapping symbols Some functions are a strict subset of an enclosing function. Binary search for targets very carefully.

Symbol aliases Symbol tables have many names for the same function. Pick one representative name.
Ambiguous names One LOCAL name, multiple versions (bsloww in libm). Look up address resolved by the loader.

Pointers to
static functions

For pointers to functions within the same module, the offset
is known, and object files contain no relevant relocations.

Determine if lea instructions target a
known symbol (not completely sound).

noreturn
function calls

GCC always generates a NOP after calls to noreturn
functions like longjmp, but omits unwind information.

Detect when at a NOP following a call
and use unwind info from at the call.

COPY relocations Object initialized in one library, then memcpy’d to another. Track data symbols, not just code.
IFUNC symbols Return pointer to actual function to call (cached in PLT). Statically evaluate from lea refs.

Conditional
tail recursion

Does not appear in normal GCC-generated code. Used in
hand-coded assembly by glibc (lowlevellock.h).

Can do XOR’ing both before and after,
works whether or not the jump is taken.

Indirect tail rec. Difficult to tell apart from jump-table jumps. Use a function epilogue heuristic.
Finding jump tables Jump tables are not clearly delineated. See the text for a discussion on this.

Figure 4: Special cases in augmented binary disassembly.

Jump tables One major challenge is identifying
whether relocations are part of jump tables, and distin-
guishing between indirect tail-recursive jumps and jump-
table jumps. If we fail to realize a relocation in a jump
table, we will calculate its target incorrectly and the jump
will branch to the wrong location; if we decide that a
jump table’s jump is actually tail recursive, we will insert
return-address decryption instructions before it, corrupt-
ing %r11 and scrambling the top of the stack.

GCC generates jump tables differently in position-
dependent and position-independent code (PIC).
Position-dependent jump tables use 8-byte direct point-
ers, and are nearly always invoked by an instruction
of the form jmpq *(%rax,%rbx,8) at any opti-
mization level. PIC jump tables use 4-byte relative
offsets added to the address of the beginning of the
table—and the lea that loads the table address may be
quite distant from the final indirect jump. To find PIC
jump tables, we use outgoing %rip-relative references
from functions as bounds and check if they point at
sequences of relocations in the data section.3 Note that
R_X86_64_PC32 relocations must have 4 bytes added
to their value (the displacement size) if present in an
instruction, and they must not if present in a jump table.

It is difficult to tell whether a jmpq *%rax instruc-
tion is used for indirect tail recursion, or a PIC jump ta-
ble. In our system, we must distinguish these to decide
whether to decrypt the return address or not. We do this
with a heuristic that pairs function epilogues with func-
tion prologues. We use a linear sweep to record push
instructions in the function’s first basic block, and keep
a log of the pop instructions seen since the last jump

3Fortunately, GCC only emits jump tables of size five or more,
which makes this heuristic very accurate.

(within a window size). If an indirect jump is preceded
by pop instructions that are in the reverse order of the
push instructions, we assume we have found a function
epilogue and that the jump is indirect tail recursive.

4.3 Bootstrapping and Requirements
We carefully bootstrap into shuffled code using two li-
braries (stage 1 and stage 2) so that the system never
overwrites code pointers for the module that is currently
executing. These libraries are injected into the target
using LD_PRELOAD.4 Rather than reimplement loader
functionality, we defer to the system loader to create
a valid process image, and then take over before the
program—or even its constructors—begin executing.

The constructor of stage 1 is called before any other
via the linker mechanism -z initfirst.5 Then, by
setting breakpoints in the loader itself, stage 1 makes sure
all other constructors run in shuffled code. The last con-
structor to be called (a side effect of LD_PRELOAD) is
stage 2’s own constructor; stage 2 creates a dedicated
Shuffler thread, erases the original copy of all other code,
and resumes execution at the shuffled ELF entry point.

4.3.1 Full Shuffling Requirements

Compiler flags We require the program binary and
all dependent libraries to be compiled with -Wl,-q,
a linker flag that preserves relocations. Since we
require symbols and DWARF unwind information,
the user must avoid -s, which strips symbols, and
-fno-asynchronous-unwind-tables, which
elides DWARF unwind information. For simplicity, we
do not support some DWARF 3 and 4 opcodes, so the
user may need to pass -gdwarf-2 when compiling

4LD_PRELOAD=./libshuffle0.so:./libshuffle.so
5We require a patch to fully use this mechanism; see Section 4.3.1.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 373

C++. Finally, we found that some SPEC CPU programs
required -fno-omit-frame-pointer, due to a
limitation in our DWARF unwind implementation.

System modifications The -z initfirst loader
feature currently only supports one shared library, and
libpthread already uses it. To maintain compatibil-
ity with libpthread, we patched the loader to support
constructor prioritization in multiple libraries. Our 24-
line patch transforms a single variable into a linked list.
(We have submitted our patch to glibc for review.)

Since shuffled functions must be within ± 2GB of
each other, we simplify Shuffler’s task and map all
ELF PT_LOAD sections into the lower 32 bits of the
address space (1-line change to the loader). Since
glibc and libdl refer directly to variables in the
loader with only 32-bit displacements, we also place the
loader itself into that region, preresolving its relocations
with prelink [3]. Finally, we disabled a manually-
constructed jump table in the vfprintf of glibc,
which used computed goto statements (1-line change).
No other library changes were necessary.

4.4 Implementation Optimizations
Generating new code The Shuffler thread maintains a
large code sandbox that stores shuffled (and currently ex-
ecuting) functions. In each shuffle period, every function
within the sandbox is duplicated and the old copies are
erased. The sandbox is split in half so that one half may
be easily erased with a single mprotect system call.6

Performance suffers if each function is written to an in-
dependent location in the sandbox. The bottleneck is in
issuing many mprotect system calls (we do not want
to expose the whole sandbox by making it writable).
Instead, we maintain several buckets (64KB–1MB) and
each function is placed in a random bucket; when a
bucket fills up, it is committed with an mprotect call
and a fresh bucket is allocated. The Memory Protection
Keys (MPK) feature on upcoming Intel CPUs [16] may
allow buckets to be created even more efficiently.

Generating function addresses with high entropy (i.e.,
uniformly at random) is a challenging task. The simplest
allocator would pick random addresses repeatedly until
a free location is found, but this may require many at-
tempts due to fragmentation. Instead, we use a Fenwick
Tree (or Binary Indexed Tree) [30,32] for our allocations.
Our tree keeps track of all valid addresses for new buck-
ets, storing disjoint intervals; it also tracks the sum of
interval lengths (i.e., the amount of free space). We can
select a random number less than this sum and be assured
that it maps to some valid free location, and compute this

6This also clears the old code from the instruction cache, since
Linux’s updates to the Translation Lookaside Buffer (TLB) flush the
appropriate cache lines as per Section 4.10.4 of the Intel manual [39].

mapping in logarithmic time. This guarantees that each
allocation is selected uniformly at random.

Stack unwinding Stack unwinding is performed by
parsing the DWARF unwind information from the exe-
cutable. This information is used by exception handling
code, and by the debugger to get accurate stack traces.
We found that the popular library libunwind [35] was
quite unwieldy, used unwind heuristics, and made it dif-
ficult to add an address-translation mechanism. Hence,
we wrote a custom unwind library with a straightforward
DWARF state machine, using binary search to translate
between shuffled and original addresses. We generate
DWARF information for new code inserted through bi-
nary rewriting, and also record the points where return
addresses are (or are not) encrypted.

Binary rewriting Shuffler’s load-time transformations
are all implemented through binary rewriting. We disas-
semble each function with diStorm [21] and produce in-
termediate data structures which we call rewrite blocks.
Rewrite blocks are similar to basic blocks but may be
split at arbitrary points to accommodate newly inserted
instructions. Through careful block splitting, we can
choose whether incoming jumps execute or skip over
new instructions as appropriate. This data structure also
allows fast linear updates of internal offsets for jump in-
structions. We promote 8-bit jumps to 32-bit jumps (it-
eratively) if the jump targets have become too far away.
Once jumps and other data structures are consistent, the
final code size is known and we create the first shuffled
copy of a function. The runtime shuffling process copies
the shuffled version of each function to a new location
and patches it without invoking the rewriting procedure.

5 Performance Evaluation
Unless otherwise noted, performance results were mea-
sured on a dual-socket 2.8GHz Westmere Xeon X5660
machine, with 64GB of RAM and 24 cores (hyperthread-
ing enabled), running Ubuntu 16.04 with GCC 4.8.4.

5.1 SPEC CPU2006 Overhead
We ran Shuffler on all C and C++ benchmarks in SPEC
CPU2006, over a range of different shuffling periods.
The SPEC baseline was compiled with its default set-
tings (-O2). The shuffled versions were compiled
the same way with the addition of -Wl,-q (see Sec-
tion 4.3.1), and also -fno-omit-frame-pointer
due to a limitation in our DWARF unwind implementa-
tion. Since Shuffler does not yet support C++ exceptions,
we replaced exceptions with conventional control flow in
omnetpp (20-line change) and povray (15 lines).

Effect of shuffling rate Figure 5 shows the overhead
observed by the single-threaded SPEC benchmarks at
different shuffling rates, excluding the overhead of the

374 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

-10

 0

 10

 20

 30

 40

 50

 60

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
4
.n

a
m

d
4
4
5
.g

o
b
m

k
4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x
4
5
3
.p

o
vra

y
4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m
4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m

4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u

n
ti
m

e
 o

v
e

rh
e

a
d

 (
%

) shuffle once 200ms shuffling 100ms shuffling 50ms shuffling

Figure 5: Shuffler performance (shown as overhead percentage) on SPEC CPU2006 at different shuffling rates.

 0

 5

 10

 15

 20

 25

 30

 35

 40

400.perlbench

401.bzip2

403.gcc

429.m
cf

433.m
ilc

444.nam
d

445.gobm
k

447.dealII

450.soplex

453.povray

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

473.astar

482.sphinx3

483.xalan

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Miscellaneous
Update code pointer table

Fix call instructions
Sort function list

Memcpy code
Stack unwind (synchronous)

Figure 6: SPEC CPU continuous shuffling breakdown.
Synchronous (stack unwind) overhead is barely visible
at the bottom. Data for omnetpp was not gathered.

Shuffler thread. The average overheads are 7.99% (shuf-
fling once), 13.5% (200ms shuffling), 13.7% (100ms
shuffling), and 14.9% (50ms shuffling). Considering that
thousands of shuffles were performed in each case (the
runtime per program is from 3.5–10 minutes), the ob-
served overhead is acceptable. Note that faster shuf-
fling rates do not cause significant slowdown, because
the static code rewriting cost is paid only once (up-front).

Asynchronous overhead By design, Shuffler offloads
the majority of the shuffling computations onto another
CPU core (see Figure 6). We assume that the protected
system is not at full capacity and has sufficient cycles to
execute the Shuffler thread concurrently.

We can, however, approximate the shuffling overhead:
the asynchronous shuffling time divided by the shuf-
fling period yields the CPU load. Assuming gcc asyn-
chronously shuffles in 25 milliseconds, it would use 50%
of the offload core in a shuffle period of 50 milliseconds,
and 25% in a shuffle period of 100 milliseconds. We
confirmed this approximation by measuring the reported
CPU usage once per second, as each SPEC CPU program
ran. The true overheads were within a few percentage

 0

 10

 20

 30

 40

 50

 60

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc
4
2
9
.m

cf
4
3
3
.m

ilc
4
4
4
.n

a
m

d
4
4
5
.g

o
b
m

k
4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x
4
5
3
.p

o
vra

y
4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m
4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
) Jump table

Return-address XOR
Code pointer indexing

Figure 7: Static transformation overheads in SPEC CPU.

points of the approximation. For instance, xalancbmk
was predicted to use 61.31% of the CPU in the Shuffler
thread and in fact used 58.64%. This overhead is exam-
ined in more detail in Section 5.2.

Synchronous overhead The only synchronous work
in Figure 6 is the short time when the program thread
is interrupted via a signal to perform stack unwind-
ing. Shuffler’s stack unwind performance is linear in
the call stack depth, processing 3247 stack frames per
millisecond (including the thread barrier synchronization
time between Shuffler and the program threads). Most
SPEC programs have modest call stack depths, except
xalancbmk, where certain stages have call stacks at
least 20,000 deep (up to 45,000), and take up to 6 ms
to unwind. The highest average unwind time is 0.53 ms
for gcc; the Shuffler thread unwinds itself in∼0.025 ms.

5.1.1 Static overhead on SPEC CPU

In Figure 7, we break down the overhead observed due to
static code transformations (when only shuffling once).
This overhead is purely from the inserted instructions.
The average overhead is 2.68% due to jump table rewrit-
ing, 4.36% due to return address encryption, and 4.78%
due to code pointer abstraction. Jump table numbers are
relative to a baseline with jump tables; everything else,
to one without (the baselines only differ by 0.45%).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 375

 0

 20

 40

 60

 80

 100

1-on-1

2-on-1

1-on-2

2-on-2

4-on-2

2-on-3

3-on-3

6-on-3

2-on-4

4-on-4

8-on-4

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t
(%

)

shuffle 100ms
100ms nice+19

shuffle 50ms

Figure 8: Shuffler thread impact on Nginx throughput.
t-on-n means t worker processes pinned to n cores.

Jump tables Jump table overhead can be high, because
our transformation to support code pointer indices is in-
efficient for position-dependent jump tables (see Sec-
tion 4.2). With greater compiler integration or more thor-
ough binary rewriting, this overhead can be reduced.

Return-address encryption The return-address en-
cryption overhead increases as the program makes more
function calls. The 4.36% overhead is higher than for
a straightforward stack canary scheme. However, it
also provides disclosure resilience for return addresses,
which is essential for our method. Other strong shadow
stack schemes are available [22], with comparable per-
formance. We could use dynamically allocated table
indices for return addresses, but disrupting call/ret
pairs has high performance overhead [22, 43].

Code pointer abstraction The code pointer abstrac-
tion overhead is high when the program makes a large
number of indirect calls. For instance, xalancbmk
makes 3.35 million indirect calls on the test input size,
3.60 billion calls on train, and likely an order of magni-
tude more on ref. This overhead is mostly unavoidable;
the layer of indirection introduced by these transforma-
tions is what allows Shuffler to invalidate old code ad-
dresses without using (code) pointer tracking. We con-
firmed with the Linux perf tool that the percentage
overhead from code pointer abstraction corresponds to
the percentage of the newly inserted instructions.

5.2 Nginx Overhead
We ran performance experiments on the Nginx 1.4.6
web server. Our setup used two dual hex-core machines
on a dedicated gigabit network, each with Turbo mode
and hyperthreading disabled (hence 12 cores each). The
client machine was the same one used for SPEC CPU,
and the server had two 2.50GHz Xeon E5-2640 CPUs.

To generate client load, we used the multithreaded
Siege [31] benchmarking tool. We used a request size
of 100 bytes with 32 concurrent connections. This con-
figuration ensures that the server is CPU-bound; larger
sizes may exceed network bandwidth, while more con-
nections cause CPU scheduling delays on the client ma-
chine. Measurements are reported as the average of five

 0

 10000

 20000

 30000

 40000

1 2 4 6 12 24

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
/s

e
c
o

n
d

)

Number of worker processes (pinned to 4 cores)

baseline
shuffle 100ms

shuffle 50ms
100ms nice+19

(a) Nginx workers and Shuffler threads pinned to 4 cores.

 0

 10000

 20000

 30000

 40000

1 2 4 6 12 24

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
/s

e
c
o

n
d

)

Number of worker processes (run on all 12 cores)

baseline
shuffle 100ms

shuffle 50ms
100ms nice+19

(b) Shuffled Nginx running on all 12 available cores.

Figure 9: Shuffled Nginx performance at a larger scale.

30-second runs. Siege reported a latency of less than 10
milliseconds, and a concurrency level between 30.86 and
31.76, for all baseline and shuffled test cases.

Shuffler thread overhead First, we investigated the
performance of Shuffler threads in Nginx. In the be-
ginning, Nginx has one master process and one Shuffler
thread, and then it forks into a user-specified number of
worker processes (each with their own Shuffler thread).
In our evaluation, we pinned all Nginx workers and their
associated Shuffler threads to a case-dependent number
of cores, and excluded the master and its Shuffler thread
by pinning them to a different core on the same socket.

The results are shown in Figure 8. In the 1-on-1 case,
there is one Nginx worker process and its Shuffler thread
on a single core. These two threads will compete for
scheduling time slices on the same core, and whenever
the Shuffler thread is scheduled, throughput is stalled
(since Nginx can only run on the same core). Shuf-
fler takes about 15 milliseconds to shuffle Nginx, so we
would expect 15% slowdown at 100 millisecond shuf-
fling and 30% slowdown at 50 millisecond shuffling. The
measurements track this expectation quite closely.

Some cases have greater overcommitting, e.g., 4-on-2
has four Nginx workers plus four Shuffler threads on two
cores. Overhead is still reasonable, and the throughput is
around 85%-90% of the baseline. Setting the Shuffler
threads to lower priority (nice +19) at 100 ms does not
increase throughput here, although it does help when a
greater portion of the system is in use (see below).

376 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of concurrent client threads

baseline
shuffle once

shuffle every 50ms

Figure 10: MySQL transaction throughput as measured
by SysBench. Shuffle once and shuffle every 50ms incurs
the same overhead.

Full-scale Nginx overhead In our second set of Nginx
experiments, we pinned all threads (including the master
process) to a certain number of cores. Figure 9a shows
the results when pinned to four cores on the same socket,
and Figure 9b shows the results with no pinning (i.e.,
all 12 cores available for scheduling). In the four-core
case, the overhead starts to get very high with 12 and 24
workers. This is because the Linux scheduler must try to
place all worker threads, Shuffler threads, and the master
(for a total of 26 or 50 threads) onto a mere four cores. To
assist the scheduler, we made each Shuffler thread set its
nice value to +19 (low priority) at 100 ms, which results
in longer shuffling latencies but greater throughput since
Nginx worker threads get more CPU time.

In the case of no CPU pinning (Figure 9b), Shuffler
performance tracks the baseline very well. There is less
overcommitting here: even in the 24 worker case, each
core has two workers and two Shuffler threads to sched-
ule. In the nice+19 case, shuffling latencies (for 24-on-
12) are high with average 18.1 ms and std. dev. 266,
instead of the original average 17.4 ms, std. dev. 39.
Overall, we measured small speedups over the baseline,
which is likely experimental noise; Shuffler threads do
not significantly impact the overall system performance.
This full-system experiment incorporates the master pro-
cess overhead, as well as kernel I/O threads, which nor-
mally ignore userspace CPU pinning (and use idle cores).

5.3 Other Macro Benchmarks
MySQL We shuffled MySQL continuously every
50 ms (asynchronous shuffling takes 30 ms), querying
its 10 million row database using SysBench on local-
host. The machine had 24 cores and MySQL used the
default of 16 threads. Figure 10 shows that the perfor-
mance overhead (30.9%) is almost completely due to
static rewriting, and shuffling every 50ms has the same
performance as shuffling once. This is partially because
unlike Nginx, where workers are separate processes and
thus require separate Shuffler threads, MySQL worker
threads are all randomized by a single Shuffler thread.

Program Code + Syms/Relocs Data Structs + Overhead
Shuffler 0.16MB + 0.15MB (included below)
SQLite 2.20MB + 1.63MB 32.2MB + 23.7MB
Nginx 3.14MB + 2.68MB 45.7MB + 37.7MB
Xalan 4.36MB + 5.09MB 76.7MB + 44.3MB

Figure 11: Program size and Shuffler overhead.

So using multithreaded workers instead of multiprocess
workers can amortise Shuffler’s performance overhead,
with an appropriate tradeoff in security (see Section 6.2).

SQLite SQLite has a reasonably small codebase which
only takes the Shuffler thread 5 milliseconds to shuffle.
We shuffled it at 20 ms for a week without incident.

Mozilla’s SpiderMonkey We shuffled the JavaScript
engine SpiderMonkey and it passed its test suite of 3600
test cases. We had to disable JIT code generation (Ion-
Monkey); Shuffler could in future handle JIT code if it
was informed of when new code chunks were generated.

5.4 Memory Overhead
Figure 11 reports the code/relocation/symbol section
sizes for programs and their libraries. Shuffler’s total
memory overhead consists of: an in-flight copy of all
code sections; the code pointer table (1MB); one signal
stack (64KB) per thread; metadata structures like reloca-
tion and symbol hash tables; and the current permuted
list of functions (32 bytes per function). For alloca-
tion efficiency, code copies are stored in a preallocated
160MB sandbox. We use a custom malloc implemen-
tation [41], and report its bookkeeping/fragmentation
overhead separately. The permuted function list is de-
stroyed and recreated for each shuffle period.

5.5 TASR Performance Comparison
The closest re-randomization system to Shuffler is
TASR [7], which has a reported overhead of 0–10%
(2.1% average) on SPEC CPU. However, those numbers
are against a baseline compiled with -Og, which only
performs optimizations that preserve debugging informa-
tion. Such optimizations are fairly limited: we found that
SPEC CPU with -Og is 30% slower than with the normal
optimization level -O2. In other words, TASR’s perfor-
mance overhead is 30-40% relative to the true baseline
(while Shuffler’s is under 15%). Unfortunately, using
-Og is intrinsic to any scheme like TASR that requires
accurate tracking of source-level variables.

Additionally, TASR’s scheme of randomizing on I/O
system call pairs provides strong guarantees, but seems
unlikely to scale to real-world server applications. In the
case of Nginx, we measured that processing a 100KB re-
quest takes 0.22 milliseconds. Let us assume that TASR
can randomize Nginx in 15 milliseconds (note that this

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 377

is Shuffler’s rate—TASR is likely to take even longer
since it injects and runs a pointer updater process). Since
TASR re-randomizes after each request, it would incur
15 milliseconds of latency per 0.22 milliseconds of use-
ful work, resulting in 1.5% of the original throughput.
The scheme could be extended to allow multiple requests
to run in parallel, but this would still require 68 threads
on 68 cores to maintain the original throughput.

6 Security Analysis
In this section we show how Shuffler defends against ex-
isting attacks assuming all its mechanisms are in place,
including code pointer indirection, return address en-
cryption, and continuous shuffling every r milliseconds.
Then we discuss other possible attacks against the Shuf-
fler infrastructure, and follow up with some case studies.

6.1 Analysis of Traditional Attacks
Normal ROP It is fairly obvious that a traditional ROP
attack will fail when the target is being shuffled, because
the addresses of gadgets are hard-coded into the exploit.
Shuffler’s code sandbox currently has 27 bits of entropy
(a 31-bit sandbox should be possible as per Section 4.1)
and gadgets could be anywhere in the sandbox. Thus,
if the ROP attack uses N distinct gadgets, the chance of
it succeeding is approximately 2−27N . Any attack which
desires better odds needs to incorporate a memory dis-
closure component to discover what Shuffler is doing.

Indirect JIT-ROP Indirect JIT-ROP relies on leaked
code pointers and computes gadgets accordingly. Be-
cause code pointers are replaced with table indices, the
attacker cannot gather code pointers from data structures;
nor can the attacker infer code pointers from data point-
ers, since the relative offset between code and data sec-
tions changes continuously. While the attacker can dis-
close indices, these are not nearly as useful as addresses:
they can only be used to jump to the beginning of a func-
tion, and they cannot reveal the locality of nearby func-
tions. We assume indices are randomly ordered at load
time, with gaps (traps) in the index space to prevent an
attacker from easily brute-forcing it [18]. The table itself
is a potential source of information, but the table’s loca-
tion is randomized and it is continuously moved (see Sec-
tion 6.2 below). Return addresses are encrypted with an
XOR cipher, so disclosing them does not reveal true code
addresses. In fact there are no sources of code pointers
accessible to an attacker by way of memory disclosure,
and so indirect JIT-ROP is impossible by construction.

Direct JIT-ROP In direct JIT-ROP [55], the attacker
is assumed to know one valid code address, and employs
a memory disclosure recursively, harvesting code pages
and finding enough gadgets for a ROP attack. A control
flow hijack is used to kick off the exploit execution.

Our argument against JIT-ROP is threefold. First, the
attacker must be able to obtain the first valid code ad-
dress, and as described for indirect JIT-ROP, there is no
accessible source of code pointers in the program. Thus
the attacker must resort to brute force or side channels (as
for Blind ROP below). Second, once an attack has been
completely constructed, there is no easy way to jump to
an address of the attacker’s choosing: indirect calls and
jumps treat their operands as table indices, not addresses,
while return statements mangle the return address before
branching to a target. The attacker must therefore use a
partial return address overwrite (described below in Sec-
tion 6.2), which itself has a significant chance of failure.

Thirdly, and most importantly, the entire attack must
be completed within the shuffle period of r milliseconds.
No useful information carries over from one shuffle pe-
riod to the next, and all previously discovered code pages
and gadgets are immediately erased. If the attacker can
do everything in r milliseconds, they win; thus, the de-
fender should select a small enough r to disrupt any an-
ticipated attacks. We discuss the attack time required in
Section 6.3. The fastest published attack times are on the
order of several seconds, not tens of milliseconds.

Blind ROP Blind ROP [8] tries to infer the layout of a
server process by probing its workers, which are forked
from the parent and have the same layout. The attack
uses a timing channel to infer information about the par-
ent based on whether the child crashed or not. Shuffler
easily thwarts this attack because it randomizes child and
parent processes independently.

6.2 Shuffler-specific Attacks
Breaking XOR encryption Our XOR encryption is
less vulnerable to brute force than typical XOR ciphers.
Leaking multiple return addresses does not allow the at-
tack to easily construct linear relations, because there are
two unknowns: random values (addresses) encrypted un-
der a random key. The addresses are re-randomized dur-
ing each shuffle period, and the XOR key could be too.
If every function uses it own key, the attacker’s task be-
comes even harder [10]. The keys are stored at unknown
addresses in thread-local storage. While there is a small
window of two instructions after calls during which the
unencrypted return address is visible on the stack, this
would be difficult to exploit because the attacker cannot
insert any intervening instructions—though a determined
attacker might try to do so from another thread.

It is possible to bypass XOR in other ways. For exam-
ple, an attacker might partially overwrite an encrypted re-
turn address, attempting to increment the return address
by a small amount without knowing the plaintext value.
This could be used to initiate execution of a misaligned
gadget, or to trampoline through a return instruction and
jump straight to an attacker-controlled address. Such an

378 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

attack would be difficult; the attacker would need to find
a function on the call stack with appropriate known code
layout, and then brute-force several bits of the canary.

Ciphertext-only attacks The attacker could attempt
to swap valid code pointer indices. This allows an at-
tacker to jump to the beginning of functions whose ad-
dress is taken, similar to the restrictions under coarse-
grained Control Flow Integrity (CFI) [61, 62]—and such
defenses have been bypassed [23, 36]. The mapping be-
tween indices and functions would have to first be dis-
covered (subject to permutation and traps). We consider
this a data-only attack [12]. As per Section 2.1, we do
not attempt to add to the literature for data-only attacks.7

The attacker might swap valid encrypted return ad-
dresses on the stack. This is equivalent to jumping to
call-preceded gadgets (as in coarse-grained CFI), but us-
ing only those functions which occur on the call stack.
While such an attack may be theoretically possible, it
has not been demonstrated in the literature—especially
within the constraints of a single shuffle period, where
return addresses change every r milliseconds.

Parallel attacks When Shuffler is defending a multi-
threaded program, every thread uses the same shuffled
code layout. Thus, an attacker might run a parallel dis-
closure attack, multiplying the information that may be
gathered from a single-threaded program. However, par-
allel disclosure is limited by dependencies—often one
page’s address is computed from another’s content, so
the disclosures are not parallelizable. In the worst case,
defending a parallel attack requires a linearly faster shuf-
fling rate. Currently, the user can run a multiprocess pro-
gram instead (like Nginx) to avoid this issue. We also
used the %gs register to store our code pointer table in-
tentionally so that code could be shared between threads.
It would be fairly straightforward to use the thread-local
%fs register instead to maintain separate code copies
and pointer tables for each thread, at a corresponding in-
crease in memory and CPU use.

Exploiting the Shuffler infrastructure Since Shuffler
runs in an egalitarian manner in the same address space
as the target, it may be vulnerable to attack. Shuffler’s
code is shuffled and defended in the same way as the tar-
get, and any specific functionality (e.g., dynamic index
allocation) is not accessible through static references.
However, Shuffler’s data structures might be disclosed
at runtime—e.g., to reveal the location of every chunk of
code. We are careful to place sensitive information in ex-
actly one data structure, the list of chunks, which is itself
destroyed and moved in each shuffle period. There is a
single global pointer to this list, which is stored in the
%gs table along with code pointers.

7Thwarting this means updating indices at runtime; see Section 3.2.

Shuffler’s code pointer table might itself be used to ex-
ecute functions, or read or write function locations. As
described earlier in Section 6.1, we assume that the table
contains traps or invalid entries. This impedes execution
of gadgets and requires the index-to-code mapping to be
unravelled first. However, the table can be read and writ-
ten directly with %gs-relative gadgets—which are not
used by shuffled code but may occur at misaligned off-
sets. Writes can be disallowed using page permissions.
Reads yield information that is only useful for one shuf-
fle period; it is also a “chicken-and-egg” problem to rely
on such a gadget to find one’s gadgets.

Although the table contains many addresses that the
attacker would like to disclose, we assume that the ta-
ble location is randomized and is continuously moving
during the shuffling process. The table’s location is
only stored in kernel data structures and the inaccessi-
ble model-specific register %gs. While x86 has a new
instruction to read %gs, called RDGSBASE, it must be
enabled through processor control flags (Linux v4.6 does
not support that feature). Thus, the attacker must find the
table’s location through cache timing attacks or alloca-
tion spraying [37, 48], which has not been shown to be
effective against a continuously moving target.

Finally, even if all of Shuffler’s data is disclosed, the
addresses for the next shuffle period can be made unpre-
dictable by reseeding Shuffler’s random number genera-
tor with the kernel-space PRNG /dev/urandom.

Shuffler thread compromise If the Shuffler thread
crashes for whatever reason, the target program could
continue executing its current copy of code unhindered
(and undefended). To guard against this, we install sig-
nal handlers for common fatal signals. Our default policy
is to terminate the process if a crash occurs in Shuffler
code. We could also attempt to restart the Shuffler thread
(as is done on fork). Instead of causing an outright crash,
the attacker could attempt to hang the Shuffler thread,
e.g., by pretending that another thread has been created
through data structure corruption. This particular tech-
nique would cause all threads to hang in the post-unwind
synchronization barrier, inside Shuffler code, which is
not very useful for an attacker. Still, if a user is concerned
that the Shuffler thread may be compromised, an exter-
nal watchdog can periodically ensure (e.g., by examining
/proc/<pid>/maps) that shuffling is still occurring.

6.3 Case Studies
Disclosing memory pages When conducting a JIT-
ROP attack, the attacker has a tradeoff: either quickly
scan memory pages for desired gadgets, which may re-
quire many source pages; or, spend more time looking
for gadgets in a small number of pages, which can be
computationally prohibitive. The original JIT-ROP [55]
attack searches through 50 pages to find the gadgets for

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 379

an attack, and takes 2.3–22 seconds to carry out a full ex-
ploit. The ROP compiler Q [52] can attack executables as
small as 20KB, but due to their use of heavyweight sym-
bolic execution and constraint solving, their published
real-world attack computation times are 40–378 seconds.

Fetching pages takes time because real memory dis-
closures do not execute instantaneously. The origi-
nal JIT-ROP [55] attacks can harvest 3.2, 22.4, and
84 pages/second (e.g., requiring between 12 and 312
milliseconds per page). We reproduced Heartbleed on
OpenSSL 1.0.1f using Metasploit [45] and found that
the attack takes 60ms to complete (17.2ms per additional
disclosure), when the attacker is on the local machine.

Network communication latency For server pro-
grams, the network communication latency must be
added to every memory disclosure’s execution time. Ac-
cording to data from WonderProxy [50], long-distance
packet speeds are about 22% the speed of light. We
tested this by communicating between servers on the east
and west coast of the United States, observing 65.94 and
67.57 ms ping times where 59.27 was predicted. Thus,
every millisecond of round-trip ping implies a physical
separation of 41 miles (66 km). For example, to per-
form a single disclosure and then a control-flow hijack
against a server shuffled every 20 milliseconds, the at-
tacker would need to be within 820 miles (1320 km).

Continuous re-randomization ensures that addresses
are only valid for a short time period. One could elimi-
nate this time window entirely by introducing artificial
latency for requests. Each request response would be
held in an outgoing queue until a re-randomization has
occurred—increasing the server’s latency, but guarantee-
ing that all leaked information is already out-of-date.

Small-scale JIT-ROP attack We created a small vul-
nerable server to simulate a JIT-ROP scenario. The pro-
gram prints its stack canary and a known code address,
using inline assembly to read the code pointer table. We
have an 8-byte memory disclosure (a request which over-
runs a buffer and corrupts a pointer). We use this vulner-
ability repeatedly to leak a full 4KB page (which takes
8 milliseconds over loopback). Finally, we overwrite a
return address to point at a leaked function. With 8 mil-
lisecond shuffling or faster, the attack crashes the target;
at slower shuffling rates, the attack succeeds.

Real-world Blind-ROP attack We reproduced the
Blind-ROP [8] attack against Nginx 1.4.0 (using CVE-
2013-2028 [44]). We measured that the attack takes
seven minutes to complete. When Nginx was shuffled,
the attack was unable to find the Procedure Linkage Ta-
ble or stack canary; it received false feedback since par-
ent and child processes are randomized independently.

7 Discussion and Future Work
The commonly accepted wisdom is that performing anal-
ysis on binaries is challenging. In fact, while hand-
crafted binaries can be pathological, compiler-generated
code is relatively straightforward to disassemble. Thus,
building binary-level defenses is quite possible, espe-
cially for symbol- and relocation-augmented binaries.

We are able to perform continuous re-randomization
quite efficiently. This is partially because program code
size is small, and because the cost of code rewriting is
paid only once up-front (not during each shuffle). How-
ever, while shuffling in a separate thread is excellent for
efficiency, it can lead to unpredictable shuffling laten-
cies, especially under load. Ideally, the target code would
need to check in periodically with Shuffler and not run
indefinitely. Also, while we currently use a single Shuf-
fler thread, the shuffling process is parallelizable to mul-
tiple worker threads if higher shuffling rates are desired.

Most defensive techniques exist outside the infrastruc-
ture they defend, or declare themselves part of the trusted
computing base. We hope that Shuffler’s design will in-
spire more egalitarian techniques, and in general more
techniques that pay attention to their own attack surface.

8 Conclusion
We present Shuffler, a system which defends against
all forms of code reuse through continuous code re-
randomization. Shuffler randomizes the target, all of the
target’s libraries, and even the Shuffler code itself—all
within a real-time shuffling deadline. Our focus on egali-
tarian defense allows Shuffler to operate at the same level
of privilege as the target, from within the same address
space, enabling deployment in environments such as the
cloud. We require no modifications to the compiler or
kernel, nor access to source code, leveraging only exist-
ing compiler flags to preserve symbols and relocations.
For the best possible performance, we perform shuffling
asynchronously, making use of spare CPU cycles on idle
cores. Programs spend 99.7% of their time running un-
hindered, and only 0.3% of their time running stack un-
winding to migrate between copies of code. Shuffler can
randomize SPEC CPU every 50 milliseconds with 14.9%
overhead. We shuffled real-world applications including
MySQL, SQLite, Mozilla’s SpiderMonkey, and Nginx.
Finally, Shuffler scales well on Nginx, up to a full sys-
tem load of 24 worker processes on 12 cores.

9 Acknowledgements
We thank the anonymous reviewers, our shepherd An-
drew Baumann, and Mihir Nanavati for their valuable
comments. This paper was supported in part by ONR
N00014-12-1-0166 and N00014-16-1-2263; NSF CCF-
1162021, CNS-1054906, and CNS-1564055; an NSF
CAREER award; and an NSERC PGS-D award.

380 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proc. of ACM CCS (2005).

[2] ALEPHONE. Smashing the stack for fun and profit.
https://users.ece.cmu.edu/~adrian/630-f04/
readings/AlephOne97.txt, 1997.

[3] ARCH WIKI. Prelink. https://wiki.archlinux.org/
index.php/Prelink, 2015.

[4] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P., NÜRN-
BERGER, S., AND PEWNY, J. You can run but you can’t read:
Preventing disclosure exploits in executable code. In Proc. of
ACM CCS (2014).

[5] BACKES, M., AND NÜRNBERGER, S. Oxymoron: Making fine-
grained memory randomization practical by allowing code shar-
ing. In Proc. of USENIX Security (2014), pp. 433–447.

[6] BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proc. of USENIX Security (2005), pp. 271–286.

[7] BIGELOW, D., HOBSON, T., RUDD, R., STREILEIN, W., AND
OKHRAVI, H. Timely rerandomization for mitigating memory
disclosures. In Proc. of ACM CCS (2015), pp. 268–279.

[8] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIERES, D.,
AND BONEH, D. Hacking blind. In Proc. of IEEE S&P (2014),
pp. 227–242.

[9] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z.
Jump-oriented programming: a new class of code-reuse attack.
In Proc. of ACM CCS (2011), pp. 30–40.

[10] BRADEN, K., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P.,
LIEBCHEN, C., AND SADEGHI, A.-R. Leakage-resilient layout
randomization for mobile devices. In Proc. of NDSS (2016).

[11] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In Proc. of USENIX Security (2015),
pp. 161–176.

[12] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In Proc. of
USENIX Security (2005).

[13] CHEN, Y., WANG, Z., WHALLEY, D., AND LU, L. Remix: On-
demand live randomization. In Proc. of ACM CODASPY (2016),
pp. 50–61.

[14] CONTI, M., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P.,
NEGRO, M., LIEBCHEN, C., QUNAIBIT, M., AND SADEGHI,
A.-R. Losing control: On the effectiveness of control-flow
integrity under stack attacks. In Proc. of ACM CCS (2015),
pp. 952–963.

[15] CORBET, J. x86 NX support. http://lwn.net/Articles/
87814/, 2004.

[16] CORBET, J. Memory protection keys [lwn.net]. https://
lwn.net/Articles/643797/, 2015.

[17] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI, L.,
LARSEN, P., SADEGHI, A.-R., BRUNTHALER, S., AND
FRANZ, M. Readactor: Practical code randomization resilient to
memory disclosure. In Proc. of IEEE S&P (2015), pp. 763–780.

[18] CRANE, S. J., VOLCKAERT, S., SCHUSTER, F., LIEBCHEN, C.,
LARSEN, P., DAVI, L., SADEGHI, A.-R., HOLZ, T., DE SUT-
TER, B., AND FRANZ, M. It’s a TRaP: Table randomization and
protection against function-reuse attacks. In Proc. of ACM CCS
(2015), pp. 243–255.

[19] CURTSINGER, C., AND BERGER, E. D. Stabilizer: Statistically
sound performance evaluation. In Proc. of ACM SIGARCH (Mar.
2013), pp. 219–228.

[20] CVEDETAILS. Vulnerability distribution of CVE security vul-
nerabilities by types. https://www.cvedetails.com/
vulnerabilities-by-types.php, 2016.

[21] DABAH, G. distorm3. http://ragestorm.net/
distorm/, 2003–2012.

[22] DANG, T. H., MANIATIS, P., AND WAGNER, D. The perfor-
mance cost of shadow stacks and stack canaries. In Proc. of ACM
CCS (2015), pp. 555–566.

[23] DAVI, L., LEHMANN, D., SADEGHI, A.-R., AND MONROSE,
F. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In Proc. of USENIX Security
(Aug. 2014).

[24] DAVI, L., LIEBCHEN, C., SADEGHI, A.-R., SNOW, K. Z., AND
MONROSE, F. Isomeron: Code randomization resilient to (just-
in-time) return-oriented programming. In Proc. of NDSS (2015).

[25] DEBIAN. Hardening - Debian Wiki. https:
//wiki.debian.org/Hardening, 2015.

[26] DEBIAN. sbuild - Debian Wiki. https://
wiki.debian.org/sbuild, 2016.

[27] EAGLE, C. The IDA pro book: the unofficial guide to the world’s
most popular disassembler. No Starch Press, 2011.

[28] EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-
NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.
Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In Proc. of ACM CCS (2015), pp. 901–913.

[29] FEDORA. Harden All Packages - Fedora Project.
https://fedoraproject.org/wiki/Changes/
Harden_All_Packages, 2016.

[30] FENWICK, P. M. A new data structure for cumulative frequency
tables. Software: Practice and Experience 24, 3 (1994), 327–336.

[31] FULMER, J. Siege home. https://www.joedog.org/
siege-home/, 2012.

[32] GEEKSFORGEEKS. Binary indexed tree or Fenwick tree.
http://www.geeksforgeeks.org/binary-indexed-
tree-or-fenwick-tree-2/, 2015.

[33] GIONTA, J., ENCK, W., AND NING, P. HideM: Protecting the
contents of userspace memory in the face of disclosure vulnera-
bilities. In Proc. of ACM CODASPY (2015), pp. 325–336.

[34] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S.
Enhanced operating system security through efficient and fine-
grained address space randomization. In Proc. of USENIX Secu-
rity (2012), pp. 475–490.

[35] GNU. The libunwind project. http://
savannah.nongnu.org/projects/libunwind/, 2014.

[36] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In Proc. of IEEE SOSP (2014).

[37] GÖKTAS, E., GAWLIK, R., KOLLENDA, B., ATHANASOPOU-
LOS, E., PORTOKALIDIS, G., GIUFFRIDA, C., AND BOS, H.
Undermining information hiding (and what to do about it). In
Proc. of USENIX Security (2016).

[38] HISER, J., NGUYEN-TUONG, A., CO, M., HALL, M., AND
DAVIDSON, J. W. ILR: Where’d My Gadgets Go? In Proc. of
IEEE SOSP (2012), pp. 571–585.

[39] INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1, Mar
2010.

[40] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In Proc. of
USENIX OSDI (2014), pp. 147–163.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 381

https://users.ece.cmu.edu/~adrian/630-f04/readings/AlephOne97.txt
https://users.ece.cmu.edu/~adrian/630-f04/readings/AlephOne97.txt
https://wiki.archlinux.org/index.php/Prelink
https://wiki.archlinux.org/index.php/Prelink
http://lwn.net/Articles/87814/
http://lwn.net/Articles/87814/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
http://ragestorm.net/distorm/
http://ragestorm.net/distorm/
https://wiki.debian.org/Hardening
https://wiki.debian.org/Hardening
https://wiki.debian.org/sbuild
https://wiki.debian.org/sbuild
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
http://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
http://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
http://savannah.nongnu.org/projects/libunwind/
http://savannah.nongnu.org/projects/libunwind/

[41] LEE, D. A memory allocator. http://g.oswego.edu/dl/
html/malloc.html, 2000.

[42] LU, K., NÜRNBERGER, S., BACKES, M., AND LEE, W. How
to make ASLR win the clone wars: Runtime re-randomization.
In Proc. of NDSS (2016).

[43] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC Architecture. In Proc. of USENIX Security (2006).

[44] MITRE CORPORATION. CVE-2013-2028. http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-2028, 2013.

[45] MOORE, H., ET AL. The Metasploit Project. http://
www.metasploit.com/, 2009.

[46] MSDN. Symbols and symbol files - Windows 10 hardware
dev. https://msdn.microsoft.com/en-us/library/
ff558825.aspx, 2016.

[47] NIU, B., AND TAN, G. Modular control-flow integrity. In Proc.
of ACM PLDI (2014).

[48] OIKONOMOPOULOS, A., ATHANASOPOULOS, E., BOS, H.,
AND GIUFFRIDA, C. Poking holes in information hiding. In
Proc. of USENIX Security (2016).

[49] PAX TEAM. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[50] REINHEIMER, P. Miles per millisecond: A look at the Won-
derProxy network. https://wonderproxy.com/blog/
miles-per-milisecond/, 2011.

[51] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BR-
USCHI, D. Surgically returning to randomized lib(c). In Proc.
of USENIX ACSAC (2009), pp. 60–69.

[52] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: Ex-
ploit hardening made easy. In Proc. of USENIX Security (2011),
pp. 25–25.

[53] SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly
of executable code revisited. In Proc. of IEEE WCRE (2002),
pp. 45–54.

[54] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proc. of
ACM CCS (2007), pp. 552–61.

[55] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A.-R. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout random-
ization. In Proc. of IEEE SOSP (2013).

[56] SOLAR DESIGNER. lpr libc return ex-
ploit. http://insecure.org/sploits/
linux.libc.return.lpr.sploit.html, 1997.

[57] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. Heisen-
byte: Thwarting memory disclosure attacks using destructive
code reads. In Proc. of ACM SIGSAC (2015), pp. 256–267.

[58] UBUNTU. Security/features - Ubuntu Wiki.
https://wiki.ubuntu.com/Security/
Features#Userspace_Hardening, 2016.

[59] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proc. of ACM CCS (2012), pp. 157–168.

[60] XU, J., KALBARCZYK, Z., AND IYER, R. Transparent run-
time randomization for security. In Proc. of IEEE SRDS (2003),
pp. 260–269.

[61] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity and randomization for binary executables. In Proc.
of IEEE SOSP (2013).

[62] ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In Proc. of USENIX Security (2013).

382 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://www.metasploit.com/
http://www.metasploit.com/
https://msdn.microsoft.com/en-us/library/ff558825.aspx
https://msdn.microsoft.com/en-us/library/ff558825.aspx
http://pax.grsecurity.net/docs/aslr.txt
https://wonderproxy.com/blog/miles-per-milisecond/
https://wonderproxy.com/blog/miles-per-milisecond/
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://wiki.ubuntu.com/Security/Features#Userspace_Hardening
https://wiki.ubuntu.com/Security/Features#Userspace_Hardening

Don’t Get Caught In the Cold, Warm-up Your JVM

Understand and Eliminate JVM Warm-up Overhead in Data-parallel Systems

David Lion, Adrian Chiu, Hailong Sun*, Xin Zhuang, Nikola Grcevski†, Ding Yuan

University of Toronto, *Beihang University, †Vena Solutions

Abstract

Many widely used, latency sensitive, data-parallel dis-

tributed systems, such as HDFS, Hive, and Spark choose

to use the Java Virtual Machine (JVM), despite debate

on the overhead of doing so. This paper analyzes the ex-

tent and causes of the JVM performance overhead in the

above mentioned systems. Surprisingly, we find that the

warm-up overhead, i.e., class loading and interpretation

of bytecode, is frequently the bottleneck. For example,

even an I/O intensive, 1GB read on HDFS spends 33%

of its execution time in JVM warm-up, and Spark queries

spend an average of 21 seconds in warm-up.

The findings on JVM warm-up overhead reveal a con-

tradiction between the principle of parallelization, i.e.,

speeding up long running jobs by parallelizing them

into short tasks, and amortizing JVM warm-up overhead

through long tasks. We solve this problem by designing

HotTub, a new JVM that amortizes the warm-up over-

head over the lifetime of a cluster node instead of over

a single job by reusing a pool of already warm JVMs

across multiple applications. The speed-up is significant.

For example, using HotTub results in up to 1.8X speed-

ups for Spark queries, despite not adhering to the JVM

specification in edge cases.

1 Introduction

A large number of data-parallel distributed systems are

built on the Java Virtual Machine (JVM) [25]. These sys-

tems include distributed file systems such as HDFS [28],

data analytic platforms such as Hadoop [27], Spark [64],

Tez [62, 76], Hive [32, 77], Impala [13, 36], and key-

value stores such as HBase [29] and Cassandra [15]. A

recent trend is to process latency-sensitive, interactive

queries [37, 65, 75] with these systems. For example, in-

teractive query processing is one of the focuses for Spark

SQL [10, 64, 65], Hive on Tez [37], and Impala [36].

Numerous improvements have been made to the per-

formance of these systems. These works mostly fo-

cused on scheduling [2, 4, 31, 38, 56, 84], shuffling

overhead [17, 19, 40, 45, 81], and removing redundant

computations [61]. Performance characteristics stud-

ies [44, 46, 55, 57] and benchmarks [18, 23, 34, 80]

have been used to guide the optimization efforts. Most

recently, some studies analyzed the performance impli-

cations of the JVM’s garbage collection (GC) on big data

systems [24, 47, 48, 59].

However, there lacks an understanding of the JVM’s

overall performance implications, other than GC, in

latency-sensitive data analytics workloads. Conse-

quently, almost every discussion on the implications of

the JVM’s performance results in heated debate [35,

41, 42, 43, 58, 69, 83]. For example, the developers of

Hypertable, an in-memory key-value store, use C++ be-

cause they believe that the JVM is inherently slow. They

also think that Java is acceptable for Hadoop because

“the bulk of the work performed is I/O” [35]. In addi-

tion, many believe that as long as the system “scales”,

i.e., parallelizes long jobs into short ones, the overhead

of the JVM is not concerning [69]. It is clear that given

its dynamic nature, the JVM’s overhead heavily depends

on the characteristics of the application. For example,

whether an interpreted method is compiled to machine

instructions by the just-in-time (JIT) compiler depends

on how frequently it has been invoked. With all these dif-

ferent perspectives, a clear understanding of the JVM’s

performance when running these systems is needed.

This research asks a simple question: what is the per-

formance overhead introduced by the JVM in latency-

sensitive data-parallel systems? We answer this by pre-

senting a thorough analysis of the JVM’s performance

behavior when running systems including HDFS, Hive

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 383

on Tez, and Spark. We drove our study using represen-

tative workloads from recent benchmarks. We also had

to carefully instrument the JVM and these applications

to understand their performance. Surprisingly, after mul-

tiple iterations of instrumentation, we found that JVM

warm-up time, i.e., time spent in class loading and in-

terpreting bytecode, is a recurring overhead, which we

made the focus of this study. Specifically, we made the

following three major findings.

First, JVM warm-up overhead is significant even in

I/O intensive workloads. We observed that queries from

BigBench [23] spend an average of 21 seconds in warm-

up time on Spark. Reading a 1GB file on HDFS from

a hard drive spends 33% of its time in warm-up. We

consider bytecode interpretation as an overhead because

there is a huge performance discrepancy compared with

JIT-compiled code (simply referred as compiled code in

this paper) [39, 73]. For instance, we find that CRC

checksum computation, which is one of the bottlenecks

in HDFS read, is 230x faster when executed by compiled

code rather than interpretation.

In addition, the warm-up time does not scale. Instead,

it remains nearly constant. For example, the warm-up

time in Spark queries remains at 21 seconds regardless

of the workload scale factor, thus affecting short running

jobs more. The broader implication is the following:

There is a contradiction between the principle of

parallelization, i.e., speeding up long running jobs

by parallelizing them into short tasks, and amortiz-

ing JVM warm-up overhead through long tasks.

Finally, the use of complex software stacks aggravates

warm-up overhead. A Spark client loads 19,066 classes

executing a query, which is 3 times more than Hive de-

spite Spark’s overall latency being shorter. These classes

come from a variety of software components needed by

Spark. In practice, applications using more classes also

use more unique methods, which are initially interpreted.

This results in increased interpretation time.

To solve the problem, our key observation is that

the homogeneity of parallel data-processing jobs enables

significant reuse rate of warm data, i.e., loaded classes

and compiled code, when shared across different jobs.

We designed HotTub, a new JVM that eliminates warm-

up overhead by reusing JVMs from prior runs. It has the

following advantages. First, it is a drop-in replacement of

existing JVMs, abstracting away the JVM reuse, without

needing users to modify their applications. In addition, it

maintains consistency of an application’s execution, i.e.,

the behavior is equivalent to the application being exe-

cuted by an unmodified JVM except for the performance

benefit [26]. Finally, it has a simple design that does

not require a centralized component, and it selects the

“best” JVM that will likely result in the highest re-usage

of loaded classes and compiled code.

Evaluating HotTub shows that it can significantly

speed-up latency sensitive queries. It reduces Spark’s

query latency on 100GB by up to 29 seconds, and speeds

up HDFS reads on 1MB data by a factor of 30.08. In ad-

dition to warm-up time, the large speed up comes from

more efficient use of cache, TLB, and branch predictor

with up to 36% of miss rate reductions.

This paper makes the following contributions.

• It is the first analysis on the JVM’s performance over-

head in latency sensitive, data-parallel workloads. We

are also the first to identify and quantify the warm-up

overhead on such workloads.

• It presents HotTub, the first system that eliminates

warm-up overhead while maintaining consistency.

• It also implements a set of improved JVM performance

counters that measure the warm-up overhead. In par-

ticular, it is the first to provide fine-grained measure-

ment of interpretation time.

The source code of HotTub and our JVM instrumen-

tations in OpenJDK’s HotSpot JVM are publicly avail-

able 1.

This paper has the following limitations. First, HotTub

is less useful in long running workloads as the warm-up

time is amortized by the long job completion time. In

addition, HotTub does not completely comply with the

Java Virtual Machine Specification [25] with regards to

applications that use static variables whose initialization

is timing dependent, which is rare and well-known to be

a bad programming practice [1, 70].

This paper is organized as follows. Section 2 de-

scribes the instrumentations to the JVM used to measure

its warm-up overhead. Section 3 presents the analysis of

JVM performance. Section 4 and Section 5 describe Hot-

Tub’s design, implementation, and limitations. We eval-

uate HotTub in Section 6. We survey the related work in

Section 7 before we conclude.

2 Measure Warm-up Overhead

In this section we discuss how we instrument the JVM

to measure its class loading and bytecode interpretation

time with per-thread granularity. Section 3 describes how

we use these instrumentations to study JVM overhead

in data-parallel systems. We use OpenJDK’s HotSpot

1https://github.com/dsrg-uoft/hottub

384 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dsrg-uoft/hottub

JVM's call stack

	1	push	%rax

	2	..

	3	push	%rdx

	4	callq	_record_mode_change

	5	callq	_pop_ret_addr

	6	movq	%rax,	%r11

	7	pop	%rdx

	8	..

	9	pop	%rax

10	jmp	%r11

parameters

ret. addr.: 0x670	
save

regs.

restore

regs.

0x670: ret_handler

return addr. stack

 (thread local)

..	..

0x8f0

0x8f0: original ret. addr.

1

2

3

4

5

ret addr.
..	..

0x2a8

0x2a8

stack addr.

addr.

0x2a0

Figure 1: Intercepting mode changing returns.

JVM, version 1.8.0 build 25.66. HotSpot is the primary

reference Java Virtual Machine implementation [47].

Measuring per-thread class loading time is relatively

straightforward. HotSpot already provides per-JVM

class loading counters. We simply change the counter

data structures to be thread local.

Measuring bytecode interpretation time is challeng-

ing. The JVM may be interpreting bytecode, execut-

ing JIT-compiled methods, or executing C/C++ compiled

“native” code (referred as native execution). It requires

us to instrument every mode change, i.e., transitions be-

tween interpreter execution and compiled/native execu-

tion. (We are not concerned with the transitions between

compiled execution and native execution as our goal is

to measure interpretation time.) If a mode change occurs

via call, e.g., an interpreted method calls a compiled

method or vice versa, it is straightforward to instrument,

as it must first go through fixed program points known as

adapters in HotSpot. Adapters are necessary because the

interpreter uses a different stack layout from compiled

or native execution. However, if a mode change occurs

via ret, it is extremely difficult to instrument because

the callee merely pops its stack frame, regardless of its

caller. There is no one program point for ret that allows

us to instrument the change back to the caller’s mode.2

We instrument mode changing returns by replacing

the original return address on the call stack with the ad-

dress of our instrumented code. Figure 1 shows how it

works in 5 steps: (1) when a mode changing call is

executed, e.g., interpreter method A calls a compiled or

native method B, we instrument this transition and also

save the return address back to A (0x8f0) into a sepa-

rate, thread local stack. (2) We replace the original re-

turn address with the address of our instrumented func-

2The interpreter can also directly jump into compiled code via on-

stack-replacement (OSR) [22, 33], a technique that immediately allows

a hot loop body to run with compiled code during execution of the

method. OSR also has to go through adapters, which we instrument, as

the stack layout needs to be changed.

tion ret_handler (0x670). (3) When B returns, it first

jumps to ret_handler, which saves the registers that it

is going to use. It records the mode change back to A,

and pops the original return address (0x8f0) (step (4)).

It then restores the saved registers, and in step (5) jumps

to the original return address in A. ret_handler is im-

plemented in 15 assembly instructions.

We have to carefully handle a few edge cases where

the return address is used for special purposes. For GC,

the JVM needs to walk each Java thread’s stack to find

live objects. Each frame’s return address is used to iden-

tify its caller. Therefore we cannot leave the address of

ret_handler on the stack; at the start of a GC pause,

we restore the original return address. To quickly locate

the original return address, we also save the address of

the return address on the call stack (0x2a8 in Figure 1).

Similarly, the JVM uses the return address to propagate

exceptions to caller methods. Therefore we restore the

original return address upon throwing an exception.

The instrumentation incurs negligible overhead.

When both class loading and interpreter counters are en-

abled on a range of HDFS workloads we used, the over-

head is always less than 3.3%.

Note that class loading and interpreter times overlap,

but our counter identifies this overlap. Therefore when-

ever we report JVM warm-up overhead as a single num-

ber, it is the sum of class loading and interpreter time

subtracted by their overlap. However, we found only a

small portion (14.8% in HDFS workload) of them over-

lap because class loading methods are quickly being JIT-

compiled due to their frequent invocations.

3 Analysis of Warm-up Overhead

This section presents an in-depth analysis on JVM warm-

up overhead in data-parallel systems. We first describe

the systems used and our analysis method before pre-

senting the analysis result. We also discuss existing in-

dustry practices that address the warm-up overhead and

their limitations.

3.1 Methodology

We study HDFS, Hive running on Tez and YARN, and

Spark SQL running with Spark in standalone mode.

HDFS is a distributed file system. It is the default file sys-

tem for many data parallel systems, including Spark and

Hive. Both Spark and Hive process user queries by par-

allelizing them into short tasks, and are designed specif-

ically for interactive queries [37, 65, 75]. They differ

in how they parallelize the tasks: each Spark job runs

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 385

in only one JVM on each host (known as an executor),

and utilizes multiple threads where each task runs in sin-

gle thread (a JVM is a single process). In contrast, Hive

on Tez runs each task in a separate JVM process known

as YARN container. The versions we used are Hadoop-

2.6.0, Spark-1.6.0, Hive-1.2.1, and Tez-0.7.0.

We benchmark Spark and Hive using BigBench [23].

It consists of 30 queries ranging over structured, semi-

structured, and unstructured data that are modeled af-

ter real-world usage [23]. Its queries on structured data

are selected from TPC-DS [79], which is widely used

by SQL-on-Hadoop vendors like Cloudera [53], Horton-

works [54], Databricks [21, 66], and IBM [12] to drive

their optimization efforts.

All experiments are performed on an in-house cluster

with 10 servers. Four of them have 2 Xeon E5-2630V3,

16 virtual core, 2.4GHz CPUs with 256GB DDR4 RAM.

The others have a single Xeon E5-2630V3 CPU with

128GB DDR4 RAM. Each server has two 7,200 RPM

hard drives, is connected via 10Gbps interconnect, and

runs Linux 3.16.0. The server components are long run-

ning and fully warmed-up for weeks and have serviced

thousands of trial runs before measurement runs.

We run the queries on seven scale factors on Spark:

100, 300, 500, 700, 1K, 2K, 3K, and five scale factors on

Hive: 100, 300, 500, 700, 1K. Each scale factor corre-

sponds to the size of input data in GB (a scale factor 100

uses 100GB as input size, whereas 3K uses 3TB). For

each scale factor, we repeat each query 10 times and take

result from the fastest run in order to eliminate trials that

might have been perturbed by other background work-

loads. In addition, we only analyze the 10 queries with

the fastest job completion time out of the total 30 queries

in BigBench, because of our focus on latency sensitive

queries. (These queries are query 1, 9, 11, 12, 13, 14, 15,

17, 22, and 24.) BigBench is designed to be comprehen-

sive, therefore many queries are long, batch processing

queries instead of interactive queries. In addition, we

found that at least 8 queries lead to heavy swapping at

large data sizes, indicating that our system is not repre-

sentative to run these queries.

We instrument each thread in the system with the per-

thread class loading, interpreter, and GC performance

counters to measure the JVM overhead of each parallel

task. However, understanding the overall slow down of

the entire job is non-trivial as the JVM overhead of multi-

ple tasks can overlap. We borrow the blocked time analy-

sis from Ousterhout et al. [55] to estimate the slow down

to the entire job from per-task measurement. It works

by first subtracting the time each task spends in the mea-

sured event (e.g., class loading) from its total execution

 0

 1

 2

 3

 0 2 4 6 8 10

Se
co

nd
s

Size (GB)

cl seq. read
int seq. read
cl par. read

int par. read
cl write

int write

Figure 2: JVM warm-up time in various HDFS workload. “cl”

and “int” represent class loading and interpretation time respec-

tively. The x-axis shows the input file size.

time, and then simulates the scheduling of these tasks

with the reduced execution time. We implemented a sim-

ple scheduling simulator with 500 LOC in Perl and sim-

ulated the original tasks with an accuracy of over 96%.

Limitations. Our measurement of JVM overhead is a

conservative underestimate. First, we do not measure

the effect of the background threads that are used to JIT-

compile bytecode. Similarly, we only measure the stop-

the-world GC pause, ignoring background GC activities.

This background work will compete with the application

for CPU resources. In addition, our instrumentation may

not cover all threads. For example, some libraries can

create their own threads which we do not instrument. We

use our best effort to address this problem: we instru-

mented the JVM thread constructor to observe the cre-

ation of every application thread, and instrument those

that at least load classes. However, there are still threads

that are not instrumented.

3.2 HDFS

We implement three different HDFS clients: sequential

read, parallel read with 16 threads, and sequential write.

We flush the OS buffer cache on all nodes before each

measurement to ensure the workload is I/O bound. Note

that interpreter time does not include I/O time because

I/O is always performed by native libraries.

Figure 2 shows the class loading and interpreter time

under different work loads. The average class loading

times are 1.05, 1.55, and 2.21 seconds for sequential

read, parallel read, and sequential write, while their av-

erage interpreter times are 0.74, 0.71, and 0.92 seconds.

The warm-up time does not change significantly with dif-

ferent data sizes. The reason that HDFS write takes the

JVM longer to warm-up is that it exercises a more com-

plicated control path and requires more classes. Parallel

read spends less time in the interpreter than sequential

386 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 0 2 4 6 8 10

W
ar

m
-u

p
(%

 R
un

tim
e)

Size (GB)

seq. read
seq. write
par. read

Figure 3: The JVM warm-up overhead in HDFS workloads

measured as the percentage of overall job completion time.

Client init
File open

Read

 0 1 2 3 4Time (s)

Class loading
Interpreter
Compile/native

Figure 4: Breakdown of sequential HDFS read of 1GB file.

read because its parallelism allows the JVM to identify

the “hot spot” faster.

Figure 3 further shows the significance of warm-up

overhead within the entire job. Short running jobs are

more significantly affected. When the data size is under

1GB, warm-up overhead accounts for more than 33%,

48%, and 30% of the client’s total execution time in se-

quential read, parallel read, and sequential write. Se-

quential write suffers the least from warm-up overhead,

despite its higher absolute warm-up time, because it has

the longest run time. In contrast, parallel read suffers

the most from warm-up overhead because of its short la-

tency. According to a study [82] published by Cloudera,

a vast majority of the real-world Hadoop workloads read

and write less than 1GB per-job as they parallelize a big

job into smaller ones. The study further shows that for

some customers, over 60% of their jobs read less than

1MB from HDFS, whereas 1MB HDFS sequential read

spends over 60% of its time in warm-up.

Next we break down class loading and interpreter time

using the 1GB sequential read as an example. Figure 4

shows the warm-up time in the entire client read. A ma-

jority of the class loading and interpreter execution oc-

curs before a client contacts a datanode to start reading.

Further drilling down, Figure 5 shows how warm-up

time dwarfs the datanode’s file I/O time. When the datan-

ode first receives the read request, it sends a 13 bytes

ack to the client, and immediately proceeds to send data

packets of 64KB using the sendfile system call. The first

ack
sendfile 1

sendfile 2-38
wait

sendfile 39-109

parse DN ack
read pckt. 1
read pckt. 2
read pckt. 3

 0 10 20 30 40 50Time (ms)

Class loading
Interpreter
Compiled/native

Datanode

Client

Figure 5: Breakdown of the processing of data packets by

client and datanode.

Read Search Define Other Total

Time (ms) 170 276 411 171 1,028

Table 1: Breakdown of class loading time.

sendfile takes noticeably longer than subsequent ones as

the data is read from the hard drive. However, the client

takes even longer (15ms) to process the ack because it

is bottlenecked by warm-up time. By the time the client

finishes parsing the ack, the datanode has already sent

11 data packets, thus the I/O time is not even on the

critical path. The client takes another 26ms to read the

first packet, where it again spends a majority of the time

loading classes and interpreting the computation of the

CRC checksum. By the time the client finishes process-

ing the first three packets, the datanode has already sent

109 packets. In fact, the datanode is so fast that the Linux

kernel buffer becomes full after the 38th packet, and it

had to block for 14ms so that kernel can adaptively in-

crease its buffer size. The client, on the other hand, is

trying to catch up the entire time.

Figure 5 also shows the performance discrepancy be-

tween interpreter and compiled code. Interpreter takes

15ms to compute the CRC checksum of the first packet,

whereas compiled code only takes 65µs per-packet.

Break down class loading. The HDFS sequential read

takes a total of 1,028 ms to load 2,001 classes. Table 1

shows the breakdown of class loading time. Reading the

class files from the hard drive only takes 170ms. Because

Java loads classes on demand, loading 2,001 classes is

broken into many small reads. 276ms are spent searching

for classes on the classpath, which is a list of filesystem

locations. The JVM specification requires the JVM to

load the first class that appears in the classpath in the case

of multiple classes with identical names. Therefore it

has to search the classpath linearly when loading a class.

Another 411ms is spent in define class, where the JVM

parses a class from file into an in-memory data structure.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 387

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

100 300 500 700 1000 2000 3000
Scale Factor (GB)

T
im

e
(s

)

Spark

Compiled/native
GC

Interpreter
Class loading

100 300 500 700 1000
Scale Factor (GB) Hive

Figure 6: JVM overhead on BigBench. Overhead breakdown of BigBench queries across different scale factors. The queries are

first grouped by scale factor and then ordered by runtime. Note that Hive has larger query time compared with Spark.

3.3 Spark versus Hive

Figure 6 shows the JVM overhead on Spark and Hive.

Surprisingly, each query spends an average of 21.0 and

12.6 seconds in warm-up time on Spark and Hive respec-

tively. Similar to HDFS, the warm-up time in both sys-

tems does not vary significantly when data size changes.

Software layers aggravate warm-up overhead. The

difference in the warm-up times between Spark and

Hive is explained by the difference in number of loaded

classes. The Spark client loads an average of 19,066

classes, compared with Hive client’s 5,855. Conse-

quently, Spark client takes 6.3 seconds in class loading

whereas the Hive client spends 3.7 seconds. A majority

of the classes loaded by Spark client come from 10 third-

party libraries, including Hadoop (3,088 classes), Scala

(2,328 classes), and derby (1,110 classes). Only 3,329 of

the loaded classes are from Spark packaged classes.

A large number of loaded classes also results in a large

interpreter time. The more classes being loaded leads to

an increase in the number of different methods that are

invoked, where each method has to be interpreted at the

beginning. On average, a Spark client invokes 242,291

unique methods, where 91% of them were never com-

piled by JIT-compiler. In comparison, a Hive client only

invokes 113,944 unique methods, while 96% of them

were never JIT-compiled.

Breaking down Spark’s warm-up time. We further

drill down into to one query (query 13 on SF 100) to

understand the long warm-up time of Spark. While dif-

ferent queries exhibit different overall behaviors and dif-

ferent runtime, the pattern of JVM warm-up overhead is

similar, as evidenced by the stable warm-up time. Fig-

ure 7 shows the breakdown of this query. The query com-

pletion time is 68 seconds, and 24.6 seconds are spent on

warm-up overhead. 12.4 seconds of the warm-up time

Client

Executor

0 6.3 12.4
46.9

59.2
61.5

68

Time (s)

Class loading
Interpreter

Compiled/native

Figure 7: Breakdown of Spark’s execution of query 13. It only

shows one executor (there are a total of ten executors, one per

host). Each horizontal row represents a thread. The executor

uses multiple threads to process this query. Each thread is used

to process three tasks from three different stages.

are spent on the client while the other 12.2 seconds come

from the executors. Note that a majority of executors’

class loading time is not on the critical path because ex-

ecutors are started immediately after the query is sub-

mitted, which allows executors’ class loading time to be

overlapped with the client’s warm-up time. However, at

the beginning of each stage the executor still suffers from

significant warm-up overhead that comes primarily from

interpreter time.

Hive. Hive parallelizes a query using different JVM pro-

cesses, known as containers, whereas each container uses

only one computation thread. Therefore within each con-

tainer the warm-up overhead has a similar pattern with

the HDFS client shown earlier. Hive and Tez also reuses

containers to process tasks of the same query, therefore

the JVM warm-up overhead can be amortized across the

lifetime of a query.

388 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.4 Summary of Findings

Our analysis reveals that the JVM warm-up time is com-

monly the bottleneck of short running jobs, even when

the job is I/O intensive. For example, 33% of the time

in an HDFS 1GB sequential read is spent in warm-up,

and 32% of the Spark query time on 100GB data size

is on warm-up. The warm-up time stays nearly con-

stant, indicating that its overhead becomes more signif-

icant in well parallelized short running jobs. In prac-

tice, many workloads are short running. For example,

90% of Facebook’s analytics jobs have under 100GB in-

put size [3, 9], and majority of the real-world Hadoop

workloads read and write less than 1GB per-task [82].

Furthermore, Ousterhout et al. [56] show a trend of in-

creasingly short running jobs with latency in the hun-

dreds of milliseconds. This shows that both the data size

and latency of data-parallel workloads are trending to be

smaller. We also observe that multi-layered systems ex-

acerbates the warm-up overhead, as they tend use more

classes and methods, increasing class loading and inter-

pretation times.

3.5 Industry Practices

While JVM performance has been actively studied over

the last 20 years, most of the improvements focused on

GC [24, 47, 48, 59] and JIT [39, 71, 73, 72, 74] instead of

warm-up. One reason is that it is assumed that workloads

are using long-running JVMs. For example, traditional

JVM benchmarks, such as DayTrader [7] and SpecJB-

B/SpecJVM [67, 68], all assume the use of long run-

ning JVMs. This study has shown that this paradigm has

changed on data-parallel systems, and efforts to address

warm-up overhead should be increased moving forward.

Nevertheless, there exists some industry practices to

address warm-up overhead. Despite the study showing

clear overhead issues in Spark and Hive on Tez, both in

fact already implement measures to reduce JVM warm-

up overhead at the application layer. Both reuse the

same JVM on each host to process the different tasks of

each job (query in our case), thus amortizing the warm-

up overhead across the life-time of a job. Spark runs

one JVM or executor on each node that has the same

life time as the job. Hive on Tez runs each task on

a separate JVM (i.e., YARN container) and will try to

keep reuse containers for new tasks. (Container reuse is

the key feature introduced in Tez compared to Hadoop

MapReduce.) A client could be designed to take multi-

ple jobs from users and run them seemingly as one long

job, which would allow multiple jobs to continue to use

the same JVM.3 However, it requires domain expertise to

determine whether such reuse is safe. One must consider

what static data should be re-initialized or which threads

need to be killed. The use of third-party libraries further

exacerbate the problem as they may contain stale static

data and create additional threads. This is perhaps the

reason that these systems do not allow JVM to be reused

across different jobs unless the client is specifically de-

signed to process multiple jobs. Nailgun [52] maintains

a long-running JVM, and allows a client to dynamically

run different applications on it. However, it does not take

any measure to ensure that the reuse is consistent and the

burden is on the users to decide whether a reuse is safe.

In fact, naively reuse (unmodified) JVM does not even

work when running the same Hive query twice, as the

second run will crash because some static data in YARN

needs to be properly reinitialized.

There are also a few solutions that change the JVM to

address the warm-up overhead. The most advanced ones

are perhaps on mobile platforms. The previous version of

the Android runtime (ART) [6] (Android Marshmallow)

would compile the entire app when it is first downloaded

to gain native performance, but it suffered from the var-

ious limitations including large binary size and slow up-

dates [5]. The latest version of ART (Nougat) [6] uses

a new hybrid model. It first runs an app with an inter-

preter and JIT-compiles hot methods, similar to Open-

JDK’s HotSpot JVM. However, ART also stores profiling

data after the app’s run, allowing a background process

to compile the select methods into native code guided

by the profile. These methods now no longer suffer the

warm-up overhead the next time this app is used. ART

also statically initializes selected classes during the com-

pilation and stores them in the application image to re-

duce class loading time.

The Excelsior JET [20], which is a proprietary JVM,

compiles the bytecode statically into x86 native code be-

fore running the application, similar to older versions of

ART. This eliminates both class loading and interpreted

overhead, but this is at the cost of losing the performance

benefit provided by profile-guided JIT compiler.

Other programming methods exist to reduce warm-up

time. One can try to make JIT-compile more aggressively

by changing the threshold with -XX:CompileThreshold.

It is also possible to trigger class loading manually be-

fore classes are actually needed by either referencing the

class or directly loading it. This is only useful if done off

of the critical path. An example is that Spark’s executor

3The container reuse in Tez is less predictable and cannot be taken

advantage of by a smart user unlike with Spark, as there is a threshold

for how long a container will be kept.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 389

$ java

if (reusable

 JVM exists)

true

start new JVM
reset

false

JVM pool

app. run

JVM

reinit. before reuse

Figure 8: Architecture of HotTub.

is created before it actually receives any work allowing

it to load classes. Similarly, one could potentially trigger

JIT-compilation manually by invoking a method many

times. Not only is this only useful if done off the critical

path, but there are also other limitations. One has to en-

sure that the invocation has no side effects to the program

state. Furthermore, one must also be wary of the param-

eters and path the method takes because the JIT-compiler

is heavily guided by run-time profile, and unrealistic in-

vocations could result in code less optimized for cases a

developer cares about.

4 Design of HotTub

The design goal for HotTub is to allow applications to

share the “warm” data, i.e., loaded classes and compiled

code, thus eliminating the warm-up overhead from their

executions. We considered two design choices: explic-

itly copy data among JVMs, or reuse the same JVMs

after properly resetting states. We began implementa-

tion of the first design, trying to save class metadata and

JIT-compiled code to disk for reuse in the next JVM

process, similar to Android runtime [6]. We were able

to share loaded classes, but eventually rejected this de-

sign because it is too complicated to maintain the consis-

tency of all the pointers between the JVM address spaces.

For example, the JIT-compiler does not produce relocat-

able code; a compiled method may directly jump to an-

other compiled method. To maintain consistency, we ei-

ther have to allocate all the loaded classes and compiled

methods at the exact same addresses, which is inflexi-

ble, or fix all the pointer values, which is impractical as

we have to interpret every memory address in compiled

code. We chose the “reuse” design, which proved to be

simpler, and we can leverage existing JVM features, such

as garbage collection, to properly throw out stale data.

Figure 8 shows the architecture of HotTub. It is a

drop-in replacement – users simply replace java with

HotTub and can run their Java application with normal

command. Running java will spawn a HotTub client,

which attempts to contact a warmed-up JVM, known as

a HotTub server, to run on. We refer to a reusable JVM

as server because it is designed to be long running. Af-

ter a server has completed a run, it will send the return

1 struct sockaddr_un add; // create unix sock.

2 char* sum = md5(classpath);

3 while (true) {

4 for (int i = 0; i < POOL_SIZE; i++) {

5 strcpy(add.sun_path,strcat(sum,itoc(i)));

6 if (connect(fd, add, sizeof(add))==0)

7 return reuse_server_and_wait(fd);

8 if (server_busy(i))

9 continue;

10 /* No JVM/server created. */

11 if (fork() == 0) // spawn new jvm in child

12 exec("/HotTub/java", args);

13 /* else, parent, go back to find server */

14 }

15 }

Figure 9: HotTub’s client algorithm.

code to the client allowing the client to return normally

to the user. The server will then run garbage collection,

and reset the JVM state in preparation for the next client.

Next we discuss HotTub’s client algorithm as shown

in Figure 9. First, an important consideration is the reuse

policy, i.e., which applications are allowed to share the

same JVM. In order to gain the most benefit from an ex-

isting JVM it is ideal to run as similar a workload as pos-

sible on it. An application that performs similar logic and

traverses the same code paths will reuse the same classes

and compiled code. However, if the new application is

significantly different from the previous one, then these

benefits are reduced. In HotTub, a client first computes

a checksum of the classpath and every file containing

classes, which are generally JAR (Java Archive) files, on

the classpath. Only the servers with the same checksum

are candidates for reuse. While this limits reuse poten-

tial, it ensures large overlap of warm data. It also ensures

that clients always uses the same classes, avoiding incon-

sistency problems.

In addition, the client appends an integer between 0

and POOL_SIZE to the checksum (line 5 in Figure 9),

creating an ID to use as an address to contact a specific

server. The client tries to connect to each ID in this range,

and reuses the first connected server. If connect fails be-

cause the server is currently busy the client tries the next

server. If connect fails because no server exists, or all

servers are busy, the client forks a child process to cre-

ate the server (line 11-12). The reason that we need to

fork and exec java in the child, instead of directly exec

java without fork, is that the user could be waiting for

the java command to finish. Forking allows the parent to

return after the application finishes, while the child pro-

cess, which is now a warmed-up JVM, waits for reuse.

This design has a number of benefits. First, it is

simple. The clients and servers on each node do not

require a central coordinator, avoiding a potential bot-

390 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tleneck or central point of failure. In addition, it se-

lects the longest running server that will likely result in

the highest reusage of warm data. This is because the

longest running server has had the most time to warm-

up, JIT-compiling the most methods and loading the most

classes. Finally, reusing the same JVM process across

applications also offers caching benefits – between con-

secutive application runs the warm data stays in CPU

caches because its memory address remains the same,

and the OS does not need to flush the TLB.

4.1 Maintain Consistency

The main challenge to HotTub’s design is to ensure that

the application’s execution on HotTub is consistent with

the execution on an unmodified JVM. Data on stack and

heap does not impose inconsistency problem, because at

the end of a JVM application’s execution, all of the ap-

plication’s stack frames have naturally ended. HotTub

further garbage collects the heap objects with root refer-

ences from the stack, therefore all of the heap objects that

are application specific are also cleared. The remaining

items, namely the loaded classes, compiled code, static

variables, and file descriptors, need to be shared between

reuse. Next we describe how HotTub maintains their

consistency between reuse.

Class consistency. HotTub must ensure that any class

it reuses is the same as what would be loaded by an un-

modified JVM, as classes could potentially change in be-

tween runs, or during runs. Maintaining class consis-

tency also ensures the consistency of compiled code as

it is compiled from the class bytecode. The checksum

mechanism used by the client only ensures the consis-

tency of classes on the application classpath, which are

loaded by the default class loader. While this accounts

for the majority of loaded classes, an application can also

implement a custom class loader, which has user-defined

searching semantics, or dynamically generate a class.

Fortunately, any classes loaded by a custom class

loader will not impose inconsistency issues for HotTub

because a custom class loader must be instantiated by

user code. This makes reuse impossible as every run will

create a new instance of the class loader with no data

from the previous run, causing it to load any class nor-

mally. Similarly, classes that are dynamically generated

are loaded by custom class loaders in practice and are

not an issue for consistency. However, there is no perfor-

mance gained from reusing any classes that are loaded

by custom class loaders as they are simply not reused.

Static variable consistency. At the end of application

execution, static variables have values from the previous

execution. Therefore HotTub needs to reinitialize them

first to their default type value and then reinitialize them

with their class initialization code. HotTub uses a simple

policy. When the server is about to be reused, it reinitial-

izes the static variables all at once by invoking the static

initializer, namely <clinit>, of each class.

HotTub needs to maintain the correct order of the invo-

cations to <clinit> of different classes. For example,

class A’s initialization may depend on class B having al-

ready been initialized. HotTub maintains the correct or-

der by recording the order of class initializations when

they are first initialized, and replaying the initializations

in the same order before each reuse.

Unfortunately, reinitializing all the static data before

the start of application is not consistent with the JVM

specification [25] when the initialization of static vari-

ables have timing dependencies. Consider the following

Java example:

1 Class A {

2 static int a = 0;

3 void foo () { a++; }

4 }

5 Class Bad { // bad practice

6 static int b = A.a;

7 }

According to the JVM specification, the value of variable

b in class Bad depends on when class A gets initialized.

For example, if foo() has been called 3 times before Bad

is referenced, then b will be initialized to 3. HotTub will

initialize it to 0 in this case.

However, it is worth noting that static initialization

that has timing depedency is a well known bad program-

ming practices [1, 70]. It makes programs hard to reason

about and difficult to test. Furthermore, multi-threading

makes the matter worse as foo() in the previous exam-

ple can be executed concurrently. In our experiments,

we carefully examined the static initializers of the exper-

imented systems, and none of them use such practice.

Another potential issue is when there exists a depen-

dence cycle in the class initialization code of multiple

classes, HotTub could lead to inconsistent behavior. For

example, consider the following code snippet:

1 Class A {

2 static int a = 10;

3 static int b = B.b;

4 }

5 Class B {

6 static int a = A.a; // set to 10 in

HotSpot; 0 in HotTub

7 static int b = 12;

8 }

There exists a circular dependency between class A and

B in their static variables. Assume class A begins initial-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 391

ization first. Under HotSpot, it will first initialize A.a to

10 (line 2), and starts to initialize class B because A.b de-

pends on it. When executing line 6, HotSpot detects that

there is a circular dependency, and it will proceed to fin-

ish the initialization of the current class (class B), setting

B.a to 10 and B.b to 12, before continuing the initial-

ization of class A. HotTub, however, will run each static

initializer from beginning to the end before moving on to

the next one. Therefore in this case, it will first initial-

ize class B because B’s initialization finished before A’s

in the initial run. Since class A has not been initialized

yet, HotTub will set B.a to the initial value of A.a, which

is 0, leading to an inconsistent value on B.a. Note that

circular dependence in static initializers is also a known

bad practice, and the JVM specification explicitly warns

about its dangers and discourages its use [25].

File descriptor consistency. HotTub will close the file

descriptors (fd) opened by the application at the reset

phase so that they will not affect the next client run. The

only remaining open fds are those opened by the JVM

itself, mostly for JAR files. HotTub also closes stdin,

stdout, and stderr at the end of an application’s execution

in the reset stage. After the client selects a server JVM

for reuse, the client first sends all fds it has opened to

the server, including stdin, stdout, and stderr, so that the

server can inherit these file descriptors and have the same

same open files as the client.

However, it is possible that a file descriptor opened by

the client conflicts with an open file descriptor used by

the server JVM. For example, if the user invokes Hot-

Tub with the command $ java 4>file, HotTub can-

not reuse a server with fd 4 in use. Therefore when

selecting a server for reuse, HotTub also checks if the

server has open fds that conflict with a client’s redirected

fd, and only reuse servers that do not have such a conflict.

Handling signals and explicit exit. HotTub has to han-

dle signals such as SIGTERM and SIGINT and explicit

exit by the application, otherwise it will lose the tar-

get server process from our pool. If application regis-

ters its own signal handler, HotTub forwards the signal.

Otherwise, HotTub handles signals and application exits

by unwinding the stack of non-daemon Java threads and

killing them. Java “daemon” threads are not normally

cleaned at JVM exit as they simply exit with the pro-

cess. However, for consistency, HotTub must kill these

threads. This sets the JVM to the same state as if the ap-

plication finishes normally. The server then closes con-

nection to client, so the client exits normally. However,

if the application calls _exit in a native library, HotTub

cannot save this server process from being terminated.

4.2 Limitations

HotTub cannot handle SIGKILL. Therefore, if the user

sends kill -9 to a HotTub server we will lose it for

future reuse. However, it is most likely that the user

only wants to kill the client java process, which will not

cause us to lose the server because the server and client

are in different processes.

Unfortunately, this use of separate processes can raise

problems if a user expects the application to run in the

same process as java. For example, YARN terminates

a container by first sending SIGTERM to the process

identified by a PID file, followed by SIGKILL. This

would not cause HotTub to violate consistency, as the

server will be killed and the client subsequently exits on

a closed connection. However, this will disable HotTub

from reusing the server. Therefore we had to modify the

management logic in YARN to disable “kill -9”.

The use of HotTub raises privacy concerns. HotTub

limits reuse to the same Linux user, as cross user reuse

allows a different user to execute code with the privi-

leges of the first user. However, our design still violates

the principle “base the protection mechanisms on per-

mission rather than exclusion” [63]. Although we care-

fully clear and reset data from the prior run, an attacker

could still reconstruct the partial execution path of the

prior run via timing channel. For example, by measur-

ing the execution time of the first time invocation of a

method the attacker can infer whether this method has

been executed, and thus JIT-compiled, in the prior run.

In our current implementation we are not zeroing out the

heap space after GC. This allows malicious users to use

native libraries to read the heap data from prior runs.

HotTub cannot maintain consistency if the application

rewrites the bytecode or compiled code of a class on the

classpath after it has been loaded, and does not write the

modifications back to the class file. In such cases, the

in-memory bytecode or compiled code will be different

from the checksum computed by HotTub. It is difficult to

detect the bytecode rewriting because the application can

always bypass the JVM using a native library to modify

any memory locations in the address space. However,

modifying the bytecode of a loaded class is undefined

behavior as the JVM may be already using a compiled

method, thus the changes to bytecode will have no effect.

In practice we have never encountered such cases. Note

that the HotSpot JVM performs its own form of bytecode

rewriting, which is not a problem for HotTub as this is

only done for performance optimizations and preserves

the original semantic.

HotTub currently only targets the Java Virtual Ma-

chine runtime. Other runtimes such as Microsoft’s Com-

392 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mon Runtime Language (CLR) [51] also exhibits similar

warm-up overhead properties. Similar to class loading

done by the JVM, CLR must load portable executable

(PE) file, which is similar to a Java classfile, that con-

tains metadata required at runtime such as type defini-

tions and member signatures. To the best of our knowl-

edge CLR operates similar to typical JVMs, where an

interpreter will execute bytecode or an intermediate lan-

guage, until a JIT-compiler can produce native code for

the method. Having these properties should exhibit simi-

lar warm-up overhead of class loading and interpretation

in CLR, so implementing HotTub for CLR could poten-

tially produce similar speed-ups.

5 Implementation of HotTub

The client is implemented as a stand-alone program with

800 lines of C code, and the server is implemented on top

of OpenJDK’s HotSpot JVM by adding approximately

800 lines of C/C++ code. We use Unix domain sockets

to connect a client with servers. A nice feature of Unix

domain socket is that it allows processes to send file de-

scriptors. Therefore the client simply send its open file

descriptors, including stdin, stdout, stderr together with

other redirected ones, to the server. This avoids sending

the actual input and output data across processes. Next

we discuss the implementation details of HotTub.

Threads management. HotTub does not use any addi-

tional thread in JVM for its management task. Instead,

it uses the Java main thread. At the end of the applica-

tion execution after the main() method finishes, we do

not terminate the Java main thread. Instead we uses it

to perform the various reset tasks including (1) kill other

Java threads, (2) set all static variables to their default

type value, (3) garbage collect the heap, (4) optionally

unload native libraries.4 It then waits for a client connec-

tion. When it receives another client connection, it reini-

tializes the static variables, sets up the file descriptors

properly, sets any Java properties, sets any environment

variables, and finally invokes the main() method.

Complication arises when the JVM receives a signal

or a thread calls System.exit. In these cases, we

need to use the thread that receives the signal or calls

System.exit to clean up the all Java threads.

Static reinitialization. HotTub handles a few technical

challenges when implementing the replay of class initial-

ization. One challenge is with enumeration classes. For

4Theoretically we should unload native libraries because HotTub

does not verify their consistencies. However we observe that native li-

braries typically do not impose inconsistency issues, e.g., they typically

do not use static data. Therefore we make unloading them optional.

Completion time (s) Unmod. HotTub Speed-up

HDFS read 1MB 2.29 0.08 30.08x

HDFS read 10MB 2.65 0.14 18.04x

HDFS read 100MB 2.33 0.41 5.71x

HDFS read 1GB 7.08 4.26 1.66x

Spark 100GB best 65.2 36.2 1.80x

Spark 100GB median 57.8 35.2 1.64x

Spark 100GB worst 74.8 54.4 1.36x

Spark 3TB best 66.4 41.4 1.60x

Spark 3TB median 98.4 73.6 1.34x

Spark 3TB worst 381.2 330.0 1.16x

Hive 100GB best 29.0 16.2 1.79x

Hive 100GB median 38.4 25.0 1.54x

Hive 100GB worst 206.6 188.4 1.10x

Table 2: Performance improvements by comparing the aver-

age job completion time of an unmodified JVM and HotTub.

For Spark and Hive we report the average times of the queries

with the, best, median, and worst speed-up for each data size.

each class in Java there exists a java.lang.Class ob-

ject that contains information about the class, such as the

methods and fields it contains, so that it can be queried

for reflection inspections. For enumeration classes, this

object contains a mapping of each enumeration constant

string name to its object. Because after reinitialization

there will be new objects allocated for each enumeration

constant, HotTub also has to update the mapping in this

java.lang.Class object in each class.

Another challenge is the JIT-compiler’s inlining of

static final references, i.e., a compiled method could di-

rectly reference the address of a static final object. How-

ever, after reinitialization, a new object will be created so

that the old reference is no longer valid. HotTub solves

this by disabling the inlining of static final references.

6 Performance of HotTub

We conduct a variety of experiments on HotTub to eval-

uate its performance on the following dimensions: (1)

speed-up over an unmodified JVM repeating the same

workload; (2) speed-up when running different work-

loads; (3) management overhead imposed by HotTub

(e.g., reset, client/server management). All experiments

are performed on the same environment and settings as

described in Section 3.

6.1 Speed-up

Table 2 shows HotTub’s speed-up compared with un-

modified HotSpot JVM. We run the same workload five

times on an unmodified JVM and six times on HotTub.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 393

Perf. counter
Executor Client

U H U/H U Rate H Rate Rate Diff. U H U/H U Rate H Rate Rate Diff.

L1-dcache-misses 171M 81M 2.1x 1.839% 1.994% -8.416% 154M 21M 7.3x 6.254% 6.115% 2.218%

L1-icache-misses 40M 13M 3.1x - - - 44M 6M 7.3x - - -

page faults 543K 122K 4.4x - - - 851K 227K 3.7x - - -

dTLB-load-misses 4,431M 3,087M 1.4x 0.080% 0.051% 36.418% 2,999M 375M 8.0x 0.327% 0.295% 9.894%

iTLB-load-misses 704M 228M 3.1x 3.424% 3.294% 3.805% 755M 97M 7.8x 3.359% 3.054% 9.078%

branch-misses 1,158M 597M 1.9x 0.913% 0.646% 29.234% 974M 119M 8.2x 3.270% 2.971% 9.141%

Table 3: Comparing cache, TLB, and branch misses between HotTub (H) and an unmodified JVM (U) when running query 11 of

BigBench on Spark with 100GB data size. The numbers are taken from the average of five runs. All page faults are minor faults.

“Rate diff.” is calculated as (U Rate - H Rate)/(U Rate), which shows the improvement of HotTub on the miss rate. Perf cannot

report the number of L1-icache loads or memory references to know the corresponding rates.

 0

 50

 100

 150

 200

 250

 300

 350

100 3000

T
im

e
(s

)

Scale Factor (GB)

Unmodified
Compiled/native

Interpreter
Class loading

Figure 10: HotTub successfully eliminates warm-up over-

head. Unmodified query runtime shown against a breakdown of

a query with reuse. There are 10 queries run on 2 scale factors

for BigBench on Spark. Interpreter and class loading overhead

are so low they are unnoticeable making up the difference.

We compare the average runtime of the five unmodified

runs with the five reuse HotTub runs, excluding the ini-

tial warm-up run. For Spark and Hive, we run the same

10 queries that we used in our study. Note that in this ex-

periment the systems we run are unmodified, unlike the

ones we used in Section 3 that had to be instrumented.

Therefore the unmodified systems’ runtimes are slightly

faster than the ones in Section 3.

The results shows that HotTub significantly speeds up

the total execution time. For example, HotTub reduces

the average job completion time of the Spark query with

the highest speed-up by 29 seconds on 100GB data, and

can speed-up HDFS 1MB read by a factor of 30.08.

Amongst nearly 200 pairs of trials, a job running in a

reused HotTub JVM always completed faster compared

to an unmodified JVM.

Enabling our performance counters, we observe that

indeed HotTub eliminates the warm-up overhead. In all

the experiments, the server JVM spends less than 1%

of the execution time in class loading and interpreter.

Figure 10 shows Spark queries running on HotTub with

nearly zero warm-up overhead.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 2 4 6 8 10 12 14 16 18 20
R

un
tim

e
(m

s)
Iteration

Figure 11: HotTub iterative runtime improvement. A Sequen-

tial 1MB HDFS read performed repeatedly by HotTub. Itera-

tion 0 is the application runtime of a new JVM, while iteration

N is the Nth reuse of this JVM.

Figure 11 shows how the runtime decreases over the

number of reuses. While the significant speedup comes

from the first time reuse, it also shows that for this par-

ticular short running job the JVM will not be completely

warm by the end of the first run and require multiple it-

erations before reaching peak performance. Figure 11

also shows that it takes 12 iterations before the JVM be-

comes fully warmed-up. This further suggests that short

running jobs cannot even reach max JVM performance

by the end of its execution, which further emphasizes the

necessity of reusing JVMs on short jobs. Long running

jobs, however, will likely fully warm up the JVM before

their execution ends on first run.

To understand HotTub’s performance behavior in de-

tail, we further compare the hardware performance coun-

ters. Table 3 shows the result. HotTub already signifi-

cantly reduces the number of memory accesses because

the classes are already loaded and bytecode compiled.

For the Spark executor there are almost half as many

cache references reported by perf and the Spark client

shows an even higher reduction, up to 9x. The reduction

in accesses appears large, but is consistent with the 1.74x

speed-up experienced by running this query on HotTub.

394 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Testing

q11 q14 q15 q09 q01

T
ra

in
in

g
q11 1.78 1.67 1.51 1.49 1.55

q14 1.64 1.65 1.47 1.49 1.50

q15 1.72 1.67 1.62 1.54 1.62

q09 1.57 1.59 1.55 1.53 1.53

q01 1.76 1.74 1.65 1.54 1.74

Table 4: Speed-up sensitivity to workload differences using

the five fastest BigBench queries on Spark with 100GB data.

It further reduces the number of various cache misses.

The reduction comes from multiple sources. First, Hot-

Tub results in less memory accesses and smaller foot-

print because some data is no longer needed to be ac-

cessed (e.g., bytecode that are already compiled will not

be accessed). Second, because the applications run in the

same JVM process, warm data does not need to be real-

located between the runs, therefore the cached data can

be reused and the number of cold misses get reduced.

The OS also does not need to flush the TLB between

the runs. Finally, the reduction of instruction cache and

iTLB misses is likely afforded by eliminating interpreter

execution and JIT-compiler’s instruction cache usage op-

timization. For example, JIT-compiler will arrange the

basic blocks in the order of frequently taken branches.

The numbers in Table 3 also show that HotTub reduces

the accesses and misses in the Spark client much more

than the executor. This is likely due to the nature of the

work each component does. The executor is processing

large amounts of data, taking the majority of time and

memory references, even in a reused run, while the client

performs much less work. Since the warm-up overhead

reduction is constant, it follows that the executor should

be less affected, while the client will be heavily affected

as it spent more of its time performing warm-up.

6.2 Sensitivity to Difference in Workload

Table 4 compares HotTub’s performance sensitivity to

the workload differences between training and testing

runs. We warm up the JVM by repeatedly run a sin-

gle “training query” four times, and apply it once on the

“testing query”. Note that we cannot apply the test run

more than once for this experiment because the JVM will

then be warming up with the testing query. We repeat this

process five times and take the average runtime of the

testing queries, and then report the speed-up of this av-

erage runtime over the runtime of unmodified JVM run-

ning the testing query. The result shows that, for our

tests, HotTub can achieve at least 1.47 speed-up.

Query 11 and 1 observe the largest speed-up when

the training and testing queries are the same. The other

queries observe best speed-up when running on a JVM

trained from a different query. This is due to the large

variance observed in our experiment. All of the mea-

sured runtime of testing queries fall into the range of

(mean − variance,mean+ variance), where mean and

variance are of the five measured runs where the train-

ing and testing queries are the same. This also indicates

that different queries use many similar classes and code.

6.3 Management Overhead

Compared with an unmodified JVM, HotTub adds over-

head in three phases: when a client connects to a server,

when the server runs class initialization, and when the

server resets the static data. The first two are on the criti-

cal path of the application latency while the third merely

affects how early this JVM can be reused again. The

overhead for connecting to a server when there are no

servers in the pool is 81ms. Once servers are available

for re-use, the connection overhead drops to 300µs. The

overhead added to the critical path from class reinitial-

ization is, on average, 350ms for Hive on Tez contain-

ers, 400ms for Spark executors, and 720ms for Spark

clients. The time taken to reset static data is dominated

by garbage collection and only takes no more than 200ms

because the application’s stack frames have ended, thus

there are few roots from which GC has to search from.

Root objects are objects assumed to be reachable, such

as static variables or variables in live stack frames.

HotTub also adds overhead on the memory usage of

the system as the server processes remain alive after the

application finishes. The number of servers to be left

alive on a node can be configured by the user, for our

evaluation we arbitrarily chose 5. An unused server takes

up approximately 1GB of memory.

7 Related Work

We discuss prior studies on the performance of the JVM

and data-parallel distributed systems. Commercial and

industry solutions have been discussed in Section 3.5.

Our work distinguishes itself as it the first to study the

performance implications of JVM warm-up overhead on

data-parallel systems.

Performance of garbage collection (GC). Recently, a

few proposals are made to improve the GC performance

for big data systems [24, 47, 48, 59]. Gog et al. ob-

serve that objects often have clearly defined lifetimes in

big data analytics systems [24]. Therefore they propose

a region-based memory management [78] system where

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 395

developers can annotate the objects with the same life-

time. Maas et al. [47, 48] observe that different JVMs

running the same job often pause to garbage collect at

the same time given the homogeneous nature of their ex-

ecutions, therefore they propose a system named Tau-

rus that coordinates the GC pauses among different JVM

processes. Our work is complementary as we focus on

studying the JVM warm-up overhead, while Broom and

Taurus only focused on GC. HotTub can also be inte-

grated together with Broom and Taurs to provide com-

prehensive speed-up of the JVM runtime. Comparing

the design of Taurus and HotTub also reveals interest-

ing trade-offs. Taurus does not modify the JVM itself,

therefore users will have less reliability concerns in de-

ployment. However, its capability to control the JVM

is restricted to the interfaces JVM exposed. Taurus re-

quires the JVMs in the network to coordinate via a con-

sensus protocol, whereas HotTub uses a simpler design

that makes it standalone and does not require network

communication. Consequently HotTub can also benefit

non-distributed applications.

Other papers studied GC performance on non-

distributed workload. Appel [8] uses theoretical anal-

ysis to argue that when physical memory is abundant,

GC can achieve high performance comparable to other

memory management techniques. Hertz et al. further

validated this via more thorough experimental evalua-

tion [30], but they also found that the performance of GC

deteriorate quickly when free memory becomes scarce.

Others have compared the performance of general GC al-

gorithms (e.g., generational GC) versus customized ones

and concluded that general algorithms achieve good per-

formance in most cases [11, 14, 85].

Performance studies on data-parallel systems. A

handful of works have thoroughly analyzed the perfor-

mance of data-parallel systems [44, 46, 55, 57]. However

they did not study the JVM performance impact. Ouster-

hout et al. comprehensively studied the performance of

Spark [55], and revealed that network and disk I/O are no

longer the bottleneck. Interestingly, they found that CPU

is often the bottleneck, and a large amount of CPU time

is spent in data deserialization and decompression. How-

ever, because they only analyzed Spark itself, they did

not further drill down to provide a low level understand-

ing of such high CPU time. Using the same workload,

our study suggests that the class loading and bytecode

interpretation are likely the main cause of deserialization

and decompression. Pavlo et al. [57] compared Hadoop

MapReduce with DBMS, and found that data shuffling

is often the bottleneck for MapReduce. Jiang et al. [44]

analyzed the performance of Hadoop MapReduce. Mc-

Sherry et al. [50] surveyed the existing literature on data-

parallel systems and their experimental workload, and

concluded that many of the workloads use small data in-

put sizes that can be well handled by a single threaded

implementation. This has similar implications as the

other studies on real-world analytic jobs where most jobs

are short running because of the small input size [82],

where the JVM warm-up time is even more significant.

Other works on improving data-parallel systems per-

formance focused on scheduling [2, 4, 31, 38, 56, 84],

high performance interconnect [17, 19, 40, 45, 81], op-

timization for multi-cores [16, 49, 60], and removing re-

dundant operations [61]. Our work is complementary as

it focuses on JVM-level improvements.

8 Concluding Remarks

We started this project with the curiosity to understand

the JVM’s overhead on data-parallel systems, driven

by the observation that systems software is increasingly

built on top of it. Enabled by non-trivial JVM instrumen-

tations, we observed the warm-up overhead, and were

surprised by the extent of the problem. We then pivoted

our focus on to the warm-up overhead by first presenting

an in-depth analysis on three real-world systems. Our

result shows the warm-up overhead is significant, and

can be exacerbated as jobs become more parallelized and

short running. We further designed HotTub, a drop-in re-

placement of the JVM that can eliminate warm-up over-

head by amortizing it over the lifetime of a host. Eval-

uation shows it can speed-up systems like HDFS, Hive,

and Spark, with a best case speed-up of over 30.08X.

Acknowledgements

We greatly appreciate the insightful feedbacks from the

anonymous reviewers and our shepherd Andrea Arpaci-

Dusseau. We thank Yu Luo, Serhei Makarov, Michael

Stumm, Jenny Ren, Kirk Rodrigues, Guangji Xu, Yon-

gle Zhang, and Xu Zhao for the useful and thought stim-

ulating discussions. We thank Yu Luo for setting up and

maintaining the server cluster environment used in our

experiments. His help was invaluable. This research is

supported by NSERC Discovery grant, NetApp Faculty

Fellowship, and an NSERC USRA award. Hailong Sun

is supported by National Key Research and Development

Program of China (2016YFB1000804)and National Nat-

ural Science Foundation of China (61370057).

396 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A case against static initializers. http://

sensualjava.blogspot.com/2008/12/case-

against-static-initializers.html.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N.

Vijaykumar. Tarazu: Optimizing mapreduce on hetero-

geneous clusters. In Proceedings of the Seventeenth In-

ternational Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS

XVII, 2012.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang,

D. Borthakur, S. Kandula, S. Shenker, and I. Sto-

ica. Pacman: Coordinated memory caching for parallel

jobs. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation,

NSDI’12, 2012.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-

ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers

in map-reduce clusters using mantri. In Proceedings of

the 9th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI ’10, 2010.

[5] Android ART Just-In-Time (JIT) Compiler. https://

source.android.com/devices/tech/

dalvik/jit-compiler.html.

[6] Android runtime (ART). https://source.

android.com/devices/tech/dalvik/index.

html.

[7] Apache Geronimo DayTrader Benchmark. http://

geronimo.apache.org/GMOxDOC20/

daytrader.html.

[8] A. W. Appel. Garbage collection can be faster than stack

allocation. Inf. Process. Lett., 25(4).

[9] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,

and A. Rowstron. Scale-up vs scale-out for hadoop: Time

to rethink? In Proceedings of the 4th Annual Symposium

on Cloud Computing, SOCC ’13, 2013.

[10] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,

and M. Zaharia. Spark SQL: Relational data processing in

spark. In Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’15, 2015.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsid-

ering custom memory allocation. In Proceedings of the

17th ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications, OOP-

SLA ’02, 2002.

[12] Big SQL 3.0: Hadoop-DS benchmark-Performance

isn’t everything. https://developer.ibm.com/

hadoop/blog/2014/12/02/big-sql-3-0-

hadoop-ds-benchmark-performance-isnt-

everything/.

[13] M. K. A. B. V. Bittorf, T. Bobrovytsky, C. C. A. C. J.

Erickson, M. G. D. Hecht, M. J. I. J. L. Kuff, D. K. A.

Leblang, N. L. I. P. H. Robinson, D. R. S. Rus, J. R. D.

T. S. Wanderman, and M. M. Yoder. Impala: A modern,

open-source sql engine for hadoop. In Proceedings of

the 7th Biennial Conference on Innovative Data Systems

Research, CIDR ’15, 2015.

[14] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths

and realities: The performance impact of garbage collec-

tion. In Proceedings of the Joint International Confer-

ence on Measurement and Modeling of Computer Sys-

tems, SIGMETRICS ’04/Performance ’04, 2004.

[15] Cassandra. http://cassandra.apache.org.

[16] R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: Op-

timizing resource usages of data-parallel applications on

multicore with tiling. In Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compi-

lation Techniques, PACT ’10, 2010.

[17] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy, and R. Sears. Mapreduce online. In Pro-

ceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, NSDI ’10, 2010.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM Symposium on

Cloud Computing, SoCC ’10, 2010.

[19] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Cam-

doop: Exploiting in-network aggregation for big data ap-

plications. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation, NSDI

’12, 2012.

[20] Excelsior JET - Java Virtual Machine (JVM) and Native

Code Compiler. https://www.excelsiorjet.

com/.

[21] Exciting performance improvements on the horizon

for spark sql. https://databricks.com/

blog/2014/06/02/exciting-performance-

improvements-on-the-horizon-for-

spark-sql.html.

[22] S. J. Fink and F. Qian. Design, implementation and eval-

uation of adaptive recompilation with on-stack replace-

ment. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed

and Runtime Optimization, CGO ’03, 2003.

[23] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess,

A. Crolotte, and H.-A. Jacobsen. Bigbench: Towards

an industry standard benchmark for big data analyt-

ics. In Proceedings of the 2013 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’13, 2013.

[24] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytin-

iotis, G. Ramalingam, M. Costa, D. G. Murray, S. Hand,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 397

http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
http://cassandra.apache.org
https://www.excelsiorjet.com/
https://www.excelsiorjet.com/
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html

and M. Isard. Broom: Sweeping out garbage collection

from big data systems. In 15th Workshop on Hot Topics

in Operating Systems, HotOS ’15, 2015.

[25] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buck-

ley. The Java R©Virtual Machine specification - Java SE

8 Edition. https://docs.oracle.com/javase/

specs/jvms/se8/html/.

[26] C. Gray and D. Cheriton. Leases: An efficient fault-

tolerant mechanism for distributed file cache consistency.

In Proceedings of the Twelfth ACM Symposium on Oper-

ating Systems Principles, SOSP ’89, 1989.

[27] Hadoop. https://hadoop.apache.org.

[28] Hadoop Distributed File System (HDFS). http://

hadoop.apache.org/docs/stable/hdfs_

design.html.

[29] Hbase. http://hbase.apache.org/.

[30] M. Hertz and E. D. Berger. Quantifying the performance

of garbage collection vs. explicit memory management.

In Proceedings of the 20th Annual ACM SIGPLAN Con-

ference on Object-oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’05, 2005.

[31] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-

form for fine-grained resource sharing in the data center.

In Proceedings of the 8th USENIX Conference on Net-

worked Systems Design and Implementation, NSDI ’11,

2011.

[32] Hive. http://hive.apache.org.

[33] U. Hölzle and D. Ungar. A third-generation self im-

plementation: Reconciling responsiveness with perfor-

mance. In Proceedings of the Ninth Annual Confer-

ence on Object-oriented Programming Systems, Lan-

guage, and Applications, OOPSLA ’94, 1994.

[34] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. Hibench:

A representative and comprehensive hadoop benchmark

suite. In Proc. ICDE Workshops, 2010.

[35] hypertable: why we chose CPP over Java. https://

code.google.com/p/hypertable/wiki/

WhyWeChoseCppOverJava.

[36] Impala – Cloudera. http://www.cloudera.com/

content/www/en-us/products/apache-

hadoop/impala.html.

[37] Interactive query with apache hive on apache

tez. http://hortonworks.com/hadoop-

tutorial/supercharging-interactive-

queries-hive-tez/.

[38] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Tal-

war, and A. Goldberg. Quincy: Fair scheduling for dis-

tributed computing clusters. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Princi-

ples, SOSP ’09, 2009.

[39] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma,

O. Gohda, T. Inagaki, A. Koseki, K. Ogata, M. Kawahito,

T. Yasue, T. Ogasawara, T. Onodera, H. Komatsu, and

T. Nakatani. Effectiveness of cross-platform optimiza-

tions for a java just-in-time compiler. In Proceedings of

the 18th Annual ACM SIGPLAN Conference on Object-

oriented Programing, Systems, Languages, and Applica-

tions, OOPSLA ’03, 2003.

[40] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,

H. Wang, H. Subramoni, C. Murthy, and D. K. Panda.

High performance rdma-based design of hdfs over infini-

band. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and

Analysis, SC ’12, 2012.

[41] Quora: In what cases is Java faster than C. https://

www.quora.com/In-what-cases-is-Java-

faster-if-at-all-than-C.

[42] Quora: In what cases is Java slower than C by a big

margin. https://www.quora.com/In-what-

cases-is-Java-slower-than-C-by-a-big-

margin.

[43] StackOverflow: Why do people still say Java is slow?

http://programmers.stackexchange.com/

questions/368/why-do-people-still-

say-java-is-slow.

[44] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance

of mapreduce: An in-depth study. Proc. VLDB Endow.,

3(1-2).

[45] MapReduce-4049: Plugin for generic shuffle ser-

vice. https://issues.apache.org/jira/

browse/MAPREDUCE-4049.

[46] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon.

Parallel data processing with mapreduce: A survey. SIG-

MOD Rec., 40(4).

[47] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz.

Taurus: A Holistic Language Runtime System for Co-

ordinating Distributed Managed-Language Applications.

In Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’16, 2016.

[48] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz.

Trash day: Coordinating garbage collection in distributed

systems. In 15th Workshop on Hot Topics in Operating

Systems, HotOS ’15, 2015.

[49] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing

mapreduce for multicore architectures. Technical report,

Massachusetts Institute of Technology, 2010.

[50] F. McSherry, M. Isard, and D. G. Murray. Scalability!

But at what COST? In 15th Workshop on Hot Topics in

Operating Systems, HotOS ’15, 2015.

[51] Microsoft Common Language Runtime (CLR).

https://msdn.microsoft.com/en-us/

library/8bs2ecf4(v=vs.110).aspx.

398 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.oracle.com/javase/specs/jvms/se8/html/
https://docs.oracle.com/javase/specs/jvms/se8/html/
https://hadoop.apache.org
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hbase.apache.org/
http://hive.apache.org
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx

[52] Nailgun: Insanely fast Java. http://

www.martiansoftware.com/nailgun/

background.html.

[53] New benchmarks for sql-on-hadoop: Impala 1.4 widens

the performance gap. http://blog.cloudera.

com/blog/2014/09/new-benchmarks-for-

sql-on-hadoop-impala-1-4-widens-the-

performance-gap/.

[54] New benchmarks for sql-on-hadoop: Impala 1.4 widens

the performance gap. http://blog.cloudera.

com/blog/2014/09/new-benchmarks-for-

sql-on-hadoop-impala-1-4-widens-the-

performance-gap/.

[55] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and

B.-G. Chun. Making sense of performance in data an-

alytics frameworks. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implemen-

tation, NSDI ’15, 2015.

[56] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.

Sparrow: Distributed, low latency scheduling. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Oper-

ating Systems Principles, SOSP ’13, 2013.

[57] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. De-

Witt, S. Madden, and M. Stonebraker. A comparison of

approaches to large-scale data analysis. In Proceedings

of the 2009 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’09, 2009.

[58] Performance comparison -

c++/java/python/ruby/jython/jruby/groovy. http://

blog.dhananjaynene.com/2008/07/

performance-comparison-c-java-python-

ruby-jython-jruby-groovy/.

[59] Project tungsten: Bringing spark closer to bare metal.

https://databricks.com/blog/2015/04/

28/project-tungsten-bringing-spark-

closer-to-bare-metal.html.

[60] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

and C. Kozyrakis. Evaluating mapreduce for multi-

core and multiprocessor systems. In Proceedings of the

2007 IEEE 13th International Symposium on High Per-

formance Computer Architecture, HPCA ’07, 2007.

[61] A. Rasmussen, V. T. Lam, M. Conley, G. Porter,

R. Kapoor, and A. Vahdat. Themis: An i/o-efficient

mapreduce. In Proceedings of the Third ACM Symposium

on Cloud Computing, SoCC ’12, 2012.

[62] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,

and C. Curino. Apache tez: A unifying framework

for modeling and building data processing applications.

In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD

’15, 2015.

[63] J. H. Saltzer. Protection and the control of information

sharing in Multics. Commun. ACM, 17(7).

[64] Spark. http://spark.apache.org.

[65] Spark will offer interactive querying of live data.

https://www.linux.com/news/spark-20-

will-offer-interactive-querying-live-

data.

[66] Spark SQL performance test. https://github.

com/databricks/spark-sql-perf.

[67] Specjbb2015. https://www.spec.org/

jbb2015/.

[68] SPECjvm2008. https://www.spec.org/

jvm2008/.

[69] StackOverflow: Is Java really slow? http://

stackoverflow.com/questions/2163411/

is-java-really-slow.

[70] Static initializers will murder your family. http://

meowni.ca/posts/static-initializers/.

[71] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,

M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.

Overview of the IBM Java Just-in-time Compiler. IBM

Syst. J., 39(1).

[72] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. Design and evaluation of dynamic optimiza-

tions for a java just-in-time compiler. ACM Trans. Pro-

gram. Lang. Syst., 27(4).

[73] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. A dynamic optimization framework for a

java just-in-time compiler. In Proceedings of the 16th

ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, OOPSLA

’01, 2001.

[74] T. Suganuma, T. Yasue, and T. Nakatani. A region-based

compilation technique for a java just-in-time compiler.

In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation,

PLDI ’03, 2003.

[75] Spark and Tez are successors of MapReduce. http://

blogs.gartner.com/nick-heudecker/

spark-tez-highlight-mapreduce-

problems/.

[76] Tez. https://tez.apache.org/.

[77] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:

A warehousing solution over a map-reduce framework.

Proc. VLDB Endow., 2(2).

[78] M. Tofte and J.-P. Talpin. Region-based memory manage-

ment. Information and Computation, 132(2):109 – 176,

1997.

[79] Transaction Processing Performance Council (TPC)

BenchmarkTMDS (TPC-DS): The New Decision Sup-

port Benchmark Standard. http://www.tpc.org/

tpcds.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 399

http://www.martiansoftware.com/nailgun/background.html
http://www.martiansoftware.com/nailgun/background.html
http://www.martiansoftware.com/nailgun/background.html
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://spark.apache.org
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://meowni.ca/posts/static-initializers/
http://meowni.ca/posts/static-initializers/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
https://tez.apache.org/
http://www.tpc.org/tpcds
http://www.tpc.org/tpcds

[80] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,

W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,

K. Zhan, X. Li, and B. Qiu. Bigdatabench: A big data

benchmark suite from internet services. In Proceedings

of the 2014 IEEE 20th International Symposium on High

Performance Computer Architecture, 2014.

[81] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal.

Hadoop acceleration through network levitated merge. In

Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis, SC ’11, 2011.

[82] What do real-life apache hadoop workloads look like?

http://blog.cloudera.com/blog/2012/09/

what-do-real-life-hadoop-workloads-

look-like/.

[83] Why Java will always be slower than C++. http://

www.jelovic.com/articles/why_java_is_

slow.htm.

[84] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and

I. Stoica. Improving mapreduce performance in heteroge-

neous environments. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI ’08, 2008.

[85] B. Zorn. The measured cost of conservative garbage col-

lection. Software – Practice & Experience, 23(7).

400 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://www.jelovic.com/articles/why_java_is_slow.htm
http://www.jelovic.com/articles/why_java_is_slow.htm
http://www.jelovic.com/articles/why_java_is_slow.htm

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi1, Mosharaf Chowdhury2, Jack Kosaian2, Ion Stoica1, Kannan Ramchandran1

1UC Berkeley 2University of Michigan

Abstract
Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the I/O
performance demands. These systems routinely face the
challenges of popularity skew, background load imbal-
ance, and server failures, which result in severe load im-
balance across servers and degraded I/O performance.
Selective replication is a commonly used technique to
tackle these challenges, where the number of cached
replicas of an object is proportional to its popularity. In
this paper, we explore an alternative approach using era-
sure coding.

EC-Cache is a load-balanced, low latency cluster
cache that uses online erasure coding to overcome the
limitations of selective replication. EC-Cache employs
erasure coding by: (i) splitting and erasure coding in-
dividual objects during writes, and (ii) late binding,
wherein obtaining any k out of (k + r) splits of an ob-
ject are sufficient, during reads. As compared to selective
replication, EC-Cache improves load balancing by more
than 3× and reduces the median and tail read latencies
by more than 2×, while using the same amount of mem-
ory. EC-Cache does so using 10% additional bandwidth
and a small increase in the amount of stored metadata.
The benefits offered by EC-Cache are further amplified
in the presence of background network load imbalance
and server failures.

1 Introduction
In recent years, in-memory solutions [12, 25, 56, 87, 89]
have gradually replaced disk-based solutions [3, 29, 37]
as the primary toolchain for high-performance data an-
alytics. The root cause behind the transition is simple:
in-memory I/O is orders of magnitude faster than that
involving disks. Since the total amount of memory is
significantly smaller than that of disks, the design of in-
memory solutions boils down to maximizing the num-
ber of requests that can be efficiently served from mem-
ory. The primary challenges in this regard are: (i) Ju-
diciously determining which data items to cache and
which ones to evict. This issue has been well studied in
past work [23, 35, 56, 67]. (ii) Increasing the effective
memory capacity to be able to cache more data. Sam-

Client

read A

Existing
Solutions

Object A of size A

Client

read A

EC-Store

Any n splits from A1, … An+k
each of size A/n

(a)

High-level R/W

Client

read A

Existing
Solutions

Object A of size A

Client

read A

EC-Cache

Any k splits from A1, … Ak+r
each of size A/k

(b)

Figure 1: EC-Cache splits individual objects and encodes them
using an erasure code to enable read parallelism and late bind-
ing during individual reads.

pling [12, 16, 52] and compression [15, 27, 53, 79] are
some of the popular approaches employed to increase the
effective memory capacity. (iii) Ensuring good I/O per-
formance for the cached data in the presence of skewed
popularity, background load imbalance, and failures.

Typically, the popularity of objects in cluster caches
are heavily skewed [20, 47], and this creates signifi-
cant load imbalance across the storage servers in the
cluster [20, 48]. The load imbalance necessitates over-
provisioning in order to accommodate the peaks in the
load distribution, and it also adversely affects the I/O
performance. Consequently, load imbalance is one of
the key challenges toward improving the performance of
cluster caches. In addition to the skew in popularity, mas-
sive load fluctuations in the infrastructure due to back-
ground activities [33] and failures [70] can result in se-
vere performance degradation.

A popular approach employed to address the afore-
mentioned challenges is selective replication, which
replicates objects based on their popularity [20, 63]; that
is, it creates more replicas for hot objects. However,
due to the limited amount of available memory, selective
replication falls short in practice in terms of both load
balancing and I/O performance [48].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 401

While typical caches used in web-services and key-
value stores cache small-sized objects in the range of a
few bytes to few kilobytes, data-intensive cluster caches
used for data analytics [23, 56] must store larger objects
in the range of tens to hundreds of megabytes (§3). This
significant increase in object sizes allows us to take a
novel approach, using erasure coding, toward load bal-
ancing and improving I/O performance in cluster caches.

We present EC-Cache, an in-memory object cache that
leverages online erasure coding – that is, data is never
stored in a decoded form – to provide better load balanc-
ing and I/O performance (§4). We show both analytically
(§5) and via extensive system evaluation (§6) that EC-
Cache can outperform the optimal selective replication
mechanism while using the same amount of memory.

EC-Cache employs erasure coding and its properties
toward load balancing and improving I/O performance
in the following manner.

Self-Coding and Load Spreading: A (k, r) erasure
code encodes k data units and generates r parity units
such that any k of the (k + r) total units are sufficient to
decode the original k data units.1 Erasure coding is tradi-
tionally employed in disk-based systems to provide fault-
tolerance in a storage-efficient manner. In many such sys-
tems [26, 46, 61, 69], erasure coding is applied across ob-
jects: k objects are encoded to generate r additional ob-
jects. Read requests to an object are served from the orig-
inal object unless it is missing. If the object is missing,
it is reconstructed using the parities. In such a configura-
tion, reconstruction using parities incurs huge bandwidth
overheads [70]; hence, coding across objects is not useful
for load balancing or improving I/O performance. In con-
trast, EC-Cache divides individual objects into k splits
and creates r additional parity splits. Read requests to an
object are served by reading any k of the (k+r) splits and
decoding them to recover the desired object (Figure 1).
This approach provides multiple benefits. First, spread-
ing the load of read requests across both data and parity
splits results in better load balancing under skewed pop-
ularity. Second, reading/writing in parallel from multiple
splits provides better I/O performance. Third, decoding
the object using the parities does not incur any additional
bandwidth overhead.

Late Binding: Under self-coding, an object can be re-
constructed from any k of its (k+r) splits. This allows us
to leverage the power of choices: instead of reading ex-
actly k splits, we read (k+ ∆) splits (where ∆ ≤ r) and
wait for the reading of any k splits to complete. This late
binding makes EC-Cache resilient to background load
imbalance and unforeseen stragglers that are common
in large clusters [24, 91], and it plays a critical role in

1Not all erasure codes have this property, but for simplicity, we do
not make this distinction.

taming tail latencies. Note that, while employing object
splitting (that is, dividing each object into splits) together
with selective replication can provide the benefits of load
balancing and opportunities for read parallelism, this ap-
proach cannot exploit late binding without incurring high
memory and bandwidth overheads (§ 2.3).

We have implemented EC-Cache over Alluxio [56] us-
ing Intel’s ISA-L library [9]. It can be used as a caching
layer on top of object stores such as Amazon S3 [2],
Windows Azure Storage [30], and OpenStack Swift [11]
where compute and storage are not collocated. It can also
be used in front of cluster file systems such as HDFS
[29], GFS [42], and Cosmos [31] by considering each
block of a distributed file as an individual object.

We evaluated EC-Cache by deploying it on Amazon
EC2 using synthetic workloads and production workload
traces from a 3000-machine cluster at Facebook. EC-
Cache improves the median and tail latencies for reads
by more than 2× in comparison to the optimal selec-
tive replication scheme; it improves load balancing by
more than 3×,2 while using the same amount of mem-
ory. EC-Cache’s latency reductions increase as objects
grow larger: for example, 1.33× for 1 MB objects and
5.5× for 100 MB objects. We note that using k = 10
and ∆ = 1 suffices to avail these benefits. In other words,
a bandwidth overhead of at most 10% can lead to more
than 50% reduction in the median and tail latencies. EC-
Cache outperforms selective replication by even higher
margins in the presence of an imbalance in the back-
ground network load and in the presence of server fail-
ures. Finally, EC-Cache performs well over a wide range
of parameter settings.

Despite its effectiveness, our current implementation
of EC-Cache offers advantages only for objects greater
than 1 MB due to the overhead of creating (k + ∆) par-
allel TCP connections for each read. However, small ob-
jects form a negligible fraction of the footprint in many
data-intensive workloads (§3). Consequently, EC-Cache
simply uses selective replication for objects smaller than
this threshold to minimize the overhead. Furthermore,
EC-Cache primarily targets immutable objects, which is
a popular model in many data analytics systems and ob-
ject stores. Workloads with frequent, in-place updates are
not suitable for EC-Cache because they would require
updating all the parity splits of the updated objects.

Finally, we note that erasure codes are gaining increas-
ing popularity in disk-based storage systems for provid-
ing fault tolerance in a space-efficient manner [26, 46,
61, 69]. EC-Cache demonstrates the effectiveness of era-
sure coding for a new setting – in-memory object caching
– and toward new goals – improving load balancing and
latency characteristics.

2This evaluation is in terms of the percent imbalance metric de-
scribed in Section 6.

402 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Background and Motivation
This section provides a brief overview of object stores
(e.g., Amazon S3 [2], Windows Azure Storage [30],
OpenStack Swift [11], and Ceph [86]) and in-memory
caching solutions (e.g., Tachyon/Alluxio [56]) used in
modern data-intensive clusters. We discuss the tradeoffs
and challenges faced therein, followed by the opportuni-
ties for improvements over the state-of-the-art.

2.1 Cluster Caching for Object Stores

Cloud object stores [2, 11, 30, 86] provide a simple
PUT/GET interface to store and retrieve arbitrary ob-
jects at an attractive price point. In recent years, due to
the rapid increase in datacenter bandwidth [4, 77], cloud
tenants are increasingly relying on these object stores
as their primary storage solutions instead of compute-
collocated cluster file systems such as HDFS [29]. For
example, Netflix has been exclusively using Amazon S3
since 2013 [7]. Separating storage from compute in this
manner mitigates disk locality challenges [62]. However,
existing object stores can rarely offer end-to-end non-
blocking connectivity without storage-side disks becom-
ing a bottleneck. As a result, in-memory storage systems
[56] are often used for caching in the compute side.

EC-Cache primarily targets storage-side caching to
provide high I/O performance while mitigating the need
for compute-side caching. Note that, in the presence of
very high-speed networks, it can also be used in environ-
ments where compute and storage are collocated.

2.2 Challenges in Object Caching

In-memory object caches face unique tradeoffs and chal-
lenges due to workload variations and dynamic infras-
tructure in large-scale deployments.

Popularity Skew Recent studies from production clus-
ters show that the popularity of objects in cluster caches
are heavily skewed [20, 47], which creates significant
load imbalance across storage servers in the cluster.
This hurts I/O performance and also requires over-
provisioning the cluster to accommodate the peaks in
the load distribution. Unsurprisingly, load imbalance has
been reported to be one of the key challenges toward im-
proving the performance of cluster caches [45, 48].

Background Load Imbalance Across the Infrastruc-
ture In addition to skews in object popularity, network
interfaces – and I/O subsystems in general – through-
out the cluster experience massive load fluctuations due
to background activities [33]. Predicting and reacting to
these variations in time is difficult. Even with selective
replication, performance can deteriorate significantly if
the source of an object suddenly becomes a hotspot
(§6.3).

Tradeoff Between Memory Efficiency, Fault Toler-
ance, and I/O Performance In caches, fault tolerance
and I/O performance are inherently tied together since
failures result in disk I/O activities, which, in turn, sig-
nificantly increases latency. Given that memory is a con-
strained and expensive resource, existing solutions either
sacrifice fault tolerance (that is, no redundancy) to in-
crease memory efficiency [56, 89], or incur high mem-
ory overheads (e.g., replication) to provide fault toler-
ance [81, 90].

2.3 Potential for Benefits

Due to the challenges of popularity skew, background
load imbalance, and failures, maintaining a single copy
of each object in memory is often insufficient for acheiv-
ing high performance. Replication schemes that treat all
objects alike do not perform well under popularity skew
as they waste memory by replicating less-popular ob-
jects. Selective replication [20, 45, 63], where additional
replicas of hot objects are cached, only provides coarse-
grained support: each replica incurs an additional mem-
ory overhead of 1×. Selective replication has been shown
to fall short in terms of both load balancing and I/O per-
formance [48] (§6.2).

Selective replication along with object splitting (all
splits of the same object have the same replication fac-
tor) does not solve the problem either. While such an
object-splitting approach provides better load balancing
and opportunities for read parallelism, it cannot exploit
late binding without incurring high memory and band-
width overheads. As shown in Section 6.6.2, contacting
multiple servers to read the splits severely affects tail la-
tencies, and late binding is necessary to rein them in.
Hence, under selective replication with object splitting,
each object will need at least 2× memory overhead, and,
in order to make use of late binding, one must read mul-
tiple copies of each of the splits of the object, resulting
in at least 2× bandwidth overhead.

3 Analysis of Production Workload
Object stores are gaining popularity as the primary data
storage solution for data analytics pipelines (e.g., at Net-
flix [6, 7]). As EC-Cache is designed to cater to these
use cases, in order to obtain a better understanding of
the requirements, we analyzed a trace with millions of
reads in a 3000-machine analytics cluster at Facebook.
The trace was collected in October 2010, and consists
of a mix of batch and interactive MapReduce analytics
jobs generated from Hive queries. The block size for the
HDFS installation in this cluster was 256 MB, and the
corresponding network had a 10 : 1 oversubscription ra-
tio.

Our goal in analyzing these traces is to highlight char-
acteristics – distributions of object sizes, their relative

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 403

0

0.25

0.5

0.75

1

1 10 100 1000

Fr
ac

tio
n

of
 O

bj
ec

ts

Object Size (MB)

0

0.25

0.5

0.75

1

1 10 100 1000

Fr
ac

tio
n

of
 B

yt
es

Object Size (MB)

(a) Object size

0

0.25

0.5

0.75

1

1 10 100 1000

Fr
ac

tio
n

of
 O

bj
ec

ts

Object Size (MB)

0

0.25

0.5

0.75

1

1 10 100 1000

Fr
ac

tio
n

of
 B

yt
es

Object Size (MB)
(b) Object footprint

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Fr
ac

tio
n

of
 O

bj
ec

ts

Access Count
(c) Object access characteristics [23]

Figure 2: Characteristics of object reads in the Facebook data analytics cluster. We observe that (a) large object sizes are more
prevalent; (b) small objects have even smaller footprint; and (c) access patterns across objects is heavily skewed. Note that the
X-axes are in log-scale in (a) and (b).

impact, access characteristics, and the nature of imbal-
ance in I/O utilizations – that enable us to make realistic
assumptions in our analysis, design, and evaluation.

3.1 Large Object Reads are Prevalent

Data-intensive jobs in production clusters are known to
follow skewed distributions in terms of their input and
output size [23, 32, 34]. We observe a similar skewed
pattern in the Facebook trace (Figure 2): only 7% (11%)
of the reads are smaller than 1 (10) MB, but their total
size in terms of storage usage is miniscule. Furthermore,
28% of the objects are less than 100 MB in size with less
than 5% storage footprint. Note that a large fraction of
the blocks in the Facebook cluster are 256 MB in size,
which corresponds to the vertical segment in Figure 2a.

3.2 Popularity of Objects is Skewed

Next, we focus on object popularity/access patterns. As
noted in prior work [20, 23, 32, 56, 61], object popu-
larity follows a Zipf-like skewed pattern; that is, a small
fraction of the objects are highly popular. Figure 2c [23,
Figure 9] plots the object access characteristics. Note
that this measurement does not include objects that were
never accessed. Here, the most popular 5% of the ob-
jects are seven times more popular than the bottom three-
quarters [23].

3.3 Network Load Imbalance is Inherent

As observed in prior studies [28, 33, 44, 51], we found
that datacenter traffic across the oversubscribed links can
be significantly imbalanced. Furthermore, network im-
balances are time varying. The root causes behind such
imbalances include, among others, skew in application-
level communication patterns [28, 51, 55], rolling up-
grades and maintenance operations [28], and imper-
fect load balancing inside multipath datacenter networks
[19]. We measured the network imbalance as the ratio
of the maximum and the average utilizations across all

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n
of

 T
im

e

Ratio of Maximum and Average Load in Links

Up links

Down links

Figure 3: Imbalance in utilizations (averaged over 10-second
intervals) of up and down oversubscribed links in Facebook
clusters due to data analytics workloads. The X-axis is in log-
scale.

oversubscribed links3 in the Facebook cluster (Figure 3).
This ratio was above 4.5× more than 50% of the time
for both up and downlinks, indicating significant imbal-
ance. Moreover, the maximum utilization was high for a
large fraction of the time, thereby increasing the possi-
bility of congestion. For instance, the maximum uplink
utilization was more than 50% of the capacity for more
than 50% of the time. Since operations on object stores
must go over the network, network hotspots can signif-
icantly impact their performance. This impact is ampli-
fied for in-memory object caches, where the network is
the primary bottleneck.

4 EC-Cache Design Overview
This section provides a high-level overview of EC-
Cache’s architecture.

4.1 Overall Architecture

EC-Cache is an object caching solution to provide high
I/O performance in the presence of popularity skew,
background load imbalance, and server failures. It con-

3Links connecting top-of-the-rack (ToR) switches to the core.

404 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Overall'Architecture

B1 B2 B3 BN

F1 F2 FM

…

…

B4

F3

Backend
Cache/
Storage
Servers

Frontend
Coding
Servers

Coordinator1
(Active)

Coordinator2
(Passive)

Coordinator3
(Passive)

ZooKeeper
Quorum

M1 M2 M3 MN…M4
Cache/
Storage
Servers

Coordinator1
(Active)

Coordinator2
(Passive)

Coordinator3
(Passive)

ZooKeeper
Quorum

Figure 4: Alluxio architecture

Backend

DRAM
Cache

EvictionC
ac

hi
ng

PU
T

G
ET

(a) Backend server

Backend

DRAM
Cache

EvictionC
ac

hi
ng

PU
T

G
ET

Splitter /
Receiver

PU
T

G
ET

Encoder /
Decoder

(b) EC-Cache client

Figure 5: Roles in EC-Cache: (a) backend servers manage in-
teractions between caches and persistent storage for client li-
braries; (b) EC-Cache clients perform encoding and decoding
during writes and reads.

sists of a set of servers, each of which has an in-memory
cache on top of on-disk storage. Applications interact
with EC-Cache via a client library. Similar to other ob-
ject stores [2, 11, 30], EC-Cache storage servers are not
collocated with the applications using EC-Cache.

We have implemented EC-Cache on top of Alluxio
[56], which is a popular caching solution for big data
clusters. Consequently, EC-Cache shares some high-
level similarities with Alluxio’s architecture, such as a
centralized architecture with a master coordinating sev-
eral storage/cache servers (Figure 4).

Backend Storage Servers Both in-memory and on-
disk storage in each server is managed by a worker that
responds to read and write requests for splits from clients
(Figure 5a). Backend servers are unaware of object-level
erasure coding introduced by EC-Cache. They also take
care of caching and eviction of objects to and from mem-
ory using the least-recently-used (LRU) heuristic [56].

EC-Cache Client Library Applications use EC-
Cache through a PUT-GET interface (Figure 5b). The
client library transparently handles all aspects of erasure
coding.

EC-Cache departs significantly from Alluxio in two
major ways in its design of the user-facing client li-
brary. First, EC-Cache’s client library exposes a signif-
icantly narrower interface for object-level operations as

B1 B2 B3 BN

F1 F2 FM

…

…

B4

F3

PU
T

Split

Encode

Write'+'Frontend

M1 M2 M3 MN

C1

…M4

C2

(a)

B1 B2 B3 BN

F1 F2 F3 FM

…

…

B4

F4

Backend
Cache/
Storage
Servers

Frontend
Coding
Servers

PU
T

Split

Encode

Write&+&Frontend

(b)

Figure 6: Writes to EC-Cache. (a) Two concurrent writes with
k = 2 and r = 1 from two applications. (b) Steps involved
during an individual write inside the EC-Cache client library
for an object using k = 2 and r = 1.

compared to Alluxio’s file-level interface. Second, EC-
Cache’s client library takes care of splitting and encoding
during writes, and reading from splits and decoding dur-
ing reads instead of writing and reading entire objects.

4.2 Writes

EC-Cache stores each object by dividing it into k
splits and encoding these splits using a Reed-Solomon
code [73] to add r parity splits.4 It then distributes these
(k + r) splits across unique backend servers chosen uni-
formly at random. Note that each object is allowed to
have distinct values of the parameters k and r. Figure 6
depicts an example of object writes with k = 2 and r = 1
for both objects C1 and C2. EC-Cache uses Intel ISA-L
[9] for encoding operations.

A key issue in any distributed storage solution is that
of data placement and rendezvous, that is, where to write
and where to read from. The fact that each object is fur-
ther divided into (k+r) splits in EC-Cache magnifies this
issue. For the same reason, metadata management is also
an important issue in our design. Similar to Alluxio and
most other storage systems [29, 42, 56], the EC-Cache
coordinator determines and manages the locations of all
the splits. Each write is preceded by an interaction with
the coordinator server that determines where each of the
(k + r) splits are to be written. Similarly, each reader
receives the locations of the splits through a single inter-
action with the coordinator.

EC-Cache requires a minimal amount of additional
metadata to support object splitting. For each object, EC-
Cache stores its associated k and r values and the associ-
ated (k + r) server locations (32-bit unsigned integers).
This forms only a small fraction of the total metadata size
of an object.

4Section 4.4 discusses the choice of the erasure coding scheme.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 405

B1 B2 B3 BN

F1 F2 FM

…

…

B4

F3

G
ET

Decode

Receive

Read'+'Frontend

M1 M2 M3 MN

C1

…M4

C2

(a)

B1 B2 B3 BN

F1 F2 F3 FM

…

…

B4

F4

Backend
Cache/
Storage
Servers

Frontend
Coding
Servers

G
ET

Decode

Receive

Read&+&Frontend

(b)

Figure 7: Reads from EC-Cache. (a) Two concurrent reads
with k = 2 and r = 1. Reads from M3 are slow and hence
are ignored (crossed). (b) Steps involved in an individual read
in the client library for an object with k = 2, r = 1, and ∆ = 1.

4.3 Reads

The key advantage of EC-Cache comes into picture dur-
ing read operations. Instead of reading from a single
replica, the EC-Cache client library reads from (k + ∆)
splits in parallel chosen uniformly at random (out of the
(k + r) total splits of the object). This provides three
benefits. First, it exploits I/O parallelism. Second, it dis-
tributes the load across many backend servers helping in
balancing the load. Third, the read request can be com-
pleted as soon as any k out of (k + ∆) splits arrive,
thereby avoiding stragglers. Once k splits of an object
arrives, the decoding operation is performed using Intel
ISA-L [9].

Figure 7a provides an example of a read operation
over the objects stored in the example presented in Fig-
ure 6. In this example, both the objects have k = 2 and
r = 1. Although 2 splits are enough to complete each
read request, EC-Cache issues an additional read (that is,
∆ = 1). Since both objects had one split in server M3,
reading from that server may be slow. However, instead
of waiting for that split, EC-Cache proceeds as soon as it
receives the other 2 splits (Figure 7b) and decodes them
to complete the object read requests.

Additional reads play a critical role in avoiding strag-
glers, and thus, in reducing tail latencies. However, they
also introduce additional load on the system. The band-
width overhead due to additional reads is precisely ∆

k . In
Section 6.6.2, we present a sensitivity analysis with re-
spect to ∆, highlighting the interplay between the above
two aspects.

4.4 Choice of Erasure Code

In disk-based storage systems, erasure codes are em-
ployed primarily to provide fault tolerance in a storage-
efficient manner. In these systems, network and I/O re-
sources consumed during recovery of failed or otherwise
unavailable data units play a critical role in the choice of

the erasure code employed [46, 69, 70]. There has been a
considerable amount of recent work on designing erasure
codes for distributed storage systems to optimize recov-
ery operations [26, 43, 68, 71, 72]. Many distributed stor-
age systems are adopting these recovery-optimized era-
sure codes in order to reduce network and I/O consump-
tion [8, 46, 69]. On the other hand, EC-Cache employs
erasure codes for load balancing and improving read per-
formance of cached objects. Furthermore, in this caching
application, recovery operations are not a concern as data
is persisted in the underlying storage layer.

We have chosen to use Reed-Solomon (RS) [73] codes
for two primary reasons. First, RS codes are Maximum-
Distance-Separable (MDS) codes [59]; that is, they pos-
sess the property that any k out of the (k + r) splits are
sufficient to decode the object. This property provides
maximum flexibility in the choice of splits for load bal-
ancing and late binding. Second, the Intel ISA-L [9] li-
brary provides a highly optimized implementation of RS
codes that significantly decreases the time taken for en-
coding and decoding operations. This reduced decoding
complexity makes it feasible for EC-Cache to perform
decoding for every read operation. Both the above factors
enable EC-Cache to exploit properties of erasure coding
to achieve significant gains in load balancing and read
performance (§6).

5 Analysis

In this section, we provide an analytical explanation for
the benefits offered by EC-Cache.

5.1 Impact on Load Balancing

Consider a cluster with S servers and F objects. For sim-
plicity, let us first assume that all objects are equally pop-
ular. Under selective replication, each object is placed on
a server chosen uniformly at random out of the S servers.
For simplicity, first consider that EC-Cache places each
split of a object on a server chosen uniformly at random
(neglecting the fact that each split is placed on a unique
server). The total load on a server equals the sum of the
loads on each of the splits stored on that server. Thus the
load on each server is a random variable. Without loss
of generality, let us consider the load on any particular
server and denote the corresponding random variable by
L.

The variance of L directly impacts the load imbalance
in the cluster – intuitively, a higher variance of L implies
a higher load on the maximally loaded server in com-
parison to the average load; consequently, a higher load
imbalance.

Under this simplified setting, the following result
holds.

406 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Theorem 1 For the setting described above:

Var(LEC-Cache)

Var(LSelective Replication)
=

1

k
.

Proof: Let w > 0 denote the popularity of each of the
files. The random variable LSelective Replication is distributed
as a Binomial random variable with F trials and success
probability 1

S , scaled by w. On the other hand, LEC-Cache
is distributed as a Binomial random variable with kF tri-
als and success probability 1

S , scaled by w
k . Thus we have

Var(LEC-Cache)

Var(LSelective Replication)
=

(
w
k

)2
(kF) 1

S

(
1− 1

S

)
w2F 1

S

(
1− 1

S

) =
1

k
,

thereby proving our claim. �
Intuitively, the splitting action of EC-Cache leads to

a smoother load distribution in comparison to selective
replication. One can further extend Theorem 1 to accom-
modate a skew in the popularity of the objects. Such an
extension leads to an identical result on the ratio of the
variances. Additionally, the fact that each split of an ob-
ject in EC-Cache is placed on a unique server further
helps in evenly distributing the load, leading to even bet-
ter load balancing.

5.2 Impact on Latency

Next, we focus on how object splitting impacts read la-
tencies. Under selective replication, a read request for
an object is served by reading the object from a server.
We first consider naive EC-Cache without any additional
reads. Under naive EC-Cache, a read request for an ob-
ject is served by reading k of its splits in parallel from
k servers and performing a decoding operation. Let us
also assume that the time taken for decoding is negligi-
ble compared to the time taken to read the splits.

Intuitively, one may expect that reading splits in paral-
lel from different servers will reduce read latencies due
to the parallelism. While this reduction indeed occurs for
the average/median latencies, the tail latencies behave in
an opposite manner due to the presence of stragglers –
one slow split read delays the completion of the entire
read request.

In order to obtain a better understanding of the afore-
mentioned phenomenon, let us consider the following
simplified model. Consider a parameter p ∈ [0, 1] and
assume that for any request, a server becomes a straggler
with probability p, independent of all else. There are two
primary contributing factors to the distributions of the la-
tencies under selective replication and EC-Cache:

(a) Proportion of stragglers: Under selective replica-
tion, the fraction of requests that hit stragglers is p. On
the other hand, under EC-Cache, a read request for an
object will face a straggler if any of the k servers from
where splits are being read becomes a straggler. Hence,

a higher fraction
(
1− (1− p)k

)
of read requests can hit

stragglers under naive EC-Cache.
(b) Latency conditioned on absence/presence of strag-

glers: If a read request does not face stragglers, the time
taken for serving a read request is significantly smaller
under EC-Cache as compared to selective replication be-
cause splits can be read in parallel. On the other hand, in
the presence of a straggler in the two scenarios, the time
taken for reading under EC-Cache is about as large as
that under selective replication.

Putting the aforementioned two factors together we get
that the relatively higher likelihood of a straggler under
EC-Cache increases the number of read requests incur-
ring a higher latency. The read requests that do not en-
counter any straggler incur a lower latency as compared
to selective replication. These two factors explain the de-
crease in the median and mean latencies, and the increase
in the tail latencies.

In order to alleviate the impact on tail latencies, we
use additional reads and late binding in EC-Cache. Reed-
Solomon codes have the property that any k of the collec-
tion of all splits of an object suffice to decode the object.
We exploit this property by reading more than k splits
in parallel, and using the k splits that are read first. It is
well known that such additional reads help in mitigating
the straggler problem and alleviate the affect on tail la-
tencies [36, 82].

6 Evaluation

We evaluated EC-Cache through a series of experiments
on Amazon EC2 [1] clusters using synthetic workloads
and traces from Facebook production clusters. The high-
lights of the evaluation results are:
• For skewed popularity distributions, EC-Cache im-

proves load balancing over selective replication by
3.3× while using the same amount of memory. EC-
Cache also decreases the median latency by 2.64×
and the 99.9th percentile latency by 1.79× (§6.2).

• For skewed popularity distributions and in the pres-
ence of background load imbalance, EC-Cache de-
creases the 99.9th percentile latency w.r.t. selective
replication by 2.56× while maintaining the same
benefits in median latency and load balancing as in
the case without background load imbalance (§6.3).

• For skewed popularity distributions and in the pres-
ence of server failures, EC-Cache provides a graceful
degradation as opposed to the significant degradation
in tail latency faced by selective replication. Specif-
ically, EC-Cache decreases the 99.9th percentile la-
tency w.r.t. selective replication by 2.8× (§6.4).

• EC-Cache’s improvements over selective replication
increase as object sizes increase in production traces;

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 407

e.g., 5.5× at median for 100 MB objects with an up-
ward trend (§6.5).
• EC-Cache outperforms selective replication across a

wide range of values of k, r, and ∆ (§6.6).

6.1 Methodology

Cluster Unless otherwise specified, our experiments
use 55 c4.8xlarge EC2 instances. 25 of these machines
act as the backend servers for EC-Cache, each with 8
GB cache space, and 30 machines generate thousands
of read requests to EC-Cache. All machines were in the
same Amazon Virtual Private Cloud (VPC) with 10 Gbps
enhanced networking enabled; we observed around 4-
5 Gbps bandwidth between machines in the VPC using
iperf.

As mentioned earlier, we implemented EC-Cache on
Alluxio [56], which, in turn, used Amazon S3 [2] as its
persistence layer and runs on the 25 backend servers. We
used DFS-Perf [5] to generate the workload on the 30
client machines.

Metrics Our primary metrics for comparison are la-
tency in reading objects and load imbalance across the
backend servers.

Given a workload, we consider mean, median, and
high-percentile latencies. We measure improvements in
latency as:

Latency Improvement =
Latency w/ Compared Scheme

Latency w/ EC-Cache

If the value of this “latency improvement” is greater (or
smaller) than one, EC-Cache is better (or worse).

We measure load imbalance using the percent imbal-
ance metric λ defined as follows:

λ =

(
Lmax − Lavg?

Lavg?

)
∗ 100, (1)

where Lmax is the load on the server which is maximally
loaded andLavg? is the load on any server under an oracle
scheme, where the total load is equally distributed among
all the servers without any overhead. λ measures the
percentage of additional load on the maximally loaded
server as compared to the ideal average load. Because
EC-Cache operates in the bandwidth-limited regime, the
load on a server translates to the total amount of data read
from that server. Lower values of λ are better. Note that
the percent imbalance metric takes into account the ad-
ditional load introduced by EC-Cache due to additional
reads.

Setup We consider a Zipf distribution for the popular-
ity of objects, which is common in many real-world ob-
ject popularity distributions [20, 23, 56]. Specifically, we
consider the Zipf parameter to be 0.9 (that is, high skew).

Unless otherwise specified, we allow both selective
replication and EC-Cache to use 15% memory overhead

24
5

23
8 28
6 43

5

12
26

99 93 14
1 22

9

47
8

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

24
2

23
8

28
3 34
0

88
1

96 90 13
4 19
3

49
2

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

Figure 8: Read latencies under skewed popularity of objects.

to handle the skew in the popularity of objects. Selec-
tive replication uses all the allowed memory overhead
for handling popularity skew. Unless otherwise specified,
EC-Cache uses k = 10 and ∆ = 1. Thus, 10% of the al-
lowed memory overhead is used to provide one parity
to each object. The remaining 5% is used for handling
popularity skew. Both schemes make use of the skew in-
formation to decide how to allocate the allowed memory
among different objects in an identical manner: the num-
ber of replicas for an object under selective replication
and the number of additional parities for an object under
EC-Cache are calculated so as to flatten out the popu-
larity skew to the extent possible starting from the most
popular object, until the memory budget is exhausted.

Moreover, both schemes use uniform random place-
ment policy to evenly distribute objects (splits in case of
EC-Cache) across memory servers.

Unless otherwise specified, the size of each object
considered in these experiments is 40 MB. We present
results for varying object sizes observed in the Facebook
trace in Section 6.5. In Section 6.6, we perform a sensi-
tivity analysis with respect to all the above parameters.

Furthermore, we note that while the evaluations pre-
sented here are for the setting of high skew in object
popularity, EC-Cache outperforms selective replication
in scenarios with low skew in object popularity as well.
Under high skew, EC-Cache offers significant benefits
in terms of load balancing and read latency. Under low
skew, while there is not much to improve in load balanc-
ing, EC-Cache will still provide latency benefits.

6.2 Skew Resilience

We begin by evaluating the performance of EC-Cache in
the presence of skew in object popularity.

Latency Characteristics Figure 8 compares the mean,
median, and tail latencies of EC-Cache and selective
replication. We observe that EC-Cache improves median
and mean latencies by 2.64× and 2.52×, respectively.
EC-Cache outperforms selective replication at high per-

408 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
50

100
150
200
250
300
350
400

D
at

a
R

ea
d

(G
B

)

Servers Sorted by Load

0
50

100
150
200
250
300
350
400

D
at

a
R

ea
d

(G
B

)

Servers Sorted by Load
(a) Selective replication

0
50

100
150
200
250
300
350
400

D
at

a
R

ea
d

(G
B

)

Servers Sorted by Load

0
50

100
150
200
250
300
350
400

D
at

a
R

ea
d

(G
B

)
Servers Sorted by Load

(b) EC-Cache with k = 10

Figure 9: Comparison of load distribution across servers in terms of the amount of data read from each server. The percent imbal-
ance metric λ for selective replication and EC-Cache are 43.45% and 13.14% respectively.

24
5

23
8 28
6 43

5

12
26

99 93 14
1 22

9

47
8

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

24
2

23
8

28
3 34
0

88
1

96 90 13
4 19
3

49
2

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

Figure 10: Read latencies in the presence of background traffic
from big data workload.

centiles as well, improving the latency by 1.76× at the
99th percentile and by 1.79× at the 99.9th percentile.

Load Balancing Characteristics Figure 9 presents the
distribution of loads across servers. The percent imbal-
ance metric λ observed for selective replication and EC-
Cache in this experiment are 43.45% and 13.14% respec-
tively.

Decoding Overhead During Reads We observed that
the time taken to decode during the reads is approxi-
mately 30% of the total time taken to complete a read
request. Despite this overhead, we see (Figure 8) that EC-
Cache provides a significant reduction in both median
and tail latencies. Although our current implementation
uses only a single thread for decoding, the underlying
erasure codes permit the decoding process to be made
embarrassingly parallel, potentially allowing for a linear
speed up; this, in turn, can further improve EC-Cache’s
latency characteristics.

6.3 Impact of Background Load Imbalance

We now investigate EC-Cache’s performance in the pres-
ence of a background network load, specifically in the
presence of unbalanced background traffic. For this ex-

25
4

23
8 30

4

63
9

1388

98 92 14
2 23

3

49
5

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

Figure 11: Read latencies in the presence of server failures.

periment, we generated a background load that follows
traffic characteristics similar to those described in Sec-
tion 3.3. Specifically, we emulated network transfers
from shuffles for the jobs in the trace. Shuffles arrive
following the same arrival pattern of the trace. For each
shuffle, we start some senders (emulating mappers) and
receivers (emulating reducers) that transfer randomly
generated data over the network. The amount of data re-
ceived by each receiver for each shuffle followed a dis-
tribution similar to that in the trace.

Latency Characteristics Figure 10 compares the
mean, median, and tail latencies using both EC-Cache
and selective replication. We observe that as in Sec-
tion 6.2, EC-Cache improves the median and mean la-
tencies by 2.56× and 2.47× respectively.

At higher percentiles, EC-Cache’s benefits over se-
lective replication are even more than that observed in
Section 6.2. In particular, EC-Cache outperforms selec-
tive replication by 1.9× at the 99th percentile and by
2.56× at the 99.9th percentile. The reason for these im-
provements is the following: while selective replication
gets stuck in few of the overloaded backend servers, EC-
Cache remains almost impervious to such imbalance due
to late binding.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 409

0

500

1000

1500

2000

0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

s)

Object Size (MB)

EC-Cache (Median)
Selective Replication (Median)

0

500

1000

1500

2000

0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

s)

Object Size (MB)

EC-Cache (99th)
Selective Replication (99th)

(a) Median latency

0

500

1000

1500

2000

0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

s)

Object Size (MB)

EC-Cache (Median)
Selective Replication (Median)

0

500

1000

1500

2000

0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

s)

Object Size (MB)

EC-Cache (99th)
Selective Replication (99th)

(b) 99th percentile latency

Figure 12: Comparison of EC-Cache and selective replication read latencies over varying object sizes in the Facebook production
trace. EC-Cache’s advantages improve as objects become larger.

Load Balancing Characteristics The percent imbal-
ance metric λ for selective replication and EC-Cache are
similar to that reported in Section 6.2. This is because the
imbalance in background load does not affect the load
distribution across servers due to read requests.

6.4 Performance in Presence of Failures

We now evaluate the performance of EC-Cache in the
presence of server failures. This experiment is identical
to that in Section 6.2 except with one of the back-end
servers terminated. The read latencies in this degraded
mode are shown in Figure 11. Comparing the latencies
in Figure 8 and Figure 11, we see that the performance
of EC-Cache does not degrade much as most objects are
still served from memory. On the other hand, selective
replication suffers significant degradation in tail latencies
as some of the objects are now served from the under-
lying storage system. Here, EC-Cache outperforms se-
lective replication by 2.7× at the 99th percentile and by
2.8× at the 99.9th percentile.

6.5 Performance on Production Workload

So far we focused on EC-Cache’s performance for a
fixed object size. In this section, we compare EC-Cache
against selective replication for varying object sizes
based on the workload collected from Facebook (details
in Section 3).

Figure 12 presents the median and the 99th percentile
read latencies for objects of different sizes (starting from
1 MB). Note that EC-Cache resorts to selective replica-
tion for objects smaller than 1 MB to avoid communica-
tion overheads.

We make two primary observations. First, EC-Cache’s
median improvements over selective replication steadily
increases with the object size; e.g., EC-Cache is 1.33×
faster for 1 MB-sized objects, which improves to 5.5×
for 100 MB-sized objects and beyond. Second, EC-

36.73

18.62
13.3 11.73 11.5

0

10

20

30

40

7 9 11 13 15P
er

ce
nt

 Im
ba

la
nc

e
(λ
)

Number of Splits (k)

Figure 13: Load imbalance for varying values of k with ∆ =
1: percent imbalance metric (λ) decreases as objects are divided
into more splits.

Cache’s 99th percentile improvements over selective
replication kick off when object sizes grow beyond 10
MB. This is because EC-Cache’s constant overhead of
establishing (k + ∆) connections is more pronounced
for smaller reads, which generally have lower latencies.
Beyond 10 MB, connection overheads get amortized due
to increased read latency, and EC-Cache’s improvements
over selective replication even in tail latencies steadily
increase from 1.25× to 3.85× for 100 MB objects.

6.6 Sensitivity Evaluation

In this section, we evaluate the effects of the choice of
different EC-Cache parameters. We present the results
for 10 MB objects (instead of 40 MB as in prior evalua-
tions) in order to bring out the effects of all the parame-
ters more clearly and to be able to sweep for a wide range
of parameters.

6.6.1 Number of splits k

Load Balancing Characteristics The percent imbal-
ance metric for varying values of k with ∆ = 1 are
shown in Figure 13. We observe that load balancing im-
proves with increasing k. There are two reasons for this
phenomenon: (i) A higher value of k leads to a smaller
granularity of individual splits, thereby resulting in a

410 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

40

56

30

51

28

46

24

40

25

45

26

52

0
10
20
30
40
50
60

Median 95th percentile

R
ea

d
La

te
nc

y
(m

s)

Selective Replication EC-Cache k = 3
EC-Cache k = 5 EC-Cache k = 7
EC-Cache k= 9 EC-Cache k = 11

Figure 14: Impact of the number of splits k on the read latency.

greater smoothing of the load under skewed popularity.
(ii) With a fixed value of ∆, the load overhead due to ad-
ditional reads varies inversely with the value of k. This
trend conforms to the theoretical analysis presented in
Section 5.1.

Latency Characteristics Figure 14 shows a compari-
son of median and 95th percentile read latencies for vary-
ing values of k with ∆ = 1. The corresponding values for
selective replication are also provided for comparison.
We observe that parallelism helps in improving median
latencies, but with diminishing returns. However, higher
values of k lead to worse tail latencies as a result of the
straggler effect discussed earlier in Section 5. Hence, for
k > 10, more than one additional reads are needed to
rein in the tail latencies. We elaborate this effect below.

6.6.2 Additional Reads (∆)

First, we study the necessity of additional reads. Fig-
ure 15 shows the CDF of read latencies from about
160, 000 reads for selective replication and EC-Cache
with k = 10 with and without additional reads, that is,
with ∆ = 1 and ∆ = 0, respectively. We observe that,
without any additional reads, EC-Cache performs quite
well in terms of the median latency, but severely suffers
at high percentiles. This is due to the effect of stragglers
as discussed in Section 5.2. Moreover, adding just one
additional read helps EC-Cache tame these negative ef-
fects. Figure 15 also shows that selective replication with
object splitting (as discussed in Section 2.3) would not
perform well.

Next, we study the effect of varying values of ∆. In
this experiment, we vary ∆ from 0 to 4, set k = 12, and
use an object size of 20 MB. We choose k = 12 instead
of 10 because the effect of additional reads is more pro-
nounced for higher values of k, and we choose a larger
object size (20 MB instead of 10 MB) because the value
of k is higher (§7.4). We use uniform popularity distri-
bution across objects so that each object is provided with
equal (specifically, r = 4) number of parities. This al-

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
D

F

Read Latency (ms)

EC-Cache, �=0
EC-Cache, �=1
Selective Replication

Figure 15: CDF of read latencies showing the need for addi-
tional reads in reining in tail latencies in EC-Cache.

88

12
3

44

23
2

44

75

45

75

46

79

48

84

0

50

100

150

200

250

Median 95th percentile

R
ea

d
La

te
nc

y
(m

s)

Selective Replication EC-Cache Δ = 0
EC-Cache Δ = 1 EC-Cache Δ = 2
EC-Cache Δ = 3 EC-Cache Δ = 4

Figure 16: Impact of the number of additional reads on read
latency.

lows us to evaluate with values of ∆ up to 4. Figure 16
shows the impact of different number of additional reads
on the read latency. We see that the first one or two ad-
ditional reads provide a significant reduction in the tail
latencies while subsequent additional reads provide lit-
tle additional benefits. In general, having too many addi-
tional reads would start hurting the performance because
they would cause a proportional increase in communica-
tion and bandwidth overheads.

6.6.3 Memory Overhead

Up until now, we have compared EC-Cache and selective
replication with a fixed memory overhead of 15%. Given
a fixed amount of total memory, increasing memory over-
head allows a scheme to cache more redundant objects
but fewer unique objects. In this section, we vary mem-
ory overhead and evaluate the latency and load balancing
characterisitics of selective replication and EC-Cache.

We observed that the relative difference in terms of
latency between EC-Cache and selective replication re-
mained similar to that shown in Figure 8 – EC-Cache
provided a significant reduction in the median and tail
latencies as compared to selective replication even for
higher memory overheads. However, in terms of load

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 411

0

200

400

600

800

1000

EC SR EC SR EC SR EC SR

10 MB 20 MB 40 MB 80MB

W
ri

te
 L

at
en

cy
 (

m
s) Write Encode

Figure 17: Comparison of writing times (and encoding time
for EC-Cache) for different object sizes.

balancing, the gap between EC-Cache and selective
replication decreased with increasing memory overhead.
This is because EC-Cache was almost balanced even
with just 15% memory overhead (Figure 9) with lit-
tle room for further improvement. In contrast, selec-
tive replication became more balanced due to the higher
memory overhead allowed, reducing the relative gap
from EC-Cache.

6.7 Write Performance

Figure 17 shows a comparison of the average write times.
The time taken to write an object in EC-Cache involves
the time to encode and the time to write out the splits
to different workers; Figure 17 depicts the breakdown of
the write time in terms of these two components. We ob-
serve that EC-Cache is faster than selective replication
when writing objects larger than 40 MB, supplementing
its faster performance in terms of the read times observed
earlier. EC-Cache performs worse for smaller objects due
to the overhead of connecting to several machines in par-
allel. Finally, we observe that the time taken for encoding
is less than 10% of the total write time, regardless of the
object size.

7 Discussion
While EC-Cache outperforms existing solutions both in
terms of latency and load balancing, our current imple-
mentation has several known limitations. We believe that
addressing these limitations will further improve EC-
Cache’s performance.

7.1 Networking Overheads

A key reason behind EC-Cache being less effective for
smaller objects is its communication overhead. More
specifically, creating many TCP connections accounts for
a constant, non-negligible portion (few milliseconds) of
a read’s duration. This factor is more pronounced for
smaller read requests which generally have shorter du-
rations. Using long-running, reusable connections may
allow us to support even smaller objects. Furthermore,

multiplexing will also help in decreasing the total num-
ber of TCP connections in the cluster.

7.2 Reducing Bandwidth Overhead

EC-Cache has 10% bandwidth overhead in our present
setup. While this overhead does not significantly impact
performance during non-peak hours, it can have a non-
negligible impact during the peak. In order to address
this issue, one may additionally employ proactive cancel-
lation [36, 64] that can help reduce bandwidth overheads
of speculative reads.

7.3 Time Varying Skew

EC-Cache can handle time-varying popularity skew and
load imbalance by changing the number of parity splits
of objects. However, we have not yet implemented this
feature due to a limitation posed by Alluxio. In our cur-
rent implementation, we store individual splits of an ob-
ject as part of the file abstraction in Alluxio to reduce
metadata overheads (§4.2). Since Alluxio does not cur-
rently offer support for appending to a file once the
file is closed (ALLUXIO-25 [14]), we cannot dynami-
cally change the number of parities and adapt to time-
varying skew. Assuming the presence of underlying sup-
port for appending, we expect EC-Cache to respond to
time-varying skews better than selective replication. This
is because the overhead of any object can be changed
in fractional increments in EC-Cache as opposed to the
limitation of having only integral increments in selective
replication.

7.4 Choice of parameters

Although EC-Cache performs well for a wide range of
parameters in our evaluation (§6.6), we outline a few
rules of thumb for choosing its parameter values below.

The value of parameter k is chosen based on the size of
the object and cluster characteristics: a higher value of k
provides better load balancing but negatively affects tail
latencies for too large values (as shown in Figure 13 and
Figure 14). In general, the larger the size of an object,
the higher the value of k it can accommodate without
resulting in too small-sized splits and without adversely
affecting the tail latency. In our evaluations, we observed
k = 10 to perform well for a wide range of object sizes
(Figure 12).

Suitable choices for ∆ depend on the choice of k. As
discussed in Section 6.6.2, a higher value of ∆ is needed
for higher values of k in order to rein in tail latencies. At
the same time, each additional read results in a propor-
tional increase in the bandwidth overhead, which would
degrade performance for too large a value. In our evalu-
ations, we observed ∆ = 1 to be sufficient for k = 10
(Figure 10 and Figure 12).

The value of parameter r for each object is chosen
based on the skew in object popularity (§6.1).

412 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

8 Related Work
A key focus of this work is to demonstrate and validate
a new application of erasure coding, specifically in in-
memory caching systems, to achieve load balancing and
to reduce the median and tail read latencies. The basic
building blocks employed in EC-Cache are simple and
have been studied and employed in various other systems
and settings. We borrow and build on the large body of
existing work in this area. However, to the best of our
knowledge, EC-Cache is the first object caching system
that employs erasure coding to achieve load balancing
and to reduce read latencies.

Caching in Data-Intensive Clusters Given that read-
ing data from disks is often the primary bottleneck in
data analytics [3, 24, 37, 49, 56, 88, 89, 91], caching fre-
quently used data has received significant attention in re-
cent years [21, 23, 56, 89]. However, existing caching so-
lutions typically keep a single copy of data to increase the
memory capacity, which leaves them vulnerable to popu-
larity skew, background load imbalance, and failures, all
of which result in disk accesses.

(Selective) Replication Replication is the most com-
mon technique for guarding against performance degra-
dation in the face of popularity skew, background load
imbalance, and failures [29, 31, 42, 81]. Giving every
object an identical replication factor, however, wastes
capacity in the presence of skew, and selective replica-
tion [20, 63] forms a better option in this case. However,
selective replication has a number of drawbacks (§2.3)
that EC-Cache overcomes.

Erasure Coding in Storage Systems For decades,
disk arrays have employed erasure codes to achieve
space-efficient fault tolerance in RAID systems [65].
The benefits of erasure coding over replication to pro-
vide fault tolerance in distributed storage systems has
also been well studied [85, 93], and erasure codes have
been employed in many related settings such as network-
attached-storage systems [18], peer-to-peer storage sys-
tems [54, 74], etc. Recently, erasure coding has been
widely used for storing relatively cold data in datacenter-
scale distributed storage systems [46, 61, 86] to achieve
fault tolerance while minimizing storage requirements.
While some of these storage systems [61, 70, 79] en-
code across objects, others employ self-coding [80, 86].
However, the purpose of erasure coding in these systems
is to achieve storage-efficient fault tolerance, while the
focus of EC-Cache is on load balancing and reducing
the median and tail read latencies. Aggarwal et al. [17]
proposed augmenting erasure-coded disk-based storage
systems with a cache at the proxy or client side to re-
duce latency. In contrast, EC-Cache directly applies era-
sure coding on objects stored in cluster caches to achieve

load balancing and to reduce latency when serving ob-
jects from memory.

Late binding Many systems have employed the tech-
nique of sending additional/redundant requests or run-
ning redundant jobs to rein in tail latency in various set-
tings [22, 36, 40, 66, 78, 83]. The effectiveness of late
binding for load balancing and scheduling has been well
known and well utilized in many systems [60, 64, 82].
Recently, there have also been a body of theoretical
work that analyzes the performance of redundant re-
quests [41, 50, 57, 75, 76, 84].

In-Memory Key-Value Stores A large body of work
in recent years has focused on building high-performance
in-memory key-value (KV) stores [10, 13, 15, 38, 39,
53, 58, 63]. EC-Cache focuses on a different workload
where object sizes are much larger than typical values
in these KV stores. However, EC-Cache may be used as
a caching layer for holding slabs, where each slab con-
tain many key-value pairs. While KV stores have typi-
cally employed replication for fault tolerance, a recent
work [92] uses erasure coding to build a fault-tolerant
in-memory KV store. The role of erasure coding in [92]
is to provide space-efficient fault tolerance, whereas EC-
Cache employs erasure coding toward load balancing
and reducing the median and tail read latencies.

9 Conclusion
Caching solutions used in conjunction with modern ob-
ject stores and cluster file systems typically rely on uni-
form or selective replication that do not perform well in
the presence of skew in data popularity, imbalance in net-
work load, or failures of machines and software, all of
which are common in large clusters. In EC-Cache, we
employ erasure coding to overcome the limitations of se-
lective replication and provide significantly better load
balancing and I/O performance for workloads with im-
mutable data.

EC-Cache employs self-coding, where each object is
divided into k splits and stored in a (k+r) erasure-coded
form. The encoding is such that any k of the (k+r) splits
are sufficient to read an object. Consequently, EC-Cache
can leverage the power of choices through late binding:
instead of reading from k splits, it reads from (k + ∆)
splits and completes reading an object as soon as the first
k splits arrive. The value of ∆ can be as low as 1.

The combination of self-coding and late binding,
along with fast encoding/decoding using Intel’s ISA-L
library, allows EC-Cache to significantly outperform the
optimal selective replication solution. For instance, for
objects of size 40 MB, EC-Cache outperforms selective
replication by 3.3× in terms of cache load balancing, and
decreases the median and tail read latencies by more than
2×. EC-Cache achieves these improvements while using

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 413

the same amount of memory as selective replication. The
relative performance of EC-Cache improves even more
in the presence of background/network load imbalance
and server failures, and for larger objects.

In conclusion, while erasure codes are commonly
used in disk-based storage systems to achieve fault tol-
erance in a space-efficient manner, EC-Cache demon-
strates their effectiveness in a new setting (in-memory
object caching) and toward new goals (load balancing
and improving the median and tail read latencies).

10 Acknowledgments
We thank our shepherd, Andrea Arpaci-Dusseau, and
the anonymous reviewers for their valuable feedback.
This research is supported in part by DHS Award
HSHQDC-16-3-00083, NSF CISE Expeditions Award
CCF-1139158, DOE Award SN10040 DE-SC0012463,
and DARPA XData Award FA8750-12-2-0331, NSF
grant 1409135 and gifts from Amazon Web Ser-
vices,Google, IBM, SAP, The Thomas and Stacey Siebel
Foundation, Apple Inc., Arimo, Blue Goji, Bosch,
Cisco, Cray, Cloudera, Ericsson, Facebook, Fujitsu,
HP, Huawei, Intel, Microsoft, Mitre, Pivotal, Sam-
sung, Schlumberger, Splunk, State Farm and VMware.
Mosharaf and Jack were supported in part by National
Science Foundation (grants CNS-1563095 and CCF-
1629397) and Google.

References
[1] Amazon EC2. http://aws.amazon.com/ec2.

[2] Amazon Simple Storage Service.
http://aws.amazon.com/s3.

[3] Apache Hadoop. http://hadoop.apache.org.

[4] AWS Innovation at Scale. https:
//www.youtube.com/watch?v=JIQETrFC_SQ.

[5] DFS-Perf. http:
//pasa-bigdata.nju.edu.cn/dfs-perf.

[6] Evolution of the Netflix Data Pipeline.
http://techblog.netflix.com/2016/02/

evolution-of-netflix-data-pipeline.

html.

[7] Hadoop platform as a service in the cloud.
http://goo.gl/11zFs.

[8] Implement the Hitchhiker erasure coding
algorithm for Hadoop. https://issues.
apache.org/jira/browse/HADOOP-11828.

[9] Intel Storage Acceleration Library (Open Source
Version). https://goo.gl/zkVl4N.

[10] MemCached. http://www.memcached.org.

[11] OpenStack Swift.
http://swift.openstack.org.

[12] Presto: Distributed SQL Query Engine for Big
Data. https://prestodb.io.

[13] Redis. http://www.redis.io.

[14] Support append operation after completing a file.
https://alluxio.atlassian.net/browse/

ALLUXIO-25.

[15] R. Agarwal, A. Khandelwal, and I. Stoica.
Succinct: Enabling queries on compressed data. In
NSDI, 2015.

[16] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. BlinkDB: Queries with
bounded errors and bounded response times on
very large data. In EuroSys, 2013.

[17] V. Aggarwal, Y.-F. R. Chen, T. Lan, and Y. Xiang.
Sprout: A functional caching approach to
minimize service latency in erasure-coded storage.
In ICDCS, 2016.

[18] M. Aguilera, R. Janakiraman, and L. Xu. Using
erasure codes efficiently for storage in a distributed
system. In DSN, 2005.

[19] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav, and G. Varghese. CONGA:
Distributed congestion-aware load balancing for
datacenters. In SIGCOMM, 2014.

[20] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with skewed popularity content in
mapreduce clusters. In EuroSys, 2011.

[21] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Disk-locality in datacenter computing
considered irrelevant. In HotOS, 2011.

[22] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Why let resources idle? Aggressive
cloning of jobs with dolly. In USENIX HotCloud,
June 2012.

[23] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and
I. Stoica. PACMan: Coordinated memory caching
for parallel jobs. In NSDI, 2012.

[24] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in mapreduce clusters using Mantri. In
OSDI, 2010.

414 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://hadoop.apache.org
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
http://pasa-bigdata.nju.edu.cn/dfs-perf
http://pasa-bigdata.nju.edu.cn/dfs-perf
http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html
http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html
http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html
http://goo.gl/11zFs
https://issues.apache.org/jira/browse/HADOOP-11828
https://issues.apache.org/jira/browse/HADOOP-11828
https://goo.gl/zkVl4N
http://www.memcached.org
http://swift.openstack.org
https://prestodb.io
http://www.redis.io
https://alluxio.atlassian.net/browse/ALLUXIO-25
https://alluxio.atlassian.net/browse/ALLUXIO-25

[25] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
data processing in Spark. In SIGMOD, 2015.

[26] M. Asteris, D. Papailiopoulous, A. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing
elephants: Novel erasure codes for big data. In
PVLDB, 2013.

[27] L. A. Barroso, J. Clidaras, and U. Hölzle. The
datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis
lectures on computer architecture, 8(3):1–154,
2013.

[28] P. Bodik, I. Menache, M. Chowdhury, P. Mani,
D. Maltz, and I. Stoica. Surviving failures in
bandwidth-constrained datacenters. In
SIGCOMM, 2012.

[29] D. Borthakur. The Hadoop distributed file system:
Architecture and design. Hadoop Project Website,
2007.

[30] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, et al. Windows Azure Storage:
A highly available cloud storage service with
strong consistency. In SOSP, 2011.

[31] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy
and efficient parallel processing of massive
datasets. In VLDB, 2008.

[32] Y. Chen, S. Alspaugh, and R. Katz. Interactive
analytical processing in big data systems: A
cross-industry study of mapreduce workloads. In
VLDB, 2012.

[33] M. Chowdhury, S. Kandula, and I. Stoica.
Leveraging endpoint flexibility in data-intensive
clusters. In SIGCOMM, 2013.

[34] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with Varys. In SIGCOMM,
2014.

[35] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web
memory caches. In NSDI, 2016.

[36] J. Dean and L. A. Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[37] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[38] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In NSDI,
2014.

[39] B. Fan, D. G. Andersen, and M. Kaminsky.
MemC3: Compact and concurrent memcache with
dumber caching and smarter hashing. In NSDI,
2013.

[40] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao,
E. Katz-Bassett, and R. Govindan. Reducing web
latency: The virtue of gentle aggression. In
SIGCOMM, 2013.

[41] K. Gardner, S. Zbarsky, S. Doroudi,
M. Harchol-Balter, and E. Hyytia. Reducing
latency via redundant requests: Exact analysis.
ACM SIGMETRICS Performance Evaluation
Review, 43(1):347–360, 2015.

[42] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, 2003.

[43] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin.
On the locality of codeword symbols. IEEE
Transactions on Information Theory, Nov. 2012.

[44] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data
center network. In SIGCOMM, 2009.

[45] Y.-J. Hong and M. Thottethodi. Understanding and
mitigating the impact of load imbalance in the
memory caching tier. In SoCC, 2013.

[46] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding
in Windows Azure Storage. In USENIX ATC,
2012.

[47] Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of Facebook
photo caching. In SOSP, 2013.

[48] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A.
Freedman, K. Birman, and R. van Renesse.
Characterizing load imbalance in real-world
networked caches. In ACM HotNets, 2014.

[49] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair
scheduling for distributed computing clusters. In
SOSP, 2009.

[50] G. Joshi, Y. Liu, and E. Soljanin. On the
delay-storage trade-off in content download from

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 415

coded distributed storage systems. IEEE JSAC,
32(5):989–997, 2014.

[51] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The nature of datacenter traffic:
Measurements and analysis. In IMC, 2009.

[52] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma,
R. Grandl, S. Chaudhuri, and B. Ding. Quickr:
Lazily approximating complex adhoc queries in
bigdata clusters. In SIGMOD, 2016.

[53] A. Khandelwal, R. Agarwal, and I. Stoica.
Blowfish: Dynamic storage-performance tradeoff
in data stores. In NSDI, 2016.

[54] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, et al. Oceanstore:
An architecture for global-scale persistent storage.
ACM Sigplan Notices, 35(11):190–201, 2000.

[55] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee,
J.-M. Kang, and P. Sharma. Application-driven
bandwidth guarantees in datacenters. In
SIGCOMM, 2014.

[56] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed
storage for cluster computing frameworks. In
SoCC, 2014.

[57] G. Liang and U. Kozat. Fast cloud: Pushing the
envelope on delay performance of cloud storage
with coding. arXiv:1301.1294, Jan. 2013.

[58] H. Lim, D. Han, D. G. Andersen, and
M. Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In NSDI, 2014.

[59] S. Lin and D. Costello. Error control coding.
Prentice-hall Englewood Cliffs, 2004.

[60] M. Mitzenmacher, A. W. Richa, and R. Sitaraman.
The power of two random choices: A survey of
techniques and results. Handbook of Randomized
Computing, pages 255–312, 2001.

[61] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,
and S. Kuamr. f4: Facebook’s warm BLOB
storage system. In OSDI, 2014.

[62] E. Nightingale, J. Elson, O. Hofmann, Y. Suzue,
J. Fan, and J. Howell. Flat Datacenter Storage. In
OSDI, 2012.

[63] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny,
D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling Memcache at
Facebook. In NSDI, 2013.

[64] K. Ousterhout, P. Wendell, M. Zaharia, and
I. Stoica. Sparrow: Distributed, low latency
scheduling. In SOSP, 2013.

[65] D. A. Patterson, G. Gibson, and R. H. Katz. A
case for redundant arrays of inexpensive disks
(RAID). In SIGMOD, 1988.

[66] M. J. Pitkänen and J. Ott. Redundancy and
distributed caching in mobile DTNs. In MobiArch,
2007.

[67] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica.
Fairride: Near-optimal, fair cache sharing. In
NSDI, 2016.

[68] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and
K. Ramchandran. Having your cake and eating it
too: Jointly optimal erasure codes for I/O, storage,
and network-bandwidth. In FAST 15, 2015.

[69] K. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A hitchhiker’s
guide to fast and efficient data reconstruction in
erasure-coded data centers. In SIGCOMM, 2015.

[70] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A solution to
the network challenges of data recovery in
erasure-coded distributed storage systems: A study
on the Facebook warehouse cluster. In USENIX
HotStorage, 2013.

[71] K. V. Rashmi, N. B. Shah, and P. V. Kumar.
Optimal exact-regenerating codes for the MSR and
MBR points via a product-matrix construction.
IEEE Transactions on Information Theory,
57(8):5227–5239, Aug. 2011.

[72] K. V. Rashmi, N. B. Shah, and K. Ramchandran.
A piggybacking design framework for read-and
download-efficient distributed storage codes. In
IEEE International Symposium on Information
Theory, 2013.

[73] I. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for
Industrial and Applied Mathematics,
8(2):300–304, 1960.

[74] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowicz. Pond: The
OceanStore prototype. In FAST, 2003.

416 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[75] N. B. Shah, K. Lee, and K. Ramchandran. The
MDS queue: Analysing the latency performance of
erasure codes. In IEEE International Symposium
on Information Theory, 2014.

[76] N. B. Shah, K. Lee, and K. Ramchandran. When
do redundant requests reduce latency? IEEE
Transactions on Communications, 64(2):715–722,
2016.

[77] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising:
A decade of Clos topologies and centralized
control in Google’s datacenter network.
SIGCOMM, 2015.

[78] C. Stewart, A. Chakrabarti, and R. Griffith.
Zoolander: Efficiently meeting very strict,
low-latency SLOs. In USENIX ICAC, 2013.

[79] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,
N. Jain, J. S. Sarma, R. Murthy, and H. Liu. Data
warehousing and analytics infrastructure at
Facebook. In SIGMOD, 2010.

[80] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale,
S. Rago, G. Calkowski, C. Dubnicki, and
A. Bohra. HydraFS: A high-throughput file system
for the HYDRAstor content-addressable storage
system. In FAST, 2010.

[81] R. van Renesse and F. B. Schneider. Chain
replication for supporting high throughput and
availability. In OSDI, 2004.

[82] S. Venkataraman, A. Panda, G. Ananthanarayanan,
M. J. Franklin, and I. Stoica. The power of choice
in data-aware cluster scheduling. In OSDI, 2014.

[83] A. Vulimiri, O. Michel, P. Godfrey, and
S. Shenker. More is less: Reducing latency via
redundancy. In ACM HotNets, 2012.

[84] D. Wang, G. Joshi, and G. Wornell. Efficient task
replication for fast response times in parallel
computation. In SIGMETRICS, 2014.

[85] H. Weatherspoon and J. D. Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison.
In IPTPS, 2002.

[86] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. In OSDI,
2006.

[87] Y. Yu, M. Isard, D. Fetterly, M. Budiu,
Ú. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose
distributed data-parallel computing using a
high-level language. In OSDI, 2008.

[88] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In
EuroSys, 2010.

[89] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[90] M. Zaharia, T. Das, H. Li, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
stream computation at scale. In SOSP, 2013.

[91] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In OSDI, 2008.

[92] H. Zhang, M. Dong, and H. Chen. Efficient and
available in-memory KV-store with hybrid erasure
coding and replication. In FAST, 2016.

[93] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and
D. Narayanan. Does erasure coding have a role to
play in my data center? Technical Report
Microsoft Research MSR-TR-2010, 2010.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 417

To Waffinity and Beyond: A Scalable Architecture for Incremental
Parallelization of File System Code

Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and Aditya Kulkarni
NetApp, Inc.

{mcm,vdevadas,vania,adityak}@netapp.com

Abstract
In order to achieve higher I/O throughput and better
overall system performance, it is necessary for commer-
cial storage systems to fully exploit the increasing core
counts on modern systems. At the same time, legacy
systems with millions of lines of code cannot simply be
rewritten for improved scalability. In this paper, we de-
scribe the evolution of the multiprocessor software ar-
chitecture (MP model) employed by the Netapp R© Data
ONTAP R© WAFL R© file system as a case study in incre-
mentally scaling a production storage system.

The initial model is based on small-scale data partition-
ing, whereby user-file reads and writes to disjoint file
regions are parallelized. This model is then extended
with hierarchical data partitioning to manage concurrent
accesses to important file system objects, thus benefit-
ing additional workloads. Finally, we discuss a fine-
grained lock-based MP model within the existing data-
partitioned architecture to support workloads where data
accesses do not map neatly to the predefined partitions.
In these data partitioning and lock-based MP models,
we have facilitated incremental advances in parallelism
without a large-scale code rewrite, a major advantage
in the multi-million line WAFL codebase. Our results
show that we are able to increase CPU utilization by as
much as 104% on a 20-core system, resulting in through-
put gains of up to 130%. These results demonstrate
the success of the proposed MP models in delivering
scalable performance while balancing time-to-market re-
quirements. The models presented can also inform scal-
able system redesign in other domains.

1 Introduction
To maintain a competitive advantage in the storage mar-
ket, it is imperative for companies to provide cutting-
edge platforms and software to maximize the returns
from such systems. Recent technological trends have
made this prospect more difficult, as increases in CPU
clock speed have been abandoned in favor of increasing
core counts. Thus, to achieve continuing performance
gains, it has become necessary for storage systems to

scale to an ever-higher number of cores. As one of the
primary computational bottlenecks in storage systems,
the file system itself must be designed for scalable pro-
cessing.

Due to time-to-market objectives, it is simply not feasible
to rewrite the entire code base of a production file sys-
tem to use a new multiprocessor (MP) model. Reimple-
menting such a system to use explicit fine-grained lock-
ing would require massive code inspection and changes
and would also carry with it the potential for introduc-
ing races, performance issues caused by locking over-
head and contention, and the risk of deadlocks. In this
paper, we present a series of techniques that have al-
lowed us to simultaneously meet scalability and schedule
requirements in the WAFL file system over the course
of a decade and to minimize the code changes required
for parallelization. In particular, all of our approaches
emphasize incremental parallelization whereby common
code paths can be optimized without having to make
changes in less critical code paths. Although we eval-
uate these techniques in a file system, the approaches are
not inherently limited to that context.

The first technique we discuss—referred to as Classi-
cal Waffinity—applied data partitioning to fixed-size re-
gions of user files. This approach provided a mech-
anism to allow read and write operations to different
ranges of user files to occur in parallel without requir-
ing substantial code rewrite, because the use of data par-
titioning minimized the need for explicit locking. Ex-
tending this model, Hierarchical Waffinity further par-
allelized operations that modify systemwide data struc-
tures or metafiles, such as the creation and deletion of
files, by implementing a hierarchical data partitioning
infrastructure. Compared to Classical Waffinity, Hierar-
chical Waffinity improves core usage by up to 38% and
achieves 95% average utilization across a range of criti-
cal workloads.

Finally, we have extended Hierarchical Waffinity to han-
dle workloads that do not map neatly to these parti-
tions by adding a fine-grained lock-based MP model
within the existing data-partitioned architecture. This in-
novative model—called Hybrid Waffinity—provides sig-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 419

nificant parallelism benefits for previously problematic
access patterns while not requiring any code changes
for workloads where Hierarchical Waffinity already ex-
celled. That is, the hybrid model introduces minimal ex-
plicit locking in narrowly defined cases to overcome spe-
cific scalability limitations in Hierarchical Waffinity to
increase core usage by up to 104% and improve through-
put by as much as 130%. Using these techniques has
allowed WAFL to scale to the highest-end Data ONTAP
platforms of their time (up to 20 cores) while constrain-
ing modifications to the code base.

The primary contributions of this paper are:

• We present a set of multiprocessor software archi-
tectures that facilitate incremental parallelization of
large legacy code bases.

• We discuss the application of these techniques
within a high-performance, commercial file system.

• We evaluate each of our approaches in the context of
a real production storage system running a variety
of realistic benchmarks.

Next, we present a short background on WAFL. Sec-
tions 3 through 5 present the evolution of the WAFL
multiprocessor model through the various steps outlined
above, and Section 6 evaluates each of the new models.
Section 7 presents related work, and we conclude in Sec-
tion 8.

2 Background on the WAFL File
System

WAFL implements the core file system functionality
within the Data ONTAP operating system. WAFL
houses and exports multiple file systems called NetApp
FlexVol R© volumes from within a shared pool of storage
called an aggregate and handles file system operations to
them. In WAFL, all metadata and user data (including
logical units in SAN protocols) is stored in files, called
metafiles and user files, respectively. The file system is
organized as a tree rooted at the super block. File sys-
tem operations are dispatched to the WAFL subsystem in
the form of messages, with payloads containing pertinent
parameters. For detailed descriptions of WAFL, see Hitz
et al. [17] and Edwards et al. [13].

Data ONTAP itself was first parallelized by dividing each
subsystem into a private domain, where only a single
thread from a given domain could execute at a time. For
example, domains were created for RAID, networking,
storage, file system (WAFL), and the protocols. Com-
munication between domains used message passing. Do-
mains were intentionally defined such that data sharing

was rare between the threads of different domains, so this
approach allowed scaling to multiple cores with minimal
code rewrite, because little locking was required. The file
system module executed on a dedicated set of threads in
a single domain, such that only a single thread could run
at a time. This simplistic model provided sufficient per-
formance because systems at the time had very few cores
(e.g., four), so parallelism within the file system was not
important. Over time, each of these domains has become
parallel, but in this paper we focus on the approaches
used to parallelize WAFL.

3 Classical Waffinity
As core counts increased, serialized execution of file
system operations became a scalability bottleneck be-
cause such operations represented a large fraction of
the computational requirements in our system. To pro-
vide the initial parallelism in the file system, we im-
plemented a multiprocessor model called Waffinity (for
WAFL affinity), the first version of which was called
Classical Waffinity and shipped with Data ONTAP 7.2
in 2006.

In Classical Waffinity, the file system message sched-
uler defined message execution contexts called affinities.
User files were then partitioned into file stripes that cor-
responded to a contiguous range of blocks in the file (ap-
proximately 2MB in size), and these were rotated over
a set of Stripe affinities. This model ensured that mes-
sages operating in different Stripe affinities were guar-
anteed to be working on different partitions of user files,
so they could be safely executed in parallel by threads
executing on different cores. In contrast, any two mes-
sages that were operating on the same region of a file
would be enqueued within the same affinity and would
therefore execute sequentially. This data partitioning
provided an implicit coarse-grained synchronization that
eliminated the need for explicit locking on partitioned
objects, thereby greatly reducing the complexity of the
programming model and the development cost of paral-
lelizing the file system. Some locking was still required
to protect shared global data structures that could be ac-
cessed by multiple affinities.

In Waffinity, we introduced a set of threads to exe-
cute the messages in each affinity, and we allowed the
thread scheduler to simultaneously run multiple Waffin-
ity threads. The Waffinity scheduler maintained a FIFO
list of affinities with work; that is, affinities that had
been sent messages that operated within that partition.
Any running thread dynamically called into the Waffin-
ity scheduler to be assigned an affinity from which to
execute messages. The number of Stripe affinities was

420 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

empirically tuned to be 12 and the number of Waffinity
threads was defined per platform to scale linearly with
the number of cores. NetApp storage systems at the time
maxed out at 8 cores, which ensured more affinities than
threads. Having more affinities than threads and creat-
ing a dynamic association between them decreased the
likelihood of any thread being unable to find work.

The benefit of this model comes from the fact that
most performance-critical messages at the time, such as
user file reads and writes, could be executed in Stripe
affinities, because they operated within a single user-file
stripe. However, reads and writes across file stripes or
operations such as Open and Close that touch file sys-
tem metadata could not be performed in parallel from
the Stripe affinities. To handle such cases, we provided
a single-threaded execution context—called the Serial
affinity—such that when it was scheduled, no Stripe
affinities were scheduled and vice versa. This approach
is analogous to a Reader-Writer Lock, where the Serial
affinity behaves like a writer with exclusive file system
access and the Stripe affinities behave like readers with
shared access. Therefore, any messages requiring access
to data that was unsafe from the Stripe affinities could
be assured exclusive access to all file system data struc-
tures by executing in the Serial affinity. Use of the Serial
affinity excessively serialized many operations; however,
it allowed us to incrementally optimize the file system
by parallelizing only those messages found to be perfor-
mance critical. This approach also provided an option
whereby unsafe code paths could be dynamically re-sent
to the Serial affinity (called a slowpath).

Classical Waffinity exposed sufficient concurrency to ex-
ploit high-end NetApp platform core counts at the time,
i.e., 8 cores. That is, further parallelizing file system op-
erations would not have had a major impact on overall
performance because the cores were already well used.
However, as the number of cores increased, limitations in
the partitioning provided by the model led to scalability
bottlenecks. For example, an SFS2008 benchmark run-
ning on 12 cores saw the Serial affinity in use 48% of the
time, as a result of the metadata operations such as Se-
tattr, Create, and Remove. This serialization resulted in
considerable core idle time, as evaluated in Section 6.1.1,
which reduced potential performance. Further, most of
the work remaining could not be moved to a Stripe affin-
ity due to the strict rules of what can run there (i.e.,
operating within a single user file stripe). With higher
core counts, serialized execution had a larger impact on
performance, because the speedup achieved through par-
allelism was limited by the serial time, in accordance
with Amdahl’s law. Thus, although sufficient at the time,
Classical Waffinity as first designed was simply unable
to provide the required performance going forward.

Figure 1: The structure of Classical Waffinity with the Serial
affinity on top and the twelve Stripe affinities below.

Figure 2: The Hierarchical Waffinity hierarchy rooted at the
Serial affinity.

4 Hierarchical Waffinity
Hierarchical Waffinity builds on top of the Classical
Waffinity model to enable increased levels of parallelism.
This model, which first shipped with Data ONTAP 8.1
in 2011, greatly reduces the increasingly critical single-
threaded path by providing a way to parallelize addi-
tional work. Further, the model offers insight into pro-
tecting hierarchically structured systems in other do-
mains [22] by using data partitioning.

4.1 The Affinity Hierarchy

An alternative view of the Serial and Stripe affinities of
Classical Waffinity is as a hierarchy, as shown in Fig-
ure 1, where a node is mutually exclusive with its chil-
dren but can run in parallel with other nodes at the same
level. Hierarchical Waffinity facilitates additional paral-
lelism by extending this simple 2-level hierarchy to ef-
ficiently coordinate concurrent accesses to other funda-
mental file system objects beyond data blocks of user
files.

Each affinity is associated with certain permissions, such
as access to metadata files, that serialized execution in
the file system in Classical Waffinity (Figure 2 and Ta-
ble 1). The new affinity scheduler enforces execution
exclusivity between a given affinity and its children, so
Hierarchical Waffinity only restricts the execution of an
affinity’s ancestors and descendants (hierarchy parents
and children, respectively); all other affinities can safely
run in parallel. For example, if the Volume Logical affin-
ity is running, then its Stripe affinities are excluded along
with its parent Volume, Aggregate, and Serial affinities.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 421

This design ensures that no two messages with conflict-
ing data accesses run concurrently, because they would
run in affinities that exclude one another. Hierarchical
Waffinity is analogous to a hierarchy of Reader-Writer
Locks, where running in any affinity acquires the lock as
a writer and thus prevents any readers (i.e., descendants)
from running concurrently, and vice versa.

The WAFL file system is itself hierarchical (i.e., buffers
within inodes within FlexVol volumes within aggre-
gates), making Hierarchical Waffinity a natural fit.
Knowledge of the specific data access patterns that are
most common in WAFL informed the decision of affin-
ity layout in the hierarchy and the mapping of specific
object accesses to those affinities.

As a general rule, client-facing data, such as user files,
logical units, and directories, is mapped to the Volume
Logical branch of the hierarchy and internal metadata is
mapped to Volume VBN—so named because it is typi-
cally indexed by volume block number (VBN). This al-
lows parallelism between client-facing and internal oper-
ations within a single volume. The Aggregate, Volume,
Stripe, and Range affinity types have multiple instances,
which allows parallel execution of messages operating
on disjoint data, such as any two operations in different
aggregates, FlexVol volumes, or regions of blocks in a
file. Each file system object is mapped to a particular in-
stance in the affinity hierarchy, based on its location in
the file system. The number of instances of each affin-
ity as well as the mapping of objects to instances can
be adapted to the observed workload to maximize per-
formance. Further, new affinity types can be (and have
been) added to the hierarchy over time in response to new
workloads and data access patterns.

4.2 Affinity Access Rules

The affinity permissions required by a message are de-
termined by the type of objects being accessed and the
access types. We used knowledge of the system to
derive affinity permissions that allowed performance-
critical operations to run with the most parallelism. In
WAFL, any access is associated with a specific affinity,
using the rules shown in Table 1. Exclusive access to
an object ensures that no concurrently running affinities
can access that object. The fundamental objects that are
protected by data partitioning in Waffinity are buffers,
files, FlexVol volumes, and aggregates. Accesses to other
object types are infrequent but are protected with fine-
grained locking, and deadlock is prevented through the
use of lock hierarchies.

Each FlexVol volume and aggregate is mapped to a Vol-
ume and Aggregate affinity when it comes online. In the
WAFL file system, files are represented by inodes, which

are mapped to an affinity within the hierarchy of the vol-
ume or aggregate in which they reside. Inodes can be
accessed in either exclusive or shared mode. In exclu-
sive mode, only one message has access to the inode and
consequently can change any inode property or free the
inode. In shared mode, the inode’s fundamental prop-
erties remain read-only, but the majority of an inode’s
fields can be modified and are protected from concurrent
accesses by fine-grained locking. Similar distinctions are
in place for FlexVol volumes and aggregates.

Blocks are represented in memory by a buffer header and
a 4KB payload. Details of the WAFL buffer cache archi-
tecture have previously been published [11]. Accesses to
buffers fall into the following four categories:

• Insert: A new buffer object is allocated and the pay-
load is read in from disk. The buffer becomes asso-
ciated with the corresponding inode.

• Read: The payload of an in-memory buffer is read.
No disk I/O is required in this case.

• Write: The payload of the in-memory buffer is mod-
ified in memory. The buffer header is also modified
to indicate that it is dirty.

• Eject: The buffer is evicted from memory.

Each of these access modes is mapped to a specific affin-
ity instance for a given buffer. For Write, Insert, and
Eject accesses, our data partitioning model requires that
only a single operation perform any of these accesses
at a time. Thus, operations must run in the designated
affinity for a given access mode or its ancestor. On the
other hand, read accesses are safe in parallel with each
other, but it is necessary to ensure that the buffer will not
be ejected underneath it, so that it can run in any ances-
tor or descendant of the Eject affinity. Typically, Write
and Eject access are equivalent, which similarly prevents
concurrent reads and writes. The affinity mappings for
buffers are chosen to allow maximum parallelism, while
ensuring access to the buffers from all necessary affini-
ties. For example, user file reads and writes run in the
Stripe affinities because the relevant buffers map to these
affinities.

4.3 Mapping Operations to Affinities

Messages are sent to a predetermined affinity based on
the required permissions of the operation, as identified
by the software developer. If a message requires the per-
missions assigned to multiple affinities, then it is directed
to an affinity that is an ancestor of each. For example, an
operation that requires privileges assigned to a particular

422 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Affinity Name Access Privileges Provided
Stripe Provides exclusive access to a predefined, distinct set of blocks. Enables concurrent access

to sub-file-level user data.
Volume Logical Provides exclusive access to most client-visible files (and directories) within a volume and

to certain file system internal metadata.
Volume VBN Provides exclusive access to most file system metadata, such as those files that track block

usage. Such files are typically indexed by volume block number (VBN).
Volume VBN
Range

Provides access to specific ranges of blocks within files belonging to Volume VBN.

Volume Provides exclusive access to all files within a volume as well as per-volume metadata that
lives in the containing aggregate.

Aggregate VBN Similarly to Volume VBN, provides access to most file system metadata in an aggregate.
Aggregate VBN
Range

Provides access to specific ranges of blocks within files belonging to Aggregate VBN.

Aggregate Provides exclusive access to files in an aggregate.
Serial Inherits the access rights of all other affinities and provides access to other global data.

Table 1: The affinities and the access rights that they provide.

Stripe affinity and to a Volume VBN affinity could safely
execute in the Volume affinity. As in Classical Waffin-
ity, if a message is routed to a particular affinity and later
determines that it requires additional permissions, it may
be dynamically re-sent (i.e., slowpath) to a coarser (i.e.,
less parallel) affinity that provides the necessary access
rights. Object accesses are achieved through a limited
set of APIs that we have updated to enforce the required
affinity rules, including slowpathing if necessary. Thus,
the programming model helps ensure code correctness.
The more access rights required by a message, the higher
in the affinity hierarchy it must run and the more it lim-
its parallelism by excluding a larger number of affinities
from executing. Thus, it is preferable to run in as fine
an affinity as possible. For this reason, we have selected
data mappings that allow the most common operations
to be mapped to fine affinities, and objects that are fre-
quently accessed together are given similar mappings.

Figure 3 shows several example affinity mappings of op-
erations under a single Volume affinity. For simplic-
ity, we assume a file stripe size of 100 contiguous user
blocks, or 10 blocks in metafiles. Reads and writes
within a file stripe map to a Stripe affinity. However, a
user file deletion (“Remove: A”) runs in the Volume Log-
ical affinity, because it requires exclusive access to that
user file, as does a write operation that spans multiple
file stripes (“W: A[100..200]”). Running in this affinity
prevents the execution of any reads or writes to blocks
in that file. However, reads and writes to files in other
volumes are not impacted, nor are operations on file sys-
tem metadata within the same volume. Note that “W:
A, MD” must run in Volume affinity to write to both a
user file and metafile. As noted earlier, key message pa-

Figure 3: Example affinity mappings of Read (“R”), Write
(“W”), Remove, and Create operations to user files A and B,
metadata file MD, and FlexVol V. A block offset of 100 with
file A is denoted as A[100].

rameters are tracked in the message payload. When a
message is sent into WAFL, its payload is inspected to
determine the type of the message and other data from
which the destination affinity is calculated. Effectively,
each message exposes the details of its data accesses to
the scheduler so that MP safety can be enforced at this
level, similar to some language constructs for task-based
systems [3, 34]. For example, a write message exposes
the offsets being written and thus the required affinity for
execution.

4.4 Development Experience with Hierar-
chical Waffinity

Hierarchical Waffinity allows parallelization at the gran-
ularity of a message type, running all other message
types in the Serial affinity, allowing incremental opti-
mization over time. Thus, parallelization effort scales

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 423

with the size of the message, rather than requiring the
entire code base to be updated at once. A typical mes-
sage handler is on the order of hundreds or thousands of
lines of code, whereas the file system is on the order of
millions. Further, a message can first be parallelized into
one affinity and later moved to a finer affinity when need
arises and the extra development cost can be justified.

Messages often require only minimal code changes dur-
ing parallelization because data access guarantees are
provided by the model. In such cases, after a detailed
line-by-line code inspection to evaluate multiprocessor
safety, messages can be moved into fine affinities just
by changing the routing logic that computes the target
affinity. For example, parallelizing the Link operation to
run in the Volume Logical affinity required fewer than
20 lines of code to be written, none of which were ex-
plicit synchronization. In other cases, major changes are
required to safely operate within a single affinity, for ex-
ample by restructuring data accesses, thus requiring po-
tentially thousands of lines of code changes. In WAFL,
the underlying infrastructure required to implement the
affinities, scheduling, and rule enforcement amounted to
approximately 22K lines of code. Compared to the alter-
native of migrating the whole file system to fine-grained
locking, which would involve inspecting and updating a
large fraction of the millions of lines of code, these costs
are relatively small.

Software systems in many domains employ hierarchical
data structures (such as linear algebra [12] and computa-
tional electromagnetics [14]), and a variety of techniques
have been developed to provide multiprocessor safety in
such cases [15, 22]. Hierarchical Waffinity offers an al-
ternative architecture that is capable of incremental par-
allelization. In applying this approach to other systems,
the types of affinities to create, the number of instances of
each type, and the mapping of objects to affinities would
be based on domain-specific knowledge of the data ac-
cess patterns. In practice, this approach applies most nat-
urally to message passing systems where a subset of mes-
sage handlers could be parallelized while leaving others
serialized, or alternatively to task-based systems such as
Cilk++ [26].

4.5 Hierarchical Scheduler

The Hierarchical Waffinity scheduler is an extension
of the Classical Waffinity scheduler that maps the now
greater set of runnable affinities to the Waffinity threads
for execution while enforcing the hierarchical exclusion
rules. As before, Waffinity threads are exposed to the
general CPU scheduler, and when they are selected for
execution, they begin by calling into the Waffinity sched-
uler for work. A running thread then begins processing

the messages queued up to that affinity for the duration
of an assigned quantum, after which the thread calls back
into the scheduler to request another affinity to run.

As messages are sent into WAFL and processed by the
Waffinity threads, the Waffinity scheduler tracks the sets
of affinities that are runnable (i.e., with work and not ex-
cluded), running, or excluded by other executing affini-
ties. When threads request work, the scheduler selects an
affinity from the runnable list, assigns it to the thread, and
updates the scheduler state to reflect the newly running
affinity. In particular, the scheduler maintains a queue of
affinities that is walked in FIFO order to find an affinity
that is not excluded. An excess of work in coarse affini-
ties manifests in the scheduler as a shortage of runnable
affinities, resulting in situations where available threads
cannot find work to do and must sit idle, which in turn
results in wasted CPU cycles. We also track the number
of runnable affinities and ensure that the optimal num-
ber of threads are in flight any time an affinity begins
or ends execution. To prevent the starvation of coarse
affinities, we periodically drain all running affinities and
ensure that all affinities run with some regularity. Fig-
ure 4 shows a sample scheduler state. In this example,
there are seven affinities currently running and five more
that can be selected for execution by the affinity sched-
uler.

4.6 Waffinity Limitations and Alternatives

Fundamental in the Waffinity architecture is a mapping
of file system objects to a finite set of affinities, often
causing independent operations to unnecessarily become
serialized. For example, any two operations that require
exclusive access to two user files in the same volume
(such as deletion) are serialized. As long as sufficient
parallelism is found to exploit available cores on the tar-
get platforms, this limitation is acceptable in the sense
that increasing available parallelism will not result in in-
creased performance. Two other scenarios that can result
in significant performance loss are 1) when frequently
accessed objects directly map to a coarse affinity; and
2) when two objects mapped to different affinities must
be accessed by the same operation. These scenarios are
not well handled in Hierarchical Waffinity and result in
poor scaling in several important workloads, as shown in
Section 6.

An alternative to the Waffinity architecture would be to
use fine-grained locking to provide MP safety. In such
an approach, all file system objects would be protected
by using traditional locking, and no limits need to be
imposed on which operations can be executed in paral-
lel. This would provide additional flexibility in the pro-
gramming model; however, it carries many drawbacks

424 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: Sample hierarchical affinity scheduler state.

that led to the decision to implement Classical and Hi-
erarchical Waffinity. Reimplementing the file system to
exclusively use fine-grained locks would require a mas-
sive code rewrite and would carry with it the potential for
introducing races, performance issues caused by locking
overhead and contention, and the risk of deadlocks. In-
stead, our approach reduces the overall amount of lock-
ing required, and even allows messages to run in coarse
affinities without locking.

5 Hybrid Waffinity
The next step in the multiprocessor evolution of WAFL is
Hybrid Waffinity, which shipped with Data ONTAP 9.0
in 2016. This model is designed to scale workloads for
which Hierarchical Waffinity is not well suited, due to a
poor mapping of data accesses to affinities, as discussed
in Section 4.6. This model supports fine-grained locking
within the existing hierarchical data partitioned architec-
ture to protect particular objects when accesses do not
map neatly to fine partitions. At the same time, we con-
tinue to use partitioning where it already excels, such as
for user file reads and writes. Overall, Hybrid Waffinity
leverages both fine-grained locking and data partitioning
in cases where each approach excels. Although this may
seem like an about-face from the data partitioned mod-
els, in fact it is merely an acknowledgement that in some
cases fine-grained locking is required for effective scal-
ing. Retaining partition-based protection in most cases is
critical so that only the code that scales poorly with data
partitioning needs to be updated.

In Hybrid Waffinity, we allow buffers in a few select
metafiles to be protected by locking, while the vast ma-
jority of buffers, as well as all other file system objects,
continue to use data partitioning for protection. The
result is a hybrid model of MP-safety where different
buffer types have different protection mechanisms. The
use of locking allows these buffers to be accessed from

finer affinities; however, we continue to allow lock-free
access from a coarser affinity. That is, because all object
accesses occur within some affinity subtree, a message
running in the root of that subtree can safely access the
object without locking.

5.1 Hybrid-Insert

With Hierarchical Waffinity, each buffer is associated
with a specific Insert affinity that protects the steps in-
volved in inserting that buffer. This mandates that all
messages working on inserting the buffer will run in the
same affinity to be serialized. This design is effective
in the common case where a single buffer is accessed or
multiple buffers with similar affinity mappings are ac-
cessed. However, in cases where a message accesses
multiple buffers in different partitions, the message must
run in a coarser affinity that provides all of the necessary
permissions. Figure 5 illustrates a scenario in which both
User file buffers and Metafile buffers must be accessed,
which happens when replicating a FlexVol volume (dis-
cussed in Section 6.2.3). This operation must run in
the AGGR1 affinity, rather than the more parallel S1 or
AVR1 affinity. In such cases, parallelism in the system is
reduced, because time spent running in coarse affinities
limits the available affinities that can be run concurrently,
potentially starving threads and cores of work.

We overcome these shortcomings with Insert by allow-
ing Hybrid-Insert access to certain buffers from multiple
fine affinities. Only a few buffer types are frequently
accessed in tandem with other buffers, and we apply
Hybrid-Insert only in such cases. Thus, a message ac-
cessing two buffers now runs in the traditional (fine) In-
sert affinity of one buffer and protects the second buffer
by using Hybrid-Insert, rather than in a coarse affinity
with Insert access to both buffers. Allowing multiple
affinities to insert a buffer means that two messages can
simultaneously insert the same buffer, but Hybrid-Insert
resolves such races and synchronizes all callers of any

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 425

Figure 5: Hierarchical Waffinity model with User data access
in S1 and Metadata access in AVR1.

Figure 6: Hybrid Waffinity model where User data access con-
tinues to be in S1, but Metadata access is permitted from any
descendant of AGGR1.

insert code path. Referring back to Figure 5, the User
data can continue to be protected with partitioning in S1
and the Metadata can now be accessed from the S1 affin-
ity (for example) with explicit synchronization, as shown
in Figure 6. Further, noncritical messages that operate on
Metadata can run in AGGR1 without being rewritten, be-
cause the scheduler will not run any other messages that
access this data.

For explicit synchronization, Hybrid-Insert uses what we
refer to as MP-barriers. MP-barriers employ a set of
spin-locks that are hashed based on buffer properties.
The insert process consists of a series of critical sections
of varying lengths. Short critical sections can simply
hold the spin-lock for their duration. However, longer
critical sections avoid holding the lock for long periods
by instead stamping the buffer with an in-progress flag
under the lock at the beginning of the critical section and
clearing it at the end. Other messages that encounter the
in-progress flag can then block, knowing that a message
is already moving this buffer toward insertion.

5.2 Hybrid-Write

The next buffer access mode we consider is Write, which
involves changing the contents of a buffer and updating
associated metadata. Hierarchical Waffinity serializes all

readers and writers to the same buffer by mapping all
such operations to the same affinity. Thus, Write ac-
cess made it safe for writers to modify the buffer without
locking and for readers to know that no writes were hap-
pening concurrently to the buffer. However, as with In-
sert access, messages requiring access to multiple buffers
with different affinity mappings needed to run in a coarse
affinity, thereby limiting parallelism.

Hybrid-Write allows writes to certain types of buffers
from multiple affinities so that messages routed to an
affinity for Write access to one buffer will also be able to
access a different buffer by using Hybrid-Write, again as
in Figure 6. Thus, readers and writers must synchronize
by using fine-grained locking to ensure MP-safety and
data consistency. In the new model, we have retained
the traditional Write affinity in which an operation can
run without locking. Read access has been redefined for
Hybrid-Write buffer types such that it now maps to the
traditional Write affinity, thereby providing (slow) read
access to the buffer without any locking. New access
modes called Shared-Write and Shared-Read have been
added to provide access from finer affinities, and only by
explicitly using these access modes—and thus implicitly
agreeing to add the necessary locking—is any additional
parallelism achieved. Thus, Hybrid-Write uses an opt-
in model wherein legacy code remains correct by default
until it is manually optimized.

Hybrid-Write uses spin-locks to protect buffer data and
metadata. Spin-locks are sufficient here because the crit-
ical sections for reads and writes are typically small. The
introduction of fine-grained locking increases complex-
ity; however, it can be done incrementally as required by
specific messages without a large-scale code rewrite. As
an example of the increased complexity, buffer state ob-
served at any time in Hierarchical Waffinity could always
be trusted because the entire message execution was un-
der the implicit locking of the scheduler. In contrast,
buffer state observed inside an explicit critical section
can no longer be trusted once the lock is released.

5.3 Hybrid-Eject

The final buffer access mode is Eject, which provides ex-
clusive access and allows arbitrary updates to the buffer,
including evicting the buffer from memory. Thus, Eject
access maps to an affinity that excludes all affinities
with access to this buffer. Hybrid-Eject instead uses
fine-grained locking to provide exclusive access from a
finer affinity. Unlike Hybrid-Insert and Hybrid-Write,
we compute a single Hybrid-Eject affinity for each buffer
to serialize all code paths. While Hybrid-Eject could al-
ways be used in place of Hybrid-Write, the semantics of
Hybrid-Eject are more restrictive and would limit perfor-

426 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Waffinity model where traditional Eject access maps
to AGGR1, but Hybrid-Eject maps to a specific fine affinity S1.

mance. We have also retained the traditional Eject affin-
ity to minimize required code changes. Figure 7 shows
a sample hierarchy with Eject affinity in AGGR1 and
Hybrid-Eject in S1.

Simply protecting each buffer with a spin-lock would not
be feasible for Hybrid-Eject because messages can read
many buffers, each of which must be protected from ejec-
tion. Instead, we track a global serialization count that
is incremented at periodic serialization points within the
file system. Whenever a reference to a buffer is taken,
it is stamped with the current serialization count under a
spin-lock and is said to have an active stamp. Buffers
with active stamps cannot be evicted and are implic-
itly unlocked when the serialization count is next incre-
mented. Because message execution cannot span seri-
alization points, buffers with stale stamps can be safely
ejected. Preventing the ejection of a buffer for this du-
ration is excessive but practical, since only 0.002% of
buffers considered for ejection had an active stamp dur-
ing an experiment with heavy load on a high-end plat-
form.

To extend this infrastructure beyond buffer ejection, we
also define an exclusive stamp that prevents any concur-
rent access at all. A message requiring exclusive access
can simply put this value on the buffer and all subsequent
accesses to the buffer spin until the exclusive stamp has
been cleared. Spinning is acceptable in practice, since
only 0.007% of exclusive stamp attempts encountered an
active stamp in an experiment with heavy load.

5.4 Development Experience with Hybrid
Waffinity

Adopting Hybrid Waffinity within WAFL involved cre-
ating the underlying infrastructure and then paralleliz-
ing individual messages to take advantage of it. For
each of the access modes, we required approximately 3K
lines of code changes, which included extensive rule en-
forcement and checking. As in the case of Hierarchi-

cal Waffinity, the effort involved in each specific mes-
sage parallelization varied widely. Leveraging Hybrid-
Insert and Hybrid-Eject requires few code changes be-
cause the infrastructure is primarily embedded within ex-
isting APIs. Hybrid-Write, on the other hand, requires
more code changes due to the addition of fine-grained
locking throughout the message handler. For example,
all three messages that we optimized using Hybrid-Eject
required fewer than 20 lines of code changes. In con-
trast, two messages parallelized using Hybrid-Insert and
Hybrid-Write required a few thousand lines of changes.

We have already begun to apply this technique to other
objects within WAFL. In particular, a project is under
way to further parallelize access to certain inodes in
WAFL by using Hybrid Waffinity, and we have found
the code changes to be relatively modest. We are opti-
mistic that the ease with which this technique was ap-
plied to inodes will translate to other software systems.
The techniques of Hybrid Waffinity can potentially be
applied in any data partitioned system, not only those that
are hierarchically arranged. Prior work has discussed
the difficulty in operating on data from different parti-
tions [21, 38], and our approaches can be used in such
cases to improve parallelism. For example, consider a
scientific code operating on two arrays. Tasks could be
divided up based on a partitioning of one array, and ac-
cess to the other array could be protected through fine-
grained locking.

6 Performance Analysis

6.1 Hierarchical Waffinity Evaluation

To highlight the improvements provided by Hierarchical
Waffinity, we chose two performance benchmarks that
emphasize the limitations of Classical Waffinity. Hier-
archical Waffinity was released in 2011 as part of Data
ONTAP 8.1, and we used this software to evaluate its
benefits. In this section, the benchmarks were run on a
12-core experimental platform that was the highest-end
Data ONTAP platform available at the time this feature
shipped. Many changes were made in Data ONTAP be-
tween releases, so we cannot directly compare the ap-
proaches. Instead, we used an instrumented kernel that
runs messages in the same affinities as would Classical
Waffinity for our baseline to isolate the impact of our
changes. We used multiple FlexVol volumes in these ex-
periments because this is representative of the majority
of customer setups.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 427

Figure 8: Throughput and core usage improvements with Hi-
erarchical Waffinity compared to Classical Waffinity on a Spec
SFS2008 workload.

6.1.1 Spec SFS2008

We first measured performance using the Spec SFS2008
benchmark [35] using NFSv3 on 64 FlexVol volumes.
This workload generates mixed workloads that simulate
a “typical” file server, including Read, Write, Getattr,
Lookup, Readdir, Create, Remove, and Setattr opera-
tions. Several of these operations involve modification
of file attributes, so the corresponding messages were
forced to run in the Serial affinity in the Classical Waffin-
ity model. Hierarchical Waffinity allowed us to move
Create and Setattr into the Volume Logical affinity and
Remove to the Volume affinity. Since there are eight
Volume affinities, up to eight Create/Setattr/Remove op-
erations can now run in parallel with each other and can
also run in parallel with the remaining client operations
in Stripe affinities.

Figure 8 shows the throughput and core usage improve-
ments of Hierarchical Waffinity over Classical Waffinity
for SFS2008. As noted, in Classical Waffinity many op-
erations ran in the Serial affinity, thereby serializing all
file system operations and resulting in idle cores. In the
baseline, the Serial affinity was busy 48% of the time,
thus limiting parallel execution to only 52% of the time.
In contrast, by providing additional levels of parallelism,
the hierarchical model was able to reduce Serial affinity
usage to 9%. Alleviating this significant scalability bot-
tleneck increased the system-wide core usage by 2.59 out
of 12 cores, showing that parallelism is significantly im-
proved through the ability to process operations on meta-
data in parallel with each other and with reads and writes.
Most importantly, the additional core usage successfully
translated into a 23% increase in throughput. That is,
Hierarchical Waffinity effectively exploits the additional
processing bandwidth to improve performance.

6.1.2 Random Overwrite

We next evaluate the benefit of Hierarchical Waffinity on
a 64 FlexVol volume random overwrite workload. Block

Figure 9: Throughput and core usage improvements with Hier-
archical Waffinity compared to Classical Waffinity on a random
overwrite workload.

overwrites in the file system are particularly interesting
because WAFL always writes data to new blocks on disk.
Thus, for each block overwritten, the previously used
block on disk must be freed and the corresponding file
system metadata tracking block usage must be updated.
It is not the write operation itself that is of interest in this
experiment, because that was parallelized even in Classi-
cal Waffinity. This benchmark instead demonstrates the
gains from parallelizing block free operations that used
to run in the Serial affinity, because they involve updat-
ing file system metadata. With Hierarchical Waffinity,
these messages can now run in the Volume VBN and
Aggregate VBN affinities (when freeing in a FlexVol vol-
ume and aggregate, respectively) because these affinities
provide access to all of the required metafiles. Thus,
the changes provided in Hierarchical Waffinity 1) allow
block free messages to run concurrently with each other
on different FlexVol volumes because each volume has
its own Volume VBN affinity; and 2) allow block free
messages to run in parallel with client operations in the
Stripe affinities.

Here again, Hierarchical Waffinity demonstrates a signif-
icant reduction in Serial affinity usage, from 27% to 7%,
as a result of parallelizing the block free operations. This
reduction in serialization made it possible for the same
workload to scale to an additional 2.88 cores compared
to Classical Waffinity, as shown in Figure 9. This ex-
tra core usage allowed an overall improvement in bench-
mark throughput of 28%. The random write workload
is interesting because it demonstrates the benefits of run-
ning internally generated metadata operations in Volume
VBN affinity in parallel with front-end client traffic in
the Stripe affinities, which was not possible in Classical
Waffinity.

6.1.3 Overall CPU Scaling

The above analysis of Hierarchical Waffinity showed a
substantial improvement in the number of cores used,
but 1.5 cores were still idle. These benchmarks were se-

428 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: Core usage with Hierarchical Waffinity on a variety
of workloads under increasing levels of load.

lected to illustrate the benefits of Hierarchical Waffinity
compared to Classical Waffinity, not maximum utiliza-
tion. Idle cores could have been driven down still further
by parallelizing even the remaining 9% of Serial execu-
tion in SFS2008 and 7% in random write, but this was
not required to meet performance and scaling objectives
at the time.

In subsequent releases, we have further parallelized
many operations, resulting in the improved CPU scala-
bility shown in Figure 10. These parallelization efforts
have included both reducing Serial affinity usage and
moving already parallelized work into still finer affini-
ties. In particular, the graph shows the achieved core
usage at increasing levels of load (i.e., load points) for
a variety of workloads on 64 FlexVol volumes on a 20-
core storage server running Data ONTAP 9.0. The key
takeaways are the low core usage that occurs at low load
and the high core usage achieved in the presence of high
load. In particular, four of the six benchmarks achieve a
utilization of 19+ cores, with all benchmarks reaching at
least 18 cores. This data demonstrates that Hierarchical
Waffinity is able take advantage of computational band-
width up to 20 cores in a broad spectrum of important
workloads, and cores are not starved for work by an ex-
cess of computation in coarse affinities. In Section 6.3,
we discuss the issue of continued scaling on future plat-
forms.

6.2 Hybrid Waffinity Evaluation

Although the previous section demonstrated the success
of Hierarchical Waffinity across a wide range of work-
loads, there are also cases where its scalability is lim-
ited. Thus, we next evaluate the benefits of the Hybrid
Waffinity model by considering benchmarks that empha-
size cases where the hierarchical model falls short. We
focus on single FlexVol volume scenarios because any
coarse affinity utilization significantly limits parallelism;

however, we also consider the scalability with multiple
FlexVol volumes where Hierarchical Waffinity itself is
typically very effective already. Single-volume config-
urations are less common, but they are still a very im-
portant customer setup. This section describes analysis
done with Data ONTAP 9.0 on a 20-core platform, the
highest-end system available in 2016.

6.2.1 Sequential Overwrite

We first look at the benefits of Hybrid Waffinity on a se-
quential overwrite workload. As discussed above, block
overwrites are interesting in WAFL because they result
in block frees. In Hierarchical Waffinity, block free work
runs in the Volume VBN affinity, because it requires up-
dating various file system metadata files, so it already
runs in parallel with front-end traffic in the Stripe affini-
ties. However, if the system is unable to keep up with
the block free work being created, then client operations
must perform part of the block free work, which hurts
performance. This problem is exacerbated on single-
volume configurations where all block free work in the
system must go through the single active Volume VBN
affinity, which can become a major bottleneck.

Increasing the parallelism of this workload requires run-
ning block free operations in Volume VBN Range (or
simply Range) affinities. Certain metafile buffers re-
quired for tracking free blocks can be mapped to spe-
cific Range affinities, but other metafiles need to be up-
dated from any Range affinity, so the operation must run
in an affinity that excludes both relevant affinities. For-
tunately, this is an ideal scenario for Hybrid-Insert and
Hybrid-Write, in that buffers from certain metafiles can
be mapped to a specific Range affinity and others can be
protected by using locking from any Range affinity. Us-
ing a combination of partitioning and fine-grained lock-
ing to protect its buffer accesses, Hybrid Waffinity allows
the block free operation to run in 1) a finer affinity and
2) an affinity of which there are multiple instances per
FlexVol volume.

We evaluate a single-volume sequential overwrite bench-
mark on a 20-core platform with all flash drives. Fig-
ure 11 shows the throughput achieved and core usage at
increasing levels of sustained load from a set of clients
(i.e., the load point). Comparing peak load points shows
a 62.8% improvement in throughput from the use of 4.8
additional cores. Under sufficient load, the Hierarchi-
cal Waffinity performance falls off, because block free
work is unable to keep pace with the client traffic gener-
ating the frees. Hybrid Waffinity prevents this from hap-
pening by increasing the computational bandwidth that
can be applied to block free work on a single FlexVol
volume. This experiment demonstrates scalability up to
13.2 cores; however, repeating the test with 64 volumes

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 429

Figure 11: Throughput and core usage improvements at var-
ious levels of server load with Hybrid Waffinity compared to
Hierarchical Waffinity for a sequential overwrite workload.

shows the system scaling further to 16.6 cores due to the
activation of additional Volume affinity hierarchies. Hy-
brid Waffinity benefits throughput by only 7.5% and core
usage by 1.6 cores in the multi-volume case because Hi-
erarchical Waffinity is already so effective.

6.2.2 NetApp SnapMirror

The next workload we consider is NetApp SnapMirror R©,
a technology that replicates the contents of a FlexVol vol-
ume to a remote Data ONTAP storage server for data
protection [33]. During the “init” phase, the entire con-
tents of the volume are transferred to the destination
and subsequent “update” transfers replicate data that has
changed since the last transfer. In particular, SnapMirror
operates by loading the blocks of a metadata file repre-
senting the entire contents of the volume on the source,
sending the data to a remote storage server, and writ-
ing to the same metafile on the destination volume. Ex-
clusive access to this file’s buffers belongs to the Vol-
ume affinity, which results in substantial serialization,
because such work serializes all processing within the
volume. Hybrid-Eject allows these buffers to instead be
processed in the Stripe affinities.

Figure 12 shows the benefits of Hybrid-Eject on a single-
FlexVol SnapMirror transfer. The transfer is destination-
limited, so we evaluate core usage on the destination.
During the init phase, core usage goes up by 1.1 cores
and the throughput is improved by 24.2%. Similarly, the
update phase uses an additional 0.7 cores, resulting in a
32.4% gain in throughput. Despite the benefit, core us-
age is low in the single-volume case; however, an exper-
iment replicating 24 volumes scales to 12.5 cores (init)
and 9.8 cores (update), at which point the workload be-
comes bottlenecked elsewhere and Hybrid Waffinity pro-
vides no benefit beyond the hierarchical model alone.

Figure 12: Throughput and core usage improvements with Hy-
brid Waffinity compared to Hierarchical Waffinity for a Snap-
Mirror workload. Core usage is out of 20 available cores.

Figure 13: Throughput and core usage improvements with Hy-
brid Waffinity compared to Hierarchical Waffinity for a Snap-
Vault workload. Core usage is out of 20 available cores.

6.2.3 NetApp SnapVault

We conclude our analysis by looking at the performance
benefits of all three hybrid access modes together. An-
other Data ONTAP technology for replicating FlexVol
volumes, called SnapVault R©, writes to both user files
and metafiles on the destination server. In Hierarchical
Waffinity, the operations run in a coarse affinity (such
as Volume or Volume Logical) with access to both types
of buffers. With Hybrid Waffinity, user file buffers re-
main mapped to Stripe affinities, but Hybrid-Write and
Hybrid-Insert allow the metafile buffers to be accessed
by any child of the Volume affinity. Thus, SnapVault op-
erations can run in the Stripe affinity of their user file
accesses and use locking to protect metadata accesses.
Further, the metafile buffers map to Volume Logical for
Eject access, which can be optimized by using Hybrid-
Eject to facilitate processing in the Stripe affinities.

Figure 13 presents the improvements in throughput and
core usage of Hybrid Waffinity on a single-volume Snap-
Vault transfer. The new model facilitated a throughput
gain of 130% in the init phase on an extra 4.29 cores
used out of 20 available. Update performance is simi-
larly improved by 112% on a core usage increase of 1.83
cores. Increasing the transfer to 8 volumes increases the
total core usage to 17.7 cores (init) and 10.6 cores (up-

430 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

date), at which point the primary bottlenecks move to
other subsystems. Even here, the hybrid model improves
scalability by 0.5 cores and 3.1 cores and throughput by
20.2% and 18.1%, for init and update, respectively.

In summary, Hybrid Waffinity is able to greatly improve
performance in single-volume scenarios where Hierar-
chical Waffinity struggles most, and even improves scal-
ing in certain multi-volume workloads.

6.3 Discussion of Future Scaling

The analysis described in this paper was conducted on
the highest-end platforms available at the time each fea-
ture was released. These platforms drive the scalability
investment that is made, because scaling beyond avail-
able cores does not add customer value. New platforms
with higher core counts will continue to enter the market
in the future and our requirements will continue to in-
crease as a result. We expect that the infrastructure now
in place will continue to pay rich dividends as future par-
allelization investments focus on utilizing the techniques
discussed in this paper to greater degrees rather than in-
venting new ones. That is, the bottlenecks on the horizon
are not a limitation of the architecture itself. Internal sys-
tems with more cores are currently undergoing extensive
tuning, and the techniques discussed in this paper have
already allowed scaling well beyond 30 cores.

7 Related Work
Operating system scalability for multicore systems has
been the subject of extensive research. Recent work
has emphasized minimizing the use of shared memory
in the operating system in favor of message passing be-
tween cores that are dedicated to specific functional-
ity [2, 4, 18, 27, 40]. Such designs allow scaling to
many-core systems; however, their new designs cannot
be easily adopted in legacy systems because they require
the re-architecting of major kernel components and prob-
ably are best suited for new operating systems. So al-
though such research is crucial to the OS community, our
approaches for incremental scaling are also required in
practice. A recent study [5] investigated the scalability of
the Linux operating system and found that traditional OS
kernel designs, such as that of Data ONTAP, can scale ef-
fectively for near-term core counts, despite the presence
of specific scalability bugs in the CPU scheduler [29]. In
contrast, Min, et al. [31] analyze the scalability of five
production file systems and find many bottlenecks, in-
cluding some that may require core design changes.

Recently, many file system and operating system designs
have been offered to improve scalability. NOVA [41]

is a log-structured file system designed to exploit non-
volatile memories that allows synchronization-free con-
currency on different files. Hare [19] implements a scal-
able file system designed for non-cache-coherent multi-
core processors. The work most similar to our own mit-
igates contention for shared data structures by running
multiple OS instances within virtual machines [7, 36]. In
a similar way, MultiLanes [23] and SpanFS [24] create
independent virtualized storage devices to eliminate con-
tention for shared resources in the storage stack. Other
approaches to OS scaling on multicore systems include
reducing OS overhead by collectively managing “many-
core” processes [25], tuning the scheduler to optimize
use of on-chip memory [6], and even exposing vector
interfaces within the OS to more efficiently use parallel
hardware [39].

One obvious alternative to data partitioning is the use of
fine-grained synchronization, to which many optimiza-
tions have been applied. Read-copy update is an ap-
proach to improve the performance of shared access to
data structures, in particular within the Linux kernel [30].
Both flat combining [16] and remote core locking [28]
improve the efficiency of synchronization by assigning
particular threads the role of executing all critical sec-
tions for a given lock. Specifically in the context of hi-
erarchical data structures, intention locks [15] synchro-
nize access to one branch of a hierarchy, and Dom-
Lock [22] makes such locking more efficient. Our ap-
proach provides lock-free access to hierarchical struc-
tures in the common case, although the locking intro-
duced by Hybrid Waffinity certainly stands to benefit
from some of these optimizations. Parallel execution can
also be provided via runtime systems that infer task data-
independence without explicit data partitions [3, 34].

The database community has long used data partitioning
to facilitate parallel and distributed processing of trans-
actions. Many algorithms exist for deploying a scalable
database partitioning [1]. The process of defining parti-
tions for optimal performance can also be done on the fly
while monitoring workload patterns [20]. The Dora [32]
and H-Store [37] models provide data partitions such that
operations in a partition can be performed without re-
quiring fine-grained locking. Other work [21, 38] seeks
to address the problem of accesses to multiple partitions
in a partitioned database. In these proposals, operations
with a partition are serialized (and therefore lock-free),
but transactions applied to multiple partitions are facil-
itated through use of a two-phase commit protocol (or
similar). In our Hierarchical Waffinity model, we instead
superimpose a locking model on top of the partitioned
data such that the operation can run safely from within a
single partition.

Hierarchical data partitioning has also been explored. In

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 431

most cases, the partitioning model is optimized around
the presence of a hierarchical computational substrate [8,
9, 10, 12]. In contrast, our work focuses on the hierarchy
inherent in the data itself in order to provide ample lock-
free parallelism on traditional multicore systems. Similar
work has been done to optimize scientific applications by
using a hierarchical partitioning of the input data [14].

8 Conclusion
In this paper, we have presented the evolution of the mul-
tiprocessor model in WAFL, a high-performance produc-
tion file system. At each step along the way we have al-
lowed continued multiprocessor scaling without requir-
ing significant changes to the massive and complicated
code base. Through this work we have 1) provided a
simple data partitioning model to parallelize the major-
ity of file system operations; 2) removed excessive seri-
alization constraints imposed by Classical Waffinity on
certain workloads by using hierarchical data partition-
ing; and 3) implemented a hybrid model based on the
targeted use of fine-grained locking within a larger data-
partitioned architecture. Our work has resulted in sub-
stantial scalability and performance improvements on a
variety of critical workloads, while meeting aggressive
product release deadlines, and it offers an avenue for con-
tinued scaling in the future. We also believe that the tech-
niques discussed in this paper can influence other sys-
tems, because the hierarchical model is relevant to any
hierarchically structured system and the hybrid model
can be employed in insufficiently scalable systems based
on partitioning.

References
[1] Sanjay Agrawal, Vivek Narasayya, and Beverly

Yang. Integrating vertical and horizontal partition-
ing into automated physical database design. In
Proceedings of the Internal Conference on Man-
agement of Data (SIGMOD), 2004.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schupbach, and Akhilesh
Signhania. The multikernel: A new OS architec-
ture for scalable multicore systems. In Proceedings
of the Symposium on Operating System Principles
(SOSP), 2009.

[3] Micah J. Best, Share Mottishaw, Craig Mustard,
Mark Roth, Alexandra Federova, and Andrew
Brownsword. Synchronization via scheduling. In
Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementa-
tion (PLDI), 2011.

[4] Silas Boyd-Wickizer, Haibo Chen, Rong Chen,
Yandong Mao, M. Frans Kaashoek, Robert Mor-
ris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua
Dai, Yang Zhang, and Zheng Zhang. Corey: An
operating system for many cores. In Proceedings
of the Symposium on Operating System Design and
Implementation (OSDI), 2008.

[5] Silas Boyd-Wickizer, Austin T. Clemens, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nikolai Zeldovich. An analysis of linux
scalability to many cores. In Proceedings of the
Symposium on Operating System Design and Im-
plementation (OSDI), 2010.

[6] Silas Boyd-Wickizer, Robert Morris, and M. Frans
Kaashoek. Reinventing scheduling for multicore
systems. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2012.

[7] Edouard Bugnion, Scott Devine, Kinshuk Govil,
and Mendel Rosenblum. Disco: Running com-
modity operating systems on scalable multiproces-
sors. ACM Transaction on Computer Systems,
15(4), 1997.

[8] M. Chu, K. Fan, and S. Mahlke. Region-based hier-
archical operation partitioning for multicluster pro-
cessors. In ACM SIGPLAN Notices, 2003.

[9] M. Chu, R. Ravindra, and S. Mahlke. Data access
partitioning for fine-grain parallelism on multicore
architectures. In Proceedings of the International
Symposium on Microarchitecture (MICRO), 2007.

[10] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa.
Hierarchical partitioning algorithm for scientific
computing on highly heterogeneous CPU+GPU
clusters. In Proceedings of the European Confer-
ence on Parallel and Distributed Computing (Euro-
Par), 2012.

[11] Peter Denz, Matthew Curtis-Maury, and Vinay De-
vadas. Think global, act local: A buffer cache de-
sign for global ordering and parallel processing in
the WAFL file system. In Proceedings of the In-
ternal Conference on Parallel Processing (ICPP),
2016.

[12] H. Dutta, F. Hannig, and J. Teich. Hierarchical par-
titioning for piecewise linear algorithms. In Paral-
lel Computing in Electrical Engineering, 2006.

[13] John K. Edwards, Daniel Ellard, Craig Ever-
hart, Robert Fair, Eric Hamilton, Andy Kahn,
Arkady Kanevsky, James Lentini, Ashish Prakash,
Keith A. Smith, and Edward Zayas. FlexVol: flex-
ible, efficient file volume virtualization in WAFL.
In USENIX Annual Technical Conference (ATC),

432 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2008.
[14] O. Ergul and L. Gurel. A hierarchical partitioning

strategy for an efficient parallelization of the mul-
tilevel fast multipole algorithm. In IEEE Transac-
tions on the and Propagation, 2009.

[15] J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granu-
larity of locks in a shared data base. In Proceedings
of the International Conference on Very Large Data
Bases (VLDB), 1975.

[16] Danny Hendler, Itai Incze, Nir Shavit, and Moran
Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In Proceedings of the Sym-
posium on Parallelism in Algorithms and Architec-
tures (SPAA), 2010.

[17] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance. In
USENIX Winter Technical Conference, 1994.

[18] David A. Holland and Margo I. Seltzer. Multicore
OSes: Looking forward from 1991, er, 2011. In
Proceedings of the Workshop on Hot Topics in Op-
erating Systems (HotOS), 2011.

[19] Charles Gruenwald III, Filippo Sironi, M. Frans
Kaashoek, and Nickolai Zeldovich. Hare: a file
system for non-cache-coherent multicores. In Pro-
ceedings of the European Conference on Computer
Systems (EuroSys), 2015.

[20] A. Jindal and J. Dittrich. Relax and let the database
do the partitioning online. In Enabling Real-Time
Business Intelligence, 2012.

[21] Evan P. C. Jones, Daniel J. Abadi, and Sameul
Madden. Low overhead concurrency control for
partitioned main memory databases. In Proceed-
ings of the Internal Conference on Management of
Data (SIGMOD), 2010.

[22] Saurabh Kalikar and Rupesh Nasre. DomLock:
A new multi-granularity locking technique for hi-
erarchies. In Proceedings of the Symposium on
Principles and Practices of Parallel Programming
(PPoPP), 2016.

[23] Junbin Kang, Benlong Zhang, Tianyu Wo, Chun-
ming Hu, and Jinpeng Huai. MultiLanes: Provid-
ing virtualized storage for OS-level virtualization
on many cores. In Proceedings of Conference on
File and Storage Technologies (FAST), 2014.

[24] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren
Yun, Lian Du, Shuai Ma, and Jinpeng Huai.
SpanFS: A scalable file system on fast storage de-
vices. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC), 2015.

[25] Kevin Klues, Barret Rhoden, Andrew Waterman,
David Zhu, and Eric Brewer. Processes and re-
source management in a scalable many-core OS. In

Proceedings of the Workshop on Hot Topics in Par-
allelism (HotPar), 2010.

[26] Charles E. Leiserson. The Cilk++ concurrency plat-
form. In Proceedings of the Design Automation
Conference (DAC), 2009.

[27] Min Li, Sudharshan S. Vazhkudai, Ali R. Butt, Fei
Meng, Xiaosong Ma, Youngjae Kim, Christian En-
gelmann, and Galen Shipman. Functional partition-
ing to optimize end-to-end performance on many-
core architectures. In Proceedings of the Interna-
tional Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2010.

[28] Jean-Pierre Lozi, Florian David, Gael Thomas, Ju-
lia Lawall, and Gilles Muller. Remote core locking:
Migrating critical-section execution to improve the
performance of multithreaded applications. In Pro-
ceedings of the USENIX Annual Technical Confer-
ence (ATC), 2012.

[29] Jean-Pierre Lozi, Baptiste Lepers, Justin Fun-
ston, Fabien Gaud, Vivien Quema, and Alexandra
Federova. The Linux scheduler: a decade of wasted
cores. In Proceedings of the European Conference
on Computer Systems (EuroSys), 2016.

[30] Paul E. McKenney, Dipankar Sarma, Andrea Ar-
cangeli, Andi Kleen, Orran Krieger, and Rusty Rus-
sell. Read copy update. In Proceedings of the Ot-
tawa Linux Symposium, 2002.

[31] Changwoo Min, Sanidhya Kashyap, Steffen Maass,
Woonhak Kang, and Taesoo Kim. Understanding
manycore scalability of file systems. In Proceed-
ings of the USENIX Annual Technical Conference
(ATC), 2016.

[32] I. Pandis, R. Johnson, N. Hardavellas, and A. Aila-
maki. Data-oriented transaction execution. In Pro-
ceedings of the VLDB Endowment (PVLDB), 2010.

[33] Hugo Patterson, Stephen Manley, Mike Feder-
wisch, Dave Hitz, Stever Kleiman, and Shane
Owara. SnapMirror: File system based asyn-
chronous mirroring for disaster recovery. In Pro-
ceedings of Conference on File and Storage Tech-
nologies (FAST), 2002.

[34] Martin C. Rinard and Monica S. Lam. The de-
sign, implementation, and evaluation of Jade. ACM
Transaction on Programming Languages and Sys-
tems, 20(1), 1998.

[35] SPEC SFS (System File Server) benchmark. www.

spec.org/sfs2008. 2014.
[36] Xiang Song, Haibo Chen, Rong Chen, Yuanxuan

Wang, and Binyu Zang. A case for scaling appli-
cations to many-core with OS clustering. In Pro-
ceedings of the European Conference on Computer
Systems (EuroSys), 2011.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 433

[37] M. Stonebraker, S. Madden, D. J. Abadi, S. Hari-
zopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), 2007.

[38] Alexander Thomson, Thaddeus Diamond, Shu-
Chun Weng, Kun Ren, Philip Shao, and Daniel J.
Abadi. Calvin: fast distributed transactions for par-
titioned database systems. In Proceedings of the
Internal Conference on Management of Data (SIG-
MOD), 2012.

[39] Vijay Vasudevan, David G. Andersen, and Michael
Kaminsky. The case for VOS: The vector operating
system. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2011.

[40] David Wentzlaff and Anant Agarwal. Factored op-
erating systems (fos): The case for a scalable op-
erating system for multicores. Operating Systems
Review, 43(2), 2009.

[41] Jian Xu and Steven Swanson. NOVA: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of Con-
ference on File and Storage Technologies (FAST),
2016.

Copyright notice

NetApp, the NetApp logo, Data ONTAP, FlexVol, Snap-
Mirror, SnapVault, and WAFL are trademarks or regis-
tered trademarks of NetApp, Inc. in the United States
and/or other countries. All other brands or products
are trademarks or registered trademarks of their respec-
tive holders and should be treated as such. A current
list of NetApp trademarks is available on the web at
http://www.netapp.com/us/legal/netapptmlist.aspx.

434 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CLARINET: WAN-Aware Optimization for Analytics Queries

Raajay Viswanathan◦ Ganesh Ananthanarayanan† Aditya Akella◦
◦University of Wisconsin-Madison †Microsoft

Abstract
Recent work has made the case for geo-distributed
analytics, where data collected and stored at multiple
datacenters and edge sites world-wide is analyzed in situ
to drive operational and management decisions. A key
issue in such systems is ensuring low response times
for analytics queries issued against geo-distributed data.
A central determinant of response time is the query
execution plan (QEP). Current query optimizers do not
consider the network when deriving QEPs, which is a key
drawback as the geo-distributed sites are connected via
WAN links with heterogeneous and modest bandwidths,
unlike intra-datacenter networks. We propose CLARINET,
a novel WAN-aware query optimizer. Deriving a
WAN-aware QEP requires working jointly with the
execution layer of analytics frameworks that places
tasks to sites and performs scheduling. We design
efficient heuristic solutions in CLARINET to make such
a joint decision on the QEP. Our experiments with
a real prototype deployed across EC2 datacenters,
and large-scale simulations using production workloads
show that CLARINET improves query response times by
≥ 50% compared to state-of-the-art WAN-aware task
placement and scheduling.

1 Introduction
Large organizations, such as Microsoft, Facebook, and
Google each operate many 10s-100s of datacenters
(DCs) and edge clusters worldwide [1, 5, 6, 13] where
crucial services (e.g., chat/voice, social networking, and
cloud-based storage) are hosted to provide low-latency
access to (nearby) users. These sites routinely gather
service data (e.g., end-user session logs) as well as
server monitoring logs. Analyzing this geo-distributed
data is important toward driving key operations and
management tasks. Example analyses include querying
server logs to maintain system health dashboards,
querying session logs to aid server selection for video
applications [15], and correlating network/server logs to

detect attacks.
Recent work has shown that centrally aggregating

and analyzing this data using frameworks such as
Spark [48] can be slow, i.e., it cannot support the
timeliness requirements of the applications above [24],
and can cause wasteful use of the expensive wide-area
network (WAN) bandwidth [35, 43, 36]. In contrast,
executing the analytics queries geo-distributedly on the
data stored in-place at the sites—an approach called
geo-distributed analytics (GDA)—can result in faster
query completions [35, 43].

GDA entails bringing WAN-awareness to data
analytics frameworks. Prior work on GDA has shown
how to make query execution (specifically, data and
task placement) WAN-aware [43, 35, 36]. This paper
makes a strong case for pushing WAN-awareness up the
data analytics stack, into query optimization. While it
can substantially lower GDA query completion times, it
requires radical new approaches to query optimization,
and rethinking the division of functionalities between
query optimization and execution.

The query optimizer (QO) takes users’ input
query/script and determines an optimal query execution
plan (QEP) from among many equivalent QEPs that
differ in, e.g., their ordering of joins in the query.
QOs in modern analytics frameworks [2, 7], largely
use database technology developed over 30+ years of
research. These QOs consider many factors (e.g.,
buffer cache and distribution of column values) but
largely ignore the network because they were designed
for a single-server setup. Some parallel databases
considered the network, but they model the cost of any
over-the-network access via a single parameter. This
is less problematic within a DC where the network
is high-bandwidth and homogeneous. Geo-distributed
clusters, on the other hand, are connected by WAN
links whose bandwidths are heterogeneous and limited
(§2.1), varying by over 20×, because of differences in
provisioning of WAN links as well as usage by different

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 435

(non-analytics) applications.
Given this heterogeneity, existing network-agnostic

QOs can produce query plans that are far from optimal
(§2.2). For example, QOs decide the ordering of
multi-way joins purely based on the size of the
intermediate outputs. However, this can lead to heavy
data transfer over thin WAN links, thereby inflating
completion times. Likewise, today’s QOs optimize one
query at a time; as such, when multiple queries are issued
simultaneously, their individual QEPs can contend for
the same WAN links. Thus, we need a new approach
for WAN-aware multi-query optimization.

Arguably, because QOs are upper-most in analytics
stacks, them being network-agnostic fundamentally
limits the benefits from downstream advances in task
placement/scheduling [21, 43, 35, 36]. However, as
data analytics queries are DAGs of interconnected
tasks, WAN-aware query planning itself has to be
performed in concert with placement and scheduling
of the queries’ tasks and intermediate network transfers
(§2.2), in contrast with most existing systems where
these are conducted in isolation. This is because
task placement impacts which WAN links are exercised
by a given QEP, and scheduling impacts when they
are exercised, both of which determine if the QEP is
WAN-optimal. Unfortunately, formulating an optimal
solution for such multi-query network-aware joint query
planning, placement, and scheduling is computationally
intractable.

We develop a novel heuristic for the above problem.
First, we show how to compute the WAN-optimal QEP
for a single query, which includes task placement and
scheduling (§4). For tractability, our solution relies
on reserving WAN links for scheduled (but yet to
execute) tasks/transfers; however, we show that such link
reservations lead to faster query completions in practice.

Given a batch of n queries, we order them based on
their individually optimal QEPs’ expected completion
time; the QEP for the ith query is chosen considering
the WAN impact of the preceding i − 1 queries. This
mimics shortest-job first (SJF) order while allowing for
cross-query optimization (§5.1). However, it results
in bandwidth fragmentation (due to task dependencies),
thereby hurting completion times. To overcome this,
our final heuristic considers groups of k ≤ n queries
from the above order and explores how to compact
their schedules tightly in time, while obeying inter-task
ordering (§5.2). The result is a cross-query schedule
that veers from SJF but is closer to work-conserving,
and offers low average completion times for GDA
queries. We also extend the heuristic to accommodate
fair treatment of queries, minimizing WAN bandwidth
costs, and online query arrivals (§5.3).

We have built our solution into CLARINET, a

Master	 Worker	Scheduler	 Namenode	

Site-1	 Site-2	

Site-3	 Site-4	

WAN	

Hetero-	
geneous	
Tunnel	
bundles	

Figure 1: Architecture of GDA Systems

WAN-aware QO for Hive [3]. Instead of introducing
WAN-awareness inside existing QOs [2, 7], CLARINET is
architecturally outside of them. We modify existing QOs
to simply output all the functionally equivalent QEPs
for a query, and CLARINET picks the best WAN-aware
QEP per query, as well as task placement and scheduling
which it provides as hints to the query execution layer.
Our design allows any analytics system to take advantage
of CLARINET with minimal changes.

We deploy a CLARINET prototype across 10 regions
on Amazon EC2, and evaluate it using realistic TPC-DS
queries. We also conduct large scale trace-driven
simulations using production workloads based on two
large online service providers. Our evaluation shows
that, compared to the baseline that uses network-agnostic
QO and task placement, CLARINET can improve the
average query performance by 60-80% percent in
different settings. We find that CLARINET’s joint
query planning and task placement/scheduling doubles
the benefits compared to state-of-the-art WAN-aware
placement/scheduling.

2 Background and Motivation
In this section, we first discuss the architectural details
of GDA, focusing on WAN constraints. We then analyze
how queries are handled in existing GDA systems.

2.1 Geo-Distributed Analytics
GDA Architecture: In GDA, there is a central master at
one of the DCs/edge sites where queries—written, e.g.,
in SparkSQL [7], HiveQL [3], or Pig Latin [33]—are
submitted. For every query, the QO at the master
constructs an optimized query execution plan (QEP),
essentially, a DAG of many interdependent tasks. A
centralized scheduler places tasks in a QEP at nodes
across different sites based on resource availability and
schedules them based on task dependencies. 1

1 Typically, the task scheduler, the namenode of the distributed file
system, and the master all run at the same site to reduce inter-process
communication latencies between them. However, it is possible to
distribute them across different processing sites.

436 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 0.5 1
0

10

20

Inter-site logical links

N
or

m
al

iz
ed

B
W

(a) Amazon EC2

0 0.5 1
0

10

20

Inter-site logical links

N
or

m
al

iz
ed

B
W

(b) MICROSOFT

Figure 2: Distribution of bandwidth between data processing
sites for Amazon EC2 and a large OSP. The bandwidths
reported are normalized with respect to the minimum observed.
For Amazon EC2, the bandwidth between a pair of sites
is obtained through active measurements using iperf. The
minimum bandwidth obtained over 10-minute interval is taken
as the guaranteed bandwidth. For MICROSOFT, we use the
topology and traffic information from applications to compute
the guaranteed bandwidth.

WAN Constraints: The sites are inter-connected
by a WAN which we assume is optimized using
MPLS-based [45] or software-defined traffic
engineering [23, 20, 26]. In either case, end-to-end
tunnels are established by the WAN manager for
forwarding analytics traffic between all site-pairs. The
WAN manager updates tunnel capacities in response to
background traffic shifts. The running time of queries
is typically lower than the interval between WAN
configuration changes (∼ 10 - 15 minutes [20, 23]);
thus, we assume that the bandwidth between site-pairs
remains constant for the duration of queries’ execution.
Thus, we can abstract the WAN as a logical full mesh
with fixed bandwidth links (fig. 1).

However, available bandwidth between pairs of sites
can differ significantly because of differences in physical
topology and traffic matrix of non-analytics applications.
Figure 2 highlights this variation between pairs of the
10 Amazon EC2 regions, and for the DCs operated
by MICROSOFT. The ratio of the highest to lowest
bandwidth is > 20. Also, the bandwidth is 1-2 orders
of magnitude less than intra-DC bandwidth (e.g., the
maximum inter-site bandwidth is 450Mbps between EC2
regions, where as intra-site bandwidth is 10Gbps). Thus,
WAN bandwidth is highly constraining and a significant
bottleneck for GDA, in contrast with intra-DC analytics.

2.2 Illustrative Examples for Drawbacks of
Current GDA Query Processing

Given a query, its relational operators (e.g., SELECT,
GROUPBY, JOIN, TABLESCAN, etc.) are transformed
to individual "map" or "reduce" stages in the QEPs
compiled by the QO. For example, SELECT and
TABLESCAN are transformed to a map stage, whereas
JOIN or GROUPBY are transformed to a reduce stage. If
the input tables for these operators are partitioned and/or
spread out across different sites, then the execution

Notation Size
|σA(∗)|, |σX(∗)|, |σY |Z(∗)| 200 GB, 160GB, 25 GB
|σA|X(WS) ./ σA|X(SS)| 12 GB
|σA|X(SS) ./ σA|X(CS)| 10 GB
|σA|X(WS) ./ σA|X(CS)| 16 GB

Table 1: Selectivity and join cardinality estimates

of downstream reduce stages (for JOIN or GROUPBY)
will involve flow of data across the constrained WAN,
limiting overall query performance.

In what follows, we argue that because existing
QOs do not account for such WAN constraints, their
chosen QEP for a query may be sub-optimal. Because
multiple queries can contend simultaneously for limited
WAN bandwidth, QOs for GDA must account for
two additional issues: (a) consider task placement and
network transfer scheduling when determining a QEP’s
quality, and (b) plan for multiple queries at once.

Modern QOs employ a combination of heuristic
techniques as well as cost based optimization (CBO)
to determine the best execution plan for each query.
Heuristic optimization leverages widely accepted
techniques — e.g., predicate push down and partition
pruning — for reducing query execution times.

CBO explores the space of all possible QEPs — e.g.,
those generated by considering alternate join ordering
of tables — and chooses the one with the least cost.
The cost of a QEP is based on a cost model, which
captures the cost of accessing a single byte of data over
a resource, and cardinality estimates of intermediate data
based on individual and cross-table statistics, histograms
of column values, etc. CBOs also account for a
variety of factors, including availability of buffer cache
and indexes. State-of-the-art technologies for accurate
cardinality estimation and cost modeling have been
developed over 30+ years of research. However, most
have focused on single server systems which ignore the
network as a factor in determining query performance [2,
10, 17]. Even parallel databases model the network
as a “single pipe” which essentially assumes the entire
network is homogeneous [34, 14, 25, 12, 32, 41, 38, 46,
49, 47, 28]. Such simple models are clearly insufficient
to account for heterogeneous WAN bandwidths. Yet, this
is clearly important in GDA (as shown in §2.1).

Importance of network-aware query optimization:
Consider a three-way join, QA: σA(WS) ./ σA(SS) ./
σA(CS) shown in fig. 3(a), that compares overall sales
for a set of items (starting with ‘A’) across three
different tables; the tables are spread across different
sites inter-connected by a WAN (fig. 4). QA can be
executed through three different QEPs (figs. 3(b)–3(d));
one each from three different join orders. Table 1 lists
the sizes of different intermediate outputs.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 437

SELECT
SS.item as item,
SUM(SS.sales),
SUM(WS.sales),
SUM(CS.sales)

FROM store_sales SS,
web_sales WS,
cat_sales CS

WHERE SS.item == CS.item
AND SS.item == WS.item

GROUP BY item
HAVING item STARTSWITH ’A’

(a) A sample SQL Query

TABLE		
SCAN	
[WS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[SS]		

TABLE		
SCAN	
[CS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	10	G	

(b) QEP-1

TABLE		
SCAN	
[CS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[SS]		

TABLE		
SCAN	
[WS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	12	G	

(c) QEP-2

TABLE		
SCAN	
[SS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[WS]		

TABLE		
SCAN	
[CS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	16	G	

(d) QEP-3

Figure 3: An example SQL query and its different query execution plans. Each QEP corresponds to a different join order. Note
how the selectivity predicate is pushed down to minimize the records processed during the joins.

SS	
DC2	

WS	
DC1	 CS	

DC3	

80	Gbps	

100	Gbps	

40	Gbps	

Figure 4: Three sites that are interconnected by bidirectional
WAN links. Each site contains a unique table.

A network agnostic QO, or one that models the entire
network by a single parameter, will pick QEP-1 since it
has the least output cardinality after the first join. QEP-1
will take 20.5s: the first join, (σA(SS) ./ σA(CS)),
will be implemented as a hash join since it involves
large tables; by placing reducers uniformly across sites
DC2 & DC3 the join involves 100GB of data transfer
in either direction. Over a 40Gbps link, this transfer
takes 20s. The second join will be implemented as
a broadcast join since one of the tables is small. It
involves transferring, 10GB of data spread across sites
DC2 & DC3 to DC1. The bottleneck is the transfer on the
80Gbps link which takes 0.5s.

Contrast this with QEP-3 that joins tables WS and
CS first. Even though it has the highest cardinality for
intermediate data, it might be advantageous because sites
DC1 & DC3 have high bandwidth between them. By
placing tasks uniformly between sites DC1 & DC3, the
first join would take only 8s (100GB over 100Gbps link).
The second join takes 1.6s (8GB over 40Gbps link).
QEP-3 completes in 9.6s, or ≈53% faster.

Importance of considering placement in QEP
selection: For each QEP, the exact pattern of traffic
between the data processing sites is dependent not
only on the nature of data flow between stages (e.g,
scatter-gather, one-to-one) but also on the placement of
tasks in each stage. Thus, placement must be taken into
account in assessing QEP quality. Placement matters
due to contention from currently running GDA queries.

Consider a scenario where an already running query
is using the logical links, DC1 → DC3 & DC2 → DC1.
Without control over task placement, a network-aware
optimizer would choose QEP-1 for QA to avoid links
already being utilized. Thus, its running time would
be 20.5s. However, by choosing QEP-3 and placing all

reduce tasks for the first join at DC1, we can completely
avoid DC1 → DC3 & DC2 → DC1 and finish in 17.6s.2

Importance of considering scheduling in QEP
selection: Similar to placement, the impact of
scheduling of network transfers should also be accounted
for in assessing a QEP. Consider a query QX that is
similar to QA in structure, but operates on a different
slice of data, say, items starting with ‘X’. Say QX arrives
soon after two simple two-way joins, QY : σZ(WS) ./
σZ(CS) and QZ : σZ(WS) ./ σZ(SS), start to
execute. The selectivity information for input datasets
of the queries is shown in Table 1. Being two-way
joins, QY and QZ have no choice of QEPs; they utilize
the WAN bandwidth between DC1 and DC3 & DC1 and
DC2, respectively. The joins take 5s each.

Without control over scheduling, QEP-1 is the best
choice for executing QX (since it avoids the links used by
QY and QZ). Its completion time is 16.5s.3 However, if
we can control scheduling of queries, we can still choose
QEP-3 for QX and delay its network transfers by 5s. The
completion time is lowered to 13s.4

Multi-query optimization: QOs in modern stacks, e.g.,
Hive and SparkSQL, optimize each query individually.
Resource contention among concurrent queries is
potentially left to be resolved at the execution layer
through scheduling and task placements. However,
under scenarios where contention cannot be resolved,
jointly determining the QEP for all queries provides
better opportunities to avoid resource contention thereby
resulting in lower query completion times. Classic
multi-query database QOs [40] leverage efficient reuse
of common sub-expressions across queries [39], shared
scans [44] and sharing of buffer caches [19], but they do
not model the network similar to single-query QOs.

2 WS ./ CS takes 16s to transfer 200GB over 100Gbps, and the next
join takes 1.6s to send 16GB over 80Gbps link.
3 The first join of QEP-1 utilizes the bandwidth between DC2 and DC3
and takes 16s. The bottleneck for the second join–which starts after QZ
completes—is the 80Gbps link and transferring 5Gb over it takes 0.5s.
4 The first join of QEP-3 takes 6.4s (80GB between DC1 and DC3).
The second join takes 1.6s to transfer 8GB from DC3 to DC2. With a
delay of 5s (waiting for two-way join to finish) completion time is 13s.

438 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Consider a case where QA and QX arrive concurrently.
A network-aware query optimizer will choose the same
QEP for both the queries resulting in contention for
bandwidth on links between DC1 & DC3. The scheduler,
to optimize for average completion time, will execute the
shortest query first (QX in this case); the average running
time will then be 12s. However, by choosing QEP-2
and QEP-3 for queries QX and QA respectively, we can
completely avoid link contention and keep the average
completion time at 9.4s (9.2 for QX and 9.6s for QA).

3 CLARINET’s Design
Accomplishing multi-query network-aware plan
selection and task placement/scheduling requires
an analytics framework where a single entity is
simultaneously responsible for both QEP selection and
scheduling. Current big-data analytics stacks, however
are highly modular with individual components being
developed and operated independently. Realizing joint
optimization in such a setting would require radical
changes.

Mul$-site	cluster	deployment	

Execu$on	Framework	

Clarinet	

One	QEP	per	query	with	loca$on	
and	schedule	hints	

Hive	QL	Query	

Hive	-	QO	

SQL	Query	

Spark	-	QO	

Mul$ple	candidate	QEPs	per	query	

WAN	
Manager	

Site	
Resource	
Manager	

Figure 5: CLARINET’s late-binding design

CLARINET’s design (Figure 5) addresses this challenge
via late-binding. In CLARINET, the QOs are modified
to provide a set of functionally equivalent QEPs
(QEP-Set)5 to an intermediate shim layer. The shim
layer (CLARINET) collects the QEP-Sets from multiple
queries/QOs and computes a single, optimal QEP per
query as well as location and scheduling hints, that it
forwards to the execution framework.

Each node (operator) in a QEP, forwarded from QOs
to CLARINET, is annotated with its output cardinality
and parallelism as estimated by the QO. The cardinality
represents the total amount of data transferred from the
current operator to its successor operator. As this is data
that will potentially be sent over the WAN, cardinality
directly affects QEP selection. The operator parallelism
decides the number of tasks to be spawned for each

5 A dynamic programming based QO will generate exponentially
many query plans for each query. We limit the size of the QEP-Set
by placing a bound (5 seconds) on time spent in exploring multiple
query plans.

operator; the location and scheduling hints suggested by
CLARINET correspond to location (at data center level)
and start time for each task.

The late binding approach offers several advantages.
First, given the complexity of QOs, modifying their
internal cost model to account for the WAN is quite
challenging. Also, QOs with widely different objectives
(Calcite [2] vs Catalyst [10]) have to be modified
individually. E.g., SparkSQL’s QO [2] should factor
availability of in-memory caches of RDDs [48] against
WAN costs. By design, CLARINET requires no changes
to a QO’s internal cost model. Any QO that can provide
multiple QEPs based on its current cost model can
be made WAN-aware through CLARINET. Second, by
introducing an intermediate layer, CLARINET alleviates
(i) the analytics application (e.g., Hive) from making
scheduling decisions and joint query optimization,
(ii) the execution layer from making any network
specific scheduling/placement decisions. This minimizes
code changes to both the application and execution
frameworks. Third, WAN awareness does not come
at the cost of the existing query optimizations. An
application can avoid the WAN from interfering with
plan selection by exposing only its QO’s chosen best
QEP.

Problem statement, and assumptions: Given a set
‘n’ queries, CLARINET receives QEP-Sets, QSj , j ∈
[1, ..., n] from the QOs corresponding to each query.
Among the exponentially many combinations, the
objective is to select exactly one QEP from each QSj

along with task locations and schedules, such that the
average query run time is minimized. Here, task
locations determine the site at which tasks are executed,
whereas the schedule determines the start times of each
task.

For analytical tractability, we require that the tasks
are scheduled such that network transfers on logical
links between sites do not temporally overlap with
one another. This allows us to accurately determine
the duration of network transfers and reduce the QEP
selection problem to a well studied job-shop scheduling
problem. Such time multiplexing (or non-overlap)
also has the advantage that resource sharing can be
enforced through scheduling; (weighted) bandwidth
sharing on the other hand requires additional per transfer
rate-control on top of the rate control already enforced
by the WAN manager. Crucially, the non-overlapped
assumption does not affect the quality of the solution.
This is because, as we prove below, any optimal schedule
has an equivalent optimal non-overlapped schedule.

Theorem: A schedule, S, of interdependent transfers
over multiple network resources, where each transfer
is allocated an arbitrary time-varying share of available

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 439

network bandwidth on a single resource, can be
converted into an equivalent interruptible schedule, N ,
such that no two transfers in N share a resource at any
given point in time, and the completion time of a transfer
in N is not greater than its completion time in S.

Proof sketch: For a network transfer, f , on a resource,
let s(f) and e(f) be the start and end times based on
schedule, S. For each resource, the start and end times
of all its transfers can be viewed as its release time
and deadline respectively. Converting S to N , can be
achieved by determining the earliest deadline first (EDF)
schedule of flows for each resource independently. Given
s(f) and e(f), an EDF schedule is feasible since S is a
complete schedule. For a detailed proof, refer [42].

We simplify further and focus on obtaining
non-interruptible transfer schedules, because,
implementing interruptible transfers requires significant
changes to query execution. However, such schedules
do not permit perfect “packing” of transfers across links.
The resulting fragmentation of link capacity delays
scheduling of network transfers, and inflates completion
times. Essentially, CLARINET incorporates a clever
approach—which we develop gradually in the next two
sections—that systematically combats such resource
fragmentation and optimizes average query completion
times.

In sum, our simplifying assumptions do not impact
CLARINET’s effectiveness. However, even with these
assumptions, computing the best cross-query QEPs
along with task placements and schedules is NP-hard. In
fact, the problem is hard even for a single query [30, 31].

Our approach is as follows: we start with an effective
heuristic for the best single-query QEP, that decouples
placement and scheduling (§4). We then use this to
gradually develop our multi-query heuristic (§5).

4 Single Query WAN-Awareness
At a high level, WAN-aware QEP selection for a single
query proceeds as follows: for every QEP in the query’s
QEP-Set, we determine the placement and schedule of
tasks such that its running time is minimized. The QEP
with the shortest running time is then selected. Because
of inherent hardness of joint placement and scheduling
of DAGs [30, 31], CLARINET’s approach is to decouple
them, as described next.

4.1 Assigning Locations to Tasks in a QEP
Given a QEP, for tasks with no dependencies (e.g., map
tasks) we use the common approach of “site-locality”,
i.e., their locations are the same as the location of their
input data. The placement of intermediate (reduce)
tasks is decided based on the amount and location of
intermediate data generated by their parents, along with
the bandwidths at the sites.

Site-1	 Site-2	 WAN	Shuffle	 DC	Shuffle	

Sca$er-gather	
flow	

M1	

M2	

R2	

(a)

M1	

M2	

R2	

(b)

M1
1	

M2
1	

R21	

R22	

(c)

Figure 6: (a) shows a simple MR job with 3 tasks in each
stage. (b) shows the same job with placement information
(color-coded) for all the tasks. (c) shows the corresponding
augmented DAG with tasks in the same stage and location
coalesced to one. M∗∗ and R∗∗ are sub-stages in the augmented
DAG. Shuffle tasks representing network transfer between
tasks at different locations are shown explicitly.

We decide the task placements for a QEP iteratively
for each of its stages in topological order. Since
the query plan specifies a partial ordering between
dependent stages, stages with no order among them
can be simultaneously scheduled. To ensure that the
placement decision for these stages takes into account
other stages’ decisions, we reserve a block of time on
logical links for network transfers (consistent with our
non-overlapped assumption).

Formulation: The optimal task placement for a stage
is obtained by solving a linear program which takes as
input the following: (i) the distribution of output data
(D`) from the predecessor stages across sites (`), (ii) the
inter-site WAN bandwidths (B`2

`1
), and (iii) the length of

time (τ `2`1) for which stages (which do not have ordering
with respect to current stage) have reserved inter-site
links.6 The best distribution of tasks (r`) across sites is
obtained by solving the following problem:

min
r

∑
`1,`2

D`1r`2
B`2

`1

+ τ `2`1 (1a)

such that r`2 ≥ 0 (1b)∑
`2

r`2 = 1 (1c)

Once the locations of the reducers are fixed, we use the
resulting traffic pattern to update the durations for which
resources are blocked for later stages. E.g., between `1
and `2 we increment the duration, τ `2`1 , by D`1

r`2
b
`2
`1

.

4.2 Scheduling tasks in a QEP
In contrast to scheduling within a DC, scheduling a
QEP in a geo-distributed setting involves scheduling
both the compute phase of a task and the transfer

6 `, `1, `2 are indices over the set of data processing sites

440 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of input data from remote sites. To explicitly model
these network transfers, we augment the DAG of tasks
representing the QEP to include vertices (called shuffle
tasks) corresponding to network transfers; fig. 6 shows
an example. We assume that the compute phase of a
task can only start after all its inputs are available at the
site. Further, since tasks of a stage that are executed at
the same site exercise the same network resource, we
coalesce them into a sub-stage. This reduces the number
of entities that need to be scheduled and the overall
scheduling complexity.

We formulate the scheduling as a binary integer linear
program that takes as input the following: (i) the
coalesced DAG augmented with shuffle tasks, henceforth
called augmented-DAG, which captures dependencies
among tasks, and (ii) the duration of compute and shuffle
tasks. The duration of a compute task is same as the
expected running time of the task in a intra-DC setting.
The duration of shuffle between sites is estimated as the
ratio of data transferred to the WAN bandwidth between
the sites. The objective is to determine the optimal start
times for all the tasks in the augmented-DAG such that
the overall execution time of the QEP is minimized.

Formulation: Let ci be the augmented-DAG of the i-th
QEP in the QEP-Set for the query. Let V i represent the
set of vertices in ci and ≤i represent the partial order
between them. The start times of the vertices (s(.))
should obey the partial order ≤i. Thus, for each pair
of ordered vertices, (u, v) ∈≤i, belonging to ci,

s(v) ≥ s(u) + d(u) (2)

where, d(.) represents the duration of vertices.
We incorporate non-overlapping of flows on network

links in our scheduling problem by imposing:

s(v) ≥ s(u) + d(u)−N(1− zuv) (3a)

s(u) ≥ s(v) + d(v)−N(zuv) (3b)

where u and v are shuffle tasks that contend for the same
network link, and zuv indicates v is executed after u;
N is large constant. When zuv = 1, then Equation 3a
ensures that the start time of vertex v is greater than
the completion time of vertex u; Equation 3b remains
void, since it is satisfied trivially. When zuv = 0, the
conditions invert. Equations (3a) and (3b) are enforced
for all links.

The completion time (Φi) of the i-th QEP, is given by:

Φi := max
u∈V i

s(u) + d(u) (4)

where, u is any vertex in ci. We solve the program for
all the QEPs in the QEP-Set. The one with the smallest
duration is chosen to be executed.

Handling currently running queries: We “reserve”
network links for tasks already placed and scheduled.

Therefore, while computing the best schedule for a QEP,
we have to factor in currently running queries that block
resources. We add constraints to the above formulation
in order to accommodate these currently running queries.

Let B(r) be a set of time intervals for which existing
queries block resource r. Let low(b) and high(b)
represent the lower and upper bound of an interval b ∈
B(r). For every vertex u using a network link, we
include these two constraints:

s(u) ≥ high(b)−N(1− xub) (5a)

low(b) ≥ s(u) + d(u)−N(xub) (5b)

where xub is a binary indicator denoting that u is
scheduled after the interval b. Like eqs. (3a) and (3b),
these constraints kick in alternatively ensuring the
transfers do not overlap with intervals that are reserved.

5 Multiple Contending Queries
In this section, we build upon the solution in §4 to solve
the problem statement outlined in §3 for a workload of
‘n’ (>1) queries that arrive simultaneously and compete
with each other for the inter-site WAN links.

In §5.1, we first provide a strawman algorithm
that emulates shortest-job first (SJF), and iteratively
determines the QEP, placement, and schedule for each of
the ‘n’ queries. Unfortunately, the strawman algorithm
results in a schedule with link resources being fallow
close to 22% of the time (ref. Figure 12(a)) due to
resource fragmentation. In §5.2, we present a novel
heuristic that builds on the strawman and minimizes
resource fragmentation; it combats fragmentation by
carefully packing flows from k (≤ n) queries at a time
from the schedule determined by the strawman. We
discuss several enhancements in §5.3.

5.1 Strawman Iterative QEP Selection
Our strawman heuristic is based on shortest-job first
(SJF) scheduling. We pick this because it is a well
understood scheduling discipline that is typically used
to minimize average completion times. Our strawman
functions iteratively. In every iteration, we pick the
QEP and determine the schedule for exactly one query
as follows. For each QEP belonging to the QEP-Set
of unscheduled queries, we calculate its duration,
placement, and schedule of tasks (using techniques in
§4). We then pick the QEP (and thus the query) with
shortest duration among all the QEPs considered; we do
not consider this query for future iterations. At the end
of each iteration, we reserve resources required by the
QEP chosen. By doing so, we ensure that the running
time for the query is not affected by queries considered in
future iterations. Further, it ensures that choice of QEPs
in future iterations account for the current query’s WAN
impact, thereby enabling cross-query planning.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 441

A1	
A2	

B1	R1	
R2	

15	 20	 50	Time	

(a) SJF schedule

A1	
A2	

B1	R1	

R2	
5	 15	 40	Time	

(b) Better Schedule

Figure 7: Example highlighting fragmentation of resources
with SJF heuristic. Tasks A1 and A2 belong to Job A; A2 is
dependent on A1. Job B has only one task, B1. A1 and B1
use resource R1, A2 uses resource R2. In the SJF schedule,
resource R2 remains idle until t = 20s.

5.2 Final Heuristic to Combat Resource
Fragmentation

The above iterative heuristic is not ideal because it
can cause links to remain fallow sometimes, even if
there are other flows which could use those links. See
Figure 7; as shown, fragmentation arises because jobs
need multiple resources (multiple links in this case)
and because of dependencies across tasks. What this
shows is that vanilla SJF is not ideal for minimizing
average completion times in our setting. If not
controlled, underutilization of link resource can delay
query completions arbitrarily.

We address this by modifying the above SJF strawman
to use a knob (k) that reduces resource fragmentation.
The knob allows us to deviate away from the iteratively
computed schedule towards a schedule with low
fragmentation of resources in a controlled manner.
We start with the solution obtained from the iterative
algorithm described in §5.1. The solution determines
the following: (i) O, a total ordering over the queries,
based on their time of completion, and (ii) the mapping
of inter-site flows to network resources (obtained from
the choice of QEP and task placement). With this
information, our final heuristic creates a constrained
schedule as follows:

We maintain a dynamic set,D, consisting of k-shortest
queries (based on ordering O), for which at least one
task is not yet scheduled. Whenever a flow belonging
to a query in D is available (i.e., at the time when all its
predecessors have completed), and the resource it needs
is free, we immediately schedule the flow on the resource
rather than wait for its start time based on the iterative
schedule. If multiple flows meet the criteria, we break
ties in favor of short duration flows. When all tasks for a
query are scheduled, it is dropped from the dynamic set
and a new query is added.

When k = 1, only flows belonging to the shortest
query can be moved ahead; thus the resulting schedule
will be close to the strawman’s. When k equals the total
number of concurrent queries N , the resulting schedule
will have no fallow links (note that the query completion
times and the ordering of flows on a resource will be
different from that computed using our iterative SJF
algorithm). But, it may not offer good performance.

This happens because, at high values of k, the initial
stages (mappers) of the k QEPs are scheduled first, as
they are available immediately. Thus, resources are
indiscriminately blocked for later stages for all k QEPs,
resulting in an increase in average completion times. We
evaluate this effect in §7, and show the optimal average
completion time benefits of an ideal “sweet-spot value”
of k.

Note that in this heuristic, only the schedule is altered;
task the placement and the QEP remains the same.

5.3 Enhancements

Fairness: Our heuristic can lead to long queries’
start times being pushed significantly to favor shorter
running queries. This is not acceptable if the long
queries are initiated by different applications that require
performance guarantees. To mitigate this bias, we
adopt an approach similar to [22]. Essentially we want
to ensure that the running time of a query, Qj , is
bounded by dj = n × durj , where n is the number of
simultaneously running queries, durj is the standalone
run time of the query without contention, and dj denotes
the calculated deadline for each query.

Then, we adapt the heuristic in §5.2 as follows. We
sort queries in descending order based on a “proximity
score”; this score determines how close a query is to its
deadline and is obtained as:

Proximityj(t) = 1− dj − t
dj

(6)

where t is the time at which the dynamic set (§5.2) is
updated (upon completion of a query). We pick the
top εM queries in this sorted order and call them H.
Here, ε (0 < ε ≤ 1) is a fairness control knob and
M is the number of queries with at least one task not
yet scheduled. The dynamic set D (from §5.2) is then
obtained by picking the shortest-k queries from H. If
k > |H|, then D = H. By doing so, we block the tasks
of queries that are far from their deadline from being
scheduled and prefer those closer to their deadline.

When ε = 1, H contains all the remaining queries
and the heuristic is identical to the one in §5.2. When
ε → 0, D contains only queries with highest proximity
to fair-share deadlines; thus, offering maximum fairness.

WAN utilization: By favoring QEPs and task
placement that result in smaller completion times,
CLARINET implicitly reduces the WAN usage. However,
unlike recent work [43], CLARINET cannot provide
explicit guarantees on WAN usage. To explicitly control
WAN usage, we filter from the QEP-Set of all queries
those QEPs whose best (in terms of WAN use) task
placement results in inter-site WAN usage exceeding a
threshold, β. With a limited set of QEPs per query, we

442 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

then apply techniques in §5.1 and §5.2 for scheduling the
transfers.

Online arrivals: We assumed so far that the set
of n queries arrive simultaneously. We now extend
the heuristic in §5.2 to support online query arrivals.
Upon arrival of a new query, we recompute the QEP
choice, task placement, and schedule for the current
query together with all previous queries for which none
of the tasks have started executing. Doing so might
alter the QEP and schedule for prior, as yet unexecuted
queries based on new information. Changing the QEP
for already executing queries would incur wastage of
resources; CLARINET does not alter the QEP for those
queries.

6 Implementation
We build CLARINET as a stand-alone module that can
interface with Hive [3] at the application level and Tez [4]
at the execution framework level. We modified Hive and
Tez to interface with CLARINET as follows:

Modifications to Hive/Calcite: Hive internally uses the
Apache Calcite [2] library as a CBO. Calcite offers two
types of QOs: (i) HepPlanner, which is a greedy CBO,
and (ii) VolcanoPlanner, a dynamic programming-based
CBO [16], which enumerates all possible QEPs for
a query. By default, Hive uses the HepPlanner, but
since it does not explore all possible QEPs, we modify
Hive to interface with VolcanoPlanner. We further
modify VolcanoPlanner to return the operator trees
(OPT) representing multiple join orders along with the
estimated cardinality (in bytes) for each operator, for
each input query. All the OPTs are then compiled to
corresponding QEPs by applying heuristic physical layer
optimizations like partition pruning, field trimming, etc.
The QEPs together constitute the QEP-Set for the query.
We find that a typical TPC-DS [8] query has tens of QEPs
in its QEP-Set. Each QEP is also annotated with the
estimate of intermediate data for each stage; this is used
by CLARINET to estimate network transfer times.

Modifications to Tez: CLARINET interfaces with Tez
by providing hints regarding placement locations and
start times for individual tasks. We modify Tez’s DAG
scheduler to schedule tasks based on these inputs. If a
task becomes available before its scheduled start time,
we hold it back and schedule it for execution later; a task
is never held back beyond its scheduled start time.

Scheduling non-overlapped transfers: CLARINET

employs a schedule that requires non-overlap of flows
between two sites. Consider the simple MapReduce job
similar to one in fig. 6(a). If tasks from two map stages
(say,M1

1 andM1
2) are executed at the same location, then

the transfer of their intermediate data to any downstream
task (say, R1

1) happens in an overlapped fashion; i.e.,

M1
1	

M2
1	

Overlap	
Flows	

R11	

(a)

M1
1	

M2
1	

R11	

F11	

G1
1	

Indep	
-endent	
flows	

(b)

Figure 8: Modification of QEPs forwarded to execution
framework by adding relay stages (F and G). Relay stages
ensure network transfers fully utilize bandwidth and can be
scheduled in a non-overlapped fashion. Here, map tasks M1

1

and M1
2 are executed in the same site, whereas reducer task,

R1
1 is executed in a different site. Relay tasks, F 1

1 and G1
1 are

co-located with R1
1.

when R1
1 starts executing, it reads data written by both

M1
1 and M1

2 simultaneously. To enforce non-overlapped
transfers by controlling task schedule, we introduce relay
stages in the QEP (stages F and G in fig. 8(b)). The task
in a relay stage does not process data; it reads remote
data and writes it locally. Its parallelism and locations
are identical to the corresponding reducer stage. By
specifying start times of tasks (F 1

1 and G1
1 in fig. 8(b))

in the relay stage, CLARINET explicitly determines start
times of inter-stage shuffles and can ensure they happen
in a non-overlapped fashion.

7 Evaluation
We experimentally evaluate CLARINET in realistic
settings and against state-of-the-art GDA techniques. We
evaluate CLARINET first in a real GDA deployment over
10 Amazon EC2 DCs. We use the standard TPC-DS [8]
workload for benchmarking. For evaluating CLARINET at
a large scale, we also use traces from analytics queries
executed on two OSPs’ production clusters. We simulate
a GDA setup spread across tens of DCs and executing
1000’s of queries. By default, we run CLARINET without
the fairness enhancement.

The de-facto way in which queries are executed in
a Hive-atop-Tez deployment is used as the baseline
for comparison. Specifically, query selection and task
placement are both network agnostic; here the QEP
is selected by Hive’s default QO and the reducers are
placed uniformly across sites where input data is present.
Since we are interested in reducing average completion
time, we use our shortest query first heuristic (SJF; §5.1)
to schedule the tasks belonging to multiple queries. We
call the baseline HIVE+.7

Prior work [35] has shown that centrally aggregating
raw data to one DC is wasteful. However, they only
7 The ‘+’ in HIVE+ indicates that the SJF heuristic is used for multiple
queries. In a normal deployment,concurrent queries will arbitrarily
share WAN bandwidth thereby delaying completion time for all.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 443

0 5 10 15 20 25

−150

−100

−50

0

Query

Im
pr

ov
em

en
t[
%
]

Figure 9: Percentage reduction in running time of
HIVESINGLEDC w.r.t. HIVE+ for TPC-DS queries (sorted by
increasing gains). The negative gains indicate running times
of queries with HIVESINGLEDC is greater than HIVE+.

consider the case where raw input data is centrally
aggregated; it is possible to reduce the amount of data
sent over the WAN by suitably processing/filtering raw
input data. For completeness, we evaluate our baseline
(HIVE+) against an alternative that centrally aggregates
data after pre-processing; we call this alternative,
HIVESINGLEDC. In our implementation, HIVESINGLEDC

uses the default QEP chosen by Hive’s QO; the map tasks
which process (filter) the raw input data are co-located
with the data and all reduce tasks are placed in the DC
with maximum intermediate data after map stages.

We also study HIVE-IR+ in simulation. HIVE-IR+ uses
the QEP chosen by Hive but decisions on placement
and scheduling are made using algorithms described
in §4 and §5. The IR in HIVE-IR+ stands for
Iridium [35], a state-of-the-art scheme for WAN-aware
data/task placement. CLARINET’s task placement is
similar to Iridium’s [35]. However, we use the “+”
suffix since Iridium only does network-aware data/task
placement, whereas HIVE-IR+ also does network-aware
transfer scheduling. Comparing CLARINET and HIVE-IR+
highlights the importance of doing QEP selection
along with WAN-aware task placement and transfer
scheduling. We measure the improvements of CLARINET

and HIVE-IR+ in terms of percentage reduction in average
query run time compared to HIVE+.

7.1 Testbed Deployment Results
Deployment Setup and Workload: We spin up 5 server
instances each with 40 vCPUs (2.4 GHz Intel Xeon
Processors) and 160GB RAM in all 10 EC2 regions.
We deploy HDFS+YARN across all the instances; a
single server in one of the regions functions as the
HDFS namenode and the YARN resource manager.
The connectivity between different sites is through
the public Internet; naturally available bandwidth (see
fig. 2) acts as the constrained resource. To avoid disk
read/write bottlenecks, we store all the intermediate
data in memory; this also aligns with recent trends
toward in-memory analytics [48, 27]. We use TPC-DS
queries on datasets at different scales (10, 50, 100,
500) for our evaluation. Our workload is generated by

randomly choosing the queries and the scale of data.
The input tables are randomly spread across the different
geographical regions, similar to prior studies [35, 43].
Comparison with single DC execution model:
Figure 9 compares running times of individual TPC-DS
queries using HIVESINGLEDC and HIVE+. For only
2 of the 24 different queries that we evaluated,
HIVESINGLEDC has a smaller running time than HIVE+;
further, HIVESINGLEDC can be up to four times slower
(0.25×) than HIVE+.

Upon closer investigation, we find that for the queries
where HIVESINGLEDC is faster, the distribution of the
largest input table was skewed; 70% of the input data was
in one DC. Thus, for such cases, HIVESINGLEDC requires
only 30% of the mapper outputs and none of the reducer
outputs to be transferred across the WAN.

Overall, the distributed execution model effectively
utilizes the total WAN bandwidth when the input data is
spread across multiple DCs. However, when the input
data is skewed, placing all the reducers in one DC is
advantageous. Thus, in all further experiments, we also
consider a task placement strategy where all the tasks are
placed in the DC with the largest input data in addition to
the placement approaches discussed in §4.1. CLARINET’s
design and the iterative heuristic described in §5.1 easily
accommodate multiple task placement strategies for each
QEP.
Clarinet performance: Figure 10(a), shows the run
time reduction of CLARINET compared to HIVE+ for
TPC-DS queries when run individually. We can see
that network-aware QEP selection, task placement, and
scheduling results in at least a 20% reduction (or 1.25x
speedup) in query run time; the gains can be as high
as 80% (5x) for some of the queries. For 75% of the
queries, CLARINET chooses an alternate QEP than the one
chosen by default in Hive (not shown). This highlights
the importance of network-aware QEP selection even for
single queries.

Figure 10(b) shows the gains when multiple TPC-DS
queries of different scales are run simultaneously; we
report results over 30 randomly chosen batches of
TPC-DS queries with 8 and 12 queries in a batch. More
than 40% (1.66x) gains are observed in all the batches.
On average, we see a ≈60% reduction or 2.5x speedup,
higher than the single query case (45% on average).

By placing the reducers randomly across
different geographical regions, HIVE+ transfers 75%
(Figure 10(c)) of the total intermediate data between
EC2 DCs. Since, the inter-region bandwidth is limited,
this leads to longer running times. CLARINET on the
other hand, transfers only half of the intermediate data
between DCs.

Figure 10(d) shows the distribution of bandwidth
and intermediate data across the inter-site links for a

444 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CLARINET CLARINET- 8 queries CLARINET- 12 queries HIVE+ Bandwidth

0 10 20
0

20

40

60

80

100

TPC-DS query

Im
pr

ov
em

en
t[
%
]

(a) Percentage reduction in running
times of CLARINET w.r.t. HIVE+
for 29 individual TPC-DS queries.
The queries are sorted based on the
observed gains.

0 10 20 30
0

20

40

60

80

100

Query batches

Im
pr

ov
em

en
t[
%
]

(b) Percentage reduction in average
completion times of CLARINET
w.r.t. HIVE+ when batches of 8 / 12
randomly chosen TPC-DS queries
of different scales are executed
simultaneously. The batches are
sorted based on the observed gains.

HIVE+
CLARINET

0

20

40

60

80

100
75

56

In
te

rD
C

tr
af

fic
[%

]

(c) Comparison of HIVE+ and
CLARINET w.r.t. intermediate
data sent over the WAN as
a percentage of the total
intermediate data. The values are
measured over a single run with
12 simultaneous queries.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Inter-DC links

C
D

F

(d) Comparison of bandwidth
and intermediate data distribution
across a subset of pairwise logical
links between the DCs for a single
batch of 12 queries. We ignore
all links that are unused by both
CLARINET and HIVE+.

Figure 10: Results from a real CLARINET deployment across Amazon EC2 datacenters.

single run with 12 simultaneously running queries. The
difference between intermediate data and bandwidth
distribution is greater for HIVE+ when compared to
CLARINET. For example, HIVE+ transfers 45% of
its intermediate data over logical links that account
for only 20% of the bandwidth. In comparison,
CLARINET transfers only 20% of its load on 20% of the
bandwidth. By considering multiple candidate QEPs
for each query and by controlling task placement and
scheduling, CLARINET is able to match intermediate data
to available bandwidth across different links. Since
HIVE+ does not have alternate choices of QEP and task
placement/schedule, it tends to put more load on some
links and no load on others.

Multi-query optimization: To quantify the need for
multi-query optimization in the geo-distributed setting,
we measure how the QEPs chosen for queries when run
in a joint manner differ from the QEPs chosen when
run individually. For 60% of the queries when run
with 8 or 12 queries concurrently, the QEP of choice
in CLARINET differs from the one chosen when the
queries are run individually. As an illustrative example
of CLARINET’s cross-query behavior, consider TPC-DS
query 7; it involves a five-way join of a fact table with
4 other dimension tables one of which is fairly large.
Thus, when run by itself, CLARINET never joins the fact
table with a large dimension table (even though they are
located in DCs within a continent) to avoid costly WAN
transfer. However, in 5 out of 6 batches when Query
7 runs simultaneously with other queries that load links
behind the preferred dimension table, CLARINET forces
Query 7 to join large tables upfront.

Resource Fragmentation: For a single run with
12 simultaneously running queries, we compute the
duration for which inter-DC links remain idle. A
resource is idle if a task is available to run, but is

not scheduled for execution. For CLARINET, the links
are fallow only for 3% of the time, which is minimal.
Our larger scale simulation results confirm reduction in
resource fragmentation imposed by our approach.

Optimization overhead: We also measured the time
CLARINET spends in optimizing the query plan. After
parallelizing the evaluation of each candidate query for
every iteration, we see that CLARINET spends less than 1s
(on an average) per iteration. For optimizing 12 queries
in 30 different batches, CLARINET takes a maximum of
15s; the median optimization time is 8s for a batch
of 12 queries. Relative to query execution times (tens
of minutes), the optimization overhead of CLARINET is
acceptable in practice.

7.2 Simulation Results

Trace driven Simulator: For large-scale experiments,
with 50 sites and thousands of queries, we evaluate
CLARINET through a trace-driven simulation based on
production traces obtained from analytics clusters of
two large OSPs, FACEBOOK and MICROSOFT. These
traces contain information on query arrival times, input
data/intermediate data size for each query, data locations,
QEP structure etc., for 350K and 600K jobs respectively.
Please refer to [37, 18] for more details about the
workloads.

Unfortunately, we do not have logs from the query
optimizer that generated the QEP, and hence do not
have information regarding alternate QEPs. To overcome
this, we use QEPs generated from TPC-DS queries
superimposed with information on input table size and
intermediate data size from the traces. Thus, every
job in the trace is replaced by a randomly chosen
TPC-DS query. The TPC-DS input tables acquire the
distribution and location characteristics of input data for
the corresponding job in the trace. Thus, our workload

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 445

CLARINET HIVE-IR+ FACEBOOK MICROSOFT

FACEBOOK

MICROSOFT
0

20

40

60

80

100

59 63

31 25

Im
pr

ov
em

en
t[
%
]

(a) Percentage reduction in
average running times of
CLARINET and HIVE-IR+ w.r.t
HIVE+.

0 20 40 60 80 100
0

20

40

60

80

100

Improvement [%]

C
D

F
[%

]
(b) CDF of the per-query gains of
CLARINET using FACEBOOK and
MICROSOFT traces.

Figure 11: Overall gains of CLARINET and HIVE-IR+ w.r.t
HIVE+ as measured in the simulator using FACEBOOK and
MICROSOFT production traces

has similar load and data distributions as the production
traces but using query plan options from the TPC-DS
benchmark.

Queries arrive in batches of a few hundred; results for
other batch sizes are similar. We impose a logical full
mesh topology with the bandwidth between each pair of
sites chosen randomly from [100Mb/s− 5Gbps].

Figure 11(a) shows the reduction in average running
time for CLARINET and HIVE-IR+ when compared to
HIVE+ for both the production traces. Compared to the
HIVE+ base line, CLARINET improves the average query
completion time by 60%, or a 2.5× speedup.

CLARINET offers 28 and 38 percentage points
improvement over HIVE-IR+ for FACEBOOK and
MICROSOFT traces, respectively. This translates,
respectively, to 1.75× and 2× speedup relative to
HIVE-IR+. These additional gains come from choosing
better QEPs.

For a network topology with higher bandwidths
and low variation (drawn from [10Gbps − 50Gbps]),
CLARINET has 47% and 52% reduction in run time for
FACEBOOK and MICROSOFT traces, respectively, relative
to HIVE+. Higher bandwidth implies overall smaller
running times even for a WAN-agnostic system like
HIVE+. Even under such a scenario CLARINET offers a
2× improvement.

Figure 11(b) plots the distribution of CLARINET’s gains
w.r.t HIVE+. Note that CLARINET does not increase the
running time for any query. However, the distribution has
a heavy tail; some queries have moderate improvement
but others have substantial improvement. The variation
is especially prominent in MICROSOFT traces, where
approximately 38% of the queries have less than 20%
(1.25x) improvement and 20% of the queries have
greater than 70% improvement (or 3x speedup). In
§7.4, we present an in-depth analysis of performance
improvement for different classes of queries.

FACEBOOK MICROSOFT

0 20 40 60
0

20

40

60

80

Shortest queries, k

Im
pr

ov
em

en
t[
%
]

(a) Variation of performance with
k, for shortest-k heuristic

0 20 40 60
0

10

20

30

Shortest queries, k

Ti
m

e
(%

)w
he

n
lin

ks
ar

e
id

le

(b) Reduction in resource
fragmentation with increasing k

Figure 12: Performance of our overall heuristic as a function
of k.

FACEBOOK MICROSOFT

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

ε
Im

pr
ov

em
en

t[
%
]

(a) Percentage reduction in
average query run times relative
to HIVE+

0 0.2 0.4 0.6 0.8 1
0

20

40

ε

Jo
bs

w
ith

du
ra

tio
ns

>
fa

ir
de

ad
lin

e
[%

]

(b) Percentage of jobs that do not
meet their fair deadline

Figure 13: Variation of performance and fairness metric with
respect to ε

7.3 CLARINET’s heuristics and design
decisions

Next, we explore the effectiveness of key CLARINET

design decisions in simulation.

Effectiveness in Combating Resource Fragmentation:
Recall from §5.2 that our approach to combat resource
fragmentation is to allow network transfers from top-k
shortest queries to be scheduled if resources are fallow.
Figure 12(a) plots the variation of overall runtime
reduction for different values of k. For k = 1, CLARINET

does vanilla SJF scheduling. As we increase k, the
gain increases, peaks at k = 57 for both the FACEBOOK

and MICROSOFT traces, and then decreases. The vanilla
shortest job is considerably worse than choosing the
best value of k. Figure 12(b), shows the fraction of
time (in percentage) inter-site links remain fallow as k
varies. We see severe underutilization of resources at
k = 1, explaining the poor performance of SJF. At peak
(k = 57), we see that the links are not utilized only 5%
of the time. Any further increase in k results in decreased
link fallow time; however, higher values of k lead to
cases where the initial stages (mappers) of k QEPs get
scheduled first, as they are available immediately. As
a result, resources are blocked for later stages for all k
QEPs, resulting in an increase in average run times.

446 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

% Queries % Improvement

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

22
38

25
15

33

66 60

82

COV

[%
]

(a) Performance across queries binned by total
amount of intermediate data

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

10 9

37 44
28 35

59
75

COV

[%
]

(b) Performance across queries binned by total
input size of tables

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

35

14 18
33

48 50 55
71

COV

[%
]

(c) Performance across queries binned by
bandwidth skew

Figure 14: Isolating gains observed across queries

C: CLARINET CO: CLARINET-O
FACEBOOK MICROSOFT

C CO C CO
25%ile 27 13 9 8
Mean 59 30 63 34
75%ile 68 36 67 40
90%ile 72 47 78 48

Table 2: CLARINET vs. a variation allowing overlap of
network transfers. HIVE+ is used as the baseline.

Fairness across queries: Recall from §5.3 that
CLARINET uses a knob ε to ensure fairness: ε → 0
tends to bias CLARINET’s core heuristic (§5.2) to schedule
from jobs that are nearing deadlines computed based
on their fair share (hence leading to greater fairness),
whereas ε → 1 favors performance at the expense of
jobs being delayed beyond their fair-share deadlines.
Performance improvements from CLARINET relative to
HIVE+ as a function of ε are shown in Figure 13(a).
We see that even when biasing toward fairness (ε →
0), CLARINET offers substantial improvements (20%)
relative to HIVE+. As we trade-off some amount of
fairness (higher ε), CLARINET’s benefits improve almost
linearly. Figure 13(b) shows the percentage of jobs that
did not meet the fair deadline as a function of ε. For low
values of ε(= 0.1), we see that almost 90% of jobs meet
their deadline and are not starved by jobs arriving in the
future.

Non-overlap: We compare CLARINET with a system,
CLARINET-O that disregards CLARINET’s schedule and
allows tasks to be scheduled as and when they are
available. Competing flows on a WAN link will now
share the bandwidth equally in space rather than sharing
them across time. The QEPs chosen and the placement
of tasks are identical in both the cases. Table 2 reports
the run time reduction with respect to HIVE+. We note
that even with an overlapped schedule, the gains of
CLARINET-O over HIVE+ are significant; average run
time reduces by 34% (1.5×). This is due to good QEP
selection and task placement. Further, CLARINET is
29 percentage points better than CLARINET-O by virtue
of combining QEP selection and task placement with
non-overlapped transfer scheduling. Overlap results in

lower allocation of bandwidth for all contending flows,
thereby increasing all queries’ completion times.

7.4 Profiling gains of queries (simulation)
To isolate characteristics of queries that contribute to
higher performance, we categorize them based on the
amount of skew in (i) the intermediate data generated
from different stages, (ii) the spread of input data across
sites, and (iii) the average outgoing bandwidth of sites
where input tables of a query are located. For each
characteristic, we split the queries into “bins” based
on the normalized standard deviation (COV). Figure 14
presents the performance gains for queries in each bin.

Queries with high skew (> 2) in the amount of
intermediate data perform 3× better than queries for
which the intermediate data is equally distributed. The
absolute improvement over HIVE+ is as high as 82%.
A similar trend is observed for queries categorized by
the skew in input data. For queries with low skew in
intermediate data/input data, all join orders (all possible
QEPs) will exercise all links in the topology. Thus,
choosing one over another will not offer substantial
improvement in performance.

We also observe performance gains improving (48
to 71%) with growing bandwidth skew, but the effect
is less pronounced. This is consistent with the high
gains observed in a homogeneous WAN substrate (§7.2).
CLARINET performance is not intrinsically tied to the
presence of high WAN skew.

8 Related Work
We discuss related work on query optimization in
§2.2. CLARINET adds to the rich literature on query
optimization in both (distributed) database systems [34,
14, 25, 12, 32, 41, 38, 46, 49] and big data analytics
stacks [2, 10]. In particular, it shows how to bring
WAN awareness into query optimization in a principled
fashion.

Other recent work have explored low-layer
optimizations to improve GDA query performance.
Iridium [35] develops WAN-aware input data and task
placement for two-stage MapReduce jobs. Geode [43]
develops input data movement and join algorithm

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 447

selection strategies to minimize WAN bandwidth usage.
Finally, Jetstream [36] proposes using adaptive filtering
and local aggregation of data to improve latency.
SWAG [21] coordinates compute task scheduling across
DCs.

Many of these apply to simple 1- or 2-stage
queries [35, 21, 43], whereas CLARINET considers
general DAGs. Some also require detailed modifications
to existing analytics frameworks [36], whereas
CLARINET’s design is such that it can be integrated
with ease. More importantly, CLARINET operates at
a higher layer than all prior systems, by optimizing
query plan generation. Thus, CLARINET has a more
fundamental impact on query performance. Also,
CLARINET is complementary to these prior systems (e.g.,
[21, 36]).

9 Discussion
Experimental results highlight CLARINET’s performance
achieved through WAN-aware QEP selection, combined
with operator placement and scheduling aspects of the
execution framework. While this motivates the need to
explore non-traditional query optimization approaches
for the geo-distributed settings, there are a few other
aspects to consider.

First, the efficacy of CLARINET depends on the
availability of known, non-fluctuating bandwidth
between DCs. Most software-defined WAN managers
provide this abstraction under normal operating
conditions. Further, our experiments on Amazon EC2
showed that minor fluctuations in available bandwidth do
not adversely affect CLARINET’s performance. However,
under catastrophic network failures, the bandwidth
availability between DCs can change drastically.
CLARINET does not have any mechanism to react under
such scenarios. Prior works [11, 29, 9] have presented
approaches to dynamically change query execution plans
under system changes and cardinality estimation errors.
Developing similar techniques to adapt CLARINET’s
execution plan under bandwidth changes is part of our
future work.

Second, CLARINET does not leverage performance
gains obtained from using techniques that minimize the
overall data transferred over the WAN. These include:
(i) using bloom-filters to implement joins as semi-joins,
and (ii) caching (intermediate) results data from prior
queries [43]. While reducing WAN traffic improves
query completion time in the geo-distributed setting,
the total data sent over the WAN (e.g., determined
by the number of common keys in a bloom-filter
semi-join implementation) can be large depending upon
the dataset. Under such cases, network-aware QEP
selection and scheduling of transfers can further reduce
aggregate run times even if WAN traffic reduction

methods are used.

10 Conclusion
In this paper, we consider the problem of running
analytics queries over data gathered and stored at
multiple sites inter-connected by heterogeneous WAN
links. We argue that, in order to optimize query
completion times, it is crucial for the query plan to
be made WAN-aware, for query planning to be done
jointly with selecting the placements and schedule for
the query’s tasks, and for multiple queries to be jointly
optimized. We design CLARINET, a novel WAN-aware
QO that incorporates a variety of novel heuristics for
these issues. We implement CLARINET such that it can be
easily integrated into existing data analytics frameworks
with minimal modifications. Our experiments using
an EC2 deployment and large scale simulations show
that CLARINET reduces query completion times by
2× compared to using state-of-the-art WAN-aware
placement and scheduling. We also show how our
scheme can ensure fair treatment of queries.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Amol Deshpande for their insightful comments. Raajay
and Aditya are supported by the Wisconsin Institute
on Software-defined Datacenters of Madison and
grants from Google and National Science Foundation
(CNS-1302041, CNS-1330308, CNS-1345249).

References
[1] Amazon datacenter locations. https://aws.amazon.com/

about-aws/global-infrastructure/.

[2] Apache Calcite - a dynamic data management framework.
http://calcite.incubator.apache.org. Accessed
04-27-2015.

[3] Apache Hive. http://hive.apache.org.

[4] Apache Tez. http://tez.apache.org.

[5] Google datacenter locations. http://www.google.com/
about/datacenters/inside/locations/.

[6] Microsoft datacenters. http://www.microsoft.
com/en-us/server-cloud/cloud-os/
global-datacenters.aspx.

[7] Spark SQL. https://spark.apache.org/sql.

[8] TPC Benchmark DS (TPC-DS). http://www.tpc.org/
tpcds.

[9] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-C.,
STOICA, I., AND ZHOU, J. Reoptimizing data parallel
computing. In NSDI (2012).

[10] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y., LIU, D.,
BRADLEY, J. K., MENG, X., KAFTAN, T., FRANKLIN, M. J.,
GHODSI, A., AND ZAHARIA, M. Spark SQL: Relational data
processing in Spark. In SIGMOD (2015).

[11] AVNUR, R., AND HELLERSTEIN, J. M. Eddies: Continuously
adaptive query processing. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data
(New York, NY, USA, 2000), SIGMOD ’00, ACM, pp. 261–272.

448 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://calcite.incubator.apache.org
http://hive.apache.org
http://tez.apache.org
http://www.google.com/about/datacenters/inside/locations/
http://www.google.com/about/datacenters/inside/locations/
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
https://spark.apache.org/sql
http://www.tpc.org/tpcds
http://www.tpc.org/tpcds

[12] BERNSTEIN, P. A., AND CHIU, D.-M. W. Using semi-joins to
solve relational queries. Journal of the ACM 28, 1 (1981), 25–40.

[13] CALDER, M., FAN, X., HU, Z., KATZ-BASSETT, E.,
HEIDEMANN, J., AND GOVINDAN, R. Mapping the expansion
of Google’s serving infrastructure. In IMC (2013).

[14] DEWITT, D. J., GHANDEHARIZADEH, S., SCHNEIDER, D.,
BRICKER, A., HSIAO, H.-I., RASMUSSEN, R., ET AL. The
Gamma database machine project. IEEE Transactions on
Knowledge and Data Engineering 2, 1 (1990), 44–62.

[15] GANJAM, A., SIDDIQUI, F., ZHAN, J., LIU, X., STOICA, I.,
JIANG, J., SEKAR, V., AND ZHANG, H. C3: Internet-scale
control plane for video quality optimization. In 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15) (Oakland, CA, May 2015), USENIX Association,
pp. 131–144.

[16] GRAEFE, G. Volcano: An extensible and parallel query
evaluation system. IEEE Trans. on Knowl. and Data Eng. 6, 1
(Feb. 1994), 120–135.

[17] GRAEFE, G. The cascades framework for query optimization.
Data Engineering Bulletin 18 (1995).

[18] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S.,
RAO, S., AND AKELLA, A. Multi-resource packing for cluster
schedulers. In SIGCOMM (2014).

[19] GUPTA, A., SUDARSHAN, S., AND VISHWANATHAN, S. Query
scheduling in multi query optimization. In Database Engineering
and Applications, 2001 International Symposium on. (2001),
IEEE, pp. 11–19.

[20] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,
GILL, V., NANDURI, M., AND WATTENHOFER, R. Achieving
high utilization with software-driven WAN. In SIGCOMM
(2013).

[21] HUNG, C.-C., GOLUBCHIK, L., AND YU, M. Scheduling jobs
across geo-distributed datacenters. In SoCC (2015).

[22] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,
TALWAR, K., AND GOLDBERG, A. Quincy: Fair scheduling for
distributed computing clusters. In SOSP (2009).

[23] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,
M., ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A.
B4: Experience with a globally-deployed software defined WAN.
In SIGCOMM (2013).

[24] JIANG, J., DAS, R., ANANTHANARAYANAN, G., CHOU,
P., PADMANABHAN, V., SEKAR, V., DOMINIQUE, E.,
GOLISZEWSKI, M., KUKOLECA, D., VAFIN, R., AND ZHANG,
H. Via: Improving internet telephony call quality using predictive
relay selection. In SIGCOMM (2015).

[25] KITSUREGAWA, M., TANAKA, H., AND MOTO-OKA, T.
Application of hash to data base machine and its architecture.
New Generation Computing 1, 1 (1983), 63–74.

[26] KUMAR, A., JAIN, S., NAIK, U., RAGHURAMAN, A.,
KASINADHUNI, N., ZERMENO, E. C., GUNN, C. S., AI,
J., CARLIN, B., AMARANDEI-STAVILA, M., ROBIN, M.,
SIGANPORIA, A., STUART, S., AND VAHDAT, A. BwE:
Flexible, hierarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM (2015).

[27] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In Proceedings of the ACM Symposium
on Cloud Computing (New York, NY, USA, 2014), SOCC ’14,
ACM, pp. 6:1–6:15.

[28] MACKERT, L. F., AND LOHMAN, G. M. R* optimizer validation
and performance evaluation for distributed queries. In PVLDB
(1986).

[29] MARKL, V., RAMAN, V., SIMMEN, D., LOHMAN, G.,
PIRAHESH, H., AND CILIMDZIC, M. Robust query processing
through progressive optimization. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2004), SIGMOD ’04, ACM,
pp. 659–670.

[30] MASTROLILLI, M., AND SVENSSON, O. (acyclic) job shops are
hard to approximate. In FOCS (2008).

[31] MONALDO, M., AND OLA, S. Improved bounds for flow shop
scheduling. In ICALP (2009).

[32] MULLIN, J. K. Optimal semijoins for distributed database
systems. IEEE Transactions on Software Engineering 16, 5
(1990), 558–560.

[33] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R.,
AND TOMKINS, A. Pig latin: A not-so-foreign language for
data processing. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (New York,
NY, USA, 2008), SIGMOD ’08, ACM, pp. 1099–1110.

[34] POLYCHRONIOU, O., SEN, R., AND ROSS, K. A. Track join:
distributed joins with minimal network traffic. In SIGMOD
(2014).

[35] PU, Q., ANANTHANARAYANAN, G., BODIK, P., KANDULA,
S., AKELLA, A., BAHL, V., AND STOICA, I. Low latency
geo-distributed data analytics. In SIGCOMM (2015).

[36] RABKIN, A., ARYE, M., SEN, S., PAI, V. S., AND FREEDMAN,
M. J. Aggregation and degradation in JetStream: Streaming
analytics in the wide area. In NSDI (2014).

[37] REN, X., ANANTHANARAYANAN, G., WIERMAN, A., AND
YU, M. Hopper: Decentralized speculation-aware cluster
scheduling at scale. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (New York,
NY, USA, 2015), SIGCOMM ’15, ACM, pp. 379–392.

[38] RODIGER, W., MUHLBAUER, T., UNTERBRUNNER,
P., REISER, A., KEMPER, A., AND NEUMANN, T.
Locality-sensitive operators for parallel main-memory database
clusters. In ICDE (2014).

[39] ROY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S.
Efficient and extensible algorithms for multi query optimization.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA,
2000), SIGMOD ’00, ACM, pp. 249–260.

[40] SELLIS, T. K. Multiple-query optimization. ACM Trans.
Database Syst. 13, 1 (Mar. 1988), 23–52.

[41] URHAN, T., AND FRANKLIN, M. J. XJoin: A
reactively-scheduled pipelined join operator. IEEE Data
Engineering Bulletin (2000), 27–33.

[42] VISWANATHAN, R., ANANTHANARAYANAN, G., AND
AKELLA, A. Clarinet: Wan-aware optimization for analytics
queries. Tech. Rep. TR1841, University of Wisconsin-Madison,
2016.

[43] VULIMIRI, A., CURINO, C., GODFREY, B., PADHYE, J., AND
VARGHESE, G. Global analytics in the face of bandwidth and
regulatory constraints. In NSDI (2015).

[44] WANG, X., OLSTON, C., SARMA, A. D., AND BURNS, R.
Coscan: Cooperative scan sharing in the cloud. In Proceedings
of the 2Nd ACM Symposium on Cloud Computing (2011), SOCC
’11.

[45] XIAO, X., HANNAN, A., BAILEY, B., AND NI, L. M. Traffic
engineering with mpls in the internet. Network, IEEE 14, 2
(2000), 28–33.

[46] XIN, R. S., ROSEN, J., ZAHARIA, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Shark: SQL and rich analytics
at scale. In SIGMOD (2013).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 449

[47] XIONG, P., HACIGUMUS, H., AND NAUGHTON, J. F. A
software-defined networking based approach for performance
management of analytical queries on distributed data stores. In
SIGMOD (2014).

[48] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND STOICA,
I. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI (2012).

[49] ZAMANIAN, E., BINNIG, C., AND SALAMA, A. Locality-aware
partitioning in parallel database systems. In SIGMOD (2015).

450 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

JetStream: Cluster-scale parallelization of information flow queries

Andrew Quinn, David Devecsery, Peter M. Chen and Jason Flinn
University of Michigan

Abstract
Dynamic information flow tracking (DIFT) is an im-
portant tool in many domains, such as security, debug-
ging, forensics, provenance, configuration troubleshoot-
ing, and privacy tracking. However, the usability of
DIFT is currently limited by its high overhead; com-
plex information flow queries can take up to two orders
of magnitude longer to execute than the original exe-
cution of the program. This precludes interactive uses
in which users iteratively refine queries to narrow down
bugs, leaks of private data, or performance anomalies.

JetStream applies cluster computing to parallelize and
accelerate information flow queries over past executions.
It uses deterministic record and replay to time slice ex-
ecutions into distinct contiguous chunks of execution
called epochs, and it tracks information flow for each
epoch on a separate core in the cluster. It structures the
aggregation of information flow data from each epoch as
a streaming computation. Epochs are arranged in a se-
quential chain from the beginning to the end of program
execution; relationships to program inputs (sources) are
streamed forward along the chain, and relationships to
program outputs (sinks) are streamed backward. Jet-
Stream is the first system to parallelize DIFT across a
cluster. Our results show that JetStream queries scale
to at least 128 cores over a wide range of applications.
JetStream accelerates DIFT queries to run 12–48 times
faster than sequential queries; in most cases, queries run
faster than the original execution of the program.

1 Introduction
Dynamic information flow tracking (DIFT) has

emerged as an important tool for understanding and
troubleshooting program behavior. Originally proposed
by the security community [16], DIFT instruments an
application binary to track data and/or control flow
from global sources (e.g., program inputs) to global
sinks (e.g., program outputs). Information flow analy-
sis has proven to be helpful in a diverse set of domains
that include forensic analysis [12], information prove-
nance [6], privacy [7], application debugging [20], and
troubleshooting of configurations [1, 2].

Unfortunately, dynamic information flow analysis can
be painfully slow; depending on the granularity and
amount of information tracked, execution slowdowns of

up to one or two orders of magnitude are common. While
this cost can be reduced by limiting analysis to man-
aged languages such as Java or by restricting the types of
queries that can be performed, general-purpose informa-
tion flow analysis over binary code requires batch-style
analysis for substantial programs. In other words, the
user employing DIFT must run such analyses over the
course of hours. DIFT would be much more powerful if
analysis could be employed interactively; for instance, a
user could refine a particular query by changing sources,
sinks, the propagation function, the granularity of in-
strumentation, or the period of program execution over
which the analysis is employed. The user could then nar-
row down the bug, misconfiguration, or privacy violation
in a manner similar to traditional debugging techniques.

Our goal is to make DIFT queries interactive by par-
allelizing them across many cores in a compute cluster.
With hundreds or thousands of cores, DIFT queries that
previously took hours or days can complete in seconds
or minutes, enabling refinement and iteration over multi-
ple queries. Thus, a shared cluster can become a valuable
resource for a large team of system operators or program-
mers who want to occasionally engage in an interactive
debugging or troubleshooting session using DIFT tools.
Usage scenarios for DIFT include both live analysis (as
the program runs) and after-the-fact analysis (executed
on a replay of an execution). We target the latter sce-
nario.

Previous efforts at parallelizing DIFT have met with
only limited success. Information flow is inherently dif-
ficult to scale (Ruwase et al. call it “embarrassingly se-
quential” [20]) because it tracks many fine-grained se-
quential dependencies between memory and register val-
ues. The set of dependencies at each step is a function of
a large number of prior instructions executed by the pro-
gram. Consequently, prior efforts have produced parallel
versions that scale to only a few cores on a single ma-
chine, and no current approach can effectively leverage a
commodity cluster to scale DIFT.

Our solution, JetStream, provides cluster-level scala-
bility by computing information flow in two phases, each
using a different form of parallelization.

The first phase is the local DIFT phase; it divides
program execution into time segments (epochs) and as-
signs a separate core to compute the information flow

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 451

for each epoch. Each core determines the dependen-
cies within its epoch that may be relevant to answer-
ing the overall query. It tracks sources and sinks that
are identified explicitly in the query (e.g., network input
and output); we call these global sources/sinks. It also
tracks locations that may serve as links between global
sources and sinks; we call these local sources/sinks. Lo-
cal sources are all memory addresses and registers at the
beginning of an epoch, and local sinks are all memory
addresses and registers at the end of an epoch. The local
DIFT phase parallelizes cleanly into separate partitions,
with all dependencies between partitions resolved in the
next phase.

Two challenges arise for the local DIFT phase. First,
computing all dependencies that may be relevant to the
query is too expensive. We address this challenge by
deferring and avoiding work as much as possible. Jet-
Stream uses merge trees [20] to represent and manipu-
late dependency sets more efficiently. More importantly,
it defers traversing these merge trees until the next (ag-
gregation) phase; that phase avoids traversing the vast
majority of tree nodes that do not lie on a dependency
path between a global source and a global sink.

The second challenge is that each epoch must follow
the same execution as the original execution, so that the
aggregation of local DIFTs produces a result equivalent
to a sequential DIFT. JetStream uses checkpointing and
deterministic record/replay to divide an execution into
epochs and perform the local DIFT for each epoch inde-
pendently, yet consistently. JetStream uses lightweight
statistics collected during the original execution of a pro-
gram to partition the DIFT work equally, and it uses
heavyweight statistics collected during the first query of
an execution to better partition subsequent queries.

The second phase, called the aggregation phase,
prunes and combines the information from the local
DIFT phase to compute the final result, i.e., the rela-
tionship between global sources and global sinks across
the entire execution. The cores in this phase are orga-
nized in a chain in order of program execution, and the
computation is structured as a stream processing algo-
rithm with pipeline-style parallelism. Each core resolves
dependencies using information from one epoch’s local
DIFT phase, and the global query is answered via two
streaming passes.

In the first streaming pass, the locations (registers and
memory addresses) that are derived from global sources
are passed forward along the chain (from the beginning
to the end of execution). This information is used to
prune deferred operations that do not depend on a global
source. In the second streaming pass, the locations that
propagate dependencies to a sink are passed backward
along the chain. This lets JetStream prune deferred oper-
ations on which no sink depends.

The structuring of the aggregation is the most impor-
tant factor in enabling JetStream to scale much better
than prior approaches at parallelizing DIFT. Our insight
is that a small amount of sequential information is nec-
essary to avoid huge amounts of unnecessary work; this
information is essentially the locations that depend on
global sources (forward pass) and the locations on which
global sinks will depend (backward pass). Streaming this
data along a sequential chain allows most processing to
occur in parallel, with the sequential limitation being es-
sentially the time to pass a single data value from one
end of the chain to the other; this is much less than the
total query time even for hundreds of processors.

The contributions of this paper are:
• An algorithm for parallelizing DIFT that scales

much better than prior approaches, enabling inter-
active (sub-minute) response times.
• Scalable and efficient support for tracking millions

of distinct global sources and sinks at byte gran-
ularity, without restrictions on source-code avail-
ability, compute platform, or query type.
• A detailed evaluation of the remaining bottlenecks

in accelerating DIFT through parallelization.
We have applied JetStream to run DIFT queries over

seven desktop and server applications: Evince, Firefox,
Ghostscript, Gzip, Mongodb, Nginx, and OpenOffice.
Our results show that JetStream scales DIFT to at least
128 cores for these applications. It accelerates DIFT
queries to run 12–48 times faster than sequential queries,
and, in most cases, runs queries faster than the original
execution of the program.

2 Motivation

DIFT is a fundamental analysis that is useful in di-
verse domains. For example, Arnold [6] uses DIFT for
provenance queries that reveal how data values in files
and application memory were derived. In forensics [12],
DIFT has been used to answer questions such as: “How
was my system compromised?” and “What data was
leaked?” TaintDroid [7] and similar systems use DIFT
to reveal whether an application execution leaks sensi-
tive data. X-Ray [1] uses DIFT to identify misconfigura-
tions that cause performance anomalies, and ConfAid [2]
uses DIFT to identify misconfigurations that cause bugs.
Poirot’s [11] use of DIFT helps determine if a security
vulnerability has been exploited.

Many of the above systems run complex DIFT queries
on native binaries and can suffer from painfully slow
DIFT query times. These systems are often forced to
use batch-style computation, even though many would
ideally be interactive in nature.

Consider a developer debugging an incorrect output
value from a Web server. Using JetStream, she begins

452 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by running a DIFT query that shows all program inputs
from which the faulty value was derived. This alone is
not enough to reveal the bug, so she runs an additional
query tracking the inputs that led to a correct output.
Comparing the results shows that inputs from a partic-
ular network connection led to the faulty output but not
the correct one. Using this information, she discovers a
bug in the code which parses network inputs. To see if
this bug has impacted any file system state, the developer
runs another query specifying all values from the faulty
parsing code as global sources and all file system outputs
as global sinks. She detects that no permanent state has
been affected by her bug. Next she considers other forms
of external output such as network messages.

Debugging the problem and determining the impact
of the bug both require multiple DIFT queries. Further,
phrasing the correct queries may be non-trivial and re-
quire multiple iterations to get helpful results. If each
query takes hours to complete, then this process only
makes sense for the most difficult bugs. In contrast, low-
latency DIFT enables information flow analysis to be an
integral part of the debugging process.

3 Background

We first describe two technologies on which Jet-
Stream builds: dynamic information flow tracking and
deterministic record and replay.

3.1 DIFT

Dynamic information flow tracking, sometimes re-
ferred to as taint tracking, instruments applications to
monitor data flow as programs execute. In its most gen-
eral form, DIFT reveals which global sources causally
affect which global sinks according to a propagation
function. Global sources are typically external program
inputs, such as bytes read from a file or a network socket,
and global sinks are typically external outputs.

The propagation function specifies what information
flows to track during program execution. For example,
a basic data flow propagation function for the instruc-
tion x = y+ z would state that the sources on which x
depends are the union of the sources on which y and z
depend. Usually, DIFT tracks data flow (as we do in this
work), but some DIFT systems also track implicit flows
propagated via control flow.

When an application executes, DIFT assigns a taint
identifier to each unique global source. For each lo-
cation, it maintains a set of taint identifiers that shows
the global sources on which that location currently de-
pends, and it updates taint sets as instructions execute.
At each global sink, DIFT outputs the set of taint iden-
tifiers of all locations written to the sink (e.g., the bytes
sent to a network socket). Thus, DIFT produces a set of
〈globalsource,globalsink〉 tuples that describe how par-

ticular global sources and global sinks are related.
JetStream tracks global sources, global sinks, and de-

pendencies at byte granularity using binary instrumenta-
tion inserted by Pin [14]. A single JetStream query may
look for relationships between millions of distinct global
sources and sinks. In contrast, many prior DIFT systems
require source code or the use of a managed language
runtime. Others track only whether any global source
data propagates to a global sink and cannot determine
which sources affect each sink—such systems cannot an-
swer questions such as: “Which inputs affected this pro-
gram value?” or “What data did I leak?”

A JetStream query contains a program execution to
monitor, a filter that specifies the global sources, a fil-
ter that specifies sinks, and a propagation function. For
instance, a provenance query [6] might wish to deter-
mine the lineage of the data in a particular file. The
source filter would match all external program inputs and
the output filter would match writes to a particular file.
This would reveal which bytes in the file were derived
from which sources. Alternatively, a privacy query [7]
might specify reads from sensitive files as sources and
network outputs as sinks. This would reveal what data
was leaked over the network and how it was leaked. Jet-
Stream provides an interface for supporting custom prop-
agation functions and supplies Arnold’s copy, data, and
index propagation functions [6] as defaults.

For complex applications, mapping all global sources
to all global sinks at byte granularity produces far
too much information (e.g., terabytes of data for some
benchmarks in Section 5). Thus, filters are needed to
extract the right information succinctly. This leads to re-
finement through iteration. Our goal is to make DIFT fast
enough to be interactive, so that a user can issue multiple
queries to search for the right information.

3.2 Deterministic replay

Deterministic replay allows the execution of a pro-
gram to be recorded and reproduced faithfully. When a
program first executes, all inputs from nondeterministic
actions are logged; these values are supplied during sub-
sequent replays in lieu of performing the nondetermin-
istic operations again. Thus, the program starts in the
same state, executes the same instructions on the same
data values, and generates the same results.

JetStream derives several benefits from using deter-
ministic replay. First, replay allows JetStream to parti-
tion a recorded execution into epochs and execute these
epochs in parallel. Deterministic replay guarantees that
the result of stitching together all epochs is equivalent to
a sequential execution of the program. Second, replay
allows an execution recorded on one machine to be re-
played on a different machine. There are few external
dependencies, since interactions with the operating sys-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 453

Instructions Taint IDs Merge Log Live Set Taint Tuples
(forward pass) (backward pass)

Epoch 0

{< IN0,OUT0 >,< IN1,OUT0 >}
1. A = read() A: IN0
2. B = read() B: IN1
3. C = A + B C: M0[0] M0[0] : {IN0, IN1}

{A,B,C}

Epoch 1

{< OUT0,C >}
4. D = X + Y D: M1[0] M1[0] : {X1,Y1}
5. E = C E: C1
6. B = 0 B: {}
7. Z = A[D] Z: M1[1] M1[1] : {A1,M1[0]}

{A,C,E,Z}

Epoch 2

{< OUT0,E >}
8. F = E F: E2
9. write(F) OUT0: E2

Table 1: DIFT analysis of an example program.

tem and other external entities are nondeterministic and
replayed from the log. Thus, the only requirement for
replay is that the replaying computer has the same hard-
ware architecture as the recording computer and that it
runs a kernel modified to support replay. Finally, replay
allows iterative queries over the same execution.

JetStream uses Arnold [6] to provide deterministic
record and replay of multithreaded, multiprocess appli-
cations. Arnold’s performance overhead is less than 10%
for most workloads, and its storage overhead is reason-
able even for continuous recording of a workstation.

4 Design and implementation
To parallelize a DIFT query, JetStream divides an ex-

ecution into epochs and assigns each epoch to a different
core. JetStream then evaluates the query in two phases:
a local DIFT phase and an aggregation phase.

In the local DIFT phase, each core concurrently com-
putes the relationships between sources and sinks within
its epoch. A core can directly observe global sources
and global sinks that occur during its epoch. How-
ever, some locations at the start of an epoch may depend
on global sources from preceding epochs, and the local
DIFT cannot know the actual dependencies because the
local DIFTs for those preceding epochs are being exe-
cuted concurrently. Thus, for all epochs but the first one,
the local DIFT phase conservatively tracks all locations
at the start of the epoch as local sources and assigns
a unique local source identifier to each location at the
epoch start. Similarly, the local DIFT cannot determine
which locations at the end of an epoch will ultimately
propagate to global sinks in succeeding epochs, so the
local DIFT treats all locations at the end of the epoch as
local sinks. A local DIFT phase thus tracks and reports
dependencies between all sources (both local and global)

and all sinks (both local and global).
In the aggregation phase, the cores organize as a chain

in program execution order and communicate local DIFT
results forward and backward along the chain to produce
the final set of 〈globalsource,globalsink〉 tuples. We
next describe these two phases in more detail.

Table 1 shows an example query in which JetStream
finds all dependencies from global sources to global
sinks in a simple program. Program execution is divided
into three epochs (shown by the horizontal partitioning).
The local DIFT phase is the region to the left of the dou-
ble vertical bar, and the aggregation phase is the region
to the right of the bar. Instructions 1 and 2 read data from
global sources, and instruction 9 writes to a global sink.

4.1 Local DIFT

JetStream implements the local DIFT phase as a Pin
tool. Executing an application with this tool attached is
quite slow (e.g., 14–75x slowdown for the benchmarks
in Section 5). There are two reasons: DIFT may add
several additional instructions to track taint for each ap-
plication instruction executed, and Pin dynamically adds
the instrumentation to an application as it executes. The
first is a fundamental cost of DIFT, while the second is a
consequence of using a dynamic instrumentation tool.

The local DIFT phase for a given epoch first replays
the application uninstrumented to advance its execution
to the start of the epoch, a process we call fast forward-
ing. JetStream may start the replay from the beginning,
or it may start from a checkpoint of application state
taken during recording or during a previous query. Given
the relative speed difference between instrumented and
uninstrumented execution, starting from the beginning is
reasonable for low numbers of epochs. As the number of
epochs increases, fast forward time comes to dominate

454 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

total query time, and checkpoints are quite beneficial.
Next, JetStream attaches the DIFT tool to the applica-

tion and Pin starts instrumenting the application to track
dependencies. JetStream assigns a unique source identi-
fier to each location modified by a global source in the
epoch and to each location at the start of the epoch.

JetStream runs all threads of a multithreaded applica-
tion on a single core to realize an important performance
benefit: the instrumentation code does not need to obtain
locks to synchronize access to the DIFT data structures
because only one thread runs at any given time [21]. Jet-
Stream still fully utilizes the processor because each core
runs a different epoch in parallel.

For each location, JetStream stores an integer taint
identifier that represents the set of global and local
sources on which that location currently depends. A taint
identifier may be: (1) a global source identifier, (2) a lo-
cal source identifier, or (3) an identifier that maps to a
set of global and local sources. In the Taint IDs column
of Table 1, IN0 and IN1 are global source identifiers, and
C1 and E2 are local source identifiers that represent the
taint of address C at the start of epoch 1 and the taint of
address E at the start of epoch 2.

For each x86 instruction, the local DIFT tool reads the
taint identifiers of the instruction’s inputs and updates the
taint identifiers of the instruction’s outputs. Taint iden-
tifiers for registers are stored in a per-thread array, and
taint identifiers for memory addresses are stored in a two-
level page table. The tool decomposes the work for each
instruction into a sequence of four sub-commands: set,
clear, copy, and merge. The first three sub-commands
are straightforward—set assigns a taint identifier to a
location, clear assigns the NULL identifier to a loca-
tion, and copy sets the destination’s taint identifier equal
to the source’s. Thus, each of these sub-commands are
low overhead integer operations. Table 1’s Taint IDs col-
umn shows how the local DIFT tool updates the taint data
structures: a set for instruction 1, a clear for instruc-
tion 6, and a copy for instruction 5.

The merge sub-command is used for instructions that
combine dependencies, e.g., instructions 3, 4, and 7. For
these instructions, the set of sources on which the output
depends is the union of the sets of sources on which the
inputs depend. Our original implementation tracked such
sets explicitly, but this worked poorly. For some com-
plex applications, the DIFT did not finish after running
for hours, or the size of the sets exceeded the 256 GB
memory of our server. Intuitively, the reason is that the
set of tuples that relate all local sources to all local sinks
can be as large as the size of the address space squared.

We therefore turned to an idea proposed by Ruwase et
al. [20] in which sets of taint values are represented by a
binary tree. Each merge operation generates a new taint
identifier to represent the set union. JetStream writes

an entry to a merge log, which contains the taint iden-
tifiers of the input to the merge. Thus, the merge log is a
DAG sorted in temporal order, and each node (entry) in
the merge log represents a binary tree of taint identifiers
rooted at that node. Any merge node can be resolved
to a set of source identifiers by performing a depth-first
traversal of the tree rooted at that node.

In the example, instruction 4 creates a merge node
M1[0] (each epoch has a distinct merge log, with the par-
ticular log denoted by the subscript). The node states that
address D depends on whatever X and Y depend on at the
start of epoch 1. Instruction 7 creates a merge node that
has M1[0] as a child, so address X depends on whatever
A, X , and Y depend on at the start of the epoch.

Using the merge log yields two benefits. First, it de-
fers expensive set union operations until the aggregation
phase; optimizations in that phase avoid the need to per-
form the vast majority of such unions. Second, the merge
log uses much less memory than storing a set for each
location. Memory usage is roughly proportional to the
number of unique merge operations rather than the total
size of all taint sets for every location. The cost of using
a merge log is that JetStream must perform a tree traver-
sal when it needs to resolve a root node to a set of source
identifiers.

JetStream makes two enhancements to Ruwase et al’s
algorithm. First, it uses a hash table to cache recently-
seen merge pairs and reuse merge nodes when duplicates
are found. Second, whereas Ruwase et al. used the tree
data structure only for abstract values (i.e., local source
identifiers); JetStream also uses the tree structure for sets
of global source identifiers, such as distinct bytes from
different sources encountered during the local epoch (as
for instruction 3 in the example).

At the end of an epoch, JetStream writes four datasets
to a shared memory buffer: global source metadata,
global sink metadata, the merge log, and the taint identi-
fiers for all local sinks. The global source metadata de-
scribes each global source identifier (e.g., the system call
that read the byte, the file the byte was read from, the off-
set within the file, etc.). Similarly, the global sink meta-
data describes each byte sent to a sink. Since applica-
tion execution typically modifies only a small percentage
of locations during a given epoch, the local sink identi-
fiers for most locations will be the local source identi-
fier of those locations. To save space, the local DIFT
only outputs those local sink identifies where this rela-
tionship does not hold. These optimizations allow the
output of the local DIFT phase to fit in the memory of
modern servers (though it is still large, e.g., a few GB
per epoch).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 455

4.2 Partitioning

The time to produce an answer to a query depends
on the longest local DIFT time for any epoch. Thus, to
achieve good speedups, JetStream must partition local
DIFT so that each core does roughly the same amount
of work. To accomplish this, JetStream estimates the
amount of time it will take to run local DIFT for any
given interval of execution and defines epoch boundaries
so that the estimated local DIFT time for each epoch is
the same.

We estimate the local DIFT time for an interval of ex-
ecution as a linear combination of three factors:

• Fast Forward Time: JetStream replays the appli-
cation without instrumentation to advance execu-
tion to the start of the epoch. We estimate that this
component of work is proportional to the user-level
CPU time used for this portion of execution by the
recorded application.

• Instructions executed: To track information flow
for an interval of execution, JetStream must exe-
cute the instructions in that interval, as well as the
instrumentation code that propagates dependencies
among locations. This component of work is pro-
portional to the number of instructions executed,
which we estimate from the user-level CPU time
used to execute the interval in the recorded execu-
tion.

• Unique instructions executed: Pin instruments an
instruction when it is executed for the first time.
With Pin, instrumentation cost is a significant por-
tion of the overall DIFT time, especially for short
intervals in which each instruction may only be ex-
ecuted a few times. As JetStream parallelizes the
DIFT work across more cores, each interval be-
comes shorter, and the relative cost of instrument-
ing instructions increases. This component of work
is proportional to the number of unique instructions
executed. During recording, we read processor per-
formance counters via the perf events API to es-
timate the number of unique instructions executed
by sampling the instruction pointer (we sample ev-
ery 32 L1 instruction cache read misses for user-
level code). When executing the first query for an
execution, we use dynamic instrumentation to mea-
sure the actual number of unique instructions exe-
cuted during an interval; this adds little overhead
compared to DIFT instrumentation.

To avoid confounding testing and training in our eval-
uation, we choose the constants in the model for the first
query of an execution by running a linear regression over

data from the other benchmarks in our set. The coeffi-
cient of determination (R2 value) for these regressions is
0.86–0.87. Due to the high overhead of instrumenting
code with Pin, the cost of inserting instrumentation (pro-
portional to unique instructions executed) usually dom-
inates the cost of running the instrumented code (pro-
portional to instructions executed), especially for small
epochs.

For subsequent queries of a given execution, we run a
linear regression over the performance data gathered dur-
ing the first query. This produces a much better R2 value
of 0.985. We also add the number of merges that oc-
curred during each interval to our model, and that change
slightly increases the R2 value to 0.989.

JetStream partitions the recorded execution into n
epochs of roughly equal local DIFT time as estimated
by the above model, where n is the number of available
cores to run the query. This process is conceptually sim-
ple, but a complication is that the total local DIFT time
depends on the particular partitioning chosen because an
instruction that is executed in multiple epochs will in-
cur an instrumentation cost in each of those epochs. We
solve this problem by using a hill-climbing algorithm in
which each iteration updates the estimate of the total lo-
cal DIFT time for the query, and the new estimate is
used to calculate a better partitioning in the next iteration.
Usually, this process converges after a small number of
iterations.

4.3 Aggregation

The aggregation phase produces the set of
〈globalsource,globalsink〉 tuples that are related
by the propagation function. Within a single epoch, a
global source and global sink are related if the global
sink either has the global source’s identifier or if it has
the identifier of a merge node and that node resolves to
a set that contains the global source’s identifier. If the
global source and sink are in adjacent epochs, then they
are related if there exists a location L at the boundary
of the two epochs such that, in the first epoch, the local
sink identifier of L depends on the global source, and in
the second epoch, the global sink depends on the local
source identifier of L. If one or more epochs separate the
epochs of the global source and sink, then there must be
multiple such relationships forming a continuous path
from source to sink.

In Table 1, such a path exists between the global
sources of instruction 1 and 2 and the global sink of in-
struction 9. In epoch 0, resolving the merge tree for ad-
dress C reveals that it depends on both global source 0
and global source 1. In epoch 1, the final value of E de-
pends on the value of C at the beginning of the epoch. In
epoch 2, instruction 9 writes address F, which depends
on location E at the beginning of the epoch. Determin-

456 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ing the complete relationship between global sources and
global sinks requires aggregating the data from the local
DIFT phase of each epoch.

4.3.1 Parallelizing aggregation: A failed attempt

To meet our performance goals, both the local DIFT
and aggregation phases must scale well with the number
of cores. Our first approach to constructing a parallel ag-
gregation phase was based on a tree-like merge of local
DIFT information. First, each individual epoch produces
a map of all 〈source,sink〉 tuples where sources and sinks
may be either local or global. For each sink with a taint
identifier that represents a merge node, the map is gen-
erated by a depth-first traversal of the tree rooted at that
node to resolve the set of source identifiers. This step is
performed in parallel for all epochs, and caching is used
to avoid revisiting tree nodes. If both the source and sink
in a tuple are global, then the tuple is immediately out-
put and removed from the map. Such tuples represent
dependencies that can be computed solely on the DIFT
information in a local epoch.

Next, we merge maps for pairs of adjacent epochs.
For all locations, L, if there exists a tuple 〈source,L〉 in
the first epoch and a tuple 〈L,sink〉 in the second epoch,
then this step adds the tuple 〈source,sink〉 to its map.
Since two epochs are involved, this step is parallelized
across two cores. As before, if the sources and sinks in
a tuple are both global, the tuple is immediately output
and removed from the map. Merges are performed in a
binary tree, merging sets of 4, 8, 16, etc. epochs, using
the same approach as above. The number of cores par-
ticipating in each merge grows proportionally, and the
number of merge steps is logarithmic in the number of
epochs.

Unfortunately, this algorithm performed very poorly.
Traversing the merge log for each end value and generat-
ing sets of start values was extremely time-consuming,
even with caching and reuse of intermediate results.
Even worse, for most of our applications, some of the
merged maps failed to fit in 256 GB of memory. Our
analysis showed that the reason for this behavior was
that we were doing far more work than we needed to:
the vast majority of merge nodes visited and values in
the merged maps were not actually on a path between a
global source and a global sink. However, because no
epoch knew the full set of global sources and sinks when
creating or merging maps, each had to calculate all de-
pendencies that could possibly be used.

We concluded from this failed attempt that a fully-
parallel aggregation phase is infeasible because it vastly
increases the total work done. To fix this, aggregation
must use data about global sources and sinks to generate
less intermediate data and to traverse fewer merge nodes.

4.3.2 Backward pass

Our next approach to aggregation was to structure
the computation as a stream processing algorithm that
scales via pipeline-style parallelism. We arrange the
epochs in an ordered chain. In parallel, each epoch pro-
cesses any global sinks encountered during the epoch.
The JetStream aggregator checks the taint identifier for
each byte sent to a global sink. If the taint identi-
fier is a global source (i.e., if the global source and
sink are in the same epoch), the aggregator immediately
outputs a 〈globalsource,globalsink〉 tuple. If the taint
identifier is a local source identifier L, the aggregator
sends a 〈L,globalsink〉 tuple to the previous epoch in
the chain. Epochs on the same machine communicate
via a shared memory buffer; epochs on different ma-
chines communicate via a TCP socket. If the taint iden-
tifier is a merge log node, the aggregator resolves the
set with a depth-first traversal of the tree rooted at that
node. For each unique source identifier in the set, it ei-
ther outputs a 〈globalsource,globalsink〉 tuple or sends
a 〈L,globalsink〉 tuple to the previous epoch.

When the aggregation phase for an epoch receives
a 〈L,globalsink〉 tuple from the succeeding epoch, it
checks the epoch’s local sink taint identifier for L. This
is either a local source identifier, a global source identi-
fier, or a merge node identifier that resolves to a set of
source identifiers. For each global source, the aggregator
outputs a 〈globalsource,globalsink〉 tuple, and for each
local source L′, it sends a 〈L′,globalsink〉 tuple to the
preceding epoch.

The last epoch sends a sentinel value to its preceding
epoch after it has finished processing its sinks; when an
epoch reads the sentinel, its work is done as no more
tuples will be forthcoming. It then sends the sentinel to
its predecessor.

The last column of Table 1 shows the backward pass.
Epoch 2 determines that OUT0 depends on location E
and passes that tuple to epoch 1. Epoch 1 determines
that E depends on C, so passes the tuple 〈OUT0,C〉 to
epoch 0. Epoch 0 resolves the merge tree rooted at M0[0]
and outputs tuples relating OUT0 with both IN0 and IN1.

The major advantage of this streaming algorithm is
that no epoch will process a merge node or send a tuple
to a proceeding epoch unless the node/tuple represents
a location that propagates to some global sink according
to the propagation function. In the example, no merge
nodes in epoch 1 are visited. This vastly reduces the
amount of aggregation work. The potential disadvan-
tage of this algorithm is that we have added a sequen-
tial step; each tuple must flow from global sink to global
source, passing through all intermediate epochs. Our re-
sults show that this has only a minor effect on overall
query time since each core can still process tuples in
parallel. In other words, the latency of passing a tuple

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 457

through all epochs in the chain is very small compared
to the query time, just as the sequential time to execute
a machine instruction in a pipelined CPU is trivial com-
pared to the time spent operating with a full pipeline.

Our results show that this algorithm, which we will
refer to as the backward pass produces reasonable aggre-
gation costs for some simple applications/queries, but it
still takes too long for complex applications/queries. The
reason is that we are still visiting too many merge nodes
and creating too many tuples that are not ultimately on
the path between a source and a sink. Thus, we found it
necessary to also add a streaming forward pass that prop-
agates information about which locations are related to
global sources along the chain of epochs.
4.3.3 Forward pass

The forward pass runs prior to the backward pass. For
each epoch, the forward pass first calculates a reverse
index that has the same vertexes as the merge log DAG
but that has edges in the opposite direction. The reverse
index is also a DAG; depth-first traversal from a given lo-
cal or global source yields the set of sinks that depend on
that source. Each epoch builds its reverse index by first
visiting all merge log nodes in temporal order, then vis-
iting all local sinks. This step is fully parallelized since
the reverse index can be computed purely with local in-
formation for each epoch.

Next, for each byte read from a global source, the ag-
gregator does a depth-first traversal of the reverse index
to determine the set of local sinks that depend on any
source. It passes these sink locations to the succeed-
ing epoch in the chain (forward in time). Here, the ag-
gregator is only determining that a given local sink is
tainted by any global source; it is not identifying a partic-
ular global source that has tainted the local sink. There-
fore, the aggregator passes a local sink to the succeeding
epoch at most once, and it visits each node in the reverse
index at most once. It sets a visited bit for each local
sink and merge node to avoid duplicate work.

As the aggregator receives locations from the prior
epoch, it does a depth-first traversal of the reverse index
to determine which (if any) additional local sinks depend
on that location. It sends the locations associated with
those local sinks to the succeeding epoch. The aggre-
gator also retains the complete set of locations obtained
from the prior epoch; this live set is the set of all local
sources that depend on any global source.

Similar to the backward pass, the first epoch sends
a sentinel token as soon as it finishes processing global
sources. Once an epoch receives the sentinel, its live set
is complete; the epoch then sends the sentinel to its suc-
cessor.

In Table 1, the Live Set column shows the forward
pass. At the end of the first epoch, locations A, B, and C
depend on at least one global source. The second epoch

adds Z to this set because it depends on A and adds E to
this set because it depends on C. Additionally, the second
epoch removes B from this set because its taint value was
cleared.

Once an epoch knows its live set, it prunes its merge
log. The aggregator processes merge log nodes sequen-
tially. Any local source not in the live set for that epoch
cannot depend on a global source. So, if a child of a
merge node is a local source identifier, and the local
source is not in the live set, the child is replaced by a
NULL identifier. If a merge node has two NULL chil-
dren, no members of its source set depend on a global
source. Any identifier in the merge log that refers to such
a node is also replaced with a NULL value. Essentially,
this is a garbage collection in which any node known to
be unrelated to a global source is removed. This garbage
collection can substantially prune the merge log. Each
epoch can run the prune in parallel once it knows its
live set. Thus, the only sequential component of the for-
ward pass is the propagation of live set values. In Ta-
ble 1, epoch 1 prunes merge node M1[0] because it does
not depend on any global source. M1[1] is updated to
〈A1,NULL〉.

By inserting a forward pass, JetStream guarantees that
all merge nodes processed and all tuples generated dur-
ing the backward pass are on a path between a global
source and global sink. This vastly reduces the num-
ber of nodes processed and tuples generated, making the
backward pass more efficient. Note that although the for-
ward pass itself must visit all nodes tainted by a global
source (even those that do not lead to a global sink), the
forward pass does much less work than the backward
pass because it tracks only whether or not a location de-
pends on a global source. It does not identify the specific
source(s) on which the location depends.
4.3.4 Pre-pruning

JetStream uses one final optimization to improve ag-
gregation performance. During an epoch, many values
in memory or registers are overwritten before the epoch
ends. If a merge log node does not propagate to ei-
ther a local or global sink, then it can be removed from
the log based solely on information available from that
epoch. We call this step pre-pruning. JetStream does
pre-pruning via a mark-and-sweep garbage collection
over the merge log. It iterates through all sinks; if a sink
has the taint identifier of a merge log node, JetStream
marks the merge node as referenced. Then, JetStream it-
erates backward through the merge log. For each child in
a merge log entry that refers to a prior merge log node,
JetStream marks the prior merge log node as referenced.
It discards all unmarked nodes and compacts the merge
log. This reduces the number of merge log nodes that
need to be processed later during both the forward and
backward passes.

458 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Benchmark Replay Log Replay Time Sequential DIFT Global Global Dependencies
Size (MB) (seconds) Time (seconds) Sources Sinks

Gzip 0.03 2.98 109.23 64352941 48791393 36586765
Ghostscript 0.12 1.03 76.90 2514067 176009 14682254
Evince 2.90 13.47 234.30 10302852 104061604 346305
Nginx 30.65 4.75 196.51 10412627 35000000 5000000
Mongodb 37.02 22.79 309.99 8863855 116592809 76042962
OpenOffice 15.25 7.55 418.03 9946659 32110959 14599069
Firefox 24.80 67.42 1838.70 920029 1636119 131476

Table 2: Benchmarks used in the evaluation.
4.3.5 Summary

For each epoch, JetStream performs the following op-
erations: (1) It runs the program without instrumentation
from the start or from the nearest checkpoint to the be-
ginning of the epoch. (2) It attaches a Pin tool and per-
forms a local DIFT until the end of the epoch. (3) It
pre-prunes the resulting local DIFT output to eliminate
merge log nodes that cannot lead to a global sink. (4) It
performs a forward aggregation pass to further prune the
merge log by excluding any node that does not depend on
a global source. (5) It performs a backward aggregation
pass to generate 〈globalsource,globalsink〉 tuples; only
merge nodes and locations on the path between a source
and a sink are visited during this pass. Almost all of
these steps can be performed in parallel for each epoch.
The exceptions are the propagation of source dependen-
cies in the forward path and 〈location,sink〉 tuples in the
backward pass. These sequential steps are structured as
stream processing along the epoch chain to maximize the
work done in parallel.

5 Evaluation
Our evaluation answers the following questions:
• How well does JetStream scale DIFT?
• What are the remaining scalability bottlenecks?
• What is the impact of query optimizations?

5.1 Experimental Setup

JetStream uses the Arnold record and replay system
[6] and the Pin dynamic instrumentation framework [14].
We evaluated JetStream using a CloudLab [19] cluster of
32 r320 machines (8-core Xeon E5-2450 2.1 GHz pro-
cessors, 16 GB RAM, 10 Gb NIC). We envision running
JetStream on an even larger cluster, but we could only
reliably get a 32 machine cluster from CloudLab. Since
these machines have a relatively small amount of RAM
(16 GB) and DIFT queries are memory-intensive, we use
only 4 cores per machine, leaving the experimental setup
with 128 effective cores. For all experiments, we report
the mean of 5 trials and show 95% confidence intervals.

5.2 Benchmarks

We evaluate JetStream with seven benchmarks chosen
to represent common desktop and server workloads:

• Gzip – Zip a large file.
• Ghostscript – Convert a research poster from

PostScript to PDF.
• Evince – Open and view a research paper.
• Mongodb – Yahoo cloud server benchmark [5].
• Nginx – Serve static content.
• OpenOffice – Edit a conference presentation.
• Firefox – A long Facebook browsing session.
For Gzip, Ghostscript, Evince, Mongodb, and Nginx,

the query asks for dependencies between all command
line, network, and file system inputs and all such outputs.
Running the all-to-all query for OpenOffice and Firefox
generated over 1 TB of data before we stopped the query.
Thus, the OpenOffice query only considers file system
data from the user’s home directory to be sources, and
the Firefox query considers cookie data to be sources and
network output to specific sites (about 10% of total out-
put) to be sinks. We use Arnold’s data flow propagation
function for all queries.

Table 2 shows a summary of the benchmarks. These
are complex queries: most consider millions of distinct
source and sinks, and most generate millions of depen-
dencies. We show the time to replay each benchmark
without instrumentation and the sequential DIFT time
on a replay as baselines. We do not show the time for
the original benchmark to run because that time depends
on user think-time (for interactive applications), network
delays, idle time (for server applications) and external
output. When the benchmark is not CPU bound, DIFT
overheads can be underestimated. Replay time, against
which we compare, can already be one or two orders
of magnitude faster than the original execution time [6].
We also report the compressed replay log size for each
benchmark.

5.3 Scalability

We first evaluate the scalability of JetStream queries.
Figure 1 shows the speedup of executing the first query
for each benchmark on a log-log scale as we vary the
number of cores from 1 to 128. Results are normalized
to evaluating a query using a sequential algorithm on a
single core; the black diagonal line shows ideal speedup,
and a horizontal line would show no speedup. Over-
all, JetStream accelerates DIFT queries by 8–28x with

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 459

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d
 S

p
e
e

d
u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 1: First Query Scalability - JetStream’s scalability
from 1 to 128 cores

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 2: Scalability After Repartitioning - JetStream’s scal-
ability after incorporating its improved partitioning model

a mean of 13x using 128 cores. All benchmarks continue
to scale through 128 cores, but some (e.g., Evince) scale
less well at high numbers of cores.

We find that the biggest bottlenecks to scalability of
the first query are (1) the epoch partitioning is often im-
balanced, resulting in delays due to tail latency, and (2)
the fast forward time becomes a bottleneck as query time
approaches the replay time (since we need to replay the
application from the beginning to start an epoch).

We address the first bottleneck by gathering data
about unique instructions executed during the first query
and improving the partitioning. Figure 2 shows the im-
pact of repartitioning for the second query. With this
optimization, JetStream scales the DIFT queries by 9–
26x, with a mean of 14x. Repartitioning improves per-
formance for all benchmarks except Gzip; in the case of
Gzip, the model generated with less-detailed statistics is
actually a better predictor of performance than the model
generated with more-detailed statistics.

We address the second bottleneck by taking inter-
mediate checkpoints during the first query. Figure 3
shows the scalability of the second query when using
both repartitioning and checkpointing. JetStream scales
the DIFT queries by 12–48x, with a mean of 21x. All
benchmarks continue to scale up to 128 cores, though the
pace of scaling diminishes with larger number of epochs.
At 128 cores, the Gzip and Mongodb queries execute

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d
 S

p
e
e

d
u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 3: Second Query Scalability - JetStream’s scalability
after improving partitioning and checkpointing

faster than their sequential replay times, and all bench-
marks except Ghostscript execute faster than the original
execution time of the application.

5.4 Analysis of first-query bottlenecks

Next, we examine results for individual benchmarks
in more detail and identify scalability bottlenecks. Fig-
ures 4 and 5 show stacked bar graphs for each benchmark
at 128 cores; results for the first query are in the left col-
umn, and results for the second query are in the right
column.

Each stacked bar in a graph shows the time spent in
different query stages for a single epoch; the epochs are
ordered left to right by the order of the time slices in
the application execution. The bottom region, labeled
fast forward, shows the time for application execution to
reach the start of the epoch. Instrumentation is the time
required for Pin to instrument instructions, and analysis
is the time to execute that instrumentation. The split be-
tween these two values is estimated by assuming that the
instrumentation cost is equal to the unique instructions
executed term from the model in Section 4.2 (which has
an R2 value of 0.989) as we cannot directly distinguish
these two values.

Pre-prune, forward pass, prune, and backward pass
show the time spent in each aggregation stage. The se-
quential constraints of the forward pass and backward
pass are shown by the gently sloping lines at the top of
each region: one epoch’s forward or backward pass can-
not complete until the prior epoch in that pass has com-
pleted. The total time to complete the query is given by
the height of the first stacked bar; the first epoch is the
last to complete aggregation because of the sequential
nature of the backward pass.

Outlier epochs caused by the result of poor partition-
ing can be detected by variance in the tops of the analy-
sis regions (the combination of the fast forward, instru-
mentation, and analysis phases). All of our benchmarks
except Gzip and Mongodb noticeably benefit from im-
proved partitioning. For example, comparing the first
and second queries of OpenOffice (Figures 5a and 5b)

460 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(a) Gzip first query

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(b) Gzip second query

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(c) Ghostscript second query

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(d) Ghostscript second query

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(e) Evince first query

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(f) Evince second query

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(g) Nginx first query

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(h) Nginx second query

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(i) Mongodb first query

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch
(j) Mongodb second query

Fast Forward
Instrumentation

Analysis
Pre-prune

Forward Pass
Prune

Backward Pass

Figure 4: Breakdown of query processing time for 128 cores. Each stacked bar shows one core processing an epoch. From
bottom to top, the shaded regions within each bar show the time spent fast forwarding, doing dynamic instrumentation, running
DIFT, pre-pruning, performing the forward pass, pruning the merge log and performing the backward pass.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 461

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(a) OpenOffice first query

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(b) OpenOffice second query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(c) Firefox first query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(d) Firefox second query
Fast Forward

Instrumentation
Analysis

Pre-prune
Forward Pass

Prune
Backward Pass

Figure 5: Breakdown of query processing time for 128 cores. Each stacked bar shows one core processing an epoch. From
bottom to top, the shaded regions within each bar show the time spent fast forwarding, doing dynamic instrumentation, running
DIFT analysis, pre-pruning, performing the forward pass, pruning the merge log and performing the backward pass.

shows the benefit of improving the partitioning between
the first and second queries. Reducing outliers leads to
substantially faster second query times for these bench-
marks.

The effects of checkpointing in JetStream can be seen
in all of our benchmarks. For example, comparing the
first and second queries of Gzip (Figures 4a and 4b)
shows the dramatic effect that checkpointing can have on
query latency. The primary reason that this benchmark
does not scale well for the first query is that the query
time approaches the replay time of the benchmark—this
is shown by fast forward being a large component of the
last epoch time for the first query. In contrast, the fast
forward times in the second query are much smaller.

5.5 Analysis of second-query bottlenecks

We next look at second query performance and bottle-
necks. Interestingly, the specific bottlenecks vary from
benchmark to benchmark.

For Evince (Figure 4f), OpenOffice (Figure 5b), and
Firefox (Figure 5d), Pin instrumentation time dominates
total query time. Pin instrumentation time also impacts
Ghostscript (Figure 4d) to a lesser degree. To explore
this issue in more detail, Figure 6 shows the speedup for
just instrumentation and analysis. All benchmarks scale
up to 128 cores, but not ideally.

There are two main factors that limit instrumentation
and analysis scalability: (1) JetStream must taint all local

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d

 S
p

e
e

d
u
p

Number of Epochs

Gzip
Ghostscript

Evince
Mongodb

Nginx
Openoffice

Firefox
ideal scaling

Figure 6: DIFT Scaling - Scalability of local DIFT (excluding
fast-forward time) for different numbers of cores normalized to
local DIFT (excluding fast-forward time) for one core.

sources at each epoch boundary, and (2) Pin instruments
an instruction in every epoch in which that instruction
occurs, so dividing the program into smaller epochs in-
creases the total instructions instrumented. We isolated
the cost of (1) by running a sequential query on one core
that retaints each address at epoch boundaries. This does
the exact same work as the parallel version, and it pro-
duces the same results; however, Pin instruments each in-
struction only once across all epochs. As Figure 7 shows,
the overhead added by tainting local sources is relatively
small (3–25% of the sequential DIFT query). When this
overhead is parallelized over 128 cores, it should have
little effect on query time. Additionally, our model from
Section 4.2 shows that unique instructions correlate very

462 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 20 40 60 80 100 120

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Number of Epochs

Gzip
Ghostscript
Evince
Mongodb
Nginx
OpenOffice
Firefox

Figure 7: Retainting Overhead - Overhead of tainting local
sources at the beginning of each epoch.

highly with instrumentation and analysis time.
Switching from a dynamic to static instrumentation

tool, using techniques that reduce the amount of dynamic
instrumentation [8], or employing a low-overhead binary
instrumentation platform (e.g., Protean code [13]) could
reduce instrumentation time. Alternatively, we could
take checkpoints that include already-instrumented code,
as is done by Speck [17].

Poor partitioning is a significant component of over-
all query time for Ghostscript (Figure 4d), Nginx (Fig-
ure 4h), and Mongodb (Figure 4j). There are two sepa-
rate reasons for poor partitioning in these benchmarks.

JetStream gathers statistics about query execution af-
ter each system call is executed. Ghostscript contains
long regions of computation without a system call. At
128 epochs, JetStream must split some of these regions
into multiple epochs. It divides these regions crudely
based on the number of entries in the replay log; this
crude metric often mispredicts the actual query execution
time for the split epochs. Gathering statistics at finer-
grained intervals would reduce outliers.

Outlier epochs in Nginx and Mongodb occur due to
variance in the amount of taint processing done in each
epoch. Outliers are correlated with large numbers of
tainted sources and/or sinks in the epoch. Currently,
our partitioning tool cannot determine which sources and
sinks will be tainted in advance, but JetStream could po-
tentially gather more statistics about sources and sinks
during the first query, which could help the partitioning
tool make such a determination for subsequent queries.

Aggregation plays a minor role in query time for most
benchmarks. The speed of the forward pass is seen in the
slope of the top of this region across epochs. Similarly,
the speed of the backward pass is given by the slope of
the top of that region. The total area for these two regions
is less relevant since the sequential constraints mean that
epochs will sometimes be idle waiting for data to arrive
from predecessor epochs. We see negligible forward pass
time across all benchmarks. Backward pass time is most
noticeable for Ghostscript (Figure 4d), Mongodb (Fig-

 0

 2

 4

 6

 8

 10

 12

G
zip

G
hostscript

Evince

M
ongodb

N
ginx

O
penO

ffice

Firefox

T
im

e
 (

s
)

Backwards Pass Only
+ Forward Pass
+ Pre-Prune

Figure 8: Optimization Effectiveness - Effect of aggregation
optimizations at 128 cores. Experiments that did not complete
are left blank.

ure 4j) and OpenOffice (Figure 5b), as shown by the no-
ticeable slope of the top region in each graph. Better
caching heuristics may improve the backward pass for
these benchmarks.

5.6 Optimizations

We next evaluate the costs and benefits of optimiza-
tions employed by JetStream. We first measure the ben-
efit of two aggregation optimizations: the forward pass
and pre-pruning. To isolate aggregation cost from out-
liers in the local DIFT stage, we let all epochs finish lo-
cal DIFT before beginning aggregation. This is the worst
case for aggregation costs since individual epochs cannot
pre-prune or construct the reverse index while waiting for
prior epochs to finish local DIFT.

Figure 8 shows the isolated cost of aggregation for
128 cores. If aggregation performs only the backward
pass (omitting the forward pass and pre-pruning), then
only Gzip and Nginx complete; aggregation runs out of
memory on all other benchmarks. For Gzip and Nginx,
adding the forward pass improves isolated aggregation
time by 98% and 71%, respectively.

The pre-prune optimization appears less effective. It
decreases isolated aggregation time for Firefox, OpenOf-
fice, and Ghostscript, but increases it slightly for Mon-
godb, Evince, and Gzip. We conclude that JetStream’s
policy of always pre-pruning is likely suboptimal; an
adaptive policy that only pre-prunes when spare CPU cy-
cles are available would be better.

We also measured the extra costs to optimize parti-
tioning. We measured the time to profile L1 instruction
cache misses for CPU-intensive benchmarks (Gzip and
Ghostscript); the average overhead was 3.1%. The aver-
age overhead imposed by taking checkpoints during the
first query was only 0.7% since each epoch takes at most
one checkpoint. Finally, the average overhead of tracing
unique instructions during the first query was 1.5%.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 463

6 Related work

JetStream is the first system to parallelize DIFT across
a cluster, and it is the first system to efficiently track
millions of global sources, global sinks, and dependen-
cies. Several prior systems have parallelized DIFT across
the cores of a single machine. To achieve cluster-level
scalability, JetStream’s main contribution is parallelizing
the aggregation of local DIFT data while minimizing the
communication between cores.

Like JetStream, Speck [17] partitions an execution
into epochs and performs local DIFT for each epoch.
Speck tracks only a single label (tainted or untainted).
Speck’s local DIFT produces a log of sub-commands,
which it then optimizes to achieve an up to 6x reduc-
tion in log size. Aggregation is done sequentially over
the optimized log. This limits the speedup achieved by
Speck to only 2x on a 8-core machine.

Ruwase et al. [20] partition an execution into epochs
and perform local DIFT on each core using custom hard-
ware [4]. JetStream’s merge log optimization is derived
from this work; thus, the local DIFT phases of the two
systems are similar. However, Ruwase et al. perform ag-
gregation sequentially, and this limits scalability. Like
Speck, their system tracks only a single label. Taint-
Pipe [15] partitions DIFT into epochs and tracks taint as
symbolic formulas inside each epoch. TaintPipe also per-
forms aggregation sequentially. It is unclear how sym-
bolic tracking can scale efficiently to millions of labels
and dependencies.

JetStream focuses on after-the-fact analysis, while
prior DIFT parallelization has focused on live analysis
during execution. Live analysis runs only a single pre-
defined query, but it is suitable for security use cases in
which sensitive actions such as sending network output
need to be blocked based on the DIFT results (Speck and
Ruwase et al. delay output to support this functional-
ity, while TaintPipe does not). In contrast, after-the-fact
analysis is suitable for tasks like forensics [12], debug-
ging [20], configuration troubleshooting [1, 2], analysis
of privacy leaks [7], and provenance [6]. No prior system
has parallelized after-the-fact DIFT.

Many systems have explored how to make DIFT it-
self faster. One promising idea is decoupled execution,
in which the DIFT work is split into an instrumenta-
tion thread and an analysis thread. ShadowReplica [8]
combines decoupled execution with static analysis to re-
duce the amount of instrumentation that Pin must per-
form. TaintPipe combines decoupled execution with an-
other form of static analysis: taint abstractions for com-
monly used function. libdft [10] provides several low-
level optimizations for accelerating Pin-based DIFT. Pro-
filing and/or static analysis can also reduce the cost of
dynamic instrumentation [3, 9, 18].

These ideas are orthogonal to the speedups that Jet-
Stream provides through parallelization. In fact, our
evaluation shows that Pin dynamic instrumentation is of-
ten the scalability bottleneck after JetStream paralleliza-
tion, so incorporating these optimizations into JetStream
is a very promising direction for future work.

7 Conclusion

JetStream enables interactive DIFT over past execu-
tions by parallelizing queries across a cluster. It uses
deterministic record and replay to divide an execution
into epochs and execute a local DIFT for each epoch on
a separate core. It aggregates results from local DIFTs
by arranging epochs in a sequential chain according to
the order of program execution and using a pipeline-like
stream processing algorithm to pass information about
global sources and sinks along the chain. For future
work, we plan to explore novel debugging and forensics
applications enabled by JetStream.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Shan Lu, for their thoughtful comments. We also thank
Mike Chow and Xianzheng Dou for their help under-
standing the Arnold code base. We thank the CloudLab
team which helped us deploy our system on their exper-
imental platform. This work has been supported by the
National Science Foundation under grants CNS-1513718
and CNS-1421441. Any opinions, findings, conclusions,
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References

[1] Mona Attariyan, Michael Chow, and Jason Flinn.
X-ray: Automating root-cause diagnosis of perfor-
mance anomalies in production software. In Pro-
ceedings of the 10th Symposium on Operating Sys-
tems Design and Implementation, Hollywood, CA,
October 2012.

[2] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation, Vancouver, BC, October 2010.

[3] Walter Chang, Brandon Streiff, and Calvin Lin. Ef-
ficient and extensible security enforcement using
dynamic data flow analysis. In Proceedings of the
15th ACM Conference on Computer and Commu-
nications Security (CCS), Alexandria, VA, October
2008.

464 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[4] Shimin Chen, Michael Kozuch, Theodoros
Strigkos, Babak Falsafi, Phillip B. Gibbons,
Todd C. Mowry, Vijaya Ramachandran, Olatunji
Ruwase, Mchiael Ryan, and Evangelos Vlachos.
Flexible hardware acceleration for instruction-
grain program monitoring. In Proceedings of
the 35th International Symposium on Computer
Architecture (ISCA), Beijing, China, June 2008.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with ycsb. In Pro-
ceedings of the 1st ACM symposium on Cloud com-
puting, pages 143–154, 2010.

[6] David Devecsery, Michael Chow, Xianzheng Dou,
Jason Flinn, and Peter M. Chen. Eidetic systems. In
Proceedings of the 11th Symposium on Operating
Systems Design and Implementation, Broomfield,
CO, October 2014.

[7] William Enck, Peter Gilbert, Byung gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N. Sheth. TaintDroid: An information-
flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation, Vancouver, BC, October 2010.

[8] Kangkook Jee, Vasileios P. Kermerlis, Angelos D.
Keromytis, and Georgios Portokalidis. Shad-
owReplica: Efficient parallelization of dynamic
data flow tracking. In Proceedings of the 20th ACM
Conference on Computer and Communications Se-
curity (CCS), Berlin, Germany, November 2013.

[9] Kangkook Jee, Georgios Portokalidis, Vasileios P.
Kermerlis, Soumyadeep Ghosh, David I. August,
and Angelos D. Keromyrtis. A general approach
for efficiently accelerating software-based dynamic
data flow tracking on commodity hardware. In Pro-
ceedings of the 19th Network and Distributed Sys-
tem Security Symposium, San Diego, CA, February
2012.

[10] Vasileios P. Kemerlis, Georgios Portokalidis,
Kangkook Jee, and Angelos D. Keromytis. Libdft:
Practical dynamic data flow tracking for commod-
ity systems. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, 2012.

[11] Taesoo Kim, Ramesh Chandra, and Nickolai Zel-
dovich. Efficient patch-based auditing for Web ap-
plication vulnerabilities. In Proceedings of the 10th
Symposium on Operating Systems Design and Im-
plementation, Hollywood, CA, October 2012.

[12] Samuel T. King and Peter M. Chen. Backtracking
intrusions. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles, pages 223–
236, Bolton Landing, NY, October 2003.

[13] Michael A Laurenzano, Yunqi Zhang, Lingjia
Tang, and Jason Mars. Protean code: Achiev-
ing near-free online code transformations for ware-
house scale computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 558–570, 2014.

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, pages 190–
200, Chicago, IL, June 2005.

[15] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang,
and Peng Liu. TaintPipe: Pipelined symbolic taint
analysis. In Proceedings of the 24th Usenix Secu-
rity Symposium, Washington, D.C., August 2015.

[16] James Newsome and Dawn Song. Dynamic taint
analysis: Automatic detection, analysis, and sig-
nature generation of exploit attacks on commodity
software. In Proceedings of the 12th Annual Net-
work and Distributed System Security Symposium,
February 2005.

[17] Edmund B. Nightingale, Daniel Peek, Peter M.
Chen, and Jason Flinn. Parallelizing security
checks on commodity hardware. In Proceedings of
the 13th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, pages 308–318, Seattle, WA, March
2008.

[18] Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim,
Yuanyuan Zhou, and Youfeng Wu. Lift: A low-
overhead practical information flow tracking sys-
tem for detecting general security attacks. In The
39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’06), Orlando, FL,
2006.

[19] Robert Ricci, Eric Eide, and The CloudLab Team.
Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), December 2014.

[20] Olatunji Ruwase, Phillip B. Gibbons, Todd C.
Mowry, Vijaya Ramachandran, Shimin Chen,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 465

Michael Kozuch, and Michael Ryan. Paralleliz-
ing dynamic information flow tracking. In Sym-
posium on Parallelism in Algorithms and Architec-
tures (SPAA), June 2008.

[21] Benjamin Wester, David Devescery, Peter M.
Chen Jason Flinn, and Satish Narayanasamy. Par-
allelizing data race detection. In Proceedings of
the 18th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, Houston, TX, March 2013.

466 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Just Say NO to Paxos Overhead:
Replacing Consensus with Network Ordering

Jialin Li Ellis Michael Naveen Kr. Sharma Adriana Szekeres Dan R. K. Ports
University of Washington

{lijl, emichael, naveenks, aaasz, drkp}@cs.washington.edu

Abstract

Distributed applications use replication, implemented by
protocols like Paxos, to ensure data availability and trans-
parently mask server failures. This paper presents a new
approach to achieving replication in the data center with-
out the performance cost of traditional methods. Our work
carefully divides replication responsibility between the
network and protocol layers. The network orders requests
but does not ensure reliable delivery – using a new primi-
tive we call ordered unreliable multicast (OUM). Imple-
menting this primitive can be achieved with near-zero-cost
in the data center. Our new replication protocol, Network-
Ordered Paxos (NOPaxos), exploits network ordering to
provide strongly consistent replication without coordi-
nation. The resulting system not only outperforms both
latency- and throughput-optimized protocols on their re-
spective metrics, but also yields throughput within 2%
and latency within 16 µs of an unreplicated system – pro-
viding replication without the performance cost.

1 Introduction
Server failures are a fact of life for data center applica-
tions. To guarantee that critical services always remain
available, today’s applications rely on fault-tolerance tech-
niques like state machine replication. These systems use
application-level consensus protocols such as Paxos to
ensure the consistency of replicas’ states. Unfortunately,
these protocols require expensive coordination on every
request, imposing a substantial latency penalty and limit-
ing system scalability. This paper demonstrates that repli-
cation in the data center need not impose such a cost by
introducing a new replication protocol with performance
within 2% of an unreplicated system.

It is well known that the communication model funda-
mentally affects the difficulty of consensus. Completely
asynchronous and unordered networks require the full
complexity of Paxos; if a network could provide a totally
ordered atomic broadcast primitive, ensuring replica con-
sistency would become a trivial matter. Yet this idea has
yielded few gains in practice since traditional ordered-
multicast systems are themselves equivalent to consensus;
they simply move the same coordination expense to a
different layer.

We show that a new division of responsibility between

the network and the application can eliminate nearly all
replication overhead. Our key insight is that the commu-
nication layer should provide a new ordered unreliable
multicast (OUM) primitive – where all receivers are guar-
anteed to process multicast messages in the same order,
but messages may be lost. This model is weak enough to
be implemented efficiently, yet strong enough to dramati-
cally reduce the costs of a replication protocol.

The ordered unreliable multicast model enables our
new replication protocol, Network-Ordered Paxos. In nor-
mal cases, NOPaxos avoids coordination entirely by re-
lying on the network to deliver messages in the same
order. It requires application-level coordination only to
handle dropped packets, a fundamentally simpler prob-
lem than ordering requests. The resulting protocol is sim-
ple, achieves near-optimal throughput and latency, and
remains robust to network-level failures.

We describe several ways to build the OUM communi-
cations layer, all of which offer net performance benefits
when combined with NOPaxos. In particular, we achieve
an essentially zero-overhead implementation by relying
on the network fabric itself to sequence requests, using
software-defined networking technologies and the ad-
vanced packet processing capabilities of next-generation
data center network hardware [10, 49, 59]. We achieve
similar throughput benefits (albeit with a smaller latency
improvement) using an endpoint-based implementation
that requires no specialized hardware or network design.

By relying on the OUM primitive, NOPaxos avoids
all coordination except in rare cases, eliminating nearly
all the performance overhead of traditional replication
protocols. It provides throughput within 2% and latency
within 16 µs of an unreplicated system, demonstrating
that there need not be a tradeoff between enforcing strong
consistency and providing maximum performance.

This paper makes four specific contributions:

1. We define the ordered unreliable multicast model for
data center networks and argue that it strikes an ef-
fective balance between providing semantics strong
enough to be useful to application-level protocols yet
weak enough to be implemented efficiently.

2. We demonstrate how to implement this network model
in the data center by presenting three implementations:

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 467

(1) an implementation in P4 [9] for programmable
switches, (2) a middlebox-style prototype using a Cav-
ium Octeon network processor, and (3) a software-
based implementation that requires no specialized
hardware but imposes slightly higher latency.

3. We introduce NOPaxos, an algorithm which provides
state machine replication on an ordered, unreliable net-
work. Because NOPaxos relies on the OUM primitive,
it avoids the need to coordinate on every incoming re-
quest to ensure a total ordering of requests. Instead, it
uses application-level coordination only when requests
are lost in the network or after certain failures of server
or network components.

4. We evaluate NOPaxos on a testbed using our Open-
Flow/Cavium prototype and demonstrate that it outper-
forms classic leader-based Paxos by 54% in latency
and 4.7× in throughput. It simultaneously provides
42% better latency and 24% better throughput than
latency- and throughput-optimized protocols respec-
tively, circumventing a classic tradeoff.

2 Separating Ordering from Reliable De-
livery in State Machine Replication

We consider the problem of state machine replication [56].
Replication, used throughout data center applications,
keeps key services consistent and available despite the in-
evitability of failures. For example, Google’s Chubby [11]
and Apache ZooKeeper [24] use replication to build a
highly available lock service that is widely used to coor-
dinate access to shared resources and configuration infor-
mation. It is also used in many storage services to prevent
system outages or data loss [8, 16, 54].

Correctness for state machine replication requires a sys-
tem to behave as a linearizable [23] entity. Assuming that
the application code at the replicas is deterministic, estab-
lishing a single totally ordered set of operations ensures
that all replicas remain in a consistent state. We divide
this into two separate properties:

1. Ordering: If some replica processes request a before
b, no replica processes b before a.

2. Reliable Delivery: Every request submitted by a client
is either processed by all replicas or none.

Our research examines the question: Can the respon-
sibility for either of these properties be moved from the
application layer into the network?

State of the art. Traditional state machine replica-
tion uses consensus protocol – e.g., Paxos [33, 34] or
Viewstamped Replication [42, 48] – to achieve agree-
ment on operation order. Most deployments of Paxos-
based replicated systems use the Multi-Paxos optimiza-
tion [34] (equivalent to Viewstamped Replication), where

one replica is the designated leader and assigns an order
to requests. Its normal operation proceeds in four phases:
clients submit requests to the leader; the leader assigns a
sequence number and notifies the other replicas; a major-
ity of other replicas acknowledge; and the leader executes
the request and notifies the client.

These protocols are designed for an asynchronous net-
work, where there are no guarantees that packets will be
received in a timely manner, in any particular order, or
even delivered at all. As a result, the application-level
protocol assumes responsibility for both ordering and
reliability.

The case for ordering without reliable delivery. If
the network itself provided stronger guarantees, the full
complexity of Paxos-style replication would be unneces-
sary. At one extreme, an atomic broadcast primitive (i.e., a
virtually synchronous model) [6, 27] ensures both reliable
delivery and consistent ordering, which makes replication
trivial. Unfortunately, implementing atomic broadcast is a
problem equivalent to consensus [14] and incurs the same
costs, merely in a different layer.

This paper envisions a middle ground: an ordered but
unreliable network. We show that a new division of re-
sponsibility – providing ordering in the network layer but
leaving reliability to the replication protocol – leads to
a more efficient whole. What makes this possible is that
an ordered unreliable multicast primitive can be imple-
mented efficiently and easily in the network, yet funda-
mentally simplifies the task of the replication layer.

We note that achieving reliable delivery despite the
range of possible failures is a formidable task, and the
end-to-end principle suggests that it is best left to the appli-
cation [15, 55]. However, ordering without a guarantee of
reliability permits a straightforward, efficient implemen-
tation: assigning sequence numbers to messages and then
discarding those that arrive out of sequence number order.
We show in §3 that this approach can be implemented at
almost no cost in data center network hardware.

At the same time, providing an ordering guarantee sim-
plifies the replication layer dramatically. Rather than agree
on which request should be executed next, it needs to en-
sure only all-or-nothing delivery of each message. We
show that this enables a simpler replication protocol that
can execute operations without inter-replica coordination
in the common case when messages are not lost, yet can
recover quickly from lost messages.

Prior work has considered an asynchronous network
that provides ordering and reliability in the common case
but does not guarantee either. Fast Paxos [36] and related
systems [29, 45, 50] provide agreement in one fewer mes-
sage delay when requests usually arrive at replicas in the
same order, but they require more replicas and/or larger
quorum sizes. Speculative Paxos [53] takes this further by
having replicas speculatively execute operations without

468 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Paxos [33, 34, 48] Fast Paxos [36] Paxos+batching Speculative Paxos [53] NOPaxos

Network ordering No Best-effort No Best-effort Yes
Latency 4 3 4+ 2 2

Messages at bottleneck 2n 2n 2+ 2n
b 2 2

Quorum size > n/2 > 2n/3 > n/2 > 3n/4 > n/2

Reordering/Dropped packet penalty low medium low high low

Table 1: Comparison of NOPaxos to prior systems.

coordination, eliminating another message delay and a
throughput bottleneck at the cost of significantly reduced
performance (including application-level rollback) when
the network violates its best-effort ordering property. Our
approach avoids these problems by strengthening network
semantics. Table 1 summarizes the properties of these
protocols.

3 Ordered Unreliable Multicast
We have argued for a separation of concerns between or-
dering and reliable delivery. Towards this end, we seek to
design an ordered but unreliable network. In this section,
we precisely define the properties that this network pro-
vides, and show how it can be realized efficiently using
in-network processing.

We are not the first to argue for a network with ordered
delivery semantics. Prior work has observed that some
networks often deliver requests to replicas in the same
order [50,58], that data center networks can be engineered
to support a multicast primitive that has this property [53],
and that it is possible to use this fact to design protocols
that are more efficient in the common case [29, 36, 53].
We contribute by demonstrating that it is possible to build
a network with ordering guarantees rather than proba-
bilistic or best-effort properties. As we show in §5, doing
so can support simpler and more efficient protocols.

Figure 1 shows the architecture of an OUM/NOPaxos
deployment. All components reside in a single data cen-
ter. OUM is implemented by components in the net-
work along with a library, libOUM, that runs on senders
and receivers. NOPaxos is a replication system that uses
libOUM; clients use libOUM to send messages, and repli-
cas use libOUM to receive clients’ messages.

3.1 Ordered Unreliable Multicast Properties

We begin by describing the basic primitive provided by
our networking layer: ordered unreliable multicast. More
specifically, our model is an asynchronous, unreliable
network that supports ordered multicast with multicast
drop detection. These properties are defined as follows:

• Asynchrony: There is no bound on the latency of mes-
sage delivery.

• Unreliability: The network does not guarantee that
any message will ever be delivered to any recipient.

networksequencercontroller

Client App
libnopaxos

libOUM

Client App
libnopaxos

libOUM libnopaxoslibnopaxos
Replica App
libnopaxos

libOUM
. . .

Figure 1: Architecture of NOPaxos.

• Ordered Multicast: The network supports a multicast
operation such that if two messages, m and m′, are
multicast to a set of processes, R, then all processes
in R that receive m and m′ receive them in the same
order.

• Multicast Drop Detection: If some message, m, is
multicast to some set of processes, R, then either: (1)
every process in R receives m or a notification that
there was a dropped message before receiving the
next multicast, or (2) no process in R receives m or
a dropped message notification for m.1

The asynchrony and unreliability properties are stan-
dard in network design. Ordered multicast is not: exist-
ing multicast mechanisms do not exhibit this property,
although Mostly-Ordered Multicast provides it on a best-
effort basis [53]. Importantly, our model requires that any
pair of multicast messages successfully sent to the same
group are always delivered in the same order to all re-
ceivers – unless one of the messages is not received. In
this case, however, the receiver is notified.

3.2 OUM Sessions and the libOUM API

Our OUM primitive is implemented using a combination
of a network-layer sequencer and a communication library
called libOUM. libOUM’s API is a refinement of the
OUM model described above. An OUM group is a set of
receivers and is identified by an IP address. We explain
group membership changes in §5.2.5.

libOUM introduces an additional concept, sessions.
For each OUM group, there are one or more sessions,
which are intervals during which the OUM guarantees

1 This second case can be thought of as a sender omission, whereas
the first case can be thought of as a receiver omission, with the added
drop notification guarantee.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 469

libOUM Sender Interface
• send(addr destination, byte[] message) — send a mes-

sage to the given OUM group

libOUM Receiver Interface
• getMessage() — returns the next message, a DROP-

NOTIFICATION, or a SESSION-TERMINATED error
• listen(int sessionNum, int messageNum) — resets

libOUM to begin listening in OUM session sessionNum for
message messageNum

Figure 2: The libOUM interface.

hold. Conceptually, the stream of messages being sent
to a particular group is divided into consecutive OUM
sessions. From the beginning of an OUM session to the
time it terminates, all OUM guarantees apply. However,
OUM sessions are not guaranteed to terminate at the same
point in the message stream for each multicast receiver:
an arbitrary number of messages at the end of an OUM
session could be dropped without notification, and this
number might differ for each multicast receiver. Thus,
each multicast recipient receives a prefix of the messages
assigned to each OUM session, where some messages are
replaced with drop notifications.

Sessions are generally long-lived. However, rare, excep-
tional network events (sequencer failures) can terminate
them. In this case, the application is notified of session
termination and then must ensure that it is in a consistent
state with the other receivers before listening for the next
session. In this respect, OUM sessions resemble TCP con-
nections: they guarantee ordering within their lifetime,
but failures may cause them to end.

Applications access OUM sessions via the libOUM
interface (Figure 2). The receiver interface provides a
getMessage() function, which returns either a message
or a DROP-NOTIFICATION during an OUM session. When
an OUM session terminates, getMessage() returns a
special value, SESSION-TERMINATED, until the user of
libOUM starts the next OUM session. To begin listen-
ing to the next OUM session and receiving its messages
and DROP-NOTIFICATIONs, the receiver calls listen(int
newSessionNum, 0). To start an OUM session at a par-
ticular position in the message stream, the receiver can
call listen(int sessionNum, int messageNum). Users
of libOUM must ensure that all OUM receivers begin lis-
tening to the new session in a consistent state.

4 OUM Design and Implementation
We implement OUM in the context of a single data center
network. The basic design is straightforward: the net-
work routes all packets destined for a given OUM group
through a single sequencer, a low-latency device that
serves one purpose: to add a sequence number to each
packet before forwarding it to its destination. Since all
packets have been marked with a sequence number, the

libOUM library can ensure ordering by discarding mes-
sages that are received out of order and detect and report
dropped messages by noticing gaps in the sequence num-
ber.

Achieving this design poses three challenges. First, the
network must serialize all requests through the sequencer;
we use software-defined networking (SDN) to provide this
network serialization (§4.1). Second, we must implement
a sequencer capable of high throughput and low latency.
We present three such implementations in §4.2: a zero-
additional-latency implementation for programmable data
center switches, a middlebox-like prototype using a net-
work processor, and a pure-software implementation. Fi-
nally, the system must remain robust to failures of network
components, including the sequencer (§4.3).

4.1 Network Serialization

The first aspect of our design is network serialization,
where all OUM packets for a particular group are routed
through a sequencer on the common path. Network seri-
alization was previously used to implement a best-effort
multicast [53]; we adapt that design here.

Our design targets a data center that uses software-
defined networking, as is common today. Data center
networks are engineered networks constructed with a par-
ticular topology – generally some variant of a multi-rooted
tree. A traditional design calls for a three-level tree topol-
ogy where many top-of-rack switches, each connecting
to a few dozen server, are interconnected via aggregation
switches that themselves connect through core switches.
More sophisticated topologies, such as fat-tree or Clos
networks [1,22,43,46] extend this basic design to support
large numbers of physical machines using many commod-
ity switches and often provide full bisection bandwidth.
Figure 3 shows the testbed we use, implementing a fat-
tree network [1].

Software-defined networking additionally allows the
data center network to be managed by a central controller.
This controller can install custom forwarding, filtering,
and rewriting rules in switches. The current generation of
SDN switches, e.g., OpenFlow [44], allow these rules to
be installed at a per-flow granularity, matching on a fixed
set of packet headers.

To implement network serialization, we assign each
OUM group a distinct address in the data center network
that senders can use to address messages to the group. The
SDN controller installs forwarding rules for this address
that route messages through the sequencer, then to group
members.

To do this, the controller must select a sequencer for
each group. In the most efficient design, switches them-
selves are used as sequencers (§4.2.1). In this case, the
controller selects a switch that is a common ancestor of all
destination nodes in the tree hierarchy to avoid increasing

470 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

path lengths, e.g., a root switch or an aggregation switch
if all receivers are in the same subtree. For load balancing,
different OUM groups are assigned different sequencers,
e.g., using hash-based partitioning.

Figure 3 shows an example of network serialization for-
warding paths in a 12-switch, 3-level fat tree network. Se-
quencers are implemented as network processors (§4.2.2)
connected to root switches. Messages from a client ma-
chine are first forwarded upward to the designated se-
quencer – here, attached to the leftmost root switch – then
distributed downward to all recipients.

Network serialization could create longer paths than
traditional IP multicast because all traffic must be routed
to the sequencer, but this effect is minimal in practice. We
quantified this latency penalty using packet-level network
simulation. The simulated network contained 2,560 end-
hosts and 119 switches configured in a 3-level fat tree
network, with background traffic modeled on Microsoft
data centers [4]. Each client sent multicast messages to
a random group of 5 receivers. In 88% of cases, net-
work serialization added no additional latency for the
message to be received by a quorum of 3 receivers; the
99th-percentile was less than 5 µs of added latency. This
minimal increase in latency is due to the fact that the se-
quencer is a least- common-ancestor switch of the replica
group, and most packets have to traverse that switch any-
way to reach a majority of the group.

4.2 Implementing the Sequencer

The sequencer plays a simple but critical role: assigning a
sequence number to each message destined for a particular
OUM group, and writing that sequence number into the
packet header. This establishes a total order over packets
and is the key element that elevates our design from a
best-effort ordering property to an ordering guarantee.
Even if packets are dropped (e.g., due to congestion or
link failures) or reordered (e.g., due to multipath effects)
in the network, receivers can use the sequence numbers
to ensure that they process packets in order and deliver
drop notifications for missing packets.

Sequencers maintain one counter per OUM group. For
every packet destined for that group, they increment the
counter and write it into a designated field in the packet
header. The counter must be incremented by 1 on each
packet (as opposed to a timestamp, which monotonically
increases but may have gaps). This counter lets libOUM
return DROP-NOTIFICATIONs when it notices gaps in the
sequence numbers of incoming messages. Sequencers
also maintain and write into each packet the OUM ses-
sion number that is used to handle sequencer failures; we
describe its use in §4.3.

Our sequencer design is general; we discuss three pos-
sible implementations here. The most efficient one targets
upcoming programmable network switches, using the

Root Layer
(Arista 7150S)

Aggr. Layer
(HP 6600)

ToR Layer
(HP 6600)

10 Gbps

1 Gbps

1 Gbps

Cavium
Processor

Figure 3: Testbed network topology. Green lines indicate the
upward path from a client to the sequencer, and orange lines
indicate the downward path from the sequencer to receivers.

switch itself as the sequencer, incurring no latency cost
(§4.2.1). As this hardware is not yet available, we describe
a prototype that uses a network processor to implement
a middlebox-like sequencer (§4.2.2). Finally, we discuss
using an end-host as a sequencer (§4.2.3).

4.2.1 In-Switch Sequencing

Ideally, switches themselves could serve as sequencers.
The benefit of doing so is latency: packets could be se-
quenced by one of the switches through which they al-
ready transit, rather than having to be redirected to a
dedicated device. Moreover, switching hardware is highly
optimized for low-latency packet processing, unlike end-
hosts.

Using a switch as a sequencer is made possible by the
increasing ability of data center switches to perform flexi-
ble, per-packet computations. An emerging class of switch
architectures – such as Reconfigurable Match Tables [10],
Intel’s FlexPipe [49], and Cavium’s XPliant [59] – allow
the switch’s behavior to be controlled on a per-packet
granularity, supporting the parsing and matching of ar-
bitrary packet fields, rewriting of packet contents, and
maintaining of small amounts of state between packets.
Exposed through high-level languages like P4 [9], this
increased flexibility lets us consider network switches
as not simply forwarding elements, but as devices with
computational ability.

We implemented our switch sequencing functionality
in the P4 language, which allows it to be compiled and
deployed to upcoming programmable switches as well as
software switches. Our implementation uses the recon-
figurable parser capabilities of these switches to define a
custom packet header that includes the OUM sequence
and session numbers. It uses stateful memory (register
arrays) to store the current sequence number for every
OUM group and increments it on each packet. Complete
NOPaxos P4 code is available in [39].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 471

Programmable switches capable of this processing are
not yet commercially available, although we expect them
to be within the next year. Therefore, we cannot evaluate
their performance, but there is reason to believe they can
execute this processing with no measurable increase in la-
tency. As evidence, Intel’s FlexPipe chips (now available,
e.g., in the Arista 7150 switch) can modify packets to in-
clude the egress timestamp with zero latency cost [2, 49].

We note that a network switch provides orders-of-
magnitude lower latency and greater reliability [21] than
an end-host. Today’s fastest cut-through switches can con-
sistently process packets in approximately 300 ns [2],
while a typical Linux server has median latency in the 10–
100 µs range and 99.9th-percentile latency over 5 ms [40].
This trend seems unlikely to change: even with high-
performance server operating systems [3,52], NIC latency
remains an important factor [20]. At the same time, the
limited computational model of the switch requires a care-
ful partitioning of functionality between the network and
application. The OUM model offers such a design.

4.2.2 Hardware Middlebox Prototype Sequencing

Because available switches do not provide the necessary
flexibility to run P4 programs, we implemented a proto-
type using existing OpenFlow switches and a network
processor.

This prototype is part of the testbed that we use to eval-
uate our OUM model and its uses for distributed protocols.
This testbed simulates the 12-switch, 3-layer fat-tree net-
work configuration depicted in Figure 3. We implemented
it on three physical switches by using VLANs and ap-
propriate OpenFlow forwarding rules to emulate separate
virtual switches: two HP 6600 switches implement the
ToR and aggregation tiers, and one Arista 7050S switch
implements the core tier.

We implemented the sequencer as a form of middlebox
using a Cavium Octeon II CN68XX network processor.
This device contains 32 MIPS64 cores and supports 10
Gb/s Ethernet I/O. Users can customize network func-
tionality by loading C binaries that match, route, drop
or modify packets going through the processor. Onboard
DRAM maintains per-group state. We attached the mid-
dlebox to the root switches and installed OpenFlow rules
to redirect OUM packets to the middlebox.

This implementation does not provide latency as low
as the switch-based sequencer; routing traffic through
the network processor adds latency. We measured this
latency to be 8 µs in the median case and 16 µs in the
99th percentile. This remains considerably lower than
implementing packet processing in an end-host.

4.2.3 End-host Sequencing

Finally, we also implemented the sequencing function-
ality on a conventional server. While this incurs higher

latency, it allows the OUM abstraction to be implemented
without any specialized hardware. Nevertheless, using a
dedicated host for network-level sequencing can still pro-
vide throughput, if not latency, benefits as we demonstrate
in §6. We implemented a simple Linux program that uses
raw sockets to access packet headers.

4.2.4 Sequencer Scalability

Since all OUM packets for a particular group go through
the sequencer, a valid concern is whether the sequencer
will become the performance bottleneck. Switches and
network processors are designed to process packets at line
rate and thus will not become the bottleneck for a single
OUM group (group receivers are already limited by the
link bandwidth). Previous work [28] has demonstrated
that an end-host sequencer using RDMA can process
close to 100 million requests per second, many more
than any single OUM group can process. We note that
different OUM groups need not share a sequencer, and
therefore deployment of multiple OUM groups can scale
horizontally.

4.3 Fault Tolerance

Designating a sequencer and placing it on the common
path for all messages to a particular group introduces an
obvious challenge: what if it fails or becomes unreach-
able? If link failures or failures of other switches render
the sequencer unreachable, local rerouting mechanisms
may be able to identify an alternate path [43]. However, if
the sequencer itself fails, or local rerouting is not possible,
replacing the sequencer becomes necessary.

In our design, the network controller monitors the se-
quencer’s availability. If it fails or no longer has a path
to all OUM group members, the controller selects a dif-
ferent switch. It reconfigures the network to use this new
sequencer by updating routes in other switches. During
the reconfiguration period, multicast messages may not
be delivered. However, failures of root switches happen
infrequently [21], and rerouting can be completed within
a few milliseconds [43], so this should not significantly
affect system availability.

We must also ensure that the ordering guarantee of
multicast messages is robust to sequencer failures. This
requires the continuous, ordered assignment of sequence
numbers even when the network controller fails over to a
new sequencer.

To address this, we introduce a unique, monotonically
increasing session number, incremented each time se-
quencer failover occurs. When the controller detects a
sequencer failure, it updates the forwarding rules and
contacts the new sequencer to set its local session num-
ber to the appropriate value. As a result, the total or-
der of messages follows the lexicographical order of the
〈session-number, sequence-number〉 tuple, and clients

472 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

can still discard packets received out of order.
Once libOUM receives a message with a session num-

ber higher than the receiver is listening for, it realizes that
a new sequencer is active and stops delivering messages
from the old session. However, libOUM does not know if
it missed any packets from the old sequencer. As a result,
it cannot deliver DROP-NOTIFICATIONs during a session
change. Instead, it delivers a SESSION-TERMINATED no-
tification, exposing this uncertainty to the application.
NOPaxos, for example, resolves this by executing a view
change (§5.2.3) so that replicas agree on exactly which
requests were received in the old session.

The network controller must ensure that session num-
bers for any given group monotonically increase, even
across controller failures. Many design options are avail-
able, for example using timestamps as session numbers, or
recording session numbers in stable or replicated storage.
Our implementation uses a Paxos-replicated controller
group, since SDN controller replication is already com-
mon in practice [26, 31]. We note that our replication
protocol, NOPaxos (§5), is completely decoupled from
controller replication, and the controller updates only on
sequencer failures, not for every NOPaxos request.

5 NOPaxos
NOPaxos, or Network-Ordered Paxos, is a new replication
protocol which leverages the Ordered Unreliable Multi-
cast sessions provided by the network layer.

5.1 Model

NOPaxos replicas communicate over an asynchronous
network that provides OUM sessions (via libOUM).
NOPaxos requires the network to provide ordered but
unreliable delivery of multicast messages within a ses-
sion. In the normal case, these messages are deliv-
ered sequentially and are not dropped; however, it re-
mains robust to dropped packets (presented as DROP-
NOTIFICATION through libOUM). NOPaxos is also robust
to SESSION-TERMINATED notifications that occur if the
sequencer fails. These network anomalies do not affect
NOPaxos’s safety guarantees, and we discuss how they
affect NOPaxos’s performance in §6.

NOPaxos assumes a crash failure model. It uses 2 f +1
replicas, where f replicas are allowed to fail. However, in
the presence of more than f failures, the system still guar-
antees safety. Furthermore, NOPaxos guarantees safety
even in an asynchronous network with no bound on mes-
sage latency (provided the OUM guarantees continue to
hold).

NOPaxos provides linearizability of client requests. It
provides at-most-once semantics using the standard mech-
anism of maintaining a table of the most recent request
from each client [42].

5.2 Protocol

Overview. NOPaxos is built on top of the guarantees
of the OUM network primitive. During a single OUM
session, REQUESTs broadcast to the replicas are totally
ordered but can be dropped. As a result, the replicas have
to agree only on which REQUESTs to execute and which
to permanently ignore, a simpler task than agreeing on
the order of requests. Conceptually, this is equivalent to
running multiple rounds of binary consensus. However,
NOPaxos must explicitly run this consensus only when
DROP-NOTIFICATIONs are received. To switch OUM ses-
sions (in the case of sequencer failure), the replicas must
agree on the contents of their shared log before they start
listening to the new session.

To these ends, NOPaxos uses a view-based approach:
each view has a single OUM session-num and a single
replica acting as leader. The leader executes requests and
drives the agreement to skip a dropped request. That is,
it decides which of the sequencer’s REQUESTs to ignore
and treat as NO-OPs. The view ID is a tuple 〈leader-num,
session-num〉. Here, leader-num is incremented each time
a new leader is needed; the current leader of any view is
leader-num (mod n); and session-num is the latest ses-
sion ID from libOUM. View IDs in NOPaxos are partially
ordered.2 However, the IDs of all views that successfully
start will be comparable.

In the normal case, the replicas receive a REQUEST
from libOUM. The replicas then reply to the client, the
leader replying with the result of the REQUEST, so the
client’s REQUEST is processed in only a single round-trip.
NOPaxos uses a single round-trip in the normal case be-
cause, like many speculative protocols, the client checks
the durability of requests. However, unlike most specula-
tive protocols, NOPaxos clients have a guarantee regard-
ing ordering of operations; they need only check that the
operation was received.

When replicas receive a DROP-NOTIFICATION from
libOUM, they first try to recover the missing REQUEST
from each other. Failing that, the leader initiates a round of
agreement to commit a NO-OP into the corresponding slot
in the log. Finally, NOPaxos uses a view change protocol
to handle leader failures and OUM session termination
while maintaining consistency.

Outline. NOPaxos consists of four subprotocols:

• Normal Operations (§5.2.1): NOPaxos processes
client REQUESTs in a single round-trip in the normal
case.

• Gap Agreement (§5.2.2): NOPaxos ensures correctness
in the face of DROP-NOTIFICATIONs by having the

2 That is, v1 ≤ v2 iff both v1’s leader-num and session-num are less
than or equal to v2’s.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 473

Replica:
• replica-num — replica number
• status — one of Normal or ViewChange
• view-id = 〈leader-num, session-num〉— the view number, a

tuple of the current leader number and OUM session number,
partially ordered, initially 〈0, 0〉

• session-msg-num — the number of messages (REQUESTs or
DROP-NOTIFICATIONs) received in this OUM session

• log — client REQUESTs and NO-OPs in sequential order
• sync-point — the latest synchronization point

Figure 4: Local state of NOPaxos replicas.

replicas reach agreement on which sequence numbers
should be permanently dropped.

• View Change (§5.2.3): NOPaxos ensures correctness in
the face of leader failures or OUM session termination
using a variation of a standard view change protocol.

• Synchronization (§5.2.4): Periodically, the leader syn-
chronizes the logs of all replicas.

Figure 4 illustrates the state maintained at each
NOPaxos replica. Replicas tag all messages sent to each
other with their current view-id, and while in the Nor-
mal Operations, Gap Agreement, and Synchronization
subprotocols, replicas ignore all messages from different
views. Only in the View Change protocol do replicas with
different view-ids communicate.

5.2.1 Normal Operations

In the normal case when replicas receive REQUESTs in-
stead of DROP-NOTIFICATIONs, client requests are com-
mitted and executed in a single phase. Clients broad-
cast 〈REQUEST, op, request-id〉 to all replicas through
libOUM, where op is the operation they want to execute,
and request-id is a unique id used to match requests and
their responses.

When each replica receives the client’s REQUEST, it
increments session-msg-num and appends op to the log. If
the replica is the leader of the current view, it executes the
op (or looks up the previous result if it is a duplicate of a
completed request). Each replica then replies to the client
with 〈REPLY, view-id, log-slot-num, request-id, result〉,
where log-slot-num is the index of op in the log. If the
replica is the leader, it includes the result of the operation;
NULL otherwise.

The client waits for REPLYs to the REQUEST with
matching view-ids and log-slot-nums from f + 1 repli-
cas, where one of those replicas is the leader of the view.
This indicates that the request will remain persistent even
across view changes. If the client does not receive the
required REPLYs within a timeout, it retries the request.

5.2.2 Gap Agreement

NOPaxos replicas always process operations in order.
When a replica receives a DROP-NOTIFICATION from
libOUM (and increments its session-msg-num), it must
either recover the contents of the missing request or pre-
vent it from succeeding before moving on to subsequent
requests. Non-leader replicas do this by contacting the
leader for a copy of the request. If the leader itself re-
ceives a DROP-NOTIFICATION, it coordinates to commit
a NO-OP operation in place of that request:

1. If the leader receives a DROP-NOTIFICATION, it in-
serts a NO-OP into its log and sends a 〈GAP-COMMIT,
log-slot〉 to the other replicas, where log-slot is the slot
into which the NO-OP was inserted.

2. When a non-leader replica receives the GAP-COMMIT
and has filled all log slots up to the one specified by the
leader, it inserts a NO-OP into its log at the specified lo-
cation3 (possibly overwriting a REQUEST) and replies
to the leader with a 〈GAP-COMMIT-REP, log-slot〉.

3. The leader waits for f GAP-COMMIT-REPs (retrying if
necessary).

Clients need not be notified explicitly when a NO-OP
has been committed in place of one of their requests.
They simply retry their request after failing to receive a
quorum of responses. Note that the retried operation will
be considered a new request and will have a new slot in the
replicas’ logs. Replicas identify duplicate client requests
by checking if they have processed another request with
the same client-id and request-id, as is commonly done
in other protocols.

This protocol ensures correctness because clients do
not consider an operation completed until they receive
a response from the leader, so the leader can propose a
NO-OP regardless of whether the other replicas received
the REQUEST. However, before proceeding to the next
sequence number, the leader must ensure that a majority
of replicas have learned of its decision to commit a NO-
OP. When combined with the view change protocol, this
ensures that the decision persists even if the leader fails.

As an optimization, the leader can first try to contact
the other replicas to obtain a copy of the REQUEST and ini-
tiate the gap commit protocol only if no replicas respond
before a timeout. While not necessary for correctness, this
reduces the number of NO-OPs.

3 If the replica had not already filled log-slot in its log or received a
DROP-NOTIFICATION for that slot when it inserted the NO-OP, it ignores
the next REQUEST or DROP-NOTIFICATION from libOUM (and incre-
ments session-msg-num), maintaining consistency between its position
in the OUM session and its log.

474 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2.3 View Change

During each view, a NOPaxos group has a particular
leader and OUM session number. NOPaxos must perform
view changes to ensure progress in two cases: (1) when
the leader is suspected of having failed (e.g, by failing to
respond to pings), or (2) when a replica detects the end
of an OUM session. To successfully replace the leader
or move to a new OUM session, NOPaxos runs a view
change protocol. This protocol ensures that all successful
operations from the old view are carried over into the new
view and that all replicas start the new view in a consistent
state.

NOPaxos’s view change protocol resembles that used
in Viewstamped Replication [42]. The principal differ-
ence is that NOPaxos views serve two purposes, and so
NOPaxos view IDs are therefore a tuple of 〈leader-num,
session-num〉 rather than a simple integer. A view change
can increment either one. However, NOPaxos ensures
that each replica’s leader-num and session-num never go
backwards. This maintains a total order over all views
that successfully start.

1. A replica initiates a view change when: (1) it sus-
pects that the leader in its current view has failed;
(2) it receives a SESSION-TERMINATED notification
from libOUM; or (3) it receives a VIEW-CHANGE or
VIEW-CHANGE-REQ message from another replica
with a higher leader-num or session-num. In all cases,
the replica appropriately increments the leader-num
and/or session-num in its view-id and sets its status
to ViewChange. If the replica incremented its session-
num, it resets its session-msg-num to 0.

It then sends 〈VIEW-CHANGE-REQ, view-id〉 to the
other replicas and 〈VIEW-CHANGE, view-id, v′,
session-msg-num, log〉 to the leader of the new view,
where v′ is the view ID of the last view in which its
status was Normal. While in ViewChange status, the
replica ignores all replica-to-replica messages (except
START-VIEW, VIEW-CHANGE, and VIEW-CHANGE-
REQ).

If the replica ever times out waiting for the view change
to complete, it simply rebroadcasts the VIEW-CHANGE
and VIEW-CHANGE-REQ messages.

2. When the leader for the new view receives f +1 VIEW-
CHANGE messages (including one from itself) with
matching view-ids, it performs the following steps:

• The leader merges the logs from the most recent
(largest) view in which the replicas had status

Normal.4 For each slot in the log, the merged result
is a NO-OP if any log has a NO-OP. Otherwise, the
result is a REQUEST if at least one has a REQUEST.
It then updates its log to the merged one.

• The leader sets its view-id to the one from the VIEW-
CHANGE messages and its session-msg-num to the
highest out of all the messages used to form the
merged log.

• It then sends 〈START-VIEW, view-id,
session-msg-num, log〉 to all replicas (includ-
ing itself).

3. When a replica receives a START-VIEW message with
a view-id greater than or equal to its current view-id,
it first updates its view-id, log, and session-msg-num
to the new values. It then calls listen(session-num,
session-msg-num) in libOUM. The replica sends RE-
PLYs to clients for all new REQUESTs added to its log
(executing them if the replica is the new leader). Fi-
nally, the replica sets its status to Normal and begins
receiving messages from libOUM again.5

5.2.4 Synchronization

During any view, only the leader executes operations and
provides results. Thus, all successful client REQUESTs are
committed on a stable log at the leader, which contains
only persistent client REQUESTs. In contrast, non-leader
replicas might have speculative operations throughout
their logs. If the leader crashes, the view change protocol
ensures that the new leader first recreates the stable log
of successful operations. However, it must then execute
all operations before it can process new ones. While this
protocol is correct, it is clearly inefficient.

Therefore, as an optimization, NOPaxos periodically
executes a synchronization protocol in the background.
This protocol ensures that all other replicas learn which
operations have successfully completed and which the
leader has replaced with NO-OPs. That is, synchronization
ensures that all replicas’ logs are stable up to their sync-
point and that they can safely execute all REQUESTs up
to this point in the background.

For brevity, we omit the details of this protocol. See
[39] for the full specification.

5.2.5 Recovery and Reconfiguration

While the NOPaxos protocol as presented above assumes
a crash failure model and a fixed replica group, it can

4 While view-ids are only partially ordered, because individual repli-
cas’ view-ids only increase and views require a quorum of replicas to
start, all views that successfully start are comparable – so identifying
the view with the highest number is in fact meaningful. For a full proof
of this fact, see [39].

5 Replicas also send an acknowledgment to the leader’s START-VIEW
message, and the leader periodically resends the START-VIEW to those
replicas from whom it has yet to receive an acknowledgment.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 475

also facilitate recovery and reconfiguration using adapta-
tions of standard mechanisms (e.g. Viewstamped Repli-
cation [42]). While the recovery mechanism is a direct
equivalent of the Viewstamped Replication protocol, the
reconfiguration protocol additionally requires a member-
ship change in the OUM group. The OUM membership is
changed by contacting the controller and having it install
new forwarding rules for the new members, as well as a
new session-num in the sequencer (terminating the old
session). The protocol then ensures all members of the
new configuration start in a consistent state.

5.3 Benefits of NOPaxos

NOPaxos achieves the theoretical minimum latency and
maximum throughput: it can execute operations in one
round-trip from the client to the replicas and does not
require replicas to coordinate on each request. By relying
on the network to stamp requests with sequence numbers,
it requires replies only from a simple majority of repli-
cas and uses a cheaper and rollback-free mechanism to
correctly account for network anomalies.

The OUM session guarantees mean that the replicas
already agree on the ordering of all operations. As a con-
sequence, clients need not wait for a superquorum of
replicas to reply, as in Fast Paxos and Speculative Paxos
(and as is required by any protocol that provides fewer
message delays than Paxos in an asynchronous, unordered
network [37]). In NOPaxos, a simple majority of replicas
suffices to guarantee the durability of a REQUEST in the
replicas’ shared log.

Additionally, the OUM guarantees enable NOPaxos
to avoid expensive mechanisms needed to detect when
replicas are not in the same state, such as using hashing to
detect conflicting logs from replicas. To keep the replicas’
logs consistent, the leader need only coordinate with the
other replicas when it receives DROP-NOTIFICATIONs.
Committing a NO-OP takes but a single round-trip and
requires no expensive reconciliation protocol.

NOPaxos also avoids rollback, which is usually neces-
sary in speculative protocols. It does so not by coordinat-
ing on every operation, as in non-speculative protocols,
but by having only the leader execute operations. Non-
leader replicas do not execute requests during normal
operations (except, as an optimization, when the synchro-
nization protocol indicates it is safe to do so), so they
need not rollback. The leader executes operations spec-
ulatively, without coordinating with the other replicas,
but clients do not accept a leader’s response unless it is
supported by matching responses from f other replicas.
The only rare case when a replica will execute an opera-
tion that is not eventually committed is if a functioning
leader is incorrectly replaced through a view change, los-
ing some operations it executed. Because this case is rare,
it is reasonable to handle it by having the ousted leader

transfer application state from another replica, rather than
application-level rollback.

Finally, unlike many replication protocols, NOPaxos
replicas send and receive a constant number of messages
for each REQUEST in the normal case, irrespective of the
total number of replicas. This means that NOPaxos can be
deployed with an increasing number of replicas without
the typical performance degradation, allowing for greater
fault-tolerance. §6.3 demonstrates that NOPaxos achieves
the same throughput regardless of the number of replicas.

5.4 Correctness

NOPaxos guarantees linearizability: that operations sub-
mitted by multiple concurrent clients appear to be exe-
cuted by a single, correct machine. In a sense, correct-
ness in NOPaxos is a much simpler property than in
other systems, such as Paxos and Viewstamped Repli-
cation [33, 48], because the replicas need not agree on the
order of the REQUESTs they execute. Since the REQUEST
order is already provided by the guarantees of OUM ses-
sions, the replicas must only agree on which REQUESTs
to execute and which REQUESTs to drop.

Below, we sketch the proof of correctness for the
NOPaxos protocol. For a full, detailed proof, see [39].
Additionally, see [39] for a TLA+ specification of the
NOPaxos protocol.

Definitions. We say that a REQUEST or NO-OP is com-
mitted in a log slot if it is processed by f +1 replicas with
matching view-ids, including the leader of that view. We
say that a REQUEST is successful if it is committed and
the client receives the f + 1 suitable REPLYs. We say a
log is stable in view v if it will be a prefix of the log of
every replica in views higher than v.

Sketch of Proof. During a view, a leader’s log grows
monotonically (i.e., entries are only appended and never
overwritten). Also, leaders execute only the first of du-
plicate REQUESTs. Therefore, to prove linearizability it
is sufficient to show that: (1) every successful operation
was appended to a stable log at the leader and that the
resulting log is also stable, and (2) replicas always start a
view listening to the correct session-msg-num in an OUM
session (i.e., the message corresponding to the number of
REQUESTs or NO-OPs committed in that OUM session).

First, note that any REQUEST or NO-OP that is com-
mitted in a log slot will stay in that log slot for all future
views: it takes f +1 replicas to commit a view and f +1
replicas to complete a view change, so, by quorum inter-
section, at least one replica initiating the view change will
have received the REQUEST or NO-OP. Also, because it
takes the leader to commit a REQUEST or NO-OP and its
log grows monotonically, only a single REQUEST or NO-
OP is ever committed in the same slot during a view. There-
fore, any log consisting of only committed REQUESTs and

476 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NO-OPs is stable.
Next, every view that starts (i.e., f +1 replicas receive

the START-VIEW and enter Normal status) trivially starts
with a log containing only committed REQUESTs and NO-
OPs. Replicas send REPLYs to a REQUEST only after all
log slots before the REQUEST’s slot have been filled with
REQUESTs or NO-OPs; further, a replica inserts a NO-OP
only if the leader already inserted that NO-OP. Therefore,
if a REQUEST is committed, all previous REQUESTs and
NO-OPs in the leader’s log were already committed.

This means that any REQUEST that is successful in
a view must have been appended to a stable log at the
leader, and the resulting log must also be stable, showing
(1). To see that (2) is true, notice that the last entry in
the combined log formed during a view change and the
session-msg-num are taken from the same replica(s) and
therefore must be consistent.

NOPaxos also guarantees liveness given a sufficient
amount of time during which the following properties
hold: the network over which the replicas communicate
is fair-lossy; there is some bound on the relative pro-
cessing speeds of replicas; there is a quorum of repli-
cas that stays up; there is a replica that stays up that no
replica suspects of having failed; all replicas correctly sus-
pect crashed nodes of having failed; no replica receives
a DROP-NOTIFICATION or SESSION-TERMINATED from
libOUM; and clients’ REQUESTs eventually get delivered
through libOUM.

6 Evaluation

We implemented the NOPaxos protocol in approximately
5,000 lines of C++ code. We ran our experiments using
the 3-level fat-tree network testbed shown in Figure 3.
All clients and replicas ran on servers with 2.5 GHz Intel
Xeon E5-2680 processors and 64GB of RAM. All exper-
iments used five replicas (thereby tolerating two replica
failures).

To evaluate the performance of NOPaxos, we com-
pared it to four other replication protocols: Paxos, Fast
Paxos, Paxos with batching, and Speculative Paxos; we
also evaluated it against an unreplicated system that pro-
vides no fault tolerance. Like NOPaxos, the clients in
both Speculative Paxos and Fast Paxos multicast their
requests to the replicas through a root serialization switch
to minimize message reordering. Requests from NOPaxos
clients, however, are also routed through the Cavium pro-
cessor to be stamped with the sequencer’s OUM session
number and current request sequence number. For the
batching variant of Paxos, we used a sliding-window tech-
nique where the system adaptively adjusts the batch size,
keeping at least one batch in progress at all times; this
approach reduces latency at low load while still providing
throughput benefits at high load [13].

 0

 200

 400

 600

 800

 1000

 1200

0K 50K 100K 150K 200K 250K 300K 350K 400K

L
at

en
cy

 (
µ

s)

Throughput (ops/sec)

Paxos
Fast Paxos

Batching
SpecPaxos
NOPaxos

Unreplicated

Figure 5: Latency vs. throughput comparison for testbed deploy-
ment of NOPaxos and other protocols.

 0

 100

 200

 300

 400

 500

 600

 700

0K 50K 100K 150K 200K 250K

L
at

en
cy

 (
µ

s)

Throughput (ops/sec)

NOPaxos
NOPaxos + End-host Sequencer

Unreplicated

Figure 6: Comparison of running NOPaxos with the prototype
Cavium sequencer and an end-host sequencer.

6.1 Latency vs. Throughput

To compare the latency and throughput of NOPaxos and
the other four protocols, we ran each system with an
increasing number of concurrent closed-loop clients. Fig-
ure 5 shows results of this experiment. NOPaxos achieves
a much higher maximum throughput than Paxos and Fast
Paxos (370% increases in both cases) without any addi-
tional latency. The leaders in both Paxos and Fast Paxos
send and receive more messages than the other replicas,
and the leaders’ message processing quickly becomes the
bottleneck of these systems. NOPaxos has no such inef-
ficiency. NOPaxos also achieves higher throughput than
Speculative Paxos (24% increase) because Speculative
Paxos requires replicas to compute hashes of their logs
for each client request.

Figure 5 also shows that NOPaxos has lower latency
(111 µs) than Paxos (240 µs) and Fast Paxos (193 µs) be-
cause NOPaxos requires fewer message delays in the nor-
mal case. Speculative Paxos also has higher latency than
NOPaxos because clients must wait for a superquorum of
replica replies instead of NOPaxos’s simple quorum.

Batching improves Paxos’s throughput by reducing the
number of messages sent by the leader. Paxos with batch-
ing is able to reach a maximum throughput equivalent
to Speculative Paxos. However, batching also increases
the latency of Paxos (385 µs at low load and 907 µs
at maximum throughput). NOPaxos attains both higher
throughput and lower latency than Paxos with batching.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 477

0K

50K

100K

150K

200K

250K

300K

350K

0.001% 0.01% 0.1% 1%

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Simulated drop rate

Paxos
Fast Paxos

Batching
SpecPaxos

NOPaxos
Unreplicated

Figure 7: Maximum throughput with simulated packet dropping.

NOPaxos is able to attain throughput within 2% of an
unreplicated system and latency within 16 µs. However,
we note that our middlebox prototype adds around 8 µs
to NOPaxos’s latency. We envision that implementing
the sequencer in a switch could bring NOPaxos’s latency
even closer to the unreplicated system. This demonstrates
that NOPaxos can achieve close to optimal performance
while providing fault-tolerance and strong consistency.

We also evaluated the performance of NOPaxos when
using an end-host as the sequencer instead of the network
processor. Figure 6 shows that NOPaxos still achieves
impressive throughput when using an end-host sequencer,
though at a cost of 36% more latency due to the additional
message delay required.

6.2 Resilience to Network Anomalies

To test the performance of NOPaxos in an unreliable
network, we randomly dropped a fraction of all packets.
Figure 7 shows the maximum throughput of the five pro-
tocols and the unreplicated system with an increasing
packet drop rate. Paxos’s and Fast Paxos’s throughput
do not decrease significantly, while Paxos with batching
shows a larger drop in throughput due to frequent state
transfers. However, the throughput of Speculative Paxos
drops substantially after 0.5% packet dropping, demon-
strating NOPaxos’s largest advantage over Speculative
Paxos. When 1% of packets are dropped, Speculative
Paxos’s maximum throughput falls to that of Paxos. As
discussed in §5.3, Speculative Paxos performs an expen-
sive reconciliation protocol when messages are dropped
and replica states diverge. NOPaxos is much more re-
silient to packet drops and reorderings. It achieves higher
throughput than Paxos with batching and much higher
throughput than Speculative Paxos at high drop rates.
Even with a 1% message drop rate, NOPaxos’s throughput
does not drop significantly. Indeed, NOPaxos maintains
throughput roughly equivalent to an unreplicated system,
demonstrating its strong resilience to network anomalies.

6.3 Scalability

To test NOPaxos’s scalability, we measured the maximum
throughput of the five protocols running on increasing
number of replicas. Figure 8 shows that both Paxos and

10K

100K

 3 5 7 9

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Number of Replicas

Paxos
Fast Paxos

Batching
SpecPaxos

NOPaxos
Unreplicated

Figure 8: Maximum throughput with increasing number of repli-
cas.

0K

50K

100K

150K

200K

250K

300K

-0.25 0 0.25 0.5 0.75 1 1.25 1.5

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Time (s)

Figure 9: NOPaxos throughput during a sequencer failover.

Fast Paxos suffer throughput degradation proportional
to the number of replicas because the leaders in those
protocols have to process more messages from the ad-
ditional replicas. Replicas in NOPaxos and Speculative
Paxos, however, process a constant number of messages,
so those protocols maintain their throughput when more
replicas are added.

6.4 Sequencer Failover

NOPaxos relies on the sequencer to order client requests.
We measured the throughput of NOPaxos during a se-
quencer failover (Figure 9). We ran NOPaxos at peak
throughput for approximately 7 seconds. We then sim-
ulated a sequencer failure by sending the controller a
notification message. The controller modified the routing
rules in the network and installed a new session number
in the sequencer (as described in §3). The throughput of
the system drops to zero during the failover and takes
approximately 110 ms to resume normal operations and
approximately 270 ms to resume processing operations
at peak throughput. Most of this delay is caused by the
route update rather than the NOPaxos view change.

6.5 Application Performance

To further demonstrate the benefits of the NOPaxos pro-
tocol, we evaluated the performance of a distributed, in-
memory key-value store. The key-value store uses two-
phase commit and optimistic concurrency control to sup-
port serializable transactions, and each shard runs atop our
replication framework. Clients issue GET and PUT requests
within transactions. We benchmarked the key-value store
using a workload based on the Retwis Twitter clone [38].

478 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Paxos

FastPaxos

B
atching

SpecPaxos

N
O

Paxos

U
nreplicated

M
ax

 T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Figure 10: Maximum throughput achieved by a replicated trans-
actional key-value store within 10 ms SLO.

Figure 10 shows the maximum throughput of the key-
value store with a 10ms SLO. NOPaxos outperforms all
other variants on this metric: it attains more than 4 times
the throughput of Paxos, and outperforms the best prior
protocol, Speculative Paxos, by 45%. Its throughput is
also within 4% that of an unreplicated system.

7 Related Work
Our work draws on techniques from consensus protocol
design as well as network-level processing mechanisms.

Consensus protocols Many protocols have been pro-
posed for the equivalent problems of consensus, state
machine replication, and atomic broadcast. Most closely
related is a line of work on achieving better performance
when requests typically arrive at replicas in the same order,
including Fast Paxos [36], Speculative Paxos [53], and
Optimistic Atomic Broadcast [29, 50, 51]; Zyzzyva [32]
applies a similar idea in the context of Byzantine fault
tolerant replication. These protocols can reduce consen-
sus latency in a manner similar to NOPaxos. However,
because requests are not guaranteed to arrive in the same
order, they incur extra complexity and require superma-
jority quorum sizes to complete a request (either 2/3 or
3/4 of replicas rather than a simple majority). This differ-
ence is fundamental: the possibility of conflicting orders
requires either an extra message round or a larger quorum
size [37].

Another line of work aims to reduce latency and im-
prove throughput by avoiding coordination for opera-
tions that are commutative or otherwise need not be or-
dered [12, 35, 45, 60]; this requires application support to
identify commutative operations. NOPaxos avoids coordi-
nation for all operations.

Ordered Unreliable Multicast is related to a long line
of work on totally ordered broadcast primitives, usually
in the context of group communication systems [6, 7].
Years ago, a great debate raged in the SOSP community
about the effectiveness and limits of this causal and totally
ordered communication support (CATOCS) [5, 15]. Our
work draws inspiration from both sides of this debate, but
occupies a new point in the design space by splitting the

responsibility between an ordered but unreliable commu-
nications layer and an application-level reliability layer. In
particular, the choice to leave reliability to the application
is inspired by the end-to-end argument [15, 55].

Network-level processing NOPaxos takes advantage
of flexible network processing to implement the OUM
model. Many designs have been proposed for flexible
processing, including fully flexible, software-based de-
signs like Click [30] and others based on network proces-
sors [57] or FPGA platforms [47]. At the other extreme,
existing software defined networking mechanisms like
OpenFlow [44] can easily achieve line-rate performance
in commodity hardware implementations but lack the flex-
ibility to implement our multicast primitive. We use the P4
language [9], which supports several high-performance
hardware designs like Reconfigurable Match Tables [10].

These processing elements have generally been used for
classic networking tasks like congestion control or queue
management. A notable exception is SwitchKV [41],
which uses OpenFlow switches for content-based routing
and load balancing in key-value stores.

...and their intersection Recent work on Specula-
tive Paxos and Mostly-Ordered Multicast proposes co-
designing network primitives and consensus protocols
to achieve faster performance. Our work takes the next
step in this direction. While Speculative Paxos assumes
only a best-effort ordering property, NOPaxos requires
an ordering guarantee. Achieving this guarantee requires
more sophisticated network support made possible with
a programmable data plane (Speculative Paxos’s Mostly-
Ordered Multicast requires only OpenFlow support).
However, as discussed in §5.3, NOPaxos achieves a sim-
pler and more robust protocol as a result, avoiding the
need for superquorums and speculation.

A concurrent effort, NetPaxos [18], also explores ways
to use the network layer to improve the performance of
a replication protocol. That work proposes moving the
Paxos logic into switches, with one switch serving as
a coordinator and others as Paxos acceptors. This logic
can also be implemented using P4 [17]. However, as the
authors note, this approach requires the switches to im-
plement substantial parts of the logic, including storing
potentially large amounts of state (the results of each
consensus instance). Our work takes a more practical ap-
proach by splitting the responsibility between the OUM
network model, which can be readily implemented, and
the NOPaxos consensus protocol.

Other related work uses hardware acceleration to speed
communication between nodes in a distributed system.
FaRM [19] uses RDMA to bypass the kernel and mini-
mize CPU involvement in remote memory accesses. Con-
sensus in a Box [25] implements a standard atomic broad-
cast protocol entirely on FPGAs. NOPaxos provides more

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 479

flexible deployment options. However, its protocol could
be integrated with RDMA or other kernel-bypass network-
ing for faster replica performance.

8 Conclusions
We presented a new approach to high-performance, fault-
tolerant replication, one based on dividing the respon-
sibility for consistency between the network layer and
the replication protocol. In our approach, the network
is responsible for ordering, while the replication proto-
col ensures reliable delivery. “Splitting the atom” in this
way yields dramatic performance gains: network-level
ordering, while readily achievable, supports NOPaxos, a
simpler replication protocol that avoids coordination in
most cases. The resulting system outperforms state-of-
the-art replication protocols on latency, throughput, and
application-level metrics, demonstrating the power of this
approach. More significantly, it achieves both throughput
and latency equivalent to an unreplicated system, proving
that replication does not have to come with a performance
cost.

Acknowledgments
We thank Irene Zhang, the anonymous reviewers, and our
shepherd Dawn Song for their helpful feedback. This re-
search was supported by the National Science Foundation
under awards CNS-1518702 and CNS-1615102 and by
gifts from Google and VMware.

480 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity data center network architecture.
In Proceedings of ACM 2008, New York, NY, USA,
Aug. 2008.

[2] Arista Networks. 7150 series ultra low latency
switch. https://www.arista.com/assets/data/

pdf/Datasheets/7150S_Datasheet.pdf.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected dat-
aplane operating system for high throughput and
low latency. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI ’14), Broomfield, CO, USA,
Oct. 2014. USENIX.

[4] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM Confer-
ence on Internet Measurement, IMC ’10, Melbourne,
Australia, 2010. ACM.

[5] K. Birman. A response to Cheriton and Skeen’s crit-
icism of causal and totally ordered communication.
ACM SIGOPS Operating Systems Review, 28(1), Jan.
1994.

[6] K. P. Birman and T. A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings
of the 11th ACM Symposium on Operating Systems
Principles (SOSP ’87), Austin, TX, USA, Oct. 1987.

[7] K. P. Birman and T. A. Joseph. Reliable communica-
tion in the presence of failures. ACM Trans. Comput.
Syst., 5(1), Jan. 1987.

[8] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P.
Kusters, and P. Li. Paxos replicated state machines
as the basis of a high-performance data store. In
Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’11), Boston, MA, USA, Apr. 2011. USENIX.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 44(3), July 2014.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for
SDN. In Proceedings of ACM SIGCOMM 2013.
ACM, 2013.

[11] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the

7th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), Seattle, WA,
USA, Nov. 2006.

[12] L. Camargos, R. Schmidt, and F. Pedone. Multi-
coordinated Paxos. Technical report, University of
Lugano Faculty of Informatics, 2007/02, Jan. 2007.

[13] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’99), New Orleans, LA, USA, Feb.
1999.

[14] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus.
J. ACM, 43(4), July 1996.

[15] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles (SOSP ’93),
Asheville, NC, USA, Dec. 1993. ACM.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Pro-
ceedings of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI

’12), Hollywood, CA, USA, Oct. 2012.

[17] H. T. Dang, P. Bressana, H. Wang, K. S. Lee,
H. Weatherspoon, M. Canini, F. Pedone, and
R. Soulé. Network hardware-accelerated consensus.
Technical Report USI-INF-TR-2016-03, Università
della Svizzera italiana, May 2016.

[18] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. NetPaxos: Consensus at network speed. In
Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR
’15, New York, NY, USA, 2015. ACM.

[19] A. Dragojević, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast remote memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), Seattle, WA, Apr.
2014. USENIX Association.

[20] M. Flajslik and M. Rosenblum. Network interface
design for low latency request-response protocols.
In Proceedings of the 2013 USENIX Annual Tech-
nical Conference, San Jose, CA, USA, June 2013.
USENIX.

[21] P. Gill, N. Jain, and N. Nagappan. Understanding
network failures in data centers: Measurement, anal-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 481

https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf

ysis, and implications. In Proceedings of ACM SIG-
COMM 2011, Toronto, ON, Canada, Aug. 2011.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VL2: A scalable and flexible data center
network. In Proceedings of ACM SIGCOMM 2009,
Barcelona, Spain, Aug. 2009.

[23] M. P. Herlihy and J. M. Wing. Linearizabiliy: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3), July 1990.

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-
scale systems. In Proceedings of the 2010 USENIX
Annual Technical Conference, Boston, MA, USA,
June 2010.

[25] Z. István, D. Sidler, G. Alonso, and M. Vukolic.
Consensus in a box: Inexpensive coordination in
hardware. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
16), Santa Clara, CA, Mar. 2016. USENIX Associa-
tion.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Ex-
perience with a globally-deployed software defined
WAN. In Proceedings of ACM SIGCOMM 2013,
Hong Kong, China, Aug. 2013. ACM.

[27] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Sys-
tems&Networks, DSN ’11, Washington, DC, USA,
2011. IEEE Computer Society.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen. De-
sign guidelines for high performance RDMA sys-
tems. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16), Denver, CO, June 2016.
USENIX Association.

[29] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic
broadcast protocols. In Proceedings of the 13th
International Symposium on Distributed Computing
(DISC ’99), Bratislava, Slovakia, Sept. 1999.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans-
actions on Computer Systems, 18(3), Aug. 2000.

[31] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A dis-
tributed control platform for large-scale production

networks. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI ’10), Vancouver, BC, Canada, Oct. 2010.
USENIX.

[32] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine fault
tolerance. In Proceedings of the 21th ACM Sympo-
sium on Operating Systems Principles (SOSP ’07),
Stevenson, WA, USA, Oct. 2007.

[33] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2), May 1998.

[34] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4), Dec. 2001.

[35] L. Lamport. Generalized consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft Re-
search, Mar. 2005.

[36] L. Lamport. Fast Paxos. Distributed Computing,
19(2), Oct. 2006.

[37] L. Lamport. Lower bounds for asynchronous con-
sensus. Distributed Computing, 19(2), Oct. 2006.

[38] C. Leau. Spring Data Redis – Retwis-J,
2013. http://docs.spring.io/spring-data/

data-keyvalue/examples/retwisj/current/.

[39] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just say NO to Paxos overhead: Re-
placing consensus with network ordering [extended
version]. Technical Report UW-CSE-16-09-02, Uni-
versity of Washington CSE, Seattle, WA, USA, Nov.
2016.

[40] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Grib-
ble. Tales of the tail: Hardware, OS, and application-
level sources of tail latency. In Proceedings of the
5th Symposium on Cloud Computing (SOCC ’14),
Seattle, WA, USA, Nov. 2014. ACM.

[41] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman. Be fast, cheap and in control with
SwitchKV. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
16), Santa Clara, CA, Mar. 2016. USENIX Associa-
tion.

[42] B. Liskov and J. Cowling. Viewstamped replica-
tion revisited. Technical Report MIT-CSAIL-TR-
2012-021, MIT Computer Science and Artificial In-
telligence Laboratory, Cambridge, MA, USA, July
2012.

[43] V. Liu, D. Halperin, A. Krishnamurthy, and T. An-
derson. F10: A fault-tolerant engineered network. In
Proceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’13), Lombard, IL, USA, Apr. 2013.

482 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

[44] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2), Apr. 2008.

[45] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In
Proc. of SOSP, 2013.

[46] R. N. Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subra-
manya, and A. Vahdat. PortLand: A scalable fault-
tolerant layer 2 data center network fabric. In
Proceedings of ACM SIGCOMM 2009, Barcelona,
Spain, Aug. 2009.

[47] J. Naous, D. Erickson, G. A. Covington, G. Appen-
zeller, and N. McKeown. Implementing an Open-
Flow switch on the NetFPGA platform. In Proceed-
ings of the 4th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems,
ANCS ’08, New York, NY, USA, 2008. ACM.

[48] B. M. Oki and B. H. Liskov. Viewstamped replica-
tion: A new primary copy method to support highly-
available distributed systems. In Proceedings of the
7th ACM Symposium on Principles of Distributed
Computing (PODC ’88), Toronto, Ontario, Canada,
Aug. 1988.

[49] R. Ozdag. Intel R© Ethernet switch FM6000 series-
software defined networking.

[50] F. Pedone and A. Schiper. Optimistic atomic broad-
cast. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC ’98), An-
dros, Greece, Sept. 1998.

[51] F. Pedone and A. Schiper. Optimistic atomic broad-
cast: A pragmatic viewpoint. Theor. Comput. Sci.,
291(1), Jan. 2003.

[52] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-

rakis: The operating system is the control plane. In
Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI

’14), Broomfield, CO, USA, Oct. 2014. USENIX.

[53] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing distributed systems using
approximate synchrony in data center networks. In
Proc. of NSDI, 2015.

[54] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to
build a scalable, consistent, and highly available
datastore. Proc. of VLDB, 4(4), Apr. 2011.

[55] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Transactions
on Computer Systems, 2(4), Nov. 1984.

[56] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tutorial.
ACM Computing Surveys, 22(4), Dec. 1990.

[57] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb.
Building a robust software-based router using net-
work processors. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’01), Banff, Canada, Oct. 2001. ACM.

[58] P. Urbán, X. Défago, and A. Schiper. Chasing the
FLP impossibility result in a LAN: or, how robust
can a fault tolerant server be? In Proceedings of
the 20th IEEE Symposium on Reliable Distributed
Systems (SRDS ’01), New Orleans, LA USA, Oct.
2001.

[59] XPliant Ethernet switch prod-
uct family. www.cavium.com/

XPliant-Ethernet-Switch-Product-Family.

html.

[60] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-
murthy, and D. R. K. Ports. Building consistent
transactions with inconsistent replication. In Proc.
of SOSP, 2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 483

www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

XFT: Practical Fault Tolerance Beyond Crashes

Shengyun Liu
NUDT∗

Paolo Viotti
EURECOM

Christian Cachin
IBM Research - Zurich

Vivien Quéma
Grenoble INP

Marko Vukolić
IBM Research - Zurich

Abstract
Despite years of intensive research, Byzantine fault-
tolerant (BFT) systems have not yet been adopted in
practice. This is due to additional cost of BFT in terms of
resources, protocol complexity and performance, com-
pared with crash fault-tolerance (CFT). This overhead of
BFT comes from the assumption of a powerful adver-
sary that can fully control not only the Byzantine faulty
machines, but at the same time also the message deliv-
ery schedule across the entire network, effectively in-
ducing communication asynchrony and partitioning oth-
erwise correct machines at will. To many practitioners,
however, such strong attacks appear irrelevant.

In this paper, we introduce cross fault tolerance or
XFT, a novel approach to building reliable and se-
cure distributed systems and apply it to the classical
state-machine replication (SMR) problem. In short, an
XFT SMR protocol provides the reliability guarantees
of widely used asynchronous CFT SMR protocols such
as Paxos and Raft, but also tolerates Byzantine faults
in combination with network asynchrony, as long as a
majority of replicas are correct and communicate syn-
chronously. This allows the development of XFT sys-
tems at the price of CFT (already paid for in practice),
yet with strictly stronger resilience than CFT — some-
times even stronger than BFT itself.

As a showcase for XFT, we present XPaxos, the first
XFT SMR protocol, and deploy it in a geo-replicated set-
ting. Although it offers much stronger resilience than
CFT SMR at no extra resource cost, the performance of
XPaxos matches that of the state-of-the-art CFT proto-
cols.

1 Introduction

Tolerance to any kind of service disruption, whether
caused by a simple hardware fault or by a large-scale

∗Work done while being a PhD student at EURECOM.

disaster, is key for the survival of modern distributed
systems. Cloud-scale applications must be inherently re-
silient, as any outage has direct implications on the busi-
ness behind them [24].

Modern production systems (e.g., [13, 8]) increase the
number of nines of reliability1 by employing sophisti-
cated distributed protocols that tolerate crash machine
faults as well as network faults, such as network parti-
tions or asynchrony, which reflect the inability of other-
wise correct machines to communicate among each other
in a timely manner. At the heart of these systems typi-
cally lies a crash fault-tolerant (CFT) consensus-based
state-machine replication (SMR) primitive [36, 10].

These systems cannot deal with non-crash (or Byzan-
tine [29]) faults, which include not only malicious, ad-
versarial behavior, but also arise from errors in the hard-
ware, stale or corrupted data from storage systems, mem-
ory errors caused by physical effects, bugs in software,
hardware faults due to ever smaller circuits, and human
mistakes that cause state corruptions and data loss. How-
ever, such problems do occur in practice — each of these
faults has a public record of taking down major produc-
tion systems and corrupting their service [14, 4].

Despite more than 30 years of intensive research since
the seminal work of Lamport, Shostak and Pease [29],
no practical answer to tolerating non-crash faults has
emerged so far. In particular, asynchronous Byzantine
fault-tolerance (BFT), which promises to resolve this
problem [9], has not lived up to this expectation, largely
because of its extra cost compared with CFT. Namely,
asynchronous (that is, “eventually synchronous” [18])
BFT SMR must use at least 3t + 1 replicas to tolerate
t non-crash faults [7] instead of only 2t + 1 replicas for
CFT, as used by Paxos [27] or Raft [34], for example.

The overhead of asynchronous BFT is due to the ex-
traordinary power given to the adversary, which may

1As an illustration, five nines reliability means that a system is up
and correctly running at least 99.999% of the time. In other words,
malfunction is limited to one hour every 10 years on average.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 485

control both the Byzantine faulty machines and the en-
tire network in a coordinated way. In particular, the clas-
sical BFT adversary can partition any number of other-
wise correct machines at will. In line with observations
by practitioners [25], we claim that this adversary model
is actually too strong for the phenomena observed in de-
ployed systems. For instance, accidental non-crash faults
usually do not lead to network partitions. Even malicious
non-crash faults rarely cause the whole network to break
down in wide-area networks and geo-replicated systems.
The proverbial all-powerful attacker as a common source
behind those faults is a popular and powerful simplifica-
tion used for the design phase, but it has not seen equiv-
alent proliferation in practice.

In this paper, we introduce XFT (short for cross fault
tolerance), a novel approach to building efficient resilient
distributed systems that tolerate both non-crash (Byzan-
tine) faults and network faults (asynchrony). In short,
XFT allows building resilient systems that

• do not use extra resources (replicas) compared with
asynchronous CFT;

• preserve all reliability guarantees of asynchronous
CFT (that is, in the absence of Byzantine faults);
and

• provide correct service (i.e., safety and liveness [2])
even when Byzantine faults do occur, as long as a
majority of the replicas are correct and can commu-
nicate with each other synchronously (that is, when
a minority of the replicas are Byzantine-faulty or
partitioned because of a network fault).

In particular, we envision XFT for wide-area or geo-
replicated systems [13], as well as for any other de-
ployment where an adversary cannot easily coordinate
enough network partitions and Byzantine-faulty machine
actions at the same time.

As a showcase for XFT, we present XPaxos, the first
state-machine replication protocol in the XFT model.
XPaxos tolerates faults beyond crashes in an efficient
and practical way, achieving much greater coverage of
realistic failure scenarios than the state-of-the-art CFT
SMR protocols, such as Paxos or Raft. This comes with-
out resource overhead as XPaxos uses 2t + 1 replicas.
To validate the performance of XPaxos, we deployed
it in a geo-replicated setting across Amazon EC2 data-
centers worldwide. In particular, we integrated XPaxos
within Apache ZooKeeper, a prominent and widely used
coordination service for cloud systems [19]. Our evalua-
tion on EC2 shows that XPaxos performs almost as well
in terms of throughput and latency as a WAN-optimized
variant of Paxos, and significantly better than the best
available BFT protocols. In our evaluation, XPaxos

even outperforms the native CFT SMR protocol built into
ZooKeeper [20].

Finally, and perhaps surprisingly, we show that XFT
can offer strictly stronger reliability guarantees than
state-of-the-art BFT, for instance under the assumption
that machine faults and network faults occur as inde-
pendent and identically distributed random variables, for
certain probabilities. To this end, we calculate the num-
ber of nines of consistency (system safety) and avail-
ability (system liveness) of resource-optimal CFT, BFT
and XFT (e.g., XPaxos) protocols. Whereas XFT al-
ways provides strictly stronger consistency and avail-
ability guarantees than CFT and always strictly stronger
availability guarantees than BFT, our reliability analy-
sis shows that, in some cases, XFT also provides strictly
stronger consistency guarantees than BFT.

The remainder of this paper is organized as follows. In
Section 2, we define the system model, which is then fol-
lowed by the definition of the XFT model in Section 3. In
Section 4 and Section 5, we present XPaxos and its eval-
uation in the geo-replicated context, respectively. Sec-
tion 6 provides simplified reliability analysis comparing
XFT with CFT and BFT. We overview related work and
conclude in Section 7. For space reasons, the full cor-
rectness proof of XPaxos is given in [31].

2 System model

Machines. We consider a message-passing distributed
system containing a set Π of n = |Π| machines, also
called replicas. Additionally, there is a separate set C
of client machines.

Clients and replicas may suffer from Byzantine faults:
we distinguish between crash faults, where a machine
simply stops all computation and communication, and
non-crash faults, where a machine acts arbitrarily, but
cannot break cryptographic primitives we use (crypto-
graphic hashes, MACs, message digests and digital sig-
natures). A machine that is not faulty is called correct.
We say a machine is benign if the machine is correct or
crash-faulty. We further denote the number of replica
faults at a given moment s by

• tc(s): the number of crash-faulty replicas, and

• tnc(s): the number of non-crash-faulty replicas.

Network. Each pair of replicas is connected with reli-
able point-to-point bi-directional communication chan-
nels. In addition, each client can communicate with any
replica.

The system can be asynchronous in the sense that ma-
chines may not be able to exchange messages and obtain
responses to their requests in time. In other words, net-
work faults are possible; we define a network fault as the

486 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

inability of some correct replicas to communicate with
each other in a timely manner, that is, when a message
exchanged between two correct replicas cannot be deliv-
ered and processed within delay ∆, known to all repli-
cas. Note that ∆ is a deployment specific parameter: we
discuss practical choices for ∆ in the context of our geo-
replicated setting in Section 5. Finally, we assume an
eventually synchronous system in which, eventually, net-
work faults do not occur [18].

Note that we model an excessive processing delay as a
network problem and not as an issue related to a machine
fault. This choice is made consciously, rooted in the ex-
perience that for the general class of protocols considered
in this work, a long local processing time is never an is-
sue on correct machines compared with network delays.

To help quantify the number of network faults, we first
give the definition of partitioned replica.

Definition 1 (Partitioned replica). Replica p is parti-
tioned if p is not in the largest subset of replicas, in
which every pair of replicas can communicate among
each other within delay ∆.

If there is more than one subset with the maximum
size, only one of them is recognized as the largest subset.
For example in Figure 1, the number of partitioned repli-
cas is 3, counting either the group of p1, p4 and p5 or
that of p2, p3 and p5. The number of partitioned replicas
can be as much as n−1, which means that no two repli-
cas can communicate with each other within delay ∆. We
say replica p is synchronous if p is not partitioned. We
now quantify network faults at a given moment s as

• tp(s): the number of correct, but partitioned repli-
cas.

32

>∆

p4

p5

p3

p2

p1

>∆

>∆

Figure 1: An illustration of partitioned replicas:
{p1, p4, p5} or {p2, p3, p5} are partitioned based on Def-
inition 1.

Problem. In this paper, we focus on the deterministic
state-machine replication problem (SMR) [36]. In short,
in SMR clients invoke requests, which are then commit-
ted by replicas. SMR ensures

• safety, or consistency, by (a) enforcing total order
across committed client’s requests across all correct
replicas; and by (b) enforcing validity, i.e., that a
correct replica commits a request only if it was pre-
viously invoked by a client;

• liveness, or availability, by eventually committing a
request by a correct client at all correct replicas and
returning an application-level reply to the client.

3 The XFT model

This section introduces the XFT model and relates
it to the established crash-fault tolerance (CFT) and
Byzantine-fault tolerance (BFT) models.

3.1 XFT in a nutshell
Classical CFT and BFT explicitly model machine faults
only. These are then combined with an orthogonal net-
work fault model, either the synchronous model (where
network faults in our sense are ruled out), or the asyn-
chronous model (which includes any number of network
faults). Hence, previous work can be classified into four
categories: synchronous CFT [16, 36], asynchronous
CFT [36, 27, 33], synchronous BFT [29, 17, 6], and
asynchronous BFT [9, 3].

XFT, in contrast, redefines the boundaries between
machine and network fault dimensions: XFT allows the
design of reliable protocols that tolerate crash machine
faults regardless of the number of network faults and that,
at the same time, tolerate non-crash machine faults when
the number of machines that are either faulty or parti-
tioned is within a threshold.

To formalize XFT, we first define anarchy, a very
severe system condition with actual non-crash machine
(replica) faults and plenty of faults of different kinds, as
follows:

Definition 2 (Anarchy). The system is in anarchy at a
given moment s iff tnc(s)> 0 and tc(s)+tnc(s)+tp(s)> t.

Here, t is the threshold of replica faults, such that t ≤
b n−1

2 c. In other words, in anarchy, some replica is non-
crash-faulty, and there is no correct and synchronous ma-
jority of replicas. Armed with the definition of anarchy,
we can define XFT protocols for an arbitrary distributed
computing problem in function of its safety property [2].

Definition 3 (XFT protocol). Protocol P is an XFT pro-
tocol if P satisfies safety in all executions in which the
system is never in anarchy.

Liveness of an XFT protocol will typically depend on
a problem and implementation. For instance, for deter-
ministic SMR we consider in this paper, our XPaxos

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 487

Maximum number of each type of replica faults

non-crash faults crash faults partitioned replicas

Asynchronous CFT (e.g., Paxos [28])
consistency 0 n n−1

availability 0 b n−1
2 c (combined)

Asynchronous BFT (e.g., PBFT [9])
consistency b n−1

3 c n n−1

availability b n−1
3 c (combined)

(Authenticated) Synchronous BFT (e.g., [29])
consistency n−1 n 0

availability n−1 (combined) 0

XFT (e.g., XPaxos)
consistency

0 n n−1

b n−1
2 c (combined)

availability b n−1
2 c (combined)

Table 1: The maximum numbers of each type of fault tolerated by representative SMR protocols. Note that XFT
provides consistency in two modes, depending on the occurrence of non-crash faults.

protocol eventually satisfies liveness, provided a major-
ity of replicas is correct and synchronous. This can be
shown optimal.

3.2 XFT vs. CFT/BFT

Table 1 illustrates differences between XFT and
CFT/BFT in terms of their consistency and availability
guarantees for SMR.

State-of-the-art asynchronous CFT protocols [28, 34]
guarantee consistency despite any number of crash-
faulty replicas and any number of partitioned replicas.
They also guarantee availability whenever a majority of
replicas (t ≤ b n−1

2 c) are correct and synchronous. As
soon as a single machine is non-crash-faulty, CFT pro-
tocols guarantee neither consistency nor availability.

Optimal asynchronous BFT protocols [9, 22, 3] guar-
antee consistency despite any number of crash-faulty or
partitioned replicas, with at most t = b n−1

3 c non-crash-
faulty replicas. They also guarantee availability with up
to b n−1

3 c combined faults, i.e., whenever more than two-
thirds of replicas are correct and not partitioned. Note
that BFT availability might be weaker than that of CFT
in the absence of non-crash faults — unlike CFT, BFT
does not guarantee availability when the sum of crash-
faulty and partitioned replicas is in the range [n/3,n/2).

Synchronous BFT protocols (e.g., [29]) do not con-
sider the existence of correct, but partitioned replicas.
This makes for a very strong assumption — and helps
synchronous BFT protocols that use digital signatures
for message authentication (so called authenticated pro-
tocols) to tolerate up to n−1 non-crash-faulty replicas.

In contrast, XFT protocols with optimal resilience,
such as our XPaxos, guarantee consistency in two

modes: (i) without non-crash faults, despite any num-
ber of crash-faulty and partitioned replicas (i.e., just like
CFT), and (ii) with non-crash faults, whenever a major-
ity of replicas are correct and not partitioned, i.e., pro-
vided the sum of all kinds of faults (machine or network
faults) does not exceed b n−1

2 c. Similarly, it also guar-
antees availability whenever a majority of replicas are
correct and not partitioned.

It may be tempting to view XFT as some sort of a com-
bination of the asynchronous CFT and synchronous BFT
models. However, this is misleading, as even with ac-
tual non-crash faults, XFT is incomparable to authenti-
cated synchronous BFT. Specifically, authenticated syn-
chronous BFT protocols, such as the seminal Byzantine
Generals protocol [29], may violate consistency with a
single partitioned replica. For instance, with n = 5 repli-
cas and an execution in which three replicas are correct
and synchronous, one replica is correct but partitioned
and one replica is non-crash-faulty, the XFT model man-
dates that the consistency be preserved, whereas the
Byzantine Generals protocol may violate consistency.2

Furthermore, from Table 1, it is evident that XFT of-
fers strictly stronger guarantees than asynchronous CFT,
for both availability and consistency. XFT also of-
fers strictly stronger availability guarantees than asyn-
chronous BFT. Finally, the consistency guarantees of
XFT are incomparable to those of asynchronous BFT. On
the one hand, outside anarchy, XFT is consistent with
the number of non-crash faults in the range [n/3,n/2),
whereas asynchronous BFT is not. On the other hand,
unlike XFT, asynchronous BFT is consistent in anarchy

2XFT is not stronger than authenticated synchronous BFT either,
as the latter tolerates more machine faults in the complete absence of
network faults.

488 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

provided the number of non-crash faults is less than n/3.
We discuss these points further in Section 6, where we
also quantify the reliability comparison between XFT
and asynchronous CFT/BFT assuming the special case
of independent faults.

3.3 Where to use XFT?

The intuition behind XFT starts from the assumption that
“extremely bad” system conditions, such as anarchy, are
very rare, and that providing consistency guarantees in
anarchy might not be worth paying the asynchronous
BFT premium.

In practice, this assumption is plausible in many de-
ployments. We envision XFT for use cases in which an
adversary cannot easily coordinate enough network par-
titions and non-crash-faulty machine actions at the same
time. Some interesting candidate use cases include:

• Tolerating “accidental” non-crash faults. In sys-
tems which are not susceptible to malicious be-
havior and deliberate attacks, XFT can be used to
protect against “accidental“ non-crash faults, which
can be assumed to be largely independent of net-
work faults. In such cases, XFT could be used to
harden CFT systems without considerable overhead
of BFT.

• Wide-area networks and geo-replicated systems.
XFT may reveal useful even in cases where the sys-
tem is susceptible to malicious non-crash faults, as
long as it may be difficult or expensive for an adver-
sary to coordinate an attack to compromise Byzan-
tine machines and partition sufficiently many repli-
cas at the same time. Particularly interesting for
XFT are WAN and geo-replicated systems which
often enjoy redundant communication paths and
typically have a smaller surface for network-level
DoS attacks (e.g., no multicast storms and flood-
ing).

• Blockchain. A special case of geo-replicated sys-
tems, interesting to XFT, are blockchain systems.
In a typical blockchain system, such as Bitcoin [32],
participants may be financially motivated to act ma-
liciously, yet may lack the means and capabilities
to compromise the communication among (a large
number of) correct participants. In this context,
XFT is particularly interesting for so-called per-
missioned blockchains, which are based on state-
machine replication rather than on Bitcoin-style
proof-of-work [40].

4 XPaxos Protocol

4.1 XPaxos overview
XPaxos is a novel state-machine replication (SMR) pro-
tocol designed specifically in the XFT model. XPaxos
specifically targets good performance in geo-replicated
settings, which are characterized by the network being
the bottleneck, with high link latency and relatively low,
heterogeneous link bandwidth.

In a nutshell, XPaxos consists of three main compo-
nents:

• A common-case protocol, which replicates and to-
tally orders requests across replicas. This has,
roughly speaking, the message pattern and com-
plexity of communication among replicas of state-
of-the-art CFT protocols (e.g., Phase 2 of Paxos),
hardened by the use of digital signatures.

• A novel view-change protocol, in which the infor-
mation is transferred from one view (system con-
figuration) to another in a decentralized, leaderless
fashion.

• A fault detection (FD) mechanism, which can help
detect, outside anarchy, non-crash faults that would
leave the system in an inconsistent state in anarchy.
The goal of the FD mechanism is to minimize the
impact of long-lived non-crash faults (in particular
“data loss” faults) in the system and to help detect
them before they coincide with a sufficient number
of crash faults and network faults to push the system
into anarchy.

XPaxos is orchestrated in a sequence of views [9].
The central idea in XPaxos is that, during common-case
operation in a given view, XPaxos synchronously repli-
cates clients’ requests to only t+1 replicas, which are the
members of a synchronous group (out of n = 2t+1 repli-
cas in total). Each view number i uniquely determines
the synchronous group, sgi, using a mapping known to
all replicas. Every synchronous group consists of one
primary and t followers, which are jointly called active
replicas. The remaining t replicas in a given view are
called passive replicas; optionally, passive replicas learn
the order from the active replicas using the lazy replica-
tion approach [26]. A view is not changed unless there
is a machine or network fault within the synchronous
group.

In the common case (Section 4.2), the clients send dig-
itally signed requests to the primary, which are then repli-
cated across t + 1 active replicas. These t + 1 replicas
digitally sign and locally log the proofs for all replicated
requests to their commit logs. Commit logs then serve as
the basis for maintaining consistency in view changes.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 489

The view change of XPaxos (Section 4.3) recon-
figures the entire synchronous group, not only the
leader. All t + 1 active replicas of the new synchronous
group sgi+1 try to transfer the state from the preced-
ing views to view i + 1. This decentralized approach
to view change stands in sharp contrast to the classical
reconfiguration/view-change in CFT and BFT protocols
(e.g., [27, 9]), in which only a single replica (the pri-
mary) leads the view change and transfers the state from
previous views. This difference is crucial to maintain-
ing consistency (i.e., total order) across XPaxos views
in the presence of non-crash faults (but in the absence of
full anarchy). This novel and decentralized view-change
scheme of XPaxos guarantees that even in the presence
of non-crash faults, but outside anarchy, at least one cor-
rect replica from the new synchronous group sgi+1 will
be able to transfer the correct state from previous views,
as it will be able to contact some correct replica from any
old synchronous group.

Finally, the main idea behind the FD scheme of
XPaxos is the following. In view change, a non-crash-
faulty replica (of an old synchronous group) might not
transfer its latest state to a correct replica in the new syn-
chronous group. This “data loss” fault is dangerous, as it
may violate consistency when the system is in anarchy.
However, such a fault can be detected using digital signa-
tures from the commit log of some correct replicas (from
an old synchronous group), provided that these correct
replicas can communicate synchronously with correct
replicas from the new synchronous group. In a sense,
with XPaxos FD, a critical non-crash machine fault must
occur for the first time together with sufficiently many
crash or partitioned machines (i.e., in anarchy) to violate
consistency.

In the following, we explain the core of XPaxos
for the common case (Section 4.2), view-change (Sec-
tion 4.3) and fault detection (Section 4.4) components.
We discuss XPaxos optimizations in Section 4.5 and
give XPaxos correctness arguments in Section 4.6. Be-
cause of space limitations, the complete pseudocode and
correctness proof have been included in [31].

4.2 Common case

Figure 2 shows the common-case message patterns of
XPaxos for the general case (t ≥ 2) and for the special
case t = 1. XPaxos is specifically optimized for the case
where t = 1, as in this case, there are only two active
replicas in each view and the protocol is very efficient.
The special case t = 1 is also highly relevant in practice
(see e.g., Spanner [13]). In the following, we first explain
XPaxos in the general case, and then focus on the t = 1
special case.

s
0

s
1

s
2

s
3

client 1

2

REPLICATE 1

PREPARE 2
3

3 COMMIT

4 REPLY

4

4

4

3

s
4

with MAC

with signature

(a) t ≥ 2

s
0

s
1

s
2

client

with MAC

with signature
1

2

3
2

REPLICATE 1

COMMIT 2

3 REPLY

(b) t = 1

Figure 2: XPaxos common-case message patterns (a)
for the general case when t ≥ 2 and (b) for the special
case of t = 1. The synchronous groups are (s0,s1,s2)
and (s0,s1), respectively.

Notation. We denote the digest of a message m by
D(m), whereas 〈m〉σp denotes a message that contains
both D(m) signed by the private key of machine p and m.
For signature verification, we assume that all machines
have public keys of all other processes.

4.2.1 General case (t ≥ 2)

The common-case message pattern of XPaxos is shown
in Figure 2a. More specifically, upon receiving a signed
request req = 〈REPLICATE,op, tsc,c〉σc from client c
(where op is the client’s operation and tsc is the client’s
timestamp), the primary (say s0) (1) increments sequence
number sn and assigns sn to req, (2) signs a message
prep = 〈PREPARE,D(req),sn, i〉σs0

and logs 〈req, prep〉
into its prepare log PrepareLog0[sn] (we say s0 prepares
req), and (3) forwards 〈req, prep〉 to all other active
replicas (i.e, the t followers).

Each follower s j (1 ≤ j ≤ t) verifies the primary’s
and client’s signatures, checks whether its local sequence
number equals sn− 1, and logs 〈req, prep〉 into its pre-
pare log PrepareLog j[sn]. Then, s j updates its local se-
quence number to sn, signs the digest of the request req,
the sequence number sn and the view number i, and sends
〈COMMIT,D(req),sn, i〉σs j

to all active replicas.
Upon receiving t signed COMMIT messages — one

from each follower — such that a matching entry is in
the prepare log, an active replica sk (0≤ k≤ t) logs prep
and the t signed COMMIT messages into its commit log
CommitLogsk [sn]. We say sk commits req when this oc-

490 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

curs. Finally, sk executes req and sends the authenticated
reply to the client (followers may only send the digest
of the reply). The client commits the request when it
receives matching REPLY messages from all t +1 active
replicas.

A client that times out without committing the requests
broadcasts the request to all active replicas. Active repli-
cas then forward such a request to the primary and trig-
ger a retransmission timer, within which a correct active
replica expects the client’s request to be committed.

4.2.2 Tolerating a single fault (t = 1).

When t = 1, the XPaxos common case simplifies to in-
volving only 2 messages between 2 active replicas (see
Figure 2b).

Upon receiving a signed request req =
〈REPLICATE,op, tsc,c〉σc from client c, the pri-
mary (s0) increments the sequence number sn, signs sn
along the digest of req and view number i in message
m0 = 〈COMMIT,D(req),sn, i〉σs0

, stores 〈req,m0〉 into
its prepare log (PrepareLogs0 [sn] = 〈req,m0〉), and
sends the message 〈req,m0〉 to the follower s1.

On receiving 〈req,m0〉, the follower s1 verifies the
client’s and primary’s signatures, and checks whether
its local sequence number equals sn− 1. If so, the
follower updates its local sequence number to sn, ex-
ecutes the request producing reply R(req), and signs
message m1; m1 is similar to m0, but also includes the
client’s timestamp and the digest of the reply: m1 =
〈COMMIT,〈D(req),sn, i,req.tsc, D(R(req))〉σs1

. The fol-
lower then saves the tuple 〈req,m0,m1〉 to its commit log
(CommitLogs1 [sn] = 〈req,m0,m1〉) and sends m1 to the
primary.

The primary, on receiving a valid COMMIT message
from the follower (with a matching entry in its prepare
log), executes the request, compares the reply R(req)
with the follower’s digest contained in m1, and stores
〈req,m0,m1〉 in its commit log. Finally, it returns an au-
thenticated reply containing m1 to c, which commits the
request if all digests and the follower’s signature match.

4.3 View change
Intuition. The ordered requests in commit logs of cor-
rect replicas are the key to enforcing consistency (total
order) in XPaxos. To illustrate an XPaxos view change,
consider synchronous groups sgi and sgi+1 of views i and
i+ 1, respectively, each containing t + 1 replicas. Note
that proofs of requests committed in sgi might have been
logged by only one correct replica in sgi. Nevertheless,
the XPaxos view change must ensure that (outside anar-
chy) these proofs are transferred to the new view i+1. To
this end, we had to depart from traditional view change

Synchronous Groups
(i ∈ N0)

sgi sgi+1 sgi+2

Active replicas
Primary s0 s0 s1
Follower s1 s2 s2

Passive replica s2 s1 s0

Table 2: Synchronous group combinations (t = 1).

techniques [9, 22, 12] where the entire view-change is led
by a single replica, usually the primary of the new view.
Instead, in XPaxos view change, every active replica in
sgi+1 retrieves information about requests committed in
preceding views. Intuitively, with correct majority of cor-
rect and synchronous replicas, at least one correct and
synchronous replica from sgi+1 will contact (at least one)
correct and synchronous replica from sgi and transfer the
latest correct commit log to the new view i+1.

In the following, we first describe how we choose ac-
tive replicas for each view. Then, we explain how view
changes are initiated, and, finally, how view changes are
performed.

4.3.1 Choosing active replicas

To choose active replicas for view i, we may enumer-
ate all sets containing t + 1 replicas (i.e.,

(2t+1
t+1

)
sets)

which then alternate as synchronous groups across views
in a round-robin fashion. In addition, each synchronous
group uniquely determines the primary. We assume that
the mapping from view numbers to synchronous groups
is known to all replicas (see e.g., Table 2).

The above simple scheme works well for small num-
ber of replicas (e.g., t = 1 and t = 2). For a large num-
ber of replicas, the combinatorial number of synchronous
groups may be inefficient. To this end, XPaxos can be
modified to rotate only the leader, which may then resort
to deterministic verifiable pseudorandom selection of the
set of f followers in each view. The exact details of such
a scheme would, however, exceed the scope of this paper.

4.3.2 View-change initiation

If a synchronous group in view i (denoted by sgi) does
not make progress, XPaxos performs a view change.
Only an active replica of sgi may initiate a view change.

An active replica s j ∈ sgi initiates a view change if
(i) s j receives a message from another active replica that
does not conform to the protocol (e.g., an invalid signa-
ture), (ii) the retransmission timer at s j expires, (iii) s j
does not complete a view change to view i in a timely
manner, or (iv) s j receives a valid SUSPECT message for
view i from another replica in sgi. Upon a view-change
initiation, s j stops participating in the current view and
sends 〈SUSPECT, i,s j〉σs j

to all other replicas.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 491

33

s0

s1

s2

2∆

SUSPECT 1
VIEW-CHANGE 2

3 VC-FINAL
4 NEW-VIEW

1 2

2

2

3

3

4 with signature

Figure 3: Illustration of XPaxos view change: the syn-
chronous group is changed from (s0,s1) to (s0,s2).

4.3.3 Performing the view change

Upon receiving a SUSPECT message from an active
replica in view i (see the message pattern in Figure 3),
replica s j stops processing messages of view i and sends
m = 〈VIEW-CHANGE, i + 1,s j,CommitLogs j〉σs j

to the
t + 1 active replicas of sgi+1. A VIEW-CHANGE mes-
sage contains the commit log CommitLogs j of s j. Com-
mit logs might be empty (e.g., if s j was passive).

Note that XPaxos requires all active replicas in the
new view to collect the most recent state and its proof
(i.e., VIEW-CHANGE messages), rather than only the new
primary. Otherwise, a faulty new primary could, even
outside anarchy, purposely omit VIEW-CHANGE mes-
sages that contain the most recent state. Active replica
s j in view i+ 1 waits for at least n− t VIEW-CHANGE
messages from all, but also waits for 2∆ time, trying to
collect as many messages as possible.

Upon completion of the above protocol, each ac-
tive replica s j ∈ sgi+1 inserts all VIEW-CHANGE mes-
sages it has received into set VCSet i+1

s j
. Then s j sends

〈VC-FINAL, i+1,s j,VCSet i+1
s j
〉σs j

to every active replica
in view i+1. This serves to exchange the received VIEW-
CHANGE messages among active replicas.

Every active replica s j ∈ sgi+1 must receive VC-FINAL
messages from all active replicas in sgi+1, after which
s j extends the value VCSet i+1

s j
by combining VCSet i+1

∗
sets piggybacked in VC-FINAL messages. Then, for each
sequence number sn, an active replica selects the commit
log with the highest view number in all VIEW-CHANGE
messages, to confirm the committed request at sn.

Afterwards, to prepare and commit the selected re-
quests in view i + 1, the new primary psi+1 sends
〈NEW-VIEW, i + 1,PrepareLog〉σpsi+1

to every active
replica in sgi+1, where the array PrepareLog contains
the prepare logs generated in view i+1 for each selected
request. Upon receiving a NEW-VIEW message, every
active replica s j ∈ sgi+1 processes the prepare logs in
PrepareLog as described in the common case (see Sec-
tion 4.2).

Finally, every active replica s j ∈ sgi+1 makes sure that
all selected requests in PrepareLog are committed in
view i+1. When this condition is satisfied, XPaxos can
start processing new requests.

4.4 Fault detection

XPaxos does not guarantee consistency in anarchy.
Hence, non-crash faults could violate XPaxos consis-
tency in the long run, if they persist long enough to even-
tually coincide with enough crash or network faults. To
cope with long-lived faults, we propose (an otherwise op-
tional) Fault Detection (FD) mechanism for XPaxos.

Roughly speaking, FD guarantees the following prop-
erty: if a machine p suffers a non-crash fault outside an-
archy in a way that would cause inconsistency in anar-
chy, then XPaxos FD detects p as faulty (outside anar-
chy). In other words, any potentially fatal fault that oc-
curs outside anarchy would be detected by XPaxos FD.

Here, we sketch how FD works in the case t = 1 (see
[31] for details), focusing on detecting a specific non-
crash fault that may render XPaxos inconsistent in an-
archy — a data loss fault by which a non-crash-faulty
replica loses some of its commit log prior to a view
change. Intuitively, data loss faults are dangerous as they
cannot be prevented by the straightforward use of digital
signatures.

Our FD mechanism entails modifying the XPaxos
view change as follows: in addition to exchanging their
commit logs, replicas also exchange their prepare logs.
Notice that in the case t = 1 only the primary maintains
a prepare log (see Section 4.2). In the new view, the
primary prepares and the follower commits all requests
contained in transferred commit and prepare logs.

With the above modification, to violate consistency,
a faulty primary (of preceding view i) would need to
exhibit a data loss fault in both its commit log and its
prepare log. However, such a data loss fault in the pri-
mary’s prepare log would be detected, outside anarchy,
because (i) the (correct) follower of view i would reply
in the view change and (ii) an entry in the primary’s pre-
pare log causally precedes the respective entry in the fol-
lower’s commit log. By simply verifying the signatures
in the follower’s commit log, the fault of a primary is de-
tected. Conversely, a data loss fault in the commit log
of the follower of view i is detected outside anarchy by
verifying the signatures in the commit log of the primary
of view i.

4.5 XPaxos optimizations

Although the common-case and view-change protocols
described above are sufficient to guarantee correctness,
we applied several standard performance optimizations
to XPaxos. These include checkpointing and lazy repli-
cation [26] to passive replicas (to help shorten the state
transfer during view change) as well as batching and
pipelining (to improve the throughput). Below, we pro-
vide a brief overview of these optimizations; the details

492 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

can be found in [31].
Checkpointing. Similarly to other replication proto-
cols, XPaxos includes a checkpointing mechanism that
speeds up view changes and allows garbage collec-
tion (by shortening commit logs). To that end, every
CHK requests (where CHK is a configurable parameter)
XPaxos checkpoints the state within the synchronous
group. Then the proof of checkpoint is lazily propagated
to passive replicas.
Lazy replication. To speed up the state transfer in view
change, every follower in the synchronous group lazily
propagates the commit log to one passive replica. With
lazy replication, a new active replica, which might be
the passive replica in the preceding view, may only need
to retrieve the missing state from others during a view
change.
Batching and pipelining. To improve the throughput of
cryptographic operations, the primary batches several re-
quests when preparing. The primary waits for B requests,
then signs the batched request and sends it to every fol-
lower. If primary receives less than B requests within
a time limit, the primary batches all requests it has re-
ceived.

4.6 Correctness arguments
Consistency (Total Order). XPaxos enforces the fol-
lowing invariant, which is key to total order.

Lemma 1. Outside anarchy, if a benign client c commits
a request req with sequence number sn in view i, and a
benign replica sk commits the request req′ with sn in view
i′ > i, then req = req′.

A benign client c commits request req with sequence
number sn in view i only after c has received matching
replies from t +1 active replicas in sgi. This implies that
every benign replica in sgi stores req into its commit log
under sequence number sn. In the following, we focus
on the special case where: i′ = i+ 1. This serves as the
base step for the proof of Lemma 1 by induction across
views which we give in [31].

Recall that, in view i′ = i + 1, all (benign) repli-
cas from sgi+1 wait for n− t = t + 1 VIEW-CHANGE
messages containing commit logs transferred from other
replicas, as well as for the timer set to 2∆ to expire. Then,
replicas in sgi+1 exchange this information within VC-
FINAL messages. Note that, outside anarchy, there ex-
ists at least one correct and synchronous replica in sgi+1,
say s j. Hence, a benign replica sk that commits req′ in
view i+ 1 under sequence number sn must have had re-
ceived VC-FINAL from s j. In turn, s j waited for t + 1
VIEW-CHANGE messages (and timer 2∆), so it received
a VIEW-CHANGE message from some correct and syn-
chronous replica sx ∈ sgi (such a replica exists in sgi as at

most t replicas in sgi are non-crash-faulty or partitioned).
As sx stored req under sn in its commit log in view i, it
forwards this information to s j in a VIEW-CHANGE mes-
sage, and s j forwards this information to sk within a VC-
FINAL. Hence req = req′ follows.

Availability. XPaxos availability is guaranteed if
the synchronous group contains only correct and syn-
chronous replicas. With eventual synchrony, we can as-
sume that, eventually, there will be no network faults. In
addition, with all combinations of t +1 replicas rotating
in the role of active replicas, XPaxos guarantees that,
eventually, view change in XPaxos will complete with
t +1 correct and synchronous active replicas.

5 Performance Evaluation

In this section, we evaluate the performance of XPaxos
and compare it to that of Zyzzyva [22], PBFT [9] and a
WAN-optimized version of Paxos [27], using the Ama-
zon EC2 worldwide cloud platform. We chose geo-
replicated, WAN settings as we believe that these are a
better fit for protocols that tolerate Byzantine faults, in-
cluding XFT and BFT. Indeed, in WAN settings (i) there
is no single point of failure such as a switch interconnect-
ing machines, (ii) there are no correlated failures due to,
e.g., a power-outage, a storm, or other natural disasters,
and (iii) it is difficult for the adversary to flood the net-
work, correlating network and non-crash faults (the last
point is relevant for XFT).

In the remainder of this section, we first present the ex-
perimental setup (Section 5.1), and then evaluate the per-
formance (throughput and latency) in the fault-free sce-
nario (Section 5.2) as well as under faults (Section 5.3).
Finally, we perform a performance comparison using
a real application, the ZooKeeper coordination service
[19] (Section 5.4), by comparing native ZooKeeper to
ZooKeeper variants that use the four replication proto-
cols mentioned above.

5.1 Experimental setup
5.1.1 Synchrony and XPaxos

In a practical deployment of XPaxos, a critical param-
eter is the value of timeout ∆, i.e., the upper bound on
the communication delay between any two correct ma-
chines. If the round-trip time (RTT) between two correct
machines takes more than 2∆, we declare a network fault
(see Section 2). Notably, ∆ is vital to the XPaxos view-
change (Section 4.3).

To understand the value of ∆ in our geo-replicated
context, we ran a 3-month experiment during which we
continuously measured the round-trip latency across six
Amazon EC2 datacenters worldwide using TCP ping

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 493

US West (CA) Europe (EU) Tokyo (JP) Sydney (AU) Sao Paolo (BR)
US East (VA) 88 /1097 /82190 /166390 92 /1112 /85649 /169749 179 /1226 /81177 /165277 268 /1372 /95074 /179174 146 /1214 /85434 /169534
US West (CA) 174 /1184 /1974 /15467 120 /1133 /1180 /6210 186 /1209 /6354 /51646 207 /1252 /90980 /169080
Europe (EU) 287 /1310 /1397 /4798 342 /1375 /3154 /11052 233 /1257 /1382 /9188
Tokyo (JP) 137 /1149 /1414 /5228 394 /2496 /11399 /94775
Sydney (AU) 392 /1496 /2134 /10983

Table 3: Round-trip latency of TCP ping (hping3) across Amazon EC2 datacenters, collected during three months.
The latencies are given in milliseconds, in the format: average / 99.99% / 99.999% / maximum.

(hping3). We used the least expensive EC2 micro in-
stances, which arguably have the highest probability of
experiencing variable latency due to virtualization. Each
instance was pinging all other instances every 100 ms.
The results of this experiment are summarized in Ta-
ble 3. While we detected network faults lasting up to
3 min, our experiment showed that the round-trip la-
tency between any two datacenters was less than 2.5 sec
99.99% of the time. Therefore, we adopted the value of
∆ = 2.5/2 = 1.25 sec.

5.1.2 Protocols under test

We compare XPaxos with three protocols whose
common-case message patterns when t = 1 are shown
in Figure 4. The first two are BFT protocols, namely (a
speculative variant of) PBFT [9] and Zyzzyva [22], and
require 3t+1 replicas to tolerate t faults. We chose PBFT
because it is possible to derive a speculative variant of the
protocol that relies on a 2-phase common-case commit
protocol across only 2t + 1 replicas (Figure 4a; see also
[9]). In this PBFT variant, the remaining t replicas are
not involved in the common case, which is more efficient
in a geo-replicated settings. We chose Zyzzyva because
it is the fastest BFT protocol that involves all replicas in
the common case (Figure 4b). The third protocol we
compare against is a very efficient WAN-optimized vari-
ant of crash-tolerant Paxos inspired by [5, 23, 13]. We
have chosen the variant of Paxos that exhibits the fastest
write pattern (Figure 4c). This variant requires 2t + 1
replicas to tolerate t faults, but involves t + 1 replicas in
the common case, i.e., just like XPaxos.

To provide a fair comparison, all protocols rely on the
same Java code base and use batching, with the batch size
set to 20. We rely on HMAC-SHA1 to compute MACs
and RSA1024 to sign and verify signatures computed us-
ing the Crypto++ [1] library that we interface with the
various protocols using JNI.

5.1.3 Experimental testbed and benchmarks

We run the experiments on the Amazon EC2 platform
which comprises widely distributed datacenters, inter-
connected by the Internet. Communications between
datacenters have a low bandwidth and a high latency. We
run the experiments on mid-range virtual machines that

primary

s
1

s
2

s
3

client

(a) PBFT

primary

s
1

s
2

s
3

client

(b) Zyzzyva

leader

s
1

s
2

client

(c) Paxos

Figure 4: Communication patterns of the three protocols
under test (t = 1).

contain 8 vCPUs, 15 GB of memory, 2 x 80 GB SSD
storage, and run Ubuntu Server 14.04 LTS (PV) with the
Linux 3.13.0-24-generic x86 64 kernel.

In the case t = 1, Table 4 gives the deployment of the
different replicas at different datacenters, for each pro-
tocol analyzed. Clients are always located in the same
datacenter as the (initial) primary to better emulate what
is done in modern geo-replicated systems where clients
are served by the closest datacenter [37, 13].3

To stress the protocols, we run a microbenchmark that
is similar to the one used in [9, 22]. In this microbench-
mark, each server replicates a null service (this means
that there is no execution of requests). Moreover, clients
issue requests in closed-loop: a client waits for a reply
to its current request before issuing a new request. The
benchmark allows both the request size and the reply size
to be varied. For space limitations, we only report re-
sults for two request sizes (1kB, 4kB) and one reply size
(0kB). We refer to these microbenchmarks as 1/0 and 4/0
benchmarks, respectively.

3In practice, modern geo-replicated system, like Spanner [13], use
hundreds of CFT SMR instances across different partitions to accom-
modate geo-distributed clients.

494 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2 Fault-free performance

We first compare the performance of protocols when t =
1 in replica configurations as shown in Table 4, using the
1/0 and 4/0 microbenchmarks. The results are shown in
Figures 5a and 5b. In each graph, the X-axis shows the
throughput (in kops/sec), and Y-axis the latency (in ms).

PBFT Zyzzyva Paxos XPaxos EC2 Region
Primary Primary Primary Primary US West (CA)

Active Active
Active Follower US East (VA)
Passive Passive Tokyo (JP)

Passive - - Europe (EU)

Table 4: Configurations of replicas. Shaded replicas are
not used in the common case.

0 5 10 15 20 25 30
0

100

200

300

400

500

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(a) 1/0 benchmark, t = 1

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900
4/0

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(b) 4/0 benchmark, t = 1

0 5 10 15 20
0

100

200

300

400

500

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(c) 1/0 benchmark, t = 2

Figure 5: Fault-free performance

As we can see, in both benchmarks, XPaxos achieves
a significantly better performance than PBFT and
Zyzzyva. This is because, in a worldwide cloud envi-
ronment, the network is the bottleneck and the message
patterns of BFT protocols, namely PBFT and Zyzzyva,
tend to be expensive. Compared with PBFT, the sim-
pler message pattern of XPaxos allows better through-
put. Compared with Zyzzyva, XPaxos puts less stress
on the leader and replicates requests in the common case
across 3 times fewer replicas than Zyzzyva (i.e., across t
followers vs. across all other 3t replicas). Moreover, the
performance of XPaxos is very close to that of Paxos.
Both Paxos and XPaxos implement a round-trip across
two replicas when t = 1, which renders them very effi-
cient.

Next, to assess the fault scalability of XPaxos, we ran
the 1/0 micro-benchmark in configurations that tolerate
two faults (t = 2). We use the following EC2 datacen-
ters for this experiment: CA (California), OR (Oregon),
VA (Virginia), JP (Tokyo), EU (Ireland), AU (Sydney)
and SG (Singapore). We place Paxos and XPaxos ac-
tive replicas in the first t + 1 datacenters, and their pas-
sive replicas in the next t datacenters. PBFT uses the
first 2t + 1 datacenters for active replicas and the last t
for passive replicas. Finally, Zyzzyva uses all replicas as
active replicas.

We observe that XPaxos again clearly outperforms
PBFT and Zyzzyva and achieves a performance very
close to that of Paxos. Moreover, unlike PBFT and
Zyzzyva, Paxos and XPaxos only suffer a moderate per-
formance decrease with respect to the t = 1 case.

5.3 Performance under faults

In this section, we analyze the behavior of XPaxos under
faults. We run the 1/0 micro-benchmark on three replicas
(CA, VA, JP) to tolerate one fault (see also Table 4). The
experiment starts with CA and VA as active replicas, and
with 2500 clients in CA. At time 180 sec, we crash the
follower, VA. At time 300 sec, we crash the CA replica.
At time 420 sec, we crash the third replica, JP. Each
replica recovers 20 sec after having crashed. Moreover,
the timeout 2∆ (used during state transfer in view change,
Section 4.3) is set to 2.5 sec (see Section 5.1.1). We show
the throughput of XPaxos in function of time in Fig-
ure 6, which also indicates the active replicas for each
view. We observe that after each crash, the system per-
forms a view change that lasts less than 10 sec, which is
very reasonable in a geo-distributed setting. This fast ex-
ecution of the view-change subprotocol is a consequence
of lazy replication in XPaxos that keeps passive replicas
updated. We also observe that the throughput of XPaxos
changes with the views. This is because the latencies be-
tween the primary and the follower and between the pri-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 495

mary and clients vary from view to view.

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

th
ro

ug
hp

ut
 (k

op
s/

se
c)

CA, VA

CA, JP

VA, JP

CA, VA

Figure 6: XPaxos under faults.

5.4 Macro-benchmark: ZooKeeper
To assess the impact of our work on real-life appli-
cations, we measured the performance achieved when
replicating the ZooKeeper coordination service [19] us-
ing all protocols considered in this study: Zyzzyva,
PBFT, Paxos and XPaxos. We also compare with the
native ZooKeeper performance, when the system is repli-
cated using the built-in Zab protocol [20]. This protocol
is crash-resilient and requires 2t +1 replicas to tolerate t
faults.

We used the ZooKeeper 3.4.6 codebase. The integra-
tion of the various protocols inside ZooKeeper was car-
ried out by replacing the Zab protocol. For fair com-
parison to native ZooKeeper, we made a minor modifi-
cation to native ZooKeeper to force it to use (and keep)
a given node as primary. To focus the comparison on
the performance of replication protocols, and avoid hit-
ting other system bottlenecks (such as storage I/O that is
not very efficient in virtualized cloud environments), we
store ZooKeeper data and log directories on a volatile
tmpfs file system. The configuration tested tolerates one
fault (t = 1). ZooKeeper clients were located in the same
region as the primary (CA). Each client invokes 1 kB
write operations in a closed loop.

Figure 7 depicts the results. The X-axis represents
the throughput in kops/sec. The Y-axis represents the la-
tency in ms. In this macro-benchmark, we find that Paxos
and XPaxos clearly outperform BFT protocols and that
XPaxos achieves a performance close to that of Paxos.
More surprisingly, we can see that XPaxos is more ef-
ficient than the built-in Zab protocol, although the latter
only tolerates crash faults. For both protocols, the bottle-
neck in the WAN setting is the bandwidth at the leader,
but the leader in Zab sends requests to all other 2t repli-
cas whereas the XPaxos leader sends requests only to
t followers, which yields a higher peak throughput for
XPaxos.

0 5 10 15 20
0

50

100

150

200

250

300

350

400

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva
Zab

Figure 7: Latency vs. throughput for the ZooKeeper ap-
plication (t = 1).

6 Reliability Analysis

In this section, we illustrate the reliability guarantees of
XPaxos by analytically comparing them with those of
the state-of-the-art asynchronous CFT and BFT proto-
cols. For simplicity of the analysis, we consider the fault
states of the machines to be independent and identically
distributed random variables.

We denote the probability that a replica is correct
(resp., crash-faulty) by pcorrect (resp., pcrash). The prob-
ability that a replica is benign is pbenign = pcorrect +
pcrash. Hence, a replica is non-crash-faulty with prob-
ability pnon-crash = 1− pbenign. Besides, we assume there
is a probability psynchrony that a replica is not partitioned,
where psynchrony is a function of ∆, the network, and
the system environment. Finally, the probability that a
replica is partitioned equals 1− psynchrony.

Aligned with the industry practice, we measure the re-
liability guarantees and coverage of fault scenarios us-
ing nines of reliability. Specifically, we distinguish nines
of consistency and nines of availability and use these
measures to compare different fault models. We intro-
duce a function 9of(p) that turns a probability p into the
corresponding number of “nines”, by letting 9of(p) =
b− log10(1− p)c. For example, 9of(0.999) = 3. For
brevity, 9benign stands for 9of(pbenign), and so on, for
other probabilities of interest.

Here, we focus on comparing consistency guarantees,
which is less obvious than comparing availability, given
that XPaxos clearly guarantees better availability than
any asynchronous CFT or BFT protocol (see Table 1).
The availability analysis can be found in [31].

6.1 XPaxos vs. CFT

We start with the number of nines of consistency for an
asynchronous CFT protocol, denoted by 9ofC(CFT) =
9of(P[CFT is consistent]). As P[CFT is consistent] =

496 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

pn
benign, a straightforward calculation yields:

9ofC(CFT)=
⌊
−log10(1− pbenign)−log10(

n−1

∑
i=0

pi
benign)

⌋
,

which gives 9ofC(CFT)≈ 9benign−dlog10(n)e for values
of pbenign close to 1, when pi

benign decreases slowly. As a
rule of thumb, for small values of n, i.e., n < 10, we have
9ofC(CFT)≈ 9benign−1.

In other words, in typical configurations, where few
faults are tolerated [13], a CFT system as a whole loses
one nine of consistency from the likelihood that a single
replica is benign.

We now quantify the advantage of XPaxos over asyn-
chronous CFT. From Table 1, if there is no non-crash
fault, or there are no more than t faults (machine faults
or network faults), XPaxos is consistent, i.e.,

P[XPaxos is consistent] = pn
benign+

t=b n−1
2 c

∑
i=1

(
n
i

)
pi

non-crash

×
t−i

∑
j=0

(
n− i

j

)
p j

crash× pn−i− j
correct×

t−i− j

∑
k=0

(
n− i− j

k

)
×

pn−i− j−k
synchrony× (1− psynchrony)

k.

To quantify the difference between XPaxos and
CFT more tangibly, we calculated 9ofC(XPaxos) and
9ofC(CFT) for all values of 9benign, 9correct and 9synchrony
(9benign ≥ 9correct) between 1 and 20 in the special cases
where t = 1 and t = 2, which are the most relevant cases
in practice. For t = 1, we observed the following relation
(the t = 2 case is given in [31]):

9ofC(XPaxost=1)−9ofC(CFTt=1) =
9correct−1, 9benign > 9synchrony ∧

9synchrony = 9correct,

min(9synchrony,9correct), otherwise.

Hence, for t = 1, we observe that the number of nines
of consistency XPaxos adds on top of CFT is propor-
tional to the nines of probability for a correct or syn-
chronous machine. The added nines are not directly re-
lated to pbenign, although pbenign ≥ pcorrect must hold.

Example 1. When pbenign = 0.9999 and pcorrect =
psynchrony = 0.999, we have pnon-crash = 0.0001 and
pcrash = 0.0009. In this example, 9× pnon-crash = pcrash,
i.e., if a machine suffers a faults 10 times, then one of
these is a non-crash fault and the rest are crash faults.
In this case, 9ofC(CFTt=1) = 9benign − 1 = 3, whereas
9ofC(XPaxost=1) − 9ofC(CFTt=1) = 9correct − 1 = 2,
i.e., 9ofC(XPaxost=1) = 5. XPaxos adds 2 nines of

consistency on top of CFT and achieves 5 nines of con-
sistency in total.
Example 2. In a slightly different example, let
pbenign = psynchrony = 0.9999 and pcorrect = 0.999, i.e.,
the network behaves more reliably than in Exam-
ple 1. 9ofC(CFTt=1) = 9benign − 1 = 3, whereas
9ofC(XPaxost=1)− 9ofC(CFTt=1) = pcorrect = 3, i.e.,
9ofC(XPaxost=1) = 6. XPaxos adds 3 nines of consis-
tency on top of CFT and achieves 6 nines of consistency
in total.

6.2 XPaxos vs. BFT
Recall that (see Table 1) SMR in asynchronous BFT
model is consistent whenever no more than one-third of
the machines are non-crash-faulty. Hence,

P[BFT is consistent] =
t=b n−1

3 c

∑
i=0

(
n
i

)
(1− pbenign)

i× pn−i
benign.

We first examine the conditions under which XPaxos
has stronger consistency guarantees than BFT. Fix-
ing the value t of tolerated faults, we observe
that P[XPaxos is consistent] > P[BFT is consistent] is
equivalent to

p2t+1
benign+

t

∑
i=1

(
2t +1

i

)
pi

non-crash×
t−i

∑
j=0

(
2t +1− i

j

)
p j

crash×

p2t+1−i− j
correct ×

t−i− j

∑
k=0

(
2t +1− i− j

k

)
p2t+1−i− j−k

synchrony ×

(1− psynchrony)
k >

t

∑
i=0

(
3t +1

i

)
p3t+1−i

benign (1− pbenign)
i.

In the special case when t = 1, the above inequality
simplifies to

pcorrect× psynchrony > p1.5
benign.

Hence, for t = 1, XPaxos has stronger consistency
guarantees than any asynchronous BFT protocol when-
ever the probability that a machine is correct and not par-
titioned is larger than the power 1.5 of the probability that
a machine is benign. This is despite the fact that BFT is
more expensive than XPaxos as t = 1 implies 4 replicas
for BFT and only 3 for XPaxos.

In terms of nines of consistency, again for t = 1 (t =
2 is again given in [31]), we calculated the difference
in consistency between XPaxos and BFT SMR, for all
values of 9benign, 9correct and 9synchrony ranging between 1
and 20, and observed the following relation:

9ofC(BFTt=1)−9ofC(XPaxost=1) =

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 497

9benign−9correct +1, 9benign > 9synchrony ∧

9synchrony = 9correct,

9benign−min(9correct,9synchrony), otherwise.

Notice that in cases where XPaxos guarantees better
consistency than BFT (pcorrect× psynchrony > p1.5

benign), it is
only “slightly” better and does not yield additional nines.

Example 1 (cont’d.). Building upon our exam-
ple, pbenign = 0.9999 and psynchrony = pcorrect = 0.999,
we have 9ofC(BFTt=1)− 9ofC(XPaxost=1) = 9benign−
9synchrony + 1 = 2, i.e., 9ofC(XPaxost=1) = 5 and
9ofC(BFTt=1) = 7. BFT brings 2 nines of consistency
on top of XPaxos.

Example 2 (cont’d.). When pbenign = psynchrony =
0.9999 and pcorrect = 0.999, we have 9ofC(BFTt=1)−
9ofC(XPaxost=1) = 1, i.e., 9ofC(XPaxost=1) = 6 and
9ofC(BFTt=1) = 7. XPaxos has one nine of consistency
less than BFT (albeit the only 7th).

7 Related work and concluding remarks

In this paper, we introduced XFT, a novel fault-tolerance
model that allows the design of efficient protocols that
tolerate non-crash faults. We demonstrated XFT through
XPaxos, a novel state-machine replication protocol that
features many more nines of reliability than the best
crash-fault-tolerant (CFT) protocols with roughly the
same communication complexity, performance and re-
source cost. Namely, XPaxos uses 2t + 1 replicas and
provides all the reliability guarantees of CFT, but is also
capable of tolerating non-crash faults, as long as a major-
ity of XPaxos replicas are correct and can communicate
synchronously among each other.

As XFT is entirely realized in software, it is funda-
mentally different from an established approach that re-
lies on trusted hardware for reducing the resource cost of
BFT to 2t +1 replicas only [15, 30, 21, 39].

XPaxos is also different from PASC [14], which
makes CFT protocols tolerate a subset of Byzantine
faults using ASC-hardening. ASC-hardening modifies
an application by keeping two copies of the state at each
replica. It then tolerates Byzantine faults under the “fault
diversity” assumption, i.e., that a fault will not corrupt
both copies of the state in the same way. Unlike XPaxos,
PASC does not tolerate Byzantine faults that affect the
entire replica (e.g., both state copies).

In this paper, we did not explore the impact on varying
the number of tolerated faults per fault class. In short,
this approach, known as the hybrid fault model and in-
troduced in [38] distinguishes the threshold of non-crash
faults (say b) despite which safety should be ensured,
from the threshold t of faults (of any class) despite which
the availability should be ensured (where often b ≤ t).

The hybrid fault model and its refinements [11, 35] ap-
pear orthogonal to our XFT approach.

Specifically, Visigoth Fault Tolerance (VFT) [35] is a
recent refinement of the hybrid fault model. Besides hav-
ing different thresholds for non-crash and crash faults,
VFT also refines the space between network synchrony
and asynchrony by defining the threshold of network
faults that a VFT protocol can tolerate. VFT is, however,
different from XFT in that it fixes separate fault thresh-
olds for non-crash and network faults. This difference
is fundamental rather than notational, as XFT cannot be
expressed by choosing specific values of VFT thresholds.
For instance, XPaxos can tolerate, with 2t+1 replicas, t
partitioned replicas, t non-crash faults and t crash faults,
albeit not simultaneously. Specifying such requirements
in VFT would yield at least 3t + 1 replicas. In addition,
VFT protocols have more complex communication pat-
terns than XPaxos. That said, many of the VFT con-
cepts remain orthogonal to XFT. It would be interesting
to explore interactions between the hybrid fault model
(including its refinements such as VFT) and XFT in the
future.

Going beyond the research directions outlined above,
this paper opens also other avenues for future work. For
instance, many important distributed computing prob-
lems that build on SMR, such as distributed storage and
blockchain, deserve a novel look at them through the
XFT prism.

Acknowledgments

We thank Shan Lu and anonymous OSDI reviewers for
their invaluable comments that helped us considerably to
improve the paper. Shengyun Liu’s work was supported
in part by the National Key Research and Development
Program (2016YFB1000101) and the China Scholarship
Council. This work was also supported in part by the
EU H2020 project SUPERCLOUD (grant No. 643964)
and the Swiss Secretariat for Education, Research and
Innovation (contract No. 15.0025).

References

[1] Crypto++ library 5.6.2. http://www.cryptopp.com/,
2014.

[2] B. Alpern and F. Schneider. Recognizing safety
and liveness. Distributed Computing, 2(3):117–
126, 1987.

[3] P.-L. Aublin, R. Guerraoui, N. Knežević,
V. Quéma, and M. Vukolić. The next 700
BFT protocols. ACM Trans. Comput. Syst.,
32(4):12:1–12:45, Jan. 2015.

498 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[4] P. Bailis and K. Kingsbury. The network is reliable.
Commun. ACM, 57(9):48–55, 2014.

[5] J. Baker, C. Bond, J. C. Corbett, J. J. Furman,
A. Khorlin, J. Larson, J. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
Fifth Biennial Conference on Innovative Data Sys-
tems Research (CIDR), pages 223–234, 2011.

[6] P. Berman, J. A. Garay, and K. J. Perry. Towards
optimal distributed consensus. In Proc. 30th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 410–415, 1989.

[7] G. Bracha and S. Toueg. Asynchronous consensus
and broadcast protocols. J. ACM, 32(4):824–840,
1985.

[8] B. Calder, J. Wang, A. Ogus, et al. Windows Azure
storage: A highly available cloud storage service
with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 143–157. ACM,
2011.

[9] M. Castro and B. Liskov. Practical Byzantine
fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, Nov. 2002.

[10] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: An engineering perspective. In
Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Principles of Distributed Computing,
PODC 2007, pages 398–407, 2007.

[11] A. Clement, M. Kapritsos, S. Lee, Y. Wang,
L. Alvisi, M. Dahlin, and T. Riche. Upright cluster
services. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, SOSP’09,
pages 277–290, 2009.

[12] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant sys-
tems tolerate byzantine faults. In Proceedings of the
6th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2009, pages 153–
168, 2009.

[13] J. C. Corbett, J. Dean, M. Epstein, et al. Span-
ner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation,
OSDI’12, pages 251–264, Berkeley, CA, USA,
2012. USENIX Association.

[14] M. Correia, D. G. Ferro, F. P. Junqueira, and
M. Serafini. Practical hardening of crash-tolerant
systems. In 2012 USENIX Annual Technical Con-
ference, pages 453–466, 2012.

[15] M. Correia, N. F. Neves, and P. Verissimo. How
to tolerate half less one Byzantine nodes in practi-
cal distributed systems. In Proceedings of the 23rd
IEEE International Symposium on Reliable Dis-
tributed Systems, SRDS ’04, pages 174–183. IEEE
Computer Society, 2004.

[16] F. Cristian, H. Aghili, R. Strong, and D. Dolev.
Atomic broadcast: From simple message diffusion
to Byzantine agreement. Information and Compu-
tation, 118(1):158–179, 1995.

[17] D. Dolev and H. R. Strong. Authenticated algo-
rithms for Byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, Nov. 1983.

[18] C. Dwork, N. Lynch, and L. Stockmeyer. Consen-
sus in the presence of partial synchrony. J. ACM,
35, April 1988.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-
scale systems. In 2010 USENIX Annual Technical
Conference, pages 11–11, 2010.

[20] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the Conference on De-
pendable Systems and Networks (DSN), pages 245–
256, 2011.

[21] R. Kapitza, J. Behl, C. Cachin, T. Distler,
S. Kuhnle, S. V. Mohammadi, W. Schröder-
Preikschat, and K. Stengel. CheapBFT: Resource-
efficient Byzantine fault tolerance. In Proceedings
of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 295–308, New York,
NY, USA, 2012. ACM.

[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine fault tol-
erance. ACM Trans. Comput. Syst., 27(4):7:1–7:39,
Jan. 2010.

[23] T. Kraska, G. Pang, M. J. Franklin, S. Madden,
and A. Fekete. MDCC: multi-data center consis-
tency. In Eighth Eurosys Conference 2013, pages
113–126, 2013.

[24] K. Krishnan. Weathering the unexpected. Commun.
ACM, 55:48–52, Nov. 2012.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 499

[25] P. Kuznetsov and R. Rodrigues. BFTW3: Why?
When? Where? Workshop on the theory and prac-
tice of Byzantine fault tolerance. SIGACT News,
40(4):82–86, Jan. 2010.

[26] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360–391, Nov.
1992.

[27] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16:133–169, May 1998.

[28] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[29] L. Lamport, R. Shostak, and M. Pease. The Byzan-
tine generals problem. ACM Trans. Program. Lang.
Syst., 4:382–401, July 1982.

[30] D. Levin, J. R. Douceur, J. R. Lorch, and T. Mosci-
broda. TrInc: Small trusted hardware for large dis-
tributed systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Im-
plementation, NSDI’09, pages 1–14. USENIX As-
sociation, 2009.

[31] S. Liu, P. Viotti, C. Cachin, V. Quéma, and
M. Vukolić. XFT: Practical fault tolerance beyond
crashes. CoRR, abs/1502.05831, 2015.

[32] S. Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. May 2009.

[33] B. M. Oki and B. H. Liskov. Viewstamped repli-
cation: A new primary copy method to support
highly-available distributed systems. In Proceed-
ings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’88,
pages 8–17, New York, NY, USA, 1988. ACM.

[34] D. Ongaro and J. K. Ousterhout. In search of
an understandable consensus algorithm. In Proc.
USENIX Annual Technical Conference, pages 305–
319, 2014.

[35] D. Porto, J. a. Leitão, C. Li, A. Clement, A. Kate,
F. Junqueira, and R. Rodrigues. Visigoth fault tol-
erance. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, pages
8:1–8:14, New York, NY, USA, 2015. ACM.

[36] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[37] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.

In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11,
pages 385–400, New York, NY, USA, 2011. ACM.

[38] P. M. Thambidurai and Y. Park. Interactive consis-
tency with multiple failure modes. In Proceedings
of the Seventh Symposium on Reliable Distributed
Systems, SRDS, pages 93–100, 1988.

[39] G. S. Veronese, M. Correia, A. N. Bessani, L. C.
Lung, and P. Verı́ssimo. Efficient Byzantine fault-
tolerance. IEEE Trans. Computers, 62(1):16–30,
2013.

[40] M. Vukolić. The quest for scalable blockchain fab-
ric: Proof-of-work vs. BFT replication. In Open
Problems in Network Security - IFIP WG 11.4 In-
ternational Workshop, iNetSec 2015, pages 112–
125, 2015.

500 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Realizing the fault-tolerance promise of cloud storage using locks with intent

Srinath Setty Chunzhi Su⋆ Jacob R. Lorch Lidong Zhou
Hao Chen⋆ Parveen Patel Jinglei Ren

Microsoft Research

Abstract
Cloud computing promises easy development and deploy-
ment of large-scale, fault tolerant, and highly available
applications. Cloud storage services are a key enabler
of this, because they provide reliability, availability, and
fault tolerance via internal mechanisms that developers
need not reason about. Despite this, challenges remain for
distributed cloud applications developers. They still need
to make their code robust against failures of the machines
running the code, and to reason about concurrent access
to cloud storage by multiple machines.

We address this problem with a new abstraction, called
locks with intent, which we implement in a client library
called Olive. Olive makes minimal assumptions about
the underlying cloud storage, enabling it to operate on
a variety of platforms including Amazon DynamoDB
and Microsoft Azure Storage. Leveraging the underly-
ing cloud storage, Olive’s locks with intent offer strong
exactly-once semantics for a snippet of code despite fail-
ures and concurrent duplicate executions.

To ensure exactly-once semantics, Olive incurs the un-
avoidable overhead of additional logging writes. However,
by decoupling isolation from atomicity, it supports consis-
tency levels ranging from eventual to transactional. This
flexibility allows applications to avoid costly transactional
mechanisms when weaker semantics suffice. We apply
Olive’s locks with intent to build several advanced storage
functionalities, including snapshots, transactions via op-
timistic concurrency control, secondary indices, and live
table re-partitioning. Our experience demonstrates that
Olive eases the burden of creating correct, fault-tolerant
distributed cloud applications.

1 Introduction
Cloud platforms such as Amazon AWS, Google Cloud,
and Microsoft Azure are becoming popular choices for
deploying applications because they permit elastic scal-
ing, handle various operational aspects, and offer high
reliability and availability. As a common practice, cloud
platforms offer reliable storage services with simple APIs
that hide the distributed nature of the underlying storage.
Application developers are thereby freed from handling

⋆Work done during an internship at Microsoft Research. Chunzhi Su
is affiliated with The University of Texas at Austin, and Hao Chen is
affiliated with Shanghai Jiao Tong University.

distributed-systems issues such as data partitioning, fault
tolerance, and load balancing. Examples include Ama-
zon’s DynamoDB [1], Google’s Cloud Storage [8], and
Microsoft’s Azure Storage [3]. This has led to a new
paradigm for architecting applications where compute
and storage components of an application are separated:
applications store data on cloud storage, and perform
computation on a set of client virtual machines (VMs).

This emerging architecture for applications poses an
interesting new problem: Although cloud storage is made
reliable by cloud service providers via fault-tolerance pro-
tocols [38, 49], it does not completely solve the problem
of maintaining application-level consistency in face of
failures. After all, clients running an application can fail,
application processes on those clients can crash, and the
network connecting those clients to the underlying storage
can drop or reorder messages. Such issues can potentially
leave the underlying storage in an inconsistent state, or
block progress of application processes on other clients.

This problem is made even more challenging by the
fact that cloud storage services tend to offer limited, low-
level APIs. For example, the Azure Table storage service
allows atomic batch update only on objects in the same
partition [7, 21]. Cloud providers offer such APIs to allow
efficient storage implementations, to offer applications
the freedom to choose the right balance between perfor-
mance and consistency, and to help themselves internally
manage complexity and operational challenges. However,
a limited API makes it hard for programmers of cloud
applications to reason about correctness, given that clients
can issue concurrent storage operations and can fail.

We address this problem with a new abstraction called
locks with intent. The key insight behind this abstraction
is that much of the complexity in handling failures and
concurrency can be encapsulated in a simple intent con-
cept that can be used in conjunction with locks. An intent
is an arbitrary snippet of code that can contain both cloud
storage operations and local computation, but with a key
property that, when an intent execution completes, each
step in the intent is guaranteed to have executed exactly
once, despite failures, recovery, or concurrent executions.

A lock with intent lets a client lock an object in cloud
storage as long as it first provides an intent describing
what it plans to do while holding the lock. Once locked,
the intent gains exclusive access to the object, just as

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 501

a traditional lock in a shared memory model. However,
unlike a traditional lock, a locked object will eventually
be unlocked even if the client holding the lock crashes,
as long as the application is deadlock-free. Furthermore,
before the lock is unlocked, each step in the associated
intent is guaranteed to have been executed exactly once.

We implement this abstraction in a client library called
Olive. Olive’s design and implementation makes minimal
assumptions about the underlying storage, which it en-
capsulates in the form of a common storage model. This
model fits many existing cloud storage services as well
as other large-scale distributed storage systems such as
Apache Cassandra and MongoDB. Thus, Olive can work
with any such storage service unchanged by using a shim
that translates the service’s API to the model’s API.

To provide exactly-once execution semantics, Olive
leverages the underlying storage’s fault-tolerance proper-
ties. It stores each intent, with a unique identifier, in the
underlying cloud storage system itself. Olive further intro-
duces distributed atomic affinity logging (DAAL). DAAL
colocates the log entry that corresponds to executing an
intent step with the object changed by that step.

Olive also includes mechanisms to ensure progress.
Because Olive provides exactly-once semantics even if
multiple clients concurrently execute the same intent, any
client can acquire any locked object by executing the
associated intent. To ensure liveness for all intents, not
just those associated with locks other clients wish to ac-
quire, Olive introduces a special process called an intent
collector that periodically completes unfinished intents.

Using Olive’s locks with intent, we implement several
libraries that provide advanced features on top of cloud
storage. These include consistent snapshots, live table re-
partitioning, secondary indices, and ACID transactions.
Our experience with these case studies suggests that Olive
significantly reduces the burden on programmers tasked
with making code robust to failures and concurrency. Fur-
thermore, Olive’s well-defined semantics make it easy
to reason about correctness of application code despite
failures and concurrency (§4, §5).

Our work makes the following contributions:

• We propose locks with intent, a new abstraction to
simplify handling failures and concurrency in cloud
applications built atop cloud storage services.

• We introduce a novel logging scheme called distributed
atomic affinity logging (DAAL), and the idea of an
intent collector. Together, they ensure exactly-once se-
mantics despite failures and/or multiple clients execut-
ing the same intent.

• We demonstrate the feasibility of locks with intent by
implementing them in Olive and making Olive compat-
ible with a variety of cloud storage services.

• We demonstrate the generality and usability of locks
with intent by using them to build several useful li-
braries and reason about their correctness.

• We experimentally evaluate Olive on Microsoft’s Azure
Storage to determine the performance cost of using
locks with intent compared to baselines providing sim-
ilar fault-tolerance guarantees.

2 Building cloud applications: challenges
Cloud applications typically run on multiple client VMs
and store state on cloud storage: the client VMs are used
only for computation and are effectively stateless. Such
applications are fundamentally distributed and must cope
with distributed-systems challenges such as asynchrony,
concurrency, failure, and scaling.

The underlying reliable distributed cloud storage aims
to alleviate the difficulty of building cloud applications.
Its API thus generally hides the complexity of concur-
rency control, elasticity, and fault tolerance. Nevertheless,
the developer of a cloud application still has to handle
VM failures. She must also bridge the gap between rich
application semantics and the cloud storage’s simple API.

2.1 A common storage model

Different cloud storage services offer different, constantly-
evolving APIs. But, we want Olive to operate on any cloud
service without requiring significant reworking each time
a provider decides to make changes. Thus, we introduce a
common storage model, an API that has enough features
to support Olive but is simple enough to be implemented
by any cloud storage service. In particular, it is easily
implemented by popular cloud storage systems such as
Microsoft’s Azure tables and Amazon’s DynamoDB, and
by large-scale distributed storage systems such as Apache
Cassandra and MongoDB. By stripping away functional-
ity unique to certain services and focusing only on basic
operations, we enable broad applicability for Olive.

Our model is that of a storage system providing schema-
less tables. Each table row, also called an object, consists
of a key and a set of attribute/value pairs. A table may be
divided into partitions to satisfy a system-imposed limit
on maximum partition size.

API. The model’s API includes operations to
Create, Read, Update, and Delete rows (CRUD).
It also includes Scan, UpdateIfUnchanged, and
AtomicBatchUpdate, described in the next paragraphs.
Scan takes a table and a predicate as parameters, and

returns a stream providing all rows in that table satisfying
that predicate. For instance, the predicate might be “has a
count attribute with value > 5.” Every row that satisfies
the predicate throughout the scan is guaranteed to be
included. A row that only satisfies the condition some
time during the scan (e.g., because it was created, updated,

502 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

or deleted during the scan) may or may not be included.
UpdateIfUnchanged is like Update, except it does

nothing if the object to be updated has been updated or
deleted since a certain previous operation on that object.
That previous operation is identified by a handle passed to
UpdateIfUnchanged. The application can obtain such
handles because each Create, Read, and Update opera-
tion returns a handle representing that operation.
AtomicBatchUpdate lets the application perform

multiple update and insert operations atomically. In other
words, despite possible failures, either all or none of the
operations will happen. However, this atomicity guaran-
tee only works at a certain granularity: objects passed
to AtomicBatchUpdate must be in the same atomicity
scope, where the scope is a system-specific parameter.

Such a storage model is supported not only by cloud
storage services, such as Amazon DynamoDB (with rows
as the atomicity scope) and Microsoft Azure table storage
(with partitions as the atomicity scope), but also by popu-
lar storage systems, such as MongoDB (with documents
as the atomicity scope) and Cassandra (with partitions as
the atomicity scope). Azure Table supports ETags, which
can be considered as handles; DynamoDB supports condi-
tional update. MongoDB supports Update if Current and
Cassandra supports the IF keyword in INSERT, UPDATE
and DELETE statements for conditional updates, which
can be considered as generalizations of the conditional up-
date primitive in our model. Such common capabilities are
chosen by different storage services because they provide
simple and flexible primitives for concurrency-control and
fault-tolerance support, and because they can be supported
at a manageable cost and complexity. The cost and com-
plexity consideration leads to a somewhat limited API.
For example, Cassandra chooses to support partition-level
atomicity because “the underlying Paxos implementation
works at the granularity of the partition” [5].

Invisible entries. In our model, it is always possible to
put invisible entries in a scope. That is, a library inter-
posing on the API between the application and the cloud
storage can put entries in a scope, but hide them from the
application by stripping them from returned results. Even
if the only scope available is an object, this can be done
by adding special attributes to it. If scopes are larger, such
as partitions or tables, the library can use special rows.

Invisible entries should be used sparingly since they re-
duce performance and capacity. They reduce performance
when an access to a real entry necessitates one or more ac-
cesses to invisible entries. They reduce capacity by using
space that could otherwise be used for application data. In
particular, a cloud storage system often places an upper
bound on the size of a scope, e.g., a maximum row or
partition size. By using invisible entries, the interposing
library reduces the effective maximum size from the ap-
plication’s perspective. Indeed, when the application asks

1 def updateObject(key, newObj):
2 obj = curTable.Read(key)
3 lastSnapshot = curTable.Read(LAST_SNAP).value
4 curEpoch = lastSnapshot + 1
5

6 if (obj != None and obj.version <= lastSnapshot):
7 snapshotTables[lastSnapshot].Update(key, obj)
8

9 newObj.version = curEpoch
10 curTable.UpdateIfUnchanged(key, newObj)

FIGURE 1—Pseudocode for the object-update routine in a buggy
snapshot design. It sometimes requires extra work because a
snapshot table is being lazily populated.

C1

C2

C3 Update, lines 2-7

Create snapshot 5

time

Update, lines 2-4 Update, lines 9-10

FIGURE 2—Execution trace exposing a bug in the Figure 1 code.
Client C1, a slow updater, performs update lines 2–4, looking
up a certain key and finding version #5. Since the last snapshot
epoch is #4, the object is up to date and no copy-on-write is
needed so it skips to line 9. Update lines 9–10, which happen
later, update the current table with new contents but still version
#5. Meanwhile, client C2 creates a new snapshot, and client
C3 does an update involving a copy-on-write to snapshot table
#5. At the end of this trace, the snapshot invariant is violated:
snapshot table #5 contains contents that do not reflect the latest
update, just performed by C1.

for the maximum allowable size of a scope, the library
must provide a lower number than the underlying storage
system to account for this.

Lock. The primitives provided by the storage interface
can be used to implement other useful client functionality.
For example, we can implement an object lock by adding
an invisible Boolean attribute called locked to the object.
To acquire the lock, a client reads the object and gets
a handle. If the locked bit is not set, the client issues
a conditional update with the returned handle to set the
locked bit. It gets the lock if and only if that update
succeeds. To release the lock, the client resets the locked
bit via another update.

2.2 A case study: supporting snapshots

As a case study, we present the example of support-
ing storage snapshots using the common storage model
described earlier. A resulting table-snapshotting (or STa-
ble) service allows clients to create snapshots of a table
without interrupting normal operations on the table, in
addition to the standard CRUD operations. This is func-
tionality we have actually designed and implemented for
a production scenario.

To demonstrate how easy it is to accidentally introduce
bugs when designing snapshot tables, we show one of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 503

our earliest designs and the bug it contained. This design
implements snapshotting tables directly on cloud storage,
instead of using primitives like locks with intent.

Buggy STable design. In this design, each snapshot is
implemented as an actual table. However, rather than fully
populating this table when a snapshot is created, the table
is populated lazily. This makes snapshot creation quick,
which prevents snapshot creation from making the table
unavailable for an extended period of time.

Snapshots are numbered in increasing order, with the
first one being snapshot 1. Snapshots divide time into
epochs, with epoch 1 preceding snapshot 1, epoch 2 com-
ing between snapshots 1 and 2, etc. An invisible entry is
put into each object to represent its version, defined as
the last epoch it was updated in. An invisible entry is put
into the table to represent the number of the last snapshot
taken. The current epoch is one more than this number.

To lazily populate a snapshot, we use a snapshot-aware
routine for updating objects, as shown in Figure 1. If it
finds that the object version in the current table belongs in
an earlier snapshot (i.e., smaller than the current snapshot
number of the table), it copies the object to a snapshot
table before overwriting it. This makes the current table
essentially copy-on-write after a new snapshot is taken. A
key snapshot invariant for STable is that, if snapshot table
i has a row with key k, then that row contains the contents
of the last update to key k made with version i.

Figure 2 illustrates an example execution demonstrat-
ing a bug in this design that violates the snapshot invariant.
The subtle bug surfaces because a client holds on to an
old snapshot number for the STable and completes its up-
date only after a new snapshot is created and after another
client performs a copy-on-write. This delayed update as-
sociates different object contents with the version copied
to the snapshot, thereby violating the snapshot invariant.
The use of conditional update does not help because copy-
on-write is a multi-object operation.

One way to fix this bug is for the client to acquire a
lock on the object for the duration of the code in Figure 1.
This would prevent multiple updates from interleaving.
While implementing a lock is feasible as shown earlier,
one challenge is to ensure liveness when a lock holder
fails. To relieve developers from worrying about these
subtle issues and to help reason about correctness despite
concurrency and failures, we introduce a new primitive
called locks with intent, which the next section elaborates.

3 Locks with intent
As shown in the STable example of §2, the main challenge
in developing cloud applications is to ensure correctness
in the face of client failures and concurrent cross-scope
client operations. Olive therefore introduces locks with
intent, which ensures exactly-once execution (despite fail-

Application's
computation

Locks with intent

Virtual machine

Distributed storage layer (e.g., Amazon DynamoDB, Azure
tables, Cassandra, MongoDB, ...)

Common storage
model (§2.1)

Application's
computation

Locks with intent

Common storage
model (§2.1)

Application's
computation

Locks with intent

Common storage
model (§2.1)

FIGURE 3—Olive’s high level architecture. Olive exposes the
abstraction of locks with intent (§3) to higher-level applica-
tion in the form of a library. The abstraction provides eventual
exactly-once execution semantics despite failures of nodes run-
ning the Olive library. Olive provides such strong semantics
by leveraging the fault-tolerance properties of the underlying
distributed storage layer.

ures) and mutual exclusion (for concurrent operations).
We intend Olive to be used by both application and

infrastructure developers. Since our approach is flexible
enough to support a transaction library, as we will show
in §4.4, users can always use that library to have the same
simplicity offered by transactions. But, crucially, our de-
sign also allows sophisticated users to write more efficient
implementations, by reducing complexity via automatic
failure handling and simplification of concurrency.

Figure 3 depicts Olive’s high level architecture. Olive’s
locks with intent provide a new abstraction for cloud ap-
plications to handle failures and concurrency elegantly.
This abstraction is built atop the common storage model
described in §2.1, which can be mapped to different cloud
storage or distributed storage systems. Olive does not
modify the storage layer, so it preserves the performance
and scalability characteristics of existing storage services.
Furthermore, Olive does not require direct distributed
coordination among clients running an application’s com-
putation: all interactions are through cloud storage, con-
forming to the existing cloud application model.

3.1 Intents: Exactly-once execution

An intent is a request for a certain code snippet to be
executed exactly once. The snippet may contain loops or
recursive calls, but must terminate in a bounded number
of steps. An intent can involve both local computation and
operations on cloud storage. The code snippet is arbitrary,
but usually it is a critical section protected by a lock.

Determinism. Besides bounded run time, the main re-
striction on intent code is that it be deterministic. That is,
it must produce the same result when executed with the
same inputs and in the same state. Determinism makes
it possible to replay an execution after a failure by pre-

504 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cisely reproducing results up to the failure point and then
continuing execution. Non-determinism is permitted only
in Olive-provided routines, where Olive can track the
sources of non-determinism and return the same result
deterministically. For instance, Olive provides a routine
for generating random numbers; the developer must use
it instead of the system random number generator.

The code must be deterministic even if run by different
clients. For instance, it should not depend on any special
privileges possessed only by a subset of clients. §6 will
discuss removing this restriction in future work.

Non-deterministic code in an intent constitutes a bug.
Olive cannot detect this error; it simply does not guarantee
exactly-once semantics in this case.

Tracking and executing intents. Exactly-once execu-
tion of an intent is challenging because (i) the initiating
client may fail partway through executing it, and (ii) other
clients attempting to recover from the initiator’s failure
may lead to multiple, possibly concurrent, clients execut-
ing the intent. After all, failure detection may be imperfect,
so one client may incorrectly believe another has failed
and attempt to recover from that apparent failure. Olive
deals with these challenges as follows.

Olive assigns a unique intentId to each intent, and
uses this as a key when storing the intent in the intents
table. To ensure exactly-once execution semantics, Olive
must log the steps any client executes as part of an intent.
This way, if the client fails, another client will know where
to continue from during recovery. Olive does this logging
in a table named executionLog. For each step requir-
ing logging, Olive adds a new row to executionLog,
using a key combining intentId and the step number
within the intent. For local non-deterministic operations,
such as those done by Olive-provided random-number-
generation routines, Olive stores any non-deterministic
choices in executionLog. For cloud-storage operations
that return results (e.g., reads), Olive stores those results
in executionLog. This logging allows any future re-
execution of an intent to return the same result.

Due to the limited storage model described in §2.1,
Olive cannot atomically read an object from cloud stor-
age and write it to executionLog. Fortunately, it does
not have to, because read operations have no immediate
externally visible effect. In fact, for better performance,
Olive defers logging until right before it executes an ex-
ternally visible operation. As a result, a client could crash
immediately after issuing a read operation to the cloud
storage, but before logging to executionLog. In that
case, if a client resumes executing the intent, it will re-
execute the read operation, potentially getting a different
value from the cloud storage. This is safe because only
the new execution leads to externally visible effects.

DAAL. We have so far treated executionLog as if
it were a single standalone database table, but as we
will now discuss it is only logically a single table. To
achieve exactly-once semantics, when we update data
we must also, in one atomic action, log that update to
executionLog. But, as discussed in §2.1, most cloud
storage services do not support atomic actions across
tables. Thus, while it is possible to store logs of read oper-
ations in a single table, each log of a write operation must
be in the same table as the object being written.

To solve this problem, Olive introduces a novel logging
scheme called distributed atomic affinity logging (DAAL).
With DAAL, executionLog consists of two parts. The
first part, which stores the results of completed read opera-
tions, is a regular table. The second part, which stores log
entries corresponding to writes, is a set of invisible entries
distributed among the scopes in the system. To perform
an AtomicBatchUpdate that both updates an object and
inserts an executionLog entry, Olive chooses a scope
for the entry that includes the updated object.

Olive deterministically derives each entry’s identifier
from the intentId, the current intent step number, and
the key of the modified object. This ensures that, if an-
other client later tries to perform the update a second
time, it will fail because the invisible log entry already
exists. If the log entry is a row, then the second inser-
tion will fail because of a key conflict. If the log entry
is an attribute, the second insertion will fail because the
client will first do a read to ensure the absence of the
attribute, then will perform the attribute insertion using
UpdateIfUnchanged.

Olive also logs progress information in the central
intents table—one column of each intent’s row indi-
cates how many update steps of that intent have been
executed. The steps recorded in the intents table must
actually have been performed although additional steps
may have been executed that are not yet recorded. This is
just an optimization to avoid clients wasting time attempt-
ing to re-perform already-executed steps. Not recording
an already-executed step does not compromise correct-
ness because DAAL ensures that no client will be able to
successfully execute any update a second time.

Note that the first part of executionLog, the single
table holding logs of read operations, is accessed by every
client performing an intent. To prevent this table from
becoming a throughput bottleneck, or from exceeding ca-
pacity limits, Olive partitions it on intentId. The degree
of partitioning is configurable.

Liveness. Exactly-once semantics requires more than
just never executing any intent more than once. It also
requires executing each intent at least once. We ensure
this liveness property as follows.

First, we put another requirement on intent code besides
non-determinism and bounded run time. The developer

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 505

must ensure that, as long as the code is retried repeatedly,
it eventually completes.

Given this requirement, all Olive must do to achieve
liveness is to retry each intent repeatedly. To ensure such
repeated retries, Olive uses an intent collector. This spe-
cial background process periodically scans the intents
table to identify incomplete intents and complete them.

Such an intent collector guarantees liveness as long as
it never stops. Fortunately, cloud providers offer mecha-
nisms to monitor core services and to restart them if they
fail; such a mechanism should be used for the intent col-
lector. Even if this causes multiple instances of the intent
collector to coexist briefly, this is safe because of Olive’s
assurance of at-most-once semantics for each intent.

Indeed, it may be desirable to always run multiple in-
stances of the intent collector, so that if one fails and the
failure takes time to be detected and rectified, intents are
still completed promptly. Multiple instances may, for effi-
ciency, be designed to partition work among themselves,
but we have not yet implemented such partitioning.

3.2 Mutual exclusion with exactly-once semantics

Intents can be combined with locks to ensure both mutual
exclusion and exactly-once semantics, leading to a power-
ful new primitive called locks with intent. A “lock” in this
context is like a typical lock in that it restricts access to
an object or set of objects. However, the access restriction
is not to a single client but to a single intent: only clients
performing that intent are permitted access. That intent
has a step that acquires the lock, then steps that access the
locked objects, then a step that releases the lock.

From the developer’s perspective, the lock is easy to use
since it acts like a regular lock that restricts object access
to only a single client. In reality, locked objects are acces-
sible to multiple clients, but, because of the exactly-once
semantics of intents, all those clients’ object accesses are
equivalent to accesses by a single client. Thus, semanti-
cally, acquiring one of our locks is equivalent to acquiring
a lock that limits access only to a single client.

Even though our locks are semantically equivalent to
normal locks, they are safer to use. An object locked with
a normal lock can only be accessed by the client who locks
it. This is dangerous since the client may fail, rendering
the object forever unavailable. However, by allowing any
client performing the intent to access the locked object,
the developer no longer has to worry about this concern.
Locks cannot be tied up indefinitely; they will eventually
be released by the intent collector.

Despite this, a client that needs to access an object may
still have to wait a long time for the collector to release an
intent lock on it. Thus, as an additional optimization, we
introduce the following mechanism. When code within an
intent acquires a lock, we associate the intent’s intentId
with that lock using an invisible attribute. When the code

1 def updateObject_IntentCode(key, newObj):
2 obj = curTable.Read(key)
3 if obj == None:
4 return NOT_FOUND
5

6 table.Lock(obj.key)
7 lastSnapshot = curTable.Read(LAST_SNAP).value
8 curEpoch = lastSnapshot + 1
9

10 if (obj.version <= lastSnapshot):
11 snapshotTables[lastSnapshot].Update(key, obj)
12

13 newObj.version = curEpoch
14 curTable.UpdateIfUnchanged(key, newObj)
15 table.Unlock(obj.key)
16 return SUCCESS

FIGURE 4—Pseudocode for the intent code to update an object.

later releases the lock, we remove the association with
the intent’s intentId. This way, if another client needs
the lock but finds it unavailable, it can tell whether the
lock is held by an intent. If so, the blocked client can
take responsibility for immediately completing the intent,
thereby allowing itself to make progress.

4 Applications and experience
Locks with intent make it easy to reason about desirable
correctness and fault-tolerance properties of software. To
demonstrate their general utility, this section will describe
how we use them to build several components.

Note that these components are themselves generally
useful. That is, each is a library that provides applications
with a storage API richer than that of the underlying cloud
storage system. In §4.1, we discuss our STable library,
which augments the cloud storage API with a facility for
snapshotting tables. In §4.2, we discuss a library that adds
the ability to do live table re-partitioning. In §4.3, we
show how to add support for secondary indices. Finally,
in §4.4, we show how to add the ability to form ACID
transactions out of arbitrary sequences of operations.

4.1 Snapshots

One component we build is the STable library, which pro-
vides applications with the ability to take snapshots of
tables. In §2.2, we discussed how the complexity of table
snapshotting can lead to subtle bugs. In particular, the
code in Figure 1 can lead to a violation of our snapshot
invariant. The fundamental reason the bug arises is the dif-
ficulty of reasoning about the many possible interleavings
of concurrent clients.

Fortunately, intents provide a straightforward way to
reduce the possible interleavings. That is, we can create
an intent that locks obj while executing the code from
Figure 1; the resulting intent code is shown in Figure 4.
Because the intent locks obj, executions of intents on

506 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the same obj are serialized; i.e., they do not overlap.
Furthermore, we do not have to worry about liveness
issues arising from introducing locks, because locks with
intent automatically defend against failing lock holders.

Here is an argument that the snapshot invariant is main-
tained by this approach. Because the intent locks obj, all
executions of the intent on the same obj are serialized,
i.e., they do not overlap. Consider any run of the intent
that copies the contents of obj to snapshot table i. Be-
cause this copy occurs in the middle of an intent, and
all intents to obj are serialized, the copy must reflect all
earlier executions of the intent. That is, it must reflect the
last update performed so far, and the snapshot invariant
holds. We must also demonstrate that the invariant contin-
ues to hold, i.e., that a later update will not violate it by
writing to the current table with version i. To demonstrate
this, we observe that any subsequent run of the intent for
obj will be serialized afterward. Those runs will read
a lastSnapshot ≥ i, causing them to use a curEpoch
≥ i + 1. Thus, the snapshot invariant is maintained.

Note that the only object we lock is obj; we do not lock
the special row with key LOCK_SNAP. Thus, we do not
conflict with concurrent operations that update the current
snapshot number. If we were to use transactions instead
of locks with intent, we would have such a conflict.

Our STable implementation offers stronger properties
than just the snapshot invariant. For instance, it ensures
that any two reads of the same key from the same snapshot
will return the same object contents. It also offers further
functionality, like the ability to garbage-collect old snap-
shots and to roll back to earlier snapshots. These facilities
also became easier to build with locks with intent.

4.2 Live table re-partitioning

Another component we build is a library that exports
a facility for live re-partitioning of tables. This function-
ality is crucial if a table may grow to the point where it
exceeds system-imposed size limits. It can also help re-
lieve “hot spots” by dividing a frequently-accessed tables
into multiple tables with consequently greater throughput.
By building this library, we do for general cloud storage
what Zephyr [28] did for transactional storage.

A straightforward approach would be to lock the
table for the duration of re-partitioning. However, re-
partitioning potentially involves an enormous amount of
data movement, taking seconds or minutes. So, it is unrea-
sonable to block clients during re-partitioning; we must
allow concurrent operations during re-partitioning.

This concurrency requirement poses challenges for cor-
rect development. The developer must now reason about
all the possible interleavings of client operations with
steps of re-partitioning. Failure to do so can lead to bugs.

To illustrate this, Figure 5 depicts a buggy design aimed
at enabling object updates during live re-partitioning of

1 def migratePartitionToNewTable(pKey, futTable):
2 curTable = metaTable.Read(pKey).value
3 metaTable.Update(pKey, [curTable, futTable])
4

5 objectsToMove =
6 Scan(curTable, partitionKey == pKey)
7 for (obj in ObjectsToMove):
8 futTable.Create(obj.key, obj)
9 metaTable.Update(pKey, [futTable])

10

11 def updateObject(key, newObj):
12 # get partition key associated with the key
13 pKey = getPartitionKey(key)
14 tablesList = metaTable.Read(pKey).value
15

16 # check if this table is being re-partitioned
17 if (tablesList.len == 1):
18 curTable = tablesList[0]
19 curTable.Update(key, newObj)
20 else: ...

FIGURE 5—Pseudocode for the object-update routine and a
migration routine in a buggy live re-partitioning design.

tables. The bug arises in the following scenario. Sup-
pose that, when a client starts executing updateObject
for key k, there is no ongoing re-partitioning job, so the
client reaches line 17. At this point, a re-partitioning job
commences, and successfully migrates key k to the new
partition. The client then continues from line 17, writ-
ing its update only to a table that will soon be obsolete.
Eventually, the re-partitioning job reaches line 9 without
realizing there is useful data it missed in the current table.
So, when it updates the metaTable, it effectively and
incorrectly rolls back the client’s update.

Fortunately, such challenges and reasoning can be sub-
stantially mitigated due to locks with intent. Our general
strategy is to break the job of re-partitioning into small
tasks, each of which is short enough that it is acceptable
to block clients for its duration. We then use a lock with
intent for each such task, and a lock with intent for each
client operation on the table.

In this way, we do not have to reason about arbitrary
interleavings between clients and the re-partitioning job.
We only have to reason about interleavings at the coarse
scale of tasks. For instance, a client operation can overlap
the re-partitioning job, but it cannot overlap a task that
accesses the same object. More specifically, each task
corresponds to migrating one object from one partition
to another partition. This involves replacing the object
in the old partition with a marker that redirects clients
with outdated views to the new partition. Figure 6 depicts
pseudocode for the migration routine as well the object-
update procedure in the re-partitioning service that uses
locks with intent.

With this migrator design, the object-update routine
does not use locks. If an object is locked for migra-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 507

1 def migrateIntent(curTable, futTable, obj):
2 curTable.Lock(obj.key)
3 futTable.Create(obj.key, obj)
4 obj.migrated = True
5 curTable.Update(obj.key, obj)
6 curTable.Unlock(obj.key)
7

8 def migratePartitionToNewTable(pKey, futTable):
9 curTable = metaTable.Read(pKey).value

10 metaTable.Update(pKey, [curTable, futTable])
11 objsToMove =
12 Scan(curTable, partitionKey == pKey)
13 for (obj in ObjsToMove):
14 migrateIntent(curTable, futTable, obj)
15 metaTable.Update(pKey, [futTable])
16

17 def updateObject(key, newObj):
18 pKey = getPartitionKey(key)
19 tablesList = metaTable.Read(pKey).value
20 curTable = tablesList[0]
21 if (tablesList.len == 1):
22 curTable.UpdateIfUnchanged(key, newObj)
23 elif (tablesList.len == 2):
24 futTable = tablesList[1]
25 oldObj = curTable.Read(key)
26 if (oldObj.migrated == True):
27 futTable.UpdateIfUnchanged(key, newObj)
28 elif (oldObj.locked == True):
29 migrateIntent(curTable, futTable, oldObj)
30 futTable.UpdateIfUnchanged(key, newObj)
31 else:
32 curTable.UpdateIfUnchanged(key, newObj)

FIGURE 6—Pseudocode for the migration routine and the
object-update routine in the live table re-partitioning service
based on Olive’s locks with intent.

tion, it assists the migrator by executing the associated
intent, before performing its update. Otherwise, it uses
UpdateIfUnchanged to modify the object in the old par-
tition (if the object is not migrated or if no migration in
progress), or in the new partition (if the object is already
migrated). If a client holds an outdated view (e.g., it in-
correctly thinks no migration is in progress or an object is
not migrated), the UpdateIfUnchanged fails, causing it
to retry, which will update its view. Furthermore, unlike
in the buggy design shown earlier, it is safe for the object-
update routine to update an object in the old partition as
long as it has not been migrated because the migrator will
eventually move the updated object to the new partition.

Of course, locks with intent are not a panacea. There
are still several tricky cases to consider, such as how to
avoid conflict between a re-partitioning task and a client
with an outdated view attempting to insert an object with
the same key. However, we find that the number of cases
to consider is much smaller thanks to the coarsening of
operations enabled by locks with intent.

4.3 Secondary indices

Another component we build is a library that supports
constructing, maintaining, and using secondary indices.
A secondary index for a table T is a separate table T’
designed to allow quick lookups into T using a non-key
attribute Attr. Each row of T’ consists of an Attr value
and a T key. However, T’ uses the Attr values as its keys.

The main challenge in building secondary-index sup-
port is maintaining consistency between T and T’. Be-
cause cloud storage systems typically do not support
multi-table atomic transactions, there are necessarily
times when the two tables’ contents are not consistent
with each other. For example, a row may exist in T with-
out a corresponding row in T’.

To see the challenge more concretely, consider the fol-
lowing naïve algorithm for updating an object in T:

1. Update the corresponding row in T.

2. Insert a row into T’ mapping the new Attr value to
the key of the updated row.

3. Delete the row from T’ with the former Attr value.

Unfortunately, this logic is not robust to failures: if a
process running the above procedure crashes after step
1 but before completing steps 2 and 3, it will leave the
underlying storage in an inconsistent state.

We could address this with “cleanup” processes that
run in the background to periodically find and fix inconsis-
tencies between T and T’. However, in addition to compli-
cating deployment and wasting resources by continuously
scanning for inconsistencies, such cleanup processes can
actually introduce inconsistency, as in the following sce-
nario. First, a client updates an object to change Attr
from OLD to NEW, but crashes before step 3. Next, a
cleanup process notices this and decides to delete the row
in T’ with Attr=OLD. Next, another client decides to
change Attr back to OLD, and completes steps 1 through
3. Finally, the cleanup process acts on its earlier decision
and deletes the row in T’ corresponding to OLD, not real-
izing that this is actually now a useful row. This leaves T’
without any row corresponding to the object.

Olive provides a natural solution to eventually consis-
tent secondary indices. We perform steps 1–3 described
earlier in an intent that also locks the object from T. Be-
cause secondary indices are eventually consistent when
the intents complete their executions, we do not have
to worry about inconsistencies caused by intermediate
failures, like the one discussed earlier. Additionally, the
intent collector in this solution has to do less work than
the cleaner process described earlier. After all, the cleaner
process must scan all rows changed since the last time it
ran, but the intent collector only has to scan the intents
table for outstanding incomplete intents.

508 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 def atomicCommit(objectsRead, objectsModified):
2 for (obj in objectsModified):
3 table.Lock(obj.key)
4

5 success = True
6 for (obj in objectsRead): # verify read set
7 retrievedObj = table.Read(obj.key)
8 if (retrievedObj.version != obj.version):
9 success = False

10 break
11

12 if (success): # commit and unlock
13 for (obj in objectsModified):
14 obj.locked = False
15 table.Update(obj.key, obj)
16 else: # abort and unlock
17 for (obj in objectsModified):
18 table.Unlock(obj.key)

FIGURE 7—Pseudocode for atomic commit in OCC-based trans-
actions.

4.4 Transactions

The last component we build is a library that augments
the cloud storage API with the ability to form transac-
tions out of an arbitrary collection of operations. This is
valuable because, as described in §2.1, most cloud stor-
age systems do not support transactions across tables. We
will see that Olive’s locks with intent make it simple to
build a client-side library that exports APIs to execute
general-purpose ACID transactions [16, 33, 40, 55].

Our design of this transaction library is based on op-
timistic concurrency control (OCC), which has three
phases: shadow execution, verification, and update in
place [37]. To guarantee ACID semantics, an OCC pro-
tocol requires that the last two steps happen atomically.
In particular, they must be isolated from updates of other
transactions. Furthermore, all changes made by the trans-
action must be either committed or aborted in their en-
tirety. Thus, a core piece of a distributed transaction pro-
tocol is the atomic-commit mechanism. To satisfy these
requirements, distributed systems that implement transac-
tions use the following techniques: a special transaction
coordinator process uses a shadow write-ahead log to
ensure atomicity, and uses locks during the verification
step to ensure isolation from other transactions [27].

We observe that these techniques can be naturally im-
plemented by using Olive’s locks with intent. Figure 7
depicts pseudocode that can be wrapped in an intent to
execute the atomic commit mechanism with the afore-
mentioned properties. The mutual exclusion property of
Olive’s locks with intent provides the desirable isolation,
and the intent’s execution log acts as a write-ahead log.
That is, it contains all the information needed to commit
or abort a transaction. Most importantly, for liveness we
require that transaction coordinators never fail; we ensure
this by using intents as our transaction coordinators.

service without Olive with Olive

snapshots 987 665
OCC-transactions 2,201 408
live re-partitioning 2,116 474

FIGURE 8—Comparison of code line counts for services we
built with and without Olive.

 0

 10

 20

 30

Read Update

la
te

n
cy

 (
m

s)

Baseline
Olive

FIGURE 9—Latency of executing a storage operation, either
inside an intent or directly on the raw storage interface. The
logging required to ensure exactly-once execution semantics
adds up to 6–7× the baseline latency. (See text for details.)
Figure 10 depicts how these overheads are amortized when an
intent contains more than one storage operation.

4.5 Evaluation: ease of development

Before we designed Olive’s locks with intent, we created
some of the cloud services described in this section by
building directly atop the raw cloud-storage interface. It
was both tedious and error-prone as we had to reason
about many failure scenarios and consider many inter-
leavings of code steps by different clients. To concretely
demonstrate how Olive makes it easy to develop such
cloud services, we now compare the complexity of devel-
oping such cloud services with and without Olive. We use
lines of code as a proxy for code complexity.

Figure 8 depicts our results. These results demonstrate
that Olive reduces lines of code written, and thus likely
reduces complexity. This finding, in combination with our
experience (§4.1–4.4), suggests that Olive makes it signif-
icantly easier to build these services. Note that one of the
artifacts that does not use Olive (live re-partitioning) was
built by a different team with a very different approach
to making code robust to failures and concurrency. (We
note this because the comparison and feature set may not
be fully apples-to-apples.) For the case of OCC-based
transactions, as discussed in §4.4, Olive makes it simple
to express a transactional protocol.

5 Experimental evaluation
The previous section demonstrated that Olive’s locks with
intent make it easy to design, and to reason about the cor-
rectness of, new cloud services that are robust to failures
and concurrency. This section experimentally evaluates
Olive to understand its costs and benefits.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 509

 0

 5

 10

 15

 20

 25

k=1 k=4 k=16
Read (Baseline)

k=1 k=4 k=16
Read (Olive)

k=1 k=4 k=16
Update (Baseline)

k=1 k=4 k=16
Update (Olive)

p
er

-o
p

er
at

io
n

 l
at

en
cy

 (
m

s)

FIGURE 10—Per-operation latency when executing a sequence of k storage operations both normally and within an Olive intent.
As the number of operations per intent increases, the per-intent costs (e.g., registering an intent, storing the final result, etc.) are
amortized, and the per-operation latencies approach those of operations directly on the raw storage interface.

5.1 Implementation

We implement Olive as a client library in approximately
2,000 lines of C# code, including all features described in
§3. As discussed there, although we have built an intent
collector capable of coexisting with other instances of
itself, our implementation does not support partitioning
work among such instances for greater efficiency.

To allow Olive to work on multiple underlying storage
systems, we implement it atop an abstract C# interface
that exposes the storage model described in §2.1. We then
build concrete C# classes that call cloud storage systems’
APIs to implement the abstract interface. We implement
two such concrete mappings. The first maps to Azure
Table storage; it is only 38 lines of code because our
abstract storage interface maps one-to-one to its API. The
second maps to Amazon DynamoDB; it is 107 lines of
code. DynamoDB provides atomicity at the granularity of
individual objects [4], so our concrete class only allows
AtomicBatchUpdate for object scopes.

5.2 Setup and method

We experiment on Olive with Microsoft Azure Table ser-
vice as the cloud storage. For computation, we use a
G3 VM instance (8-core Intel Xeon E5 v3 family with
112 GB RAM) running Windows Server 2012 R2 in the
same availability zone as the storage service.

The principal goal of our evaluation is to understand the
costs of robustness due to Olive’s mechanisms relative to
alternative mechanisms. To do so, we compare the perfor-
mance of Olive-based artifacts with baselines providing
similar fault-tolerance guarantees. For these comparisons,
our performance metric is the latency of storage opera-
tions. In each experiment, we report the mean of at least
1,000 measurements along with the 95% confidence inter-
val for that mean. For these end-to-end experiments, we
use YCSB [25] to generate workloads.

5.3 Cost of Olive’s exactly-once semantics

To understand the costs of Olive’s logging for ensuring
exactly-once semantics, we experiment with a series of
microbenchmarks. We write two intents, one of which
issues a single Read on an object and the other of which
issues a single Update. Each object consists of a random
64-byte key and a random 1-KB value. Our baseline for
this is a snippet of code that issues the same operations
but without using Olive’s intent-execution machinery. We
run these intents and the associated baselines 1,000 times,
and measure the latency of the aforementioned operations.
Figure 9 depicts our results.

As expected, Olive pays significant latency overhead
compared to a baseline that does not ensure exactly-once
semantics. The reason is that Olive has to register its intent
by writing to the intents table, then insert DAAL en-
tries. Furthermore, our implementation writes an entry to
another results table when an intent execution is com-
plete. The last operation is not crucial to Olive, but stores
a succinct summary of the intent execution including the
final return value of the intent. Our implementation does
this so that other clients can quickly learn the final return
value of an intent by simply doing a lookup on this table.

Amortizing setup costs. Much of this overhead (regis-
tering an intent, saving the final results, etc.) is per-intent
cost. Thus, to understand the costs of Olive’s intent exe-
cution in a comprehensive manner, we run another set of
experiments in which we vary the number of operations k
per intent, setting k=1, 4, and 16. Figure 10 depicts our
results. As expected, the aforementioned per-intent costs
amortize over multiple operations, and the per-operation
cost of a storage operation in an intent is comparable to
that of directly executing the operation without Olive.

Varying object sizes. We experiment with Olive and the
baseline under varying value sizes (16 bytes, 128 bytes,
and 1 KB) and with varying k. We find that neither Olive’s
costs nor the baseline’s costs grow with value size, so we
do not depict these results.

510 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 30

 60

 90

 120

 150

Create first Create
after snapshot

Read first Read
after snapshot

Update first Update
after snapshot

la
te

n
cy

 (
m

s)

Baseline
Olive

2
0

.9

2
0

.6

3
.2 4 1
0
.3

1
9

.6

2
0

.5

2
1

.9

4
.9

5
.5 2

5
.4

1
3
1

FIGURE 11—Latency of Create, Read, and Update operations using two snapshotting services: (i) a baseline that uses a cloud
database’s native support for creating snapshots, and (ii) the Olive-based artifact. Under Olive, the latency of an Update immediately
after taking a snapshot takes 5× as long as a normal Update; the baseline incurs only 2× higher latency due to native support for
snapshots. The Olive-based artifact is competitive with the baseline for non-Update operations.

5.4 End-to-end performance: snapshots

To understand the performance of an Olive-based artifact,
we experiment with the snapshotting service we built.
Two reasonable alternative approaches for building this
artifact in a cloud environment are: (i) create a snapshot-
ting service atop a cloud storage system similar to the
Olive-based artifact, but, instead of using DAAL, put all
the application data as well as snapshots of that data in
the same atomicity scope; and (ii) employ a cloud stor-
age system that natively supports creating snapshots, e.g.,
Azure SQL or Amazon Aurora.

Alternative (i) can exploit AtomicBatchUpdate to cre-
ate snapshots of application data, without having to incur
difficulties we discussed earlier (§2.2). Unfortunately, for
most cloud applications, this is truly not an option. It
severely limits throughput and scalability, because each
atomicity scope supports only a few thousand requests
per second. It also limits capacity, because each atomicity
scope supports only a certain amount of data. Further-
more, in some cloud storage systems (e.g., Amazon Dy-
namoDB), the atomicity scope is a single object, thereby
rendering this option infeasible. We thus use alternative
(ii) for our baseline; specifically, we use Azure SQL. Of
course, this baseline supports far more features than our
artifact, but we find that it is the closest alternative with
similar functionality in a cloud environment.

In our measurements, a client process first preloads a
table created by YCSB’s benchmarking tool; the table
contains 1,000 objects, each having ten attributes with
100-byte values. The client process then runs a series of
experiments, in which it uses YCSB’s core workloads
a–d to generate a stream of 1,000 requests with varying
mixtures of Read, Create, and Update operations. We
also run another set of experiments, in which the client
process creates a snapshot between preloading the table
with data and running the workloads. This causes each
Update operation in the experiments to perform copy-on-
write. Figure 11 summarizes our results.

For operations other than Update, the Olive-based arti-
fact’s performance is competitive with the baseline. The
largest difference is that, under Olive, the first Update
immediately after taking a snapshot incurs 5× higher la-
tency than a normal Update; for the baseline, it is only 2×
higher. The primary reason is that, while the baseline re-
quires only a single round trip to the database server, Olive
incurs additional round trips and extra logging to ensure
the exactly-once semantics. Furthermore, the database
service likely uses complex machinery to implement the
snapshotting feature efficiently.

Finally, because the Olive-based snapshotting service
uses a NoSQL cloud storage system instead of the base-
line’s SQL database service, it likely incurs much lower
monetary cost. Unfortunately, the pricing models of these
cloud services are complex and hard to compare, so we
now provide only a rough comparison.

Azure’s table service charges on two axes: amount
of data stored and number of operations performed. For
example, in the West-US data center, it costs $0.045–0.12
per GB of data per month (depending on amount of data
stored and the desired geo-replication level), and $0.036
per million cloud storage operations [2].

On the other hand, Azure SQL charges for de-
sired throughput, measured in database transaction units
(DTUs) [6], and amount of data stored. A DTU is much
more complex than the number of cloud storage opera-
tions because it accounts for the number of disk opera-
tions and the amount of processing consumed by a SQL
query. As an example, for 5 DTUs and 2 GB of data, the
charge is $5/month. This increases to $465/month with
125 DTUs and 500 GB of data.

A rough comparison using these figures suggests that
the cost of a SQL database is at least an order of mag-
nitude higher than Azure’s table store. As a result, the
Olive-based artifact reaps lower monetary costs from its
underlying store while providing a snapshotting feature
with comparable performance.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 511

5.5 End-to-end performance: live re-partitioning

To understand the benefits of the flexible isolation proper-
ties of Olive’s locks with intents, we evaluate two Olive-
based implementations of the live re-partitioning service
(§4.2): one using the Olive-based transaction library (§4.4)
and the other using intents directly for fine-granularity
isolation. Such a comparison will also help demonstrate
the flexibility of locks with intent: developers can build
their service atop our transaction library first for simplic-
ity and then later optimize it by writing that service with
intents directly for performance.

We run experiments in which a client process first
preloads a table with 1,000 objects and then issues a
stream of Create, Read, and Update operations gener-
ated via YCSB’s core workloads a–d. Figure 12 depicts
the performance of the intent-based artifact and compares
it with a transaction-based implementation. We find that
in all cases the intent-based artifact performs better than,
or as well as, the transaction-based one.

A notable scenario where Olive’s locks with intent en-
able us to optimize the re-partitioning service is in the
implementation of its Update operation. In the intent-
based artifact, this operation does not need to lock any
objects, but the transaction library cannot avoid locking.
In particular, the intent-based artifact implements this by
exploiting the UpdateIfUnchanged API supported by
the underlying cloud storage system. As a result, the la-
tency goes down by roughly 6×. Similarly, for Create
and the data-migration routine, the intent-based artifact
locks fewer objects, enabling it to achieve better perfor-
mance than the transaction-based one.

Finally, because the migration routine in the re-
partitioning service locks and migrates one object at a
time, if a normal table operation (e.g., Read) observes
that an object is locked, it has to block for the duration of
data migration. (Figure 12 does not depict this case.)

5.6 Storage overheads

Up to this point, we have measured the latency overhead
Olive incurs to ensure exactly-once semantics. We now
evaluate Olive’s storage overhead. We do this by running
a microbenchmark with our re-partitioning service. In
particular, we use the data-migration routine depicted
in Figure 6. For the experiment, we preload data into a
table and use YCSB’s core workload a, which inserts
1,000 objects each having ten attributes with 100-byte
values. We then run Olive’s migration routine to move
those objects to a new table. We measure the total size of
all tables before and after the migration.

The application data inserted by the workload is
roughly 1 MB. Before the migration runs, we find that
the total size of the tables is 2.6 MB. The 2.6× over-
head comes from the internal use of an intent in the table
re-partitioning service’s Create operation. This intent

 0
 40
 80

 120
 160
 200
 240
 280

Create Read Update Migration

la
te

n
cy

 (
m

s)

transactions
intents

9
2

.1
 m

s

4
.2

 m
s

6
5

.3
 m

s

1
9

0
 m

s

7
6

.4
 m

s

4
.0

 m
s

1
0

.1
 m

s

1
6

9
 m

s

FIGURE 12—Comparison of the performance of table oper-
ations in two implementations of the re-partitioning service
(§4.2), one using Olive’s transaction library and another using
Olive’s intents directly. The intent-based artifact achieves better
performance because we carefully optimize the set of objects
that get locked, whereas the implementation based on Olive’s
transaction library (naively) locks all the objects affected by a
table operation. (See text for details.)

serializes the object to be inserted and stores it in the
intents table (as the initial state of the intent). As a re-
sult, it doubles the size of data in tables. The remaining
overhead is due to DAAL entries and invisible attributes
(e.g., locked). After the migration procedure completes,
the total size of the data in the tables increases to 5.5 MB,
which again is due to the use of intents. Fortunately, most
of this overhead is ephemeral: after garbage collection and
deletion of objects in the old table, the storage overhead
is less than 8% of the application-data size.

5.7 Summary

While Olive incurs unavoidable latency and storage over-
heads to ensure exactly-once semantics (§5.3), our expe-
rience suggests that Olive’s strong semantics make it easy
to quickly build cloud services that are correct and fault-
tolerant (§4). Furthermore, our end-to-end experiments
show that Olive-based artifacts have performance compa-
rable to baselines that provide similar fault-tolerance guar-
antees. Finally, even when a feature is offered by some
cloud storage system, building the feature with Olive can
save significant money by enabling the use of a less ex-
pensive cloud storage system.

6 Discussion
Comparison to transactions. Transactions are arguably
simpler to use than intents, but offer less flexibility. In-
tents can support both strong consistency and eventual
consistency, can avoid full isolation when not required,
and can support exactly-once semantics which are often
not provided by transactions. Indeed, as shown in §4.4,
intents are general enough to support transactions, so de-
velopers who want a simple experience can always use
the transaction library Olive provides.

Liveness of intents. The liveness of Olive’s locks with
intent hinges on the liveness of intents. Just as with code,

512 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

developers must ensure that an intent does not contain
bugs leading to infinite loops, crashes, or deadlocks. A
more subtle concern is that Olive may amplify such bugs.
For example, testing often misses bugs occurring in rare
scenarios. So, Olive may trigger latent bugs by exercising
the rare scenario in which an intent is executed not by its
owner but by another client or the intent collector.

It is possible to automatically recover from deadlock
bugs in intents. After all, Olive’s locks with intent can be
used to encode deadlock recovery logic inside an intent,
e.g. by undoing the effects of the intent to release a lock.
Olive’s semantics ensure that such recovery logic inside
an intent is executed exactly once. As an example, our
OCC-based transaction library (§4.4) includes such logic
to abort a transaction if it detects read-write conflicts
during the verification step.

Garbage collection of intent logs. Entries in the
intents table, as well as DAAL entries, need to be
garbage-collected. But, this must be done with care, be-
cause a recovering client uses the existence of an entry
to decide whether to execute a step in an intent. A slow
client that attempts to execute a step in an intent might
mistakenly re-execute it because the corresponding entries
have been garbage collected. One solution is to introduce
the notion of epochs for intents, with a mandate that an
intent created in epoch n must be completed by the end
of epoch n + 1 and is considered outdated in epoch n + 2
and beyond. It this case, is safe to garbage-collect entries
for outdated intents. The exact duration of an epoch can
be application-specific (e.g., a day).

Security and privacy. Olive assumes that all clients shar-
ing an intents table belong to the same application, and
thus any client can complete any other client’s intent.
However, for some applications this is not possible due
to security restrictions. For instance, a client serving user
Alice may downgrade its capabilities, to ensure it can-
not accidentally leak information to Alice about other
users. So, that client may be unable to complete an intent
running on behalf of another user Bob.

Differences in clients’ permissions can also lead to pri-
vacy violations. For instance, a client running on Alice’s
behalf may write Alice’s private data into the intents
table. Then, another client running on Bob’s behalf may
read her data from that table and leak it to Bob.

For these reasons, Olive is suitable only for applications
with clients in equivalent security domains. In future work,
we plan to address this limitation, e.g., by propagating
clients’ security restrictions to the intents table.

Cloud support. We have designed Olive under the as-
sumption that cloud providers are unwilling or unable
to change their APIs. However, a cloud provider could
choose to add locks with intent to its external API. Af-
ter all, unlike richer primitives like transactions, locks

with intent would not require significant changes to cloud-
storage internals. By adding locks with intent natively,
and having more efficient execution paths for performing
and completing intents, the cloud provider might achieve
better performance than Olive.

7 Related work
Olive is related to a host of techniques that provide a
substrate for building fault-tolerant services. It is also
related to work that makes reasoning about concurrency
easier for programmers.

State machine replication [38, 49] is a classic technique
for building fault-tolerant services. A cloud application
can use replication directly for fault tolerance. Olive in-
stead takes a different approach by leveraging the under-
lying cloud storage, which is already made fault tolerant
by using replication internally. Olive’s approach avoids
consensus at the application layer and maintains reliable
persistent states only in cloud storage.

There is also a long line of work on recovering compu-
tation from failures [22–24, 42, 43]. Compared with this
work, nodes in Olive maintain and share state via cloud
storage, which makes recovering from failed computa-
tion harder. Even with microreboots [22, 23], maintaining
persistent state consistently despite failures is left to ap-
plications, which Olive addresses.

Write-ahead logging [46] is a well-known technique,
widely used in database systems [9, 14, 18, 47], to pro-
vide atomicity and durability in the presence of failures.
Olive’s intent executionLog is logically a write-ahead
redo log, but Olive uses DAAL to achieve exactly-once
semantics and to cope with concurrent executions of the
same intent. A related technique, journaling, is also widely
used in file system implementations [44, 45, 50] to ensure
data consistency despite inopportune machine crashes.

Transactions, another popular primitive, provide strong
ACID properties. Transactions simplify concurrency con-
trol by providing strong isolation [11, 17, 40, 41] among
concurrently executing transactions. Recognizing the per-
formance overheads imposed by general-purpose trans-
actions in a distributed system, Sinfonia [13] proposes
a restricted form of transactions called minitransactions.
Sagas [31], on the other hand, proposes to split long-lived
transactions into smaller pieces to enhance concurrency.
It relies on user-defined compensating transactions to
recover the database to a consistent state if individual
transactions fail. Like Sagas, Salt [53] allows developers
to improve performance by gradually weakening the se-
mantics of performance-critical transactions. In the last
few years, several works [12, 16, 26, 27, 55] have built
distributed storage systems with general-purpose transac-
tional features, sometimes exploiting modern hardware
such as RDMA [27], a cluster of flash devices [15, 16],
and TrueTime [26]. Olive takes a different approach since

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 513

distributed transactions on cloud storage would be ex-
pensive. The lock with intent in Olive has the benefits
of a transactional primitive (automated failure handling,
robustness to concurrency), but exposes a simple concur-
rency primitive that can be implemented without the full
machinery and expense of transactions.

Leases [32], another popular distributed-system primi-
tive, ensure exclusive access to a data object for a config-
urable amount of time. Chubby [20] and ZooKeeper [10]
each implements a reliable lock service with lease-like
expiration, enabling nodes in a distributed system to coor-
dinate, usually at a coarse granularity. Like Olive’s locks
with intent, the failure of a lease owner will not block the
entire system forever, as leases eventually expire. How-
ever, when a lease owner crashes, lease expiration does
not automatically restore cloud storage to a consistent
state, a key problem that locks with intent address.

Revocable locks [34] provide the abstraction of non-
blocking locks in a shared-memory model on a single ma-
chine. To get non-blocking semantics for locks, a thread
can revoke a lock from its current owner and direct that
lock owner’s thread to execute a predefined recovery code
block. Olive’s locks with intent are similar in spirit. How-
ever, Olive does not require that the user write and reason
about recovery logic. Also, Olive goes beyond a single-
machine context to solve issues arising from machine fail-
ure and asynchrony in a distributed system. Such a design
is crucial in Olive’s context given the distributed-systems
setting where accurate failure detection and synchroniza-
tion among clients is hard.

Exactly-once semantics and idempotence have been
recognized as critical properties in various systems
for simplifying application development and achieving
stronger semantics [35]. Exactly-one semantics has been
used as a correctness criterion for replicated services [30],
for building three-tier Web services [29], and for dis-
tributed message delivery systems [36]. It has also been
incorporated into database systems via queued transaction
processing [19]. Recognizing the power of such seman-
tics, Ramalingam and Vaswani [48] design a program-
ming language monad that uses idempotence and exactly-
once semantics to tolerate process failures and message
loss in a distributed system. However, they neither con-
sider concurrency control primitives in the presence of
failures, nor use automatic failure detection and retry
mechanisms, leading to different design decisions. For
example, in Olive’s locks with intent, we find it crucial
to track all intents associated with a locked object via
cloud storage and to let any client execute any intent in
the system. We also achieve a useful liveness property via
an intent collector, which is not covered in their work.

In more recent work, RIFL [39] implements a reusable
module to enhance the semantics of a key-value storage
system’s interface from at-least-once to exactly-once. An

application that builds atop such a storage service can han-
dle server failures more easily. Olive’s locks with intent
provide similar exactly-once semantics, but in a stronger
sense: the improved semantics are useful to tolerate fail-
ures in the application layer, and they are guaranteed for
arbitrary snippets of code rather than only for RPCs.

Besides fault tolerance and concurrency control, there
are many works that enhance other properties of cloud
services, such as the following. Tombolo [54] proposes
the use of cloud gateways to reduce the latency of cloud
data accesses. CosTLO [52] reduces the latency variance
of cloud storage services. SPANStore [51] helps develop-
ers manage the use of multiple cloud storage services, to
reduce service cost while still meeting the latency, data
consistency, and fault tolerance requirements.

8 Conclusion
Cloud applications atop distributed reliable cloud storage
services represent a new model of building fault-tolerant
distributed systems, where all coordination at the applica-
tion layer goes through cloud storage, without the need to
re-implement consensus protocols.

Devising the right programming abstraction in this
model involves the art of balancing a set of attributes,
such as simplicity, programmability, expressiveness, ef-
ficiency, and generality. Olive’s lock with intent strikes
such a delicate balance: its exactly-once semantics and
mutual exclusion property are simple to understand and
to use when reasoning about correctness; it is easy for
developers to program with because it reuses common
constructs such as locks, with an intent just as an arbi-
trary code snippet; it can be used to implement both weak
eventual consistency and strong transactional consistency,
allowing an efficient design without excessive constraints;
it is generally applicable to a set of cloud storage services
and popular distributed storage systems with the use of a
common storage API. The result is a powerful new prim-
itive that allows us to develop a set of useful advanced
functionalities easily, correctly, and efficiently.

Acknowledgments

We thank Mahesh Balakrishnan, Albert Greenberg, Rama
Kotla, Ashwin Murthy, and Doug Terry for creating the
Azure Replicated Table (RTable) project, which inspired
us to investigate foundational primitives for building re-
liable cloud applications. We thank John Erickson and
Matt McCutchen for introducing us to the live table re-
partitioning problem described in §4.2. We thank Sebas-
tian Angel, Natacha Crooks, Thomas Moscibroda, Lenin
Sivalingam, and the anonymous reviewers for their com-
ments and discussions, which substantially improved this
work. We are particularly grateful to our shepherd Peter
Druschel for his insightful suggestions and guidance.

514 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon DynamoDB.
https://aws.amazon.com/dynamodb/.

[2] Azure Storage Pricing.
https://azure.microsoft.com/en-
us/pricing/details/storage/tables/.

[3] Azure Table storage.
https://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-
how-to-use-tables/.

[4] BatchWriteItem.
http://docs.aws.amazon.com/amazondynamodb/
latest/APIReference/API_BatchWriteItem.html.

[5] CQL for Cassandra/BATCH.
https://docs.datastax.com/en/cql/3.3/cql/cql_
reference/batch_r.html.

[6] Database Transaction Units (DTUs).
https://azure.microsoft.com/en-
us/documentation/articles/sql-database-
what-is-a-dtu/.

[7] Entity group transactions.
https://msdn.microsoft.com/en-
us/library/azure/dd894038.aspx.

[8] Google cloud Bigtable.
https://cloud.google.com/bigtable/docs/.

[9] PostgreSQL. http://www.postgresql.org/.
[10] Apache ZooKeeper.

https://zookeeper.apache.org/, 2008.
[11] A. Adya, B. Liskov, and P. O. Neil. Generalized isolation

level definitions. In International Conference on Data
Engineering (ICDE), pages 67–78, 2000.

[12] M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel:
scalable SQL storage for web applications. In ACM
Symposium on Operating Systems Principles (SOSP),
2015.

[13] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. In ACM Symposium on
Operating Systems Principles (SOSP), pages 159–174,
2007.

[14] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A.
Lorie, P. R. McJones, J. W. Mehl, et al. System R:
relational approach to database management. ACM
Transactions on Database Systems (TODS), 1(2):97–137,
1976.

[15] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler,
M. Wei, and J. D. Davis. CORFU: A shared log design
for flash clusters. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1–14,
2012.

[16] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed data structures over a shared
log. In ACM Symposium on Operating Systems Principles
(SOSP), pages 325–340, 2013.

[17] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ANSI SQL isolation levels.

In ACM SIGMOD, pages 1–10, 1995.
[18] P. A. Bernstein and E. Newcomer. Principles of

transaction processing. Morgan Kaufmann, 2009.
[19] P. A. Bernstein and E. Newcomer. Principles of

transaction processing. Morgan Kaufmann, 2009.
[20] M. Burrows. The Chubby lock service for

loosely-coupled distributed systems. In USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[21] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure Storage: A
highly available cloud storage service with strong
consistency. In ACM Symposium on Operating Systems
Principles (SOSP), pages 143–157, 2011.

[22] G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: A soft-state system case
study. Perform. Eval., 56(1-4):213–248, Mar. 2004.

[23] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot — a technique for cheap recovery.
In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[24] K. M. Chandy and C. V. Ramamoorthy. Rollback and
recovery strategies for computer programs. IEEE
Transactions on Computers, 100(6):546–556, 1972.

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In ACM Symposium on Cloud Computing (SOCC),
pages 143–154, 2010.

[26] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 251–264, 2012.

[27] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Castro.
No compromises: Distributed transactions with
consistency, availability, and performance. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 54–70, 2015.

[28] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi.
Zephyr: Live migration in shared nothing databases for
elastic cloud platforms. In ACM SIGMOD, pages
301–312, 2011.

[29] S. Frølund and R. Guerraoui. Transactional exactly-once.
Technical report, Hewlett-Packard Laboratories, 1999.

[30] S. Frølund and R. Guerraoui. X-ability: A theory of
replication. In ACM Symposium on Principles of
Distributed Computing (PODC), 2000.

[31] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of
ICMD, pages 249–259, 1987.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 515

https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/pricing/details/storage/tables/
https://azure.microsoft.com/en-us/pricing/details/storage/tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/batch_r.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/batch_r.html
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://msdn.microsoft.com/en-us/library/azure/dd894038.aspx
https://msdn.microsoft.com/en-us/library/azure/dd894038.aspx
https://cloud.google.com/bigtable/docs/
http://www.postgresql.org/
https://zookeeper.apache.org/

[32] C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache
consistency. In ACM Symposium on Operating Systems
Principles (SOSP), 1989.

[33] J. Gray. The transaction concept: Virtues and limitations
(invited paper). In International Conference on Very
Large Data Bases (VLDB), pages 144–154, 1981.

[34] T. Harris and K. Fraser. Revocable locks for non-blocking
programming. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 72–82, 2005.

[35] P. Helland. Idempotence is not a medical condition.
Communications of the ACM, 55(5):56–65, 2012.

[36] Y. Huang and H. Garcia-Molina. Exactly-once semantics
in a replicated messaging system. In International
Conference on Data Engineering (ICDE), pages 3–12,
2001.

[37] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database
Systems (TODS), 6(2):213–226, 1981.

[38] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems (TOCS), 16(2):133–169, 1998.

[39] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and
J. Ousterhout. Implementing linearizability at large scale
and low latency. In ACM Symposium on Operating
Systems Principles (SOSP), pages 71–86, 2015.

[40] B. Liskov. Distributed programming in Argus.
Communications of the ACM, 31(3):300–312, 1988.

[41] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer.
Implementation of Argus. In ACM Symposium on
Operating Systems Principles (SOSP), 1987.

[42] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring
failure transparency and the limits of generic recovery. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 20–20, 2000.

[43] D. E. Lowell and P. M. Chen. Discount checking:
Transparent, low-overhead recovery for general
applications. Technical report, Technical Report
CSE-TR-410-99, University of Michigan, 1998.

[44] C. Mason. Journaling with ReisersFS. Linux Journal,
2001(82es):3, 2001.

[45] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier. The new ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33, 2007.

[46] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on
Database Systems (TODS), 17(1):94–162, 1992.

[47] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB.
In USENIX Annual Technical Conference (USENIX ATC),
pages 183–191, 1999.

[48] G. Ramalingam and K. Vaswani. Fault tolerance via
idempotence. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages
249–262, 2013.

[49] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM

Computing Surveys (CSUR), 22(4):299–319, Dec. 1990.
[50] S. C. Tweedie. Journaling the Linux ext2fs filesystem. In

The Fourth Annual Linux Expo, 1998.
[51] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and

H. V. Madhyastha. SPANStore: Cost-effective
geo-replicated storage spanning multiple cloud services.
In ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[52] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO:
Cost-effective redundancy for lower latency variance on
cloud storage services. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2015.

[53] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining acid and base
in a distributed database. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 495–509, 2014.

[54] S. Yang, K. Srinivasan, K. Udayashankar, S. Krishnan,
J. Feng, Y. Zhang, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Tombolo: Performance enhancements
for cloud storage gateways. In IEEE Conference on
Massive Data Storage (MSST), 2016.

[55] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions with
inconsistent replication. In ACM Symposium on
Operating Systems Principles (SOSP), pages 263–278,
2015.

516 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Consolidating Concurrency Control and Consensus
for Commits under Conflicts

Shuai Mu?, Lamont Nelson?, Wyatt Lloyd†, and Jinyang Li?
?New York University, †University of Southern California

Abstract
Conventional fault-tolerant distributed transactions layer
a traditional concurrency control protocol on top of the
Paxos consensus protocol. This approach provides scala-
bility, availability, and strong consistency. When used for
wide-area storage, however, this approach incurs cross-
data-center coordination twice, in serial: once for con-
currency control, and then once for consensus. In this
paper, we make the key observation that the coordination
required for concurrency control and consensus is highly
similar. Specifically, each tries to ensure the serialization
graph of transactions is acyclic. We exploit this insight
in the design of Janus, a unified concurrency control and
consensus protocol. Janus targets one-shot transactions
written as stored procedures, a common, but restricted,
class of transactions. Like MDCC [16] and TAPIR [51],
Janus can commit unconflicted transactions in this class in
one round-trip. Unlike MDCC and TAPIR, Janus avoids
aborts due to contention: it commits conflicted transac-
tions in this class in at most two round-trips as long as
the network is well behaved and a majority of each server
replica is alive.
We compare Janus with layered designs and TAPIR

under a variety of workloads in this class. Our evaluation
shows that Janus achieves∼5× the throughput of a layered
system and 90% of the throughput of TAPIR under a
contention-free microbenchmark. When the workloads
become contended, Janus provides much lower latency
and higher throughput (up to 6.8×) than the baselines.

1 Introduction
Scalable, available, and strongly consistent distributed
transactions are typically achieved through layering a tra-
ditional concurrency control protocol on top of shards
of a data store that are replicated by the Paxos [19, 33]
consensus protocol. Sharding the data into many small
subsets that can be stored and served by different servers
provides scalability. Replicating each shard with con-
sensus provides availability despite server failure. Co-
ordinating transactions across the replicated shards with

concurrency control provides strong consistency despite
conflicting data accesses by different transactions. This
approach is commonly used in practice. For example,
Spanner [9] implements two-phase-locking (2PL) and
two phase commit (2PC) in which both the data and
locks are replicated by Paxos. As another example, Per-
colator [35] implements a variant of opportunistic con-
currency control (OCC) with 2PC on top of BigTable [7]
which relies on primary-backup replication and Paxos.

When used forwide-area storage, the layering approach
incurs cross-data-center coordination twice, in serial:
once by the concurrency control protocol to ensure trans-
action consistency (strict serializability [34, 45]), and
another time by the consensus protocol to ensure replica
consistency (linearizability [14]). Such double coordina-
tion is not necessary and can be eliminated by consoli-
dating concurrency control and consensus into a unified
protocol. MDCC [16] and TAPIR [51] showed how uni-
fied approaches can provide the read-commited and strict
serializability isolation levels, respectively. Both pro-
tocols optimistically attempt to commit and replicate a
transaction in one wide-area roundtrip. If there are con-
flicts among concurrent transactions, however, they abort
and retry, which can significantly degrade performance
under contention. This concern is more pronounced for
wide area storage: as transactions take much longer to
complete, the amount of contention rises accordingly.

This paper proposes the Janus protocol for building
fault-tolerant distributed transactions. Like TAPIR and
MDCC, Janus can commit and replicate transactions in
one cross-data-center roundtrip when there is no con-
tention. In the face of interference by concurrent con-
flicting transactions, Janus takes at most one additional
cross-data-center roundtrip to commit.

The key insight of Janus is to realize that strict serializ-
ability for transaction consistency and linearizability for
replication consistency can both be mapped to the same
underlying abstraction. In particular, both require the
execution history of transactions be equivalent to some
linear total order. This equivalence can be checked by
constructing a serialization graph based on the execution
history. Each vertex in the graph corresponds to a trans-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 517

action. Each edge represents a dependency between two
transactions due to replication or conflicting data access.
Specifically, if transactionsT1 andT2 make conflicting ac-
cess to some data item, then there exists an edge T1 → T2
if a shard responsible for the conflicted data item executes
or replicates T1 before T2. An equivalent linear total or-
der for both strict serializability and linearizability can be
found if there are no cycles in this graph.
Janus ensures an acyclic serialization graph in two

ways. First, Janus captures a preliminary graph by track-
ing the dependencies of conflicting transactions as they
arrive at the servers that replicate each shard. The co-
ordinator of a transaction T then collects and propagates
T’s dependencies from sufficiently large quorums of the
servers that replicate each shard. The actual execution
of T is deferred until the coordinator is certain that all of
T’s participating shards have obtained all dependencies
for T . Second, although the dependency graph based on
the arrival orders of transactions may contain cycles, T’s
participating shards re-order transactions in cycles in the
same deterministic order to ensure an acyclic serializa-
tion graph. This provides strict serializability because all
servers execute conflicting transactions in the same order.
In the absence of contention, all participating shards

can obtain all dependencies for T in a single cross-data-
center roundtrip. In the presence of contention, two types
conflicts can appear: one among different transactions
and the other during replication of the same transaction.
Conflicts between different transactions can still be han-
dled in a single cross-data-center roundtrip. They mani-
fest as cycles in the dependency graph and are handled by
ensuring deterministic execution re-ordering. Conflicts
that appear during replication of the same transaction,
however, require a second cross-data-center roundtrip to
reach consensus among different server replicas with re-
gard to the set of dependencies for the transaction. Nei-
ther scenario requires Janus to abort a transaction. Thus,
Janus always commits with at most two cross-data-center
roundtrips in the face of contention as long as network
andmachine failures do not conspire to prevent amajority
of each server replica from communicating.
Janus’s basic protocol and its ability to always commit

assumes a common class of transactionalworkloads: one-
shot transactions written as stored procedures. Stored
procedures are frequently used [12, 13, 15, 22, 31, 40,
43, 46] and send transaction logic to servers for execu-
tion as pieces instead of having clients execute the logic
while simply reading and writing data to servers. One-
shot transactions preclude the execution output of one
piece being used as input for a piece that executes on
a different server. One-shot transactions are sufficient
for many workloads, including the popular and canonical
TPC-C benchmark. While the design of Janus can be
extended to support general transactions, doing so comes

at the cost of additional inter-server messages and the
potential for aborts.

This approach of dependency tracking and execution
re-ordering has been separately applied for concurrency
control [31] and consensus [20, 30]. The insight of Janus
is that both concurrency control and consensus can use
a common dependency graph to achieve consolidation
without aborts.

We have implemented Janus in a transactional key-
value storage system. To make apples-to-apples com-
parisons with existing protocols, we also implemented
2PL+MultiPaxos, OCC+MultiPaxos and TAPIR [51] in
the same framework. We ran experiments on Ama-
zon EC2 across multiple availability regions using mi-
crobenchmarks and the popular TPC-C benchmark [1].
Our evaluation shows that Janus achieves ∼5× the
throughput of layered systems and 90% of the through-
put of TAPIR under a contention-free microbenchmark.
When the workloads become contended due to skew or
wide-area latency, Janus provides much lower latency
and more throughput (up to 6.8×) than existing systems
by eliminating aborts.

2 Overview
This section describes the system setup we target, reviews
background and motivation, and then provides a high
level overview of how Janus unifies concurrency control
and consensus.

2.1 System Setup
We target thewide-area setupwhere data is sharded across
servers and each data shard is replicated in several geo-
graphically separate data centers to ensure availability.
We assume each data center maintains a full replica of
data, which is a common setup [4, 26]. This assump-
tion is not strictly needed by existing protocols [9, 51]
or Janus. But, it simplifies the performance discussion
in terms of the number of cross-data-center roundtrips
needed to commit a transaction.

We adopt the execution model where transactions are
represented as stored procedures, which is also com-
monly used [12, 13, 15, 22, 31, 40, 43, 46]. As data
is sharded across machines, a transaction is made up
of a series of stored procedures, referred to as pieces,
each of which accesses data items belonging to a single
shard. The execution of each piece is atomic with regard
to other concurrent pieces through local locking. The
stored-procedure execution model is crucial for Janus to
achieve good performance under contention. As Janus
must serialize the execution of conflicting pieces, stored
procedures allows the execution to occur at the servers,

518 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System Commit latency in How to resolve conflicts How to resolve conflicts
wide-area RTTs during replication during execution/commit

2PL+MultiPaxos [9] 2∗ Leader assigns ordering Locking†

OCC+MultiPaxos [35] 2* Leader assigns ordering Abort and retry
Replicated Commit [28] 2 Leader assigns ordering Abort and retry

TAPIR [51] 1 Abort and retry commit Abort and retry
MDCC [16] 1 Retry via leader Abort

Janus 1 Reorder Reorder

Table 1: Wide-area commit latency and conflict resolution strategies for Janus and existing systems. MDCC
provides read commited isolation, all other protocols provide strict serializability.

which is much more efficient than if the execution was
carried out by the clients over the network.

2.2 Background and Motivation
The standard approach to building fault-tolerant dis-
tributed transactions is to layer a concurrency control
protocol on top of a consensus protocol used for repli-
cation. The layered design addresses three paramount
challenges facing distributed transactional storage: con-
sistency, scalability and availability.

• Consistency refers to the ability to preclude “bad” in-
terleaving of concurrent conflicting operations. There
are two kinds of conflicts: 1) transactions containing
multiple pieces performing non-serializable data ac-
cess at different data shards. 2) transactions replicating
their writes to the same data shard in different orders at
different replica servers. Concurrency control handles
the first kind of conflict to achieve strict serializabil-
ity [45]; consensus handles the second kind to achieve
linearizability [14].

• Scalability refers to the ability to improve performance
by adding more machines. Concurrency control proto-
cols naturally achieve scalability because they operate
on individual data items that can be partitioned across
machines. By contrast, consensus protocols do not
address scalability as their state-machine approach du-
plicates all operations across replica servers.

• Availability refers to the ability to survive and recover
from machine and network failures including crashes
and arbitrary message delays. Solving the availability
challenge is at the heart of consensus protocols while
traditional concurrency control does not address it.

Because concurrency control and consensus each
solves only two out of the above three challenges, it is
natural to layer one on top of the other to cover all bases.

∗Additional roundtrips are required if the coordinator logs the com-
mit status durably before returning to clients.

†2PL also aborts and retries due to false positives in distributed
deadlock detection.

For example, Spanner [9] layers 2PL/2PC over Paxos.
Percolator [35] layers a variant of OCC over BigTable
which relies on primary-backup replication and Paxos.

The layered design is simple conceptually, but does
not provide the best performance. When one protocol
is layered on top of the other, the coordination required
for consistency occurs twice, serially; once at the concur-
rency control layer, and then once again at the consensus
layer. This results in extra latency that is especially costly
for wide area storage. This observation is not new and
has been made by TAPIR and MDCC [16, 51], which
point out that layering suffers from over-coordination.

Aunification of concurrency control and consensus can
reduce the overhead of coordination. Such unification is
possible because the consistency models for concurrency
control (strict serializability [34, 45]) and consensus (lin-
earizability [14]) share great similarity. Specifically, both
try to satisfy the ordering constraints among conflicting
operations to ensure equivalence to a linear total order-
ing. Table 1 classifies the techniques used by existing
systems to handle conflicts that occur during transaction
execution/commit and during replication. As shown, op-
timistic schemes rely on abort and retry, while conser-
vative schemes aim to avoid costly aborts. Among the
conservative schemes, consensus protocols rely on the
(Paxos) leader to assign the ordering of replication oper-
ations while transaction protocols use per-item locking.

In order to unify concurrency control and consensus,
one must use a common coordination scheme to handle
both types of conflicts in the same way. This design
requirement precludes leader-based coordination since
distributed transactions that rely on a single leader to
assign ordering [41] do not scale well. MDCC [16] and
TAPIR [51] achieve unification by relying on aborts and
retries for both concurrency control and consensus. Such
an optimistic approach is best suited for workloads with
low contention. The goal of our work is to develop a
unified approach that can work well under contention by
avoiding aborts.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 519

Execute 2PC Prepare
(any interleaving during

Execute or Prepare
causes abort)

2PC Commit or Abort

Pa
xo

s
ac

ce
pt

Servers Sx, Sx replicate item X; Sy Sy replicate item Y

Data
Center-1

Data
Center-2

Sx

Sy

Sx

Sy

1

1

2

2

Paxos

accept

Pa
xo

s
ac

ce
pt

Paxos

accept

1 12 2

Coordinator

(a) OCC over Multi-Paxos.

T
2→

T
1

T1→
T2

Sx

Sy

Sx

Sy

(pieces are dispatched,
 but execution is deferred)

Pre-accept Accept
(Skipped if

no contention
during replication)

T1
↔

T2

Commit
(reorder and execute)

Data
Center-1

Data
Center-2

Servers Sx, Sx replicate item X; Sy Sy replicate item Y1 2 1 2

1

1

2

2

Coordinator
for T1

(b) Janus

Figure 1: Workflows for committing a transaction that increments x and y that are stored on different shards.
The execute and 2PC-prepare messages in OCC over Multi-Paxos can be combined for stored procedures.

2.3 A Unified Approach to Concurrency
Control and Consensus

Can we design unify concurrency control and consen-
sus with a common coordination strategy that minimizes
costly aborts? A key observation is that the ordering
constraints desired by concurrency control and replica-
tion can both be captured by the same serialization graph
abstraction. In the serialization graph, vertexes represent
transactions and directed edges represent the dependen-
cies among transactions due to the two types of conflicts.
Both strict serializability and linearizability can be re-
duced to checking that this graph is free of cycles [20, 45].

T1 T2

T1: Write(X), T2:Write(X)

 T2: Write(X), T1: Write (X)S'x:

Sx:

(a) A cycle representing
replication conflicts.

T1 T2

 T1: Write(X), T2: Write(X)

T2: Write(Y), T1: Write(Y)

Sx:

Sy:

(b) A cycle representing
transaction conflicts.

Figure 2: Replication and transaction conflicts can be
represented as cycles in a common serialization graph.

Janus attempts to explicitly capture a preliminary se-
rialization graph by tracking the dependencies of con-
flicting operations without immediately executing them.
Potential replication or transaction conflicts both man-
ifest as cycles in the preliminary graph. The cycle in
Figure 2a is due to conflicts during replication: T1’s write
of data item X arrives before T2’s write on X at server
Sx , resulting in T1 → T2. The opposite arrival order hap-
pens at a different server replica S′x , resulting in T1 ← T2.
The cycle in Figure 2b is due to transaction conflicts: the
server Sx receives T1’s write on item-x before T2’s write

on item-x while server Sy receives the writes on item-
y in the opposite order. In order to ensure a cycle-free
serialization graph and abort-free execution, Janus de-
terministically re-orders transactions involved in a cycle
before executing them.

To understand the advantage and challenges of unifi-
cation, we contrast the workflow of Janus with that of
OCC+MultiPaxos using a concrete example. The exam-
ple transaction, T1: x++; y++;, consists of two pieces, each
is a stored procedure incrementing item-x or item-y.

Figure 1a shows how OCC+MultiPaxos executes and
commits T1. First, the coordinator of T1 dispatches the
two pieces to item-x and item-y’s respective Paxos lead-
ers, which happen to reside in different data centers. The
leaders execute the pieces and buffer the writes locally.
To commit T1, the coordinator sends 2PC-prepare re-
quests to Paxos leaders, which perform OCC validation
and replicate the new values of x and y to others. Be-
cause the pieces are stored procedures, we can combine
the dispatch and 2PC-preparemessages so that the coordi-
nator can execute and commit T1 in two cross-data-center
roundtrips in the absence of conflicts. Suppose a concur-
rent transaction T2 also tries to increment the same two
counters. The dispatch messages (or 2PC-prepares) of
T1 and T2 might be processed in different orders by dif-
ferent Paxos leaders, causing T1 and/or T2 to be aborted
and retried. On the other hand, because Paxos leaders
impose an ordering on replication, all replicas for item-x
(or item-y) process the writes of T1 or T2 consistently, but
at the cost of additional wide-area roundtrip.

Figure 1b shows the workflow of Janus. To commit and
execute T1, the coordinator moves through three phases:
PreAccept,Accept andCommit, ofwhich theAcceptphase
may be skipped. InPreAccept, the coordinator dispatches
T1’s pieces to their corresponding replica servers. Unlike
OCC+MultiPaxos, the server does not execute the pieces

520 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

immediately but simply tracks their arrival orders in its
local dependency graph. Servers reply to the coordina-
tor with T1’s dependency information. The coordinator
can skip the Accept phase if enough replica servers reply
with identical dependencies, which happens when there
is no contention among server replicas. Otherwise, the
coordinator engages in another round of communication
with servers to ensure that they obtain identical depen-
dencies forT1. In theCommit phase, each server executes
transactions according to their dependencies. If there is
a dependency cycle involving T1, the server adheres to a
deterministic order in executing transactions in the cycle.
As soon as the coordinator hears back from the nearest
server replica which typically resides in the local data
center, it can return results to the user.
As shown in Figure 1b, Janus attempts to coordi-

nate both transaction commit and replication in one shot
with the PreAccept phase. In the absence of contention,
Janus completes a transaction in one cross-data-center
roundtrip, which is incurred by thePreAccept phase. (The
commit phase incurs only local data-center latency.) In
the presence of contention, Janus incurs two wide-area
roundtrips from the PreAccept and Accept phases. These
two wide-area roundtrips are sufficient for Janus to be
able to resolve replication and transaction commit con-
flicts. The resolution is achieved by tracking the depen-
dencies of transactions and then re-ordering the execution
of pieces to avoid inconsistent interleavings. For exam-
ple in Figure 1b, due to contention between T1 and T2,
the coordinator propagates T1 ↔ T2 to all server replicas
during commit. All servers detect the cycle T1 ↔ T2 and
deterministically choose to execute T1 before T2.

3 Design
This section describes the design for the basic Janus pro-
tocol. Janus is designed to handle a common class of
transactions with two constraints: 1) the transactions do
not have any user-level aborts. 2) the transactions do not
contain any piece whose input is dependent on the exe-
cution of another piece, i.e., they are one-shot transac-
tions [15]. Both the example in Section 2 and the popular
TPC-C workload belong to this class of transactions. We
discuss how to extend Janus to handle general transac-
tions and the limitations of the extension in Section 4.
Additional optimizations and a full TLA+ specification
are included in a technical report [32].

3.1 Basic Protocol
The Janus system has three roles: clients, coordinators,
and servers. A client sends a transaction request as a set
of stored procedures to a nearest coordinator. The co-

Algorithm 1: Coordinator::DoTxn(T=[α1, ..., αN])
1 T’s metadata is a globally unique identifier, a

partition list, and an abandon flag.
2 PreAccept Phase:
3 send PreAccept(T , ballot) to all participating

servers, ballot default as 0
4 if ∀ piece αi ∈ α1...αN , αi has a fast quorum of

PreAcceptOKs with the identical dependency depi
then

5 dep = Union(dep1, dep2, ..., depN)
6 goto commit phase
7 else if ∀ αi ∈ α1...αN , αi has a majority quorum of

PreAcceptOKs then
8 foreach αi ∈ α1...αN do
9 depi ←Union dependencies returned by the

majority quorum for piece αi .
10 dep = Union(dep1, dep2, ..., depN)
11 goto accept phase
12 else
13 return FailureRecovery(T)
14 Accept Phase:
15 foreach αi in α1...αN in parallel do
16 send Accept(T , dep, ballot) to αi’s participating

servers.
17 if ∀ αi has a majority quorum of Accept-OKs then
18 goto commit phase
19 else
20 return FailureRecovery(T)
21 Commit Phase:
22 send Commit(T , dep) to all participating servers
23 return to client after receiving execution results.

ordinator is responsible for communicating with servers
storing the desired data shard to commit the transaction
and then proxy the result to the client. Coordinators have
no global nor persistent state and they do not communi-
catewith each other. In our evaluation setup, coordinators
are co-located with clients.

We require that the shards information of a transaction
T is known before running. Suppose a transaction T in-
volves n pieces, α1,...,αn. Let r be the number of servers
replicating each shard. Thus, there are r servers process-
ing each piece αi . We refer to them as αi’s participating
servers. We refer to the set of r ∗ n servers for all pieces
as the transaction T’s participating servers, or the servers
that T involves.
There is a fast path and standard path of execution in

Janus. When there is no contention, the coordinator takes
the fast path which consists of two phases: pre-accept and
commit. When there is contention, the coordinator takes

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 521

Algorithm 2: Server S::PreAccept(T , ballot)
24 if highest_ballotS[T] < ballot then
25 return PreAccept-NotOK
26 highest_ballotS[T]←ballot
27 //add T to GS if not already
28 AddNewTx(GS , T)
29 GS[T].status←pre-accepted#ballot
30 dep←GS[T].dep
31 return PreAccept-OK, dep

Algorithm 3: Server S::Accept(T , dep, ballot)
32 if GS[T].status ≥ committing or
33 highest_ballotS[T] > ballot then
34 return Accept-NotOK, highest_ballotS[T]
35 highest_ballotS[T ′]←ballot
36 GS[T ′].dep←dep
37 GS[T ′].status←accepted#ballot
38 return Accept-OK

the standard path of three phases: pre-accept, accept and
commit, as shown in Figure 1b.

Dependency graphs. At a high level, the goal of pre-
accept and accept phase is to propagate the necessary
dependency information among participating servers. To
track dependencies, each server S maintains a local de-
pendency graph, GS . This is a directed graph where each
vertex represents a transaction and each edge represents
the chronological order between two conflicting transac-
tions. The incoming edges for a vertex is stored in its
deps value. Additionally, each vertex contains the status
of the transaction, which captures the stage of the pro-
tocol the transaction is currently in. The basic protocol
requires three vertex status types with the ranked order
pre-accepted < accepted < committing. Servers and
coordinators exchange and merge these graphs to ensure
that the required dependencies reach the relevant servers
before they execute a transaction.
In Janus, the key invariant for correctness is that all

participating servers must obtain the exact same set of
dependencies for a transactionT before executingT . This
is challenging due to the interference from other concur-
rent conflicting transactions and from the failure recovery
mechanism.
Next, we describe the fast path of the protocol, which is

taken by the coordinator in the absence of interference by
concurrent transactions. Psuedocode for the coordinator
is shown in Algorithm 1.

The PreAccept phase. The coordinator sends PreAc-
cept messages both to replicate transaction T and
to establish a preliminary ordering for T among its

Algorithm 4: Server S::Commit(T , dep)
39 GS[T].dep←dep
40 GS[T].status←committing
41 Wait & Inquire Phase:
42 repeat
43 choose T ′{T : GS[T ′].status < committing
44 if T ′ does not involve S then
45 send Inquire(T ′) to a server that T ′ involves
46 wait until GS[T ′].status ≥ committing
47 until ∀T ′{T in GS : GS[T ′].status ≥ committing
48 Execute Phase:
49 repeat
50 choose T ′ ∈ GS: ReadyToProcess(T ′) {
51 scc←StronglyConnectedComponent(GS , T ′)
52 for each T ′′ in DeterministicSort(scc) do
53 if T ′′ involves S and not T ′′.abandon then
54 T ′′.result←execute T ′′

55 processedS[T ′′]←true

56 until processedS[T] is true
57 reply CommitOK, T.abandon, T.result

Algorithm 5: Server S::ReadyToProcess(T)
58 if processedS[T] or GS[T].status < committing then
59 return false
60 scc← StronglyConnectedComponent(GS , T)
61 for each T ′ < scc and T ′{T do
62 if processedS[T ′] , true then
63 return false

64 return true

participating servers. As shown in Algorithm 2, upon
receiving the pre-accept for T , server S inserts a new
vertex for T if one does not already exist in the local
dependency graph Gs . The newly inserted vertex for T
has the status pre-accepted. An edge T ′ → T is inserted
if an existing vertex T ′ in the graph and T both intend to
make conflicting access to a common data item at server
S. The server then replies PreAccept-OK with T’s direct
dependencies GS[T].dep in the graph. The coordinator
waits to collect a sufficient number of pre-accept replies
from each involved shard. There are several scenarios
(Algorithm 1, lines 4-11). In order to take the fast path,
the coordinator must receive a fast quorum of replies
containing the same dependency list for each shard. A
fast quorum F in Janus contains all r replica servers.

The fast quorum concept is due to Lamport who origi-
nally applied it in the FastPaxos consensus protocol [21].
In consensus, fast quorum lets one skip the Paxos leader

522 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and directly send a proposed value to replica servers.
In Fast Paxos, a fast quorum must contain at least three
quarter replicas. By contrast, when applying the idea to
unify consensus and concurrency control, the size of the
fast quorum is increased to include all replica servers.
Futhermore, the fast path of Janus has the additional re-
quirement that the dependency list returned by the fast
quorum must be the same. This ensures that the ancestor
graph of transaction T on the standard path and during
failure recovery always agrees with what is determined
on the fast path at the time of T’s execution.

The Commit phase. The coordinator aggregates the
direct dependencies of every piece and sends it in a
Commit message to all servers (Algorithm 1, lines
21-22). When server S receives the commit request for T
(Algorithm 4), it replaces T’s dependency list in its local
graph GS and upgrades the status of T to committing.
In order to execute T , the server must ensure that all
ancestors of T have the status committing. If server S
participates in ancestor transaction T ′, it can simply
wait for the commit message for T ′. Otherwise, the
server issues an Inquire request to a nearest server S′

that participates in T ′ to request the direct dependencies
GS′[T ′].dep after T ′ has become committing on S′.

In the absence of contention, the dependency graph
at every server is acyclic. Thus, after all the ancestors
of T become committing at server S, it can perform a
topological sort on the graph and executes the transaction
according to the sorted order. After executing transaction
T , the server marksT as processed locally. After a server
executes a transaction shard, it returns the result back to
the coordinator. The coordinator can reply to the client as
soon as it receives the necessary results from the nearest
server replica, which usually resides in the local data
center. Thus, on the fast path, a transaction can commit
and execute with only one cross-data center round-trip,
taken by the pre-accept phase.

3.2 Handling Contention Without Aborts
Contention manifests itself in two ways during the nor-
mal execution (Algorithm 1). As an example, consider
two concurrent transactions T1, T2 of the form: x++; y++.
First, the coordinator may fail to obtain a fast quorum
of identical graphs for T1’s piece x++ due to interference
from T2’s pre-accept messages. Second, the dependency
information accumulated by servers may contain cycles,
e.g. with both T1{T2 and T2{T1 if the pre-accept mes-
sages of T1 and T2 arrive in different orders at different
servers. Janus handles these two scenarios through the
additional accept phase and deterministic re-ordering.

The Accept phase. If some shard does not return a fast
quorum of identical dependency list during pre-accept,
then consensus on the complete set of dependencies for
T has not yet been reached. In particular, additional
dependencies for T may be inserted later, or existing de-
pendencies may be replaced (due to the failure recovery
mechanism, Section 3.3).

The accept phase tries to reach consensus via the ballot
accept/reject mechanism similar to the one used by Paxos.
Because a higher ballot supersedes a lower one, the ac-
cepted status of a transaction includes a ballot number
such that accepted#b < accepted#b′, if ballot b<b′. The
coordinator aggregates the dependency information col-
lected from a majority quorum of pre-accepts and sends
an accept message to all participating servers with ballot
number 0 (Algorithm 1, lines 14-17). The server handles
accepts as shown in Algorithm 3; It first checks whether
T’s status in its local dependency graph is committing and
whether the highest ballot seen for T is greater than the
one in the accept request. If so, the server rejects the ac-
cept request. Otherwise, the server replaces T’s ancestor
with the new one, updates its status, and its highest ballot
seen for T . After,

the server replies Accept-OK. If the coordinator re-
ceives a majority quorum of Accept-OKs, it moves on
to the commit phase. Otherwise, the accept phase has
failed and the coordinator initiates the failure recovery
mechanism (Section 3.3). In the absence of active fail-
ure recovery done by some other coordinator, the accept
phase in Algorithm 1 always succeeds.

For a shard αi , once the coordinator obtains a fast
quorum of PreAccept-OKs with the same dependency
list depi or a majority quorum of Accept-OKs accepting
dependency list depi , then depi is the consensus depen-
dency for piece αi . When there are concurrent conflict-
ing transactions, the dependencies for different shards
(dep1, ..., depN) may not be identical. The coordinator
aggregates them together and sends the resulting depen-
dencies in the commit phase.

Deterministic execution ordering. In the general case
with contention, the servers can observe cyclic depen-
dencies among T and its ancestors after waiting for all
T’s ancestors to advance their status to committing. In
this case, the server first computes all strongly connected
components (SCCs) of GS in T’s ancestor graph. It then
performs a topological sort across all SCCs and executes
SCCs in sorted order. Each SCC contains one or more
transactions. SCCs with multiple transactions are exe-
cuted in an arbitrary, but deterministic order (e.g., sorted
by transaction ids). Because all servers observe the same
dependency graph and deterministically order transac-
tions within a cycle, they execute conflicting transactions
in the same order.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 523

3.3 Handling Coordinator Failure

Algorithm 6: Coordinator C::FailureRecovery(T)
65 Prepare Phase:
66 ballot ← highest ballot number seen + 1
67 send Prepare(T , ballot) to T’s participating servers
68 if ∃ Tx-Done,dep among replies then
69 //T’s direct dependencies dep has been

determined
70 goto commit phase
71 else if ∃ αi without a majority quorum of

Prepare-OKs then
72 goto prepare phase
73 let R be the set of replies w/ the highest ballot
74 if ∃dep′ ∈ R: dep′[T].status = accepted then
75 goto accept phase w/ dep = dep′

76 else if R contains at least F ∩M identical
dependencies depi for each shard then

77 dep = Union(dep1, dep2, .. depN)
78 goto accept phase w/ dep

79 else if ∃dep′ ∈ R : dep′[T].status = pre-accepted
then

80 goto preaccept phase, avoid fast path
81 else
82 T .abandon = true
83 goto accept phase w/ dep = nil

The coordinator may crash at anytime during protocol
execution. Consequently, a participating server for trans-
action T will notice that T has failed to progress to the
committing status for a threshold amount of time. This
triggers the failure recovery process where some server
takes up the role of the coordinator to try to commit T .
The recovery coordinator progresses through: prepare,

accept and commit phases, as shown in Algorithm 6. Un-
like in the normal execution (Algorithm 1), the recovery
coordinator may repeat the pre-accept, prepare and ac-
cept phases many times using progressively higher ballot
numbers, to cope with contention that arises when multi-
ple servers try to recover the same transaction or when the
original coordinator has been falsely suspected of failure.
In the prepare phase, the recovery coordinator picks

a unique ballot number b > 0 and sends it to all of T’s
participating servers.‡ Algorithm 7 shows how servers
handle prepares. If the status of T in the local graph is
committing or beyond, the server replies Tx-Done with
T’s dependencies. Otherwise, the server checks whether
it has seen a ballot number for T that is higher than that

‡Unique server ids can be appended as low order bits to ensure
unique ballot numbers.

Algorithm 7: Server S::Prepare(T , ballot)
84 dep←GS[T].dep
85 if GS[T].status ≥ commiting then
86 return Tx-Done, dep

87 else if highest_ballotS[T] > ballot then
88 return Prepare-NotOK, highest_ballotS[T]
89 highest_ballotS[T]←ballot
90 reply T , Prepare-OK, GS[T].ballot, dep

included in the prepare message. If so, it rejects. Other-
wise, it replies Prepare-OKwithT’s direct dependencies.
If the coordinator fails to receive a majority quorum of
Prepare-OKs for some shard, it retries the prepare phase
with a higher ballot after a back-off.

The coordinator continues if it receives a majority
quorum (M) of Prepare-OKs for each shard. Next, it
must distinguish against several cases in order to decide
whether to proceed from the pre-accept or the accept
phase (lines 73-83). We point out a specific case in
which the recovery coordinator has received a majority
Prepare-OKs with the same dependencies for each shard
and the status of T on the servers is pre-accepted. In
this case, tranaction T could have succeeded on the fast
path. Thus, the recovery coordinator merge the result-
ing dependencies and proceed to the accept phase. This
case also illustrates why Janus must use a fast quorum
F containing all server replicas. For any two conflict-
ing transactions that both require recovery, a recovery
coordinator is guaranteed to observe their dependency if
(F ∩M)∩ (F ∩M) , ∅, whereM is a majority quorum.
The pre-accept and accept phase used for recovery is

the same as in the normal execution (Algorithm 1) except
that both phases use the ballot number chosen in the
prepare phase. If the coordinator receives a majority
quorum of Accept-OK replies, it proceeds to the commit
phase. Otherwise, it restarts in the prepare phase using a
higher ballot number.

The recovery coordinator attempts to commit the trans-
action if possible, but may abandon it if the coordinator
cannot recover the inputs for the transaction. This is pos-
sible when some servers pass on dependencies for one
transaction to another and then fail simultaneously with
the first transaction’s coordinator. A recovery coordina-
tor abandons a transaction T using the normal protocol
except it sets the abandon flag for T during the accept
phase and the commit phase. Abandoning a transaction
this way ensures that servers reach consensus on aban-
doning T even if the the original coordinator is falsely
suspected of failure. During transaction execution, if a
server encounters a transaction T with the abandon flag
set, it simply skips the execution of T .

524 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 General Transactions
This section discusses how to extend Janus to handle
dependent pieces and limited forms of user aborts. Al-
though Janus avoids aborts completely for one-shot trans-
actions, our proposed extensions incur aborts when trans-
actions conflict.
Let a transaction’s keys be the set of data items that the

transaction needs to read or write. We classify general
transactions into two categories: 1) transactions whose
keys are known prior to execution, but the inputs of some
pieces are dependent on the execution of other pieces. 2)
transactions whose keys are not known beforehand, but
are dependent on the execution of certain pieces.

Transactions with pre-determined keys. For any
transaction T in this category, T’s set of participating
servers are known apriori. This allows the coordinator
to go through the pre-accept, accept phases to fix T’s
position in the serialization graph while deferring piece
execution. Suppose servers Si , Sj are responsible for the
data shards accessed by piece αi and α j (i < j) respec-
tively and α j’s inputs depend on the outputs of αi . In
this case, we extend the basic protocol to allow servers to
communicate with each other during transaction execu-
tion. Specifically, once server Sj is ready to execute α j ,
it sends a message to server Si to wait for the execution
of αi and fetch the corresponding outputs. We can use
the same technique to handle transactions with a certain
type of user-aborts. Specifically, the piece αi containing
user-aborts is not dependent on the execution of any other
piece that performs writes. To execute any piece α j of
the transaction, server Sj communicates with server Si to
find out αi’s execution status. If αi is aborted, then server
Sj skips the execution of α j .

Transactions with dependent keys. As an exam-
ple transaction of this type, consider transaction T(x):
y←Read(x); Write(y, ...) The key to be accessed by T’s sec-
ond piece is dependent on the value read by the first piece.
Thus, the coordinator cannot go through the usual phases
to fix T’s position in the serialization graph without exe-
cution. We support such a transaction by requiring users
to transform it to transactions in the first category using
a known technique [41]. In particular, any transaction
with dependent keys can be re-written into a combina-
tion of several read-only transactions that determine the
unknown keys and a conditional-write transaction that
performs writes if the read values match the input keys.
For example, the previous transaction T can be trans-
formed into two transactions, T1(x): y← Read(x); return

y; followed by T2(x,y): y′← Read(x); if y′,y {abort;} else

{Write(y, ...);} This technique is optimistic in that it turns
concurrency conflicts into user-level aborts. However, as
observed in [41], real-life OLTP workloads seldom in-

volve key-dependencies on frequently updated data and
thus would incur few user-level aborts due to conflicts.

5 Implementation

In order to evaluate Janus together with existing systems
and enable an apples-to-apples comparison, we built a
modular software framework that facilitates the construc-
tion and debugging of a variety of concurrency control
and consensus protocols efficiently.

Our software framework consists of 36,161 lines
of C++ code, excluding comments and blank lines.
The framework includes a custom RPC library, an in-
memory database, as well as test suits and several bench-
marks. The RPC library uses asynchronous socket I/O
(epoll/kqueue). It can passively batch RPC mes-
sages to the same machine by reading or writing multiple
RPC messages with a single system call whenever possi-
ble. The framework also provides common library func-
tions shared by most concurrency control and consen-
sus protocols, such as a multi-phase coordinator, quorum
computation, logical timestamps, epochs, database locks,
etc. By providing this common functionality, the library
simplifies the task of implementing a new concurrency
control or consensus protocol. For example, a TAPIR
implementation required only 1,209 lines of new code,
and the Janus implementation required only 2,433 lines
of new code. In addition to TAPIR and Janus we also
implemented 2PL+MultiPaxos and OCC+MultiPaxos.

Our OCC implementation is the standard OCC with
2PC. It does not include the optimization to combine the
execution phase with the 2PC-prepare phase. Our 2PL
is different from conventional implementations in that it
dispatches pieces in parallel in order to minimize execu-
tion latency in the wide area. This increases the chance
for deadlocks significantly. We use thewound-wait proto-
col [37] (also used by Spanner [9]) to prevent deadlocks.
With a contended workload and parallel dispatch, the
wound-wait mechanism results in many false positives
for deadlocks. In both OCC and 2PL, the coordinator
does not make a unilateral decision to abort transactions.
TheMultiPaxos implementation inherits the common op-
timization of batchingmanymessages to and from leaders
from the passive batching mechanism in the RPC library.

Apart from the design described in Section 3, our
implementation of Janus also includes the garbage col-
lection mechanism to truncate the dependency graph as
transactions finish. We have not implemented Janus’s
coordinator failure recovery mechanism nor the exten-
sions to handle dependent pieces. Our implementations
of 2PL/OCC+MultiPaxos and TAPIR also do not include
failure recovery.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 525

Oregon Ireland Seoul

Oregon 0.9 140 122
Ireland 0.7 243
Seoul 1.6

Table 2: Ping latency between EC2 datacenters (ms).

6 Evaluation
Our evaluation aims to understand the strength and limi-
tations of the consolidated approach of Janus. How does
it compare against conventional layered systems? How
does it compare with TAPIR’s unified approach, which
aborts under contention? The highlights include:

• In a single data center with no contention, Janus
achieves 5× the throughput of 2PL/OCC+MultiPaxos,
and 90% of TAPIR’s throughput in microbenchmarks.

• All systems’ throughput decrease as contention rises.
However, as Janus avoids aborts, its performance un-
der moderate or high contention is better than existing
systems.

• Wide-area latency leads to higher contention. Thus,
the relative performance difference between Janus and
the other systems is higher in multi-data-center exper-
iments than in single-data-center ones.

6.1 Experimental Setup
Testbed. We run all experiments onAmazonEC2 using
m4.large instance types. Each node has 2 virtual CPU
cores, 8GB RAM. For geo-replicated experiments, we
use 3 EC2 availability regions, us-west-2 (Oregon), ap-
northeast-2 (Seoul) and eu-west-1 (Ireland). The ping
latencies among these data centers are shown in Table 2.
Experimental parameters. We adopt the configura-
tion used by TAPIR [51] where a separate server replica
group handles each data shard. Each microbenchmark
uses 3 shards with a replication level of 3, resulting in
a total of 9 server machines being used. In this set-
ting, a majority quorum contains at least 2 servers and a
fast quorum must contain all 3 servers. When running
geo-replicated experiments, each server replica resides
in a different data center. The TPC-C benchmark uses
6 shards with a replication level of 3, for a total of 18
processes running on 9 server machines.
We use closed-loop clients: each client thread issues

one transaction at a time back-to-back. Aborted trans-
actions are retried for up to 20 attempts. We vary the
injected load by changing the number of clients. We run
client processes on a separate set of EC2 instances than
servers. In the geo-replicated setting, experiments of 2PL
and OCC co-locate the clients in the datacenter contain-
ing the underlying MultiPaxos leader. Clients of Janus

 0

 40

 80

 120

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
x
n
/s

)

Zipf Coefficient

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
o
m

m
it
 R

a
te

Zipf Coefficient

2PL
Janus

OCC
Tapir

(b) Commit Rates

Figure 3: Single datacenter performance with in-
creasing contention as controlled by the Zipf coeffi-
cient.

and Tapir are spread evenly across the three datacenters.
We use enough EC2 machines such that clients are not
bottlenecked.

Other measurement details. Each of our experiment
lasts 30 seconds, with the first 7.5 and last 7.5 seconds
excluded from results to avoid start-up, cool-down, and
potential client synchronization artifacts. For each set
of experiments, we report the throughput, 90th percentile
latency, and commit rate. The system throughput is cal-
culated as the number of committed transactions divided
by the measurement duration and is expressed in trans-
actions per second (tps). We calculate the latency of a
transaction as the amount of time taken for it to commit,
including retries. A transaction that is given up after 20
retries is considered to have infinite latency. We calculate
the commit rate as the total number of committed trans-
actions divided by the total number of commit attempts
(including retries).

Calibrating TAPIR’s performance. Because we re-
implemented the TAPIR protocol using a different code
base, we calibrated our results by running the most basic
experiment (one-key read-modify-write transactions), as
presented in Figure 7 of TAPIR’s technical report [49].
The experiments run within a single data center with only
one shard. The keys are chosen uniformly randomly. Our
TAPIR implementation (running on EC2) achieves a peak
throughput of ∼165.83K tps, which is much higher than

526 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the amount (∼8K tps) reported for Google VMs [49].
We also did the experiment corresponding to Figure 13
of [51] and the results show a similar abort rate per-
formance for TAPIR and OCC (TAPIR’s abort rate is
an order of magnitude lower than OCC with lower zipf
coefficients). Therefore, we believe our TAPIR imple-
mentation is representative.

6.2 Microbenchmark
Workload. In the microbenchmark, each transaction
performs 3 read-write access on different shards by in-
crementing 3 randomly chosen key-value pairs. We pre-
populate each shard with 1 million key-value pairs before
starting the experiments. We vary the amount of con-
tention in the system by choosing keys according to a zipf
distribution with a varying zipf coefficient. The larger
the zipf coefficient, the higher the contention. This type
of microbenchmark is commonly used in evaluations of
transactional systems [9, 51].

Single data center (low contention). Figure 3 shows
the single data center performance of different systems
when the zipf coefficient increases from 0.5 to 1.0. Zipf
coefficients of 0.0∼0.5 are excluded because they have
negligble contention and similar performance to zipf=0.5.
In these experiments, we use 900 clients to inject load.

The number of clients is chosen to be on the “knee”
of the latency-throughput curve of TAPIR for a specific
zipf value (0.5). In other words, using more than 900
clients results in significantly increased latency with only
small throughput improvements. With zipf coefficients
of 0.5∼0.6, the system experiences negligible amounts of
contention. As Figure 3b shows, the commit rates across
all systems are almost 1 with zipf coefficient 0.5.

Both TAPIR and Janus achieve much higher through-
put than 2PL/OCC+MultiPaxos. As a Paxos leader needs
to handle much more communication load (>3×) than
non-leader server replicas, 2PL/OCC’s performance is
bottlenecked by Paxos leaders, which are only one-third
of all 9 server machines.

Single data center (moderate to high contention). As
the zipf value varies from 0.6 to 1.0, the amount of con-
tention in the workload rises. As seen in Figure 3b, the
commit rates of TAPIR, 2PL and OCC decrease quickly
as the zipf value increases from 0.6 to 1.0. At first glance,
it is surprising that 2PL’s commit rate is no higher than
OCC’s. This is because our 2PL implementation dis-
patches pieces in parallel. This combined with the large
amounts of false positives induced by deadlock detection,
makes locking ineffective. By contrast, Janus does not
incur any aborts and maintains a 100% commit rate. In-
creasing amounts of aborts result in significantly lower
throughput for TAPIR, 2PL and OCC. Although Janus

 0

 20

 40

 60

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
x
n
/s

)

Zipf Coefficient

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
o
m

m
it
 R

a
te

Zipf Coefficient

2PL
Janus

OCC
Tapir

(b) Commit Rates

Figure 4: Geo-replicated performance with increas-
ing contention as controlled by the Zipf coefficient.

does not have aborts, its throughput also drops because
the size of the dependency graph that is being maintained
and exchanged grows with the amount of the contention.
Nevertheless, the overhead of graph computation is much
less than the cost of aborts/retries, which allows Janus to
outperform existing systems. At zipf=0.9, the through-
put of Janus (55.41K tps) is 3.7× that of TAPIR (14.91K
tps). The corresponding 90-percentile latency for Janus
and TAPIR is 24.65ms and 28.90ms, respectively. The
latter is higher due to repeated retries.

Multiple data centers (moderate to high contention).
We move on to experiments that replicate data across
multiple data centers. In this set of experiments, we use
10800 clients to inject load, compared to 900 for in the
single data center setting. As the wide-area communica-
tion latency is more than an order of magnitude larger,
we have to use many more concurrent requests in order to
achieve high throughput. Thus, the amount of contention
for a given zipf value is much higher in multi-datacenter
experiments than that of single-data-center experiments.
As we can see in Figure 4b, at zipf=0.5, the commit rate
is only 0.37 for TAPIR. This causes the throughput of
TAPIR to be lower than Janus at zipf=0.5 (Figure 4a).
At larger zipf values, e.g., zipf=0.9, the throughput of
Janus drops to 43.51K tps, compared to 3.95K tps for
TAPIR, and ∼1085 tps for 2PL and OCC. As Figure 4b
shows, TAPIR’s commit rate is slightly lower than that
of 2PL/OCC. Interference during replication, apart from

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 527

10
0

10
1

10
2

10
3

10
4

 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Clients

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 200

 400

 600

 800

 1000

 1 10 100 1000

L
a
te

n
c
y
 (

m
s
)

Clients

2PL
Janus

OCC
Tapir

(b) 90% Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
o
m

m
it
 R

a
te

Clients

2PL
Janus

OCC
Tapir

(c) Commit Rates

Figure 5: Performance in the single datacenter setting for the TPC-C benchmark with increasing load and
contention as controlled by the number of clients per partition.

10
0

10
1

10
2

10
3

10
4

 1 10 100 1000 10000

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Clients

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 200

 400

 600

 800

 1000

 1 10 100 1000 10000

L
a
te

n
c
y
 (

m
s
)

Clients

2PL
Janus

OCC
Tapir

(b) 90% Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
o
m

m
it
 R

a
te

Clients

2PL
Janus

OCC
Tapir

(c) Commit Rates

Figure 6: Performance in the geo-replicated setting for the TPC-C benchmark with increasing load and
contention as controlled by the number of clients per partition.

aborts due to transaction conflicts, may also cause TAPIR
to retry the commit.

6.3 TPC-C

new-order payment order-status delivery stock-level

ratio 43.65% 44.05% 4.13% 3.99% 4.18%

Table 3: TPC-C mix ratio in a Janus trial.

Workload. As the most commonly accepted bench-
mark for testing OLTP systems, TPC-C has 9 tables and
92 columns in total. It has five transaction types, three of
which are read-write transactions and two are read-only
transactions. Table 3 shows a commit transaction ratio
in one of our trials. In this test we use 6 shards each
replicated in 3 data centers. The workload is sharded by
warehouse; each shard contains 1 warehouse; each ware-
house contains 10 districts, following the specification.
Because each new-order transaction needs to do a read-
modify-write operation on the next-order-id that is unique
in a district, this workload exposes very high contention
with increasing numbers of clients.

Single datacenter setting. Figure 5 shows the single
data center performance of different systems when the
number of clients is increased. As the number of clients
increases, the throughput of Janus climbs until it saturates
the servers’ CPU, and then stabilizes at 5.78K tps. On
the other hand, the throughput of other systems will first
climb, and then drop due to high abort rates incurred as
contention increases. TAPIR’s the throughput peaks at
560 tps; The peak throughput for for 2PL/OCC is lower
than 595/324 tps. Because TAPIR can abort and retry
more quickly than OCC, its commit rate becomes lower
than OCC as the contention increases. Because of the
massive number of aborts, the 90-percentile latency for
2PL/OCC/TAPIR are more than several seconds when
the number of clients increases; by contrast, the latency
of Janus remains relatively low (<400ms). The latency of
Janus increases with the number of clients due to as more
outstanding transactions result in increased queueing.

Multi-data center setting. When replicating data
across multiple data centers, more clients are needed to
saturate the servers. As shown in Figure 6, the throughput
of Janus (5.7K tps) is significantly higher than the other
protocols. In this setup, the other systems show the same
trend as in single data-center but the peak throughput be-

528 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

comes lower because the amount of contention increases
dramatically with increased number of clients. TAPIR’s
commit rate is lower than OCC’s when there are ≥ 100
clients because the wide-area setting leads to more aborts
for its inconsistent replication.
Figure 6b shows the 90-percentile latency. When the

number of clients is <= 100, the experiments use only
a single client machine located in the Oregon data cen-
ter. When the number of clients > 100, the clients are
spread across all three data centers. As seen in Figure 6b,
when the contention is low (<10 clients), the latency of
TAPIR and Janus is low (less than 150ms) because both
protocols can commit in one cross-data center roundtrip
from Oregon. By contrast, the latency of 2PL/OCC is
much more (230ms) as their commits require 2 cross
data center roundtrips. In our experiments, all leaders
of the underlying MultiPaxos happen to be co-located
in the same data center as the clients. Thus, 2PL/OCC
both require only one cross-data center roundtrip to com-
plete the 2PC prepare phase and another roundtrip for the
commit phase as our implementation of 2PL/OCC only
returns to clients after the commit to reduce contention.
As contention rises due to increased number of clients,
the 90-percentile latency of 2PL/OCC/TAPIR increases
quickly to tens of seconds. The latency of Janus also
rises due to increased overhead in graph exchange and
computation at higher levels of contention. Nevertheless,
Janus achieves a decent 90-percentile latency (<900ms)
as the number of clients increases to 10,000.

7 Related Work
We review related work in fault-tolerant replication, geo-
replication, and concurrency control.

Fault-tolerant replication. The replicated state ma-
chine (RSM) approach [17, 38] enables multiple ma-
chines to maintain the same state through deterministic
execution of the same commands and can be used tomask
the failure of individual machines. Paxos [18] and view-
stamped replication [24, 33] showed it was possible to
implement RSMs that are always safe and remain live
when f or fewer out of 2 f + 1 total machines fail. Paxos
and viewstamped replication solve consensus for the se-
ries of commands the RSM executes. Fast Paxos [21]
reduced the latency for consensus by having client send
commands directly to replicas instead of a through a dis-
tinguished proposer. Generalized Paxos [20] builds on
Fast Paxos by further enabling commands to commit out
of order when they do not interfere, i.e., conflict. Janus
uses this insight from Generalized Paxos to avoid speci-
fying an order for non-conflicting transactions.
Mencius [29] showed how to reach consensus with

low latency under low load and high throughput under

high load in a geo-replicated setting by efficiently round-
robining leader duties between replicas. Speculative
Paxos [36] can achieve consensus in a single round trip
by exploiting a co-designed datacenter network for con-
sistent ordering. EPaxos [30] is the consensus protocol
most related to our work. EPaxos builds onMencius, Fast
Paxos, and Generalized Paxos to achieve (near-)optimal
commit latency in the wide-area, high throughput, and
tolerance to slow nodes. EPaxos’s use of dependency
graphs to dynamically order commands based on their
arrival order at different replicas inspired Janus’s depen-
dency tracking for replication.

Janus addresses a different problem than RSM because
it provides fault tolerance and scalability to many shards.
RSMs are designed to replicate a single shard and when
used across shards they are still limited to the throughput
of a single machine.

Geo-replication. Many recent systems have been de-
signed for the geo-replicated setting with varying degrees
of consistency guarantees and transaction support. Dy-
namo [11], PNUTS [8], and TAO [6] provide eventual
consistency and avoid wide-area messages for most oper-
ations. COPS [26] and Eiger [27] provide causal consis-
tency, read-only transactions, and Eiger provides write-
only transactions while always avoiding wide-area mes-
sages. Walter [39] and Lynx [52] often avoid wide-area
messages and provide general transactions with parallel
snapshot isolation and serializability respectively. All of
these systems will typically provide lower latency than
Janus because they made a different choice in the funda-
mental trade off between latency and consistency [5, 23].
Janus is on the other side of that divide and provides strict
serializability and general transactions.

Concurrency control. Fault tolerant, scalable systems
typically layer a concurrency control protocol on top of a
replication protocol. Sinfonia [3] piggybacks OCC into
2PC over primary-backup replication. Percolator [35]
also uses OCC over primary-backup replication. Span-
ner [9] uses 2PL with wound wait over Multi-Paxos and
inspired our 2PL experimental baseline.

CLOCC [2, 25] using fine-grained optimistic concur-
rency control using loosely synchronized clocks over
viewstamped replication. Granola [10] is optimized for
single shard transactions, but also includes a global trans-
action protocol that uses a custom 2PC over viewstamped
replication. Calvin [42] uses a sequencing layer and 2PL
over Paxos. Salt [47] is a concurrency control protocol for
mixing acid and base transactions that inherits MySQL
Cluster’s chain replication [44]. Salt’s successor, Callas,
introduces modular concurrency control [48] that enables
different types of concurrency control for different parts
of a workload.

Replicated Commit [28] executes Paxos over 2PC in-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 529

stead of the typical 2PC over Paxos to reduce wide-area
messages. Rococo [31] is a dependency graph based con-
currency control protocol over Paxos that avoids aborts
by reordering conflicting transactions. Rococo’s protocol
inspired our use of dependency tracking for concurrency
control. All of these systems layer a concurrency con-
trol protocol over a separate replication protocol, which
incurs coordination twice in serial.
MDCC [16] and TAPIR [49, 50, 51] are the most re-

lated systems and we have discussed them extensively
throughout the paper. Their fast fault tolerant transaction
commits under low contention inspired us to work on
fast commits under all levels of contention, which is our
biggest distinction from them.

8 Conclusion
We presented the design, implementation, and evalua-
tion of Janus, a new protocol for fault tolerant distributed
transactions that are one-shot and written as stored pro-
cedures. The key insight behind Janus is that the coordi-
nation required for concurrency control and consensus is
highly similar. We exploit this insight by tracking con-
flicting arrival orders of both different transactions across
shards and the same transaction within a shard using a
single dependency graph. This enables Janus to com-
mit in a single round trip when there is no contention.
When there is contention Janus is able to commit by have
all shards of a transaction reach consensus on its depen-
dencies and then breaking cycles through deterministic
reordering before execution. This enables Janus to pro-
vide higher throughput and lower latency than the state
of the art when workloads have moderate to high skew,
are geo-replicated, and are realistically complex.

Acknowledgments
The work is supported by NSF grants CNS-1514422 and
CNS-1218117 as well as AFOSR grant FA9550-15-1-
0302. Lamont Nelson is also supported by an NSF grad-
uate fellowship. We thankMichaelWalfish for helping us
clarify the design of Janus and Frank Dabek for reading
an early draft. We thank our shepherd, Dan Ports, and the
anonymous reviewers of the OSDI program committee
for their helpful comments.

References
[1] TPC-C Benchmark. http://www.tpc.org/tpcc/.
[2] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Ef-

ficient optimistic concurrency control using loosely syn-

chronized clocks. In Proceedings of ACM International
Conference on Management of Data (SIGMOD), 1995.

[3] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proceedings of ACM Sym-
posium on Operating Systems Principles (SOSP), 2007.

[4] Amazon. Cross-Region Replication Using DynamoDB
Streams. http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/
Streams.CrossRegionRepl.html, 2016.

[5] H. Attiya and J. L. Welch. Sequential consistency versus
linearizability. ACM Transactions on Computer Systems
(TOCS), 12(2), 1994.

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In Proceedings of USENIX Confer-
ence on Annual Technical Conference (ATC), 2013.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
In Proceedings of USENIX Symposium on Opearting Sys-
tems Design and Implementation (OSDI), 2006.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proceedings of International Conference on
Very Large Data Bases (VLDB), 2008.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally dis-
tributed database. In Proceedings of USENIX Sympo-
sium on Opearting Systems Design and Implementation
(OSDI), 2012.

[10] J. Cowling and B. Liskov. Granola: low-overhead dis-
tributed transaction coordination. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), 2012.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P.Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of ACM Symposium on Oper-
ating Systems Principles (SOSP), 2007.

[12] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. Knowledge andData Engineering,
IEEE Transactions on, 4(6):509–516, 1992.

[13] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A massive
memory machine. Computers, IEEE Transactions on, 100
(5):391–399, 1984.

[14] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems (TOPLAS), 12
(3):463–492, 1990.

[15] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,

530 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html

Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. In Pro-
ceedings of International Conference on Very Large Data
Bases (VLDB), 2008.

[16] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data center consistency. In
Proceedings of ACM European Conference on Computer
Systems (EuroSys), 2013.

[17] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 1978.

[18] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems (TOCS), 16(2):133–169, 1998.

[19] L. Lamport. Paxos made simple. ACM Sigact News, 32
(4):18–25, 2001.

[20] L. Lamport. Generalized consensus and Paxos. Techni-
cal report, Technical Report MSR-TR-2005-33, Microsoft
Research, 2005.

[21] L. Lamport. Fast Paxos. Distributed Computing, 19(2):
79–103, October 2006.

[22] K. Li and J. F. Naughton. Multiprocessor main memory
transaction processing. In Proceedings of the first interna-
tional symposium onDatabases in parallel and distributed
systems, 2000.

[23] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared
memory. Technical Report TR-180-88, Princeton Univ.,
Dept. Comp. Sci., 1988.

[24] B. Liskov and J. Cowling. Viewstamped replication revis-
ited. Technical report, MIT-CSAIL-TR-2012-021, MIT,
2012.

[25] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing
persistent objects in distributed systems. InECOOP, 1999.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: scalable causal con-
sistency for wide-area storage with COPS. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI),
2013.

[28] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases
using replicated commit. In Proceedings of International
Conference on Very Large Data Bases (VLDB), 2013.

[29] Y.Mao, F. P. Junqueira, and K.Marzullo. Mencius: build-
ing efficient replicated state machines for wans. In Pro-
ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2008.

[30] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[31] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In Pro-

ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2014.

[32] S. Mu, L. Nelson, , W. Lloyd, and J. Li. Consolidat-
ing concurrency control and consensus for commits under
conflicts. Technical Report TR2016-983, New York Uni-
versity, Courant Institute of Mathematical Sciences, 2016.

[33] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support highly-available
distributed systems. In Proceedings of ACM Symposium
on Principles of Distributed Computing (PODC), 1988.

[34] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4), 1979.

[35] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In Pro-
ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2010.

[36] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishna-
murthy. Designing distributed systems using approximate
synchrony in data center networks. In Proceedings of
USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2015.

[37] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II.
System level concurrency control for distributed database
systems. ACMTransactions onDatabase Systems (TODS),
3(2):178–198, 1978.

[38] F. B. Schneider. Implementing fault-tolerant services us-
ing the statemachine approach: a tutorial. ACMComputer
Surveys, 22(4), Dec. 1990.

[39] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[40] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architec-
tural era:(it’s time for a complete rewrite). In Proceedings
of International Conference on Very Large Data Bases
(VLDB), 2007.

[41] A. Thomson and D. J. Abadi. The case for determin-
ism in database systems. In Proceedings of International
Conference on Very Large Data Bases (VLDB), 2010.

[42] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In Proceedings of ACM
International Conference on Management of Data (SIG-
MOD), 2012.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[44] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proceed-
ings of USENIX Symposium on Opearting Systems Design
and Implementation (OSDI), 2004.

[45] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2001.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 531

[46] A. Whitney, D. Shasha, and S. Apter. High volume trans-
action processing without concurrency control, two phase
commit, sql or C++. In Seventh InternationalWorkshop on
High Performance Transaction Systems, Asilomar, 1997.

[47] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining ACID
and BASE in a distributed batabase. In Proceedings of
USENIX Symposium on Opearting Systems Design and
Implementation (OSDI), 2014.

[48] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and
Y. Wang. High-performance ACID via modular concur-
rency control. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2015.

[49] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. Ports. Building consistent transactions with in-
consistent replication. Technical report, Technical Report

UW-CSE-2014-12-01, University of Washington, 2014.

[50] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. Ports. Building consistent transactions with
inconsistent replication (extended version). Technical re-
port, Technical Report UW-CSE-2014-12-01 v2, Univer-
sity of Washington, 2015.

[51] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2015.

[52] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera,
and J. Li. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems. In
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2013.

532 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data
Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, Emmett Witchel

The University of Texas at Austin

Abstract
Users of modern data-processing services such as tax

preparation or genomic screening are forced to trust them
with data that the users wish to keep secret. Ryoan protects
secret data while it is processed by services that the
data owner does not trust. Accomplishing this goal in
a distributed setting is difficult because the user has no
control over the service providers or the computational
platform. Confining code to prevent it from leaking secrets
is notoriously difficult, but Ryoan benefits from new
hardware and a request-oriented data model.

Ryoan provides a distributed sandbox, leveraging hard-
ware enclaves (e.g., Intel’s software guard extensions
(SGX) [15]) to protect sandbox instances from potentially
malicious computing platforms. The protected sandbox
instances confine untrusted data-processing modules to
prevent leakage of the user’s input data. Ryoan is designed
for a request-oriented data model, where confined mod-
ules only process input once and do not persist state about
the input. We present the design and prototype implemen-
tation of Ryoan and evaluate it on a series of challenging
problems including email filtering, heath analysis, image
processing and machine translation.

1. Introduction
Data-processing services are widely available on the

Internet. Individual users can conveniently access them
for tasks including image editing (Pixlr), tax preparation
(TurboTax), data analytics (SAS OnDemand) and even
personal health analysis (23andMe). However, user inputs
to such services are often sensitive, such as tax documents
and health data, which creates a dilemma for the user. In
order to leverage the convenience and expertise of these
services, she has to disclose sensitive data to them, poten-
tially allowing them to disclose the data to further parties.
If she wants to keep her data secret, she either has to give
up using the services or hope that they can be trusted—
that their service software will not leak data (intentionally
or unintentionally), and that their administrators will not
read the data while it resides on the server machines.

Companies providing data-processing services for
users often wish to outsource part of the computation to
third-party cloud services, a practice called “software as
a service (SaaS).” For example, 23andMe may choose to
use a general-purpose machine learning service hosted
by Amazon. SaaS encourages the decomposition of prob-
lems into specialized pieces that can be assembled on
behalf of a user, e.g., combining the health expertise of

23andMe with the machine learning expertise and robust
cloud infrastructure of Amazon. However, 23andMe now
finds itself a user of Amazon’s machine learning service
and faces its own dilemma—it must disclose proprietary
correlations between health data and various diseases in
order to use Amazon’s machine learning service. In these
scenarios, the owner of secret data has no control over the
data-processing service.

We propose Ryoan1, a distributed sandbox that allows
users to keep their data secret in data-processing services,
without trusting the software stack, developers, or admin-
istrators of these services. First, it provides a sandbox to
confine individual data-processing modules and prevent
them from leaking data; second, it uses trusted hardware
to allow a remote user to verify the integrity of individ-
ual sandbox instances and protect their execution; third,
the sandbox can be configured to allow confined code
modules to communicate in controlled ways, enabling
flexible delegation among mutually distrustful parties.
Ryoan gives a user confidence that a service has protected
her secrets.

A key enabling technology for Ryoan is hardware
enclave-protected execution (e.g., Intel’s software guard
extensions (SGX) [15]), a new hardware primitive that
uses trusted hardware to protect a user-level computation
from potentially malicious privileged software. The pro-
cessor hardware keeps unencrypted data on chip, but en-
crypts data when it moves into RAM. The hypervisor and
operating system retain their ability to manage memory
(e.g., move memory pages onto secondary storage), but
privileged software sees only an encrypted version of the
data that is protected from tampering by a cryptographic
hash. Haven [21] and SCONE [19] are examples of sys-
tems that use enclaves to protect a user’s computation
from potentially malicious system software, including a
library operating system to increase backward compati-
bility.

Ryoan faces issues beyond those faced by enclave-
protected computation such as Haven [21]. Enclaves
are intended to protect an application that is trusted by
the user, which does not collude with the infrastructure,
though it may unintentionally leak data via side chan-
nels. In Ryoan’s model, neither the application nor the
infrastructure is under the control of the user, and they
may try to steal the user’s secrets by colluding via covert
channels—even if the application itself is isolated from

1 Ryoan is a sandbox and its name is inspired by a famous dry landscape
Zen garden that stimulates contemplation (Ryōan-ji).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 533

the provider’s infrastructure using enclave protection.
Ryoan’s goal is to prevent such covert channels and stop
an untrusted application from intentionally and covertly
using users’ data to modulate events like system call ar-
guments or I/O traffic statistics, which are visible to the
infrastructure.

An untrusted application in Ryoan is confined by a
trusted sandbox. For the Ryoan prototype we chose Na-
tive Client (NaCl) [64, 74], a state of the art user-level
sandbox, as our basis (it can be built as a standalone bi-
nary, independent from the browser). NaCl uses compiler-
based techniques to confine untrusted code rather then
relying on address space separation, a property necessary
to be compatible with SGX enclaves. The Ryoan sandbox
safeguards secrets by controlling explicit I/O channels,
as well as covert channels such as system call traces and
data sizes.

The Ryoan prototype uses SGX to provide hardware
enclaves. Each SGX enclave contains a NaCl sandbox
instance that loads and executes untrusted modules. The
NaCl instances communicate with each other to form a
distributed sandbox that enforces strong privacy guaran-
tees for all participating parties—the users and different
service providers. Ryoan provides taint labels (similar
to secrecy labels from DIFC [57]) defined by users and
service providers, which allow them to ensure that any
module that processes their secrets is confined by Ryoan.
Confining untrusted code [47] is a longstanding problem
that remains technically challenging, but Ryoan benefits
from hardware-supported enclave protection. Also, Ryoan
assumes a request-oriented data model, where confined
modules only process input once and cannot read or write
persistent storage after they receive the input. This model
limits Ryoan’s applicability to request-oriented server
applications—but such servers are the most common way
to bring scalable services to large numbers of users.

Ryoan’s security goal is simple: prevent leakage of
secret data. However, confining services over which the
user has no control is challenging without a centralized
trusted platform. We make the following contributions:

• A new execution model that allows mutually dis-
trustful parties to process sensitive data in a distributed
fashion on untrusted infrastructure.

• The design and implementation of a prototype dis-
tributed sandbox that confines untrusted code modules
(possibly on different machines) and enforces I/O policies
that prevent leakage of secrets.

• Several case studies of real-world application sce-
narios to demonstrate how they benefit from the secrecy
guarantees of Ryoan, including an image processing sys-
tem, an email spam/virus filter, a personal health analysis
tool, and a machine translator.

• Evaluation of the performance characteristics of our
prototype by measuring the execution overheads of each

of its building blocks: the SGX enclave, confinement, and
checkpoint/rollback. The evaluation is based on both SGX
hardware and simulation.

2. Background and threat model
We assume a processor with hardware-protected en-

claves, e.g., Intel’s SGX-enabled Skylake (or later) archi-
tecture. SGX provides a cryptographic hash of code and
initial data (called a measurement), allowing a program
running in a protected enclave to verify code and data
integrity and giving it access to private data encrypted
by keys that the host software does not know and cannot
find out. The address space of a protected enclave has its
privacy and integrity guaranteed by hardware. Hardware
encrypts and hashes memory contents when it moves off
chip, protecting the contents from other users and also
from the platform’s privileged software (operating system
and hypervisor). Code within an enclave can manipulate
user secrets without fear of divulging them to the under-
lying execution platform. Code within an enclave cannot
have its code or control manipulated by the platform’s
privileged software.

SGX’s security guarantees are ideal for Ryoan’s dis-
tributed NaCl-based sandbox. The sandbox confines the
code it loads ensuring that the code cannot leak secrets
via storage, network or other channels provided by the
underlying platform. Ryoan instances communicate with
each other using secure TLS connections. By collecting
SGX measurements and by providing trusted initializa-
tion code, Ryoan can demonstrate to the user that their
processing topology has been set up correctly.
2.1 Threat model

We consider multiple, mutually distrustful parties in-
volved in data-processing services. A service provider is
not trusted by the users of the service to keep data secret;
if the service provider outsources part of the computation
to other services, it becomes a user of them and does
not trust them to provide secrecy, either. Each service
provider can deploy its software on its own computational
platform, or use a third-party cloud platform that is mutu-
ally distrustful of all service providers. We assume that
users and providers trust their own code and platform,
but do not trust each other’s code or platforms. Everyone
must trust Ryoan and SGX.

A service provider might be the same as its compu-
tational platform provider, and the two might collude to
steal secrets from their input data. Besides directly com-
municating data, untrusted code may use covert channels
via software interfaces, such as syscall sequences and
arguments, to communicate bits from the user’s input to
the platform.

A user of a service does not trust the software at
any privilege level in the computational platform. For
example, the attacker could be the machine’s owner
and operator, she could be a curious or even malicious

534 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

administrator; she could be an invader who has taken
control of the operating system and/or hypervisor; she
might own a virtual machine physically co-located with
the VM being attacked; she could even be a developer of
the untrusted application or OS, and write code to directly
record user input.

Ryoan takes no steps to prevent each party from leak-
ing its own secrets intentionally (or via bugs). This model
is suited for the case where the service provider deploys
code on its own computational platform (see §4.2 for
more discussion). When executing on a different plat-
form provider, Ryoan provides protections against a mali-
cious OS, e.g., system call validation to prevent Iago
attacks [28] (similar to Haven [21], Inktag [40], and
Sego [46]) and encryption to protect data secrecy. Or-
thogonal techniques [27, 31, 42, 61, 78] may be used to
mitigate software bugs that unintentionally leak secret
input data to a computation’s output. Similarly, we as-
sume a computational platform provider is responsible
for protecting its own secrets (e.g., the administrator’s
password).

Denial of service is outside of the scope of our threat
model. Untrusted applications can simply refuse to run
or the underlying untrusted operating system can simply
refuse to schedule our code.

Although we consider covert channels based on soft-
ware interfaces like system calls, in this paper we do
not consider side or covert channels based on hardware
limitations (§2.3) or execution time. Untrusted enclaves
can leak bits by modulating their cache accesses, page
accesses, execution time, etc. Such channels are them-
selves technically difficult and often require dedicated
systems to address adequately [33, 35, 44, 49, 80]. Many
well-regarded secure system designs factor out side/covert
channels based on hardware limitations or execution time,
at least to some degree [21, 52, 60, 69, 76], because do-
ing so enables progress in designing and building secure
systems. While we do not claim to prevent the execution-
time channel, Ryoan does limit the use of this channel to
once per request (§5.2).
2.2 Intel Software Guard Extensions

Software Guard Extensions (SGX), which is available
in new Intel processors, allow processes to shield part of
their address space from privileged software. Processes on
an SGX-capable machine may construct an enclave which
is an address region whose contents are protected from
all software outside of the enclave (via encryption and
hashing). Code and data loaded into enclaves, therefore,
can operate on secret data without fear of unintentional
disclosure to the platform. These guarantees are provided
by the hardware [15].

SGX provides attestations of enclave identities. For
our purposes it is enough to think of an enclave identity
as a hash of the enclave’s initial state, i.e. valid memory

contents, permissions, and relative position in the enclave.
Our trust of the hardware extends to these identities;
particularly we assume that the initial state of an enclave
cannot be impersonated under standard cryptographic
assumptions. Ryoan uses SGX to attest that all enclaves
have the same initial state and thus the same identity.
Before passing sensitive data to Ryoan a user will request
an attestation from SGX and verify that the identity is the
Ryoan identity.

Knowing the initial state of an enclave ensures that
Ryoan instances are not compromised. SGX restricts
enclave entry to special offsets defined in the enclave
preventing return-to-libc [26, 34] style attacks.

Enclave code may access any part of the address space
which does not belong to another enclave. Enclave code
does not, however, have access to all x86 features. All
enclave code is unprivileged (ring 3), and any instruction
that would raise its privilege results in a fault.
2.3 Hardware security limitations

We discuss some known security limitations in modern
Intel processors. We believe these limitations must be
addressed independently from Ryoan, and we hope they
will be. Each of these limitations compromise Ryoan’s
security goals. If there are others, they also must be
addressed independently from Ryoan.

SGX page faults. As currently defined, privileged soft-
ware can manipulate the page tables of an enclave to ob-
serve a page-granularity trace of its code and data. Devas-
tating attacks have been demonstrated where application-
level information is used to recreate fine-grained secrets
from these coarse addresses, e.g., words in a document
and images [71]. If SGX enclaves serviced their own page
faults, this leakage channel would disappear.

Cache timing. Two processes resident on the same core
can use cache timing to obtain fine-grained information
about each other. For instance Zhang et al. demonstrated
(on an Amazon EC2 like plaform) the extraction of ElGa-
mal keys from a non-colluding VM [81]. The problem is
worse when processes can collude; others have demon-
strated high-bandwidth covert channels using cache be-
havior [70, 73]. There are hardware proposals to address
cache timing attacks [51].

Address bus monitoring. Although SGX encrypts data
in RAM, if an attacker monitors the address bus via a
sniffer or a modified RAM chip, it forms a cacheline-
granularity side or covert channel. Ryoan cannot prevent
such attacks without new architectural changes.

Processor monitoring. Processor monitoring units
(PMUs) provide extensive performance counter infor-
mation for on-chip events. If the PMU is updated about
events that occur in enclave-protected execution, the oper-
ating system could use the information as a covert channel
to learn secrets via untrusted code which could modulate

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 535

Module property Enforce Reason
OS cannot access module memory (§2.2). SGX Security
Initial module code and data verified (§2.2). SGX Security
Can only address module memory (§2.4). NaCl Security
Ryoan intercepts syscalls (§2.4,§4.3). NaCl Security
Cannot modify SGX state (§5). NaCl Security
User defines topology (§4.1). Ryoan Security
Data flow tracked by labels (§4.2). Ryoan Security
Memory cleaned between requests (§5). Ryoan Security
Module defines initialized state (§5.4). Ryoan Perf.
Unconfined initialization (§5). Ryoan Compat.
In-memory POSIX API (§5.1) Ryoan Compat.

Table 1: Properties Ryoan imposes on untrusted modules, the technology
that enforces them, and the reason Ryoan imposes them.

its behavior to e.g., inflate certain event counts.
According to measurements on Skylake processors,

certain monitoring facilities are turned off during enclave
execution (e.g., Precise Event Based Sampling (PEBS)),
however the uncore counters (e.g., cache misses, TLB
misses) are enabled [32]. It is unknown at this time how
effective attacks based on processor monitoring will be.

Part of the purpose in constructing the Ryoan prototype
is to demonstrate the importance of addressing these
hardware-based information leaks.
2.4 Native Client

Google Native Client (NaCl), is a sandbox for running
x86/x86-64 native code (a NaCl module) using software
fault isolation. NaCl consists of a verifier and a service
runtime. To guarantee that the untrusted module cannot
break out of NaCl’s SFI sandbox, the verifier disassembles
the binary and validates the disassembled instructions as
being safe to execute.

NaCl executes system calls on behalf of the loaded
application. System calls in the application transfer con-
trol to the NaCl runtime which determines the proper
action. Ryoan cannot allow the application to use its sys-
tem calls to pass information to the underlying operating
system. For example, if Ryoan passed read system calls
from the application directly to the platform, the applica-
tion could use the size and number of the calls to encode
information about the secret data it is processing. We dis-
cuss the details of the confinement provided by Ryoan in
Section 5.1.

3. Design overview
Ryoan is a distributed sandbox that executes a directed

acyclic graph (DAG) of communicating untrusted mod-
ules which operate on sensitive data. Ryoan’s primary
job is to prevent the modules from communicating any
of the sensitive data outside the confines of the system
(including external hosts and the platform’s privileged
software).

Ryoan prevents modules from leaking sensitive data
by decoupling externally visible behaviors from the con-
tent of secret data. SGX hardware limits externally visible
behaviors to explicit stores to unprotected memory and

Privileged Software (OS/Hypervisor)

Linux Process

SGX Enclave

Ryoan Sandbox
Module

Untrusted

Trusted

Trampoline code and Buffers

Hardware

Notation:

Figure 1: A single instance of Ryoan’s distributed sandbox. The privi-
leged software includes an operating system and an optional hypervisor.

use of system services (syscalls). Unprotected stores are
eliminated by the NaCl tool chain and run time. Ryoan
mostly eliminates system calls by providing their func-
tionality from within NaCl. For example, Ryoan provides
mmap functionality by managing a fixed-sized memory
pool within the SGX enclave. However, untrusted mod-
ules must read input and write output so Ryoan provides
a restricted IO model that prevents data leaks (e.g., the
output size is a fixed function of input size). Table 1 sum-
marizes the properties Ryoan imposes on untrusted code
to achieve secure decoupling of observable behavior from
secret input data.

Figure 1 shows a single instance of the Ryoan dis-
tributed sandbox. A principal (e.g., a company providing
software as a service) can contribute a module which
Ryoan loads and confines, enabling the module to safely
operate on secret data. A module consists of code, initial-
ized data, and the maximum size of dynamically allocated
memory. The NaCl sandbox uses a load time code valida-
tor to ensure that the module cannot violate the sandbox
by reaching outside of its address range or making syscalls
without Ryoan intervention.

For backward compatibility, Ryoan modules support
programs written for libc, which could include fully
compiled languages and runtimes built on top of libc.
To reduce memory use, our Ryoan prototype does not
support a just-in-time compiler (JIT), though NaCl sup-
ports it [17]. Ring 0 execution is disallowed in enclaves
so Ryoan cannot directly support an operating system or
hypervisor. A Ryoan module can be a Linux program, or
it could contain a library operating system [21].

Ryoan does not trust other software on the computa-
tional platform, including privileged software, i.e., operat-
ing system and hypervisor. Instead, Ryoan assures its own
secrecy and integrity by executing in a hardware-protected
enclave. Hardware attests to Ryoan’s initial state becom-
ing the anchor for Ryoan’s chain of trust (Figure 2). SGX
generates an unforgeable remote attestation for the user
that an Ryoan instance is executing in an enclave on the
platform. The user can establish an encrypted channel
that she knows terminates within that Ryoan instance.
SGX guarantees the enclave cryptographic secrecy and
integrity against manipulation by privileged software.

536 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Enclave Description

Hash

Ryoan Sandbox

Hash Module

HardwareSGX

Signature Signature
Meta

Figure 2: The Ryoan chain of trust. SGX hardware attests that a
valid instance of Ryoan is executing (Hash) with an intended SGX
configuration (Meta). Ryoan ensures that the expected binary is loaded
with a signed hash from the software provider (grey).

A master enclave creates all Ryoan instances and
they establish cryptographically protected communication
channels among themselves as specified by the user. Once
the distributed topology has been established, the master
forwards the attestations for each node in the topology to
the user who verifies that the configuration matches her
specification. Then the user inputs her secret data. Ryoan
provides simple labels to protect secret data added by
modules in the DAG. All of Ryoan’s instances together
form a distributed sandbox that protects secret input data
from being leaked by the untrusted code modules that
operate on it.

Ryoan identity and module identity. SGX attests to the
Ryoan sandbox using processor hardware and the Ryoan
sandbox attests to the module’s initial state (Figure 2)
using software cryptography. SGX supports two forms of
identity, one based on a hash of the module’s initial state
(MRENCLAVE) and one based on a public key, product
identifier and security version number (MRSIGNER).
SGX can verify Ryoan using either form of identity;
our prototype uses MRENCLAVE. Ryoan can support
software analogs of either identity for untrusted modules;
the prototype identifies modules by the public key that
signs them.

In the next section, we will describe Ryoan’s dis-
tributed properties and how they are enforced, followed by
a more detailed explanation of how individual instances
confine modules.

4. The Ryoan distributed sandbox
The Ryoan sandbox is distributed, with different in-

stances confining untrusted modules while all instances
communicate to enforce global properties like the com-
munication topology and secrecy labels for code and data.
4.1 Enforcing Topology

The user either defines the communication topology of
confined modules or explicitly approves it. A topology is
a DAG of modules with unidirectional links (see §5.2 for
why Ryoan requires a DAG). The DAG specification is
first passed to an initial enclave which we call the master.
It contains standard, trusted initialization code provided
by Ryoan. The master requests that the operating system
start enclaves that contain Ryoan instances for modules
listed in the specification. These enclaves can be hosted
on different machines. The master uses SGX to perform

local or remote attestation to verify the validity of indi-
vidual Ryoan enclaves, then lets neighbor enclaves in
the DAG establish cryptographically protected commu-
nication channels via key exchange using the untrusted
network or local inter-process communication as a trans-
port. The user can verify the validity of the master via
attestation, and ask it whether a desired topology has been
initialized. After that, the user establishes secure channels
with the entry and exit enclaves of the DAG, and starts
data processing.

The master enclave is convenient but not essential to
our design. We could instead append a DAG specification
to each user request, and have each enclave verify the
identities of its neighbors according to the specification
before sending its output.

Figure 3 shows an example of Ryoan processing input
from user Alice whose sensitive data is processed by both
23andMe and Amazon. Each Ryoan instance executes in
an enclave on the same or different machines. The host
machine(s) might be provided by 23andMe, Amazon, or
a third party. In all cases, Ryoan assures no leakage of
the user’s secrets and also prevents leakage of any trade
secrets used by 23andMe and Amazon.
4.2 Label-based model for communication
Ryoan labels. Ryoan adapts previous label-based sys-
tems to enable multiple mutually distrustful modules to
cooperate on sensitive data. Ryoan uses secrecy labels
to mark secret data and enclaves which have seen that
secret data. Ryoan’s labels are similar to a DIFC sys-
tem [45, 52, 60, 69, 76], but far simpler. Ryoan labels
could also be thought of as taint tracking [30] at enclave-
level granularity, with per-principal classes of taint. Taint
is attached to data at unit of work granularity (where units
of work are application defined). Conceptually, a label is
a set of tags, where each tag is an opaque identifier drawn
from a large universe that identifies a principal, indicating
secrets from this principal.

In our prototype, a user’s tag is his/her public key.
A company can use its private key to sign its module
binaries, and use the associated public key as the tag for
those modules. The company can also use different key
pairs to sign its module binaries to make them different
principals, enabling privilege separation.

Label manipulation rules. Each module has the ability
to add or remove a single tag that corresponds to its
principal — each module can declassify its own secrets.
When a module reads data with a non-empty label (e.g.,
from a user or another module’s output), it merges the
data’s label with its current label which becomes the new
label for both the module and the data. Ryoan marks a
module’s output data with the module’s label.

In Figure 3, input from Alice is labeled with her tag,
and the first 23andMe module adds the 23andMe tag, to
make sure that its secrets cannot flow back to the user after

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 537

Ryoan instanceRyoan instance

Amazon ML23andMe

23andMe

1. Input from user Alice 7. Output to user Alice

Alice

2. Label added
by sandbox:

3. 23andMe adds its label and delegates
to Amazon Machine Learning

4. Amazon Machine Learning
sends result to 23andMe after
removing its own label

6. Sandbox removes
Alice's label

Amazon

5. 23andMe
removes its label

23andMe
Alice

23andMe
Alice

Ryoan instance

23andMe

23andMe
Alice23andMe

Alice

Alice

out_size =
const

out_size = const

out_size = const

Figure 3: Ryoan’s distributed sandbox. Ryoan instances manage labels on data and modules. The user’s tag is propagated to all modules, making
them confined after receiving input; For example, 23andMe’s tag is kept when it outsources to Amazon Machine Learning to prevent leaking secrets
from 23andMe.

handing them off to Amazon’s machine learning module.
This control is important since the user is in control of
the topology. The second 23andMe module removes its
tag from its output’s data label. In a sense, the public key
of 23andMe creates a group and both of its modules are
members of the group—verified by Ryoan because both
are signed with that key. Ryoan is trusted to remove the
user’s tag when it communicates over a protected and
authenticated connection to the user.
4.2.1 Non-confining labels

A Ryoan instance is created with an empty label,
and the module can add the tag that corresponds to
its principal at any time. If the label does not contain
tags from other principals, the module is not confined
and may perform any file system operation, network
communication, or address space modification permitted
by Ryoan and NaCl. For example, it can freely initialize
its state by reading from the network or file system. Ryoan
allows unfettered access to external resources because
the principal’s own tag means that the module may have
seen secrets only from itself. In Ryoan’s threat model,
principals trust their own module not to leak its own
secrets (§2.1).

In many DIFC systems [45, 52, 60, 69, 76], principals
are independent from the application code, e.g., multiple
users (principals) use the same wiki Web application,
and the users do not trust the application. Ryoan allows
application owners (service providers) to be principals
who trust their own code, which is different from the
standard DIFC model. Although a service provider’s code
may have bugs that cause it to release its own secrets
in its output, that is not within the threat model for
Ryoan and can be mitigated using orthogonal techniques
(§2.1). Ryoan protects a principal’s data when that data
is processed by modules that are not under control of the
principal.

A service provider can host its modules and secret
data on its own machines to protect them. However, if it
chooses to use a third-party computational platform that
it does not trust, its modules containing non-confining
labels need encryption to protect persistent secrets from
the platform. Ryoan uses the SGX sealing feature to store
secret data on behalf of modules. Sealing provides an
encryption key only accessible to enclaves with the same
identity executing on the same processor. For Ryoan, all

enclaves are Ryoan instances and have the same identity.
Any data that the module wants to persist securely is
passed to Ryoan, which adds its own metadata, including
the public key of the requesting module. Ryoan seals
the data and metadata and writes the result into a file.
The metadata allows Ryoan to persist data on behalf of
different modules and allows it to restrict any module’s
access to its own data.
4.2.2 Confining labels

When a module’s label contains tags of other princi-
pals (as a result of receiving secrets from a user or another
module’s output), it enters a confined environment strictly
enforced by Ryoan. Ryoan must prevent confined mod-
ules from leaking data that belong to other principals.
Such labels are called confining labels.

Modules with confining labels are disallowed to per-
sist data. As a result, Ryoan’s label system is far sim-
pler than DIFC systems [45, 57, 60, 69, 76]. Confined
modules have seen secret data from other principals, so
allowing them persistent storage violates Ryoan’s “one-
shot” request-oriented data model—a module processes a
request’s data once and only once.
4.2.3 Ryoan data audit trail

As data traverses the DAG of modules, Ryoan tracks
which modules process each piece of user work. The audit
trail for each work unit is available to the user as part of a
DAG’s output. While Ryoan cannot verify that modules
are performing their intended or claimed function, an
audit trail can still be useful. For example, a given piece
of data might have been processed by a version of a
module which is known to be faulty. Whether a user wants
the audit trail and for what purpose is dependent on the
application and the user.
4.3 Data oblivious communication

One of the primary safety functions of Ryoan is to
prevent the computational platform from inferring secrets
about the input data by observing data flow among mod-
ules. Therefore, data flow must be independent from the
contents of the input data: Ryoan never moves data in re-
sponse to activity under the control of the untrusted mod-
ule once the module has read its input data. This safety
property is sometimes called being data oblivious [58].

Units of work can be any size, but Ryoan ensures that
data flow patterns do not leak secrets from input data by
making module output size a fixed, application-defined

538 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

function of the input size. Ryoan protects communication
with the following rules: (1) each Ryoan instance reads its
entire input from every input-connected Ryoan instance
before the module starts processing. (2) the size of the
output is a polynomial function of the input size, specified
as part of the DAG. Ryoan pads/truncates all outputs to the
exact length determined by the polynomial and the size
of the input. (3) Ryoan is notified by the module when its
output is complete , and it writes the module’s output to all
output-connected Ryoan instances. Ryoan encapsulates
module output in a message that contains metadata which
describes what is module output and what is padding
(if any). The metadata is interpreted, and any padding is
stripped away by the next Ryoan instance before exposing
the data to its module. These rules are sufficient because
they ensure that output traffic is independent from input
data (though there are possible alternatives, for example,
each request could specify its output size).

Consider the scenario in Figure 3. Each input comes
from a user. The user can choose to leak the size of the
input, or she can hide the size by padding the input. The
description of the DAG specifies that (1) the output of
23andMe’s first module is padded to a fixed size defined
by 23andMe which can hold the largest possible user
input, (2) the output of Amazon Machine Learning’s
classifier module is padded to a fixed size to encode
the classification result, and (3) the response to the user
from 23andMe’s second module is also padded to a fixed
size that can hold the largest possible result. Each Ryoan
instance must receive the complete input of a work unit
before executing its module.

Ryoan ensures that output size is a fixed function of the
input, so it is a module’s mistake if the output is not large
enough. Ryoan will truncate outputs that are too large and
pad outputs that are too small. However, a module author
should be able to describe the maximum possible output
for a given sized input request. For example, a spam
detector’s output will be the size of the input mail message
(which is just copied) plus a constant size sufficient to
hold the spam rating for the email.

5. Module confinement
Ryoan relies on instances of its sandbox to prevent

modules from leaking sensitive data to an adversary,
including the platform’s privileged software. To that end,
a sandbox instance enforces the life cycle, system service
restrictions, and input-output behavior of the module.

Module validation Ryoan module validation ensures
that modules are safe to execute by enforcing a set of con-
straints on the code being loaded. Ryoan uses NaCl’s load-
time code validator to ensure that the module’s code ad-
heres to a strict format. NaCl’s code format is designed to
be efficiently verified and efficiently sandboxed, restrict-
ing control flow targets and cleanly separating code from

data. Memory accesses are confined to remain within the
address space occupied by the module, including fetches
for execution. The detailed guarantees of NaCl are avail-
able as prior work [64, 74] and Ryoan does not change
the base guarantees of the NaCl sandbox. Ryoan adds
the constraints that modules may not contain any SGX
instructions, and that control flow is constrained to the
initial module code; i.e., Ryoan disallows dynamic code
generation.

Module life cycle A Ryoan instance enforces the follow-
ing life cycle on its module: creation, initialization, wait,
process, output, destruction/reset. The sandbox begins
by validating its module and verifying that its identity
matches the DAG specification. It allows the module to
initialize with an empty label and the module can give
itself a non-confining label (§4.2.1). In both cases the
module has full access to the system services exposed
by vanilla NaCl. Non-confined initialization makes mod-
ule creation more efficient and it makes porting easier
because initialization code can remain unchanged.

Modules signal Ryoan when initialization is complete
by calling wait for work, a routine implemented by
Ryoan. Once a module is initialized, it processes a request,
generates its output, and then is destroyed or reset to
prevent accumulating secret data. Ryoan instances are
request oriented: input can be any size, but each input
is an application-defined “unit of work.” For example, a
unit of work can be an email when classifying spam, or
a complete file when scanning for viruses. Each module
gets a single opportunity to process its input data.
5.1 Ryoan’s confined environment

Any module with a confining label is executed in
Ryoan’s confined environment. Ryoan’s confined envi-
ronment is intended to prevent information leakage while
reducing porting effort. When a module receives the se-
cret data contained within a request, it enters the confined
environment and loses the ability to communicate with
the untrusted OS via any system call. Therefore, Ryoan
must provide a system API sufficient for most legacy code
to perform their function. Ryoan provides these services.

• The most important service is an in-memory virtual
file system. First, Ryoan allows files to be preloaded in
memory, and the list of preloaded files must be determined
before the module is confined; e.g., they can be listed in
the DAG specification, or requested by the module during
initialization. Ryoan presents POSIX-compatible APIs
to access preloaded files that are available even after the
module is confined. Second, a confined module can create
temporary files and directories (which Ryoan keeps in
enclave memory). When the module is destroyed or reset,
all temporary files and directories are destroyed, and all
changes to preloaded files are reverted.

• mmap calls are essential to satisfy dynamic memory
allocation, so Ryoan supports anonymous memory map-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 539

pings by returning addresses from a pre-allocated memory
region. The maximum size of the region must be decided
before the module becomes confined.

Ryoan’s confined environment is sufficient for many
data-processing tasks. For example, ClamAV, a popular
virus scanning tool loads the entire virus database during
initialization; when scanning the input such as a PDF file,
it creates temporary files to store objects extracted from
the PDF. Ryoan’s in-memory file system satisfies these
requirements.

However, if an application needs a large database that
does not fit in memory when processing data, Ryoan
cannot support it as a single module. A workaround would
be to partition the database, and use multiple modules to
load different partitions and perform different parts of the
task, if that is feasible for a particular application.

Any design alternative that allows access to persistent
files (as opposed to Ryoan’s in-memory files) must cope
with the covert channel created by allowing the OS to see
file reads, which might occur based on computation within
the untrusted module. Ryoan eliminates this channel by
executing from memory only. All Ryoan modules must
fit into memory for their entire lifetime because any
“swapping” done by Ryoan will create a covert channel
between the module and the operating system. File access
techniques based on oblivious RAM (ORAM [50, 62])
can hide data access patterns, but at a performance and
resource cost we deem too high for Ryoan.
5.2 Processing-time channels

A confined module cannot communicate with the
untrusted OS via system calls, but it determines when
its data processing is finished, which can be a channel to
the OS to leak secrets by choosing different processing
times depending on the data.

Fixed processing time. Timing channels can be elimi-
nated by forcing a fixed processing time whose length is
determined before the module has seen any data. The OS
cannot directly determine when the module completes,
so the Ryoan runtime can pad execution time by busy
waiting. However, controlling its timing without the co-
operation of the operating system is a challenge. Fixed
processing time can be quite expensive for computations
with widely variable run times, because all runtime would
be padded to the worst case. However, fixed processing
time can be quite modest for computations with highly
predictable run times (e.g., evaluating certain machine
learning models like decision trees) or with light through-
put requirements. Fixed time execution does not leak
information, though we defer to future work building a
Ryoan instance that supports it. To add some flexibility
with no loss of security, execution time could also be a
fixed function of input length.

Quantized processing time. Processing time channels
are mitigated by reducing the granularity of potential

processing times by padding execution to a fixed number
of quantized, pre-defined values [20, 67, 79, 80]. Because
Ryoan only allows modules to see sensitive data once,
individual modules can only leak a number of bits that
is proportional to the logarithm of the number of distinct
execution durations (e.g., if the code terminates after one
of eight different statically determined intervals, it leaks
three bits).

Randomness. Users can specify whether confined mod-
ules need access to randomness. If the user allows, a mod-
ule can access randomness via the processor, e.g., Intel’s
RDRAND instruction. Ryoan does not allow confined
modules to get randomness from the operating system.
Access to randomness means a malicious module can
leak random bits from an input, for example choosing an
input bit at random and leaking it using its processing
time. If the user repeats input data, a malicious module
with access to randomness can eventually leak the entire
input over its processing-time channel, even though it
only leaks once for each input unit of work. Using a fixed
processing time eliminates this channel.

One shot at input data. Ryoan is designed to allow each
module a single opportunity to process its input data, with
no opportunity to carry forward state from one input to the
next. This one-shot policy limits data leakage. Therefore,
Ryoan must prevent a module from accessing the same
input again after reset. Ryoan enforces the one-shot
policy by 1) requiring that the data processing topology
is a DAG to avoid cycles; 2) Ryoan’s reset mechanism
deletes all data dependent on state modified after secret
data is read; 3) Ryoan prevents input replay attacks by
reinitializing all secure connections if any connection is
ever broken. Secure communication protocols contain
protection against replay attacks [75], so reinitializing
broken links prevents input replay. Note that the OS can
pause or stop the execution of an SGX enclave, but it
cannot rollback its state [15], which means the state of
a secure connection cannot be rolled back. Ryoan itself
uses high-quality randomness available via the processors
RDRAND instruction to establish secure connections,
which does not rely on the OS.
5.3 Protecting Ryoan from privileged software

A Ryoan instance requires services provided by the
untrusted operating system and possibly the hypervisor.
The Ryoan instance must check the results coming from
the untrusted operating system to make sure the OS
is not being misleading. Most of these checks can be
transparently inserted into libc, the lowest level of
software that communicates with the operating system.
Ryoan-libc is Ryoan’s replacement for libc and it
manages system call arguments and checks their return
values. The Ryoan sandbox code invokes Ryoan-libc
through standard libc functions, such as the wrappers
for system calls (e.g., read).

540 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Iago attacks. Ryoan-libc guards against all known Iago
attacks [28] by keeping state in enclave memory and
carefully checking the results of system calls e.g., making
sure that addresses returned from mmap do not overlap
with previously allocated memory (like the stack). For
Linux, the system call interface can be secured e.g.,
by maintaining semaphore counts in enclave memory
and duplicating futex [37] memory inside and outside
the enclave. Ryoan shares the need for this type of
checking with all systems distrustful of the operating
system [29, 40, 46], though some check at a lower level
than system calls [21].

Controlling an enclave’s address space. SGX provides
user control of memory mapping, including permissions.
Ryoan-libc maintains a data structure that is equivalent
to the kernel’s list of virtual memory areas (VMAs). It
knows about each mapped region and its permissions.
Map requests are fulfilled eagerly and verified by Ryoan-
libc at the time of the request (i.e., as part of the mmap
call), not at page fault time.

SGX dictates a very specific procedure for verifying
enclave mappings. A typical new mapping proceeds as
follows: (1) Untrusted code notifies the kernel of a new
desired mapping via a system call made by Ryoan-libc.
(2) The kernel selects new enclave page frames to satisfy
the mapping and modifies the page tables to map the
frames at the requested virtual address with the requested
permissions. (3) Untrusted user code resumes and passes
control to enclave code. (4) Enclave code verifies that
the mapping completed as expected by invoking the SGX
instruction EACCEPT on every new page. The EACCECPT
instruction accepts a virtual address and protection bits
and verifies that the current address space maps that page
to a valid, SGX protected 4KB physical frame. New pages
added to the enclave always start out with read and write
permissions and their contents are zeroed by hardware.

If the user wants something other than read and write
permission, SGX provides the EMODPE instruction to
make them more permissive and the EMODPR instruction
which makes them less permissive. EMODPE is only avail-
able to enclave code while EMODPR is only available to
privileged software (ring 0, outside of the enclave). If an
enclave desires less permissive page access rights, it must
signal privileged software to request the restriction, but
can validate that it was done correctly through another use
of the EACCEPT instruction. Note that the OS can always
restrict page permissions against the enclave’s wishes,
which will create more permission faults.

Ryoan-libc emulates mmap behavior by doing work
required by SGX on behalf of the user. For instance, if
the user expects new pages to have particular contents
(e.g., she privately mapped a file) and to be read-only,
Ryoan-libc can copy the requested portion of the file into
enclave memory and ensure those pages have read-only

create init wait process output destroy

create init wait process output resetcheckpoint

unoptimized life cycle

checkpoint-based life cycle

Figure 4: Instance life cycle: unoptimized vs checkpoint-based.

permissions before returning.
5.4 Optimizing module reset

The restrictions necessary to confine modules create
execution time and memory space overheads. In this sec-
tion we discuss strategies for mitigating these overheads.

Checkpoint-based enclave reset. Creating and initial-
izing modules often requires far more CPU time than
processing a single request (see Section 8 for measure-
ments). For instance, loading the data necessary for virus
scanning takes 24 seconds; orders of magnitude greater
than the ≈0.124 seconds it takes to process a single email.
Ryoan manages the module life cycle efficiently using
checkpoint-based enclave reset.

Creating and initializing a hardware protected enclave
is slow (e.g., we measured 30 ms for a small enclave).
Compounding the problem is that applications often do
not optimize their own initialization sequence on the as-
sumption that it is not frequently executed. But Ryoan
does not allow any data from one input to be carried for-
ward to the next, so each input requires that computation
begins from the same, non-secret state, making initializa-
tion a bottleneck.

Ryoan provides a checkpoint service that allows the ap-
plication to be rolled back to an untainted, but initialized,
memory state (Figure 4). In our prototype this state is
at the first invocation of wait for work. Ryoan does
not allow an enclave that has seen secret input to be
checkpointed, because its data model is request-oriented:
modules should not depend on past requests to operate.
Checkpointing a module that has seen secret data would
(potentially) give that module multiple execution opportu-
nities on a single request’s data.

Checkpoint restore allows Ryoan to save the cost of
tearing down and rebuilding the SGX enclave and it
saves the cost of executing the application’s initialization
code. Ryoan checkpoints are taken once, but restored
after each request is processed. Therefore, Ryoan makes
a full copy of the module’s writeable state and simply
tracks which pages get modified (avoiding a memory
copy during processing). Only the contents of pages that
were modified during input processing are restored (§6.6).
SGX provides a way for enclave code to verify page
permissions and be reliably notified about memory faults,
which is necessary to track which pages are written.

Batch requests before reset. A user might want more
efficiency by allowing a module to process several input
units of work before it is reset. Whether batching multiple

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 541

inputs within a single request constitutes a threat is user
and application dependent. But if a module can process
more than one unit for the same data source, it can
accumulate secrets across two wait-process-output cycles.
Having access to more secret data for longer exacerbates
the problem of slow leaks (e.g., timing channel leaks). For
example, an email-filtering module allowed to process
multiple emails without resetting could leak a password
contained in one email by using the processing-time
channel across multiple wait-process-output cycles.

6. Implementation
The Ryoan instance prototype is based on NaCl version

2d5bba1 with the last upstream commit on Jan 19 2016.
We leverage NaCl’s existing sandboxing guarantees to
control the module’s access to the platform. NaCl ensures
that the module in the sandbox has no direct access to
OS services. We ported NaCl for use in SGX with the
introduction of the Ryoan-libc layer. NaCl depends on libc
to interface with the platform. Ryoan-libc makes system
calls on behalf of a Ryoan instance after checking that
the system call is allowed. We modified eglibc’s dynamic
linker to support loading Ryoan into enclaves, but all
modules must be statically linked. We base Ryoan-libc
on eglibc 2.19 which is compatible with our version of
NaCl.
6.1 Constraints of current hardware

Ryoan relies on features from version 2 of the SGX
hardware, while only version 1 is currently available. Ver-
sion 2 adds the ability to modify enclaves dynamically,
i.e., augmenting an executing enclave with new memory
and changing protections on existing enclave memory.
Furthermore, our first generation SGX-capable machine
makes only a limited amount of physical memory avail-
able to SGX (128MB on our machine).
6.2 Ryoan-libc

Ryoan-libc manages interactions with the untrusted op-
erating system. It is impossible for the OS to read enclave
memory; so Ryoan-libc marshals system call arguments
into the process’ untrusted memory and copies back re-
sults. Interposition from libc is common for applications
that do not trust the operating system [29, 40, 46], while
Haven protects a smaller system interface [21].

Fault handling. Signals allow user-level code to be
interrupted by the system. The source of most signals
is unreliable when the OS is untrusted, but SGX allows
us to get reliable information about memory faults; this
allows Ryoan-libc to expose this information to Ryoan
instances though the normal signal handler registration
interface. Ryoan-libc signal support is currently limited
to the memory fault signal (SIGSEGV).

After any fault, exception, or interrupt the OS returns
control to untrusted trampoline code contained within
the process. In the case of a memory fault, rather than

simply resuming the enclave where it was paused (as in
the normal case), our trampoline code enters the enclave
where it can read reliable information about the fault from
SGX and make necessary arrangements to fix the fault
(e.g., change permissions). After handling the fault, the
enclave exits and then our trampoline resumes the enclave
at the instruction that caused the memory fault. We cannot
protect the trampoline code from the OS, but it can only
enter the enclave using the EENTER instruction, which
will transfer control to our fault-checking entry point,
or resume the enclave using the ERESUME instruction
which will re-execute the instruction that faulted. If the
enclave is resumed without calling the enclave fault
handler, the instruction will simply refault.
6.3 Module address space

x86-64 NaCl allocates a 84 GB region for a NaCl
module with 4 GB of module address space flanked above
and below by 40 GB of inaccessible guard pages, but
current SGX hardware only allows enclaves with 64
GB of virtual address space. Fortunately, the original
x86-64 NaCl design [64] overestimated the amount of
guard pages needed to allow for future changes in the
architecture. A detailed analysis [6] indicates we can
remain safe by keeping the upper guard region unchanged
but reducing the lower region from 40 GB to 4 GB.
A Ryoan instance therefore requires 48 GB of virtual
address space which fits into current SGX hardware.
6.4 I/O control

A Ryoan instance controls its module’s access to files
and request (work unit) buffers when it is confined, pre-
venting the module from leaking data via direct syscalls.

In-memory virtual file system. A confined module can-
not access the file system, but Ryoan implements POSIX-
compatible APIs for in-memory virtual files, including
preloaded files and temporary files. An in-memory file is
backed by a set of 4 KB blocks that are indexed by a two-
level tree structure (similar to a page table). The blocks of
a file are allocated on demand as the file grows. The max-
imum size of an in-memory file is 1 GB. An in-memory
directory is backed by a hash table, and we use refer-
ence counts to track the lifetime of files. This virtual file
system supports standard APIs including open, close,
read, write, stat, lseek, unlink, mkdir, rmdir and
getdents. When the module writes a preloaded file, the
Ryoan instance keeps the original file blocks. When the
module is reset, preloaded files are restored to their origi-
nal versions and temporary files are deleted.

Input/output buffers. For each unit of work, a mod-
ule calls wait for work (a system service implemented
by Ryoan), and the Ryoan instance reads its entire input
from all input channels into memory buffers before re-
turning to the module. After processing the work unit,
the module’s output is written to a buffer, and in the

542 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

next wait for work call, the Ryoan instance flushes the
buffer to output channels after padding or truncating the
output to a size calculated using a polynomial function of
input size according to the DAG specification. The mod-
ule accesses these buffers via file descriptors using APIs
implemented in the virtual file system, just like using
regular pipes or sockets.
6.5 Key establishment between enclaves

Ryoan instances implement protected channels using
an authenticated encryption algorithm (AES-GCM [55])
provided by the libsodium [9] library. Encryption keys
are agreed on at runtime using Diffie-Hellman key ex-
change. SGX allows you to embed the key parameters in
attestations, accelerating a Diffie-Hellman key exchange
between enclaves [16]. On our hardware (§8), SGX key
exchange takes 1.78ms while OpenSSL takes 1.90ms.
Randomness is required for key exchange and Ryoan uses
the x86 instruction RDRAND to obtain it.
6.6 Checkpointing confined code

Ryoan uses page permission restriction and fault infor-
mation to detect module writes. Recall that SGX provides
reliable memory page permissions and information about
memory faults; Ryoan does not trust the OS (§6.2). The
entire module is write protected by the OS when it is
confined. Ryoan verifies that the protection was done
using EACCECPT. As the module writes, the Ryoan in-
stance catches permission faults and records the page’s
address before changing the permissions to allow writes
and resumes the module. However, it still needs the OS
to change permissions in the page table, which requires
ring-0 privilege. In fact, the page fault causes an exit from
the enclave; the kernel catches it and invokes the Ryoan
instance’s signal handler. The handler first executes out-
side enclave mode and makes an mprotect syscall to
change page permissions, then enters enclave mode to
update SGX page permissions with EMODPE. After that,
the handler returns and normal execution resumes.

To reset the enclave, all written pages are restored to
their initial value and made unwritable again. In our pro-
totype, before an untrusted module is confined for the
first time, the Ryoan instance creates a checkpoint by
copying the module’s complete writable memory state.
This copy-on-initialize strategy optimizes the case where
Ryoan instances are created once and then used and reset
for many requests. If the copy-on-initialize cost is too
high, Ryoan could incrementally create the checkpoint
by doing copy-on-write for each request, gradually accu-
mulating and preserving unmodified versions of any page
modified during any execution.

In our prototype the checkpoint is taken when the mod-
ule is blocking on wait for work, and restore occurs the
next time the module blocks on wait for work. This
gives module writers clear semantics about what state
will not persist across invocations, and allows the Ryoan

instance to purge any secrets kept in registers.
Restoring a checkpoint does incur additional page

faults which could be used as a channel to leak data. We
find these additional faults acceptable as even normal page
accesses by the module are a channel between module
and OS that SGX does not close [71]. Page faults will
continue to leak information about enclave execution until
future generations of hardware enclaves can service their
own page faults (§2.3). To make Ryoan execution on
current SGX hardware more secure, we could save/restore
all writable regions of the module instead of tracking
individual pages using write protection. This strategy
is less efficient but does not leak additional per-page
information.

7. Use cases
This section explains four scenarios where Ryoan

provides a previously unattainable level of security for
processing sensitive data. For all examples, the Ryoan
instances could execute on the same platform or on
different platforms, e.g., the entire computation might
execute on a third-party cloud platform like Google
Compute Engine, or a provider’s module might execute
on its own server. Ryoan’s security guarantees apply to
all scenarios.
7.1 Email processing

A company can use Ryoan to outsource email filtering
and scanning while keeping email text secret. We consider
spam filtering and virus scanning, using popular legacy
applications — DSPAM 3.10.2 and ClamAV 0.98.7.

The computation DAG for this service contains four
Ryoan instances, each confining a data processing module
(see Figure 5). An email arrives at the entry enclave over
a secure channel, which simply distributes the email text
and attachments to the enclaves containing DSPAM and
ClamAV, respectively. The results of virus scanning and
spam filtering are sent to a final post-processing enclave
which constructs a response to the user over a secure
channel.
7.2 Personal health analysis

Consider a company (e.g., 23andMe) that provides
customized health reports for users based on a variety
of health data. 23andMe accepts a user’s genetic data,
medical history, and physical activity log as input, extracts
important health features from these data, and predicts
the likelihood of certain diseases [1]. Since genetic and
health information is extremely sensitive, users may not
feel comfortable with the company keeping their data. To
encourage use of the service, 23andMe can deploy it with
Ryoan, assuring users that the code that processes their
data cannot retain or leak their secrets.

23andMe owns its research results about the associ-
ations between diseases and health features, but it may
want to use a third-party cloud machine learning service

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 543

Recognize
Face

Recognize
Smile

Recognize
Horse

Recognize
NSFW

Combine
Results

Images

Distribute

Confined, Untrusted Module

- Entry - Exit

Virus
Scan

Spam
Filter

Email

Combine

Distribute

Notation:

Translate

Translation Classifier

Health

Amazon Machine
Learning23andMe

Parse Input Return
Results

23andMe

Figure 5: Topologies of Ryoan example applications. Nodes in the graph
are Ryoan instances, though we identify them by their untrusted module.
Users establish secure channels with trusted Ryoan code for the source
and sink nodes to provide input and get output respectively.

(e.g., Amazon Machine Learning [2]), to train its model
and generate predictions. 23andMe’s trade secret would
be how to map a user’s complex, multi-modal health data
onto machine learning features. Amazon Machine Learn-
ing provides a way to train models based on unlabeled
features and software (a classifier) which queries that
model. After training a model this way 23andMe want to
keep the input to the classifier a secret from parties which
have the means to map the inputs back to secret heath
data: users of their service. Ryoan enables 23andMe to
outsource machine learning tasks to Amazon while pro-
tecting its proprietary transformation from user data to
health features.

Secrecy for both users and 23andMe is protected with
a DAG shown in Figures 3 and 5. 23andMe compiles
a training data set which it transmits to Amazon to
construct a model. Amazon provides the classifier which
queries that model as a Ryoan module. Users provide their
genetic information, medical history, and activity log in
a request. Upon receiving a user’s request, 23andMe’s
first module constructs a boolean vector of health features
and forwards it to Amazon’s module. Amazon’s module
generates predictions based on the model and forwards the
result to 23andMe’s second enclave, which then forwards
the result back to the user.

The user’s label is kept throughout the entire pipeline,
so that all the enclaves are confined when they receive
the user’s input, and prevented from leaking information
about the input. Further, 23andMe keeps its label with
the request sent to Amazon, so that Amazon cannot leak
data about 23andMe’s heath features to other parties (in
particular the user), since they cannot remove 23andMe’s
label in order to release data out of Ryoan’s confinement.
Amazon’s module passes the results of classification to
another module owned by 23andMe which verifies its
proprietary transformations are not being leaked before
removing the 23andMe label and allowing results to be
returned to the user.

The actual prediction model is unknown to us and
out of scope for this paper; but our workload uses our
knowledge of best practices. We train a support vector
machine (SVM), and choose 20 well studied diseases and
the top 500 genes that have correlations with the them,
according to a database provided by DisGeNet [14]. The
SVM models are trained using synthetic data based on that
database. Our prototype uses stochastic gradient descent
as the training algorithm [24] which allows incremental
updates to existing models.
7.3 Image processing

Image classification as a service is an emerging area
that could benefit from Ryoan’s security guarantees (e.g.,
Clarifai [3] or IBM’s Visual Recognition service [5]).
We envision a scenario where a user wants different
image classification services based on their expertise.
For example, one service might be known for accurate
identification of adult content [53] while another might do
an excellent job recognizing and segmenting horses. The
image processing DAG in Figure 5 shows an example
where an image filtering service outsources different
subtasks to different providers and then combines the
results. The user’s label is propagated to all processing
enclaves, causing Ryoan to confine their execution. Our
prototype implements all of these detection tasks using
OpenCV 3.1.0, and each detection task loads a model that
is specialized to the detection task and would represent a
company’s competitive advantage.
7.4 Translation

A company uses Ryoan to provide a machine transla-
tion service while keeping the uploaded text secret. Users
upload text to the translation enclave and get the translated
text back. Our prototype uses Moses [10], a statistical ma-
chine translation system. We train a phrase-based French
to English model using the News Commentary data set re-
leased for the 2013 workshop in machine translation [13].

8. Evaluation
We quantify the time and space costs of Ryoan and its

components by measuring the execution of the use cases
described in the previous section using a combination of
real hardware and emulation.

All benchmarks are measured on a Dell Inspiron 7359
laptop with Intel Core i5-6200U 2.3 GHz processor
(with Skylake microarchitecture and SGX version 1) and
4 GB RAM. We use a laptop because it contains the
first SGX-enabled processor we could purchase. We use
Intel’s SGX Linux Driver [8] and SDK [7] to measure
the costs of SGX instructions. We inserted delays based
on those measurements, and appropriate TLB flushes
consistent with Intel’s SGX specification to measure the
performance of Ryoan. To test our implementation and
overcome the limitations of our hardware, we built an
SGX emulator based on QEMU [11] (full emulation

544 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

48% 419%

27%
91%

0

10

20

30

40

Email Health Images Translation

W
o

rk
lo

a
d

 R
u

n
ti
m

e
(S

e
c
o

n
d

s
)

Baseline (Native Linux)

Sandbox

Sandbox+Enc

Sandbox+Enc+Marsh

Sandbox+Enc+Marsh+CPR

Ryoan

Cost of Confinement

Figure 6: Runtimes of applications with Ryoan sources of overhead
broken out. Each bar represents the mean of 5 trials annotated with
the 95% confidence interval. Ryoan bars show percent slowdown over
native. (Enc: encryption; Marsh: syscall marshaling; CPR: checkpoint
restore; Ryoan: Sandbox+Enc+Marsh+CPR+SGX)

mode), augmented with SGX version 2 instructions. We
could not use OpenSGX [41], because it lacked 64-bit
signals. Our emulator can run a complete software stack
including an SGX-aware Linux kernel.

Figure 6 shows a breakdown of the various sources
of overheads for Ryoan. The baseline is to run applica-
tions built for a native Linux environment and then add
sandboxing, encryption, syscall marshaling, checkpoint
restore and SGX (where SGX overheads are a mix of
emulation and measurements, see the discussion below).
Table 2 shows the inputs for each of the workloads, as
well as detailed measurements for each module in the
DAG and counts of important events (the workloads are
explained in Section 7).

Inputs. Workload inputs are designed to be realistic.
Email bodies are taken from a spam training set [4]. Email
attachments are a set of PDFs randomly attached to 30%
of emails (figure taken from a study of corporate email
characteristics [12]). Images are a mix of photographs,
computer generated patterns, and logos. Gene data was
synthesized based on DisGeNet [14]. Translation text
comes from the News Commentary dataset [13].

Confinement overhead. In Figure 6, the Sandbox and
Sandbox+Enc overheads are necessary for confinement,
and across all workloads encryption does not add signifi-
cant overheads. For Genes, the confinement overhead is
high (100%) because it runs a very simple SVM classifier
and the actual data processing time is small, which am-
plifies the effect of Ryoan’s data buffering/padding and
serves as a worst-case scenario. For Images, the work-
load involves heavy computation with OpenCV and the
confinement overhead is 18%.

Checkpoint restore overhead. The CPR Size column
in Table 2 shows the amount of memory copied/zeroed on
checkpoint restore. Figure 6 (the difference between the
Sandbox+Enc+Marsh and Sandbox+Enc+Marsh+CPR
columns) shows that checkpoint restore’s impact on per-
formance is significant (55%) for Genes, because it has

Load Inited Init CPU CPR Sys. PF Intrp
Size Size Time Time Size Calls
(MB) (MB) (sec) (sec)

E
m

ai
l

Distribute 18.0 18.1 0.59 1.32 11.6MB 47k 60k 473
DSPAM 19.6 273.5 11.15 22.10 45.3MB 1.29m 1.81m 6k
ClamAV 21.1 403.9 24.96 29.17 83.3MB 247k 423k 7k
Combine 18.0 18.1 0.59 0.11 16KB 12k 2k 77

H
ea

lth

LoadModel 19.3 19.4 0.58 12.52 28KB 82k 280k 56k
Classifier 19.3 19.4 0.58 18.23 36KB 1.84m 359k 151k
Return 18.0 18.1 0.59 6.77 16KB 668K 162k 3k

Im
ag

es Distribute 18.0 18.1 0.59 0.42 632KB 2k 2k 36
Recognize 26.6 27.1 0.63 24.79 83.2MB 88k 174k 6k
Combine 18.0 18.1 0.59 0.36 2.5MB 14k 3k 129
Translation 25.3 386.9 2.34 26.65 29.1MB 303k 248k 8k
Email Input 250 emails, 30% with 103KB-12MB attachment

Health Input 20,000 1.4KB Boolean vectors from different users
Images Input 12 images, sizes 17KB-613KB
Trans. Input 30 short paragraphs, sizes 25-300B, 4.1KB total

Table 2: For each workload, report counts of significant events during
one execution of each module. Load Size: the size of the loaded
module before execution, Inited Size: module size after initialization.
Init Time: module initialization time. CPU Time: Processing time of
enclave (seconds), CPR size: data copied/zeroed on checkpoint restore,
Sys. Calls: system calls, PF: page faults, Intrp: interrupts. “Images:
Recognize” reports the maximum of all 4 image recognition enclaves.

the lightest per-unit workload (≈1ms) and the relative
cost of page fault handling is high; in contrast, its impact
on Images is only 3%, which has the heaviest per-unit
workload (≈2s).

SGX overhead. Executing code in an SGX-protected
enclave imposes several overheads. We simulate SGX
hardware overheads by using delays to model the per-
formance of SGX instructions and we flush the TLB
on all enclave exits (we could not measure execution
on our hardware because it lacks SGX version 2 fea-
tures (§6.1)). Besides explicit EEXIT instructions, we
also model exits due to events like exceptions and inter-
rupts (Table 2). The amount of delay for EENTER and
EEXIT is based on our hardware measurement (3.9µs for
each EENTER/EEXIT pair); in kind, the amount of delay
added for each ERESUME/Async-Exit pair is based on our
hardware measurement (3.14µs).

Version 2 instructions EACCEPT, EMODPE, EMODPR
are simpler, so we model their cost at one-tenth of
one EENTER/EEXIT pair. Figure 7 explores the effect
of varying this cost on the runtime of our workloads.
If the version 2 instruction turn out to be as costly as
an EENTER/EEXIT pair (3.9µs), for instance, the run-
ning times of our email, health, images, and translation
workloads increase by 25%, 14%, 7%, and 4% respec-
tively. Every checkpoint-related page fault requires one
EMODPE to extend page permissions. Every page reverted
after checkpoint requires one EMODPE followed by one
EACCEPT. Unfortunately version 2 of SGX also imposes
extra synchronization (via extended behaviors of ETRACK)
when modifying enclave page state [56]. We believe the
performance effect on these workloads will be negligi-
ble, given that our applications only have one thread per

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 545

0

10

20

30

40

50

0 1 2 3 4
SGX version 2 Instruction Latency (microseconds)

W
o

rk
lo

a
d
 R

u
n
ti
m

e
(s

e
c
o
n
d

s
)

Email

Health

Images

Translation

Ryoan Sensitivity to SGX V2 Instruction Costs

Figure 7: Ryoan application workloads’ sensitivity to emulated instruc-
tion cost. The dashed vertical line denotes the delay (0.39µs) used to
compute the Ryoan bars in figure 6.

enclave. SGX execution also requires syscall marshaling
to copy system call arguments and results to and from
untrusted memory, but the overhead of marshalling is
negligible. All results are shown in Figure 6.

Checkpoint restore vs initialization. Creating an en-
clave and loading a module takes less than 0.5s for all
our cases, but Table 2 shows application-level initializa-
tion times are over 20 seconds for DSPAM and ClamAV
because they need to load and parse databases. As a re-
sult, for this workload it is preferable to use Ryoan’s
checkpoint-based reset rather than reinitialize the mod-
ules for every work unit. Enclave construction imposes
further overheads on reinitialization. Even creation of
small enclaves (e.g., 298KB) incur a penalty of 30 mil-
liseconds. In comparison, Ryoan’s checkpoint-based reset
is much more efficient, and the per-unit cost is under
10ms.

9. Related work
Haven [21] allows a trusted program and its library

operating system to execute in an SGX enclave that
protects them from attack by host software. VC3 [63]
secures trusted MapReduce using SGX. MiniBox [48]
uses Native Client and a trusted computing module (TPM)
to protect an application and the OS from each other.
Systems like Overshadow [29], InkTag [40] and Sego [46]
use a trusted hypervisor to protect trusted applications
from an untrusted operating system, and InkTag/Sego also
allow a trusted application to verify untrusted operating
system services (e.g., a file system) with help from the
hypervisor. These systems are designed to protect trusted
applications in an untrusted environment, while Ryoan
confines untrusted code that processes sensitive data.

Attempts to use late launch and TPMs (e.g., Flicker [54])
for user assurance suffer from poor usability due to the
restricted execution environment (even in their modern
incarnations such as Ironclad [39]). Code executing in an
enclave can be more complex than what is practical to
execute on a TPM. SGX also encrypts data in RAM to
keep them secret to an enclave, thus preventing a mali-
cious administrator from monitoring the memory bus to

steal secrets, which cannot be guaranteed by TPMs.
Decentralized information flow control (DIFC) al-

lows untrusted applications to access secret data but pre-
vents them from leaking data to unauthorized parties.
However, most DIFC systems require that all trusted
code is deployed in a centralized platform or adminis-
trative domain under a trusted, privileged reference mon-
itor [18, 45, 52, 60, 69, 76]; similar enforcements have
also been realized in a browser (COWL [66]) and a mobile
device (Maxoid [72]). An exception is DStar [77], which
does not have a centralized reference monitor; however,
although the user does not need to trust all machines in-
volved in the system, she has to trust the machine that she
wants to process her data, which means a correct reference
monitor (the OS that supports DIFC) is properly installed
on the machine, and that the machine’s administrator does
not use root privilege to steal secret data. Such trust is not
required in Ryoan. Systems that track information flow
down to the hardware gate level [67, 68] form a basis for
strong information flow guarantees, but such hardware is
not available and as designed does not include the privacy
and integrity guarantees provided by SGX.

Timing and termination channels are studied in pre-
vious work [36, 43] in the context of information flow
control. In Ryoan, a module has to terminate for each
unit of work, and the processing-time channel can only be
used once per unit; different units will not interfere due
to module reset.

Homomorphic encryption [25, 38] and order-preserving
encryption [22] share similar motivations with Ryoan.
They allow untrusted code to perform certain opera-
tions directly on encrypted data, in order to protect
secrecy. There are also systems built on these primi-
tives [23, 59, 65]. However, these techniques usually
suffer from limited application scenarios, weak secu-
rity guarantees, or significant performance overhead.
In comparison, Ryoan’s confinement does not require
domain-specific knowledge about the applications.

10. Conclusion
Ryoan allows users to safely process their secret data

with software they do not trust, executing on a platform
they do not control, thereby benefiting users, data process-
ing services, and computational platforms.

11. Acknowledgments
We would like to thank Mark Silberstein, Christopher

J. Rossbach, Bennet Yee and Petros Maniatis, the anony-
mous reviewers and our shepherd Jeff Chase for com-
ments on early revisions of this work. We also thank
Shane Williams for background on mail servers. We ac-
knowledge funding from NSF grants CNS-1228843 and
CFC-1333594, and a Google research award.

546 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] 23andMe compares family history and genetic tests for pre-

dicting complex disease risk. http://mediacenter.
23andme.com/blog/23andme-compares-
family-history-and-genetic-tests-for-
predicting-complex-disease-risk/. (Ac-
cessed: September 2016).

[2] Amazon machine learning. https://aws.amazon.
com/machine-learning/. (Accessed: September
2016).

[3] Clarifai. https://www.clarifai.com. (Accessed:
September 2016).

[4] CSMINING Group: Spam email datasets. https:
//csmining.org/index.php/spam-email-
datasets-.html. (Accessed: April 2016).

[5] IBM visual recognition service. http://www.
ibm.com/smarterplanet/us/en/ibmwatson/
developercloud/visual-recognition.html.
(Accessed: September 2016).

[6] Implementation and safety of NaCl SFI for x86-
64. https://groups.google.com/forum/
#!topic/native-client-discuss/C-
wXFdR2lf8. (Accessed: September 2016).

[7] Intel(R) Software Guard Extensions for linux* OS, linux-
sgx. https://github.com/01org/linux-sgx.
(commit:d686fb0).

[8] Intel(R) Software Guard Extensions for linux* OS, linux-
sgx-driver. https://github.com/01org/linux-
sgx-driver. (commit:0fb8995).

[9] libsodium: A modern and easy-to-use crypto library.
https://github.com/jedisct1/libsodium.
(Accessed: September 2016).

[10] Moses. http://www.statmt.org/moses/. (Ac-
cessed: September 2016).

[11] QEMU: open source processor emulator. http://wiki.
qemu.org/Main_Page. (Accessed: September 2016).

[12] The Radicati group, inc: Email statistics report 2009-20013
(summary). http://www.radicati.com/wp/wp-
content/uploads/2009/05/email-stats-
report-exec-summary.pdf. (Accessed: Septem-
ber 2016).

[13] Shared task: Machine translation. http://www.
statmt.org/wmt13/translation-task.html.
(Accessed: September 2016).

[14] The DisGeNET Database. http://www.disgenet.
org/ds/DisGeNET/files/current/
DisGeNET_2016.db.gz. (Accessed: February,
2016).

[15] Intel(R) Software Guard Extensions programming
reference, 2014. https://software.intel.
com/sites/default/files/managed/48/88/
329298-002.pdf.

[16] Intel software guard extensions evaluation SDK users
guide: Diffie-Hellman key exchange. https://
software.intel.com/sites/products/sgx-

sdk-users-guide-windows/Default.htm,
2015. (Accessed: September 2016).

[17] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah
Taylor, Brad Chen, Derek L. Schuff, David Sehr, Cliff L.
Biffle, and Bennet Yee. Language-independent sandboxing
of just-in-time compilation and self-modifying code. In
PLDI, 2011.

[18] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan
Askarov, and Andrew C Myers. Sharing mobile code
securely with information flow control. In IEEE S&P,
2012.

[19] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Daniel O’Keeffe, Mark L. Stillwell,
David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter
Pietzuch, and Christof Fetzer. SCONE: Secure linux
containers with Intel SGX. In OSDI, 2016.

[20] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers.
Predictive black-box mitigation of timing channels. In
CCS, 2010.

[21] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with Haven.
In OSDI, 2014.

[22] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and
Adam Oneill. Order-preserving symmetric encryption. In
EuroCrypt, 2009.

[23] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi
Goldwasser. Machine learning classification over en-
crypted data. In NDSS, 2015.

[24] Lèon Bottou. Stochastic gradient SVM.
http://leon.bottou.org/projects/sgd#
stochastic_gradient_svm. (Accessed: Septem-
ber, 2016).

[25] Zvika Brakerski and Vinod Vaikuntanathan. Fully homo-
morphic encryption from ring-lwe and security for key
dependent messages. In CRYPTO. 2011.

[26] Erik Buchanan, Ryan Roemer, Hovav Sacham, and Stefan
Savage. When good instructions go bad: Generalizing
return-oriented programming to risc. In CCS, 2008.

[27] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI, 2008.

[28] Stephen Checkoway and Hovav Shacham. Iago attacks:
Why the system call API is a bad untrusted RPC interface.
In ASPLOS, 2013.

[29] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap
Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jef-
fery Dwoskin, and Dan R. K. Ports. Overshadow: A
virtualization-based approach to retrofitting protection in
commodity operating systems. In ASPLOS, 2008.

[30] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher,
and Mendel Rosenblum. Understanding data lifetime via
whole system simulation. In USENIX Security, 2004.

[31] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere,
and Bjorn De Sutter. Practical mitigations for timing-based

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 547

http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://www.clarifai.com
https://csmining.org/index.php/spam-email-datasets-.html
https://csmining.org/index.php/spam-email-datasets-.html
https://csmining.org/index.php/spam-email-datasets-.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/visual-recognition.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/visual-recognition.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/visual-recognition.html
https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver
https://github.com/jedisct1/libsodium
http://www.statmt.org/moses/
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt13/translation-task.html
http://www.disgenet.org/ds/DisGeNET/files/current/DisGeNET_2016.db.gz
http://www.disgenet.org/ds/DisGeNET/files/current/DisGeNET_2016.db.gz
http://www.disgenet.org/ds/DisGeNET/files/current/DisGeNET_2016.db.gz
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/products/sgx-sdk-users-guide-windows/Default.htm
https://software.intel.com/sites/products/sgx-sdk-users-guide-windows/Default.htm
https://software.intel.com/sites/products/sgx-sdk-users-guide-windows/Default.htm
http://leon.bottou.org/projects/sgd#stochastic_gradient_svm
http://leon.bottou.org/projects/sgd#stochastic_gradient_svm

side-channel attacks on modern x86 processors. In IEEE
S&P, 2009.

[32] Victor Costan and Srinivas Devadas. Intel SGX Explained.
2016.

[33] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In USENIX Security, 2016.

[34] Solar Designer. ”return-to-libc” attack. Bugtraq, 1997.

[35] Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C.
Myers, and G. Edward Suh. Lattice priority scheduling:
Low-overhead timing-channel protection for a shared mem-
ory controller. In HPCA, 2016.

[36] Bryan Ford. Plugging side-channel leaks with timing
information flow control. In HotCloud, 2010.

[37] Hubertus Franke, Rusty Russell, and Matthew Kirkwood.
Fuss, futexes and furwocks: Fast userlevel locking in linux.
In Ottawa Linux Symposium, 2002.

[38] Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009. https://
crypto.stanford.edu/craig.

[39] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad apps: End-to-end security via automated full-
system verification. In OSDI, 2014.

[40] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
applications on an untrusted operating system. In ASPLOS,
2013.

[41] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih,
JaeHyuk Lee, Changho Choi, Youjung Shin, Taesoo Kim,
Brent Byunghoon Kang, and Dongsu Han. OpenSGX: An
Open Platform for SGX Research. In NDSS, San Diego,
CA, February 2016.

[42] Min Gyung Kang, Stephen McCamant, Pongsin
Poosankam, and Dawn Song. DTA++: Dynamic taint
analysis with targeted control-flow propagation. In NDSS,
2011.

[43] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf.
Timing-and termination-sensitive secure information flow:
Exploring a new approach. In IEEE S&P, 2011.

[44] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: system-level protection against cache-
based side channel attacks in the cloud. In USENIX
Security, 2012.

[45] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans, Kaashoek Eddie, and Kohler Robert Mor-
ris. Information flow control for standard OS abstractions.
In SOSP, 2007.

[46] Youngjin Kwon, Alan Dunn, Michael Lee, Owen Hofmann,
Yuanzhong Xu, and Emmett Witchel. Sego: Pervasive
trusted metadata for efficiently verified untrusted system
services. In ASPLOS, 2016.

[47] Butler W. Lampson. A note on the confinement problem.
CACM, 16(10), October 1973.

[48] Yanlin Li, Jonathan McCune, James Newsome, Adrian

Perrig, Brandon Baker, and Will Drewry. MiniBox: A
two-way sandbox for x86 native code. In USENIX ATC,
2014.

[49] Anyi Liu, Jim Chen, and Harry Wechsler. Real-time covert
timing channel detection in networked virtual environ-
ments. In International Conference on Digital Forensics,
2013.

[50] Chang Liu, Michael Hicks, Austin Harris, Mohit Tiwari,
Martin Maas, and Elaine Shi. GhostRider: A hardware-
software system for memory timerace oblivious computa-
tion. In ASPLOS, 2015.

[51] Fangfei Liu, Hao Wu, and Ruby B. Lee. Can random-
ized mapping secure instruction caches from side-channel
attacks? In HASP, 2015.

[52] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin
Qi, Lucas Waye, and Andrew C Myers. Fabric: A platform
for secure distributed computation and storage. In SOSP,
2009.

[53] Jay Mahadeokar and Gerry Pesavento. Open sourcing
a deep learning solution for detecting NSFW im-
ages. https://yahooeng.tumblr.com/post/
151148689421/open-sourcing-a-deep-
learning-solution-for. (Accessed: September
2016).

[54] Jonathan M. McCune, Bryan Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An exe-
cution infrastructure for TCB minimization. In EuroSys,
April 2008.

[55] David A. McGrew and John Viega. The Galois/Counter
mode of operation (GCM). http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/
proposedmodes/gcm/gcm-revised-spec.pdf,
2005. (Accessed: September 2016).

[56] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi,
Simon Johnson, Rebekah Leslie-Hurd, and Carlos Rozas.
Intel software guard extensions (intel sgx) support for
dynamic memory management inside an enclave. In HASP,
2016.

[57] Andrew C. Myers and Barbara Liskov. A decentralized
model for information flow control. In SOSP, 1997.

[58] Olga Ohrimenko, Felix Schuster, Cdric Fournet, Sebas-
tian Nowozin Aastha Mehta, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on trusted
processors. In USENIX Security, 2016.

[59] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich,
and Hari Balakrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In SOSP, 2011.

[60] Donald E. Porter, Michael D. Bond, Indrajit Roy,
Kathryn S. McKinley, and Emmett Witchel. Practical fine-
grained information flow control using laminar. TOPLAS,
37(1), 2014.

[61] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated execution.
In USENIX Security, 2015.

[62] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil
Stefanov, Elaine Shi, Marten van Dijk, and Srinivas De-

548 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://crypto.stanford.edu/craig
https://crypto.stanford.edu/craig
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf

vadas. Constants Count: Practical improvements to oblivi-
ous RAM. In USENIX Security, 2015.

[63] Felix Schuster, Manuel Costa, Cedric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy data analytics in the
cloud using SGX. In IEEE S&P, 2015.

[64] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary cpu
architectures. In USENIX Security, 2010.

[65] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. Blindbox: Deep packet inspection over en-
crypted traffic. In SIGCOMM, 2015.

[66] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro
Russo, Dave Herman, Brad Karp, and David Mazieres.
Protecting users by confining JavaScript with COWL. In
OSDI, 2014.

[67] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T.
Chong, and Timothy Sherwood. Execution leases: A
hardware-supported mechanism for enforcing strong non-
interference. In MICRO, 2009.

[68] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr,
Timothy Levin, Ben Hardekopf, Ryan Kastner, Frederic T.
Chong, and Timothy Sherwood. Crafting a usable micro-
kernel, processor, and i/o system with strict and provable
information flow security. In ISCA, 2011.

[69] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler,
Maxwell Krohn, Cliff Frey, David Ziegler, Frans Kaashoek,
Robert Morris, and David Mazières. Labels and event
processes in the asbestos operating system. TOCS, 25(4),
December 2007.

[70] Zhenyu Wu and Zhang Xu. Whispers in the hyper-space:
High-bandwidth and reliable covert channel attacks inside
the cloud. TON, 23(2), April 2015.

[71] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels

for untrusted operating systems. In IEEE S&P, 2015.

[72] Yuanzhong Xu and Emmett Witchel. Maxoid: Transpar-
ently confining mobile applications with custom views of
state. In EuroSys, 2015.

[73] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh
Joshi, Matti Hiltunen, and Richard Schlilchting. An
exploration of l2 cache covert channels in virtualized
environments. In CCSW, 2011.

[74] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. Native Client: A sandbox for
portable, untrusted x86 native code. In IEEE S&P, 2009.

[75] Tatu Ylonen and Chris Lonvick. RFC 5246: The Transport
Layer Security (TLS) Protocol: Version 1.2. https:
//tools.ietf.org/html/rfc5246, August 2008.
(Accessed: September 2016).

[76] Nickolai Zeldovich, Silas Boyd-wickizer, Eddie Kohler,
and David Mazires. Making information flow explicit in
histar. In OSDI, pages 263–278. USENIX Association,
2006.

[77] Nickolai Zeldovich, Silas Boyd-Wickizer, and David
Mazieres. Securing distributed systems with information
flow control. In NSDI, 2008.

[78] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo
Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.
Practical control flow integrity and randomization for
binary executables. In IEEE S&P, 2013.

[79] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers.
Predictive mitigation of timing channels in interactive
systems. In CCS, 2011.

[80] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers.
Language-based control and mitigation of timing channels.
In PLDI, 2012.

[81] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
VM side channels and their use to extract private keys. In
CCS, 2012.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 549

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

Unobservable communication over fully untrusted infrastructure

Sebastian Angel
UT Austin and NYU

Srinath Setty
Microsoft Research

Abstract
Keeping communication private has become increas-
ingly important in an era of mass surveillance and state-
sponsored attacks. While hiding the contents of a con-
versation has well-known solutions, hiding the associated
metadata (participants, duration, etc.) remains a challenge,
especially if one cannot trust ISPs or proxy servers. This
paper describes a communication system called Pung that
provably hides all content and metadata while withstand-
ing global adversaries. Pung is a key-value store where
clients deposit and retrieve messages without anyone—
including Pung’s servers—learning of the existence of
a conversation. Pung is based on private information re-
trieval, which we make more practical for our setting with
new techniques. These include a private multi-retrieval
scheme, an application of the power of two choices, and
batch codes. These extensions allow Pung to handle 103×
more users than prior systems with a similar threat model.

1 Introduction
Can two or more users exchange messages over a public
network without anyone else learning that they communi-
cated? And can this be done in a practical manner without
trusting any other entities (e.g., other users, ISPs, proxy
servers)? This paper answers these questions affirmatively
with a communication system that provides strong privacy
guarantees, even against active, global adversaries.

While the questions we consider are decades old [32],
there is a renewed interest motivated by an increase in
service providers disclosing their users’ information with-
out consent [7, 13, 16, 83, 90, 109], as well as question-
able mass surveillance practices [15, 27, 50, 62, 63] that
defy existing privacy laws and long-held beliefs [44, 116,
128, 129, 133]. In response, companies have mobilized
to deploy end-to-end encryption solutions to safeguard
the privacy of users’ communications [1–3, 5, 61]. While
end-to-end encryption protects the content of the mes-
sages exchanged, it does not hide their existence nor other
metadata (e.g., identity of participants, duration), which
can be just as sensitive [38, 88, 117, 120].

Fortunately, the threat of metadata leakage has not been
lost on academics and practitioners; there is a vast liter-
ature on preventing such disclosures [22, 25, 31–33, 40–
43, 47, 51, 75, 79, 81, 82, 92, 93, 98, 113, 114, 119, 121,
130, 136]. While these works make great strides toward
providing strong guarantees and supporting many users,
we find that most require trusting one or more entities

in the communication infrastructure (e.g., proxy servers,
ISPs, large coalitions of users) to achieve their goals. In
many contexts, such assumptions can be sensible. How-
ever, deployment considerations such as “where to find
a trusted entity or an incorruptible consortium to run
the system” are often left unspecified and are arguably
hard to answer. Furthermore, there is enough precedent
to think that private communication is a setting where
trustworthiness can be subverted by financial and polit-
ical interests [13, 39, 83, 90, 118]. There are proposals
that do not require trusting the communication infras-
tructure [26, 33, 42, 60, 66, 131], but they have been
primarily theoretical since the resulting systems support
only dozens of concurrent users.

This tension between trust and performance drives our
work. Our view is that private communication can be
achieved with reasonable performance, even in the pres-
ence of strong adversaries. To substantiate this position
we build Pung, a system that provably hides all metadata
associated with users’ conversations—even against adver-
saries who control all the communication infrastructure
(ISPs, cloud providers, etc.) and arbitrary coalitions of
users. We find that a 4-server deployment of Pung sup-
ports 135K messages/minute with 32K active users: 105×
more messages and 103× more users than any prior sys-
tem that withstands a similar adversary (§7.3). When we
extend this comparison to systems under weaker threat
models we find that Pung is promising but is not yet a
replacement: Pung handles 85× fewer users (§7.2).

To support tens of thousands of users at modest costs,
Pung addresses two challenges. The first is architectural:
devising a way for users to send and receive messages
without a trusted proxy. Our proposal is simple, and con-
sists of combining untrusted servers and powerful cryp-
tography through a synthesis of known ideas (§3). The
second, and more salient aspect of Pung is reducing the
costs of its cryptographic machinery. Our contributions
here include algorithms that amortize expensive opera-
tions when users send and receive multiple messages (§4).

In more detail, Pung is an untrusted key-value store that
exposes private deposit and retrieval procedures to users.
Pung’s deposit procedure is based on the ability of com-
municating users to agree on a shared label (or “key” in
the key-value store) under which to store a message (§3.1).
Pung’s retrieval procedure builds on a powerful—but
expensive—cryptographic primitive: private information
retrieval (PIR) [36]. PIR allows clients to fetch items from
a server without revealing to the server which items were

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 551

fetched. While PIR has been used in other private commu-
nication systems [79, 92, 119], its interface is not a good
fit for Pung: PIR requires clients to know the exact index
of the items they wish to retrieve in a data structure stored
at the server. In Pung, this data structure is continuously
modified, and clients know only a label (§3.1).

To improve the performance of PIR, Pung targets ap-
plications where users retrieve multiple messages: email,
group chats, bug reporting, and sensor data collection (§8).
Pung then introduces a private multi-retrieval scheme that
departs from most prior approaches (e.g., [18, 64, 67, 86])
in two ways. First, instead of modifying the design or
implementation of PIR, Pung encodes the underlying data
structures; these techniques are independent of the PIR
scheme used (§4.1). Second, Pung leverages an inher-
ent property of private communication systems: to re-
sist traffic analysis they operate in rounds in which a
bounded number of messages is sent and received by each
user (§3.1). Users who wish to send or receives messages
past this limit must wait several rounds to do so. Pung
exploits this restriction with a multi-retrieval scheme that
is probabilistically—rather than perfectly—complete: in
a few cases clients can only retrieve a fraction of the
items they wish to retrieve, but they can try again later.
This results in a more efficient scheme than all prior PIR
schemes that support multi-retrievals (§4.2).

To integrate PIR with Pung, we adapt an existing obliv-
ious search technique [35] that allows clients to retrieve
messages with labels (§3.3), and extend it to work on
the encoded data structures that Pung uses for multi-
retrieval (§4.4). Pung also introduces several other fea-
tures. First, Pung supports group communication. Second,
Pung provides a service that allows users to privately
derive a shared secret to bootstrap their conversations,
provided they know each other’s public keys (§6). Last,
messages in Pung are long-lived and can be retrieved at a
later time by clients who participate infrequently (§8).

Nonetheless, our work has several limitations. While
we reduce costs compared to prior approaches, these
costs—especially network costs—remain high (§7.4). Fur-
thermore, many of our techniques are only beneficial
when clients retrieve multiple messages. Like all past pri-
vate communication systems, Pung does not hide the fact
that users are part of the system (it only hides if and with
whom they are communicating); users are also required
to participate even when they have nothing to send or
retrieve. Pung does not provide liveness guarantees (cen-
sorship resistance) in the face of malicious servers or ISPs.
This is fundamental since an ISP could simply refuse to
route network packets. Lastly, Pung does not currently
support an efficient dialing protocol to enable clients to
“cold-call” one another (§5). Despite these limitations, we
believe that Pung takes an important step toward enabling
untrusted private communication.

2 Goals and threat model
In this section we discuss our goals and assumptions, and
the general ecosystem that Pung targets.

2.1 Private communication over the Internet

Our objective is to develop a messaging system that al-
lows two or more users to communicate over the Internet
(or any other public network) while hiding the content
of all messages exchanged in addition to the metadata
of the exchange. The types of metadata that we wish to
keep hidden from anyone—except from the users directly
involved—include the start and end time of a conversa-
tion, the number of messages exchanged, the identity of
the participants, etc. Some of this information is diffi-
cult to keep private since many existing services rely on
it for their proper functioning. For instance, ISPs need
to know destinations to route packets, email and chat
service operators—who would in principle deploy and
manage Pung—need to know the messages that make up
a conversation, etc. Consequently, Pung must balance the
requirements of existing services and infrastructure with
the preservation of the following security goals:

Message integrity and privacy. The content of a mes-
sage must be intelligible only to its intended recipient. Fur-
thermore, no one should be able to tamper with a message
while it is in transit without the recipient being able to de-
tect alterations. Specifically, we target the strongest cryp-
tographic properties that capture these goals, namely in-
tegrity of ciphertexts under chosen plaintext attacks (INT-
CTXT) [21, 70], and indistinguishability under adaptive
chosen ciphertext attacks (IND-CCA2) [99, 110].

Metadata privacy. An adversary must not be able to de-
termine if (or when) a user sent or received a message.
Furthermore, an adversary must not be able to link a
message exchange with the users that participated in that
exchange. Specifically, we target the privacy notion of
relationship unobservability as defined by Pfitzmann and
Hansen [105]. Informally, relationship unobservability
states that an adversary does not learn useful information
from observing (or actively interfering with) all network
traffic, provided that the sender and the recipient are not
compromised. In the case of such compromise, relation-
ship unobservability offers little value: the sender could
trivially disclose that it is sending a message and to whom;
a receiver could similarly leak the sender’s identity.

The above restriction is consistent with our setting of
two-way communication. However, as we note in Sec-
tion 9, relationship unobservability is not a panacea. For
instance, it is not on its own sufficient to protect whistle-
blowers who wish to remain anonymous from everyone—
including all recipients. We give a formal definition of
metadata privacy and provide proofs of security for all of
our techniques in our extended report [12, Appendix A].

552 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Security assumptions

Pung achieves the security properties above under the
following set of assumptions.

Cryptographic assumptions. Pung requires an authen-
ticated encryption scheme (e.g., [21, 53]) to meet our
goals of message integrity and privacy. Pung also relies
on a computational private information retrieval (CPIR)
scheme (e.g., [10, 58, 73]) and a pseudorandom function
(e.g., [19, 20]) for ensuring metadata privacy (§3.1–§3.3).

Trust assumptions. Pung assumes that users who wish
to communicate know their peer’s public key (or can
exchange a secret through and out-of-band channel). Pung
provides privacy guarantees only to pairs (or groups) of
users who communicate through Pung while following
the prescribed protocol. However, these guarantees are
not predicated on the behavior of any other user in the
system, or the communication channel between users.
In particular, Pung’s guarantees hold even if all of the
infrastructure that Pung uses (servers, ISPs, DNS, etc.) is
compromised and operates arbitrarily.

Liveness assumption. Pung assumes that services used
by clients to communicate with each other do not deny
service. That is, we expect ISPs to carry traffic, DNS to
provide name resolution, and servers to process requests.
While this assumption is not needed for Pung to meet our
security goals (§2.1), it is essential for Pung to be usable.

3 Design and architecture
Pung adopts a client-server architecture in which third-
party servers mediate the exchange of messages between
users. Figure 1 depicts this architecture. From the perspec-
tive of end users, a Pung cluster acts as a storage service.
This parallels services like Gmail or Outlook that store
messages on behalf of users.

Users exchange messages via a Pung client application
that deposits the messages into mailboxes in the Pung
cluster. These mailboxes are addressed by a label that is
known to both the sender and the recipient. Recipients can
access a message sent to them by retrieving the contents
of a mailbox from the Pung cluster using an appropriate la-
bel. Pung’s “mailbox” architecture is borrowed from prior
systems [25, 40, 75, 79, 119, 130]. A key difference is
which entities run the storage nodes, the kinds of process-
ing that these nodes do, and the mechanisms for storing
and retrieving messages. We discuss each of these com-
ponents in the following sections, but we first highlight
how this architecture fits within our target ecosystem.

Pung’s mailbox architecture forces all messages sent
and retrieved to go through entities like ISPs and the
Pung cluster. These services rely on (or can easily in-
fer) the types of metadata that we wish to hide, since
they process all network traffic. Consequently, protect-

Pung cluster

Retrieve(0x12)

FIGURE 1—Client applications issue send and retrieve requests
to the Pung cluster at a given rate, introducing fake requests
whenever the user is idle (or issues fewer requests than the rate).

ing metadata without harming the functioning of these
services requires that the rate at which clients send and
receive network packets be disentangled from the rate
at which they send and retrieve messages in Pung. This
requirement is key to preventing many types of traffic
analysis attacks [68, 96, 112]. Unfortunately, it results in
an unavoidable inefficiency: clients must send and retrieve
messages at an independent (e.g., constant, Poisson) rate,
even when the user is idle. This requires that clients queue
excess requests and add cover traffic or chaff [115] (fake
requests that are indistinguishable from real ones).

We now discuss how mailbox labels are derived, and
how clients can use them to send and retrieve messages.

3.1 Mailbox labels and discretized rounds

The Pung protocol proceeds in discretized rounds or time
epochs. Round duration is configurable and depends on
the use case. The Pung cluster acts as a point of synchro-
nization for clients and dictates when a new round starts.
While this allows the Pung cluster to force clients out
of sync, doing so results in a denial of service but does
not violate our goals (§2.1). During each round, client
applications issue exactly one send and one retrieve. This
ensures that clients issue requests at a constant rate (§3).
In Section 4 we relax this model and let clients issue
multiple send and retrieve requests per round, enabling
several applications (§8) and achieving lower (amortized)
costs (§7.3). Finally, Section 5 discusses how clients can
manage existing connections, and how they can agree on
a round on which to start a new conversation.

Deriving mailbox labels. The Pung cluster is effectively
a key-value store that treats mailbox labels as keys, and
(encrypted) messages as values. This means that users’
communication depends on their ability to agree on a la-
bel under which to store and retrieve messages. This label
should be unique (to avoid multiple pairs of users over-
writing each other’s messages), and it must also be inde-
pendent of the users communicating (otherwise an adver-
sary could link a label to a conversation). Pung achieves
both of these properties through a combination of shared
secrets and a pseudorandom function (PRF).

Recall from Section 2.2 that we assume that users who
wish to communicate have access to each other’s public
key (e.g., RSA key), or have exchanged a secret through
an out-of-band channel. In Section 6 we present a direc-
tory service that allows users to derive a shared secret

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 553

directly from public keys. Consequently, the rest of this
section assumes that users have a shared secret which acts
as a master key. This master key is used to derive two addi-
tional keys, kL and kE, with a key derivation scheme [76].
The derived keys are used for mailbox label generation
and message encryption, respectively. We also assume
that users have a unique identifier, uid, within each pair of
communicating users. For example, if Alice and Bob wish
to communicate with each other, Alice could be “0” and
Bob could be “1”. This information need not be private,
so users could choose any identification scheme including
using their names or public keys.

Each user can derive the corresponding labels for the
current round r, labelS(r) and labelR(r), by invoking the
pseudorandom function (PRF) keyed with kL:

labelS(r) = PRFkL(r || uidpeer)

labelR(r) = PRFkL(r || uidown)

where r is a fixed-width integer and || is the concatenation
operator when r and uid are treated as binary strings.
Note that labels need not be symmetric: a user can send a
message to Alice and retrieve one from Bob in the same
round. In such cases, the labels would be generated using
different keys and uids. If a user is idle and has nothing
to send or retrieve, it generates random mailbox labels.

3.2 Sending messages in Pung

Sending a message in Pung consists of deriving the recip-
ient’s mailbox label (labelS), and encrypting the message
with an authenticated encryption scheme (§2.2) using
key kE. The client then sends the resulting ciphertext,
c = AE(kE, m), along with the mailbox label, to the Pung
cluster as a (labelS, c)-tuple. Idle users send a tuple that
consists of a random label and an encryption of a random
message instead. We assume that all messages are the
same size or that padding is applied.

3.3 Retrieving messages from the Pung cluster

Observe that if the Pung cluster were to broadcast to all
users the (label, c)-tuples received during a round, users
could iterate through the list locally and find the tuple
with the label that is of interest to them (or determine
that it is not present). Intuitively, this operation would not
leak any information about which label (if any) was of
interest to a retriever, and would not allow the adversary
to determine with whom a user is communicating (or if
the user is idle). Of course, broadcasting all tuples would
incur prohibitive network costs. Fortunately, retrieving an
item from an untrusted server without revealing which
item was retrieved is the problem addressed by private
information retrieval (PIR) [36]. PIR protocols trade off
computation at the server to achieve lower network costs
than the above broadcast scheme. We summarize PIR
next, since it is the basis of message retrieval in Pung.

Private information retrieval (PIR). We focus on com-
putational PIR (CPIR) schemes [10, 28, 30, 57, 58, 73, 77,
135] that hide users’ access patterns under cryptographic
hardness assumptions.1 At a high level, a CPIR scheme
operates over a collection DB of n items held by a server,
and consists of three procedures: QUERY, ANSWER, DE-
CODE. The QUERY(idx, n) procedure is run by the client; it
outputs a query q that encodes the index, idx, in DB of the
desired element. The ANSWER(q, DB) procedure is run by
the server; it returns an encrypted response a that contains
the element in DB at the index encoded in q. This step
requires the server to perform cryptographic operations
over all elements in DB. The DECODE(a) procedure is run
by the client; it decrypts a to recover the desired element
in DB. Below we describe a simple CPIR scheme based
on an additively homomorphic cryptosystem.2

The client first generates a query vector q of length n
by calling the QUERY(idx, n) procedure. Every entry in
q is a different encryption of 0, except for the entry at
position idx which is an encryption of 1. The client sends
this query to the server, who executes ANSWER(q, DB) to
produce a ciphertext c that encrypts the element in DB
at position idx. To do this, the server creates a vector x
by interpreting every entry ei ∈ DB as an integer, and
computing the product of ei and the ciphertext qi. This
can be accomplished through repeated additions of qi

by leveraging the additive homomorphic property of the
cryptosystem: xi =

∏ei
1 qi. The server then adds up every

entry in x to obtain a. This procedure works because the
vector x consists of n−1 ciphertexts that encode 0, and
one ciphertext that encodes eidx. Adding all of them results
in an encryption of eidx, without the server learning which
index was requested. Lastly, the client runs DECODE(a) to
decrypt a and get the desired element.

All of the CPIR schemes to which we refer (and on
which we rely) are more efficient than the above straw
man, but they have a similar flavor. Crucially, they enjoy
communication costs sublinear in n (i.e., they are cheaper
than transferring the entire collection). Furthermore, some
CPIR schemes (e.g., [10]) have low enough computational
costs that their processing latency is actually lower than
transferring the entire collection over today’s networks
(this was believed to be an unlikely scenario [125]).

Retrieving messages. Since PIR allows clients to pri-
vately retrieve an item from the server at some index, one
possibility is to use labels as indices: clients can retrieve
a message from labelR(r) with q = QUERY(labelR(r)).
However, the size of the collection would need to match

1IT-PIR schemes [36, 48, 59] are an efficient alternative to CPIR but
rely on multiple servers, at least one of which must be correct. This
conflicts with our goals and threat model (§2).

2An additively homomorphic cryptosystem supports an operation “·”
that can be used on ciphertexts to produce a new ciphertext encoding
the sum of their plaintexts. That is, Enc(x) · Enc(y) = Enc(x + y).

554 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3 10 150 200 370

3 10 150 200 370

3 10 150 200 370

Idx = 2, Cost = 6

Idx = 1, Cost = 6

Idx = 0, Cost = 6

240

240

240

FIGURE 2—A client wishing to retrieve an item with label “3”
from a server holding a sorted list of 6 items would need to
perform three rounds of probing. During each probe, the client
guesses an index, uses PIR to retrieve the (label, c)-tuple at that
index, and refines the guess accordingly. “Cost” indicates the
number of items processed by the server in each probe.

the range of the labels (§3.1), which is 256 bits in our
implementation (§6). This would require Pung servers to
materialize and operate over a collection of 2256 items!

Instead, we can arrange for Pung servers to insert all
(label, c)-tuples sent by clients in some search data struc-
ture (e.g., sorted list, search tree) and present them as
a collection DB of size n (where n is the total number
of nodes in the data structure). This enables clients and
Pung servers to perform PIR directly on DB, but there
is a problem: clients know from which label they wish
to retrieve, but they do not know the mapping between
labels and the index of the desired tuple in the data struc-
ture representing DB, or if the tuple even exists. This can
easily be addressed by having clients obtain this label-
to-index mapping from the Pung cluster. However, when
the collection is large (n>100K), clients can use a search
scheme to reduce network costs. We discuss this below.

The key idea is that clients can find their desired ele-
ment in DB via an “oblivious” search. Figure 2 depicts an
example of this search when DB is stored as a sorted list.
In this case, the client performs log(n) probes to locate its
desired element (or determine that it is not present). Even
if the client gets lucky and finds its element early, it must
continue until the end to preserve privacy; the remaining
probes can just use any indices. Since each probe is a PIR
query to the entire collection DB, the server must process
n elements each time; the time complexity of this search is
therefore Θ(n log(n)). However, this scheme has a lot of
redundancy: the server processes each item log(n) times.
Chor et al. [35] show that one can eliminate this “double
counting” overhead by using data structures that can be
(logically) split into independent chunks while retaining
the search capability. We elaborate on this idea below in
the context of the specific construction that Pung uses.

BST retrieval. We choose to use a complete3 binary
search tree (BST) as our underlying data structure for sev-
eral reasons. First, a complete BST is balanced, enabling
search in O(log(n)) probes. Second, for any dataset there
is a unique complete BST, so the Pung cluster need not

3A k-ary tree is complete if all of its levels (except possibly the last) are
full, and the last level is filled from left to right.

200

10 370

3 150

200

10 370

3 150240 240

Idx = 0, Cost = 1

Idx = 0, Cost = 2

Idx = 0, Cost = 3

FIGURE 3—The Pung cluster can store (label, c)-tuples in a
complete BST, allowing clients to treat each level as an indepen-
dent collection. Clients can issue a PIR query for the top level,
and can recursively derive the index of lower levels using BST
semantics. This figure depicts the search for label “3”.

1: function BST-RETRIEVAL(L⋆, n)
2: h← ⌊log2(n)⌋ // last level of the BST
3: c⋆ ← ⊥ // target ciphertext (⊥ means not yet found)
4: idx← 0 // index of the current level
5: len← 1 // length of the current level
6: lenh ← n− (2h − 1) // length of the last level
7:
8: for i = 0 to h do
9: // use PIR to get element at position idx from collection at level i

10: q← QUERY(idx, len)
11: a← send i and q to server and get answer
12: (L, c)← DECODE(a)
13:
14: if c⋆ == ⊥ then
15: if L⋆ < L then // access left child next
16: idx← 2 · idx
17: else if L⋆ > L then // access right child next
18: idx← 2 · idx + 1
19: else // L⋆ == L, found target ciphertext
20: c⋆ ← c
21:
22: len← 2i+1 or lenh // length of the next level
23:
24: if idx ≥ len or c⋆ ̸= ⊥ then
25: idx← random index between 0 and len− 1
26: return c⋆

FIGURE 4—Client procedure for retrieving an encrypted mes-
sage c⋆ from a mailbox with label L⋆. The server holds a collec-
tion of n (label, c)-tuples in a complete binary search tree.

communicate the structure to clients (aside from n). Last,
since every level of a complete BST is full (except for pos-
sibly the last) and every node contains an actual data item,
there is no need for padding or auxiliary elements; it can
be represented as a contiguous array without overhead.

Based on this, we set up the Pung cluster to store the
collection of (label, c)-tuples in a complete BST, and have
clients treat all the nodes at the same depth in the tree
(i.e., on the same level) as a (logically) separate collection.
As depicted in Figure 3, clients can then process each of
the log(n) collections sequentially from top to bottom,
deriving the index of the next level from the semantics
of the BST. The pseudocode for this procedure is listed
in Figure 4. Since each collection (and therefore each
element) is accessed exactly once, there is no overhead
due to double counting. Indeed, the time complexity of
this BST-based retrieval scheme is Θ(n), which is the
same as if the clients had known the index in the first place.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 555

Compared to performing PIR over a known index, clients
do incur a log(n)× higher network cost due to retrieving
a tuple at every level. As an optimization, clients could
fetch (non-privately) all of the tuples of the first few levels,
saving both bandwidth and CPU. This is because CPIR
queries and answers are typically much larger than the
elements in the collection; when the collection is small,
it is more efficient to download all elements (i.e., naive
PIR) than to use a CPIR scheme (§7.4).

The above sending and retrieval procedures are suffi-
cient to build a version of Pung that meets all of our se-
curity goals (§2.1): it enables users to communicate with
each other privately, hiding the content and preserving
the integrity of messages, without leaking any metadata
associated with a conversation. Furthermore, none of the
security guarantees depend on the correctness of the Pung
cluster. For instance, if the Pung cluster modifies the ci-
phertext associated with any tuple, clients can detect this
due to the integrity guarantees of the authenticated en-
cryption scheme. If the server drops tuples or stores them
in a data structure that is not a complete BST, clients will
be unable to find the tuple of interest to them (a denial of
service), but the integrity of the content and the privacy
of the communication is preserved. The drawback with
the above scheme is its costs: the server has to process
the entire collection for each client request. Additionally,
for applications where clients wish to retrieve more than
one message in a round (§8), costs scale linearly with the
number of messages retrieved. The next section describes
ways to significantly amortize costs for regimes in which
clients retrieve multiple messages simultaneously.

4 Reducing costs via multi-retrievals
This section describes how to reduce the CPU costs of the
Pung cluster when clients retrieve multiple messages.

4.1 Prior approaches to multi-retrieval

One approach to retrieving k items from the server is to
run the protocol in Section 3.3 k times, but this results in
costs that are linear in k. An alternative is to create new
PIR schemes that support a batch of k retrievals with sub-
linear costs. Groth et al. [64] achieve significant improve-
ments with this approach, but their focus is reducing net-
work costs—the resulting CPU overheads are prohibitive
in our context. Another approach is to modify the imple-
mentation, rather than the design, of existing PIR schemes.
In particular, as we discuss in Section 3.3, the query of
many PIR schemes is a vector of encrypted entries. The
server can aggregate the queries submitted by (potentially
different) users into batches of size k, and construct a ma-
trix. This enables the server to leverage fast matrix multi-
plication algorithms (e.g., Strassen’s algorithm [126]) to
evaluate PIR’s ANSWER procedure. Several works have
shown that this yields modest benefits [18, 67, 86].

In Pung, we take a different approach—inspired by
batch codes [69]—from the schemes above: instead of
modifying the design or the implementation of a particular
PIR protocol, we focus solely on changing the represen-
tation of the underlying data.4 We discuss batch codes in
detail in Section 4.4 since we use them as a final refine-
ment to our scheme. At a high level, they enable the server
to encode a collection into smaller subcollections, in such
a way that clients can retrieve any k items by querying
each subcollection at most once. Below we highlight sev-
eral reasons for designing a new mechanism rather than
directly applying batch codes.

Challenges and opportunities. First, many batch codes
suffer from a major drawback: the number of elements
that a client downloads increases rapidly with k. This
means that for small k (3 or 4), network costs are within
a small factor of retrieving items one by one; but they
quickly rise to untenable levels with larger k. Second,
batch codes’ perfect completeness guarantee (i.e., that
clients can retrieve any k items) is too conservative for
our setting. In particular, Pung does not require that clients
can always retrieve all k messages during a given round:
since messages in Pung are long-lived (§6), clients can
retry the next round. This behavior is actually inevitable
in systems resistant to traffic analysis, such as Pung: recall
that clients send and retrieve messages at some rate; any
client who receives messages in excess of this rate must
wait at least two rounds. Below we describe an alternative
that works well for larger k, but is probabilistic. That is,
a client can sometimes only retrieve a subset of the k
messages that it wished to retrieve in a given round.

4.2 Probabilistic private multi-retrieval

We now introduce a new probabilistic multi-retrieval
scheme. A multi-retrieval scheme allows a server to effi-
ciently process multiple retrievals from the same client
by amortizing costs. Our proposal is more efficient than
prior approaches, especially for larger values of k (> 4).

At the core of multi-retrieval is the observation that as
long as every item in the server’s collection is processed
at least once, the underlying PIR protocol will ensure that
the server does not learn which tuples were retrieved. As
we discuss in Section 3.3, one can take a collection and
structure it as a tree, allowing each level to be treated
independently. This results in clients retrieving log(n)
tuples, while the server processes each element just once;
incurring the same CPU costs as a single retrieval. The
reason that BST-RETRIEVAL (Fig. 4) is not technically
a multi-retrieval scheme is that clients have no control
over which tuples are fetched (they are forced to follow
BST semantics), and consequently the procedure can only

4Using PIR as a black box means that other optimizations (e.g., fast
matrix multiplication) benefit Pung as well.

556 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

output a single message. We now show a way to divide the
collection into smaller subcollections while still allowing
clients some control over which items to fetch.

Server setup. The server initially performs a static parti-
tioning of the label space (e.g., 2256) into B buckets (we
set B to the maximum number of messages that users
retrieve in a round, i.e. k). Each bucket holds all (label, c)-
tuples whose labels fall into its partition. At the end of the
send phase, the server takes all the (label, c)-tuples sent by
clients and distributes them across the B buckets based on
their label. Small buckets store tuples in an arbitrary order,
while larger buckets store tuples in an array that represents
a complete BST (§3.3). The latter enables clients to use
BST-RETRIEVAL (Fig. 4), which saves network resources.
Finally, the server sends clients the number of items in
each bucket, and awaits retrieval requests.

Client lookup. A client can retrieve multiple messages
simultaneously by treating each bucket as an independent
collection and retrieving one (label, c)-tuple from each
bucket. This is done by calling an appropriate retrieval
procedure on each bucket with a label that falls within the
bucket’s range and the size of the bucket: for BST-encoded
buckets, the client uses BST-RETRIEVAL; for other buck-
ets, the client requests the label-to-index mapping, and
retrieves a (label, c)-tuple by directly sending the output
of PIR’s QUERY procedure to the server. If a client does
not wish to retrieve a tuple from a particular bucket, it
performs the retrieval using a random label. Note that
since BST-RETRIEVAL (or PIR’s QUERY) is executed on
each bucket independently, the server’s CPU cost is still
the same as if the client had requested a single tuple from
the entire collection (as was the case in §3.3).

In the best case, since there are as many buckets as user
queries (B = k), clients can retrieve all of their desired
messages at once. However, this scenario presupposes
that all tuples that the client wishes to retrieve have labels
that fall in different buckets. But what if a client wished
to retrieve ρ tuples (1 < ρ ≤ k) from the same bucket?

Unfortunately this cannot be done privately as it would
require the client to interact with the same bucket ρ times,
leaking information about the requested labels. Instead,
the entire protocol must be rerun ρ times, allowing the
user to retrieve one message from the contested bucket on
each run. There is one caveat: the number of times that the
protocol is rerun during a round must not depend on the
user’s choice of labels; this too would leak information.
Instead, the number of reruns must be set a priori.

But how common is it for clients to want to retrieve
multiple tuples from the same bucket? This is a standard
balls-and-bins scenario, since the client’s labels are gen-
erated from a pseudorandom function, and the buckets’
range is statically and independently partitioned. We can
thus bound the number of tuples that fall in any bucket

by ρ ≤ 3 ln(k)
ln(ln(k)) [95, Lemma 5.1]; this bound fails to hold

with probability ≤ 1
k . Unfortunately, this is a fairly large

number (9–11, for k ≤ 512), especially since we require
rerunning the entire protocol ρ times to guarantee that
clients can retrieve k messages with high probability.

Below we describe how Pung reduces the bound on ρ
exponentially by reaping the load balancing benefits of
giving clients multiple choices to retrieve tuples [94].

4.3 Fewer reruns with the power of two choices

Azar et al. [14] show that in a k balls and k bins scenario,
if each ball maps to d random bins (d > 1), and balls are
placed in the bin least full, the highest load in any bin is
bounded by ln(ln(k))

ln(d) +Θ(1) with high probability.
We observe that if clients had multiple buckets from

which to retrieve a message, we could apply this re-
sult to decrease the bound on ρ, and consequently the
number of reruns that clients must perform during multi-
retrieval (§4.2). However, this kind of load balancing is
typically applied from the producer’s perspective (e.g.,
choosing which server to issue a request, or on which
queue to place a packet); in our case, we are interested in
enabling the consumer (i.e., the recipient of a message).

This raises the following question: how can we enable
a client to be able to retrieve a message under two labels?
We propose a seemingly bad idea: have senders derive
two labels for each message, and have the server store
messages under both labels. This of course doubles the
already large number of messages in the system (n). Con-
sidering that all PIR costs scale linearly with n, and the
BST retrieval scheme (§3.3) adds a multiplicative log(n)
factor to network costs, this is a cause for concern. How-
ever, the exponential decrease in the number of reruns
that clients will have to perform (i.e., ρ), far outweighs the
costs associated with doubling all messages. Ultimately,
this simple approach results in significant savings.

We implement the above scheme by extending Pung’s
send and retrieve procedures (§3.2). Recall that clients
derive two keys from their shared secret, and use one of
them (with a PRF) to generate a label under which to store
a message. Under the modified protocol, clients derive
a third key that they use in combination with a second
PRF to generate the extra label.5 Clients can then send
(L1, L2, c) to the server, which then stores c under two dif-
ferent (label, c)-tuples. During retrieval, clients generate
both labels for each message they wish to retrieve (§3.3)
and follow the lookup scheme (§4.2) using the label that
leads to fewer bucket collisions. Note that collisions are
defined with respect to a client’s other labels. They are
independent of the actions of other clients or the server;
they are therefore a notion local to each client.

5Clients need to ensure that both labels do not map to the same bucket.
This can be done by using a counter as a nonce to the PRF, incrementing
it until both labels map to different buckets.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 557

4.4 Probabilistic multi-retrieval with batch codes

The above bucket-based scheme makes progress toward
lowering CPU and network costs, but still requires the
protocol to be rerun ρ times. In this section we further
refine the scheme by composing it with batch codes, dis-
cussed next, to achieve a hybrid scheme that has lower
CPU costs than either mechanism, fewer round trips than
the bucket-based scheme, and lower network costs than
applying existing batch codes in isolation.

Batch codes. A (n, N, k, m)-batch code [69] takes as in-
put a collection of n items and the number of desired
retrievals k (k > 1), and outputs N items (n < N < n · k)
distributed across m subcollections (m > 2) that have
a useful load-balancing property: any k items from the
original collection can be retrieved by querying each of
the subcollections at most once. In our context, this means
that a Pung server that encodes n (label, c)-tuples with
a batch code can process k simultaneous queries from
the same client, while only paying the processing cost
required to answer one query to a collection of N tuples.

We now give an example of a (n, 3
2 n, 2, 3)-batch code

scheme that supports k = 2 retrievals. A collection DB of
n items, is split into 3 subcollections db1, db2, db3, such
that db1 has the first half of the items, db2 has the second
half of the items, and db3 has db1 ⊕ db2 (where ⊕ is
the element-wise XOR operator). A single PIR query to
each subcollection is thus sufficient to privately retrieve
any two items from DB (we provide details later in this
section). Furthermore, the CPU cost of answering all three
queries (one for each subcollection) is the same as that
of processing one PIR query over a collection of N =
3
2 n items. Therefore, this scheme is 25% cheaper than
running PIR twice on DB to retrieve 2 items (since that
would require processing 2n items).

Subcube batch codes [69] are a generalization of this
scheme and allow clients to retrieve any k items at once
by recursively performing the above encoding (e.g., to
support k = 4, one encodes each of db1, db2, db3 to ob-
tain a total of m = 9 subcollections). Consequently, large
values of k significantly amortize the CPU cost of retriev-
ing k items. A disadvantage is that clients always have
to retrieve an element from each of the m subcollections,
where m = 3log(k) in the above scheme. This is acceptable
for small k, but for large k the network overheads are enor-
mous: for k = 128, clients retrieve 17× more elements
than running 128 instances of the scheme in Section 3.3.6

On the other hand, our probabilistic bucket-based
scheme allows clients to retrieve k messages at once with
lower CPU and network overhead, but requires ρ reruns
of the protocol (ρ is roughly 3–4 with our refinement in
§4.3). The rationale behind rerunning the protocol is that

6Other batch codes exist [69, 104, 111, 123], but their concrete costs are
significantly higher than those of subcube batch codes in all our cases.

clients might need to retrieve up to ρ items from the same
bucket. Observe that retrieving a few items (e.g., k ≈
2–4) is a strength of subcube batch codes. It therefore
makes sense to hybridize the two techniques. However,
subcube batch codes are not compatible with BST-based
retrieval (which reduces network costs for large buckets
as discussed in §3.3). We address this with the following
technique, which might be of independent interest.

BST retrieval with subcube batch codes. We now
adapt BST-RETRIEVAL (Fig. 4) to work on encoded collec-
tions. We focus on the (n, 3

2 n, 2, 3)-subcube batch code
described earlier but our approach generalizes.

Server setup. The server starts with a collection of n
(label, c)-tuples, which it sorts based on labels. Analogous
to the batch code scheme described earlier, the server
splits the collection into two halves, and stores them as
two complete BSTs, b1 and b2. Finally, the server creates
a third binary tree, b3, from b1 and b2 as follows: for every
level i and index j, b3(i, j) = b1(i, j)⊕ b2(i, j). The server
then indicates to clients the collection size (n) and the
lowest label in b2, Lmid; tuples with labels lower than Lmid,
if they exist, would be found in b1.

Client lookup. A client wishing to retrieve two tuples
labeled L1 and L2 can do so as follows. Assume without
loss of generality that L1 < L2. There are two cases:
• If L1 < Lmid and L2 ≥ Lmid: the client calls BST-

RETRIEVAL(L, n
2) on each tree independently, passing

L1 for b1, L2 for b2, and a random label for b3.
• If L1 < Lmid and L2 < Lmid, the client calls BST-

RETRIEVAL(L1, n
2) on b1, and performs a joint tree

traversal on b2 and b3 to retrieve L2 (the case where
both L1 ≥ Lmid and L2 ≥ Lmid is symmetric and simply
requires exchanging the role of b1 and b2).
Joint tree traversal. Since b3 is not a BST (i.e., the

order of its elements does not respect BST semantics),
it cannot be used directly for search. However, it can be
jointly traversed with the help of another tree. We describe
this for the case where L1 < Lmid and L2 < Lmid. A client
starts by retrieving the tuples at level 0 and index 0 for
both b2 and b3 in parallel. This is equivalent to lines 10–
12 in Figure 4 (during the first iteration of the loop). The
result of the two separate calls (one for each tree) to the
DECODE procedure in line 12 is the pair of tuples t2 and t3.
While the label of t3 is unintelligible (since it is encoded)
and the label of t2 is irrelevant to the client’s search, they
can be combined to compute (L, c) = t1 = t2 ⊕ t3, which
is the corresponding tuple in b1. This yields a way to
jointly traverse the trees: the client can compare L2 to L
and choose whether to go left or right on both b2 and b3
for the next level. If L2 = L, the client can save c (as this is
the desired ciphertext), and continue with random indices
for the remaining levels. The above steps are analogous
to lines 14–25 in Figure 4 when one replaces L⋆ with L2.

558 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A hybrid scheme. As before, the server partitions the
label space into B buckets. For each bucket b, the server
encodes all the corresponding tuples with a (nb, Nb, ρ, m)-
subcube batch code. Here, nb is the initial number of
tuples in b, ρ is the number of reruns required after deriv-
ing two labels per tuple (§4.3), Nb is the total number of
tuples in b after encoding, and m is the number of subcol-
lections per bucket (m = 3log(ρ)). If nb is large enough,
the server uses the BST-aware batch code presented above
so clients can benefit from the lower network cost of BST-
based retrieval. The upshot is that combining batch codes
with probabilistic multi-retrieval lets clients retrieve up to
ρ tuples from each bucket, without rerunning the protocol.

5 Operational challenges
A key challenge in any communication system is manag-
ing user connections. In particular, how do clients deter-
mine when and for how long to communicate? In Pung,
the answer depends on the type of pre-existing relation-
ship that users have: symmetric, where users already know
each other and have already derived a shared secret (§3.1),
and asymmetric, where one user wishes to “cold call”
another for the first time. We now describe both cases.

Managing symmetric connections. Client applications
of users who already know each other can exchange con-
trol messages through Pung. Control messages have a
special structure that client applications can recognize
and automatically act upon, so they are transparent to
actual users. Control messages are sent over Pung like
any other message—so they too are private—and include
statements like “END” to indicate that a conversation is
over, or “START [round]” to indicate the round when a
conversation should start. These messages are sent period-
ically (e.g., every 20 rounds), but can also be sent during
an active communication in response to events (e.g., END
is sent when the application is placed in the background
or when the user stops typing for a few minutes).

The frequency of control messages is initially config-
ured the first time that two users communicate with each
other, but it can be adjusted dynamically with the “FREQ
[rounds]” control statement. Higher frequency leads to
smoother operation (e.g., client applications can agree
on a round to start a conversation faster), but like any
other message, they count toward the send and retrieve
rate limit chosen by the user (§3.1). Pung’s multi-retrieval
optimizations (§4) make sending and receiving control
messages more efficient, and enable clients to fetch con-
trol messages from several known peers at once.

Initiating asymmetric connections. The exchange of
control messages described above presupposes an estab-
lished relationship between clients. But how does Pung
bootstrap this interaction in the first place? One option
is for clients to use control messages to introduce their

peers to others. A more realistic alternative is for clients
to use a dialing protocol, as proposed by Vuvuzela [130]
and Alpenhorn [80]. In a dialing protocol, clients send
invitations (messages stating the desire of a user to start
a conversation, and information about a round on which
to do so) to mailboxes with labels derived from users’
email addresses [80] or public keys [130]. Clients can
then periodically check their corresponding mailboxes for
invitations, without leaking metadata in the process.

Unfortunately, Pung does not currently support an effi-
cient dialing protocol. We attempted to adapt Vuvuzela’s
dialing scheme, but due to Pung’s threat model and ar-
chitecture, we found that it degenerates into each client
having to download the invitations sent by all users.
The precise issue is that Pung does not provide sender
anonymity [105]. Incidentally, all existing systems that
provide sender anonymity without trusted infrastructure
are fully peer-to-peer and broadcast messages to every-
one [33, 42, 60, 66, 131]. This makes dialing gratuitous
since all users already know each other (i.e., relation-
ships are symmetric), and they actively communicate with
everyone in every round. Designing an efficient dialing
scheme under our setting (§2)—or proving that it cannot
exist—remains an open question.

6 Implementation
We implement Pung in 5,800 lines of Rust and C++ bind-
ings. We express the server-side computation of Pung in
Naiad’s timely dataflow model [97], and use the Timely
Dataflow library [89] written in Rust, to create, run, and
coordinate dataflow workers. Each worker processes send
and retrieve requests issued by clients, encodes the tu-
ple collections, and invokes the PIR procedures exposed
by XPIR [11]. Finally, we derive keys from secrets with
HKDF [76], generate labels with HMAC-SHA256, and
encrypt messages with ChaCha20-Poly1305. All of these
operations are supported by the Rust-Crypto library [8].

Additional features. Our prototype supports:
• Long-lived messages. The Pung cluster maintains a slid-
ing window of messages, regardless of the number of
rounds over which they were sent. This allows users to
retrieve messages sent to them during past rounds. This
requires dataflow workers to mix new and existing mes-
sages, garbage collect the messages that outlive the sliding
window, and reconstruct buckets and BSTs.
• Group communication. Pung provides privacy to groups
if all users in the group follow the protocol. Suppose a
group G has derived a shared key kL, then: (1) user i ∈ G
can send its message to G under label PRFkL(r || uidi)
during round r; (2) users in G can simultaneously retrieve
all messages sent in round r using a multi-retrieval query
with labels PRFkL(r || uidj) for all j ∈ G.
• Directory service. If users know each others’ public

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 559

keys pki (e.g., RSA keys), they can derive a shared secret
through a standard Diffie-Hellman key exchange [49] via
Pung. User i can send the tuple (PRF0(pki),{pubi,σi}) to
the server, where pubi corresponds to i’s public Diffie-
Hellman parameters (g, p, ga mod p), and σi is a signature
of pubi under i’s private key. Notice that the tuple’s label
depends only on pki; anyone with access to pki can derive
the label and retrieve the tuple. Clients can retrieve each
other’s public components (pubi), verify their authenticity,
and derive the shared secret independently. Clients send
these tuples to Pung servers when they first register, or via
a special message that flags them so they are not garbage
collected by dataflow workers. Pung stores these tuples in
the same collection as other messages, so their access is
kept private. If the tuples are larger than regular messages,
they are split into chunks; clients can retrieve these chunks
over several rounds or with multi-retrieval.

Compressing explicit label mappings. Recall that for
large collections BST retrieval incurs less network costs
than explicitly downloading the label-to-index mappings
and performing PIR with a known index (§3.3). We now
describe how to delay the breakeven point (i.e., the col-
lection size at which BST retrieval is better than explic-
itly downloading labels) by using a Bloom filter [24]. A
Bloom filter is a probabilistic data structure that encodes a
compressed representation of a set, and is widely used to
reduce network costs in many settings, including private
communication [80, 108] (although our use case is differ-
ent). It exposes a check procedure that allows anyone to
check whether some element is in the set (false positives
are possible and occur with small probability).

In our implementation, the Pung server adds to a Bloom
filter the element index||label for each tuple in the col-
lection, and sends it to clients. Clients can then find the
index of their desired label L⋆ by testing for set mem-
bership locally while varying the index until a match is
found: check(0||L⋆), . . . , check(n − 1||L⋆). While stan-
dard Bloom filters require computing a large number of
hash functions for each add and check operation, there
exist constructions that require only two [74]. Thus, with
little computation, clients can locally derive their desired
index while saving network resources. For larger collec-
tions, retrieval via BST (Fig. 4) remains more efficient.

7 Experimental evaluation
Our evaluation answers four main questions. First, what
is the cost of the cryptographic primitives used in
Pung (§7.1)? Second, what is the concrete performance of
Pung, and how does it compare to prior systems (§7.2)?
Third, what are the benefits of multi-retrieval (§7.3)? Last,
what are the costs that Pung imposes on clients (§7.4)?

Setup and metrics. We deploy Pung’s server logic on
timely dataflow workers running on Microsoft Azure

H16 instances (16-core Intel Xeon E5-2667 with 112 GB
RAM) with Ubuntu 16.04. Our performance metrics are
throughput (in messages/minute) and end-to-end latency
(in seconds). Note that all entities run on the same data
center, so our results do not capture the effects of wide
area networking. In all cases we report the mean over 10
trials; standard deviations are less than 10% of the means.

We run clients and dataflow workers in a closed loop
and let round duration be as low as possible: a new round
starts as soon as all current requests are fulfilled. To keep
the number of messages constant across rounds, we con-
figure Pung’s garbage collection window to be the number
of messages sent in one round (§6).

Baselines. We compare Pung to two prior systems: Dis-
sent [42] and Vuvuzela [130]. They represent the state-
of-the-art in private communication under the anytrust7

(Vuvuzela) and no-trust (Dissent) models. We want to
emphasize that our comparison to Dissent is not apples-to-
apples: Dissent achieves an additional privacy property—
sender anonymity (§2, §9)—that Pung does not provide.
However, we are not aware of a system with the same
guarantees as Pung under our threat model.

7.1 Microbenchmarks

To understand the costs of Pung we start with a series of
microbenchmarks. The network and CPU costs of many
of Pung’s operations depend on the size of the collection
(n = # of tuples) held by the Pung cluster and the size
of each (label, c)-tuple. We report the results for several
collection sizes, and tuple sizes (288 bytes, 1 KB). We
choose these tuple sizes to match our baselines: Vuvuzela
clients exchange 256-byte encrypted messages (Pung’s
32-byte labels account for the difference), while Dissent
targets larger messages (≥ 1 KB). The costs of PIR op-
erations depend on two parameters: aggregation (α) and
dimension (d) [10]. They control the number of cipher-
texts that make up a PIR query and answer (higher α and
d lead to smaller queries but larger answers). For each
collection and tuple size, Pung dynamically chooses the
parameters that minimize total network costs.

Figure 5 tabulates our results. We find that client-side
operations incur little CPU costs aside from generating a
PIR query. This operation is performed once by clients
when retrieving a message, or several times (on smaller
collections) when traversing a BST (§3.3). The network
and CPU cost of generating and sending a PIR query
depend on the number and the size of the ciphertexts that
make up the query; for the PIR parameters that Pung uses
(last two rows of Figure 5), these costs are sublinear in the
size of the collection (i.e.,

√
n). We discuss more about

client-to-server network costs in Section 7.4.

7The anytrust model [137] states that out of a set of servers one is
assumed to be correct; clients need not know which is the correct one.

560 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tuples in Pung cluster (n)

2,048 8,192 32,768

client-side CPU costs
Key derivation 6.05 µs 6.05 µs 6.05 µs
Label generation 1.60 µs 1.60 µs 1.60 µs
Message encryption 1.56 µs 1.56 µs 1.56 µs
Message decryption 1.37 µs 1.37 µs 1.37 µs
Bloom filter lookup 0.15 ms 0.47 ms 2.02 ms
PIR query (288 B tuples) 0.86 ms 1.91 ms 3.35 ms
PIR query (1 KB tuples) 1.68 ms 3.36 ms 5.02 ms
PIR decode (288 B tuples) 0.62 ms 0.69 ms 0.70 ms
PIR decode (1 KB tuples) 0.68 ms 0.69 ms 1.35 ms

server-side CPU costs
PIR setup (288 B tuples) 4.52 ms 16.01 ms 68.73 ms
PIR setup (1 KB tuples) 15.64 ms 63.86 ms 255.38 ms
PIR answer (288 B tuples) 6.05 ms 14.91 ms 36.81 ms
PIR answer (1 KB tuples) 14.72 ms 37.87 ms 143.38 ms

network costs
PIR query (288 B tuples) 256 KB 512 KB 1024 KB
PIR query (1 KB tuples) 512 KB 1,024 KB 1,536 KB
PIR answer (288 B tuples) 432 KB 464 KB 464 KB
PIR answer (1 KB tuples) 464 KB 464 KB 912 KB

PIR parameters (α, d) [10]
288 B tuples (32, 2) (32, 2) (32, 2)
1 KB tuples (8, 2) (8, 2) (16, 2)

FIGURE 5—Microbenchmarks for Pung’s operations under vary-
ing collection sizes (n), and tuple sizes (288 bytes and 1 KB).

Unlike clients’ CPU costs, the server’s costs are signifi-
cant. One of the most expensive operation is the one-time
setup of a PIR collection. In Pung, this procedure needs
to be performed once at the beginning of every round
following the send phase (§3.3). The other major source
of overhead is answering PIR queries. In general, this cost
scales linearly with n, though fixed costs make process-
ing several small collections (n < 8K) relatively more
expensive than processing a single large one. We return to
this point in Section 7.3 when we discuss the theoretical
versus actual benefits of our optimizations.

7.2 End-to-end performance of single retrievals

We focus on two end-to-end metrics: latency observed by
a client and throughput achieved by Pung servers. Here
we test the version of Pung that we describe in Section 3
without any of the multi-retrieval optimizations (§4).

Latency. To measure the end-to-end latency perceived
by clients in Pung, we set up a single dataflow worker that
is under-utilized and that can immediately handle a user’s
request. We then have a single client send its message and
perform a retrieval. To experiment with large collection
sizes we populate the server with up to 1 million 288-byte
tuples. We experiment with three different methods that
clients can use to retrieve their desired tuples from the
server. The first has the client explicitly download all the
label-to-index mappings prior to retrieval, look up the
index of the corresponding label locally, and perform PIR

 0

 1

 2

1M0K 262K 524K 786K

en
d
-t

o
-e

n
d
 l

at
en

cy
 (

se
c)

number of messages at Pung cluster

label-to-index map
Bloom filter
BST

FIGURE 6—The end-to-end latency of sending and retrieving
one message when the Pung cluster is under-utilized is up to 1.3
seconds (when the server stores 1 million tuples).

with this index. The second downloads a Bloom filter that
succinctly encodes the label-to-index mappings (§6), and
performs the same steps as above. The last performs the
BST retrieval procedure listed in Figure 4.

Figure 6 depicts the results. As we expect from our mi-
crobenchmarks, the client latency grows linearly with the
number of messages at the server. Also, our low-latency
network allows us to confirm that the server-side CPU
costs associated with BST retrieval are negligibly higher
than explicitly fetching the label-to-index mapping. How-
ever, in wide area networks we expect to see added latency
due to log(n) round trips. The Bloom filter’s checks (§6)
also incur little CPU overhead, and its size is up to 10.4×
smaller than the associated label-to-index mapping. Fi-
nally, note that our prototype performs request-level—
rather than data-level—parallelism, so these latencies
could be reduced further by having dataflow workers pro-
cess fractions of a request. However, current latencies are
already comparable to those achieved by Vuvuzela, where
even a two-client scenario requires 20-second rounds due
to the addition and serial processing of cover traffic.

Throughput. To measure Pung’s peak throughput, we
run experiments where clients send and retrieve a 256-
byte message per round, for a total of 10 rounds. We then
vary the number of clients (n) and measure the number of
messages processed per minute. We distribute 64 timely
dataflow workers across 4 VMs to run Pung’s server-side
computation. Since we cannot run tens of thousands of
clients in our infrastructure, we employ a combination of
real and simulated clients. We configure 512 real clients
across 8 VMs (4 clients per core). We then have each
client send a single message and instruct dataflow work-
ers to make up the difference by injecting the remaining
messages (n−512) at the end of the send phase, simulat-
ing additional clients. Finally, during the retrieve phase,
each real client fetches a message from a random mailbox.

We also run both baselines in our cluster, with 256-byte
messages. Since Dissent is a peer-to-peer system and does
not use servers, we spread out its peers across our VMs.
We run only its shuffle protocol as that is more efficient
than full Dissent for small fixed-sized messages [42, §3].

For Vuvuzela, we set up a 3-server chain in addition to

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 561

0

10
2

10
4

10
6

64 32K 65K 131K

th
ro

u
g
h
p
u
t

(m
es

sa
g
es

/m
in

)

clients (sending a single message)

Dissent Pung Vuvuzela

FIGURE 7—Pung can handle significantly more messages and
clients than Dissent but its throughput at 131K clients is 27.8×
lower than Vuvuzela’s. We do not report Dissent’s throughput
past 64 users (see text for details).

the entry server that proxies client requests, which mirrors
the arrangement evaluated by its authors [130, §7]. A
caveat is that our VMs have fewer CPU cores. We also
use the same parameters that characterize the distribution
from which Vuvuzela servers draw noise (µ = 300,000
and b = 13,800). We run 512 Vuvuzela clients and modify
the entry server [9] to make up for the remaining messages
(similar to how Pung’s dataflow workers inject messages).

Figure 7 depicts our results for 64, 32K, 65K, and
131K clients. We show Dissent’s throughput only with 64
clients because at higher peer counts it is less than one
message per minute with the prototype we use [6].

Pung and Vuvuzela achieve relatively low throughput—
far below their capacity—at very low client counts. This is
due to lack of work, since only 64 clients are sending and
retrieving messages in a given round. As a result, Pung
workers sit idle most of the time, while Vuvuzela servers
continue to generate and process significant cover traffic,
delaying the start of the next round. However, at higher
(and more realistic) client counts, there is enough work
to make long rounds a non-issue for Vuvuzela. Indeed,
Vuvuzela’s throughput is 27.8× higher than Pung at 131K
clients, and this gap grows even larger with more clients.

7.3 What are the benefits of multi-retrieval?

We now discuss how our techniques (§4) impact the per-
formance of Pung in terms of latency and throughput.
In both cases, we run the same experiments described
in Section 7.2, but configure clients to use the hybrid
scheme (§4.4) to retrieve multiple messages at once.

Latency. As with the single retrieval case, client latency
grows linearly with the number of messages at the server.
This is depicted in Figure 8. However, with one million
tuples, the multi-retrieval latency is 1.5×, 2.8×, and 4.6×
lower than running the single retrieval protocol (§7.2) k
times when retrieving k = 16, 64, and 128 messages re-
spectively. Note that in this experiment we have a single
dataflow worker respond to all of the client’s queries (re-
call that there is a query for each subcollection). However,
this is an embarrassingly parallel task since subcollections
are independent; different workers could be assigned to

 0

 15

 30

 45

1M0K 262K 524K 786K

en
d
-t

o
-e

n
d
 l

at
en

cy
 (

se
c)

number of messages at Pung cluster

k = 128

k = 64

k = 16

FIGURE 8—The end-to-end latency of sending one message and
retrieving k using Pung’s multi-retrieval. It takes 36.2 seconds
with k = 128 and 1M tuples. This is 4.6× faster than retrieving
128 messages using Pung’s single-retrieval (Fig. 6).

0

10
2

10
4

10
6

32K 65K 131K 262K

th
ro

u
g
h
p
u
t

(m
es

sa
g
es

/m
in

)

clients (sending a single message)

Pung Pung-M Vuvuzela

FIGURE 9—Pung’s multi-retrieval optimizations increase its
throughput by up to 5.2×. Pung-M represents a version of Pung
where clients retrieve k=64 messages simultaneously using our
hybrid scheme (§4.4). At 262K clients, Vuvuzela handles 84.9×
and 22.6× more messages than Pung and Pung-M, respectively.

each of them. Given enough workers, it is possible to drive
down the end-to-end latency of processing all k requests
to the level of processing a single request.

Throughput. We depict the throughput benefits of hav-
ing clients retrieve a batch of k = 64 messages in Figure 9.
We find that Pung’s hybrid scheme offers a throughput
boost of up to 5.2× over single retrieval. Based on our
cost model (available in our extended report [12, Ap-
pendix B]), the maximum gain that we can expect from
using our hybrid scheme over retrieving messages one
by one is 14.2× for k = 64. This large disagreement
(over 2×) with our experimental results comes from two
main sources. First, our end-to-end throughput measures
not only message retrieval but also Pung’s send phase—
including the expensive PIR setup step (§7.1) and the
encoding of buckets using batch codes (§4.4)—which
lowers our potential gains. Second, as we discuss in Sec-
tion 7.1, smaller collections are disproportionately more
expensive to serve than larger ones, owing to fixed costs.

Nevertheless, Pung’s multi-retrieval throughput is high
enough (5.9× lower than Vuvuzela’s at 131K clients)
that it can accommodate thousands of users and tens of
thousands of messages with sub-minute latencies. This
performance is sufficient to support many existing appli-
cations (§8). We also experiment with values of k ranging
from 4 to 128, and find gains between 1.52×–11×.

562 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

10
2

10
4

1 4 16 64 1 4 16 64 1 4 16 64

n
et

w
o
rk

 c
o
st

 (
M

B
)

tuple size

288 B 1 KB 10 KB

k =

FIGURE 10—Pung’s network costs (upload and download) for
n = 262K with varying k and tuple sizes. The dashed line rep-
resents the cost of naively downloading the entire collection,
which provides information-theoretic privacy. Pung’s single re-
trieval is cheaper than naively downloading the entire collection.
For k>1, Pung performs better than naive download only when
messages are large, or when k is moderate (see text for details).

7.4 What costs does Pung impose on clients?

Pung’s clients have to participate in every round to en-
sure unobservability (§3.1). Clients thus pay fixed CPU
and network costs regardless of their actions. Our mi-
crobenchmarks (§7.1) show that many of these costs are
small. Indeed, clients incur tens of milliseconds of CPU
time per round for the experiments in Sections 7.2 and 7.3.

Network costs. To better understand the network costs
incurred by clients, we run a set of experiments in which
we vary the collection sizes (n), the number of messages
retrieved by a client (k), and the size of tuples in the
collection. Figure 10 summarizes the results for n = 262K
tuples with varying k and the size of tuples.

We find that for single retrievals (k = 1), clients incur
3.8–11 MB of network costs for sending and receiving a
message, depending on the tuple size. This cost is 3–4
orders of magnitude higher than retrieving the tuple from
the server non-privately. However, compared to down-
loading the entire collection (which would also meet our
privacy goals), it is 19× lower for 288 byte tuples, 45×
lower for 1 KB tuples, and 230× lower for 10 KB tuples.

For k>1, we find that clients incur 4.5–36 MB per mes-
sage depending on k and tuple size. Perhaps surprisingly,
we find that under certain regimes (e.g., small tuple sizes,
high k), it is beneficial for clients to simply download the
entire collection instead of using Pung’s multi-retrieval.
The reason is that clients have to retrieve tuples from
many subcollections—the number of which depends on
k (§4.4)—by sending PIR queries and receiving PIR an-
swers (several ciphertexts). With the PIR construction
that we employ (i.e., XPIR [10]), ciphertexts are rather
large (128 Kbits), so these overheads are more than the
size of the collection for smaller tuple sizes and large k.
While we can use a different cryptosystem with smaller
ciphertexts (e.g., Paillier [101]) to reduce network costs
by orders of magnitude, it incurs much higher server-side
CPU costs [10]. We are investigating ways to resolve this
conflict between network and CPU costs.

Admittedly, this is the primary limitation of Pung’s cur-
rent design. However, there are certain regimes in which
Pung’s multi-retrieval outperforms downloading the en-
tire collection: larger messages (e.g., ≥1 KB), or medium
k (e.g., ≤64). For example, with k = 16 and 10 KB mes-
sages, the total network cost is 7× lower than download-
ing the entire collection. Finally, while these costs may
be considered modest for well-connected devices, they
remain high for many settings (e.g., mobile devices).

8 Applicable scenarios
Section 7.3 demonstrates that Pung’s optimizations can
substantially increase its throughput, but they incur ad-
ditional network resources and require clients to retrieve
many messages at once. We now discuss applications that
can benefit from Pung’s privacy guarantees as well as its
multi-retrieval—high network costs remain an issue.

First, participants in a dark pool (a private stock ex-
change) could hide their orders using Pung, prevent-
ing market speculation and predatory tactics by high-
frequency traders [85, 103]. Second, email, group chats,
and collaboration tools such as Slack [4] are all a natu-
ral fit for Pung: they use larger messages (>1 KB), and
require (or benefit from) multi-retrieval.

Finally, several applications with many-to-one commu-
nication can use Pung. For instance, health/embedded
devices can send diagnostic information to medical
providers using Pung, preserving the privacy of the com-
munication. Similarly, Pung enables private collection of
data from sensors (e.g., Internet of things), or corporate
software (e.g., bug reports). While these devices have lim-
ited resources (e.g., power, bandwidth) they can still use
Pung, since they can choose (a priori) how often to partici-
pate (e.g., every 5 rounds). They can then leverage Pung’s
multi-retrieval to “catch up” by simultaneously retrieving
all messages sent to them during the last 5 rounds. Of
course, if a client rarely participates, its messages might
be garbage collected before it can catch up (§6).

9 Related work
This section discusses related systems, and their compari-
son to Pung. (Danezis et al. [45] provide a more thorough
discussion of many of these systems.)

Mix networks. The earliest private messaging systems
employ mix networks [22, 23, 31, 32, 47, 65, 72, 81, 82]:
they rely on a set of servers (called mixes) to shuffle
messages before delivering them to recipients. This shuf-
fling is often accompanied by encryption, batching, and
chaffing (the addition of dummy traffic) to prevent traffic
analysis. Since all operations are relatively lightweight,
these systems enjoy lower latency and higher throughput
than many other works in the literature—including Pung.
However, malicious mixes can replay, duplicate, or drop

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 563

messages, violating these systems’ guarantees via known
attacks [84, 87, 100, 106, 107, 112, 122, 134]. Indeed,
Kesdogan et al. [71] show that many of these attacks are
fundamental. Consequently, systems like Aqua [82] and
Herd [81] sidestep these attacks by targeting scenarios
where particular mixes with critical roles are trusted. The
use of such trusted mixes contradict our goals (§2).

There are works with a decentralized architecture: peer-
to-peer mix networks [114, 138] and peer-to-peer rout-
ing [17, 37, 46, 55, 56, 98, 113, 121]. These systems have
high network costs, and rely on a threshold of peers being
correct. Furthermore, they are susceptible to strong ad-
versaries [54, 91, 124] and Sybil attacks [52]. Salsa [98]
combats these issues by making an additional assumption:
fewer than 20% of all nodes are malicious. Blindspot [56]
and Drac [46] suggest peering only with contacts from
existing social networks, but this leaks information about
users’ relationships and results in small anonymity sets.

Onion routing. Works based on onion routing [51, 92,
93, 127], especially Tor [51], are widely adopted due to
their relative low latency and ability to support millions of
users. However, these systems are unable to resist traffic
analysis attacks [68, 96, 112], even those performed by
local adversaries [29, 78, 102, 132]. While future Inter-
net architectures may address many of these shortcom-
ings [34], we target a system that is deployable today.

DC networks. Another line of work is based on Dining
Cryptographers (DC) networks [33, 42, 66]. They pro-
vide stronger guarantees than Pung under the same threat
model, but they are peer-to-peer (requiring all users to
know each other) and are based on all-to-all broadcast of
messages. This results in high costs. Consequently, these
systems typically accommodate only dozens of users. Ver-
dict [43] and Dissent’s successor [136] make great strides
to reduce these costs and support thousands of users, but
in the process introduce trusted infrastructure (under the
anytrust model) which differs from our goals (§2).

Mailbox systems. Finally, there are a number of sys-
tems [25, 40, 41, 75, 79, 119, 130] that employ an archi-
tecture and techniques similar to Pung’s (clients retrieve
messages from per-round mailboxes kept at third-party
servers). The key differences between these works and
Pung is their reliance on at least one correct server, and
the mechanisms that follow from that assumption. We
elaborate on the most related ones below.

P3 [75], like Pung, employs a key-value store from
which users can privately pull messages. While P3’s focus
is a retrieval mechanism that supports general queries
when fetching a message (e.g., prefix search), Pung’s
primary goal is to drive down the cost of retrieval by
introducing several batching optimizations (§4).

Riposte [41] targets a setting more fitting for whistle-
blowers and informants where the sender wishes to remain

anonymous from everyone (including all recipients). In
contrast, Pung’s goal is hiding the communication pattern
between users who already know each other’s identities.
The Pynchon Gate [119] provides anonymity by compos-
ing a mix network with an IT-PIR scheme (§3.3). How-
ever, these guarantees hold only for passive adversaries
who do not compromise mixes; under our threat model
several attacks exist [100, 106, 107, 134]. Riffle [79] ad-
dresses this limitation by enhancing mixes with a ver-
ifiable shuffle, but retains the IT-PIR substrate and the
anytrust model, which requires at least one correct server.

Vuvuzela [130] provides privacy through request shuf-
fling and the careful addition of cover traffic rather than
through PIR. Vuvuzela achieves significantly better per-
formance than Pung (§7.2, §7.3), and it proposes an ef-
ficient dialing protocol, which Alpenhorn [80] enhances
further. In contrast, Pung is not compatible with either
dialing scheme, and we have not yet identified a suitable
substitute (§5). However, Pung does introduce some bene-
fits. In Vuvuzela, messages are ephemeral and can only be
accessed during a single round; Pung supports long-lived
messages that can be retrieved anytime prior to garbage
collection (§6). Vuvuzela does not support group commu-
nications since it is based on point-to-point exchanges.
Finally, the guarantees of a Vuvuzela deployment are
based on differential privacy and are valid only for a cer-
tain number of rounds (based on a privacy budget). Pung’s
guarantees hold for any number of rounds.

10 Summary and conclusion
Our goal was to eliminate trust assumptions in private
communication. To accomplish this goal, we leverage
powerful cryptography and build Pung. Pung supports
103× more users than prior systems in a similar threat
model but falls short of systems that make trust assump-
tions. To improve performance, Pung targets a setting
where clients retrieve multiple messages at once (§8). In
this regime, Pung introduces new techniques that heav-
ily amortize the costs of its cryptographic machinery.
Our evaluation confirms that Pung reduces computational
costs by up to 11×, at the expense of higher network costs.
With these improvements, Pung presents an attractive de-
sign point for private communication systems.

Acknowledgments

Careful comments from Trinabh Gupta, Michael Lee, Josh
Leners, Jay Lorch, Manos Kapritsos, Bryan Parno, Riad
Wahby, the anonymous reviewers, and our shepherd Ger-
not Heiser made this paper better. We thank Michael Wal-
fish for his thorough comments, which greatly improved
this work. We also thank Carlos Aguilar Melchor for help
with XPIR, and Frank McSherry for help with dataflow
operators that Pung uses. Sebastian Angel was supported
by NSF grants CNS-1055057 and CNS-1514422.

564 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Bleep. http://www.bleep.pm.
[2] ChatSecure. https://chatsecure.org.
[3] Open Whisper Systems.

https://whispersystems.org.
[4] Slack: Be less busy. https://slack.com/.
[5] Telegram. https://telegram.org.
[6] Dissent: Provably anonymous overlay. https:

//github.com/dedis/Dissent/tree/95f73, Apr.
2010.

[7] Google says anything flowing across open WiFi is fair
game. https://goo.gl/fjOW2A, Jan. 2014. Privacy
SOS.

[8] Rust-crypto.
https://github.com/dagenix/rust-crypto/,
2016.

[9] Vuvuzela: Private messaging system that hides metadata.
https://github.com/davidlazar/vuvuzela, Sept.
2016.

[10] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private information retrieval for
everyone. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2016.

[11] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private information retrieval for
everyone. https://github.com/xpir-team/xpir/,
2016.

[12] S. Angel and S. Setty. Unobservable communication
over fully untrusted infrastructure (extended version).
Technical Report TR-16-16, The University of Texas at
Austin, Oct. 2016.

[13] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras,
and J. Risen. AT&T helped U.S. spy on Internet on a
vast scale. http://goo.gl/Jfsm18, Aug. 2015. The
New York Times.

[14] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), May 1994.

[15] J. Ball. GCHQ captured emails of journalists from top
international media. http://goo.gl/YzXnYK, Jan.
2015. The Guardian.

[16] J. Bamford. Shady companies with ties to Israel wiretap
the U.S. for the NSA. http://goo.gl/bdi7w4, Apr.
2012. Wired.

[17] A. Beimel and S. Dolev. Buses for anonymous message
delivery. Journal of Cryptology, 16(1), Jan. 2003.

[18] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers
computation in private information retrieval: PIR with
preprocessing. In Proceedings of the International
Cryptology Conference (CRYPTO), Aug. 2000.

[19] M. Bellare, R. Canetti, and H. Krawczyk.
Pseudorandom functions revisited: The cascade
construction and its concrete security. In Proceedings of
the IEEE Symposium on Foundations of Computer
Science (FOCS), Oct. 1996.

[20] M. Bellare and A. Lysyanskaya. Symmetric and dual
PRFs from standard assumptions: A generic validation
of an HMAC assumption. Cryptology ePrint Archive,

Report 2015/1198, Dec. 2015.
http://eprint.iacr.org/2015/1198.pdf.

[21] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. In International
Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT), Dec. 2000.

[22] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes:
A system for anonymous and unobservable Internet
access. In Proceedings of the International Workshop on
Designing Privacy Enhancing Technologies: Design
Issues in Anonymity and Unobserbability, July 2000.

[23] O. Berthold and H. Langos. Dummy traffic against long
term intersection attacks. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET),
Mar. 2002.

[24] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7),
July 1970.

[25] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private
presence service. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), June 2015.

[26] J. Brickell and V. Shmatikov. Efficient
anonymity-preserving data collection. In Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), Aug. 2006.

[27] S. Buttar. Dragnet NSA spying survives: 2015 in review.
https://goo.gl/JsNgS7, Dec. 2015. Electronic
Frontier Foundantion.

[28] C. Cachin, S. Micali, and M. Stadler. Computationally
private information retrieval with polylogarithmic
communication. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), May 1999.

[29] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching
from a distance: Website fingerprinting attacks and
defenses. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Oct.
2008.

[30] Y.-C. Chang. Single database private information
retrieval with logarithmic communication. In
Proceedings of the Australasian Conference on
Information Security and Privacy, July 2004.

[31] D. Chaum, F. Javani, A. Kate, A. Krasnova, J. de Ruiter,
and A. T. Sherman. cMix: Anonymization by
high-performance scalable mixing. Cryptology ePrint
Archive, Report 2016/008, Jan. 2016.
http://eprint.iacr.org/2016/008.pdf.

[32] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2), Feb. 1981.

[33] D. L. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1), 1988.

[34] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and
A. Perrig. HORNET: High-speed onion routing at the
network layer. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), Oct.
2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 565

http://www.bleep.pm
https://chatsecure.org
https://whispersystems.org
https://slack.com/
https://telegram.org
https://github.com/dedis/Dissent/tree/95f73
https://github.com/dedis/Dissent/tree/95f73
https://goo.gl/fjOW2A
https://github.com/dagenix/rust-crypto/
https://github.com/davidlazar/vuvuzela
https://github.com/xpir-team/xpir/
http://goo.gl/Jfsm18
http://goo.gl/YzXnYK
http://goo.gl/bdi7w4
http://eprint.iacr.org/2015/1198.pdf
https://goo.gl/JsNgS7
http://eprint.iacr.org/2016/008.pdf

[35] B. Chor, N. Gilboa, and M. Naor. Private information
retrieval by keywords. Cryptology ePrint Archive,
Report 1998/003, Feb. 1998.
http://eprint.iacr.org/1998/003.

[36] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 1995.

[37] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Proceedings of the International
Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and
Unobserbability, July 2000.

[38] D. Cole. We kill people based on metadata.
http://goo.gl/LWKQLx, May 2014. The New York
Review of Books.

[39] T. Cook. A message to our customers.
http://www.apple.com/customer-letter/, Feb.
2016.

[40] D. A. Cooper and K. P. Birman. Preserving privacy in a
network of mobile computers. In Proceedings of the
IEEE Symposium on Security and Privacy, May 1995.

[41] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:
An anonymous messaging system handling millions of
users. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2015.

[42] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable
anonymous group messaging. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), Oct. 2010.

[43] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford.
Proactively accountable anonymous messaging in
Verdict. In Proceedings of the USENIX Security
Symposium, Aug. 2013.

[44] Council of Europe. European Convention on Human
Rights: Article 8. http://www.echr.coe.int/
Documents/Convention_ENG.pdf, Nov. 1950.

[45] G. Danezis, C. Diaz, and P. Syverson. Systems for
anonymous communication.
https://securewww.esat.kuleuven.be/cosic/
publications/article-1335.pdf, Aug. 2009.

[46] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie. Drac:
An architecture for anonymous low-volume
communications. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), July 2010.

[47] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a type III anonymous remailer
protocol. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2003.

[48] C. Devet, I. Goldberg, and N. Heninger. Optimally
robust private information retrieval. In Proceedings of
the USENIX Security Symposium, Aug. 2012.

[49] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 22(6), Nov. 1976.

[50] R. Dingledine. Did the FBI pay a university to attack Tor
users? https://goo.gl/NB3hSR, Nov. 2015. Tor
Project.

[51] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of the
USENIX Security Symposium, Aug. 2004.

[52] J. R. Douceur. The sybil attack. In Proceedings of the
International Workshop on Peer-to-Peer Systems, Mar.
2002.

[53] M. Dworkin. Recommendation for block cipher modes
of operation: Galois/Counter Mode (GCM) and GMAC.
Technical Report SP 800-38D, National Institute of
Standards and Technology, Nov. 2007.

[54] C. Egger, J. Schlumberger, C. Kruegel, and G. Vigna.
Practical attacks against the I2P network. In Proceedings
of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Nov. 2013.

[55] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), Nov. 2002.

[56] J. Gardiner and S. Nagaraja. Blindspot:
Indistinguishable anonymous communications.
arXiv:1408/0784v2, Aug. 2014.
http://arxiv.org/abs/1408.0784.

[57] W. Gasarch and A. Yerukhimovich. Computationally
inexpensive cPIR. https://www.cs.umd.edu/
~arkady/papers/pirlattice.pdf, 2006.

[58] C. Gentry and Z. Ramzan. Single-database private
information retrieval with constant communication rate.
In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), July
2005.

[59] I. Goldberg. Improving the robustness of private
information retrieval. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2007.

[60] P. Golle and A. Juels. Dining cryptographers revisited.
In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 2004.

[61] A. Greenberg. Whatsapp just switched on end-to-end
encryption for hundreds of millions of users.
http://www.wired.com/2014/11/whatsapp-
encrypted-messaging/, Nov. 2014.

[62] G. Greenwald and R. Gallagher. New Zealand launched
mass surveillance project while publicly denying it.
https://goo.gl/UwNpwV, Sept. 2014. The Intercept.

[63] G. Greenwald and E. MacAskill. NSA Prism program
taps in to user data of Apple, Google and others.
http://goo.gl/qETWUq, June 2013. The Guardian.

[64] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query
computationally-private information retrieval with
constant communication rate. In Proceedings of the
International Conference on Practice and Theory in
Public Key Cryptography (PKC), May 2010.

[65] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 1996.

[66] E. Gün Sirer, S. Goel, M. Robson, and D. Engin.
Eluding carnivores: File sharing with strong anonymity.
In Proceedings of the ACM SIGOPS European
Workshop, Sept. 2004.

566 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://eprint.iacr.org/1998/003
http://goo.gl/LWKQLx
http://www.apple.com/customer-letter/
http://www.echr.coe.int/Documents/Convention_ENG.pdf
http://www.echr.coe.int/Documents/Convention_ENG.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1335.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1335.pdf
https://goo.gl/NB3hSR
http://arxiv.org/abs/1408.0784
https://www.cs.umd.edu/~arkady/papers/pirlattice.pdf
https://www.cs.umd.edu/~arkady/papers/pirlattice.pdf
http://www.wired.com/2014/11/whatsapp-encrypted-messaging/
http://www.wired.com/2014/11/whatsapp-encrypted-messaging/
https://goo.gl/UwNpwV
http://goo.gl/qETWUq

[67] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi,
and M. Walfish. Scalable and private media
consumption with Popcorn. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Mar. 2016.

[68] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
much anonymity does network latency leak? In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2007.

[69] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Batch codes and their applications. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), June
2004.

[70] J. Katz and M. Yung. Unforgeable encryption and
chosen ciphertext secure modes of operation. In
Proceedings of the Fast Software Encryption Workshop
(FSE), Apr. 2000.

[71] D. Kesdogan, D. Agrawal, V. Pham, and D. Rautenbach.
Fundamental limits on the anonymity provided by the
MIX technique. In Proceedings of the IEEE Symposium
on Security and Privacy, May 2006.

[72] D. Kesdogan, J. Egner, and R. Büschkes.
Stop-And-Go-MIXes providing probabilistic anonymity
in an open system. In Proceedings of the International
Workshop on Information Hiding, Apr. 1998.

[73] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and
Q. Tang. Optimal rate private information retrieval from
homomorphic encryption. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), July 2015.

[74] A. Kirsch and M. Mitzenmacher. Less hashing, same
performance: Building a better Bloom filter. Journal of
Random Structures and Algorithms, 33(2), Sept. 2008.

[75] L. Kissner, A. Oprea, M. K. Reiter, D. Song, and
K. Yang. Private keyword-based push and pull with
applications to anonymous communication. In
Proceedings of the International Conference on Applied
Cryptography and Network Security (ACNS), June 2004.

[76] H. Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In Proceedings of the
International Cryptology Conference (CRYPTO), Aug.
2010.

[77] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private
information retrieval. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 1997.

[78] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and
S. Devadas. Circuit fingerprinting attacks: Passive
deanonymization of Tor hidden services. In Proceedings
of the USENIX Security Symposium, Aug. 2015.

[79] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity.
In Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), July 2016.

[80] D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 2016.

[81] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and

N. Merritt. Herd: A scalable, traffic analysis resistant
anonymity network for VoIP systems. In Proceedings of
the ACM SIGCOMM Conference, Aug. 2015.

[82] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel,
H. Ballani, and P. Francis. Towards efficient
traffic-analysis resistant anonymity networks. In
Proceedings of the ACM SIGCOMM Conference, Aug.
2013.

[83] R. Lenzner. ATT, Verizon, Sprint are paid cash by NSA
for your private communications.
http://goo.gl/x7Cz1m, Sept. 2013. Forbes.

[84] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright.
Timing attacks in low-latency mix systems. In
Proceedings of the International Financial
Cryptography Conference, Feb. 2004.

[85] M. Lewis. Flash Boys: A Wall Street Revolt. W.W.
Norton & Company, Mar. 2014.

[86] W. Lueks and I. Goldberg. Sublinear scaling for
multi-client private information retrieval. In Proceedings
of the International Financial Cryptography and Data
Security Conference, Jan. 2015.

[87] N. Mathewson and R. Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure.
In Proceedings of the Workshop on Privacy Enhancing
Technologies (PET), May 2004.

[88] J. Mayer, P. Mutchler, and J. C. Mitchell. Evaluating the
privacy properties of telephone metadata. Proceedings of
the National Academy of Sciences of the United States of
America (PNAS), 113(20), May 2016.

[89] F. McSherry. Timely dataflow.
https://github.com/frankmcsherry/timely-
dataflow/, 2016.

[90] J. Menn. Yahoo secretly scanned customer emails for
U.S. intelligence. https://goo.gl/KZuUYo, Oct.
2016. Reuters.

[91] P. Mittal and N. Borisov. Information leaks in structured
peer-to-peer anonymous communication systems. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2008.

[92] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg. PIR-Tor: Scalable anonymous
communication using private information retrieval. In
Proceedings of the USENIX Security Symposium, Aug.
2011.

[93] P. Mittal, M. Wright, and N. Borisov. Pisces:
Anonymous communication using social networks. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2013.

[94] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10), Oct. 2001.

[95] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Jan. 2005.

[96] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2005.

[97] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 567

http://goo.gl/x7Cz1m
https://github.com/frankmcsherry/timely-dataflow/
https://github.com/frankmcsherry/timely-dataflow/
https://goo.gl/KZuUYo

system. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), Nov. 2013.

[98] A. Nambiar and M. Wright. Salsa: A structured
approach to large-scale anonymity. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), Nov. 2006.

[99] M. Naor and M. Yung. Public-key cryptosystems
provably secure against chosen ciphertext attacks. In
Proceedings of the ACM Symposium on Theory of
Computing (STOC), May 1990.

[100] L. Nguyen and R. Safavi-Naini. Breaking and mending
resilient mix-nets. In Proceedings of the Workshop on
Privacy Enhancing Technologies (PET), Mar. 2003.

[101] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), May 1999.

[102] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website fingerprinting in onion routing based
anonymization networks. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Oct. 2011.

[103] D. C. Parkes, C. Thorpe, and W. Li. Achieving trust
without disclosure: Dark pools and a role for
secrecy-preserving verification. In Proceedings of the
Conference on Auctions, Market Mechanisms and Their
Applications (AMMA), Aug. 2015.

[104] M. B. Paterson, D. R. Stinson, and R. Wei.
Combinatorial batch codes. Advances in Mathematics of
Communications (AMC), 3(1), Feb. 2009.

[105] A. Pfitzmann and M. Hansen. A terminology for talking
about privacy by data minimization: Anonymity,
unlinkability, undetectability, unobservability,
pseudonymity, and identity management.
http://dud.inf.tu-dresden.de/literatur/
Anon_Terminology_v0.34.pdf, Aug. 2010.

[106] B. Pfitzmann. Breaking an efficient anonymous channel.
In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 1995.

[107] B. Pfitzmann and A. Pfitzmann. How to break the direct
RSA-implementation of mixes. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), Apr. 1989.

[108] A. Piotrowska, J. Hayes, N. Gelernter, G. Danezis, and
A. Herzberg. AnoNotify: A private notification service.
Cryptology ePrint Archive, Report 2016/466, May 2016.
http://eprint.iacr.org/2016/466.pdf.

[109] E. Protalinski. Facebook scans chats and posts for
criminal activity. http://goo.gl/pfV9XE, July 2012.
CNET.

[110] C. Rackoff and D. R. Simon. Non-interactive
zero-knowledge proof of knowledge and chosen
ciphertext attack. In Proceedings of the International
Cryptology Conference (CRYPTO), Aug. 1991.

[111] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál. Batch
codes through dense graphs without short cycles. IEEE

Transactions on Information Theory, 62(4), Apr. 2016.
[112] J.-F. Raymond. Traffic analysis: Protocols, attacks,

design issues and open problems. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET),
May 2001.

[113] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for
web transactions. ACM Transactions on Information and
System Security, 1(1), Nov. 1998.

[114] M. Rennhard and B. Plattner. Introducing MorphMix:
Peer-to-peer based anonymous Internet usage with
collusion detection. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Nov. 2002.

[115] R. L. Rivest. Chaffing and winnowing: Confidentiality
without encryption. CryptoBytes Technical Newsletter
(RSA Laboratories), 4(1), July 1998.

[116] P. Rogaway. The moral character of cryptographic work.
Cryptology ePrint Archive, Report 2015/1162, Dec.
2015. http://eprint.iacr.org/2015/1162.pdf.

[117] A. Rusbridger. The Snowden leaks and the public.
http://goo.gl/VOQL86, Nov. 2013. The New York
Review of Books.

[118] D. Rushe. Yahoo $250,000 daily fine over NSA data
refusal was set to double ’every week’.
http://goo.gl/FZGfTT, Sept. 2014. The Guardian.

[119] L. Sassaman, B. Cohen, and N. Mathewson. The
Pynchon Gate: A secure method of pseudonymous mail
retrieval. In Proceedings of the ACM Workshop on
Privacy in the Electronic Society (WPES), Nov. 2005.

[120] B. Schneier. Data and Goliath: The Hidden Battles to
Collect Your Data and Control Your World. W.W.
Norton & Company, Mar. 2015.

[121] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A
protocol for scalable anonymous communication. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2002.

[122] V. Shmatikov and M.-H. Wang. Timing analysis in
low-latency mix networks: Attacks and defenses. In
Proceedings of the European Symposium on Research in
Computer Security (ESORICS), Sept. 2006.

[123] N. Silberstein and A. Gál. Optimal combinatorial batch
codes based on block designs. Designs, Codes and
Cryptography, 78(2), Feb. 2016.

[124] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse attacks on overlay networks: Threats and
defenses. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM),
Apr. 2006.

[125] R. Sion and B. Carbunar. On the computational
practicality of private information retrieval. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2007.

[126] V. Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13(4), Aug. 1969.

[127] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous connections and onion routing. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1997.

[128] United Nations General Assembly. The Universal

568 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2016/466.pdf
http://goo.gl/pfV9XE
http://eprint.iacr.org/2015/1162.pdf
http://goo.gl/VOQL86
http://goo.gl/FZGfTT

Declaration of Human Rights: Article 12.
http://www.un.org/en/universal-
declaration-human-rights/, Dec. 1948.

[129] United States Congress. Electronic Communications
Privacy Act of 1986 (ECPA). https://it.ojp.gov/
privacyliberty/authorities/statutes/1285,
Oct. 1986.

[130] J. van den Hooff, D. Lazar, M. Zaharia, and
N. Zeldovich. Vuvuzela: Scalable private messaging
resistant to traffic analysis. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
Oct. 2015.

[131] M. Waidner and B. Pfitzmann. The dining
cryptographers in the disco: Unconditional sender and
recipient untraceability with computationally secure
serviceability. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), Apr. 1989.

[132] T. Wang and I. Goldberg. Improved website
fingerprinting on Tor. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Nov. 2013.

[133] S. Warren and L. Brandeis. The right to privacy.
Harvard Law Review, 4(5), Dec. 1890.

[134] D. Wikström. Five practical attacks for “optimistic
mixing for exit-polls”. In Proceedings of the Conference
on Selected Areas in Cryptography (SAC), Aug. 2003.

[135] P. Williams and R. Sion. Usable PIR. In Proceedings of
the Network and Distributed System Security Symposium
(NDSS), Feb. 2008.

[136] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Dissent in numbers: Making strong
anonymity scale. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2012.

[137] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Scalable anonymous group communication
in the anytrust model. In Proceedings of the European
Workshop on System Security (EUROSEC), Apr. 2012.

[138] B. Zantout and R. A. Haraty. I2P data communication
system. In Proceedings of the International Conference
on Networks, Jan. 2011.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 569

http://www.un.org/en/universal-declaration-human-rights/
http://www.un.org/en/universal-declaration-human-rights/
https://it.ojp.gov/privacyliberty/authorities/statutes/1285
https://it.ojp.gov/privacyliberty/authorities/statutes/1285

Alpenhorn: Bootstrapping Secure Communication without Leaking Metadata
David Lazar and Nickolai Zeldovich

MIT CSAIL

Abstract
Alpenhorn is the first system for initiating an encrypted
connection between two users that provides strong privacy
and forward secrecy guarantees for metadata (i.e., infor-
mation about which users connected to each other) and
that does not require out-of-band communication other
than knowing the other user’s Alpenhorn username (email
address). This resolves a significant shortcoming in all
prior works on private messaging, which assume an out-
of-band key distribution mechanism.

Alpenhorn’s design builds on three ideas. First, Alpen-
horn provides each user with an address book of friends
that the user can call. Second, when a user adds a friend
for the first time, Alpenhorn ensures the adversary does
not learn the friend’s identity, by using identity-based en-
cryption in a novel way to privately determine the friend’s
public key. Finally, when calling a friend, Alpenhorn
ensures forward secrecy of metadata by storing pairwise
shared secrets in friends’ address books, and evolving
them over time, using a new keywheel construction. Alpen-
horn relies on a number of servers, but operates in an
anytrust model, requiring just one of the servers to be
honest.

We implemented a prototype of Alpenhorn, and in-
tegrated it into the Vuvuzela private messaging system
(which did not previously provide privacy or forward se-
crecy of metadata when initiating conversations). Exper-
imental results show that Alpenhorn can scale to many
users, supporting 10 million users on three Alpenhorn
servers with an average dial latency of 150 seconds and a
client bandwidth overhead of 3.7 KB/sec.

1 Introduction
To achieve privacy in a communication system, it is not
enough to just hide the contents of the messages sent or
received by a user. It is also important to hide who the
user is communicating with, at what time they are com-
municating, and whether they are communicating with
anyone at all; we refer to such information as metadata.
For instance, researchers have shown that they can learn
significant amounts of sensitive information by looking
at just what phone numbers a person called [33], who
the person emailed, their IP address, or social network
connections [18]. Similarly, NSA officials have also said
that metadata is crucial for surveillance [38].

Recent work shows that it is possible to build private
messaging systems that hide metadata at scale [10, 15,
19, 28, 29, 41, 43]. Unfortunately, these systems do not
provide users with a convenient way to bootstrap commu-
nication without leaking metadata in the process. This
impedes practical deployment and precludes any end-to-
end metadata privacy guarantees.

Alpenhorn is the first system to address this problem.
Functionally, Alpenhorn allows users to initiate a conver-
sation: that is, Alice can use Alpenhorn to call Bob, and
Alpenhorn will ensure that Bob knows that Alice is calling,
and that Alice and Bob agree on a fresh cryptographic
key, called a session key, to protect their conversation.
Alpenhorn is purely a bootstrapping protocol: the actual
conversation can take place through one of the systems
mentioned earlier. Crucially, Alpenhorn provides privacy
and forward secrecy of metadata. This means that an ad-
versary cannot determine who, if anyone, a user might be
calling at any given time, and even if the adversary later
compromises a user’s computer, they will not be able to
tell what calls the user made or received in the past.

To understand the challenges faced by Alpenhorn, con-
sider the traditional approach for establishing a session
key between users, which works in two steps. First, users
learn of each other’s long-term public keys, through some
public key infrastructure (PKI) system. In the second step,
users run a key exchange protocol, such as Diffie-Hellman,
to establish a fresh session key, and they use their long-
term keys to confirm each other’s identity. These two steps
correspond to the two challenges faced by Alpenhorn:

First, looking up a user’s public key can leak metadata
in itself. For instance, if Alice asks a key server for Bob’s
public key, and the adversary learns about this request, the
adversary now knows Alice is about to call Bob. This vio-
lates Alpenhorn’s goal of achieving privacy for metadata,
and most existing PKI systems operate in this manner.

Second, even if users somehow manage to obtain each
others’ public keys, long-term public keys are a poor fit
for metadata forward secrecy. Specifically, key exchange
protocols like Diffie-Hellman authenticate participants by
signing messages, which makes it obvious to an adver-
sary who the participants are. A strawman solution is
to encrypt these messages using the other user’s public
key, and to broadcast these messages, so that an adversary
cannot tell who the intended recipient is. Even ignoring
the performance overheads, this strawman fails to provide
forward secrecy, because any adversary that later com-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 571

promises the recipient’s computer will obtain that user’s
long-term private key, and will be able to learn about all
past incoming calls received by that user, by decrypting
those messages.

Alpenhorn addresses these challenges using three ideas.
First, instead of using long-term public keys to encrypt key
exchange messages, Alpenhorn maintains an address book
on each user’s computer, containing a pairwise shared
secret for each of that user’s friends. This helps ensure
forward secrecy because there is no long-term encryption
key for an adversary to compromise.

Second, to allow users to add friends to their ad-
dress book, Alpenhorn uses identity-based encryption
(IBE) [7, 17, 39]. IBE is different from traditional public-
key cryptography, in that a user’s public key is purely a
mathematical function of their username, such as an email
address, together with a master public key from some
server.1 This allows Alpenhorn to compute a friend’s
public key without leaking the friend’s identity. As de-
scribed in §4, Alpenhorn extends IBE to handle server
compromises and to ensure forward secrecy.

Finally, Alpenhorn must also provide privacy and for-
ward secrecy for the metadata involved in actually initi-
ating a conversation. To do this, Alpenhorn uses a novel
keywheel construction, which continuously evolves all
shared secrets in a user’s address book, so as to provide
forward secrecy while still ensuring that, at any given time,
two friends have the same secret value in their address
books.

Alpenhorn relies on two sets of servers: the IBE servers,
mentioned above, and a set of mixnet servers, whose job
is to hide the source of every message. Both the IBE and
mixnet servers operate in the anytrust model, requiring
just one honest server for security. The use of a trusted
server allows Alpenhorn to achieve good performance,
compared to purely cryptographic approaches like pri-
vate information retrieval that do not trust any servers
at all. §3 describes Alpenhorn’s precise guarantees and
assumptions.

To evaluate Alpenhorn, we implemented a prototype in
Go, and integrated it with the Vuvuzela private messaging
system, which did not previously provide privacy or for-
ward secrecy for bootstrapping conversations. Integrating
Alpenhorn into applications is straightforward; modifying
Vuvuzela to use Alpenhorn required changing 200 lines
of code. Alpenhorn’s performance scales well with the
number of users: 3 Alpenhorn servers can support 10
million users with 5% of them initiating a conversation
every 5 minutes, with a modest client-side bandwidth cost
of 3.7 KB/sec. The client-side overhead in particular is
∼10× less than that of the equivalent dialing protocol in

1To achieve this, the user’s private key must be generated by a server
holding the corresponding master secret key.

Vuvuzela (which fails to provide the same privacy guaran-
tees).

In summary, the contributions of this paper are:

• Alpenhorn, the first system for establishing session
keys that provides privacy and forward secrecy for
metadata;

• a novel way of using IBE in an anytrust setting to
achieve metadata forward secrecy;

• the keywheel construction, which allows the Alpen-
horn client to establish fresh session keys with low
latency and low bandwidth overheads;

• a prototype implementation of Alpenhorn; and

• an experimental evaluation of Alpenhorn that demon-
strates it can scale to 10 million users.

2 Related work
A common way to bootstrap private messaging is to as-
sume that users have exchanged keys or secrets out-of-
band. For example, the Ricochet [13] private messag-
ing system requires a user to know the other person’s
Ricochet ID (a public key) to start a conversation. The
Pond [29] private messaging system uses a protocol called
PANDA [2] to establish relationships between users that
have previously shared a secret. In contrast, Alpenhorn
allows two users to start a conversation without know-
ing each other’s public keys or having a shared secret.
Alpenhorn can be used to bootstrap PANDA (see §8.5).

Both Ricochet and Pond use Tor’s hidden services [20].
Alpenhorn’s privacy guarantees are stronger than those of
Tor’s hidden services in two ways. First, hidden services
do not protect against traffic analysis. This is because
Tor has many ways for an adversary to infer information
based on traffic patterns. Alpenhorn uses techniques from
Vuvuzela [41] to defeat traffic analysis (achieving differ-
ential privacy). Second, hidden services have a weaker
adversary model for protecting metadata: e.g., an adver-
sary that compromises the rendezvous point of a hidden
service learns when that user is receiving calls. In contrast,
Alpenhorn provides metadata privacy under an anytrust
assumption (any N − 1 out of N servers can be compro-
mised).

DP5 [10] solves a related problem of online presence.
It enables users to query their friends’ online status (and
learn additional information, such as their current IP ad-
dress) without revealing metadata. DP5 assumes that
every user already has a list of all of his friends and their
public keys. This is precisely the problem that Alpenhorn
is designed to address: to allow users to add new friends
without knowing their public key, and to inform a user
that someone wants to add them as a friend (or wants to
call them).

572 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Identity-based encryption (IBE). Alpenhorn uses IBE
to exchange keys between two users for the first time.
IBE typically assumes a trusted server known as the pri-
vate key generator (PKG) that distributes private keys
to users. To avoid trusting a single server, Boneh and
Franklin [7] proposed using a distributed key generation
(DKG) scheme to distribute the master secret key among
multiple PKGs. Recently proposed DKG schemes require
3t + 1 or 2t + 1 servers to tolerate t dishonest servers, de-
pending on the communication model [25]. Our Anytrust-
IBE approach to distributing the PKG requires only 1
honest server, but this comes at the expense of availability
(Alpenhorn provides no fault tolerance). In future work,
we hope to explore whether more sophisticated crypto-
graphic constructions can further improve Alpenhorn’s
performance [16].

Private information retrieval (PIR) could, in principle,
provide an alternative to IBE for privately obtaining a
user’s public key [24]. To ensure forward secrecy, each
user would need to periodically generate fresh keys, and
upload them to a central database. Each user would also
need to perform fake PIR queries even if they are not inter-
ested in looking up a key, to avoid leaking at what times
the user is starting conversations. In practice, state-of-the-
art PIR implementations cannot handle tens of millions of
users each performing a query on a database containing
tens of millions of records. Most implementations require
quadratic [1, 28], or nearly quadratic [31] cost to handle
N queries on a database containing N items. In contrast,
Alpenhorn’s design achieves a total server cost that is
linear in the number of users, which enables it to sup-
port tens of millions of users. Alpenhorn’s overall design
also addresses an important challenge not faced by PIR:
informing a user that someone wants to call them, and
minimizing the bandwidth required for this notification.

Forward secrecy. IBE can achieve forward secrecy by
having users generate a different key for each day (e.g.,
by concatenating the date with their username [7], or by
using more efficient constructions [6]). A user can erase
old private keys so that they are not disclosed when an
adversary compromises the user’s computer. However,
this assumes that the IBE PKG server is not compromised:
a compromised PKG could re-compute all old user pri-
vate keys. In contrast, in Alpenhorn’s design, even if an
adversary compromises all PKGs, the adversary cannot
decrypt past messages.

Binary tree encryption (BTE) [14] also allows users to
forget old private keys to achieve forward secrecy. BTE
does not require any interaction or trusted servers, but it
also does not address two of the key problems faced by
Alpenhorn: obtaining public keys without leaking meta-
data, and informing a user that someone has added them

Functions provided by the Alpenhorn library
// Initialize an Alpenhorn account
func Register(email string)

// Get your long-term key to share with friends
func MySigningKey() PublicKey

// Send friend request to the given email address.
// Their public key for extra verification is optional.
func AddFriend(email string, theirSigningKey *PublicKey)

// Call a friend; returns a shared secret known only
// to you and the friend. The call’s intent is optional.
func Call(email string, intent int) SessionKey

Callbacks that must be implemented by the application
// This function is called when the client gets a friend
// request. Return true to accept the friend request.
func NewFriend(email string, theirSigningKey PublicKey) bool

// This function is invoked when client receives a call.
func IncomingCall(email string, intent int, key SessionKey)

Figure 1: Simplified Alpenhorn API.

as a friend. Another downside of BTE is that the keys are
much larger than in traditional public-key encryption.

The double ratchet algorithm [36] used by Signal and
WhatsApp [42] continuously rotates session keys between
users for forward secrecy, similar to Alpenhorn’s key-
wheel. The key difference is that the ratchet ensures for-
ward secrecy for data, whereas the keywheel produces
dialing tokens, which Alpenhorn uses to ensure forward
secrecy of metadata. Off-the-record messaging (OTR) [9]
similarly rotates keys to achieve forward secrecy for data
but does not hide metadata. Alpenhorn uses Bloom fil-
ters [5] to encode the dialing tokens produced by the key-
wheel, similar to the approach taken by AnoNotify [37].

3 Overview
To use Alpenhorn, the developer of a messaging applica-
tion must integrate their application with the Alpenhorn
client library, and specify a set of Alpenhorn servers that
the library should use.2 The API provided by the client li-
brary is shown in Figure 1. The API allows applications to
perform two main tasks: to add a friend (for when the user
asks the application to add a friend to their address book),
and to initiate a call with a friend (for when the user asks
the application to call a friend). Alpenhorn uses email
addresses to identify users; §4 discusses what happens if
an email server is compromised.

When a user starts the messaging application for the
first time, the application calls Register(), passing in
the user’s own email address. Register() will generate
a long-term signing key for the user, and register it with
Alpenhorn. The user will have to prove their identity to
the PKGs through confirmation emails.

Users can add friends by invoking the AddFriend()
function. For example, if Alice and Bob are both us-

2For simplicity, this paper assumes the application developer sets
up the Alpenhorn servers. Multiple applications can also share a set of
Alpenhorn servers, but this paper does not discuss the issues that are
involved in doing so.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 573

ing an Alpenhorn-based messaging application, and Al-
ice wants to add Bob as a friend, the application will
call AddFriend("bob@gmail.com", nil). In this exam-
ple, Alice did not have any prior knowledge of Bob’s
long-term signing key, so the second argument is nil.
However, Alice must know Bob’s email address ahead of
time; otherwise, there is no way for Alice to tell Alpen-
horn whom she wants to add as a friend.

On the other side of the world, Bob’s applica-
tion receives a callback from the Alpenhorn library,
NewFriend("alice@gmail.com", "e27scvh08m..."), and
displays the request to Bob. If Bob had out-of-band
knowledge of Alice’s signing public key, he could ver-
ify it before accepting the request; an application can
obtain the user’s own long-term signing key by calling
MyPublicKey(). Bob doesn’t know Alice’s long-term
signing key, but he knows that she recently registered
her email address with Alpenhorn, so he accepts the re-
quest knowing that the Alpenhorn servers have validated
her identity.

The application returns true from the NewFriend call-
back to indicate to the Alpenhorn library that Bob ac-
cepted the friend request. Internally, this causes the li-
brary to send a friend request back to Alice to confirm the
request.

After some time, Alice gets back the friend request
from Bob, which confirms that she is now friends with
him. At this point, Alice and Bob’s Alpenhorn libraries
have internally agreed on a shared secret, stored in their
keywheels, and the Alpenhorn library continuously rolls
forward this shared secret; however, this secret value is
not directly exposed to the application.

The next day, Alice opens a chat window for Bob in her
messaging app, which causes the application to invoke
Call("bob@gmail.com", 0). The second argument, 0,
is an application-specific intent that is passed along to
the application on the other side; we discuss intents
more in §5.3. In Alice’s client, the Alpenhorn library
returns a fresh shared key that Alice’s application
should use for the conversation, such as "3xdq9t7vP0...".
Shortly afterward, Bob’s Alpenhorn library invokes the
IncomingCall("alice@gmail.com", 0, "3xdq9t7vP0...")
callback, and the application tells Bob about an incoming
call from Alice. If he accepts, Alice and Bob can start
talking to each other through the application’s private
messaging protocol, using the fresh key "3xdq9t7vP0...".

3.1 Overall design
Figure 2 shows the major components of Alpenhorn. Each
Alpenhorn client maintains a long-term signing key, de-
scribed above, and an address book, consisting primarily
of a keywheel table, which stores and rolls forward shared
secrets with each of that user’s friends. In addition to
the client library, Alpenhorn relies on two sets of servers:

Bob

Alice

PKG PKG PKG

Mixnet
Mailboxes

5

1
2

3

4

6

Ke
yw

he
el
s

Figure 2: Overview of what happens when Bob adds Alice as a friend
using Alpenhorn’s add-friend protocol.

a set of private-key generator (PKG) servers, used for
identity-based encryption, and a set of mixnet servers,
used to hide which client submitted which request.

Alpenhorn consists of two protocols: the add-friend
protocol for adding a friend to an address book, given their
email address, and the dialing protocol for establishing
a new conversation with a friend, which we describe in
more detail in §4 and §5, respectively. This split allows
Alpenhorn to achieve good performance. The add-friend
protocol uses public-key cryptography, which is neces-
sary to bootstrap communication with a new friend, but
is relatively expensive (and thus has a higher latency).
The dialing protocol uses symmetric-key cryptography,
which allows existing friends to perform low-latency key
exchanges. Figure 2 shows the add-friend protocol, which
we will now describe; the dialing protocol is similar.

Alpenhorn clients send requests in periodic rounds,
which are coordinated by the first mixnet server. Each
client submits a fixed-size request to the mixnet in every
round, shown by step 1, even if they don’t want to add a
friend at that moment. This provides cover traffic, so that
an adversary cannot learn anything about who the user
might be communicating with from the fact that a client
is sending messages to Alpenhorn servers.

Requests are encrypted for the intended recipient, so
that an adversary cannot decrypt the request’s contents
without the recipient’s private key. The caller obtains
the recipient’s public key using identity-based encryption,
which allows the client to obtain a given recipient’s public
key by simply computing it, without having to query any
server for it. To ensure forward secrecy, the recipient’s
public key changes each round, and the recipient’s client
deletes each round’s private key at the end of the round.

In step 2, the mixnet shuffles the requests for a given
round, and adds additional noise to mask any statistical
information that an adversary might learn at the end of the
mixnet. The mixnet operates in an anytrust model; just
one honest mixnet server is sufficient to provide security.
Alpenhorn uses the Vuvuzela mixnet design [41], which
adds enough noise to achieve differential privacy.

574 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

At the end of the mixnet, shown by step 3, client re-
quests are distributed into mailboxes based on the intended
recipient of the request. The request includes the destina-
tion mailbox ID in plaintext form for this purpose; it is
computed by the client as the hash of the recipient’s email
address modulo the number of mailboxes; many users
share the same mailbox. A special mailbox ID is used for
cover traffic, so that it need not be processed further.

Each client then downloads their mailbox, in step 4. In
step 5, the client contacts every PKG server to obtain its
private key for this round. Alpenhorn combines the pri-
vate keys from all PKG servers to ensure security as long
as just one of them is honest. Then in step 6, the client
tries to decrypt every request in the mailbox using the
private keys for this round. If the decryption succeeds, the
Alpenhorn client processes the incoming add-friend re-
quest, adds the resulting key to its keywheel, and sends an
acknowledgment back (as another add-friend request). If
the decryption fails, the request must have been intended
for someone else, or was noise.

The dialing protocol works similarly, but significantly
reduces the size of the mailbox using a Bloom filter [5] to
efficiently encode a set of values submitted by clients. §5
describes the dialing protocol in more detail.

3.2 Security goals
Alpenhorn’s security goals are motivated by the private
messaging applications that Alpenhorn is aiming to sup-
port, such as Vuvuzela [41], Pung [1], and Pond [29];
specifically, Alpenhorn’s guarantees should meet or ex-
ceed those of the application itself. Alpenhorn focuses
on privacy, and does not achieve fault tolerance (a single
server can make Alpenhorn unavailable). Specifically,
Alpenhorn’s guarantees are as follows:

Authenticated key exchange. A powerful adversary, ca-
pable of compromising servers and tampering with traffic,
must not be able to learn the session keys generated by
Alpenhorn. Alpenhorn must also prevent the adversary
from impersonating other users, meaning the adversary
should not be able to send friend requests or calls on
behalf of an email address the adversary does not own.

Privacy for metadata. Alpenhorn should not reveal
metadata about friends or calls (i.e., whom, if anyone,
you call or add as a friend, or who, if anyone, calls you or
adds you as a friend) even after the application has been
running for a long time. Specifically, Alpenhorn provides
differential privacy for this metadata, as formalized in
Vuvuzela [41].

Forward secrecy for metadata. If the secret state of a
server or client is compromised, the adversary must not be
able learn metadata or the contents of messages sent in the
past. An adversary can store all past traffic, in the hope
of one day acquiring the private key of a server or client,

so providing forward secrecy means that encryption keys
must be short-lived and erased quickly after use.

An adversary that compromises a user’s computer can,
of course, obtain the contents of the address book from the
user’s chat application. This would allow the adversary
to learn about a set of friends that the user may have
talked to. If the user is concerned about this, they can
remove a friend from their address book, at which point
Alpenhorn’s guarantees would prevent the adversary from
determining if these two users were or were not friends in
the past.

Worst-case security. If all servers are compromised,
Alpenhorn is unable to offer privacy or forward secrecy
for metadata. Nonetheless, Alpenhorn provides at least
the same security guarantees as existing key-exchange
protocols, even if all servers are compromised; specifi-
cally:
• If users have out-of-band knowledge of each other’s

public keys, Alpenhorn’s API can use them to defeat
man-in-the-middle attacks, as in existing protocols.

• Alpenhorn’s client uses an SSH-like trust-on-first-use
(TOFU) approach if out-of-band keys are not provided,
by remembering the friend’s long-term signing key
from their first add-friend request. If two users called
AddFriend when at least one server was honest, then
a later compromise of all servers does not allow an
adversary to mount a man-in-the-middle attack.

• In the absence of out-of-band keys, Alpenhorn could
require each user to register their public key in a verifi-
able ledger (such as Keybase [26] or Namecoin [35]),
and to send a proof to new friends that their key is
registered in such a ledger. Depending on the sce-
nario, this can prevent man-in-the-middle attacks or
allow a user to detect that someone is impersonating
them; we have not implemented this in our Alpenhorn
prototype.

• If a client’s state is compromised, then future inter-
action with that client is compromised. The user can
recover by revoking all of his friendships and sending
a new AddFriend request to each of his friends.

3.3 Threat model
Alpenhorn assumes an adversary that controls all but one
of the Alpenhorn mixnet servers and all but one of the
PKG servers (users need not know which ones), controls
an arbitrary number of clients, and can monitor, block,
delay, or inject traffic on any network link. Alpenhorn as-
sumes that the client machines of legitimate users are not
compromised, and that the client software properly imple-
ments the Alpenhorn protocol. Alpenhorn does not protect
against malicious servers mounting denial-of-service at-
tacks, but it is resilient to client denial-of-service attacks.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 575

For forward secrecy, Alpenhorn assumes that the Alpen-
horn client can irrevocably delete data from memory or
disk (e.g., a cryptographic key or an address book entry).
Forward secrecy guarantees could be subverted on short
time scales by cold boot attacks [22], and on longer time
scales by a storage system on the user’s computer that
allows recovering previously erased data (e.g., an SSD
that does not overwrite data in place). Alpenhorn servers
must also be able to securely erase memory, but they never
store encryption keys on disk.

We make standard cryptographic assumptions like se-
cure public and symmetric key encryption, Diffie-Hellman
key-exchange, signature schemes, and hash functions. We
also assume the security of pairing-based cryptography3

which we use for identity-based encryption in §4.
We assume that the long-term signing public keys of the

Alpenhorn servers are known to all users. These keys can
be distributed in the Alpenhorn software package, similar
to how web browsers ship with a list of CA keys.

Alpenhorn uses email addresses to identify users, and
thus relies on the user’s email provider for bootstrapping
user identity. This boils down to two assumptions. First,
when user A adds user B as a friend, A should know B’s
email address, and should be sure that B successfully reg-
istered for an Alpenhorn account under B’s email address.
Second, each user must periodically connect to Alpenhorn
(at least once every 30 days) to prevent their Alpenhorn
account from being reset by an adversary that may have
compromised the user’s email account. §4.6 describes
Alpenhorn’s use of email in more detail.

4 Add-friend protocol
When Alice adds Bob as a friend using the API shown in
Figure 1, her client constructs a friend request that con-
tains her email address, her public key, some signatures,
and other sensitive data (as shown in Figure 3). Since the
friend request contains sensitive information, Alice needs
to encrypt it so that only Bob can read it. However, Alice
does not have Bob’s public key, and she can’t ask a server
to look it up, because that would leak metadata.

The add-friend protocol uses identity-based encryption
(IBE) to enable Alice to encrypt her friend request using
Bob’s email address as the public key, as explained in
§4.1. Since Alice already knows Bob’s email address, this
approach does not require any directory lookup and thus
leaks no metadata. However, IBE traditionally assumes
a trusted server to distribute private keys, which does
not align with Alpenhorn’s goals. We describe how we
distribute the trust among multiple servers in §4.2.

Using IBE, Alice proceeds to encrypt the request, and
sends it to a shared mailbox, which is a publicly known
memory location on one of the Alpenhorn servers. The

3 Chen et al [16] discusses the assumptions behind pairing-based
cryptography; it has been deployed in systems such as Zerocash [4].

contents of this mailbox are visible to the servers and
available for all clients to download, so Alpenhorn must
ensure that Alice’s client does not reveal any metadata in
the process of placing the request in the mailbox.

First, Alpenhorn must ensure that the encrypted friend
requests in the mailbox do not reveal the email addresses
of recipients for which they are encrypted. This property
is known as ciphertext anonymity and is discussed in §4.3.
Second, the keys used to produce the encrypted friend re-
quests must be destroyed quickly. Otherwise, an attacker
will keep a copy of the mailbox contents indefinitely, in
hopes of one day compromising the private keys. This
property is known as forward secrecy and is discussed
in §4.4. Finally, we must prevent the adversary from
learning who sent the friend requests, even in the face
of sophisticated attacks like traffic analysis or tracking
patterns in the number of messages in a mailbox. We
borrow techniques from prior work on metadata privacy
to ensure that an adversary does not learn who is friending
whom, by adding noise messages to the mailbox [41], as
discussed in §6.

Bob’s client eventually downloads the mailbox from
the server, containing encrypted friend requests. Bob also
obtains his private key for that round from the private key
generators (PKGs). Using his private key, Bob’s client
attempts to decrypt each friend request in the mailbox.
When the client succeeds in decrypting one, the request is
validated using the protocol in §4.5, and Bob is prompted
to accept the request. If Bob accepts, his client sends a
friend request back to Alice as an acknowledgment.

4.1 Identity-based encryption
Identity-based encryption (IBE) is a relatively new cryp-
tographic primitive in which any username string (such as
an email address) can be used as a public key. Typically,
IBE assumes a single trusted party that knows everyone’s
private key, but we will see shortly that Alpenhorn dis-
tributes trust among many independent servers and that
only one of these servers must remain honest.

For now, suppose there is a trusted server known as
the private key generator (PKG). The PKG has a master
public key Mpub known to all, and a master secret key
Mpriv known only to itself. An IBE scheme provides the
following functions:
• Encrypt(Mpub, identity,msg)→ ctxt

which encrypts a message to some identity string (e.g.,
a username, email address, or other unique identifier).

• Decrypt(identitypriv, ctxt)→ (msg, ok)
which decrypts a ciphertext using the private key cor-
responding to some identity string.

• Extract(identity,Mpriv)→ identitypriv

which computes the private key corresponding to some
identity string.

576 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The PKG verifies the identities of users and issues to
them private keys corresponding to their identities. For
example, suppose the PKG identifies users by their email
address. When Bob asks the PKG for the private key
corresponding to "bob@gmail.com", the PKG can send a
random nonce to that email address. If Bob can produce
that nonce, the PKG gives him the private key for that
email address. In practice, Alpenhorn uses a more secure
scheme to authenticate email addresses, described in §4.6.

IBE’s power comes from the fact that anyone with Mpub
can encrypt a message to another user without any direc-
tory lookups, as long as they know the recipient’s identity.
Avoiding communication for looking up the recipient’s
public key avoids the possibility of that communication
being intercepted by an adversary to learn metadata.

4.2 Distributing trust
Using a single trusted PKG means that if it were compro-
mised, the adversary would be able to compute the IBE
private keys of every user. To avoid this, Alpenhorn uses
multiple independent PKGs. A naïve approach would be
to onion-encrypt a message using the master public key
of each PKG in turn. For example, suppose there are n
PKGs with master public keys M1

pub . . .M
n
pub. To encrypt

an add-friend message for Bob, Alice could compute:

Encrypt(M1
pub, “bob@gmail.com”,

Encrypt(M2
pub, “bob@gmail.com”, · · ·

Encrypt(Mn
pub, “bob@gmail.com”,msg) · · ·))

To decrypt this ciphertext, Bob must obtain the private
key for his email address from each of the n PKGs. Now,
even if many PKGs are compromised, the ciphertext stays
private as long as one of the master secret keys (and Bob’s
corresponding private key) is unknown to the adversary.
Although this would achieve Alpenhorn’s security goals,
it is inefficient because each layer of encryption adds
additional space overhead, and because Bob’s decryption
takes time proportional to the number of PKGs.

Alpenhorn introduces a more efficient scheme, called
Anytrust-IBE, that achieves the same goal of distributing
the trust among n PKG servers, by adding together the
master public keys in the Boneh-Franklin IBE scheme [7]:

Encrypt(
n∑

i=1

Mi
pub, “bob@gmail.com”,msg)

Bob can decrypt this ciphertext by adding his private keys:

Decrypt(
n∑

i=1

identityi
priv, ctxt)

This scheme is efficient: once Bob obtains and adds up
his private keys, neither the ciphertext size nor the decryp-
tion time depend on the number of PKGs. A technical
report [30: §A] provides more details and a proof of secu-
rity for Anytrust-IBE.

type FriendRequest struct {
SenderEmail string
SenderKey SigningKey
SenderSig Signature
PKGSigs MultiSignature
DialingKey DiffieHellmanKey
DialingRound int

}

Figure 3: Alpenhorn friend request.

4.3 Ciphertext anonymity
To avoid leaking metadata, it is important that encrypted
friend requests (produced by the IBE Encrypt function) do
not reveal the intended recipient. This property is known
as ciphertext anonymity [11], and it is not generally true of
IBE schemes [12]. Alpenhorn deliberately uses the Boneh-
Franklin IBE scheme [7] because it is one of the few IBE
schemes with this property. Ciphertext anonymity is also
necessary to generate noise messages in the mixnet (§6).

4.4 Forward secrecy
The encrypted friend requests created by the add-friend
protocol eventually become public, so it is crucial that the
keys to the ciphertext are destroyed quickly to limit the
possibility of compromise. For IBE ciphertexts, there are
two keys we worry about: the identity private keys held by
users and the master secret keys held by the PKGs. When
both sets of private keys are destroyed, ciphertexts created
with the corresponding public keys become useless to the
adversary. Better yet, in Anytrust-IBE, only one (rather
than all) of the PKGs must destroy its master secret key
to achieve forward secrecy.

The add-friend protocol operates in rounds to achieve
forward secrecy. Every round, the PKGs create new mas-
ter keys, and broadcast the public keys for that round
to the users. Users must then obtain their private keys
for that round from each PKG. After a preconfigured
amount of time or after all users have obtained their pri-
vate keys, each PKG deletes its master secret key for the
round. Users also delete their identity private keys af-
ter downloading and scanning their mailbox for friend
requests.

4.5 Authenticating requests
Figure 3 shows the structure of a friend request, obtained
after decrypting a ciphertext in the add-friend mailbox.
The request includes the sender’s email address (e.g.,
“alice@gmail.com”), but how does the Bob the recipient
verify that the friend request really came from Alice?

To authenticate the request, Alpenhorn’s includes two
signatures in the friend message. First, the SenderSig is a
signature over the entire friend request using the sender’s
long-term signing key, SenderKey. If Bob happens to
somehow know Alice’s long-term key (e.g., because he
got Alice’s business card, which lists her signing public
key), he can verify the authenticity of the message by

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 577

verifying SenderSig using the key he obtained out-of-
band.

If Bob does not know Alice’s long-term signing key,
Bob’s client can rely on the PKGs to authenticate Alice.
Specifically, when a user’s client acquires the user’s IBE
private key, each PKG also responds with a signature of
the user’s long-term key and email address. The friend re-
quest includes a multi-signature [8], PKGSigs, which com-
bines the signatures from all PKGs into a single compact
value. Bob can check PKGSigs to ensure that SenderKey
belongs to SenderEmail, as long as at least one PKG is
honest.

4.6 Registering email addresses
Every round, users must authenticate to the PKG in or-
der to obtain their private keys. To avoid manual user
involvement at every round, Alpenhorn splits authentica-
tion into two steps: first, a manual account registration
step, and second, an automatic private-key-generation
step. The second (key-generation) step is straightforward:
each PKG keeps track of the long-term signing key for
every registered email address, and users can obtain their
IBE private key for a round by signing a request with their
long-term signing private key. The first registration step,
however, is more complicated because it involves trusting
the user’s email account provider to bootstrap the user’s
identity.

When using Alpenhorn for the first time, Alice regis-
ters her email address with her long-term signing key at
each PKG. Each PKG sends Alice a confirmation email
containing a secret token, which Alice must send to the
PKG to finish the registration.4 After registration, each
PKG locks the user’s email address to that user’s long-
term signing key, to prevent anyone else (e.g., a malicious
email provider) from re-registering the address.

There is no quick way to reset an account; otherwise
an attacker could perform a man-in-the-middle attack just
by compromising Alice’s email address. To deal with
a situation where the user’s long-term private key is no
longer available (e.g., due to a disk failure), Alpenhorn
institutes a lockout policy: if 30 days pass without a
legitimate attempt to acquire the user’s IBE private key,
a PKG allows re-registering that email address with a
new long-term signing key, using email verification as
described above.

An adversary with access to a user’s email account may
register that email address before the legitimate user has
a chance to do so himself. This poses a risk when a user
adds a friend: is that friend’s account registered by the
friend, or by someone else that compromised their email
account? To address this issue, it suffices for a user to

4To avoid receiving a separate confirmation email from each PKG,
Alice could send a single DKIM-signed email message [23] containing
her long-term signing key, which each PKG could independently verify.

H1Kr Kr+1

H2

intent

dial token

Kr+2

H2

intent

dial token

H3 session key

H1

H3 session key

Figure 4: Overview of keywheel operations. Kr is a shared secret key
in the keywheel at round r. Hi is a keyed family of cryptographic hash
functions (such as HMAC-SHA256), with subscript i denoting the key.

learn one bit of information from their friend: namely,
whether they successfully registered for an account in
Alpenhorn. This bit can be conveyed informally (e.g., by
announcing “contact me using Alpenhorn”), so as to min-
imize the need to exchange information out-of-band prior
to using Alpenhorn. Once a user successfully registers
for an account on all PKGs, and connects at least once
every 30 days, Alpenhorn’s lockout policy ensures that a
compromised email account cannot be used to take over
the user’s Alpenhorn account.

4.7 Computing a shared secret
Once two clients have exchanged add-friend messages
through Alpenhorn, they can compute a shared secret us-
ing the standard Diffie-Hellman key-exchange protocol.
Specifically, the DialingKey in the add-friend message
represents the public part of an ephemeral public-private
key pair generated by each client for that request. Upon
receiving the other party’s DialingKey, a client combines
its private key with the other party’s public key to com-
pute a secret key known only to these two clients. The
DialingRound value helps the two clients synchronize
their keywheels, as described in the next section.

In summary, Alpenhorn’s add-friend protocol allows
two clients to establish a shared secret. It achieves pri-
vacy for metadata by using distributed IBE with ciphertext
anonymity; achieves forward secrecy by using short-lived
IBE keys; and achieves authentication through its email
registration protocol, PKG signatures on user keys, and op-
tional out-of-band key distribution. The client pseudocode
for the add-friend protocol is shown in Algorithm 1.

5 Dialing protocol
Once the add-friend protocol establishes a shared secret
between two clients, the dialing protocol allows clients
to repeatedly establish conversations and obtain fresh,
ephemeral keys for these conversations. The dialing pro-
tocol faces two challenges: providing forward secrecy,
and providing low latency (compared to the add-friend
protocol). The dialing protocol addresses these challenges
using a keywheel construction, shown in Figure 4. A key-
wheel stores a shared key, and performs two operations
on it.

578 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 Add-friend round: client

Consider a user Alice, with email address idAlice and signing
key pair (pkAlice

sign , skAlice
sign). Each mixnet server i (1 ≤ i ≤ n) has

a short-lived public encryption key pki
enc. Each PKG server j

(1 ≤ j ≤ N) has a long-term signing key pk j
sign, and a short-

lived IBE master key pk j
ibe. K is the total number of add-friend

mailboxes for this round. Alice’s client takes the following steps
for each round r:

1. Acquire private keys (assuming Alice already registered
her email address): Alice uses skAlice

sign to authenticate to each
PKG server. Each server, if authentication succeeds, returns
private key sk j,Alice

ibe and signature σ j of (idAlice, pkAlice
sign , r) us-

ing pk j
sign.

2a. Sign and encrypt request (if Alice wants to introduce her-
self to Bob, whose email address is idBob): Create the request
m = (idAlice,

∑N
j=1 σ

j, pkAlice
sign , σ, pkAlice

dh ,w), where pkAlice
dh is a

freshly generated Diffie-Hellman key to be used in dialing
round w, and σ = Sign(skAlice

sign , (idAlice, pkAlice
dh ,w)). The mail-

box is b = H(idBob) mod K. Using IBE, encrypt the request
to get en+1 = (b,EncIBE(

∑N
j=1 pk j

ibe, idBob,m)).

2b. Construct fake request (if Alice does not want to introduce
herself to anyone this round): Set en+1 = (K, 0ℓ) where ℓ is
the length of an IBE-encrypted request as above.

3. Onion wrap the request and send it to the mixnet:
Encryption happens in reverse, from server n to server
1, as server 1 will be the first to decrypt the request.
For each server i, generate a temporary keypair (pki, ski).
Then, re-encrypt ei+1 with si = DH(ski, pki

enc) to get ei =

(pki,Enc(si, ei+1)).

4. Download and scan mailbox: Download the mailbox
H(idAlice) mod K. For each ciphertext c in the mailbox,
attempt (m, ok) = DecIBE(

∑N
j=1 sk j,Alice

ibe , c). If decryption
succeeds, then m = (id, σservers, pkid

sign, σ, pkid
dh,w).

Let ok1 = Verify(
∑N

j=1 pk j
sign, σservers, (id, pkid

sign, r)) and let
ok2 = Verify(pk, σ, (id, pkid

dh,w)). If ok1 ∧ ok2, then notify
the user of the friend request from id.

5. Compute shared secret: If id is a new friend and Alice
accepts the request, generate a fresh Diffie-Hellman keypair
(pkAlice

dh , skAlice
dh), and send an add-friend request with pkAlice

dh
to id in the next round. Otherwise, id is a friend Alice added
in a previous round with keypair (pkAlice

dh , skAlice
dh), and now

the friend is confirmed. In either case, compute shared secret
s = DH(skAlice

dh , pkid
dh) and add (id, s,w) to the keywheel table.

First, in every round of the dialing protocol, the key-
wheel updates the key, by hashing it with a cryptograph-
ically secure hash function. This is represented by the
evolution of kr into kr+1 and so on in Figure 4. By updat-
ing the key, a client ensures that an adversary that com-
promises a client at some time will be unable to obtain
any keywheel state from prior rounds. Alpenhorn clients
securely erase the old key when performing keywheel
updates.

Second, the keywheel can generate dial tokens that the
user will send out to signal their intention to call a friend.
Dial tokens are generated by applying a different hash
function to the current round’s key. Figure 4 shows the
client generating dial tokens in rounds r and r + 2. A
dial token is a 256-bit value; this is much shorter than the
size of the request in the add-friend protocol, and allows
the dialing protocol to be efficient. Since the 256-bit dial
token is pseudo-random, an adversary that does not know
the keywheel state of two friends cannot predict what dial
token they might use in a given round. An additional
intent is hashed along with the key, as we will describe
shortly.

Alpenhorn clients call each other by sending dial to-
kens to a mailbox through the Alpenhorn mixnet. To call
a friend, an Alpenhorn client simply computes the dial to-
ken for a given round, with an application-supplied intent
value, and sends it through the mixnet. To check if a friend
is calling, a client downloads the list of dial tokens for that
round, and computes all possible dial tokens that each of
its friends could have sent in that round. Since two friends
have the exact same keywheel state in a given round, a
client can easily compute all of the possible incoming dial
tokens, by enumerating all of its friends, and all possible
intent values; this is cheap to do because hashing is fast
and the number of intents is typically small.

If a client finds a dial token from a friend in the mailbox,
the client invokes the IncomingCall callback to inform
the application of the incoming call. The session key
for the conversation is computed by hashing that round’s
key from the keywheel with a different hash function, as
shown in Figure 4. The use of this hash function is a
precaution, so that if an application inadvertently leaks
a session key, it does not compromise future keywheel
states.

Finally, Alpenhorn encodes the set of dial tokens in a
mailbox using a Bloom filter to reduce the client band-
width required to download the contents of a mailbox.

5.1 Keywheel synchronization
An Alpenhorn client maintains keywheels for each friend,
as shown in Figure 5, consisting of a shared key and a
round number. When two friends establish a shared secret
through the add-friend protocol, this shared secret is added
to the clients’ respective keywheel tables. It is important
for the clients to agree on the round number corresponding
to this initial key; Alpenhorn uses the DialingRound field
from the add-friend request for this purpose.

To maintain forward secrecy, an Alpenhorn client must
update the keywheel state over time and discard old keys.
However, the client needs to be able to generate dial to-
kens for the current round, and to check for incoming dial
tokens. Thus, the client advances its keywheels to round
r + 1 as soon as it has both sent any possible dial requests

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 579

Alice’s Keywheel table at round 25
Friend Secret Key Round

bob@gmail.com gZbkHyECIhQJ0XaQcKm 25
joanna@foo.edu s1lJ5kRWp73M4WEMI09 25
chris@hotmail.com W9uoocTsoYToW1A7nH7 28

↓

Alice’s Keywheel table at round 26
Friend Secret Key Round

bob@gmail.com AUuJw64TXCAFabdbCGp 26
joanna@foo.edu z3XukuxRR4dUnkrWpYr 26
chris@hotmail.com W9uoocTsoYToW1A7nH7 28

Figure 5: Evolution of a client’s keywheel table. The keywheel entry for
chris@hotmail.com has a round number higher than the current round
because it was recently established through the add-friend protocol, and
Chris’s client supplied a DialingRound value of 28.

for round r, and checked the mailbox from round r for
possible incoming dial tokens.

If a client cannot download the mailbox for some round,
it keeps retrying; the mailbox contents is public state and
is maintained by the Alpenhorn servers for a relatively
long time. After some time (e.g., a day), the Alpenhorn
client gives up trying to fetch the mailbox for an old round,
and advances the keywheels to preserve forward secrecy.

5.2 Bloom filter encoding
Alpenhorn optimizes the dialing protocol by encoding the
mailbox contents as a Bloom filter [5], which reduces the
size of the mailbox that the clients must download, and in
turn enables the dialing protocol to run more frequently.
The encoding is done by the last server in the mixnet,
which is responsible for choosing the optimal parameters
to encode a given number of dial tokens into a single
Bloom filter.

A Bloom filter allows clients to determine if a dial token
is present in the mailbox, with no false negatives, and a
small probability of a false positive. No false negatives
means that Alpenhorn never misses an incoming call. A
false positive translates into the Alpenhorn client invoking
the IncomingCall callback even though the friend did not
initiate a call. Alpenhorn tunes the Bloom filter to provide
a low false positive rate of 10−10 (which roughly translates
into one phantom incoming call in over a decade), using
48 bits per element in the Bloom filter. This is a significant
savings over the 256-bit size of the dial token.

5.3 Intents
Alpenhorn’s target messaging applications have relatively
high overheads associated with setting up and tearing
down conversations, and may have limits on how many
active connections a user may have at a time. For instance,
Vuvuzela allows a user to be active in only one conversa-
tion at a time, so if a user receives an incoming call, they
may need to drop one conversation to start a different one.

To convey additional information, Alpenhorn allows an
application to pass a small integer along with a call, to

help the recipient decide how to respond to the incoming
call, before a conversation is established. For example,
the following might be useful intents for a messaging
application to inform the recipient of the nature of the call:
(1) let’s chat right now; (2) let’s chat soon; (3) call me back
when you’re free. An application informs the Alpenhorn
client ahead of time how many intents it plans to use, so
that the client can enumerate all possible incoming dial
tokens.

6 Sender anonymity
Alpenhorn uses the Vuvuzela mixnet design [41] to ensure
that an adversary cannot determine which client sent any
given request in a mailbox, and cannot correlate a user’s
requests with mailbox activity over time (more precisely,
Alpenhorn achieves differential privacy, as formalized for
a messaging protocol by Vuvuzela).

The mixnet works by arranging a fixed, small number
of servers in a chain (e.g., three servers). Each server
receives all of the requests for a round, decrypts them
using its private key, re-orders them randomly, and sends
them to the next server in the mixnet chain. Each server
also adds a number of noise messages destined to each
mailbox, chosen according to a Laplace distribution with
a configurable mean amount of noise µ. As long as one
server in the mixnet chain is honest (i.e., does not reveal
either its private key or its random re-ordering), an ad-
versary cannot determine which incoming request (if any,
due to noise) corresponds to a particular outgoing request.

Achieving good performance requires striking a bal-
ance in terms of the number of mailboxes. If there are too
few mailboxes, each mailbox will contain a large number
of requests, and clients will have to download a lot of data
each round. If there are too many mailboxes, the servers
will be overwhelmed by noise requests, since each mail-
box receives the same average amount of noise, regardless
of how many mailboxes there are. Alpenhorn aims to
strike a good balance by ensuring there is a roughly equal
amount of noise and real requests in each mailbox.

7 Implementation
To evaluate Alpenhorn’s design, we implemented a proto-
type in approximately 10,000 lines of Go code:

https://github.com/vuvuzela/alpenhorn

Our implementation of IBE uses the BN-256 elliptic
curve [3] (implemented in AMD64 assembly [34]), which
targets the 128-bit security level. Recent improvements
in cryptanalysis that were published after we built our
prototype suggest that BN-256 actually provides less than
96 bits of security [27]. We hope to adopt a more suitable
curve in the future to address this, but we do not expect
this to have a dramatic impact on our performance results.

580 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vuvuzela/alpenhorn

Our prototype implements an entry server, which is
separate from the mixnet and IBE servers. The entry
server’s job is to manage a large number of WebSocket
connections from clients, announce when a new round is
starting, and aggregate client requests into a single batch
that is sent to the Alpenhorn servers. The entry server is
not trusted.

Finally, to distribute the add-friend and dialing mail-
boxes to many users, our prototype relies on a content
distribution network (CDN), such as Akamai.

8 Evaluation
We quantitatively answer the following questions:
• What is the latency for adding a friend and initiating

a conversation through Alpenhorn, and what is the
client overhead imposed by Alpenhorn? (§8.2)

• Can Alpenhorn support a large number of users, and
how does it scale when adding more servers? (§8.3)

• How does Alpenhorn handle skewed workloads,
where some users are highly popular? (§8.4)

• How much effort is required to integrate Alpenhorn
into a private messaging application? (§8.5)

• How would Alpenhorn’s performance be impacted if
new weaknesses are discovered in the pairing-based
cryptography that Alpenhorn’s IBE relies on? (§8.6)

The results suggest that Alpenhorn can provide acceptable
performance for private text messaging applications that
tolerate latency on the order of minutes, such as Vuvuzela.

8.1 Experimental setup
To answer some of the above questions, we ran experi-
ments on Amazon EC2. Each server ran on a c4.8xlarge
virtual machine running Linux 4.4 with 36 Intel Xeon
E5-2666 v3 CPU cores, 60 GB of RAM, and 10 Gbps of
network bandwidth. We compiled the code with Go 1.7.

Unless otherwise specified, our experiments used a
chain of three servers, each corresponding to one VM.
Each of these servers also ran a PKG. We used one ad-
ditional VM to run the entry server. The first server in
the chain and the entry server were located in the Virginia
EC2 region. The second server was located in Ireland and
the third server in Frankfurt, Germany. For experiments
with more servers, we used the same three regions in a
cycle.

Clients were simulated on five c4.8xlarge VMs in Vir-
ginia (each individual client was limited to using at most 4
cores). To avoid establishing millions of TCP connections,
we opened 1,000 connections from each client VM to the
entry server, and assigned multiple clients to each TCP
connection. We did not use a CDN in our experiments for
distributing mailboxes; instead, only a small number of
clients downloaded their mailbox in each round (enough

to report sound measurements). Each round, 5% of gener-
ated requests were real (not cover traffic). For example, to
simulate one million users in the add-friend protocol, we
generated 50,000 AddFriend requests, and 950,000 cover
traffic messages. For dialing experiments, each client had
1,000 friends in their address book, and the maximum
number of intents was 10. Unless otherwise noted, our
experiments assume that all users are equally popular.

Each mixnet server adds an average of µ = 4, 000 noise
messages to each add-friend mailbox and µ = 25, 000
noise messages to each dialing mailbox. With Laplace b
parameters of 406 and 2,183 respectively, each protocol
achieves (ε = ln 2, δ = 10−4)-differential privacy for
900 add-friend requests and 26,000 calls (e.g., 7 calls
per day for 10 years). For our experiments, we set b =
0 to reduce the variance in the results. The Vuvuzela
paper discusses the implications of differential privacy
parameters in detail.

8.2 Client performance
Deploying Alpenhorn requires the application developer
to decide how frequently to run the add-friend and dialing
rounds. The main consideration is a trade-off between la-
tency and client bandwidth: more frequent rounds reduce
latency but require clients to download mailboxes more
frequently (the rest of this section quantifies this trade-off).
We expect that Alpenhorn would be used in settings where
users do not expect an instant response to friend requests
(similar to adding a friend on Facebook), and where users
do not add new friends very often. In this setting, the
latency of the dialing protocol is more important than the
add-friend latency, since the add-friend protocol needs to
happen only once between pairs of users, and all further
attempts to communicate use the dialing protocol.

Bandwidth. We compute the latency and bandwidth re-
quirements of add-friend and dialing. The crucial parame-
ters that affect latency and bandwidth are round duration
(how long Alpenhorn waits to process the next batch of
requests for the next round), and the number of active
users, which affects the number of requests processed in a
round.

The duration of add-friend and dialing rounds are pa-
rameters to the system that can be used to adjust client
bandwidth usage. Figure 6 shows the total client-side
bandwidth requirement of the add-friend protocol as a
function of the round duration. The bandwidth is mostly
spent on downloading add-friend mailboxes. In Figure 6,
with one million users, each add-friend mailbox contains
around 12,000 friend requests from users and around
12,000 friend requests from noise (4,000 per server, on
average), for a total of 24,000 requests. At 308 bytes per
request, the add-friend mailbox is around 7.4 MB every
round. As described in §6, when the number of requests
goes up, the mixnet increases the number of mailboxes,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 581

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4 6 8 10 12 16 20 24
 0

 1

 2

 3

 4

 5

 6
C

li
e

n
t

b
a

n
d

w
id

th
 (

K
B

/s
)

G
B

/m
o

n
th

Add friend protocol round duration (hours)

10M users
1M users

100K users

Figure 6: Required client-side bandwidth for the add-friend protocol
when varying the round duration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 8 10
 0
 5
 10
 15
 20
 25
 30
 35
 40

C
li
e

n
t

b
a

n
d

w
id

th
 (

K
B

/s
)

G
B

/m
o

n
th

Dialing protocol round duration (minutes)

10M users
1M users

100K users

Figure 7: Required client-side bandwidth for the dialing protocol when
varying the round duration.

thus ensuring that the size of the mailbox stays roughly
constant. (With 100K users, the number of messages each
round is less than 12,000, so the single mailbox is smaller
than 7.4 MB.)

The dialing protocol analysis is shown in Figure 7.
Nearly all of the client bandwidth is spent on download-
ing the Bloom filter that is scanned for dial tokens. With
1M users and 5% active, Alpenhorn uses one Bloom filter
to encode the 125,000 received dial tokens. At 48 bits per
token, the Bloom filter is 0.75 MB each round. With 10
million users and 500K active, Alpenhorn distributes the
incoming dial tokens into 7 distinct Bloom filters (mail-
boxes). Each Bloom filter has a roughly equal amount of
noise and user data (75,000 each), so the total Bloom filter
size is 0.9 MB per user per round. If Alpenhorn uses a di-
aling round duration of 5 minutes, then the average client
bandwidth is 3 KB/s, or 7.8 GB per month (manageable
for a cellphone with occasional WiFi connectivity). With
a round duration of 5 minutes, the average end-to-end
latency for Call requests is about 2.5 minutes.

CPU. We measured the client-side CPU usage of both
protocols. Our implementation of IBE can compute 800
decryptions per second per core. Thus, to scan a mailbox
with 24,000 friend requests takes 8 seconds on a 4 core
machine. The CPU cost of dialing is tiny in comparison.
One core can compute 1 million hashes per second. Even
if a user has 1,000 friends in their keywheel (much more
than the average number of friends on Facebook [21, 40]),
and the application uses 10 intent values, the Bloom filter
can be scanned in less than a second.

Key extraction. We measured the time it takes a client
to obtain the combined identity private key for a single
round from the PKGs, with a varying number of PKGs
running in the same EC2 region as the client. With 3
PKGs, the median latency was 4.9 msec (ranging from
4.7 msec to 7.6 msec) over 100 runs. With 10 PKGs, the
median latency was 5.2 msec (ranging from 4.7 msec to
10.8 msec). This suggests that, for a client, there is almost
no cost to additional PKGs aside from the network latency
of contacting the servers.

8.3 Server performance
To evaluate whether Alpenhorn can support a large num-
ber of users, we measured the time it takes for the
servers to complete a round, varying the number of users
and servers. Specifically, we measured the latency of
AddFriend and Call requests, assuming the client sends
the requests at the optimal time just before the round
closes, and measuring time until the client downloads the
mailbox and finishes scanning all requests. Thus, our
latency measurements do not include artificial delays im-
posed by the servers to reduce bandwidth costs (in an
actual deployment, servers would be idle most of the
time, because the interval at which new rounds start is
much higher than the time it takes to complete a round, to
keep client bandwidth reasonable). We also measured the
throughput of PKG servers generating users’ IBE private
keys.

Add-friend. Figure 8 shows the median, minimum, and
maximum observed latencies as we varied the number of
users, for different numbers of servers. With 10 million
users, the median 3-server round latency is 152 seconds.
Adding more servers increases the latency due to the addi-
tional processing that each server must perform, and due
to the additional noise introduced by additional servers.

Dialing. Figure 9 shows the latency for dialing as we var-
ied the number of users. The graph shows that Alpenhorn
can support 10 million users on 3 servers with a latency
of 118 seconds. The latency increases with more servers
much as with the add-friend protocol.

PKG servers. The PKG servers in Alpenhorn have to
extract a private key for every user in every round, which
can place a lower bound on how frequently add-friend
rounds can run. In our experiments, a PKG takes 232 sec-
onds to respond to 1 million user key extraction requests
(4310 requests per second). This suggests that, even with
10 million users, each PKG can extract the keys of all
users in well under an hour.

8.4 Skewed popularity
To evaluate Alpenhorn’s performance under a skewed
workload, we measured the latency of AddFriend and
Call rounds, as above, with a varying user popularity

582 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 s
8 s

16 s
32 s
64 s

128 s
256 s
512 s

10K 100K 1M 10M

L
a

te
n

cy
 f

o
r

A
d

d
Fr

ie
n

d
 r

e
q

u
e

st
s

Number of online users

10 servers
5 servers
3 servers

Figure 8: Performance of Alpenhorn’s add-friend protocol when varying
the number of users online.

2 s
4 s
8 s

16 s
32 s
64 s

128 s
256 s
512 s

10K 100K 1M 10M

L
a

te
n

cy
 f

o
r

C
a

ll
 r

e
q

u
e

st
s

Number of online users

10 servers
5 servers
3 servers

Figure 9: Performance of Alpenhorn’s dialing protocol when varying
the number of users online.

0 s

10 s

20 s

30 s

40 s

 0 0.5 1 1.5 2

L
a

te
n

cy
 f

o
r

A
d

d
Fr

ie
n

d
 r

e
q

u
e

st
s

Zipf skew (s) parameter

1M users

Figure 10: Latency for Alpenhorn’s add-friend rounds when varying
the skew of the user popularity.

distribution. In particular, instead of choosing the recip-
ient of AddFriend or Call uniformly at random, in this
experiment the recipient is chosen according to a Zipf
distribution; that is, the probability of picking some user
i, from 1 to N (the number of users) is proportional to i−s.

Figure 10 show the results for the add-friend protocol
for 1M users and 3 servers. The median latency stays
constant even as user popularity becomes highly skewed
(e.g., at s = 2, the top 10 users receive 94.2% of all
requests). However, as the skew increases, the maximum
latency increases (and the minimum decreases) because
some mailboxes contain more messages (if they happen to
correspond to highly popular users), and other mailboxes
become smaller. Even for highly skewed distributions,
the effect is not dramatic because Alpenhorn mailboxes
already contain a significant amount of noise (about half
of the messages, on average) regardless of where users
choose to send messages that round. With 1M users and
s = 2, the largest mailbox is 14.95 MB and the smallest is
4.15 MB.

Dialing is less affected by skew because the client CPU
time to scan a mailbox is negligible. With 10 million
users and s = 2, the minimum and maximum latencies are
119 and 120 seconds respectively, and the minimum and
maximum mailbox sizes are 231 KB and 1.39 MB.

8.5 Application integration

To evaluate whether Alpenhorn fits with private messaging
applications, we integrated it with Vuvuzela and Pond.

Vuvuzela had its own dialing protocol for starting a
conversation (which assumed out-of-band public key dis-
tribution and did not provide forward secrecy), which we
replaced entirely with Alpenhorn. We had to change 200
lines of code; this does not include deleting all of the
code from the old dialing protocol. We had to tweak the
Vuvuzela conversation protocol, since it expected a pub-
lic key as input, rather than a shared secret (as provided
by Call). Our changes also added two new commands
to the Vuvuzela client, /addfriend and /call, which tie
directly into the Alpenhorn API. All other Vuvuzela com-
ponents remain unchanged. The resulting Vuvuzela client
that uses Alpenhorn provides the same security guaran-
tees as Vuvuzela (including differential privacy), with the
addition of forward secrecy for bootstrapping conversa-
tions (which Vuvuzela’s original dialing protocol did not
provide).

Pond also provides its own bootstrapping protocol
called PANDA [2]. PANDA assumes that pairs of users
have a shared secret, and provides a GUI for entering that
secret. We built a standalone Alpenhorn client that lets
users friend and call each other from a basic command-
line interface. The client prints the resulting shared secret
to the screen, which the users can then paste into PANDA.
This eliminates the need to generate a shared secret out-
of-band.

8.6 Cryptographic strength

In light of recent attacks on the BN-256 curve [27], which
Alpenhorn uses for IBE, it may be necessary to switch to
a different curve or IBE construction to maintain Alpen-
horn’s security guarantees in the future. Since we cannot
predict what scheme may provide the best alternative in
the future, this section analytically evaluates the impact
of such a switch on Alpenhorn’s performance.

The IBE construction impacts three aspects of Alpen-
horn’s performance: CPU cost on the PKG for generating
identity private keys, CPU cost on the client for decrypting
the add-friend mailbox, and bandwidth for downloading
the add-friend mailbox. PKG and client CPU costs would
be directly proportional to the respective CPU costs of
any new IBE construction. The bandwidth impact, on
the other hand, is a bit more subtle. Alpenhorn’s current
add-friend request is 244 bytes plus the size of an IBE
ciphertext (encrypting a symmetric key that encrypts the
rest of the request); the IBE ciphertext is 64 bytes in our
prototype. This suggests that changes to the curve or
IBE scheme used by Alpenhorn should result in linear or
sub-linear impacts on Alpenhorn’s performance.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 583

9 Discussion and Limitations
Client compromise. If an adversary compromises an
Alpenhorn client (i.e., obtains the user’s long-term signing
private key and the user’s keywheel state), the user must
generate a new long-term signing key and new keywheels
to re-establish security, as we now discuss.

Registering the new long-term signing key faces two
complications. First, the adversary can keep using the
stolen signing key, thereby preventing the user from re-
registering the same email address (since the PKGs imple-
ment a 30-day lockout policy). To address this problem,
the user should issue a deregister command to the PKGs
signed by their old key. The second issue is that, once
an account is deregistered, an adversary may be able to
register his own key under the user’s email address, since
they likely got access to the user’s email account when
they compromised the user’s machine. We address this
issue by placing the account into a 30-day lockout period
after deregistration. This way, if the user can re-establish
access to their email account within 30 days of the com-
promise (e.g., through out-of-band authentication with the
email provider), they can regain their Alpenhorn account.

Establishing new keywheels with friends requires the
user to simply re-run the add-friend protocol with each
friend. To guard against the possibility of an adversary
corrupting the list of friend long-term signing keys stored
on the user’s computer, we recommend that the user keep
an offline backup of long-term signing keys of friends,
and restore from backup to recover from a compromise.
On the other hand, we discourage users from backing up
their keywheel, since that is bad for forward secrecy.

Lost client state. If the state of an Alpenhorn client is
lost (e.g., because the user physically lost their laptop),
the user should follow the steps described above for recov-
ering from a compromised client. The only difference is
that the user no longer has access to the long-term signing
private key, so the user cannot explicitly deregister. How-
ever, the user can simply wait for the same lockout period
until re-registering their account through email validation.

DoS attacks. A malicious group of users might attempt
to cause a denial of service attack by sending friend or
dialing requests in every round (rather than cover traffic)
in order to fill mailboxes. This can in turn increase client
bandwidth, and, since Alpenhorn will create additional
mailboxes to compensate for the extra load, cause the
mixnet servers to incur a higher CPU cost to generate
noise for the extra mailboxes. To address this, Alpenhorn
servers could issue a limited number of blinded signatures
to each user every day, and reject any requests that don’t
have a valid unblinded signature. Since the signatures are
blinded, this approach would not leak metadata.

Users going offline. Alpenhorn does not assume that
users stay online all the time (Alpenhorn avoids inter-
section attacks [32] by using constant-rate cover traffic to
and from all client machines and by using noise to ensure
differential privacy of observable mailboxes). However,
Alpenhorn does assume that the user’s observable activ-
ity, which includes going online and offline, is not highly
correlated with any confidential metadata they want to
keep private. A straightforward way to achieve this is to
keep Alpenhorn running all the time, but this may not be
practical for users with mobile devices.

An example scenario that illustrates the above problem
would be two users that both close their laptops at the
same time after finishing a conversation; an adversary that
observes both of them going offline at the same time may
infer that both of them could have been talking just before.
One approach to address this that we hope to explore in
future work is to require the users to stay online for a
random length of time after finishing a conversation, and
to use differential privacy to precisely reason about what
random time intervals would be required.

10 Conclusion
Alpenhorn is the first system for establishing session keys
between pairs of users that does not require out-of-band
communication aside from knowing a user’s Alpenhorn
username (their email address), and that provides privacy
and forward secrecy for metadata, assuming that at least
one server is uncompromised. Alpenhorn achieves this
by using identity-based encryption (IBE) in a novel way
to determine another user’s public key without revealing
metadata in an anytrust setting. Alpenhorn ensures for-
ward secrecy for all data by refreshing IBE keys and by
storing client-side secrets in a keywheel. The keywheel
provides a bandwidth-efficient means for calling existing
friends and starting conversations. Together, these tech-
niques enable Alpenhorn to bootstrap communication in
messaging systems that support 10 million users.

Acknowledgments
Thanks to Tej Chajed, Chucky Ellison, Jon Gjengset, Jelle
van den Hooff, Frans Kaashoek, and Malte Schwarzkopf
for helping improve this paper, and especially thanks to
Vinod Vaikuntanathan for helping us prove the security of
Anytrust-IBE. Thanks also to the anonymous reviewers.
This work was supported by NSF awards CNS-1053143
and CNS-1413920, and by Google.

References
[1] S. Angel and S. Setty. Unobservable communication

over fully untrusted infrastructure. In Proceedings of
the 12th Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA, Nov.
2016.

584 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[2] J. Appelbaum et al. Going dark: Phrase au-
tomated nym discovery authentication, 2013.
https://github.com/agl/pond/tree/
master/papers/panda.

[3] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly
elliptic curves of prime order. In Selected Areas in
Cryptography – SAC 2005, volume 3897 of Lecture
Notes in Computer Science, pages 319–331, 2006.

[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer, and M. Virza. Zerocash: De-
centralized anonymous payments from Bitcoin. In
Proceedings of the 35th IEEE Symposium on Secu-
rity and Privacy, San Jose, CA, May 2014.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] A. Boldyreva, V. Goyal, and V. Kumar. Identity-
based encryption with efficient revocation. In Pro-
ceedings of the 15th ACM Conference on Computer
and Communications Security (CCS), pages 417–
426, Alexandria, VA, Oct. 2008.

[7] D. Boneh and M. K. Franklin. Identity-based en-
cryption from the Weil pairing. In Proceedings of
the 21st Annual International Cryptology Confer-
ence (CRYPTO), Santa Barbara, CA, Aug. 2001.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signa-
tures from the Weil pairing. Journal of Cryptology,
17(4):297–319, 2004.

[9] N. Borisov, I. Goldberg, and E. Brewer. Off-the-
record communication, or, why not to use PGP. In
Proceedings of the 2004 Workshop on Privacy in the
Electronic Society, Washington, DC, Oct. 2004.

[10] N. Borisov, G. Danezis, and I. Goldberg. DP5: A pri-
vate presence service. In Proceedings of the 15th Pri-
vacy Enhancing Technologies Symposium, Philadel-
phia, PA, June–July 2015.

[11] X. Boyen. Multipurpose identity-based signcryption:
A Swiss army knife for identity-based cryptography.
In Proceedings of the 23rd Annual International
Cryptology Conference (CRYPTO), Santa Barbara,
CA, Aug. 2003.

[12] X. Boyen and B. Waters. Anonymous hierarchical
identity-based encryption (without random oracles).
Cryptology ePrint Archive, Report 2006/085, June
2006.

[13] J. Brooks et al. Ricochet: Anonymous instant mes-
saging for real privacy, 2016. https://ricochet.
im.

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure
public-key encryption scheme. Journal of Cryptol-
ogy, 20(3):265–294, July 2007.

[15] D. Chaum, F. Javani, A. Kate, A. Krasnova,
J. de Ruiter, A. T. Sherman, and D. Das. cMix:
Anonymization by high-performance scalable mix-
ing. Cryptology ePrint Archive, Report 2016/008,
Jan. 2016.

[16] L. Chen, Z. Cheng, and N. P. Smart. Identity-based
key agreement protocols from pairings. http://
eprint.iacr.org/, June 2006.

[17] C. Cocks. An identity based encryption scheme
based on quadratic residues. In Proceedings of the
8th Proceedings of the 8th IMA International Con-
ference on Cryptography and Coding, Cirencester,
UK, Dec. 2001.

[18] C. Conley. Metadata: Piecing together a privacy
solution. ACLU of California, Feb. 2014. https:
//www.aclunc.org/publications/metadata-
piecing-together-privacy-solution.

[19] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Ri-
poste: An anonymous messaging system handling
millions of users. In Proceedings of the 36th IEEE
Symposium on Security and Privacy, San Jose, CA,
May 2015.

[20] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings
of the 13th Usenix Security Symposium, pages 303–
320, San Diego, CA, Aug. 2004.

[21] Edison Research. Average number of Facebook
friends of users in the United States as of February
2014, by age group. Statista - The Statistics
Portal, Mar. 2014. https://www.statista.com/
statistics/232499/americans-who-use-
social-networking-sites-several-times-
per-day/.

[22] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-
man, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys. In
Proceedings of the 17th Usenix Security Symposium,
San Jose, CA, July–Aug. 2008.

[23] T. Hansen, D. Crocker, and P. Hallam-Baker. Do-
mainKeys Identified Mail (DKIM) service overview.
RFC 5585, Network Working Group, July 2009.

[24] A. Iliev and S. Smith. Privacy-enhanced credential
services. In Proceedings of the 2nd Annual NIST
PKI Research Workshop, Apr. 2003.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 585

https://github.com/agl/pond/tree/master/papers/panda
https://github.com/agl/pond/tree/master/papers/panda
https://ricochet.im
https://ricochet.im
http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/

[25] A. Kate and I. Goldberg. Distributed private-key
generators for identity-based cryptography. In Pro-
ceedings of the 7th Conference on Security and Cryp-
tography for Networks, Sept. 2010.

[26] Keybase. Keybase, 2016. https://keybase.io/.

[27] T. Kim and R. Barbulescu. Extended tower num-
ber field sieve: A new complexity for the medium
prime case. In Proceedings of the 36th Annual Inter-
national Cryptology Conference (CRYPTO), Santa
Barbara, CA, Aug. 2016.

[28] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Rif-
fle: An efficient communication system with strong
anonymity. In Proceedings of the 16th Privacy En-
hancing Technologies Symposium, Darmstadt, Ger-
many, July 2016.

[29] A. Langley. Pond, 2016. https://github.com/
agl/pond.

[30] D. Lazar and N. Zeldovich. Alpenhorn: Boot-
strapping secure communication without leaking
metadata (extended technical report). Technical re-
port, MIT Computer Science and Artificial Intelli-
gence Laboratory, Cambridge, MA, Oct. 2016. Also
available at https://vuvuzela.io/alpenhorn-
extended.pdf.

[31] W. Lueks and I. Goldberg. Sublinear scaling for
multi-client private information retrieval. In Pro-
ceedings of the 19th International Conference on Fi-
nancial Cryptography and Data Security, Jan. 2015.

[32] N. Mathewson and R. Dingledine. Practical traf-
fic analysis: Extending and resisting statistical dis-
closure. In Proceedings of the Privacy Enhancing
Technologies Workshop, pages 17–34, May 2004.

[33] J. Mayer, P. Mutchler, and J. C. Mitchell. Evalu-
ating the privacy properties of telephone metadata.
Proceedings of the National Academy of Sciences
(PNAS), 113(20):5536–5541, 2016.

[34] M. Naehrig, R. Niederhagen, and P. Schwabe. New
software speed records for cryptographic pairings.
In Progress in Cryptology – LATINCRYPT 2010,
volume 6212 of Lecture Notes in Computer Science,
pages 109–123, 2010.

[35] Namecoin. Namecoin, 2016. https://namecoin.
info/.

[36] T. Perrin and M. Marlinspike. Double ratchet al-
gorithm, 2016. https://github.com/trevp/
double_ratchet/wiki.

[37] A. Piotrowska, J. Hayes, N. Gelernter, G. Danezis,
and A. Herzberg. AnoNotify: A private notifica-
tion service. Cryptology ePrint Archive, Report
2016/466, May 2016.

[38] A. Rusbridger. The Snowden leaks and the public.
The New York Review of Books, Nov. 2013.

[39] A. Shamir. Identity-based cryptosystems and signa-
ture schemes. In Proceedings of the 4th Annual Inter-
national Cryptology Conference (CRYPTO), Santa
Barbara, CA, Aug. 1984.

[40] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the Facebook social graph. CoRR,
abs/1111.4503, Nov. 2011. URL http://arxiv.
org/abs/1111.4503.

[41] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich. Vuvuzela: Scalable private messaging re-
sistant to traffic analysis. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), Monterey, CA, Oct. 2015.

[42] WhatsApp. WhatsApp encryption overview, Apr.
2016. https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf.

[43] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Dissent in numbers: Making strong
anonymity scale. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), Hollywood, CA, Oct. 2012.

586 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://keybase.io/
https://github.com/agl/pond
https://github.com/agl/pond
https://vuvuzela.io/alpenhorn-extended.pdf
https://vuvuzela.io/alpenhorn-extended.pdf
https://namecoin.info/
https://namecoin.info/
https://github.com/trevp/double_ratchet/wiki
https://github.com/trevp/double_ratchet/wiki
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Big Data Analytics over Encrypted Datasets with Seabed

Antonis Papadimitriou1†, Ranjita Bhagwan∗, Nishanth Chandran∗, Ramachandran Ramjee∗,
Andreas Haeberlen†, Harmeet Singh∗, Abhishek Modi∗, Saikrishna Badrinarayanan1‡

†University of Pennsylvania, ∗Microsoft Research India, ‡UCLA

Abstract
Today, enterprises collect large amounts of data and
leverage the cloud to perform analytics over this data.
Since the data is often sensitive, enterprises would prefer
to keep it confidential and to hide it even from the cloud
operator. Systems such as CryptDB and Monomi can
accomplish this by operating mostly on encrypted data;
however, these systems rely on expensive cryptographic
techniques that limit performance in true “big data” sce-
narios that involve terabytes of data or more.

This paper presents Seabed, a system that enables ef-
ficient analytics over large encrypted datasets. In con-
trast to previous systems, which rely on asymmetric
encryption schemes, Seabed uses a novel, additively
symmetric homomorphic encryption scheme (ASHE) to
perform large-scale aggregations efficiently. Addition-
ally, Seabed introduces a novel randomized encryption
scheme called Splayed ASHE, or SPLASHE, that can, in
certain cases, prevent frequency attacks based on auxil-
iary data.

1 Introduction
Consider a retail business that has customer and sales
records from various store locations across the world.
The business may be interested in analyzing these
records – perhaps to better understand how revenue is
growing in various geographic locations, or which de-
mographic segments of the population its customers are
coming from. To answer these questions, the business
might rely on a Business Intelligence (BI) system, such
as PowerBI [5], Tableau [7], or Watson Analytics [8].
These systems can scale to large data sets, and their
turnaround times are low enough to answer interactive
queries from customers. Internally, they rely on the cloud
to provide the necessary resources at relatively low cost.

However, storing sensitive business data on the cloud
can raise privacy concerns, which is why many enter-
prises are reluctant to use cloud-based analytics solu-
tions. These concerns could be mitigated by keeping
the data in the cloud encrypted, so that a data leak (e.g.,

1Part of this work was done while Papadimitriou and Badrinara-
yanan were doing internships at Microsoft Research India.

due to a hacker attack or a rogue administrator) would
cause little or no damage. Systems like CryptDB [37]
and Monomi [41] can accomplish this by using a mix of
different encryption schemes, including deterministic en-
cryption schemes [12] and partially homomorphic cryp-
tosystems; this allows certain computations to be per-
formed directly on encrypted data. However, this ap-
proach has two important drawbacks. First, these cryp-
tosystems have a high computational cost. This cost is
low enough to allow interactive queries on medium-size
data sets with perhaps tens of gigabytes, but many busi-
nesses today collect terabytes of data [13, 29, 30, 40].
Our experimental results show that, at this scale, even on
a cluster with 100 cores, it would take hundreds of sec-
onds to process relatively simple queries, which is too
slow for interactive use. Second, deterministic encryp-
tion is vulnerable to frequency attacks [33], which can
cause some data leakage despite the use of encryption.

This paper makes two contributions towards address-
ing these concerns. First, we observe that existing solu-
tions typically use asymmetric homomorphic encryption
schemes, such as Paillier [35]. This is useful in scenarios
where the data is produced and analyzed by different par-
ties: Alice can encrypt the data with the public key and
upload it to the cloud, and Bob can then submit queries
and decrypt the results with the private key. However,
in the case of business data, the data producer and the
analyst typically have a trust relationship – for instance,
they may be employees of the same business. In this sce-
nario, it is sufficient to use symmetric encryption, which
is much faster. To exploit this, we construct a new ad-
ditively symmetric homomorphic encryption scheme (or,
briefly, ASHE), which is up to three orders of magnitude
more efficient than Paillier.

Our second contribution is a defense against frequency
attacks based on auxiliary information – a type of attack
that has recently been demonstrated in the context of de-
terministic encryption [33]. For instance, suppose the
data contains a column, such as gender, that can take
only a few discrete values and that has been encrypted
deterministically. If the attacker knows which gender oc-
curs more frequently in the data, she can trivially decode
this column based on which ciphertext is the most com-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 587

mon. We introduce an encryption scheme called Splayed
ASHE (SPLASHE), that protects against such attacks by
splaying sensitive columns to multiple columns, where
each new column corresponds to data for each unique el-
ement in the original column. For columns with larger
cardinality, SPLASHE uses a combination of splaying
and deterministic encryption padded with spurious en-
tries to defeat frequency attacks while still limiting the
storage and computational overhead.

We also present a complete system called Seabed that
uses ASHE and SPLASHE to provide efficient analytics
over large encrypted datasets. Following the design pat-
tern in earlier systems, Seabed consists of a client-side
planner and a proxy. The planner is applied once to each
new data set; it transforms the plain-text schema into
an encrypted schema, and it chooses suitable encryption
schemes for each column, based on the kinds of queries
that the user wants to perform. The proxy transparently
rewrites queries for the encrypted schema, it decrypts re-
sults that arrive from the cloud, and it performs any com-
putations that cannot be performed directly on the cloud.
Seabed contains a number of optimizations that keep the
storage, bandwidth, and computation costs of ASHE low,
and that make it amenable to the hardware acceleration
that is available on modern CPUs.

We have built a Seabed prototype based on Apache
Spark [2]. We report results from an experimental eval-
uation that includes running both AmpLab’s Big Data
Benchmark [3] and a real, advertising-based analyt-
ics application on the Azure cloud. Our results show
that, compared to no encryption, Seabed increases the
query latency by only 8% to 45%; in contrast, state-
of-the-art solutions that are based on Paillier (such as
Monomi [41]) would cause an increase by one to two
orders of magnitude in query latency.

To summarize, we make the following four contribu-
tions in this paper:

• ASHE, an additive symmetric homomorphic en-
cryption scheme that is three orders of magnitude
faster than Paillier (Section 3.1);
• SPLASHE, an encryption scheme that protects

against frequency-based attacks for fields that re-
quire deterministic encryption (Sections 3.3+3.4);
• Seabed, a system that supports efficient analytics

over large-scale encrypted data sets (Section 4); and
• a prototype implementation and experimental eval-

uation of Seabed (Section 6).

2 Overview
Figure 1 shows the scenario we are considering in this
paper. A data collector gathers a large amount of data,
encrypts it, and uploads it to an untrusted cloud platform.

Cloud

Operator
(untrusted)

Data	collector Analyst

Encrypted
data

Figure 1: Motivating scenario.

An analyst can issue queries to a query processor on the
cloud. The responses will be encrypted, but the analyst
can decrypt them with a secret key she shares with the
data collector.

The workload we wish to support consists of OLAP-
style queries on big data sets. As our analysis in Sec-
tion 5 will show, these queries mostly rely on just a few
simple operations (sum, sum-of-squares, etc.), so we fo-
cus on these in our server-side design. Our goal is to
answer typical BI queries on large data sets within a few
seconds – that is, quickly enough for interactive analysis.

2.1 Background

One common approach to solving the above problem is
to use homomorphic encryption. For instance, there are
cryptosystems with an additive homomorphism, such as
Paillier [35], which means that it is possible to “add”
two ciphertexts C(x) and C(y) to obtain a ciphertext
C(x + y) that decrypts to the sum of the two encrypted
values. This feature allows the cloud to perform aggre-
gations directly on the encrypted data. There are other
systems with different homomorphisms, and even fully
homomorphic systems [23] that can be used to compute
arbitrary functions on encrypted data (Section 7).

Homomorphic encryption schemes are typically ran-
domized, that is, there are many different possible ci-
phertexts for each value. These schemes enjoy standard
semantic (or CPA) security, which informally means that
no adversary can learn any information about the plain-
text, even given the ciphertext.

However, there are situations where it is useful to
let the cloud see some property of the encrypted val-
ues (property-preserving encryption). For instance, to
compute a join, the cloud needs to be able to match up
encrypted values, which randomization would prevent.
In this case, one can use deterministic encryption [12],
where each value v is mapped to exactly one ciphertext
C(v). However, such schemes are susceptible to fre-
quency attacks [33]: if a column can only take a small
number of values (say, country), and the cloud knows
that some value (say, Canada) will be the most com-
mon in the data, it can look for the most common ci-
phertext and infer that this ciphertext must decrypt to

588 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that value. Another example of an operation achievable
by a property-preserving encryption scheme is select-
ing rows based on a range of values (say, timestamps)
in an encrypted column. Here, one can use an order-
preserving encryption (OPE) [15], which can be used to
decide whether x < y, given only C(x) and C(y). Ob-
viously, if the cloud can perform the comparison, then so
can the adversary, so in these schemes, there is a tradeoff
between confidentiality, performance, and functionality.

2.2 Threat Model
In this paper, we resolve the above tradeoff in favor of
confidentiality and performance. We assume an adver-
sary who is honest but curious (HbC), that is, the adver-
sary will try to learn facts about the data but will not ac-
tively corrupt data or otherwise interfere with the system.
We do, however, assume that the adversary will attempt
to perform frequency attacks as discussed above; this is
motivated by recent work [33], and it is the reason we
developed SPLASHE.

We are aware that there are much stronger threat mod-
els that would prevent the adversary from learning any-
thing at all about the data. However, current solutions
for these models, such as using oblivious RAM [34, 26]
and fully homomorphic encryption, tend to have an enor-
mous runtime cost (fully homomorphic encryption [23]
causes a slowdown by nine orders of magnitude [24]).
Our goal is to provide a practical alternative to today’s
plaintext-based systems (which offer very little security),
and this requires keeping the runtime overhead low.

2.3 Alternative approaches
As discussed in Section 2.1, one possible approach to
this problem is to use homomorphic encryption. This
approach is taken by systems like CryptDB [37] and
Monomi [41], which use Paillier as an additive homo-
morphic scheme. While Paillier is much faster than fully
homomorphic encryption, it is still expensive. For ex-
ample, a single addition in Paillier on modern hardware
takes about 4 µs (Section 4), so the latency for operations
on billions of rows can easily reach several minutes.

An alternative approach is to rely on trusted hardware,
such as Intel’s SGX [32] or ARM’s TrustZone [10]. This
approach has a much lower computational overhead, but
it introduces new trust assumptions that may not be suit-
able for all scenarios [19, 20]. It would be good to have
options available that offer a low overhead without rely-
ing on trusted hardware.

2.4 Our approach
In Seabed, we solve this problem by replacing Paillier
with a specially designed additively symmetric homo-

morphic encryption (ASHE) scheme. Since symmetric
encryption schemes tend to be much more efficient than
asymmetric schemes, this yields a big performance boost
(Section 4). Symmetric encryption imposes a restriction
that the encrypted data can only be uploaded by someone
who has the secret key but this is not a constraint for the
typical BI scenario. Thus, the additional protections of
asymmetric cryptography are actually superfluous, and
the performance gain is essentially “free”.

Additionally, in order to protect against frequency at-
tacks that occur when using deterministic or order pre-
serving encryption, we construct a randomized encryp-
tion scheme − SPLayed ASHE, or SPLASHE that can
still enable us to perform many queries on encrypted data
that in prior work required deterministic encryption, but
without leaking any information on frequency counts.
Finally, for those queries that SPLASHE cannot support
(e.g., joins), we support deterministic and OPE schemes
that leak (a small amount of) information about the un-
derlying plaintext values; we take this decision with the
performance of the system in mind.

3 Seabed Encryption Schemes

In this section, we describe the ASHE and SPLASHE
schemes in more detail. ASHE and the basic variant of
SPLASHE satisfy the standard notion of semantic secu-
rity (IND-CPA, that leaks no information about plaintext
values) while the enhanced variant of SPLASHE prov-
ably leaks no more information than the number of di-
mension values that occur frequently and infrequently in
the database. A formal security proof is available in our
technical report [36].

3.1 ASHE

ASHE assumes that plaintexts are from the additive
group Zn := {0, 1, . . . , n − 1}. It also assumes that
the entities encrypting and decrypting a ciphertext (the
sender and the recipient, respectively) share a secret key
k, as well as a pseudo-random function (PRF) Fk : I →
Zn that takes an identifier from a set I and returns a ran-
dom number from Zn.

One possible choice for the PRF is Fk :=
H(i || k)modn for i ∈ I , where H is a cryptographic
hash function (when modeled as a random function), ||
denotes concatenation and the size of the range of H is
a multiple of n. Another choice is AES, when used as a
pseudo-random permutation.

Suppose Alice wants to send a value m ∈ Zn to Bob.
Then Alice can pick an arbitrary, unique, number i ∈ I
– which we call the identifier – and encrypt the message

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 589

ClientData	 Source Cloud	 Store
(HDFS)Encrypt

UntrustedTrusted Trusted

Decrypt
Compute
SUM

1
Encryption EncK(m)
of m on row i:

{m–Fk(i)+Fk(i-1), i}

3
Sum ESUM is:
m1+…+mn-
Fk(n)-Fk(0),
{1...n}

Compute
SUM

2

4
Result is:

ESUM+Fk(n)–
Fk(0)

Cloud	
Compute

Data	 Source
Encrypt Database

m1– Fk(1)+Fk(0),1
m2– Fk(2)+Fk(1),2

mn–Fk(n)+Fk(n-1),n
. . .

Figure 2: Seabed components and the ASHE scheme.

by computing:
Enck(m, i) := ((m− Fk(i) + Fk(i− 1))modn, {i})
In other words, the ciphertext is a tuple (c, S), where c

is an element of the group Zn and S is a multiset of iden-
tifiers. Note that the ciphertext c consists of the plaintext
value m plus some pseudo-random component, hence it
appears to be random to anyone who does not know the
secret key k.

To create the additive homomorphism, we define a
special operation ⊕ for “adding” two ciphertexts:

(c1, S1)⊕ (c2, S2) := ((c1 + c2)modn, S1 ∪ S2)

That is, the group elements are added together and the
multisets of identifiers are combined. To decrypt the ci-
phertext, Bob can simply compute

Deck(c, S) := (c+
∑
i∈S

(Fk(i)− Fk(i− 1)))modn

Thus, after the homomorphic operation,
Deck(Enck(m1, i1)⊕Enck(m2, i2)) = (m1+m2)modn
Figure 2 gives a high-level overview of ASHE in the

context of Seabed. We show that the above scheme
satisfies the standard notion of semantic (CPA) security
in [36].

3.2 Optimizations for ASHE

The reader may wonder why the first element of the ci-
phertext is computed as (m− Fk(i) + Fk(i− 1))modn
and not simply as (m − Fk(i))modn. The reason is
that we have optimized ASHE for computing aggrega-
tions on large data sets. Suppose, for instance, that Al-
ice wants to give Charlie a large table of encrypted val-
ues, with the intention that Charlie will later add up a
range of these values and send them to Bob. Then Alice
can simply choose the identifiers to be the row of num-
bers (1, 2, . . . , x). Later, if Bob receives an encrypted
sum (c, S) with S = {i, . . . , i + t} (i.e., the sum of
rows i to i + t), he can decrypt it simply by comput-
ing (c + Fk(i + t) − Fk(i − 1))modn, since the other
Fk values will cancel out. Thus, it is possible to decrypt

country salary
Male 1000
Female 2000
Female 200

genderMale genderFemale salaryMale salaryFemale
ASHE(1) ASHE(0) ASHE(1000) ASHE(0)
ASHE(0) ASHE(1) ASHE(0) ASHE(2000)
ASHE(0) ASHE(1) ASHE(0) ASHE(200)

sender salary
DET(Male) ASHE(1000)
DET(Female) ASHE(2000)
DET(Female) ASHE(200)

Plaintext Schema

Schema with Basic SPLASHE

Encrypted Schema

Figure 3: SPLASHE instead of deterministic encryption.

the sum of a range of values by evaluating the PRF only
twice, regardless of the size of the range.

Other optimizations including managing ciphertext
growth and use of AES encryption support in hardware
for efficient PRF computation are discussed in Section 4.

3.3 Basic SPLASHE
SPLASHE is motivated by frequency attacks on deter-
ministic encryption [33]. Recall that, unlike ASHE, in
deterministic encryption, there is only one possible ci-
phertext value for each plaintext value. This enables the
server to perform equality checks but also reveals fre-
quency of items. The attacker combines the frequency of
ciphertexts with auxiliary information to decode them.

We begin by describing a basic version of our ap-
proach. Consider a column C1 that can take one of d
discrete values and let the value of C1 in row t be C1[t].
If we anticipate counting queries of the form SELECT
COUNT(C1) WHERE C1=x, we can replace the col-
umn C1 with a family of columns C1,1, . . . , C1,d. When
the value of C1[t] is v, we set C1,v[t] = 1 and set
C1,w[t] = 0 for w 6= v. If the resulting columns are
encrypted using ASHE, the ciphertexts will look random
to the adversary, but it is nevertheless possible to com-
pute the count: we can simply rewrite the above query
to SELECT SUM(C1,x) and then compute the answer
using homomorphic addition.

A similar approach is possible for aggregations. Con-
sider a pair of columns C1 and C2, where C1 again takes
one of d discrete values and C2 contains numbers that
we might later wish to sum up using a predicate on C1

(and possibly other conditions). In other words, we antic-
ipate queries of the form SELECT SUM(C2) WHERE
C1=x. In this case, we can split C2 into d columns
C2,1, . . . , C2,d. When C1[t] = v, we set C2,v[t] := C2[t]
and set C2,w[t] := 0 for w 6= v. C1 and C2 can then
be omitted. Thus, the above query can be rewritten into
SELECT SUM(C2,x), which can be answered using ho-
momorphic addition. An example of SPLASHE is shown
in Figure 3 for C1 as Gender and C2 as Salary.

590 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.4 Enhanced SPLASHE

Basic SPLASHE increases a column’s storage consump-
tion by a factor of d, which is expensive if d is large.
Next, we describe an enhancement that addresses this.

Consider again a pair of columns C1 (say, country)
and C2 (say, salary), where C1 takes one of d discrete
values and C2 contains numbers that we might later wish
to sum up using a predicate on C1. Suppose k of the d
values are common (e.g., a Canadian company with of-
fices worldwide but with most employees located in USA
or Canada; k = 2, d = 196). Then we can replace
C2 by k + 1 columns – one for each of the common
values (salaryUSA and salaryCanada) and a sin-
gle column for the uncommon values (salaryOther).
Figure 4 shows an example. As before, for each row,
we place the ASHE encrypted value of salary from C2

in the appropriate salary column, while we fill the other
k salary columns with ASHE-encrypted zeros. We then
encrypt C1 deterministically for each of the uncommon
countries to enable equality checks against encrypted
values.

At this point it is possible to compute aggregations on
C2 for all values v of C1: if the value v is common (USA
or Canada), we can compute a sum over the special
column for v; otherwise we can select the rows where
country in C1 equals the deterministically encrypted
value of v and compute the sum over salaryOther.

However, C1 now is susceptible to frequency attacks.
To prevent this, in C1, we ensure that all ciphertexts oc-
cur at the same frequency. How is this possible? Note
that the cells corresponding to common countries in C1

were so far unused. We can reuse these cells to normal-
ize the frequency count of the uncommon countries. For
these reused cells, since the corresponding values in the
salaryOther column are set to ASHE encrypted val-
ues of zero, this approach preserves correctness while
preventing frequency attacks.

When is this approach possible? Let n1 ≥ n2 . . . ≥
nd be the number of occurrences of each of the d values.
Then the number of splayed columns should be chosen to
be the minimum k such that

∑k
i=1 ni ≥

∑d
i=k+1(nk+1−

ni) : this is because
∑k

i=1 ni are enough unused cells in
column C1 that can be used to make the number of oc-
currences of all non-splayed values at least nk+1. Such a
k will always exist; the more heavily skewed the distribu-
tion of values is, the smaller the k will be, and the more
storage will be saved. This approach can be followed
even if the exact number of occurrences is unknown; we
do, however, need to know the distribution of the values.

Figure 4 shows an enhanced SPLASHE example with
k = 2 and d = 9. Notice how the first six rows of
the deterministically encrypted column have been reused
to equalize the frequency of all elements in that col-

country salary
USA 100000
USA 100000
Canada 200000
USA 300000
Canada 500000
Canada 800000
India 100000
India 100000
Chile 200000
Iraq 300000
China 500000
Japan 800000
Israel 130000
U.K. 210000

country salaryUSA salaryCanada salaryOthers
DET(Chile) ASHE(100000) ASHE(0) ASHE(0)
DET(Iraq) ASHE(100000) ASHE(0) ASHE(0)
DET(China) ASHE(0) ASHE(200000) ASHE(0)
DET(Japan) ASHE(300000) ASHE(0) ASHE(0)
DET(Israel) ASHE(0) ASHE(500000) ASHE(0)
DET(U.K.) ASHE(0) ASHE(800000) ASHE(0)
DET(India) ASHE(0) ASHE(0) ASHE(100000)
DET(India) ASHE(0) ASHE(0) ASHE(100000)
DET(Chile) ASHE(0) ASHE(0) ASHE(200000)
DET(Iraq) ASHE(0) ASHE(0) ASHE(300000)
DET(China) ASHE(0) ASHE(0) ASHE(500000)
DET(Japan) ASHE(0) ASHE(0) ASHE(800000)
DET(Israel) ASHE(0) ASHE(0) ASHE(130000)
DET(U.K) ASHE(0) ASHE(0) ASHE(210000)

Plaintext Schema Schema with Enhanced SPLASHE

Figure 4: Enhanced SPLASHE example.

umn while still ensuring the correctness of aggregation
queries on any of the country predicates.

The reader can find a more detailed description of en-
hanced SPLASHE’s security properties in our techni-
cal report [36]. Briefly, enhanced SPLASHE satisfies
simulation-based security; the adversary learns only the
number of rows in the database, and the number of infre-
quently and frequently occurring values.

3.5 Limitations
ASHE: Homomorphic encryption schemes have tra-
ditionally been defined with a compactness require-
ment, which says that the ciphertext should not grow
with the number of operations that are performed on
it. This is done to rule out trivial schemes: for in-
stance, one could otherwise implement an additive “ho-
momorphism” by simply concatenating the ciphertexts
Enc(m1) and Enc(m2) and then have the client do
the actual addition during decryption. ASHE does not
strictly satisfy compactness, but the evaluator (the cloud)
still does perform the bulk of the computation on cipher-
texts; also, the techniques in Section 4 ensure that the
length of ASHE’s ciphertexts does not grow too much.

In terms of performance, growing ciphertexts can cre-
ate memory stress at the workers. In the case of a system
without encryption, the worker nodes only need enough
memory to hold the dataset. When using ASHE, the
workers need to have some extra memory to construct
the ID lists. This should not be a big problem in prac-
tice: as we will show in Section 6, the overhead is small
enough for real-world big data applications that involve
billions of rows. Nevertheless, this extra memory re-
quirement can become a problem if workers have very
limited memory, or if the dataset is very large (e.g., if it
has trillions of records).

SPLASHE: SPLASHE has three main drawbacks: (1)
its requirement for a-priori knowledge of query workload

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 591

Planner

ASHE SplASHE

OPE

Decryption	 Module

Query	 Code	
Translator

Encryption	 Module

Create	 Plan
(plaintext	 schema,	
sample	 queries)

Upload	 Data

Query	 Data

Schema

Spark	
Compute

Data
(HDFS)

DET

USER
(trusted)

CLIENT-SIDE PROXY
(trusted)

SERVER
(untrusted)

Figure 5: Seabed system design

or data distribution, (2) its difficulty in handling data with
rapidly changing distribution, and (3) its storage over-
head.

First, SPLASHE requires knowing what the expected
query workload is. This is because we need to confirm
that the splayed column will not participate in joins or in-
equality predicates – for such cases we need to fall back
to deterministic encryption (DET). In addition, to get the
storage reduction of enhanced SPLASHE, we need to
know the distribution of values that a column can take.
If this information is not available, only basic SPLASHE
can be used.

Second, enhanced SPLASHE is most appropriate for
columns whose distribution does not change dramati-
cally. For columns whose distribution fluctuates signifi-
cantly, data insertions will start skewing the distribution
of the DET column (C1 in our example) away from the
uniform distribution SPLASHE constructs. This hap-
pens because a significant change in distribution will re-
quire reusing more cells than those available in the rows
that were previously common. However, even in such
an extreme case, SPLASHE is still better than using
plain DET; DET reveals the exact distribution of values,
whereas SPLASHE reveals a noised version of it.

Finally, both basic and enhanced SPLASHE increase
storage needs. Section 6.6 shows that a real-world
ad analytics database can be supported with enhanced
SPLASHE at a storage overhead of about 10x.

4 Design

We now provide a functional overview of Seabed, and
then describe each system component in more detail. For
simplicity, we describe the design using the example of
only one data source and one client. In practice, multiple
data sources and users can share the same system as long
as they share trust.

4.1 Roadmap
Figure 5 shows the major components of Seabed. A
user interacts with the Seabed client proxy that runs in
a trusted environment. The proxy in turn interacts with
the untrusted Seabed server. As with previous systems,
Seabed is designed to hide all cryptographic operations
from users, so they interact with the system in the same
way as they would with a standard Spark system. The
user can issue three kinds of requests:
Create Plan: First, the user supplies a plaintext schema
and a sample query set to the Seabed planner. The plan-
ner uses these and the procedure specified in Section 4.2
to determine the encryption schemes for the columns.
Upload Data: Next, the user sends plaintext data to the
Seabed encryption module described in Section 4.3. The
data is encrypted with the required encryption scheme
and records are appended to the table stored in the Cloud.
This is a continuing process; database insertions are han-
dled in the same way.
Query Data: During analysis, the user sends a query
script to the Seabed query translator, which modifies
queries to run on encrypted data before sending them to
the server (Section 4.5). The server runs the queries and
responds to the proxy’s decryption module (Section 4.6).
After decryption and further processing (if any), the re-
sults are sent back to the user.

4.2 Data Planner
The data planner determines how to encrypt each column
in the schema, given a list of sensitive columns by the
user. The user also supplies a sample query set, which
is used by the planner to decide on the encryption algo-
rithms. In addition, to use enhanced SPLASHE, the user
provides the number of distinct values each column can
take and the frequency distribution of these values.

By parsing the sample query set, the planner first clas-
sifies each sensitive column as a dimension, a measure,
or both. A measure is a column (e.g., Salary) over
which a query computes aggregate functions, such as
sum, average and variance. A dimension is a column
(e.g., Country) that is used to filter rows based on a
specified predicate before computing aggregates. After
the classification, the planner uses the following strate-
gies to determine which encryption schemes to use.

ASHE: If a sensitive measure is aggregated using lin-
ear functions, such as sum and average, we encrypt it
using ASHE. If a sensitive measure is aggregated us-
ing quadratic functions (e.g., variance), we compute the
square of the values on the client side and add it to the
database as a separate column, so it can be used in com-
putations on the server side. Whenever we use ASHE on
a column, we give a unique ID to each row, which is used
in the encryption as discussed in Section 3.1; to enable

592 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Operation Time (nanoseconds)
AES counter mode 47
Paillier encryption 5,100,000

ASHE encryption/decryption 12-24
Plain addition 1

Paillier addition 3800
Paillier decryption 3,400,000

Table 1: Cost of operations on a 2.2 GHz Xeon core.

compression, we assign consecutive row IDs. We choose
a different secret key k for each new column we encrypt.
SPLASHE: If a sensitive dimension is used in filters,
and if no query uses joins on this dimension, then
the dimension is a candidate for SPLASHE. However,
given the storage costs, we determine whether to use
SPLASHE for the dimension as follows. First, we deter-
mine the measure columns that are used in conjunction
with this dimension in the queries: only these measure
columns need to be SPLASHE-encrypted. Based on this
subset of measure columns, the planner uses the algo-
rithm described in 3.4 to compute the storage overhead.
Then, if a user specifies a maximum storage overhead,
the planner prioritizes the dimensions that use SPLASHE
based on their cardinality (lowest cardinal dimension
first, in order to maximize protection against frequency
attacks). We show how this approach works with a real
dataset in Section 6.6.
DET or OPE: If a sensitive dimension cannot use
SPLASHE – say, because it is used as part of a join –
we warn the user and then use deterministic encryption
(DET). If the dimension requires range queries in query
filters, then we use order-preserving encryption (OPE).
We require an OPE scheme that works on dynamic data
and hence the OPE scheme of CryptDB [37] is not suit-
able in our case. We use the recent scheme from [18],
which is efficient (based on any PRF) and has low leak-
age: for any two ciphertexts, in addition to the order of
the two underlying plaintexts, it reveals the first bit where
the two plaintexts differ and nothing more. For more de-
tails, please see our technical report [36].

Note that some queries (such as averages) cannot be
directly executed on the server because they are not
supported by Seabed’s encryption schemes. In such
cases, the Seabed planner borrows techniques from prior
work [41] to divide the query into a part the server can
compute (e.g., a sum and a count), and a part that the
client/proxy will need to compute after decryption (e.g.,
the final division).

4.3 Encryption Module
The Encryption Module encrypts plaintext records into
the encrypted schema. Note that ASHE encryption and
decryption are quite lightweight compared to Paillier op-
erations. As shown in Table 1, one AES counter oper-

ation (implemented using hardware support on a Intel
Xeon 2.2GHz processor) takes 47 ns whereas one Pail-
lier encryption takes 5.1 ms, a difference of five orders
of magnitude. Hence, by using ASHE instead of Paillier,
we reduce the encryption load on the client significantly.

We optimize ASHE encryption and decryption further
by using a single AES operation to generate multiple ci-
phertexts. Each AES operation works on 128-bit vectors.
Numeric data types are typically much smaller: 32-bit
or 64-bit integers are common. One AES operation can
therefore generate two or four pseudo-random numbers
for 64-bit or 32-bit data types, respectively.

Also, note that unlike conventional cryptographic
techniques, ASHE encryption and decryption are inher-
ently parallelizable because multiple AES operations can
be computed simultaneously in a multi-core environ-
ment. We therefore run a multi-threaded version of the
encryption and decryption algorithm, and this further re-
duces latency.

If the system needs a way to revoke the access privi-
leges of individual users, the proxy can additionally im-
plement an access control mechanism, analogous to the
approach in CryptDB. Typically, revocation is difficult
when symmetric encryption schemes are used: once a
symmetric key is shared, the only way to invalidate it is
to re-encrypt the data. However, since the proxy handles
all queries, it does not need to share the secret keys with
the clients, so it can revoke or limit their access without
re-encryption.

4.4 Query Translator
The goal of the Query Translator is to intercept the
client’s unmodified queries, and rewrite them in a way
appropriate for the schema of the encrypted dataset. Our
design follows the principles introduced by CryptDB
and Monomi: we encrypt constants with the appropri-
ate encryption scheme, and we replace operators with
the custom functions that implement ASHE aggrega-
tion, or DET/OPE checks. One technical difference to
the previous systems is that these operated on relational
databases, so both the source and target language of the
translator was SQL. However, Seabed works on Spark,
so the target language is Scala and the Spark API.

The Seabed Query Translator makes three additions to
the query rewriting process to accommodate the new en-
cryption schemes it uses; we show examples for all three
in Table 2. First, the schema of the encrypted dataset
in Seabed includes an additional ID column. This col-
umn is necessary for ASHE aggregation, so the Query
Translator preserves it even if the client has not explicitly
done so in the projection fields of the original SQL query.
That way, Seabed can support aggregation on the result
of sub-queries. Second, for columns that use SPLASHE,
Seabed follows the rules outlined in Section 3 to rewrite

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 593

Query type Query

ID
preservation

SQL SELECT sum(tmp.a) FROM (SELECT a FROM table WHERE b > 10) tmp
Spark API table.filter(x => x(2) > 10).map(x =>x(1)).reduce((x,y) => x+y)

Seabed
table.filter(x => OPE.leq(x(2),EncOPE(10)).
map(x =>(x(id), x(1))).reduce((x,y) => ASHE(x,y))

SPLASHE
SQL SELECT count(*) FROM table WHERE a = 10

Spark API table.filter(x=>x(1) == 10).count()
Seabed table.map(x=>(x(id),x(3))).reduce((x,y)=>ASHE(x,y))

Group-by
optimization

(and ID
preservation)

SQL SELECT a, sum(b) FROM table GROUP BY a
Spark API table.map(x=>(x(1),x(2)).reduceByKey((x,y)=>x+y)

Seabed
table.map(x=>(x(1)+":"+r.nextInt%10,(x(id),x(2))).
reduceByKey((x,y)=>ASHE(x,y))

Table 2: Examples of query translation. x(1) corresponds to table column a, x(2) to b, x(3) to splayed a for value 10,
and x(id) to the identifier column used by ASHE.

Technique
Example

Integer/List Encoding
Range encoding [2. . .14,19. . .23] [2-14,19-23]
Diff. encoding [2,3,4,9,23] [2,1,1,5,14]
Combination [2. . .14,19. . .23] [2-12,5-4]
VB-encoding Encoded with minimum #bytes

Table 3: ID list encoding techniques used in Seabed.

queries. This implies that the client has to maintain a
small data structure with information about the splayed
fields. Finally, if the client enables our group-by opti-
mization, which is described in Section 4.5, the Query
Translator may also modify the group-by fields of the
query. This requires that the client maintains some state
about the expected number of groups in a query result.

4.5 Seabed Server

Performing aggregations using ASHE requires the server
to manage growing ciphertexts. This can result in need
for large in-memory data structures and high bandwidth.
We now describe how we optimize these overheads.

Reducing ID list size: To keep the size of the ID list
small, we evaluated several integer list encoding tech-
niques [31], including bitmaps [17], for good compres-
sion rates, low memory usage and high encoding speed.
We eventually decided that a combination of the tech-
niques listed in Table 3 were the most appropriate for
Seabed. We begin with range encoding, which com-
presses contiguous sequences of integers by specifying
the lower and upper bound. Next, we apply differential
(Diff) encoding, which replaces the (potentially large) in-
dividual numbers with the (hopefully small) difference
to the previous number; the result of this second step
is labeled “Combination” in Table 3. Finally, we apply
variable-byte (VB) encoding, which uses fewer bytes to
represent smaller numbers.

Variable-byte (VB) and differential encoding (Diff)
strike a nice balance between performance and com-
pression and can be efficiently implemented in software.

Range encoding, i.e. describing contiguous integers by
specifying the bounds of their range, is not widely used
in the literature because it can bloat up lists of non-
contiguous integers. In Seabed, though, data is uploaded
to the server with contiguous IDs, so range encoding can
provide great benefits, especially for queries that select a
large portion of a dataset. In Section 6.4, we show how
combining VB, Diff, and range encoding reduces the size
of the ID list and speeds up aggregation.

Reducing server-to-client traffic: Every Spark job
consists of one driver node and several worker nodes.
The workers send their partial results to the driver which
then aggregates and sends the combined result to the
client. To further reduce the size of ID lists, we applied
standard compression. However, there are two options
here: applying compression at the worker nodes or ap-
plying compression after aggregation at the driver node.
The latter can lead to higher compression rates, but we
found that this caused a bottleneck at the driver. In-
stead, we found that applying compression at each of the
worker nodes benefits from parallelization and results in
lower overall latency.

Handling group-by queries: Group-by queries are in
general challenging for ASHE, because all row IDs are
included in the final result, which can grow quite large.
Moreover, using range encoding seems to incur unnec-
essary costs for group-by queries: when the result of
a group-by query contains many groups, the ID lists of
each group tend to be very sparse. As we noted earlier,
range encoding is wasteful for sparse ID lists, so we de-
cided to use only VB and Diff encoding for group-by
queries.

Group-by queries lead to one more complication:
when the number of groups in the result is small, the
traffic between mapper and reducer workers becomes a
bottleneck. There are two underlying reasons for this.
First, with few groups, the ID list of each group be-
comes denser, and not using range encoding starts to
show up. Second, when the number of groups is less than

594 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Query set Total Purely on Server Client Pre-processing Client Post-processing Two Round-trips

Ad Analytics 168,352 134,298 0 34,054 0
TPC-DS 99 69 2 25 3

MDX 38 17 12 4 5

Table 4: Different categories of queries that Seabed supports.

Dataset Rows Dimen-
sions

Measu-
res

Disk size (GB) Memory size (GB)
NoEnc Seabed Paillier NoEnc Seabed Paillier

Synthetic - Large 1.75B - 1 35.4 70.4 521.1 84.7 121.9 638.6
Synthetic - Small 250M - 1 5 9.8 74.2 12.1 17.7 91.4
BDB - Rankings 90M 1 2 7.9 12 58.3 18.6 28.1 80.4
BDB - User Visits 775M 8 2 194.9 287.5 673.6 581 832.5 1269.4
BDB - Query 4, Phase 2 194M 2 1 35 38.3 88.3 73.5 86.5 140
Ad Analytics 759M 33 18 132.3 142.45 176.3 1004 1027.3 1254.4

Table 5: Characteristics of our synthetic dataset, the Big Data Benchmark (BDB) and the Ad Analytics dataset (AdA).

the available workers, some reducers will remain idle in
the reduce phase. This means that more data (because of
denser ID lists) is shuffled between fewer workers (be-
cause of idle workers). This can create a bottleneck for
very large datasets where ID lists are large.

To make use of more worker nodes in the reduce phase
and to mitigate the above effect, we artificially increase
the number of returned groups. We accomplish this
by appending a random identifier to each value of the
group-by column. For example (table 2), if a query re-
turns 10 groups {g1, . . . , g10}, and there are 100 work-
ers available, then we can append a random identifier to
the group-by column, which takes values from 0 to 9.
This means that the result will contain 10 ∗ 10 = 100
groups {g1:0, . . . , g1:9, . . . , g10:0, . . . , g10:9}, the com-
putation will utilize all available workers in the reduce
phase, and we will avoid the bandwidth bottleneck. Of
course, the client has to perform the remaining aggre-
gations to compute the sum of the actual groups (e.g.,
add results for groups {g1:0, . . . , g1:9} to get the result
for group g1). As a heuristic, we inflate the number of
groups to the number of available workers when we ex-
pect fewer groups than workers.

4.6 Decryption Module

The Decryption Module uncompresses the ID lists, uses
the techniques from Section 4.3 to calculate the pseudo-
random numbers to add to the encrypted value, and re-
turns the result to the user. If the query has some part that
cannot be computed at the server, the Decryption Mod-
ule can additionally perform that part before presenting
the final answer to the user. Since we have assumed that
the adversary is honest but curious, the Decryption Mod-
ule performs no integrity checks; thus, an active adver-
sary could return bogus data without being detected by

Seabed itself.
The decryption cost of ASHE depends on the num-

ber of aggregated elements; this is different from Pail-
lier, which requires only one decryption for each aggre-
gate result. However, Paillier decryption is five orders
of magnitude slower than ASHE decryption (Table 1),
and the overall client decryption costs for Seabed remain
smaller than Paillier (Section 6).

5 Applications
An important question is whether Seabed supports a wide
range of big data analytics applications. To understand
this, we performed three studies. First, we systematically
analyzed two common interfaces that BI applications use
at the back-end: MDX (the industry standard) and Spark.
Second, we evaluated a month-long query log made on a
custom-designed advertising analytics OLAP platform to
determine how effectively Seabed can support the func-
tionality of these systems. Finally, we analyzed the TPC-
DS query set. Detailed results of our MDX/Spark anal-
ysis can be found in our technical report [36]. Briefly,
the analysis revealed that Seabed’s functionality support
falls into four categories:
Support fully on the server: Seabed’s encryption tech-
niques can fully support operations with no client sup-
port. Examples of such operations are computing the
sum, average, count, and min.
Support with client pre-processing: Seabed can sup-
port quadratic computation necessary for more complex
analytics such as anomaly detection, linear regression in
one dimension, and decision trees that are supported by
Watson Analytics [8] and Tableau [7]. To support this,
the Seabed client has to compute squared values of the
necessary columns, and encrypt them with ASHE.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 595

Support with client post-processing: All applications
and APIs we studied allow users to specify arbitrary
functions of data. When these functions are complex,
Seabed cannot perform them at the server and data has
to be post-processed at the client. This is similar to how
Monomi splits queries into server- and client-side com-
ponents.

Support with two client round-trips: Some queries
require the client to compute an intermediate result, re-
encrypt it and send it back to the server for further pro-
cessing.

Table 4 shows the numbers of queries that fall into
these categories for the three query sets we analyzed.
We analyzed the MDX API/TPC-DS query set manu-
ally; for the ad analytics query set, we used heuristics
based on the query structure. For Ad Analytics and TPC-
DS, about 75-80% of the queries can be supported purely
on the server. This implies that these query sets mostly
use simple aggregation functions. About 20-25% need
client-side support. The TPC-DS query set and MDX
API have a few queries (5-15%) that require two round-
trips.

6 Evaluation
In this section, we report results from our experimental
evaluation of Seabed. Table 5 summarizes the datasets
used in our experiments. We evaluate the system with
microbenchmarks (Synthetic), an advertising analytics
data workload and query set (AdA), and the AmpLab Big
Data Benchmark (BDB).

Our evaluation has two high-level goals. First, we
evaluate the performance benefits of Seabed over sys-
tems that use the Paillier cryptosystem. Second, we
quantify the performance and storage overhead incurred
by Seabed as compared to a system with no encryption.

6.1 Implementation and Setup
We built a prototype implementation of Seabed on the
Apache/Spark platform [2] (version 1.6.0). We chose
Spark because of its growing user-base and performant
memory-centric approach to data processing. The server-
side Seabed library was written in Scala using the Spark
API. The Seabed client uses Scala combined with a
C++ cryptography module for hardware accelerated AES
(with Intel AES-NI instructions). We implemented Pail-
lier in Scala using the BigInt class. Data tables are
stored in HDFS using Google Protobuf [4] serialization.
In total, our Seabed prototype consists of 3,298 lines of
Scala and 2,730 lines of C++.

Our experiments were conducted on an Azure HDIn-
sight Linux cluster. The cluster consists of tens of nodes,

each equipped with a 16-core Intel Xeon E5 2.4 GHz
processor and 112 GB of memory. Machines were run-
ning Ubuntu (14.04.4 LTS) and job scheduling was done
through Yarn. In our experiments, we compare the fol-
lowing system setups:
NoEnc: Original Spark queries over unencrypted data,
Paillier: Modified Spark queries over encrypted data;
measures are encrypted using Paillier, and dimensions
with DET and/or OPE, and
Seabed: Modified Spark queries over encrypted data;
measures are encrypted using ASHE, and dimensions
with DET and/or OPE.

For our microbenchmarks, we generated a synthetic
dataset (see Table 5). The NoEnc and Paillier datasets
consist of one column of plaintext integers and 2048-bit
ciphertexts, respectively. The ASHE dataset consists of
two columns: an ID and an integer value encrypted with
ASHE (IDs are contiguous). In order to model predicates
that choose selected rows of a table, we use a parameter
called selectivity that varies between 0 and 1 and use it to
choose each row randomly with the corresponding prob-
ability. Note that this random selection model allows us
to study the various system trade-offs in these schemes,
e.g., the total length of ID lists, and it also enables us
to understand the worst-case behavior. (At first glance,
a query that selects all even or odd rows may appear to
be the worst case for Seabed, since range encoding with
such a non-contiguous set of IDs will double the size of
the resulting ID list. However, in this case, the ID list is
in fact highly compressible because the differences be-
tween consecutive IDs is always two, so stock compres-
sion techniques work very well.)

All experiments, unless otherwise mentioned, used
100 cores and 1.75 billion rows of input data. For end-
to-end results, we place the client in one of the nodes
in the same cluster as the server. Thus, by default, the
client is connected by a high-speed, low-latency link to
the server (TCP throughput of 2 Gbps). However, we
also perform experiments by varying this bandwidth (us-
ing the tc command).

6.2 Microbenchmark: End to End Latency

We first compare end-to-end latency for the three ap-
proaches with varying input sizes (250 million to 1.75
billion rows). In Figure 6, we show the median latency
after running 10 queries for each input size. For Seabed,
we show two lines: one with selectivity 100% and the
other with selectivity 50%. We shall show in Section 6.4
that the former gives best-case latency while the latter
gives worst-case latency for Seabed. For NoEnc and
Paillier, we use a selectivity of 100% (their performance
is linear with respect to selectivity).

Figure 6(a) shows the results for NoEnc and Seabed.

596 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000

Number of rows (millions)

(a) End-to-end response time (s)
(NoEnc & Seabed)

NoEnc
ASHE(sel=100%)
ASHE(sel=50%)

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

Number of rows (millions)

(b) End-to-end response time (s)
(Paillier)

Paillier

Figure 6: Median latency for aggregation vs data size.

NoEnc has a constant latency of approximately 0.6s.
This is because addition is a simple operation and the
overall latency is dominated by task creation costs.
Seabed’s aggregation is more complex, so latency for
both Seabed selectivity 50% and 100% increases linearly
with the dataset size. Nevertheless, the cost of aggrega-
tion in Seabed is still small even for large datasets, vary-
ing between 1.8s to 11s in the worst-case as the number
of rows increase. On the contrary, Paillier results in a la-
tency of over 1000s when aggregating 1.75 billion rows.

For Seabed selectivity 100%, about 80% of time is due
to server-side compute, 20% is due to client-side decryp-
tion, and network latency is minimal. For Seabed se-
lectivity 50%, the server-side contributes 55% of the la-
tency, the decryption contributes 35% and network trans-
fer contributes the remaining 10%.

We observed occasional stragglers, i.e., tasks that took
longer to complete and delayed the entire job, for all
three systems. The underlying cause of these stragglers
was usually garbage collection being triggered at some
node in the cluster. Paillier jobs took several hundreds of
seconds to complete, so the comparative effect of strag-
glers was small. However, NoEnc and Seabed jobs took
only few seconds at the server, so whenever there was a
straggler task, the delay was more pronounced.

6.3 Microbenchmark: Server Scalability
One important aspect of big data systems is how they
scale with larger clusters. Since using a larger cluster
can only speed up the server side, we consider server-
side latency as we evaluate Seabed’s scalability. Fixing
the dataset at 1.75 billion rows, we varied the number
of cores from 10 to 100. Figure 7 shows how Seabed,
NoEnc and Paillier scaled with the number of cores.
NoEnc reached its best latency, which is approximately
1s, with 20 cores. Both Seabed selectivity 100% and
Seabed selectivity 50% achieved their best latency of
1.35s and 8.0s respectively with only 50 cores. Even
with 100 cores, Paillier’s server latency was close to
1000s, which is more two orders of magnitude higher

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

Number of workers (cores)

(a) Server-side latency (s)
(NoEnc & Seabed)

NoEnc
Seabed - sel=100%
Seabed - sel=50%

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

Number of workers (cores)

(b) Server-side latency (s)
(Paillier)

Paillier

Figure 7: Median latency for aggregation vs cores.

than Seabed’s. This implies that, for large datasets, Pail-
lier would require increasing the number of cores by or-
ders of magnitude in order to achieve latencies that are
comparable to Seabed. Seabed’s overhead over NoEnc
primarily comes from managing the ID lists. Next, we
look into this in more detail.

6.4 Microbenchmark: Seabed Overhead
In this section we examine the server-side overheads in-
curred by Seabed’s ASHE and the use of OPE.

ASHE list construction: For ASHE, the server man-
ages ID lists using a variety of compression techniques
(Section 4). In this experiment, we show how these com-
pression techniques perform. The bitmap algorithms per-
formed poorly, so we omit them here for brevity. We var-
ied selectivity from 10% to 100%, and we measured the
size of the ID list and the server-side response time of the
query. We report the results in Figure 8(a) and (b).

Figure 8(a) suggests that range encoding is very ef-
fective in bounding the length of the ID list: without it,
the size of ID list would keep increasing as the selec-
tivity of a query increases, whereas with ranges the list
size starts decreasing after selectivity 50%. After this,
IDs start to become more dense and therefore more con-
secutive, leading to best-case compression at selectivity
100%. We can also see that the combination of VB and
Diff-encoding is very effective in reducing the size of the
ID list, and Deflate compression [6] further reduces the
size of the list.

The performance hit incurred by each encoding
method is depicted in Figure 8(b). To our advantage,
we found that, in all cases except with Deflate optimized
for high compression ratio, the better-performing algo-
rithms also provided more compressed ID lists. Based
on the above, we picked the following combination of en-
codings as the ID list construction algorithm in Seabed:
Range-encoding, VB encoding, Diff-encoding, and De-
flate compression (optimized for speed). This is what we
used for all the other experiments.

OPE: The OPE scheme we use introduces some over-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 597

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

(a) Result size (GB) vs selectivity (%)

Ranges & VB
+Diff

+Deflate(Compact)
+Deflate(Fast)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

(b) Response tiem (s) vs selectivity (%)

Ranges+VB
+Diff

+Deflate(Compact)
+Deflate(fast)

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

(c) Response time (s) vs selectivity (%)

Aggregation
+OPE selection

Figure 8: Result size and response time vs selectivity over 1.75 billion rows.

0
300
600
900

1200
1500
1800
2100

10 100 10000 1000000

R
e
s
p
o
n
s
e
 t
im

e
(s

)

(a) Group size

NoEnc
Paillier

Seabed
Seabed - optimized

0

3

6

Q1A Q1B Q1C

R
e
s
p
o
n
s
e
 t
im

e
(s

)

(b)

NoEnc
Seabed
Paillier

0

300

600

Q2A Q2B Q2C Q3A Q3B Q3C Q4

R
e
s
p
o
n
s
e
 t
im

e
(s

)

(c)

NoEnc
Seabed

Paillier

Figure 9: (a) Microbenchmark results for group-by queries. (b-c) Response time for the Big Data Benchmark queries.

head because comparison between OPE ciphertexts is
not as fast as comparing two plaintext integers. This is
because OPE comparison involves searching for the first
bit position where two 64-bit integers differ.

To measure the cost of OPE, we used the same syn-
thetic dataset as for ASHE with 1.75 billion rows, but
we added one more integer column encrypted with OPE.
We repeat the selectivity experiment above, but with the
query performing an OPE comparison. Figure 8(c) in-
dicates that OPE introduces more overhead, of about a
factor of 5s, compared to the ASHE ID list construction.

6.5 Microbenchmark: Group-by
So far, we have evaluated only simple aggregation
queries that involved minimal network communication:
each Spark worker computes a sum and a compressed ID
list per partition, and the reducers concatenate the lists
into the final result. While aggregation is a major com-
ponent of analytical query workloads, many queries also
use the group-by operation, which causes more data to
be shuffled across workers. In this section, we examine
how Seabed performs for queries that involve group-by.

For this experiment, we used the synthetic dataset
from the previous sections, but we added one more inte-
ger column. We then aggregated the value field while do-
ing a group-by on the new column. We varied the num-
ber of groups from 10 to 1 million; Figure 9(a) shows the
results.

The Seabed line shows the performance we get when
we use VB and Diff-encoding for group-by queries. A
very small number of groups in the result (10 in Fig. 9(a))

leads to increased latency because of the bandwidth bot-
tleneck described in Section 4.5. The Seabed-optimized
line shows that we can effectively deal with this ineffi-
ciency by artificially increasing the number of groups to
100 (Section 4.5).

Since all IDs are included in the result, Seabed group-
by queries involve a significant amount of data shuffling.
As a consequence, the benefits Seabed enjoys when com-
pared to Paillier are lower. Yet, Seabed (optimized) does
seem to be faster than Paillier by 5x to 10x. As the num-
ber of groups increases, Seabed’s gain over Paillier drops
from 10x to 5x. This is because the network shuffle time
becomes a more significant part of the server response
time. This indicates that Seabed will be less effective for
group-by queries with a huge number of groups (hun-
dreds of millions), something we observe in Section 6.6.

6.6 Ad-Analytics Workload
To assess the performance of Seabed on real-world data
and queries, we evaluated it using the AmpLab Big Data
Benchmark [1] and using a real-world large-scale adver-
tising analytics application. We begin with a discussion
of the latter.

For this series of experiments, we used data from an
advertising analytics application deployed at an enter-
prise. This application is used by a team of experts for
analytical tasks such as determining behavioral trends of
advertisers, understanding ad revenue growth, and flag-
ging anomalous trends in measures such as revenue and
number of clicks. The data characteristics are shown in
Table 5. We also obtained a set of queries that were per-

598 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400

(a) Query response time (s) CDF

Plain
Seabed

Pailier
1

10

100

Col1 Col4 Col7 Col10

(b) Storage overhead

SPLASHE
En.SPLASHE

Figure 10: Seabed on the Ad Analytics workload: (a)
query response-time CDF and (b) storage overhead due
to SPLASHE.

formed for this application; this set consists of 168,352
queries issued between Feb 1, 2016 and Feb 25, 2016.
The queries are all aggregations that calculate sums of
various measures while grouping by timestamp (hour-of-
day). The number of groups in a typical query is quite
small, varying between 1 and 12 in most cases.

Performance: We first evaluated Seabed’s performance
on this dataset. We pick a set of 15 queries: five queries
each for groups of size 1, 4, and 8. We ran each query
ten times, and we calculated the median response time
per query. All experiments were run with 100 cores.

Figure 10(a) shows the cumulative distribution func-
tion of response times for NoEnc, Seabed and Paillier.
Seabed’s response time ranges from 1.08 to 1.45 times
that of NoEnc. The median response time for Seabed
is 17.8s, whereas for NoEnc it is 13.8s. Thus Seabed’s
response time is only 27% higher than NoEnc’s. On
the other hand, the median response time for Paillier is
6.7× that of Seabed. To understand this result in more
detail, we looked at the characteristics of the query re-
sponses. The average number of rows aggregated for a
query across all groups was 210 million, the average size
of the ID list was only 163.5KB, and the average number
of AES operations required for decryption was roughly
26,000. This shows that there is a lot of contiguity of IDs
in the ASHE ciphertext lists. Therefore, while queries
could theoretically choose rows at random and thus cre-
ate huge ID lists, our real-world dataset shows that this
does not necessarily happen in practice: the data is stored
in a certain order, and Seabed benefits from that order.

In all our experiments, the Seabed client used a high-
bandwidth link to connect to the server. To measure
the effect of lower-bandwidth and higher-latency links,
we artificially changed the network bandwidth/latency
between server and client to 100Mbps/10ms and
10Mbps/100ms. This increased the median response
time by only 1% in the former case and 12% in the latter
case, as the ID lists that need to be transferred are quite
small.

Storage: We also used this dataset to quantify
SPLASHE’s overall storage overhead. Through conver-
sations with operators, we determined that 10 out of 33
dimensions and 10 out of 18 measures require encryp-
tion. We used the procedure outlined in Section 3.4 to
calculate the storage overhead for these 10 dimensions.

Figure 10(b) shows the cumulative storage overhead
for each of the 10 dimensions in our dataset, sorted by
the number of unique values in the dimension. The graph
shows that if we restrict the storage overhead to a fac-
tor of two, we can encrypt only one dimension with Ba-
sic SPLASHE, whereas we can encrypt two dimensions
with Enhanced SPLASHE. With a storage overhead of
three, we can encrypt only three dimensions with Ba-
sic SPLASHE, whereas we can encrypt 6 with Enhanced
SPLASHE. In this case, roughly 92% of all queries in-
volve at least one column that uses enhanced SPLASHE.

6.7 AmpLab Big Data Benchmark

The AmpLab benchmark includes four types of queries
(scan, aggregation, join and external script). Some of
them come in different variants based on the result/join
size, so there are ten queries in total. For this experi-
ment we used 32 cores and loaded the entire Big Data
Benchmark dataset (table 5) into the workers’ memory.
We measured the time to perform the query and store
the results back into cache memory. Since the Big Data
Benchmark is not designed for interactive queries, most
of the result sets are huge and cannot fit into one ma-
chine’s memory. Hence, for this section we do not mea-
sure the client-side cost of any of the compared systems.

We had to make a few simplifications to the query set
in order to support it. Queries 2 and 4 require substring-
search over a column and a text file, respectively. Exist-
ing searchable encryption techniques do not efficiently
support this operation. Hence we simplified query 2 by
matching over deterministically encrypted prefixes, and
we simplified query 4 by keeping the text file as plain-
text. Query 3 involves sorting based on aggregated val-
ues; since this can only be done on the client, and given
that we measured only server-side overhead in this ex-
periment, we omitted the sorting step.

Figure 9(b) shows the results. Query 1 does not use
group-by or aggregation, so all tested systems had much
faster response times. Both Seabed and Paillier were
slower than NoEnc because of OPE overheads. On the
remaining queries Seabed was consistently faster than
Paillier, though not as much as we had shown in Sec-
tions 6.2 and with the Ad Analytics workload. This is
because the queries results contained millions of groups
and, as we saw in Section 6.5, Seabed is slower on result
sets with a very small or a very large number of groups.
Nevertheless, the results show that Seabed is better than

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 599

Paillier even for these workloads and is close to NoEnc
performance for most queries.

7 Related Work
Homomorphic Encryption. Homomorphic encryption
allows computations to be performed on encrypted data
such that the computed result, when decrypted, matches
the result of the equivalent computation performed on
unencrypted data. The first construction of a fully homo-
morphic scheme that allows arbitrary computations on
encrypted data was shown in [23]. However, fully ho-
momorphic schemes are far from practical even today.
For example, the amortized cost of performing AES en-
cryption homomorphically is about 2s [25] but this is still
108 times slower than AES over plain text (Section 4).

There are also partially homomorphic schemes that al-
low selected computations on encrypted data. For exam-
ple, Paillier [35] allows addition of encrypted data while
BGN [16] supports one multiplication and several ad-
ditions. However, these schemes incur significant cost
in terms of both computation and storage space. Algo-
rithms to reduce storage overhead by packing multiple
integer values into a single Paillier encrypted value are
proposed in [22] and implemented in [41].

Encrypted databases. CryptDB [37] leverages par-
tially homomorphic encryption schemes to support SQL
queries efficiently over encrypted data, and Monomi [37]
introduced a split client-server computation model to
extend support for most of the TPC-H queries over
encrypted data. However, as we show in this paper,
the partially homomorphic encryption schemes used in
CryptDB and Monomi are not efficient enough to sup-
port interactive queries when applied to large datasets.

Trusted hardware. Hardware support for trusted com-
puting primitives, such as Intel SGX [32], secure co-
processors [27], and FPGA-based solutions [9], are avail-
able today. These solutions allow client software to ex-
ecute in the cloud without providing visibility of client
data to the cloud OS. Several prior systems – such as Ci-
pherbase [9], TrustedDB [11], M2R [21] and VC3 [38]
– rely on secure trusted hardware to provide privacy-
preserving database or MapReduce operations in the
cloud.

The use of trusted hardware has the potential to pro-
vide secure computations at minimal performance over-
head. However the client has to trust that the hardware is
free of errors, bugs, or backdoors. It is difficult to con-
firm that this is indeed the case, since errors can be intro-
duced in both the design of the hardware and in the fab-
rication process, which is frequently outsourced [28]. In
fact, hardware backdoors have been found in real-world
military-grade hardware chips [39], and hardware trojan
detection is an active research field in the hardware com-

munity [14]. We believe that it is useful to develop alter-
natives that rely only on cryptographic primitives.
Frequency attacks on property-preserving encryp-
tion. Property-preserving encryption schemes by defini-
tion leak a particular property of the encrypted data. For
example, deterministic encryption [12] leaks whether
two ciphertexts are equal, and order-preserving encryp-
tion [15] leaks the order between the ciphertexts. Naveed
et al. [33] used auxiliary information and frequency anal-
ysis to show that one can infer the plain text from ci-
phertexts that have been encrypted using such property-
preserving encryption schemes.

8 Conclusion
We have described Seabed, a system for performing Big
Data Analytics over Encrypted Data. We have introduced
two novel encryption schemes: ASHE for fast aggre-
gations over encrypted data, and SPLASHE to protect
against frequency attacks. Our evaluation on real-world
datasets shows that ASHE is about an order of magni-
tude faster than existing techniques, and that its overhead
compared to a plaintext system is within 45%.

9 Acknowledgements
We would like to thank Sriram Rajamani, Kapil Vaswani
and Chandu Thekkath for helpful suggestions on early
versions of this manuscript. We would also like to thank
the OSDI reviewers for their constructive feedback and
Bryan Ford for shepherding this paper. This work was
supported in part by NSF grants CNS-1513694 and CNS-
1054229.

References
[1] AmpLab Big Data Benchmark. https://

amplab.cs.berkeley.edu/benchmark/.

[2] Apache Spark. http://spark.apache.
org/.

[3] Big data benchmark. https://amplab.cs.
berkeley.edu/benchmark/.

[4] Google Protocol Buffers. https:
//developers.google.com/
protocol-buffers/.

[5] PowerBI. https://powerbi.microsoft.
com/en-us/features/.

[6] RFC - DEFLATE Compressed Data Format Speci-
fication. https://tools.ietf.org/html/
rfc1951.

600 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[7] Tableau Online. http://www.tableau.com/
products/cloud-bi.

[8] Watson Analytics. http://www.ibm.com/
analytics/watson-analytics/us-en/.

[9] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,
D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with cipherbase. In Proc. of
CIDR, 2013.

[10] ARM. ARM Security Technology Building a Se-
cure System using TrustZone Technology. ARM
Technical White Paper, 2009.

[11] S. Bajaj and R. Sion. Trusteddb: A trusted
hardware-based database with privacy and data
confidentiality. IEEE Transactions on Knowledge
and Data Engineering, 26(3):752–765, 2014.

[12] M. Bellare, A. Boldyreva, and A. ONeill. Deter-
ministic and efficiently searchable encryption. In
Proc. CRYPTO, 2007.

[13] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese,
S. Mohapatra, H. Manoharan, and P. Shah. Adtrib-
utor: Revenue debugging in advertising systems. In
Proc. USENIX NSDI, 2014.

[14] S. Bhasin and F. Regazzoni. A survey on hardware
trojan detection techniques. In Proc. IEEE ISCAS,
2015.

[15] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill.
Order-preserving symmetric encryption. In Proc.
EUROCRYPT, 2009.

[16] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating
2-dnf formulas on ciphertexts. In Theory of cryp-
tography, pages 325–341. Springer, 2005.

[17] S. Chambi, D. Lemire, O. Kaser, and R. Godin.
Better bitmap performance with roaring bitmaps.
Software: Practice and Experience, 2015.

[18] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu.
Practical order-revealing encryption with limited
leakage. In Proc. FSE, 2016.

[19] V. Costan and S. Devadas. Intel sgx explained.
Technical report, Cryptology ePrint Archive, Re-
port 2016/086, 2016. http://eprint.iacr.
org.

[20] S. Davenport and R. Ford. Sgx: the good, the bad
and the downright ugly. Virus Bulletin, 2014.

[21] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi,
and C. Zhang. M2r: Enabling stronger privacy in
mapreduce computation. In Proc. USENIX Secu-
rity, 2015.

[22] T. Ge and S. Zdonik. Answering aggregation
queries in a secure system model. In Proc. VLDB,
2007.

[23] C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proc. ACM STOC, 2009.

[24] C. Gentry, S. Halevi, and N. P. Smart. Homo-
morphic evaluation of the aes circuit. In Proc.
CRYPTO, 2012.

[25] C. Gentry, S. Halevi, and N. P. Smart. Homomor-
phic evaluation of the AES Circuit (Updated Imple-
mentation), 2015. https://eprint.iacr.
org/2012/099.pdf.

[26] O. Goldreich and R. Ostrovsky. Software protec-
tion and simulation on oblivious rams. Journal of
the ACM, 43(3):431–473, 1996.

[27] IBM Corporation. IBM Systems cryptographic
hardware products. http://www-03.ibm.
com/security/cryptocards/.

[28] F. Imeson, A. Emtenan, S. Garg, and M. Tripuni-
tara. Securing computer hardware using 3d inte-
grated circuit (ic) technology and split manufac-
turing for obfuscation. In Proc. USENIX Security,
2013.

[29] K. Kambatla, G. Kollias, V. Kumar, and A. Grama.
Trends in big data analytics. Journal of Parallel and
Distributed Computing, 74(7):2561–2573, 2014.

[30] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy.
The unified logging infrastructure for data analytics
at twitter. In Proc. VLDB, 2012.

[31] D. Lemire and L. Boytsov. Decoding billions of in-
tegers per second through vectorization. Software:
Practice and Experience, 45(1):1–29, 2015.

[32] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sav-
agaonkar. Innovative instructions and software
model for isolated execution. In HASP@ ISCA,
page 10, 2013.

[33] M. Naveed, S. Kamara, and C. V. Wright. In-
ference attacks on property-preserving encrypted
databases. In Proc. ACM CCS, 2015.

[34] R. Ostrovsky. Efficient computation on oblivious
rams. In Proc. ACM STOC, 1990.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 601

[35] P. Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Proc. EURO-
CRYPT, 1999.

[36] A. Papadimitriou, R. Bhagwan, N. Chandran,
R. Ramjee, A. Haeberlen, H. Singh, A. Modi, and
S. Badrinarayanan. Big Data Analytics over En-
crypted Datasets with Seabed, Technical Report
MS-CIS-16-08, University of Pennsylvania, 2016.

[37] R. A. Popa, C. Redfield, N. Zeldovich, and H. Bal-
akrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In Proc. ACM
SOSP, 2011.

[38] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud using
SGX. In Proc. IEEE Security and Privacy, 2015.

[39] S. Skorobogatov and C. Woods. Breakthrough sil-
icon scanning discovers backdoor in military chip.
In Proc. International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2012.

[40] R. Sumbaly, J. Kreps, and S. Shah. The big data
ecosystem at LinkedIn. In Proc. ACM ICMD, 2013.

[41] S. Tu, M. F. Kaashoek, S. Madden, and N. Zel-
dovich. Processing analytical queries over en-
crypted data. In Proc. VLDB, 2013.

602 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Non-intrusive Performance Profiling for Entire Software Stacks based on the

Flow Reconstruction Principle

Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, Michael Stumm

University of Toronto

Abstract

Understanding the performance behavior of distributed

server stacks at scale is non-trivial. The servicing of just

a single request can trigger numerous sub-requests across

heterogeneous software components; and many similar

requests are serviced concurrently and in parallel. When

a user experiences poor performance, it is extremely dif-

ficult to identify the root cause, as well as the software

components and machines that are the culprits.

This paper describes Stitch, a non-intrusive tool capa-

ble of profiling the performance of an entire distributed

software stack solely using the unstructured logs output

by heterogeneous software components. Stitch is sub-

stantially different from all prior related tools in that it is

capable of constructing a system model of an entire soft-

ware stack without building any domain knowledge into

Stitch. Instead, it automatically reconstructs the exten-

sive domain knowledge of the programmers who wrote

the code; it does this by relying on the Flow Reconstruc-

tion Principle which states that programmers log events

such that one can reliably reconstruct the execution flow

a posteriori.

1 Introduction

Understanding the performance behavior of distributed

server stacks at scale is non-trivial. Many incoming re-

quests are serviced in parallel, and each such request may

trigger multiple sub-requests on various software compo-

nents spread out over many hosts. For example, a simple

Hive query may involve a YARN Resource Manager, nu-

merous YARN Application and Node Managers, several

MapReduce tasks, and multiple HDFS servers.

Numerous tools have been developed to help identify

performance anomalies and their root causes in these

types of distributed systems. The tools have employed

a variety of methods, all of which have significant lim-

itations. Many methods require the target systems to

be instrumented with dedicated code to collect informa-

tion [1, 2, 9, 11, 24, 26, 27, 34]; as such, they are intrusive

and often cannot be applied to legacy or third-party com-

ponents. Other methods are non-intrusive and instead

analyze already existing system logs; they either use ma-

chine learning approaches to identify anomalies [25, 38]

or they rely on static code analysis [42]. Approaches that

use machine learning techniques cannot understand the

underlying system behavior and thus may not help iden-

tify the root cause of each anomaly. Approaches that

require static code analysis are limited to components

where such static analysis is even possible, and they are

unable to understand the interactions between different

software components.

We present a new approach for obtaining and present-

ing information useful for identifying performance is-

sues and their causes in large distributed server stacks.

Our method focuses on objects, their interactions, and

their hierarchical relationships. Using pattern matching

techniques on existing logs alone, we are able to iden-

tify which objects are participants in each logged event,

which objects are of the same type, and how objects of

different types relate to one another, allowing one to in-

fer execution structure. Our method is non-intrusive and

does not require static code analysis, yet enables com-

plex cross-component performance analysis regardless

of the programming languages used.

We have created a tool that extracts information from

standard logs and is capable of visually displaying in-

dividual objects over their lifetimes showing how and

when objects interact with each other. The gathered in-

formation on object relationships allows our tool to ini-

tially display high-level object instances (e.g., a Hive

query) that can then be drilled down to view lower-level

instances (e.g., HDFS blocks, MapReduce tasks, or con-

tainers). This hierarchical approach to displaying in-

formation is critical given the overwhelming number of

events captured in logs and the number of objects in-

volved. With a set of realistic sample scenarios, we show

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 603

in Section 5 that such a tool can be useful for identifying

performance anomalies and their root causes. Section 2

provides a motivating example.

This paper makes the following specific contributions:

• Our approach is the first to be able to construct a sys-

tem model of an entire software stack without any

built-in domain knowledge.

• We propose the first non-intrusive method that enables

diagnosis of complex cross-component failures.

• Our method focuses on objects, their relationships and

interactions as a way to deal with complexity (as op-

posed to focusing on events). Complexity is managed,

for example, by initially displaying only high-level ob-

jects until a user decides to drill down on target objects.

Our approach has two limitations. Firstly, it is not

able to directly identify causal relationships between

events. However, we show that having this information is

not necessary to debug complicated performance issues.

Secondly, the efficacy of our approach relies on the qual-

ity of logging in the analyzed system. Specifically, our

approach relies on the Flow Reconstruction Principle:

programmers will output sufficient information to

logs so as to be able to reconstruct runtime execu-

tion flows after the fact;

and more specifically:

programmers will insert, for each important event, a

log printing statement that outputs the identifiers1 of

all relevant objects involved with the event in order

to be able to reconstruct execution flows a posteriori.

Inserting such log statements is a widely followed prac-

tice. As we show in Section 5, Hive/Hadoop, Spark,

OpenStack, and even syslog [37] logs exhibit these prop-

erties. Many object identifiers, like process ID and thread

ID, are automatically output by the underlying logging

libraries for each event [21, 30, 35, 37].

The Flow Reconstruction Principle applies because a

post mortem analysis is typically performed after each

failure and the programmer will be asked to reconstruct

what exactly transpired up to the point of failure in order

to identify the root cause. This is non-trivial given the

amount of concurrency and parallelism prevalent in scal-

able distributed server stacks. Hence, programmers will

insert log statements to allow them to reconstruct how

the failure occurred. Specifically they will:

• log a sufficient number of events — even at default

logging verbosity — at critical points in the control

1In this paper, ‘identifier’ refers to the variable value that can be

used to differentiate objects. Examples of identifiers include thread ID,

process ID, file names, and host names. Examples of non-identifiers

include the value of a counter or CPU usage statistics. Note that the

counter itself is an object, but its value is not an identifier because it is

not intended to be used to differentiate different counter instances.

path so as to enable a post mortem understanding of

the control flow leading up to the failure.

• identify the objects involved in the event to help differ-

entiate between log statements of concurrent/parallel

homogeneous control flows. Note that this would not

be possible when solely using constant strings. For

example, if two concurrent processes, when opening

a file, both output “opening file”, without additional

identifiers (e.g., process identifier) then one would not

be able to attribute this type of event to either process.

• include a sufficient number of object identifiers in the

same log statement to unambiguously identify the ob-

jects involved. Note that many identifiers are naturally

ambiguous and need to be put into context in order to

uniquely identify an object. For example a thread iden-

tifier (tid) needs to be interpreted in the context of a

specific process, and a process identifier (pid) needs to

be interpreted in the context of a specific host; hence

the programmer will not typically output a tid alone,

but always together with a pid and a hostname. If the

identifiers are printed separately in multiple log state-

ments (e.g., hostname and pid in one log statement and

tid in a subsequent one) then a programmer can no

longer reliably determine the context of each tid be-

cause a multi-threaded system can interleave multiple

instances of these log entries.2

Programmers have a key advantage when using log

messages to reconstruct the paths taken by the system

when servicing requests: they can interpret the meaning

of constant strings, and many identifiers contain string

sequences that have meaning to the programmer. An

automated tool does not have this advantage. As such,

we disregard constant strings and do not attempt to ex-

tract semantics from object identifiers. Instead we ex-

tract information about objects by analyzing various pat-

terns that exist in the logs. Our approach consists of the

following five steps: (1) extract from the log messages

the object identifiers; (2) associate each extracted object

identifier with an object type; (3) identify how each ob-

ject type is related to the other object types with respect

to participating in the same event; (4) identify the specific

object instances that are involved in each event; and (5)

identify execution structure and hierarchy between ob-

jects. Using the extracted information, we are able to

display the hierarchy of objects in play when servicing

requests. We are also able to visually display objects

along a timeline, as shown in the next section.

With the extracted hierarchy information, the visual

display initially shows only the highest-level objects,

2 Note that the validity of this principle hinges on each log state-

ment being thread safe. All of the widely used logging libraries we

examined, including syslog [37], log4j [21], java.util.logging [16],

SLF4J [35], log4cpp [20], Boost.log [5], and Python’s logging mod-

ule [30] are thread-safe.

604 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

but the user can selectively drill down incrementally by

clicking on any of the objects of interest to expose more

details at the lower-level. This enables identification of

performance bottlenecks and analysis of potential root

causes. A controlled user study showed that with Stitch,

developers were able to speed up the analysis and debug-

ging process by a factor of 4.6 compared to when they

were restricted to using raw logs only. Our evaluation

of how well Stitch is able to reconstruct a system model

from logs showed that Stitch could do so with 96% accu-

racy when applied to Hive stack, Spark stack, and Open-

Stack logs produced by 200 nodes as well as logs from

our production server stacks.

2 Motivating Example

We demonstrate the usefulness of Stitch using a real-

world, user reported performance anomaly [31] that

manifests itself across multiple software layers. Some

Hive users reported that they occasionally experienced

much longer than normal job completion times. We re-

produced the anomaly on a three node cluster. We evalu-

ated Stitch’s effectiveness in a controlled user study com-

prising 14 experienced programmers, where half of the

users were asked to debug with Stitch while the other

half only had access to the raw logs. They were given 45

minutes. (Section 5.1 provides more details of the user

study and other cases we used.)

On average, the users who did not use Stitch spent 38

minutes debugging this case whereas Stitch users only

spent 12 minutes – a speedup factor of 3. In fact, six

of the seven users not using Stitch failed to diagnose the

anomaly whereas all seven Stitch users were successful.

We first describe the users’ experiences debugging with-

out Stitch before discussing how Stitch helps.

Debugging without Stitch. Users in this control group

immediately started grep’ping, awk’ing, and perl’ing the

log files. Primarily, they took one of two approaches:

• “Bottom-up,” where they searched for keywords such

as “Error”, “Warn”, or “slow”, or

• “Top-down,” where they tried to understand the high-

level hierarchy of the system before focusing on a par-

ticular lead.

The users who took a bottom-up approach almost en-

tirely ended up in a wild-goose chase. For example,

searching for “Error” and “Warn” returned log messages

about non-zero container exit codes and failed container

deallocations, neither of which pertained to the root

cause. Three users stayed on this path with tunnel-vision,

eventually reaching the time limit (45 minutes) without

having gotten anywhere close to the root cause.

The three users who took a top-down approach got

closer to finding the root cause, but none of them were

Figure 1: Stitch’s timeline graph. Each line represents an ob-

ject with its IDs listed in the left panel. Users can drill down to

objects at the next level by clicking on the object. Each circle

in the right panel represents an individual event, and its color

indicates the node where the corresponding log message was

output. Only two out of many queries are shown.

Figure 2: Stitch’s timeline graph expanded to show more lev-

els of the hierarchy. Clearly visible is that user1’s jobs start

processing as soon as user3 releases its containers. The ver-

tical lines show the interactions among objects, which are in-

ferred from the events that included multiple objects.

able to identify it within the time limit. These users

started by examining the latency of each Hive query in

order to identify the slowest one. However, drilling down

further proved to be daunting: users needed to follow

the control path from Hive to the MapReduce layer to

identify the map and reduce tasks created to process the

query, then they had to carefully compare the timestamps

of each task’s first and last log message to identify the

task-level bottleneck.

Even if the user could identify the slowest map/reduce

task, the task’s numerous interactions with other compo-

nents makes it even more difficult to determine why it is

slow. For example, a grep on particular (slow) map task

may return over 500 log messages concerning its deal-

ings with YARN containers, HDFS blocks, etc. Stitch

serves to automate this process, freeing the user to focus

on debugging rather than reconstructing the request.

Debugging with Stitch. Figure 1 shows Stitch’s web-

based GUI for this case. Objects are organized hierarchi-

cally allowing users to understand the system’s structure

as they drill down on each object. The event timeline

shows the events where the object ID appeared such that

the first and last event can be used to infer the object’s

lifetime. Thus, a user can immediately determine that

Query “0437” has the longest execution time and drill

down to investigate.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 605

Figure 2 shows the interface following the expansion

of both queries down to the level of map/reduce tasks.

Under each query is the YARN application3 created to

process it, and under each application are the map/reduce

task attempts and containers spawned to process the re-

quest. It shows that user1’s Query 0437 has attempts that

were created early on but only received containers much

later. This allocation seems to correspond with the re-

lease of a container in user3’s Query 0301, suggesting

allocation was being serialized across users.

This serialization was caused by a bug in YARN’s Ca-

pacity Scheduler which incorrectly limited all users’ re-

source usage whenever a single user reached his or her

limit. The study participants were not required to find

this bug in the source since the study was limited to in-

formation that could be garnered from the logs alone. In-

stead they were only asked to point out that the serialized

container allocation being the cause, which is conceiv-

ably the key step for the developers to diagnose the bug.

3 System Stack Structure Graph

In this section, we describe the algorithm Stitch uses to

extract information from the logs necessary to identify

objects, their interactions and their hierarchical relation-

ships. The algorithm outputs a System Stack Structure

(S3) Graph – a directed acyclic graph (DAG), where each

node represents an object type and each directed edge

captures a hierarchical relationship between a high-level

object type (parent) and a low-level object type (child).

We treat each logged event e as a set of identifiers,

ide1..iden. We extract object identifiers by disregard-

ing static substrings and applying a number of heuris-

tics; e.g., we disregard variables preceded by common

non-identifier types (e.g., “size”) or succeeded by units

(e.g., “ms”). How we extract IDs may seem somewhat

ad hoc, but it works; ID parsing is considered a solved

problem in the industry using tools such as Splunk [36],

VMWare LogInsight [22] or Logstash [23]. Examples of

IDs we extract this way include machine IP addresses,

process IDs, thread IDs, and filenames. Note that the ex-

tracted IDs are often ambiguous until they obtain a con-

text within which they can be interpreted; e.g., a process

ID is unambiguous only if interpreted within the context

of a specific host.

Each identifier is of a type, which is the type of the

object it represents (e.g., a process, a thread, an IP ad-

dress, a host name). In this section we represent identi-

fiers in lowercase and their types in uppercase; e.g., both

host1 and host2 are of type HOST. Stitch identifies the

type by applying a number of heuristics that identify, for

3Stitch identifies the YARN application ID as interchangeable with

the MapReduce job ID.

example, common static strings surrounding identifiers,

common static substrings within identifiers, or the struc-

ture of the identifiers. Note that Stitch does not attempt

to understand or identify what the actual type is (i.e., IP

address, pid, filename, etc.), but simply differentiates be-

tween types abstractly (i.e., TY PEA, TYPEB, TYPEC,

etc.).

We say that two objects, obji and obj j, are correlated,

represented as obji ∼ obj j, if both objects were partic-

ipants in the same logged event, meaning both of their

IDs appeared in the same log message. We further de-

fine that obji subsumes obj j, or obji ⊢ obj j, if and only

if: (1) obji ∼ obj j, and (2) obj j is not correlated with any

other object of the same type as obji. For example, in

Hive, user ui subsumes query qk because ui will submit

many different queries (including qk), yet two queries

with the same name will not typically be submitted by

different users since each query is assigned a globally

unique ID based on its timestamp and global order.

For all of the object types we identified, T1..t , we

categorize the relationship between each possible pair

(TI ,TJ 6=I) as one of (i) empty, (ii) 1:1, (iii) 1:n, or

(iv) m:n. We use this categorization to, in subsequent

steps, help identify objects unambiguously and to iden-

tify the system stack object structure. The relationship

is empty if object IDs of the two types never appear

in the same log message. The relationship is 1:1, i.e.,

TI ≡ TJ , if it is not empty, and ∀ obji ∈ TI ,∀obj j ∈
TJ,obji ∼ obj j ⇒ (obji ⊢ obj j) ∧ (obj j ⊢ obji); for ex-

ample, IP_ADDR ≡ HOST if there is no IP remapping.

It is 1:n, i.e., TI → TJ , if it is not empty or 1:1, and

∀obji ∈ TI ,∀obj j ∈ TJ,obji ∼ obj j ⇒ obji ⊢ obj j. Fi-

nally, the relationship is m:n, i.e., TI ⊲⊳ TJ , if and only

if ∃obji ∈ TI,∃obj j ∈ TJ , s.t. obji ∼ obj j while obji 6⊢ obj j

and obj j 6⊢ obji.

The size of the logs being used for the analysis needs

to be sufficiently large for us to be able categorize rela-

tionships correctly. If the size is too small, then some

of the type relationships might be miscategorized; e.g.,

(USER, QUERY) will be categorized as 1:1 instead of

1:n if the log spans the processing of only one query.

In contrast, logs spanning too large a time frame may

also cause miscategorizations, at least theoretically; e.g.,

(USER, QUERY) might be categorized as m:n if the

query ID wraps around. However, mature distributed

systems like Hadoop, Spark, and OpenStack use univer-

sally unique identifier (UUID) [18] libraries to assign key

identifiers. Therefore, the likelihood of identifier reuse is

extremely low [18].

We can intuitively draw certain conclusions about a

pair of identifiers based on the relationship between their

types. For example, two identifiers with types in a 1:1

relationship indicate that one might be able to use the

two identifiers to identify an object interchangeably. Two

606 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

identifiers with types in an m:n relationship suggests that

their combination is required to unambiguously identify

an object (as discussed below). Finally, two correlated

objects with IDs of types in a 1:n relationship indicate a

hierarchical relationship between the objects they repre-

sent; i.e., one likely created or forked the other.

To illustrate how the relationship between object types

can be useful, consider the example log snippet in Fig-

ure 3, which is the slightly simplified log output when

processing two Hive queries. Messages 2-25 are output

when processing query_14 submitted by Hive. YARN

assigns it to an application (app_14), which in turn

spawns two map and two reduce task attempts. Each at-

tempt is dispatched and executed in a container. After

the map phase, each reduce attempt creates two fetch-

ers. Each fetcher is a thread that shuffles output from

map attempts. Messages 27-33 show events related to

query_15 where map and reduce attempts fail and get re-

assigned to different containers. It also shows that the

same container can be reused by multiple attempts.

Figure 4 shows the relationships between each pair of

object types. We call this the Type Relation graph. We

explain a few of the relationships. First, while a user

can submit multiple queries, a query is always uniquely

associated with a single user; hence USER → QUERY,

a 1:n relationship. Further, the application ID (e.g., 14

in “app_14”) is included as part of both the identifiers

of the MapReduce attempts and the containers spawned

by this application; hence APP → ATTEMPT_M, APP

→ ATTEMPT_R, and APP→ CONTAINER. Note that

Stitch is able to parse map attempts as being of a

different type than reduce attempts because they have

different “schemas” (“attempt(.*)_m_(.*)” versus “at-

tempt(.*)_r_(.*)”). The details of our log parser will be

discussed in Section 4. ATTEMPT_R has an m:n rela-

tionship with CONTAINER because a container can be

reused by multiple attempts while an attempt can also be

assigned to multiple containers, given container failures.

Algorithm 1 shows how we further identify objects

unambiguously given that some of the identifiers used

to refer to objects are ambiguous. The algorithm takes

two inputs: the Type Relation graph and the entire set of

EVENTS. Each event, E, is represented as a set of object

types based on the IDs found in the event log message.

For example, E might be {USER, QUERY, APP}, as ex-

tracted from line 2 in Figure 3. The algorithm converts

the Type Relation graph into a System Stack Structure

graph, or S3 graph, in a sequence of steps. Each node in

the graph represents an object type along with its signa-

ture. This signature is the set of object identifier types

defined by the requirement that an ID of each type must

be present in order to unambiguously identify the object.

We start by setting the signature of every node in the

Type Relation graph to the type of the object. The algo-

1 Hive user1 login successfully

2 Hive user1 submits query_14 : app=app_14

3 RM Application app_14 is submitted

4 AM app_14 created task attempt14_m_0

5 AM app_14 created task attempt14_m_5

6 AM app_14 created task attempt14_r_0

7 AM app_14 created task attempt14_r_1

8 RM app_14 allocated container14_2

9 RM app_14 allocated container14_3

10 RM app_14 allocated container14_8

11 RM app_14 allocated container14_9

12 AM Dispatch attempt14_m_0 on container14_2

13 AM Dispatch attempt14_m_5 on container14_3

14 AM Dispatch attempt14_r_0 on container14_8

15 AM Dispatch attempt14_r_1 on container14_9

16 MR container14_8 creates thread fetcher1

17 MR container14_8 creates thread fetcher2

18 MR container14_9 creates thread fetcher1

19 MR container14_9 creates thread fetcher2

20 MR container14_8 fetcher1 shuffle attempt14_m_0

21 MR container14_8 fetcher2 shuffle attempt14_m_5

22 MR container14_9 fetcher1 shuffle attempt14_m_5

23 MR container14_9 fetcher2 shuffle attempt14_m_0

24 RM app_14 finished

25 Hive Ended query_14

26

27 Hive user1 submits query_15 : app=app_15 app_16

28 AM attempt15_m_0 failed on container15_0

29 AM Reassign attempt15_m_0 on container15_7

30 AM Dispatch attempt15_r_1 on container15_8

31 AM Dispatch attempt15_r_2 on container15_8

32 AM attempt15_r_2 failed on container15_8

33 AM Reassign attempt15_r_2 on container15_9

Figure 3: Log snippet output by two Hive queries. The soft-

ware component that output each log message is shown at the

beginning of the line. RM and AM stand for YARN’s Resource

Manager and Application Manager, respectively. MR stands

for MapReduce. Identifiers of objects of different types are

shown in different colors.

ATTEMPT_M

QUERY FETCHERCONTAINER

ATTEMPT_R

APPUSER

Figure 4: The Type Relation graph for the Hive log shown in

Fig. 3. Each node is an object type. A solid arrow represents a

1:n relationship between the source and the destination object

types; a dotted line represents an m:n relationship. There is no

1:1 relationship between types in the Hive log example.

{ATTEMPT_M}

{QUERY} {CONTAINER, FETCHER}{CONTAINER}

{ATTEMPT_R}

{APP}{USER}

Figure 5: S3 Graph of the Hive log snippet shown in Fig. 3.

rithm then goes through the following steps:

Step 1: Merge 1:1 nodes. We first attempt to merge the

nodes that are connected with≡ edges. If two types have

a 1:1 relationship, then the IDs of those types may of-

ten be used interchangeably to represent the same object.

However, this is not always true. For example, YARN

creates a unique url for each reduce task attempt so that

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 607

Algorithm 1: S3 graph construction

Input : G: Type Relation Graph, EVENTS

Output: System Stack Structure (S3) Graph

/* Step 1: merge ≡ nodes in G */

1 foreach connected component C of ≡ relations do

2 foreach subset S: {T1,..Tn} in decreasing size do

3 if ∀i ∈ [1,n],∀ob ji ∈ Ti,

∃ob j1 ∈ T1, ..ob jn ∈ Tn s.t.

ob j1 ≡ ..ob ji ≡ ..ob jn then

4 Node N← merge(T1,T2, ..,Tn);

5 N.sig← hash(T1.sig, T2.sig, .. Tn.sig);

6 replace Ti.sig with N.sig in EVENTS;

7 end

8 end

9 end

10 remove any outstanding≡ edges;

/* Step 2: process ⊲⊳ relations */

11 foreach connected component C of ⊲⊳ relations do

12 S← {all the types in C};

13 foreach E ∈ EVENTS do

14 sig← E ∩S;

15 if ∄ Node n where n.sig = sig then

16 nv← new Node() with nv.sig← sig;

17 if ∃ Node n’ where n’.sig ⊂ nv.sig then

18 add edge n’→ nv;

19 end

20 else

21 mark n;

22 end

23 end

24 remove all unmarked nodes from C;

25 end

/* Step 3: filter non-object-types */

26 foreach Node n do

27 if ∃Node n1,n2 s.t. n1.sig ∩ n2.sig = /0 and

n1.sig ∪ n2.sig ⊆ n.sig then

28 remove n;

29 end

30 end

a user can monitor the progress of this attempt in a web

browser. Consequently, we infer ATTEMPT_R ≡ URL.

However, URL is a generic type, and there can be other

urls that are not related to any reduce attempt. For ex-

ample, every job has its configuration information stored

in an XML file that is referenced by a url. This XML

file url does not appear together with any reduce attempt

in any event. Therefore, we cannot say that URL and

ATTEMPT_R may be used interchangeably. (Note that

Stitch still infers ATTEMPT_R ≡ URL because for ev-

ery pair of reduce attempt (atti) and url (url j) such that

atti ∼ url j, we have atti ⊢ url j and url j ⊢ atti.)

Instead, we only merge those nodes T1,T2, ..Tn in a ≡

connected component whose types can indeed be used

interchangeably (line 3); i.e., when for any obji of type

Ti, there exists obj1 of type T1, obj2 of type T2, ...,

objn of type Tn such that obj1 ≡ obj2.. ≡ objn, where

obji ≡ obj j iff obji ∼ obj j∧obji ⊢ obj j∧obj j ⊢ obji. This

prevents ATTEMPT_R and URL from being merged be-

cause there exist urls, such as the XML file url, that are

not correlated with any reduce attempt. The fact that the

types of the merged nodes can be used interchangeably

indicates they are redundant. To merge {T1, ..Tn}, we

hash their signatures into a single value representing a

new “type”, and we replace every Ti in EVENTS with

this hash value. After this, the outstanding≡ edges, such

as ATTEMPT_R ≡ URL, are removed as the types that

are connected by them are not truly interchangeable.

Step 2: Process m:n nodes. In order to be able to

identify objects unambiguously, we consider combining

types with m:n relationships. The challenge is to de-

termine which types should be combined. For exam-

ple, “HOST”, “PID”, and “TID” (i.e., thread ID) have

an m:n relationship between each pair. While {HOST},

{HOST,PID}, and {HOST,PID,TID} are meaningful

combinations as they unambiguously identify hosts, pro-

cesses, and threads respectively, the combination of

{HOST,TID} is meaningless. To eliminate meaningless

combinations, we consider all of the different combina-

tions the programmers output in the log statements and

only include the type combinations that appear in at least

one log message. The reasoning is as follows: if a com-

bination of identifiers is necessary to represent an object

unambiguously, then the programmer will always out-

put them together. A meaningless combination, such as

{HOST,TID}, will likely never be found alone in a log

message without “PID”, so combinations such as these

are discarded.

Therefore, for each ⊲⊳-connected component, C, we

only consider the type subsets where there exists an E

∈ EVENTS represented by a log message that contains

exactly the types in this subset, but not any type in its

complement set (line 11-25). A node whose type always

appears with other types in the same C is removed at the

end (line 24).

For the Type Relation graph shown in Figure 4, Step 2

creates four new nodes: {CONTAINER, FETCHER},

{CONTAINER, FETCHER, ATTEMPT_M}, {CON-

TAINER, ATTEMPT_R}, and {CONTAINER, AT-

TEMPT_M}. After creating the nodes, we further add

1:n edges from less constrained object types to more con-

strained object types (line 17-19). For example, a →
edge will be added from node {CONTAINER} to {CON-

TAINER, FETCHER}.

Step 3: Filter non-objects. One should note that not

every node created in the previous step is an actual ob-

ject type in the system. Among the nodes that are cre-

608 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ated in Step 2 for the Hive example, only the one whose

signature is {CONTAINER, FETCHER} represents a

true object type, namely a fetcher thread in a container

process. To filter out non-object types, Stitch removes

nodes that are a combination of two existing object

types. Hence, in our example, it would remove {CON-

TAINER, FETCHER, ATTEMPT_M}, {CONTAINER,

ATTEMPT_R} and {CONTAINER, ATTEMPT_M} be-

cause they are combinations of other object types.

Figure 5 shows the S3 Graph constructed by Stitch

from the Hive log. This graph provides a simple model

of the system. Each node is a type of object, and each

edge represents a 1:n relationship, which indicates a hi-

erarchical relationship, such as fork or creation.

Note that the S3 Graph should be cycle free, because

objects do not generally have a circular fork or creation

pattern. If a cycle exists, then it must already have ex-

isted in the Type Relation graph since Algorithm 1 does

not introduce any cycles. Therefore, we first run a cy-

cle detection algorithm on the Type Relation graph. If

a cycle is detected, every 1:n edge in the cycle is con-

servatively changed to an m:n edge. In our experimental

evaluation, however, we never once encountered a cycle.

Generating a graph of object instances with their in-

teractions, like the ones shown in Section 2, from an

S3 graph is merely a pattern matching appliction. Sec-

tion 4.2 describes the algorithm in detail.

4 Implementation

Stitch uses a client-server model. A client runs on all

hosts being monitored to: (1) locate active logs, (2) parse

every log event into a set of object identifiers, and then

(3) send the events to the server. A centralized server

analyzes the events from all clients to build the S3 graph

and instantiates it with object instances.

4.1 Client Implementation

The client, implemented on Linux, runs as a daemon pro-

cess. The interval between the times the client wakes

up is called an epoch. Every time it wakes up, it scans

the /proc file system to find all running processes. The

client then examines each process’ file descriptors to lo-

cate log files. We treat a file as a log if its type (deter-

mined by the file’s magic number) is ASCII text and its

name or a parent directory’s name contains the text “log”.

For each process with an open log file, the client tries

to locate executables of the process (including dynam-

ically linked libraries) by searching through its file de-

scriptors and memory mapped files. For JVM processes,

Stitch also searches the process’ classpath for all .jar,

.war, and .class files. This ensures that executables are

found even if they were already closed by the JVM. Sim-

ilarly, for Python processes, the client identifies the start-

ing script from the shell command (e.g., ./script.py) and

then uses Python’s ModuleFinder package to locate the

remaining scripts in the dependency graph, regardless of

whether they are currently open.

Next, the client extracts all constant strings from each

executable. For ELF executables, we extract constants

from the read-only data segments (i.e., .rodata and .ro-

data1) by treating “\0” as a string terminator. For Java

class files we extract the strings from each file’s con-

stant pool. For Python bytecode, we extract strings from

the co_consts field in the Python code object. Currently,

these are the only executable formats we support.

Parsing logs. The goal of log parsing is to extract the

identifier values and infer their types from each log mes-

sage. If an executable’s constant string contains format

specifiers, then this string can be directly used as a reg-

ular expression, where the specifiers are metacharacters

(e.g., “%d” can be converted to “(\d+)” to extract an in-

teger). We treat the pattern matched by a format specifier

as a variable value.

However, most variable values output to log

messages from Java, Scala, C++, and Python pro-

grams use string concatenation operators; e.g.,

“2016-04-02T00:58:48.734 MongoDB starting :

pid=22925 port=27017 dbpath=/var/lib/mongodb” is

printed by the following code snippet:

l << "MongoDB starting : pid=" << pid

<< " port=" << serverGlobalParams.port

<< " dbpath=" << storageGlobalParams.dbpath;

For these output methods, we use an approach general

to all of the aforementioned languages: for each log

message, any segment that matches a constant string is

treated as static text, leaving only the variable values.

In the example, “MongoDB starting : pid=”, “ port=”,

“ dbpath=” are three of the constant strings parsed from

MongoDB’s executable, leaving “22925”, “27017”, and

“/var/lib/mongodb” as variable values.

Stitch solves this string matching problem with a dy-

namic programming algorithm. Given a log string of

length n, L[0..n−1], let M(i) be the maximum number of

characters in L[0..i] that are matched by constant strings.

Our goal is to find the subset of constant strings that

matches M(n− 1) characters of L in a non-overlapping

manner. To compute this, we first define a function

match() as the following:

match(a,b)=

{

b− a+ 1 if L[a..b] matches a constant

0 otherwise

Now we can iteratively compute M(i):

M(i) =max{match(0, i), max
0≤ j<i

{M(j)+match(j+1, i)}}

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 609

This string matching is only necessary the first time a

log message type is being parsed. In this example, af-

ter parsing the message, the client builds a regular ex-

pression: “MongoDB starting : pid=(\d+) port=(\d+) db-

path=(.*)”. The next time if another message is printed

by the same statement, Stitch can directly match it

against the regular expression. We also use a heuris-

tic to discard any string literals with fewer than three

characters since the executables we evaluated often con-

tained most permutations of all one and two character

strings; using them would miscategorize identifier values

as static text.

Next, Stitch infers the type of each variable. First, the

client expands the variable to include characters within

the word boundary delimited by whitespace. If the ex-

pansion includes static strings, then this “schema” of

constant strings serves as the variable’s type. For exam-

ple, consider this Hadoop log message: “app_14 created

task attempt14_r_0”. Initially, the occurrences of “14”

and “0” are recognized as variables, while “app_”, “ cre-

ated task ”, “attempt”, and “_r_” are constant strings.

Following expansion, the types of these two variables are

“app_(\d+)” and “attempt(\d+)_r_(\d+)”.

If a variable still does not include constant strings af-

ter the expansion, we trace backwards starting from the

variable and use the first matched static text alphabet-

ical word as the type. For example, in the MongoDB

example, the three variables would have the types “pid”,

“port”, and “dbpath” respectively.

Finally, the client uses a pair of heuristics to avoid cap-

turing non-identifier variables. The first heuristic elimi-

nates variables with types that do not end with a noun

since intuitively, identifiers have noun-based types. For

example, in the log, “Slow BlockReceiver write packet

to mirror took 20ms”, the latency variable is eliminated

since the preceding static text, “took”, is a verb. The next

heuristic eliminates variables whose types are common

non-identifiers (e.g., “size”, “usage”, “progress”, etc.).

In practice, these heuristics did not eliminate all non-

identifiers necessitating user-intervention. For example,

“user” sometimes referred to a program’s user-space ex-

ecution time rather than a username. Rather than imple-

menting heuristics for every such corner case, we allow

the user to modify the generated regexes, which is only a

one-time effort for each system.

Network protocol. At the end of each epoch, Stitch

sends the parsed log messages from the last epoch to

the server. The network protocol includes the following

fields: (1) the timestamp of the epoch; and (2) a list of

tuples, each with the format:

<severity, log file, {ID1:type1, ID2:type2, ..}, count>

All log messages from the same log file with the same set

of identifiers and severity (e.g., INFO, WARN, etc.) are

aggregated into a single tuple with the “count” field in-

dicating the number of such log messages. This protocol

message is then sent using Rsyslog [33] since communi-

cation is unidirectional.

The length of an epoch presents a trade-off between

the timeliness of monitoring and the amount of network

traffic. An epoch length of zero will force the client to

stay awake and send parsed log messages one at a time;

a large epoch will “compress” log messages that have

the same set of identifiers within the epoch into a single

tuple. Since log messages often arrive in a bursty man-

ner, even a small epoch can significantly reduce network

traffic. We set the epoch to be one second in our experi-

mental evaluation.

4.2 Server Implementation

The Stitch server is also implemented as a daemon pro-

cess. It consists of two threads: The first matches the

stream of incoming events against the S3 graph to gen-

erate an instantiated S3 graph, henceforth called an S3
i

graph. Each node in the S3
i graph is an object instance,

whose signature is a set of identifier values instead of

types as in the S3 graph. The node also records the set of

events that include the object instance.

For each event, e, we say e instantiates a node, N,

from the S3 graph if the set of identifier types in e is a

superset of those in N’s signature. For example, both

events {app_14} and {app_14, attempt14_m_0} instanti-

ate node {APP}. Initially, when no object instances have

been created, for each incoming event, Stitch checks

whether the event instantiates any of the root nodes in the

S3 graph. If so, Stitch creates an object instance node in

the S3
i graph. For example, event {user1} will cause the

creation of a node in S3
i graph, with signature {user1}.

Once an object instance node has been created in S3
i

graph, for each incoming event, Stitch first checks if it

matches any of the existing S3
i nodes. We say an event,

e, matches a node, n, in the S3
i graph if e’s identifier set is

a superset of n’s signature. If so, e is added to the event

set of n. For each node, n, that e matches, Stitch further

checks if e can instantiate any of the children of node,

N, in the S3 graph (where n is instantiated from N). If

so, Stitch further instantiates the children of N and adds

them as children of n. If one event matches multiple S3
i

nodes that are not on the same path, a link is created be-

tween each node pair, indicating an interaction between

them (Figure 2 in Section 2 showed an example of links

represented as vertical lines between nodes).

Consider the S3 graph for the Hive example shown

in Figure 5. Figure 6 shows the S3
i graph Stitch gen-

erates after analyzing the first five log messages. The

first message instantiates the node “user1”. The second

message matches the first node, instantiates a child node

“query_14”, and then further instantiates node “app_14”

610 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

attempt14_m_0

evt: {4}
user1

evt: {1,2}

query_14

evt: {2}

app_14

evt: {2-5}
attempt14_m_5

evt: {5}

Figure 6: The S3
i graph generated from the first five log mes-

sages in Figure 3. Each node is an object instance. The events

that include the object are also shown on each node.

Name Software components Benchmark

Hive Hive, YARN, MapReduce, HDFS HiBench

Spark Spark, Spark SQL, Hive, HDFS BigBench

OpenStack Horizon, Glance, Nova, Keystone VM cycle

Production CRON, dbus, dhclient, dnsmasq, Common

NetworkManager, ntpd, sshd, su, Linux ops

PostgreSQL

Table 1: The systems we used in evaluation.

as a child of node “query_14”. The third message

matches node “app_14”, but does not instantiate any

new nodes. The fourth and fifth messages match node

“app_14” and then instantiate two nodes with signatures

“attempt14_m_0” and “attempt14_m_5” respectively.

The server’s second thread builds the S3 graph, and

incrementally updates it based on new patterns observed

from incoming events. The thread first updates the Type

Relation graph incrementally based on the observation

that the relationship between two object types can only

be updated in one direction: 1:1→ 1:n→ m:n. Once the

Type Relation graph is up to date, the server rebuilds the

S3 graph using Algorithm 1 and notifies the first thread so

that it always uses the latest S3 graph to build S3
i graph.

Visualization. Stitch’s visualization front-end loads the

S3
i graph as a JSON file and displays each node and

its events as a row in a two-panel layout as shown in

Figure 1. In order to scale to thousands of events per

node, Stitch renders the graph using HTML5 Canvas and

avoids drawing hidden elements where possible. For

each node the user drills-down, Stitch performs a tran-

sitive reduction on the edges between this node and its

children. Performing transitive reduction interactively

like this avoids the overhead of doing it upfront since this

is an O(E) algorithm, where E is the number of edges.

5 Experimental Evaluation

We answer the following questions in evaluating Stitch:

(1) How much time does Stitch save in profiling and de-

bugging real-world systems? (2) Do real-world systems

follow the Flow Reconstruction Principle? (3) How ac-

curate is Stitch in identifying objects and their interac-

tions? (4) What is the performance of Stitch?

We evaluated Stitch using both a controlled user study

and lab experiments. The experiments consisted of us-

Case Description

OpenStack Identify the hierarchy of components in-

volved in creating VM instances.

MapReduce Identify the bottleneck of a job when a re-

duce task was scheduled on a slow CPU.

YARN Debug the anomaly described in Section 2.

Spark Jobs slowed down by 500% because all but

one HDFS datanode went down.

HDFS Jobs slowed down due to a slow network link

which affected HDFS read latency [29].

Table 2: Real-world profiling and debugging tasks we evaluate

with Stitch. The first three are further used in our user study.

ing Stitch to monitor each system and workload listed in

Table 1. In total there are 19 software components, pro-

grammed in C/C++, Java, Scala, and Python. The dis-

tributed system stacks were: (1) Hive stack – consisting

of Hive, YARN, MapReduce, and HDFS – driven by the

HiBench [15] workloads that repeatedly create, query,

and delete tables; (2) Spark stack, with BigBench [12]

used to send queries to Spark SQL, which then submit-

ted them to a Spark cluster that read data from HDFS;

and (3) OpenStack – consisting of four major software

components – driven by our own workload generator.

The generator used 80 concurrent processes to repeatedly

create, boot, suspend/resume, pause/un-pause, and shut-

down each VM at a randomized pace. Each distributed

system workload was run for more than 24 hours on a

cluster of 200 VMs.

The production system was our own 24-node cluster,

used for a variety of daily development workloads. Over

the course of five months, Stitch identified and monitored

nine log-printing components in the system, including

job-scheduling, system-messaging, networking, session-

management, privilege-management, and database utili-

ties. Eight of these components logged using syslog.

5.1 User Study

Ultimately, the value of any debugging tool should be

measured by the amount of time it saves. We evaluated

this in a controlled user study on the first three debugging

and profiling tasks listed in Table 2. They cover some

real-world scenarios where Stitch can be used: (i) under-

standing the object hierarchy of a software stack (“Open-

Stack”); (ii) identifying bottlenecks to debug an anomaly

we experienced in our production cluster that took us a

long time to understand without Stitch (“MapReduce”);

and (iii) debugging the anomaly described in Section 2

(“YARN”). We reproduced each case on a three nodes

cluster. 14 individuals participated in the study including

an experienced system administrator, professional devel-

opers, and both graduate and senior undergraduate stu-

dents. All of them were experienced programmers famil-

iar with Linux utilities such as grep, but their experience

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 611

 0

 10

 20

 30

 40

 50

All OpenStack MapReduce YARN

M
in

ut
es

w/ Stitch
w/o Stitch

Figure 7: The result of Stitch’s user study. The error bars show

a 95% confidence interval.

with OpenStack and Hadoop varied, ranging from “no

familiarity” to “expert developers”. No co-author of this

paper was a participant.

Each participant was given all three cases. Half of

the participants were allowed to use Stitch for two cases

but only logs (and Linux utilities) for the other case.

The other half was assigned the opposite configuration.

As a result, the collective expertise and experience was

evenly spread across the different cases. Before the ex-

periments, we gave each participant a five-minute verbal

introduction to both OpenStack and Hadoop as well as a

five-minute demo of Stitch. The demo was on a simple

MapReduce job and served to familiarize users with the

user interface. We then asked the participants to debug

each case. Since the experiment is a single-blind trial

(i.e., we, the co-authors, knew the answers), we gave the

participants written instructions for each case and then

minimized our interactions with them in order to avoid

any potential influence. A 45 minute time limit was im-

posed on each case.

We marked a case as solved when the user identified

the underlying cause to the degree that the raw logs al-

lowed. A case was marked as unsolved if the user ex-

ceeded the 45 minute time limit. In the OpenStack case,

success meant identifying the components involved in

the creation of a VM instance. For the MapReduce case,

it was to identify which job was slower and that the job

was likely bottlenecked by the machine’s slow CPU. For

the YARN case, it was to identify that the longest query

was bottlenecked waiting for a container to be released

by another user’s query.

Note that this is only a best effort experiment. The

following potential threats to validity should be consid-

ered when interpreting the results. First, there is a poten-

tial bias in the selection of participants, as many of them

were not familiar with the target systems. We note, how-

ever, that a comprehensive study [39] has shown many

real-world debugging tasks are also performed by pro-

grammers unfamiliar with the target system. Another

threat is that a study on just three cases may not be rep-

resentative. We actually started to evaluate a fourth case

(“HDFS” in Table 2) but decided to drop it after two tri-

als (despite the initial results showing the largest time

savings) because the participants became too exhausted

given the complexity of debugging real-world systems

without appropriate tools.

Figure 7 shows the results of user study. On average

users spent 27.3 minutes without Stitch and 5.9 minutes

with Stitch for a 4.6x speedup. An unpaired T-test shows

that the hypothesis “Stitch lowers debugging time” is true

with a probability of 99.99% (P value < 0.0001).

This measured speedup is likely an underestimate due

to the 45-minute time limit we imposed. Among the 21

trials where Stitch was not provided, participants reached

the time limit in eight of them without having found

the issue. This suggests that debugging real-world dis-

tributed systems is indeed a complex task. In contrast, all

of the Stitch users successfully diagnosed the case within

the time limit.

Interestingly, participants using Stitch accidentally

found an anomaly we were not targeting: when debug-

ging the YARN case, some participants noticed that the

map containers seemed to have long idle periods in the

middle of their executions. It turned out that we had in-

serted a sleep call in map tasks so to reproduce the bug.

Once we realized this, we removed the sleep call and in-

stead used a larger input size to reproduce the anomaly.

Fundamentally, Stitch offers a “top-down” approach,

whereas other practices, like “grep”, are “bottom-up”.

While we show that Stitch is effective overall, the user

study also showed that there are cases where a “bottom-

up” approach is more effective. For example, when de-

bugging the YARN case, a participant not using Stitch

diagnosed the anomaly in 10 minutes because he spot-

ted a log message clearly stating that a container could

not be allocated. This suggests a desirable capability

that would enable Stitch to detect some anomalies more

quickly. While a comprehensive solution is beyond the

scope of this paper, simple opportunities exist like high-

lighting events with “ERROR” or “FATAL” verbosity.

5.2 Other Real-world Cases

Table 2 shows two other real-world failures used to eval-

uate Stitch. The Spark failure was an anomaly we per-

sonally experienced. Stitch helped diagnose this failure

by correlating objects along the path from a slow query

all the way to the HDFS file read bottlenecking the query.

The HDFS case is a real-world issue [29] where the

output generated at default verbosity does not provide

sufficient information. At default verbosity, Stitch only

allowed users to detect the fact that HDFS file access was

slow and that a particular datanode was slow, but it was

necessary to increase the logging level to allow Stitch to

help identify a slow network link as the root cause; i.e.,

“DEBUG” logging was necessary to have the per packet

latencies output to the log files.

612 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Log events Identifiers Objects Edges

Instances Types Instances Types Instances Types Accuracy Instance Types Accuracy

Hive 3,981,149 206 915,872 69 295,042 32 90% 401,924 73 87%

Spark 8,203,395 151 3,627,885 56 192,969 31 94% 485,133 60 93%

OpenStack 2,336,227 20 766,203 13 214,822 14 100% 2,196,315 19 100%

Production 312,779 36 123,668 22 8,141 24 100% 16,056 41 98%

Total 14,833,550 413 5,433,628 160 711,034 101 96% 3,099,428 193 95%

Table 3: Accuracy of Stitch’s object reconstruction.

queueFullName
| queueName

YARN scheduler queue

(CommitterEventProcessor_.*),
(application_.* | appattempt_.*

| AMContainer)
AM thread processing job
commit and abort events

(ContainerLauncher_.*),
(application_.* | appattempt_.*

 | AMContainer)

rackName_.*
user | nsid_.* | CID-.* | BP-.*
username | HDFS namespace

| HDFS cluster | HDFS block pool

app_cluster_ts_.* | keyId_.*
YARN RM creation timestamp

| YARN authentication key

WebApp
YARN WebApp URL

tableName
Hive table

Thread-\d+

txId
HDFS transaction

datanodeUuid | srvId
| storageId | DS-.*

HDFS Datanode

ipAddress
| Hostname

filePath

Stage \d+
Hive query stage

task_.*_m_.*container_.*_.* URL

(ContainerLauncher),
(attempt_.*_m_.* | jvm_.*_m_.*)

Container launcher for a map attempt

(ContainerLauncher),
(attempt_.*_r_.* | jvm_.*_r_.*

| task_.*_r_.*)
Container launcher for a reduce attempt

blk_.*, seqno
HDFS block packet with

sequence number

blk_.*
HDFS block

attempt_.*_m_.*
| jvm_.*_m_.*

attempt_.*_r_.* | jvm_.*_r_.*
 | task_.*_r_.*

SocketReader
Hadoop IPC server

reader thread

Hive Object YARN Object MapReduce Object HDFS Object

application_.* | appattempt_.*
| AMContainer | job_.*

tableName,
columnName

filePath,
DFSClient_attempt_.*_r_.*

container_.*_.*,
fetcher#.*

columnName,
container_.*_.*

Hive table column

 tag,
container_.*_.*
Hive operator tag

Operator,
container_.*_.*

Hive query operator

spill, container_.*_.*
Map task spill output

Figure 8: The entire, unfiltered System Stack Structure graph for the Hive stack after applying a transitive reduction. We explain

the object type in italics when necessary. A ‘|’ in the signature indicates that the identifier types can be used interchangeably, while

a ’,’ indicates the types must appear together to unambiguously identify an object. The colors of each node indicate the components

that output its object instance.

5.3 Object Reconstruction Accuracy

Table 3 shows Stitch’s accuracy at identifying objects

across four different system stacks. For each work-

load, we used Stitch to analyze the complete set of logs

without performing sampling. The total number of in-

stances is formidable: there are 14.8 million log mes-

sages, from which Stitch extracted 5.4 million identi-

fier values to then infer 700,000 objects and 3.1 million

edges. However, Table 3 also shows Stitch’s power in re-

ducing complexity by extracting the underlying system

model. There are only 413 log event types, 160 identifier

types, 101 object types, and 193 edges.

Figure 8 shows the entire, unfiltered S3 graph inferred

from the 4 million messages produced by the Hive stack.

It clearly shows the hierarchical structure of the system.

For each system, we evaluated the precision of Stitch’s

object and hierarchy identification by carefully verifying

every node and edge in the S3 graph. Overall, 96% of

the objects inferred by Stitch were accurate. Among the

101 object types Stitch identified, only four are incorrect.

Three are from the Hive stack while the fourth is from

Spark. The first one occurred because the “Thread-ID”

in the Hive stack can represent threads from two compo-

nents, namely YARN NodeManager (NM) and MapRe-

duce ApplicationManager (AM). In AM, a thread ID al-

ways appears together with the AM container ID (con-

tainer is a process), and the types of the corresponding

objects have an m:n relationship. However, in NM a

“Thread” ID can be printed by itself without a pid. This

caused Stitch to infer an object type whose signature is

“Thread” by itself. While this seemingly violates the

Flow Reconstruction Principle, it turns out that there is

only one NM process running on each node, therefore

a thread ID by itself can still unambiguously identify a

thread in this process. In fact, the NM’s pid is never out-

put to a log.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 613

The second incorrect object type, “Stage”, seemingly

occurred due to a violation of the Flow Reconstruction

Principle for a similar reason. Each stage of a Hive query

has an identifier that is unique only within the context of

a query. In practice however, a stage and query identifier

are never printed in the same log message. This is be-

cause the Hive shell only runs a single query at a time,

meaning the stages of two queries never interleave. As

a result, Stitch incorrectly infers (based on the Flow Re-

construction Principle) that a stage identifier in multiple

queries represents the same object.

The third incorrect object type occurred because of

the Hive/Hadoop configuration we used. In Hadoop,

“Socket_Reader” is the ID of a thread within the IPC

Server process. The identifier is unique only within the

context of an IPC Server process. Stitch only observes a

1:n relation between thread and IPC process (instead of

the correct m:n relation) because, by default, the thread

pool’s size is set to one thread that has a fixed thread ID,

yet there are multiple IPC Server processes.

The final incorrect object type occurred because of the

limited scale of our Spark workload. Stitch inferred that

IP address and inode can be used interchangeably (they

have 1:1 relationship). However, they should have an

m:n relationship since an HDFS inode is replicated onto

multiple machines and each machine can host multiple

HDFS inodes. This inaccuracy occurred because the two

identifiers are only ever correlated in a rarely printed ER-

ROR log message. The small scale of our workload did

not output a large enough number of such errors to allow

accurate inference of this relation.

Stitch achieves 100% accuracy on OpenStack because

there are only 14 objects types and identifiers are auto-

matically logged by the underlying logging library; each

message is prepended with pid, user ID, project ID, etc.

The high accuracy on the production workload is also

due to the underlying logging library in addition to a

longer time window for analysis. Given that the produc-

tion software was not distributed, we expected to find

many messages with identifiers which were ambiguous

across the cluster. Interestingly, this was not the case

since by default, syslog automatically appends times-

tamp, hostname and pid to every log message. That

said, analyzing just 24 hours of logs did result in poor

accuracy since many relationships were 1:n instead of

m:n. We had to extend the analysis time window un-

til the model stabilized. Even then, one edge remained

incorrect after over five months: only one user was us-

ing databases, thus making the relation 1:n rather than

m:n. This highlights that the required log size for Stitch

depends on how long it takes the system to observe all

possible workload patterns.

Do real-world systems follow Flow Reconstruction

Principle? Figure 9 shows the cumulative distribution

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12

C
um

ul
at

iv
e

lo
g

m
sg

s

Number of objects per msg.

Hive
Spark
OpenStack
Production

Figure 9: The cumulative distribution of the number of objects

per log message.

of the number of objects included in each log message

of the systems we evaluated. It shows that almost all of

the log messages include at least one object (which also

indicates that at least one identifier is included). This

suggests that real-world systems are indeed following the

Flow Reconstruction Principle in terms of logging identi-

fiers. A primary reason for such a high percentage is that

the underlying systems and logging libraries automati-

cally include some identifiers. For example, by default

OpenStack’s logging framework prepends each message

with pid, user ID, project ID, etc. In both Hive and Spark,

the container and executor IDs are included in the file

path of the container and executor logs respectively.

Figure 9 also shows that over 50% of log messages

contain more than one object. This suggests that objects

interact in complex ways in real-world systems that fur-

ther complicates debugging. This is where Stitch is par-

ticularly advantageous since it can (1) separate important

fork or creation relationships from other interactions, and

(2) identify which objects, at which time, interact with

each other, and for how long.

We leave an evaluation of whether events are logged

at critical points in the control flow as future work. How-

ever, we observe that most requests log the start and end

of their execution, a clear indication of control flow.

5.4 Performance

To be viable in real-world systems, Stitch must meet

two performance requirements: (i) it must process logs

faster than they are generated; and (ii) it must not perturb

the analyzed system’s performance. We benchmarked

Stitch’s performance against these goals using the four

previously mentioned software stacks.

Log processing. Stitch’s client takes an average of 1.2

milliseconds in each one-second epoch to parse and send

incoming log messages to the server. On average, the

server takes 3.9 hours to process every 24 hours of log

messages. Thus, both daemons are able to handle the

rate of incoming log messages.

Performance perturbation. The client negligibly af-

fects the workloads it monitors since it is CPU-bound.

614 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Therefore, for I/O-bound jobs like the Hive workload,

the client has no effect on execution time. The Spark

workload can reach 100% CPU utilisation but this tends

to happen in bursts. So again, the client has no effect on

execution time. However, Stitch must manage the over-

head of transmitting log messages over the network.

On average, Stitch achieves a 15% compression ratio

compared to trasferring the complete log files for a work-

load. We automatically achieve 50% of this since we

only need to transmit the identifiers from each log mes-

sage. The other 35% comes from using Rsyslog’s zlib

compression on each of our protocol messages.

6 Limitation and Discussion

The efficacy of Stitch fundamentally depends on the

quality of the logs. If there are no logs, or the log mes-

sages do not contain the right identifiers, then Stitch will

not be able to accurately reconstruct the system model it

needs. However, in that case, the logging would not even

be useful for manual inspection by the developers who

wrote the software. Perhaps our biggest (and happy) sur-

prise from this project is the high quality and usefulness

of the real-world logs generated by the mature distributed

systems we evaluated. Nevertheless, we have also en-

countered real-world logs that did not contain sufficient

information, as for example at one company where we

tried to use Stitch (where log quality needs to be im-

proved by enforcing the Flow Reconstruction Principle).

Another limitation of Stitch is that it cannot accurately

infer causal dependencies. Instead, it can only identify

correlations between objects. According to counterfac-

tual theories of causation [19], event B causally depends

on event A iff an event B would not have occurred if

event A had not occurred. For Stitch, a causal depen-

dence between events can be captured by two mecha-

nisms. First, the 1:n relationships between objects can

capture an object B that is created by an object A, so

that their output events will have a causal dependency.

Secondly, the events that are output along the same exe-

cution path involving the same object (i.e., a thread) are

also captured since Stitch associates these events with

that object. However, it is not true that every 1:n edge in

Stitch’s output captures object creation, or that every two

events belonging to the same object have a control-flow

dependency. We leave the job of distinguishing whether

the correlation is causal or not to Stitch’s user.

This limitation presents a fundamental trade-off in our

identifier-only design since we ignore static text in log

messages. For example, an event involving an operation

on file B is causally dependent on an event involving pro-

cess A if the latter event is “Process A created file B”,

but not if the event is only “Process A read file B”. But

this is something Stitch cannot identify. To capture this

type of causal dependence, Stitch would need to either

understand message semantics using Natural Language

Processing or leverage a static analysis approach such as

lprof [42]. 4

Stitch’s efficacy is also sensitive to the accuracy of ex-

tracting object identifiers and their types. In practice, it

is trivial for developers or administrators to annotate the

type of each identifier and its regular expression. In fact,

projects like LogStash [23] already provide a database

containing hundreds of regular expressions and their cor-

responding object types for commonly used identifiers.

7 Related Work

The fundamental challenge faced by any performance

analysis tool for distributed systems is to capture the se-

mantics of the event sequences output by the system. Ex-

isting solutions fall into one of three categories: (i) in-

strumenting the target system with predefined event se-

mantics, (ii) use of static analysis to infer the system

model, or (iii) the use of machine learning. We discuss

each category in detail below, but note that Stitch does

not rely on any of these techniques. Instead, it relies

on programmers’ intuition in event logging and builds

a simple algorithm entirely based on identifiers from un-

structured logs.

Intrusive approaches. Most of the existing tools capa-

ble of analyzing distributed system performance rely on

instrumenting the target system [1, 2, 7, 8, 9, 10, 11, 13,

14, 24, 26, 27, 28, 32, 34]. The key benefit afforded by

instrumentation is that the semantics of each event is de-

fined by the analysis tool; therefore, the events can be

unambiguously interpreted. For example, ÜberTrace [9]

instruments Facebook’s system with events that include

a unique request ID and a predefined event name. Pivot

Tracing [24] compiles a user’s query into code that gets

dynamically patched into the running system to collect

tracing events; furthermore, critical identifier informa-

tion is propagated to the different software components

to be included in every event by the tracing code.

Stitch faces a different challenge, namely how to un-

derstand unstructured log events without any knowledge

of how they are generated. This challenge presents inter-

esting trade-offs between Stitch and the aforementioned

intrusive approaches. On the one hand, because the se-

mantics of events can be precisely interpreted, intrusive

approaches can conduct more precise analyses. For ex-

ample, Mystery Machine [9] and Pivot Tracing [24] can

infer the causal relationship between events, a limitation

4However, it is debatable whether a log message “Process A created

file B” really implies a causal relationship between process A and file

B as it is possible that file B would have been created by other pro-

cesses, regardless. Therefore, rigorously inferring causal dependencies

between events may not be possible without domain expertise.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 615

of Stitch we discussed in Section 6. On the other hand,

the necessity of instrumentation imposes significant de-

ployment hurdles. First, instrumentations are often spe-

cific to a particular system and cannot be generally ap-

plied to another. For example, Pivot Tracing’s instrumen-

tation requires dynamically patching code into system-

specific data structures. This challenge is perhaps why,

to the best of our knowledge, Stitch is the first system

that has been evaluated on heterogeneous systems imple-

mented in different languages. Second, vendors are often

reluctant to modify their production systems in the fear

that the instrumentations may open up reliability vulner-

abilities and add performance overhead. Finally, it sim-

ply may not be possible to instrument legacy software or

third-party components.

Log analysis guided by static analysis. Tools like

lprof [42] and SherLog [41] are able to analyze a sys-

tem’s source and bytecode to infer how the processing

of a request outputs log messages. For example, via

control-flow analysis, lprof is able to infer that log mes-

sages are causally related if they are on the same execu-

tion path; its data-flow analysis can infer which variables

are unchanged between two log printing statements,

which can be used to group the logs. However, these

approaches cannot be used to correlate events across het-

erogeneous software components because static analysis

is limited to a single software component. In addition,

static analysis needs to be customized for different lan-

guages (lprof only worked on Java bytecode), requires

the source for all third-party libraries, and for languages

like C and C++ where non-standard dialects are preva-

lent, it is challenging to even get the static analysis tool

to compile the code [4].

Log analysis with machine learning. Several tools

use machine learning on log files to detect anoma-

lies [3, 25, 38, 40]. These tools first learn a model from

logs output by correct runs, and then apply the model on

logs from failure runs. For example, CloudSeer learns

an automata model from clean logs that can then be used

to detect anomalies [40]. Xu et al., uses Principal Com-

ponent Analysis (PCA) to detect unusual patterns in the

logs [38]. Stitch is complementary to these tools: these

tools’ goals are to detect anomalies, while Stitch’s goal

is to profile entire systems by analyzing the performance

behavior and relationships between every object in the

system. Furthermore, the machine learning approaches

could be used on Stitch’s graphs to identify anomalies.

Log visualization tools. In recent years, most tools in

this area (e.g., Splunk [36], VMware LogInsight [22],

Kibana [17], etc.) have focused on system statistics and

monitoring rather than breaking down the system model

like Stitch. However, tools similar to Stitch exist in the

area of file systems and web browsers. InProv [6] gives

the user a top-down view of file system provenance data,

allowing them to click through the hierarchy of interac-

tions between processes and files over time. Chrome’s

Developer Tools allow a user to zoom in to and out of the

hierarchy of objects on a web page. InProv, Chrome, and

Stitch highlight the importance and usefulness of brows-

ing hierarchy when debugging.

8 Concluding Remarks

This paper presented Stitch, the first system capable of

reconstructing, in a non-intrusive manner, the end-to-end

execution flow of requests being serviced by distributed

server stacks. Without any system specific knowledge,

Stitch is able to analyze unstructured log output from

heterogeneous software components and construct a sys-

tem model which captures the objects involved, their life-

times and their hierarchical relationships.

At its core, Stitch is enabled by the observation that

programmers follow certain principles so that they can

reliably reconstruct the executions a posteriori. These

principles, which we collectively refer to as the Flow

Reconstruction Principle, state that a sufficient number

of events need to be logged at critical points in the con-

trol path and that each event log output must include a

sufficient number of object identifier values to be able

to disambiguate the concurrent and homogeneous execu-

tions. While these principles may seem straightforward

in hindsight, discovering them was challenging and took

us over two years to identify and refine.

Acknowledgements

We greatly appreciate the insightful feedback from the

anonymous reviewers and our shepherd, Margo Seltzer.

We thank Xiang Ren, Yongle Zhang, David Lion, Ser-

hei Makarov, and Abhishek Rudra for the useful and

thought-stimulating discussions. We also thank all of

the user study participants for their time spent debug-

ging. The idea that identifiers can be parsed by excluding

static text came from a discussion with David Lie. This

research is supported by an NSERC Discovery grant, a

NetApp Faculty Fellowship, and a Huawei grant.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-

tributed systems of black boxes. In Proc. of the 19th ACM

Symposium on Operating Systems Principles, SOSP ’03,

pages 74–89. ACM, 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

magpie for request extraction and workload modelling.

In Proceedings of the 6th Conference on Symposium on

616 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Opearting Systems Design & Implementation, OSDI ’04,

pages 259–272. USENIX Association, 2004.

[3] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and

M. D. Ernst. Leveraging existing instrumentation to auto-

matically infer invariant-constrained models. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engi-

neering, ESEC/FSE ’11, pages 267–277. ACM, 2011.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,

S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and

D. Engler. A few billion lines of code later: Using static

analysis to find bugs in the real world. Commun. ACM,

53(2):66–75, Feb. 2010.

[5] Chapter 1. Boost.Log v2 - 1.61.0. http://www.

boost.org/doc/libs/1_61_0/libs/log/

doc/html/index.html.

[6] M. A. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos,

M. Seltzer, and H. Pfister. Evaluation of filesystem prove-

nance visualization tools. IEEE Transactions on Visual-

ization and Computer Graphics, 19(12):2476–2485, Dec.

2013.

[7] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit:

Transactional profiling for multi-tier applications. In Pro-

ceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007, EuroSys ’07,

pages 17–30. ACM, 2007.

[8] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and

E. Brewer. Pinpoint: Problem determination in large, dy-

namic internet services. In Proceedings of the 2002 In-

ternational Conference on Dependable Systems and Net-

works, DSN ’02, pages 595–604. IEEE Computer Soci-

ety, 2002.

[9] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.

Wenisch. The mystery machine: End-to-end performance

analysis of large-scale internet services. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI ’14, pages 217–231.

USENIX Association, 2014.

[10] C. Curtsinger and E. D. Berger. Coz: Finding code that

counts with causal profiling. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15,

pages 184–197. ACM, 2015.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-trace: A pervasive network tracing framework.

In Proceedings of the 4th USENIX Conference on Net-

worked Systems Design & Implementation, NSDI ’07,

pages 271–284. USENIX Association, 2007.

[12] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess,

A. Crolotte, and H.-A. Jacobsen. Bigbench: Towards

an industry standard benchmark for big data analyt-

ics. In Proceedings of the 2013 ACM SIGMOD In-

ternational Conference on Management of Data, SIG-

MOD ’13, pages 1197–1208. ACM, 2013.

[13] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof:

A call graph execution profiler. In Proceedings of the
1982 SIGPLAN Symposium on Compiler Construction,

SIGPLAN ’82, pages 120–126. ACM, 1982.

[14] Z. Guo, D. Zhou, H. Lin, M. Yang, F. Long, C. Deng,

C. Liu, and L. Zhou. G2: A graph processing system

for diagnosing distributed systems. In Proceedings of the

2011 USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC ’11, pages 299–312. USENIX

Association, 2011.

[15] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.

The HiBench benchmark suite: Characterization of

the MapReduce-based data analysis. In 26th Inter-

national Conference on Data Engineering Workshops,

ICDEW ’10, pages 41–51. IEEE Computer Society, 2010.

[16] java.util.logging (Java Platform SE 8). https://

docs.oracle.com/javase/8/docs/api/

java/util/logging/package-summary.

html.

[17] Kibana: Explore, visualize, discover data. https://

www.elastic.co/products/kibana.

[18] P. Leach, M. Mealling, and R. Salz. A Universally Unique

IDentifier (UUID) URN Namespace. RFC 4122, July

2005.

[19] D. L. Lewis. Counterfactuals. Blackwell Publishers,

1973.

[20] Log for C++ Project. http://log4cpp.

sourceforge.net/.

[21] Log4j - Log4j 2 Guide - Apache Log4j 2. http://

logging.apache.org/log4j/2.x/.

[22] VMware vCenter Log Insight: Log management

and analytics. http://www.vmware.com/ca/en/

products/vcenter-log-insight.

[23] Logstash – normalizing varying schema. https://

www.elastic.co/products/logstash.

[24] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dy-

namic causal monitoring for distributed systems. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 378–393. ACM, 2015.

[25] K. Nagaraj, C. Killian, and J. Neville. Structured compar-

ative analysis of systems logs to diagnose performance

problems. In Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation,

NSDI ’12, pages 353–366. USENIX Association, 2012.

[26] Nagios: the industry standard in IT infrastructure moni-

toring. http://www.nagios.org/.

[27] NewRelic: Application performance management and

monitoring. http://newrelic.com/.

[28] OProf - A system profiler for Linux. http://

oprofile.sourceforge.net/.

[29] Poor HDFS performances: Slow BlockReceiver write

packet to mirror. http://stackoverflow.com/

questions/27984331.

[30] Section 15.7 logging - Logging facility for Python

- Python 2.7.12 documentation. https://docs.

python.org/2/library/logging.html.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 617

http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://log4cpp.sourceforge.net/
http://log4cpp.sourceforge.net/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://www.vmware.com/ca/en/products/vcenter-log-insight
http://www.vmware.com/ca/en/products/vcenter-log-insight
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://www.nagios.org/
http://newrelic.com/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://stackoverflow.com/questions/27984331
http://stackoverflow.com/questions/27984331
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

[31] JIRA: YARN bug 4610. https://issues.apache.

org/jira/browse/YARN-4610.

[32] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.

Shah, and A. Vahdat. Pip: Detecting the unexpected in

distributed systems. In Proceedings of the 3rd Confer-

ence on Networked Systems Design & Implementation,

NSDI ’06, pages 115–128. USENIX Association, 2006.

[33] RSYSLOG: the rocket-fast system for log processing.

www.rsyslog.com.

[34] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-

son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.

Dapper, a large-scale distributed systems tracing infras-

tructure. Technical report, Google, Inc., 2010.

[35] SLF4J. http://www.slf4j.org/.

[36] Splunk log management. http://www.splunk.

com/view/log-management/SP-CAAAC6F.

[37] The syslog protocol. http://tools.ietf.org/

html/rfc5424.

[38] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proc. of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles, SOSP ’09, pages 117–132.

ACM, 2009.

[39] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairava-

sundaram. How do fixes become bugs? In Proceedings

of the 19th ACM SIGSOFT Symposium and the 13th Eu-

ropean Conference on Foundations of Software Engineer-

ing, ESEC/FSE ’11, pages 26–36. ACM, 2011.

[40] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang.

Cloudseer: Workflow monitoring of cloud infrastructures

via interleaved logs. In Proceedings of the Twenty-First

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-

LOS ’16, pages 489–502. ACM, 2016.

[41] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pa-

supathy. SherLog: error diagnosis by connecting clues

from run-time logs. In Proceedings of the 15th Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’10,

pages 143–154. ACM, 2010.

[42] X. Zhao, Y. Zhang, D. Lion, M. FaizanUllah, Y. Luo,

D. Yuan, and M. Stumm. lprof: A non-intrusive re-

quest flow profiler for distributed systems. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI ’14, pages 629–644.

USENIX Association, 2014.

618 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://issues.apache.org/jira/browse/YARN-4610
https://issues.apache.org/jira/browse/YARN-4610
www.rsyslog.com
http://www.slf4j.org/
http://www.splunk.com/view/log-management/SP-CAAAC6F
http://www.splunk.com/view/log-management/SP-CAAAC6F
http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424

Early Detection of Configuration Errors to Reduce Failure Damage

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu∗, Long Jin, Shankar Pasupathy†

University of California, San Diego ∗University of Chicago †NetApp, Inc.

Abstract

Early detection is the key to minimizing failure damage

induced by configuration errors, especially those errors

in configurations that control failure handling and fault

tolerance. Since such configurations are not needed for

initialization, many systems do not check their settings

early (e.g., at startup time). Consequently, the errors be-

come latent until their manifestations cause severe dam-

age, such as breaking the failure handling. Such latent

errors are likely to escape from sysadmins’ observation

and testing, and be deployed to production at scale.

Our study shows that many of today’s mature, widely-

used software systems are subject to latent configuration

errors (referred to as LC errors) in their critically impor-

tant configurations—those related to the system’s reli-

ability, availability, and serviceability. One root cause

is that many (14.0%–93.2%) of these configurations do

not have any special code for checking the correctness of

their settings at the system’s initialization time.

To help software systems detect LC errors early, we

present a tool named PCHECK that analyzes the source

code and automatically generates configuration checking

code (called checkers). The checkers emulate the late ex-

ecution that uses configuration values, and detect LC er-

rors if the error manifestations are captured during the

emulated execution. Our results show that PCHECK can

help systems detect 75+% of real-world LC errors at the

initialization phase, including 37 new LC errors that have

not been exposed before. Compared with existing detec-

tion tools, it can detect 31% more LC errors.

1 Introduction

1.1 Motivation

Failures are a fact of life in today’s large-scale, rapid-

changing systems in cloud and data centers [7,24,30,58].

To mitigate the impact of failures, tolerance and recov-

ery mechanisms have been widely adopted, such as em-

ploying data and node redundancy, as well as supporting

fast rebooting and rollback. While these mechanisms are

successful in handling individual machine failures (e.g.,

hardware faults and memory bugs), they are less effective

in handling configuration errors [20, 24, 28], especially

the errors in configurations that control the failure han-

dling itself. For example, an erroneous fail-over config-

uration resulted in a 2.5 hour outage of Google App En-

gine in 2010, affecting millions of end users [44]. More-

over, very often, the same configuration error is deployed

onto thousands of nodes and resides in persistent files on

each node, making it hard to tolerate by redundancy or

server rebooting. As a result, configuration errors have

become one of the major causes of failures in large-scale

cloud and Internet systems, as reported by many system

vendors [21, 34, 55] and service providers [7, 24, 28, 43].

Since it is hard to completely avoid configuration er-

rors (after all, everyone makes mistakes; as do system ad-

ministrators), similar to fatal diseases like cancer, a more

practical approach is to detect such errors as early as pos-

sible in order to minimize their failure damage:

• Early detection before configuration roll-out can pre-

vent the same error from being replicated to thousands

of nodes, especially in the data-center environment.

• Unlike software bugs, configuration errors, once de-

tected, can be fixed by sysadmins themselves with no

need to go through developers. Therefore, if detected

earlier, the errors can be corrected immediately before

the configurations are put online for production.

• For many configurations that control the system’s fail-

ure handling, early detection of errors in their settings

can prevent the system from entering an unrecoverable

state (before any failures happen). Often, the combina-

tion of multiple errors (e.g., a configuration error plus

a software bug) can bring down the entire service, as

shown in many newsworthy outages [9, 42, 43, 45].

Unlike software bugs that typically go through various

kinds of testing before releases (such as unit testing, re-

gression testing, stress testing, system testing, etc.), sys-

tem administrators often do not perform extensive testing

on configurations before rolling them out to other nodes

and putting the systems online [25]. Besides the lack of

skills [25] and the temptation of convenience [24], the

more fundamental reason is that system administrators

do not have the same level of understanding on how and

when the system uses each configuration value internally.

Thus, they are limited to simple black-box testing such as

starting the system and applying a few small workloads

to see how the system behaves. Due to time and knowl-

edge limitations, system administrators typically do not

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 619

Severity level Latent Non-latent

All cases 47.6% 52.4%

High severity 75.0% 25.0%

Table 1: Severity of latent versus non-latent errors among the cus-

tomers’ configuration issues of COMP-A. LC errors contribute to

75% of the high-severity configuration issues.

Error class Mean Median

Latent 1.14 1.70

Non-latent 0.87 0.41

Table 2: Diagnosis time of latent versus non-latent errors among

customers’ configuration issues of COMP-A. The time is normalized

by the average time of all the reported issues.

perform a comprehensive suite of test cases against con-

figuration settings, especially for those hard-to-test ones

(e.g., failure/error-handling related configurations) that

may require complex setups and even fault injections.

Therefore, early detection should inevitably fall onto

the shoulder of the system itself—the system should au-

tomatically check as many configurations as possible at

its early stages (the startup time). Unfortunately, many of

today’s systems either skip the checking or only check

configurations right before the configuration values are

used, as shown in our study (§2). Typically, at the startup

time, only those configuration parameters needed for ini-

tialization are checked (or directly used), while many

other parameters’ checking is delayed much later until

when they are used in special tasks. Since such config-

uration parameters are neither used nor checked during

normal operations, errors in their settings go undetected

until their late manifestation, e.g., under circumstances

like error handling and fail-over. For simplicity, we refer

to such errors as latent configuration (LC) errors.

LC errors can result in severe failures, as they are of-

ten associated with configurations used to control criti-

cal situations such as fail-over [44], error handling [42],

backup [37], load balancing [9], mirroring [45], etc. As

explained above, their detection or exposure is often too

late to limit the failure damage. Take a real-world case

as an example (c.f., §2: Figure 3a), an LC error in the

fail-over configuration settings is detected only when the

system encounters a failure (e.g., due to hardware faults

or software bugs) and tries to fail-over to another compo-

nent. In this case, the fail-over attempt also fails, making

the entire system unavailable to all the clients.

Tables 1 and 2 compare the severity level and diagno-

sis time of real-world configuration issues caused by LC

errors versus non-latent configuration errors (detected at

the system’s startup time) of COMP-A1, a major storage

company in the US. Although there have been fewer LC

errors than non-latent ones, LC errors contribute to 75%

of the high-severity issues and take much longer to diag-

nose, indicating their high impact and damage.

1We are required to keep the company and its products anonymous.

 Parse config files;

 store the settings
 in program vars.

- 26 rounds of diagnostic

 conversations;

- 5 collections of logs &

 runtime traces;

- 2 incorrect patches.

Diagnosis (48 hrs)

 [Patch] Check existence of diskd_program during initialization

 Use the setting of

 diskd_program
 for log rotation.

Initialization Serving requests ³Hogging the CPU for 7+ hrs´

Configuration error:

diskd_program = a non-existent path

Figure 1: A real-world LC error from Squid [37]. The error caused

system hanging for 7+ hours, and resulted in 48 hours of diagnosis ef-

forts. Later, a patch was added to check the existence of the configured

path during initialization. Unfortunately, the patched check is still sub-

ject to LC errors such as incorrect file types and permissions.

The TaskTrackers were trapped

into infinite loops (³When I ran

jobs on a big cluster, some map

tasks never got started.´)

1. Configuration error:

mapred.local.dir

= directory path w/ wrong owner

2. Impact

(mapred.local.dir is not used

 until exec. of MapReduce jobs)

3. Code snippets:

while (running) {

 try {

 ...

 access mapred.local.dir

 ...

 } catch(Exception e) {

 LOG.log(iRetrying!j);

 }

}

User requests: ³TaskTracker should check whether it can access

to the local dir at the initialization time, before taking any tasks.´�

/* TaskTracker.java */

Throw
Exception

// no check at initialization

Too late to avoid

the failure!

Infinite loops

Figure 2: A real-world LC error from MapReduce [12]. When the

exception handler caught the runtime exception induced by the LC er-

ror, it was already too late to avoid the downtime. After this incident,

the user requested to check the configuration “at the initialization time.”

Figure 1 shows a real-world LC error from Squid, a

widely used open-source Web proxy server. The LC er-

ror resided in diskd program, a configuration parameter

used only during log rotation. Squid did not check the

configuration during initialization; thus, this error was

exposed much later after days of execution. It caused 7+

hours of system downtime and cost 48 hours of diagnosis

efforts. After the error was finally discerned, the Squid

developers added a patch to proactively check the setting

at system startup time to prevent such latent failures.

Figure 2 shows another real-world example in which

an LC error failed a large-scale MapReduce job process-

ing. This LC error was replicated to multiple nodes and

crashed the TaskTrackers on those nodes. Specifically,

the error caused a runtime exception on each node. The

TaskTracker caught the exception and restarted the job.

Unfortunately, as the error is persistent in the configura-

tion file, restarting the job failed to get rid of the error

but induced infinite loops. Note that when the exception

handler caught the error, it was already too late to avoid

downtime (the best choice is to terminate the jobs).

Preventing above LC-error issues would require soft-

ware systems to check configurations early during the

initialization time, even though the configuration values

are only needed in much later execution or during special

620 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

circumstances. This is indeed demonstrated by the devel-

opers’ postmortem patches. As revealed in Facebook’s

recent study [43], 42% of the configuration errors that

caused high-impact incidents are “obvious” errors (e.g.,

typos), indicating the limitations of code review and sys-

tem testing in preventing LC errors. These errors might

be detected by early checks (only if developers are will-

ing to and remember to write the checking code).

1.2 State of the Art

Most prior work on handling configuration errors focuses

on troubleshooting and diagnosis [5, 6, 32, 46, 48, 49, 52,

53,56,60,61,62]. The techniques proposed in these work

are helpful for system administrators to identify the fail-

ure root causes faster to shorten the repair time. How-

ever, they cannot prevent failures and downtime.

Most of the existing detection tools check configura-

tion settings against apriori correctness rules (known as

constraints). However, as large software systems usually

have hundreds to thousands of configuration parameters,

it is time-consuming and error-prone to ask developers to

manually specify every single constraint, not to mention

that constraints change with software evolution [61].

So far, only a few automatic configuration-error de-

tection tools have been proposed. Most of them detect

errors by learning the “normal” values from large collec-

tions of configuration settings in the field [29,36,57,59].

While these techniques are effective in certain scenarios,

they have the following limitations, especially when be-

ing applied to cloud and data centers.

First, most of these works require a large collection of

independent configuration settings from hundreds of ma-

chines. This is a rather strong requirement, as most cloud

and data centers typically propagate the same configura-

tions from one node to all the other nodes. Thereby, the

settings from these nodes are not independent, and thus

not useful for “learning”. Second, they do not work well

with configurations that are inherently different from one

system to another (e.g., domain names, file paths, IP ad-

dresses) or incorrect settings that fall in normal ranges.

They also cannot differentiate customized settings from

erroneous ones. Furthermore, most of these tools tar-

get on specific error types (encoded by their predefined

constraint templates) and are hard to generalize to detect

other types of errors. A recent work learns constraints

from KB (Knowledge Base) articles [31]. However, this

approach has the same limitations discussed above. Spe-

cially, KB articles are mainly served for postmortem di-

agnosis and thus may not cover every single constraint.

There are very few configuration-error detection ap-

proaches that do not rely on constraints specified manu-

ally by developers or learned from large collections of in-

dependent settings (or KB articles). The only exception

(to the best of our knowledge) is conf spellchecker [35]

which detects simple errors based on type inference from

source code. While this technique is very practical, it is

limited in the types of configuration errors that can be

detected, as shown in our experimental evaluation (§4).

1.3 Our Contributions

This paper makes two main contributions. First, to un-

derstand the root causes and characteristics of latent con-

figuration (LC) errors, we study the practices of configu-

ration checking in six mature, widely-deployed software

systems (HDFS, YARN, HBase, Apache, MySQL, and

Squid). Our study reveals: (1) In today’s software sys-

tems, many (14.0%–93.2%) of the critically important

configuration parameters (those related to the system’s

reliability, availability, and serviceability) do not have

any special code for checking the correctness of their

settings. Instead, the correctness is verified (implicitly)

when the configuration values are being actually used in

operations such as a file open call. (2) Many (12.0%–

38.6%) of these configuration parameters are not used at

all during system initialization. (3) Resulting from (1)

and (2), 4.7%–38.6% of these critically important con-

figuration parameters do not have any early checks and

are thereby subject to LC errors that can cause severe im-

pact on the system’s dependability.

Second, to help systems detect LC errors early, we

present a tool named PCHECK that analyzes the source

code and automatically generates configuration checking

code (called checkers) to validate the system’s configu-

ration settings at the initialization phase. PCHECK takes

a unique and intuitive method to check each configura-

tion setting—emulating the late execution that uses the

configuration value; meanwhile capturing any anoma-

lies exposed during the execution as the evidence of con-

figuration errors. PCHECK does not require developers

to manually implement checking logic, nor rely on learn-

ing a large volume of configuration data. The checkers

generated by PCHECK are generic: they are not limited

to any specific, predefined rule patterns, but are derived

from how the program uses the parameters.

PCHECK shows that it is feasible to accurately and

safely emulate late execution that uses configurations. It

statically extracts the instructions that transform, propa-

gate, and use the configuration values from the system

program. To execute these instructions, PCHECK makes

a best effort to produce the necessary execution context

(values of dependent variables) that can be determined

statically. PCHECK also “sandboxes” the emulated exe-

cution by instruction rewriting to prevent side effects on

the running system or its environment.

More importantly, emulating the execution can expose

many configuration errors as runtime anomalies (e.g., ex-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 621

ceptions and error code) and the emulated execution runs

in a short period. PCHECK inserts instructions to capture

the anomalies that may occur during the emulated execu-

tion, as the evidence to report configuration errors.

As an enforcement, PCHECK encapsulates the emu-

lated execution and error capturing code into checkers for

every configuration parameter, and invokes the checkers

at the system’s initialization phase. This can minimize

potential LC errors, and compensate for the missing and

incomplete configuration checks in real-world systems.

We implement PCHECK for C and Java programs on

top of the LLVM [4] and Soot [3] compiler frameworks.

We apply PCHECK to 58 real-world LC errors of various

error types occurred in widely-used systems (each leads

to severe failure damage), including 37 new LC errors

that have not been exposed before. Our results show that

PCHECK can detect 75+% of these real-world LC errors

at the system’s startup time. Compared with the existing

detection tools, it can detect 31% more LC errors.

2 Understanding Root Causes of Latent

Configuration Errors

To understand the root causes and characteristics of LC

errors, we study the practices of the configuration check-

ing and error detection in six mature, widely-deployed

open-source software systems (c.f., Table 3). They cover

multiple functionalities and languages, and include both

single-machine and distributed systems.

We focus on configuration parameters used in compo-

nents related to the system’s Reliability, Availability, and

Serviceability (known as RAS for short [50]). For each

system considered, we select all the configuration param-

eters of RAS-related features based on the software’s of-

ficial documents, including error handling, fail-over, data

backup, recovery, error logging and notification, etc. The

last column of Table 3 shows the number of the studied

RAS parameters. Compared with configurations of other

system components, configurations used by RAS com-

ponents are more likely to be subject to LC errors due

to their inherently latent nature; moreover, the impact of

errors in RAS configurations is usually more severe.

Note: LC errors are not limited to RAS components.

Thus, the reported numbers may not represent the overall

statistics of all the LC errors in the studied systems. In

addition, PCHECK, the tool presented in §3, applies to all

the configuration parameters; it does not require manual

efforts to select out RAS parameters.

2.1 Methodology

We manually inspect the source code related to RAS con-

figuration parameters of the studied systems. First, for

each RAS parameter, we study the code that checks the

Software Description Lang.
Parameters

Total RAS

HDFS Dist. filesystem Java 164 44

YARN Data processing Java 116 35

HBase Distributed DB Java 125 25

Apache Web server C 97 14

Squid Proxy server C/C++ 216 21

MySQL DB server C++ 462 43

Table 3: The systems and the RAS parameters studied in §2.

Software
Deficiency of initial checking Studied

Missing Incomplete param.

HDFS 41 (93.2%) 3 (6.9%) 44

YARN 29 (82.9%) 5 (14.3%) 35

HBase 18 (72.0%) 5 (2.0%) 25

Apache 4 (28.6%) 2 (14.3%) 14

Squid 9 (42.9%) 4 (19.0%) 21

MySQL 6 (14.0%) 6 (14.0%) 43

Table 4: Number of configuration parameters that do not have any

initial checking code (“missing”) and that only have partial check-

ing and thus cannot detect all potential errors (“incomplete”).

parameter setting at the system’s initialization phase2 (if

any) and the code that later uses the parameter’s value.

Then, we compare these two sets of code (checking ver-

sus usage) and examine if the initial checking is sufficient

to detect configuration errors. If an error can escape from

the initialization phase and break the usage code, it is a

potential LC error.

We verify each LC error discovered from source code

by exposing and observing the impact of the error. We

first inject the errors into the system’s configuration files

and launch the system; then we trigger the manifestation

conditions to expose the error impact. For example, to

verify the LC errors in the HDFS auto-failover feature,

we start HDFS with the erroneous fail-over settings, trig-

ger the fail-over procedure by killing the active NameN-

ode, and examine if the fail-over can succeed. As all the

LC errors are verified through their manifestation, there

is no false positive in the reported numbers.

2.2 Findings

Finding 1: Many (14.0%–93.2%) of the studied RAS

parameters do not have any special code for checking

the correctness of their settings. Instead, the correctness

is verified (implicitly) when the parameters’ values are

actually used in operations such as a file open call.

Table 4 shows the number of the studied RAS parame-

ters that rely on the usage code for verifying correctness,

because their initial checks are either missing or incom-

plete. Most of the studied RAS parameters in HDFS,

YARN, and HBase do not have any special code for

checking the correctness of their settings. These systems

2A system’s initialization phase is defined from its entry point to the

point it starts to serve user requests or workloads.

622 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2. Initial checks:

3. Late execution: Parse the timeout setting to an integer value;

None.

public boolean tryFence(...) {

}

/* hadoop-common/.../ha/

SshFenceByTcpPort.java */

Auto-failover configuration parameters: HDFS-2.6.0

 dfs.ha.fencing.ssh.connect-timeout

 dfs.ha.fencing.ssh.private-key-files

Read the file specified by the key-files setting.

getString(idfs.ha.fencing.ssh

.private-key-filesj)

fis = new FileInputStream(prvFile);

session.createSession();
...

...
int timeout = getInt(idfs.ha.fencing.ssh.connect-timeoutj);

...

4. Manifestation:

5. Consequence:
HDFS auto-failover fails, and the entire HDFS service becomes unavailable.

IllegalArgumentException (when parsing timeout to an integer)

IOException (when reading the key file)

1. LC Errors:

Ill-formatted numbers (e.g., typos) for ssh timeout;

Invalid paths for private-key files (e.g., non-existence, permission errors).

(a) Missing initial checking

2. Initial checks:

3. Late execution: Change working directory (chdir) to the path.

Check if the path points to an existent directory.

static void sig_coredump(int sig) {

}

/* server/mpm_unix.c */

Error-handling configuration parameter: Apache httpd-2.4.10

 CoreDumpDirectory

 if(chdir(rootpath) != 0)

 return errno;

...
apr_filepath_set(ap_coredump_dir, ...);

...

4. Manifestation:

5. Consequence:

Apache httpd cannot switch to the configured directory, and thus fails to

generate the coredump file upon server crashing.

Error code returned by the chdir call

if (apr_stat(&finfo, fname, APR_FINFO_TYPE) != APR_SUCCESS)

 return "CoreDumpDirectory does not exist";

if (finfo.filetype != APR_DIR)

 return "CoreDumpDirectory is not a directory";

iCoreDumpDirectoryj

1. LC Errors:

The running program has no permission to access coredump directory .

(b) Incomplete initial checking

Figure 3: New LC errors discovered in the latest versions of the

studied software, both of which are found to have caused real-

world failures [40, 41]. For all these LC errors, the correctness check-

ing is implicitly done when the parameters’ values are actually used in

operations, which is unfortunately too late to prevent the failures.

adopt the lazy practice of using configuration values3—

parsing and consuming configuration settings only when

the values are immediately needed for the operations,

without any systematic configuration checking at the sys-

tem’s initialization phase.

With such a practice, even trivial errors could result

in big impact on the system’s dependability. Figure 3a

exemplifies such cases using the new LC errors we dis-

covered in our study. In HDFS, any LC errors (such as a

naı̈ve type error) in the auto-failover configurations could

3This is a bad but commonly adopted practice in Java and Python

programs which rely on libraries (e.g., java.util.Properties and

configparser) to directly retrieve and use configuration values from

configuration files on demand, without systematic early checks.

Software Not used during initialization Studied param.

HDFS 17 (38.6%) 44

YARN 9 (25.7%) 35

HBase 3 (12.0%) 25

Apache 4 (28.6%) 14

Squid 4 (19.0%) 21

MySQL 6 (13.9%) 43

Table 5: The studied configuration parameters whose values are

not used at the system’s initialization phase.

break the fail-over procedure upon the NameNode fail-

ures (as the values are not checked or used early), making

the entire HDFS service become unavailable.

Apache, MySQL, and Squid all apply specific config-

uration checking procedures at initialization, mainly for

checking data types and data ranges. However, for more

complicated parameters, some checking is incomplete.

Figure 3b shows another new LC error we discovered. In

this case, though the initial checking code covers file ex-

istence and types, it misses other constraints such as file

permissions. This leaves Apache subject to permission-

related LC errors (which is reported as one common

cause of core-dump failures upon server crash [41]).

As shown by Figure 3b, one configuration parameter

could have multiple subtle constraints depending on how

the system uses its value. For example, a configured file

path used by chdir has different constraints from files

accessed by open; even for files accessed by the same

open call, different flags (e.g., O RDONLY versus O CREAT)

would result in different constraints. Implementing code

to check such constraints is tedious and error-prone.

Finding 2: Many (12.0%–38.6%) of the studied RAS

configuration parameters are not used at all during the

system’s initialization phase.

Table 5 counts the studied configuration parameters

that are not used at the system’s initialization phase, but

are consumed directly in late execution (e.g., when deal-

ing with failures). Figure 3a is such an example. Since

all these parameters are from RAS features, it is natural

for their usage to come late on demand.

Some Java programs put the checking or usage code of

the parameters in the class constructors, so that the errors

can be exposed when the class objects are created (spe-

cially, this is used as the practice for quickly fixing LC

errors [18,19,54]). However, this may not fundamentally

avoid LC errors if the class objects are not created during

the system’s initialization phase.

Note: RAS configurations can be implemented with

early usage at the system’s initialization phase. As shown

in Table 5, the majority of RAS configurations are in-

deed used during initializaiton. For example, all the stud-

ied systems choose to open error-log files at initialization

time, rather than waiting until they have to print the error

messages to the log files upon failures.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 623

Software
RAS Parameters

Subject to LC errors Studied

HDFS 17 (38.6%) 44

YARN 9 (25.7%) 35

HBase 3 (12.0%) 25

Apache 3 (21.4%) 14

Squid 3 (14.3%) 21

MySQL 2 (4.7%) 43

Total 37 (20.3%) 182

Table 6: The number of configuration parameters that are subject

to LC errors in the studied ones. 11 of these parameters have been

confirmed/fixed by the developers after we reported them.

Finding 3: Resulting from Findings 1 and 2, 4.7%–

38.6% of the studied RAS parameters do not have any

early checks and are thereby subject to LC errors which

can cause severe impact on the system’s dependability.

Table 6 shows the number of the RAS configuration

parameters that are subject to LC errors in each studied

system. The threats are prevalent: LC errors can reside

in 10+% of the RAS parameters in five out of six sys-

tems. As all these LC errors are discovered in the latest

versions, any of them could appear in real deployment

and would impair the system’s dependability in a latent

fashion. Such prevalence of LC errors indicates the need

for tool support to systematically rule out the threats.

Among the studied systems, HDFS and YARN have a

particularly high percentage of RAS parameters subject

to LC errors, due to their lazy evaluation of configura-

tion values (refer to Finding 1 for details). HBase ap-

plies the same lazy practice as HDFS and YARN, but has

fewer parameters subject to LC errors, because most of

its RAS parameters are used during its initialization. We

also find LC errors in the other studied systems, despite

their initial configuration checking efforts.

2.3 Implication

In summary, even mature software systems are subject to

LC errors due to the deficiency of configuration checking

at the initialization time. While relying on developers’

discipline to add more checking code can help, the re-

ality often fails our expectations, because implementing

configuration checking code is tedious and error-prone.

Fortunately, we also observe from the study that ex-

cept for explicit configuration checking code, the actual

usage of configuration values (which already exists in

source code) can serve as an implicit form of checking,

for example, opening a file path that comes from a con-

figuration value implies a capability check. Such usage-

implied checking is often more complete and accurate

than the explicit checkers written by developers, because

it precisely captures how the configuration values should

be used in the actual program execution. Sadly, in re-

ality these usage-implied checking is rarely leveraged to

detect LC errors, because the usage often comes too late

to be useful. A natural question regarding the solution

to LC errors is: can we automatically generate configu-

ration checking code from the existing source code that

uses configuration values?

3 PCHECK Design and Implementation

PCHECK is a tool for enabling early detection of config-

uration errors for a given systems program. The objec-

tive of PCHECK is to automatically generate configura-

tion checking code (called checkers) based on the origi-

nal program, and invoke them at the system initialization

phase, in order to detect LC errors.

PCHECK tries to generate checkers for every configu-

ration parameter. It is not specific to RAS configurations

and has no assumption on the existence of any LC er-

rors. The checker of a parameter emulates how the sys-

tem uses the parameter’s value in the original execution,

and captures anomalies exposed during the emulated ex-

ecution as the evidence of configuration errors.

PCHECK is built on top of the Soot [3] and LLVM [4]

compiler frameworks and works for both Java and C sys-

tem programs. PCHECK works on the intermediate rep-

resentations (IR) of the programs (LLVM IR or Soot Jim-

ple). It takes the original IR as inputs, and outputs the

generated checkers, and inserts them into bitcode/byte-

code files (which are then built into native binaries). This

may require prepending the build process by replacing

the compiler front-end with Soot or Clang [47].

PCHECK faces three major challenges: (1) How to au-

tomatically emulate the execution that uses configuration

values? (2) Since the checkers will be inserted into the

original program and will run in the same address space,

how does one make the emulation safe without incurring

side effects on the system’s internal state and external

environment? (3) How to capture anomalies during the

emulated execution as the evidence of configuration er-

rors (the emulation alone cannot directly report errors)?

To address the first challenge, PCHECK extracts the in-

structions that transform, propagate, and use the value of

every configuration parameter using a static taint track-

ing method. PCHECK then makes a best effort to produce

the context (values of dependent variables) necessary for

emulating the execution. The extracted instructions, to-

gether with the context, are encapsulated in a checker.

For the second challenge, PCHECK “sandboxes” the

auto-generated checkers by rewriting instructions that

would cause side effects. PCHECK avoids modifications

to global variables by copying their values to local ones,

and rewrites the instructions that may have external side

effects on the underlying OS.

To address the third challenge, PCHECK leverages

system- and language-level error identifiers (including

runtime exceptions, system-call error codes, and abnor-

624 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bool flush_error_log() {

 redirect_std_streams(log_error_file);

}
...

...

static bool redirect_std_streams(char* file) {

 reopen_fstream(file, ..., stderr);

}
...

...

my_bool reopen_fstream(char* filename, ..., FILE *errstream) {

 my_freopen(filename, "a", errstream);

}
...

...

FILE *my_freopen(char *path, char *mode, FILE *stream) {

 result = freopen(path, mode, stream);

}
...

...

parameter: ilog_errorj

Instruction
to execute

1. Source code: MySQL 5.7.6

/*src/log.cc*/

/* src/log.cc */

/* src/log.cc */

/* mysys/my_fopen.c */

bool check_log_error() {

 char* mode = iaj;

 freopen(log_error_file, mode, stream);

 bool cr = check_util_freopen(log_error_file, mode);

 if (cr == false) {

 fprintf(stderr, "log_error is misconfigured.");

 }

 return cr;

}

Context
needed

Context
unneeded

2. Generated checker (simplified for clarity):

bool check_util_freopen(char *path, char *mode);

 /* Predefined utility function that checks

 the arguments based on the call semantics

 without executing the call (§3.2). */

Figure 4: Illustration of PCHECK’s checker generation (using a

real-world LC error example [26]). PCHECK replaces the original

call (freopen) with check utilities based on access and stat to pre-

vent side effects (§3.2). To execute the instructions, the necessary exe-

cution context needs to be produced. Note that we illustrate the checker

using C code for clarity; the actual code is in LLVM IR or Soot Jimple.

mal program exits) to capture the anomalies exposed dur-

ing the emulation, and report configuration errors.

Figure 4 illustrates PCHECK’s checker generation for

a MySQL configuration parameter, log error, which is

subject to LC errors [26]. PCHECK extracts the instruc-

tions that use the configuration value and determines the

values of the other dependent variables (e.g., mode) as the

context. To prevent side effects, it rewrites some call in-

struction. It detects errors based on the return value.

Lastly, PCHECK inserts the generated checkers into

the system program, and invokes these checkers at the

end of the system initialization phase (annotated by de-

velopers). To detect TOCTTOU errors4, PCHECK sup-

ports running checkers periodically in a separate thread.

Usage. PCHECK requires two inputs from developers:

(1) specifications of the configuration interface to help

PCHECK identify the initial program variables that store

configuration values, as the starting points for analysis

(§3.1.1); (2) annotations of the system’s initialization

phase where the early checkers will be invoked (§3.4).

In addition, PCHECK provides the tuning interface for

developers to select and remove any generated checkers,

as per their preference and criteria (e.g., after standard

4A TOCTTOU (Time-Of-Check-To-Time-Of-Use) error occurs af-

ter the checking phase and before the use phase, e.g., inadvertently

deleting a file that had been checked early but will be used later on.

software testing of the enhanced system programs). Sim-

ilarly, PCHECK provides an operational interface that al-

lows sysadmins to enable/disable the invocation of the

checkers of any specific parameters in operation.

3.1 Emulating Execution

To emulate the execution that uses a configuration pa-

rameter, PCHECK first identifies instructions that load

the parameter’s value into program variables (§3.1.1).

Starting from there, PCHECK performs forward static

taint analysis to extract all the instructions whose exe-

cution uses the parameter’s value, and hence are the can-

didates to be included in the checkers (§3.1.2). It then

analyzes backwards to figure out the values of dependent

variables in these instructions, as the execution context

(§3.1.3). Finally, PCHECK composes checkers using the

above instructions and their context (§3.1.4).

Note that the emulation does not need to include the

conditions under which the configurations are used. In-

stead, it focuses on executing the instructions that con-

sume the configuration values—the goal is to check if

using the configuration would cause any anomalies when

its value is needed. With this design, PCHECK is able to

effectively handle large, non-deterministic software pro-

grams, without the need to inject/simulate hard-to-trigger

error conditions under which LC errors are exposed.

3.1.1 Identifying Starting Points

As the configuration-consuming execution always starts

from loading the configuration value, PCHECK needs

to identify the program variables that initially store the

value of each parameter, as the starting points.

PCHECK adopts the common practices presented in

previous work [8,22,32,33,52,60,61] to obtain the map-

ping from configuration parameters to the correspond-

ing variables. The basic idea is to let developers spec-

ify the interface5 for retrieving configuration values, and

then automatically identify program variables that load

the values based on the interface. As pointed out by [52],

most mature systems have uniform configuration inter-

faces for the ease of code maintenance. For instance, to

work with HDFS, PCHECK only needs to know the con-

figuration getter functions (e.g., getInt and getString

in Figure 3a) declared in a single Java class; identifying

them only requires several lines of specifications using

regular expressions. In general, specifying interface re-

quires little specification efforts, compared to annotating

every single variable for a large number of configuration

parameters. In the evaluation, the specifications needed

for most systems are less than 10 lines (§4: Table 7).

5The interface could be APIs, data structures, or parsing func-

tions [52, 35]. It is reported that only three types of interfaces are com-

monly used to store/retrieve configurations [52, 35].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 625

3.1.2 Extracting Instructions Using Configurations

For each configuration parameter, PCHECK extracts the

instructions that propagate, transform, and use the pa-

rameter’s value using a static taint tracking method. For

a given parameter, the initial taints are the program vari-

ables that store the parameter’s value (§3.1.1). The taints

are propagated via data-flow dependencies (including as-

signments, type casts, and arithmetic/string operations),

but not through control-flow dependencies to avoid over-

tainting [39]. All the instructions containing taints are

extracted, and will be encapsulated in a checker.

Note that one parameter could be used in multiple ex-

ecution paths, and thus have multiple checkers. We ex-

plain how multiple checkers are aggregated in §3.1.4.

Ordinarily, the extracted instructions from data-flow

analysis do not include branches. However, if a tainted

instruction is used as a branch condition whose branch

body encloses other tainted instructions, PCHECK per-

forms additional control-flow analysis to retain the con-

trol dependency of these instructions. One pattern is us-

ing a configuration value p after a null-pointer check, in

the form of, if (p != NULL) { use p; }. PCHECK recov-

ers the conditional branch and ensures that if p’s value

is NULL, the instructions using p inside the branch would

not be reached. Moreover, PCHECK checks if a tainted

branch condition leads to abnormal program states, for

which it inserts error-reporting instructions (see §3.3).

The taint tracking is inter-procedural, context sensi-

tive, and field sensitive. Inter-procedure is necessary be-

cause configuration values are commonly passed through

procedure calls, as illustrated in Figure 4. We adopt

a summary-based inter-procedural analysis, and assem-

ble the execution based on arguments/returns. PCHECK

maintains the call sites; thus it naturally enables context

sensitivity which helps produce context by backtracking

from callees to callers (c.f., §3.1.3). Field sensitivity is

needed as configuration values could be stored in data

structures or as class fields. PCHECK scales well for real-

world software systems, as configuration-related instruc-

tions form a small part of the entire code base. We do

not explicitly perform alias analysis (though it is easy to

integrate), as configuration variables are seldom aliased.

3.1.3 Producing Execution Context

Some of the extracted instructions that use configuration

variables may not be directly executable, if they contain

variables that are not defined within the extracted instruc-

tion set. To execute such instructions, PCHECK needs to

determine the values of these undefined variables (which

we refer to as “dependent variables”) in order to produce

self-contained context.

PCHECK will include a variable and the corresponding

instructions in the emulated execution, only when this

variable’s value stems from configuration values (e.g.,

path in Figure 4) or can be statically determined along

the data-flow paths of the configuration value (e.g., mode

and stream in Figure 4). PCHECK does not include de-

pendent variables whose values come from indetermi-

nate global variables, external inputs (from I/O or net-

work operations such as read and recv), values defined

out of the scope of the starting point, etc. For such de-

pendent variables, PCHECK removes the instruction that

uses them as operands, together with the succeeding in-

structions. Those variables’ values may not be available

during the initialization phase of the system execution;

using them would lead to unexpected results.

To produce the context, PCHECK backtracks each un-

defined dependent variable first intra-procedurally and

then inter-procedurally (to handle the arguments of pro-

cedure calls). The backtracking starts from the instruc-

tion that uses the variable as its operand, and stops un-

til either PCHECK successfully determines the value of

the variable or gives up (the value is indeterminate). In

Figure 4, PCHECK backtracks mode used by the tainted

instruction and successfully obtains its value "a".

PCHECK only attempts to produce the minimal con-

text necessary to emulate execution for the purpose of

checking. As an optimization, PCHECK is aware of how

certain types of instructions will be rewritten in later

transformations (e.g., for side-effect prevention, §3.2). In

Figure 4’s example, PCHECK knows how the freopen

call will be rewritten later. Therefore, it only produces

the context of mode which is needed to check the file ac-

cess; the other dependent variable stream is ignored as it

is not needed for the checking.

Sometimes, the dependent variables come from other

configuration parameters. PCHECK can capture the re-

lationships among multiple configurations, e.g., one pa-

rameter’s value has to be larger or smaller than another’s.

3.1.4 Encapsulation

For each configuration parameter, PCHECK encapsu-

lates the configuration-consuming instructions together

with their context into a checker, in the form of a func-

tion. PCHECK clones the original instructions and their

operands. For local variables used as operands, PCHECK

clones a new local variable and replaces the original vari-

able with the new one. If the instructions change global

variables, PCHECK generates a corresponding local vari-

able and copies the global variable’s value to the local

one (to avoid changing the global program state). When

it involves procedure calls, PCHECK inlines the callees.

Handling multiple execution paths. For configuration

parameters whose values are used in multiple distinct ex-

ecution paths, PCHECK generates multiple checkers and

626 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

aggregates their results. The configuration value is con-

sidered erroneous if one of these checkers complains.

PCHECK needs to pay attention to potential path ex-

plosion to avoid generating too many checkers. Fortu-

nately, in our experience, configuration values are usu-

ally used in a simple and straightforward way, with only

a small number of different execution paths to emulate.6

This makes the PCHECK approach feasible.

Moreover, PCHECK merges two checkers if they are

equivalent or if one is equivalent to a subset of the other.

PCHECK does this by canonicalizing and comparing the

instructions in the checkers’ function bodies. Addition-

ally, PCHECK merges checkers which start with the same

transformation instruction sequence by reusing the inter-

mediate transformation results.

Note that the checkers with no error identifiers (§3.3)

or considered redundant (§3.4) will be abandoned. As

shown in §4.4, the number of generated checkers are well

bounded, and executing them incurs little overhead.

3.2 Preventing Side Effects

PCHECK ensures that the generated checkers are free of

side effects—running the checkers does not change the

internal program state beyond the checker function it-

self, or the external system environment (e.g., filesys-

tems and OSes). Therefore, PCHECK cannot blindly exe-

cute the original instructions. For example, if the checker

contains instructions that call exec, running the checker

would destruct the current process image. Similarly, cre-

ating or deleting files is not acceptable, as the filesystem

state before and after checking would be inconsistent.

Internal side effects are prevented by design. PCHECK

ensures that each checker only has local effects. As dis-

cussed in §3.1.4, PCHECK avoids modifying global vari-

ables in the checker function; instead, it copies global

variable values to local variables and uses the local ones

instead. The checker does not manipulate pointers if the

pointed values are indeterminate.

External side effects are mainly derived from certain

system and library calls that interact with the external

environment (e.g., filesystems and OS states). In order

to preserve the checking effectiveness without incurring

external side effects, PCHECK rewrites the original call

instructions to redirect the calls to predefined check util-

ities. A check utility models a specific system or library

call based on the call semantics. It validates the argu-

ments of the call, but does not actually execute the call.

PCHECK implements check utilities for standard APIs

and data structures (including system calls, libc func-

tions for C, and Java core packages defined in SDK).

The check utilities are implemented as libraries that are

6The emulated execution paths are not the original execution paths

(they only include the configuration-related instructions).

either statically linked into the system’s bitcode (for C

programs), or included in the system’s classpath (for

Java programs). In Figure 4, the check utility of freopen

checks the arguments of the call using access and stat

which are free of side effects (the original freopen call

will close the file stream specified by the third argument).

PCHECK skips instructions that read/write file con-

tent or send/recv network packets, in order to stay away

from external side effects and heavy checking overhead.

Instead, PCHECK performs metadata checks for files and

reachability checks for network addresses. This helps the

generated checkers be safe and efficient, while still being

able to catch a majority of real-world LC errors.

For any library calls that are not defined in PCHECK or

do not have known side effects (e.g., some library calls

would invoke external programs/commands), PCHECK

defensively removes the call instructions (together with

the succeeding instructions) to avoid unexpected effects.

One alternative approach to preventing external side

effect is to running the checkers inside a sandbox or even

a virtual machine at the system initialization phase. This

may save the efforts of implementing the check utilies

and rewriting system/library call instructions. However,

such approach would impair the usability of PCHECK,

because it requires additional setups from system admin-

istrators in order to run the PCHECK-enhanced program.

3.3 Capturing Anomalies

As the checker emulates the execution that uses the con-

figuration value, anomalies exposed during execution in-

dicate that the value contains errors—the same problem

that would occur during real execution. In this case, the

checker reports errors and pinpoints the parameter.

PCHECK captures anomalies based on the following

three types of error identifiers: (1) runtime exceptions

that disrupt the emulated execution (for Java programs);

(2) error code returned by system and library calls (for

C programs); and (3) abnormal program termination and

error logging that indicate abnormal program states.

For Java programs, PCHECK captures runtime anoma-

lies based on Java’s Exception interface, the language’s

uniform mechanism for capturing error events. PCHECK

places the body of the checker function in a try/catch

block. The abnormal execution would throw Exception

objects and fall into the catch block. In this case, the

checker reports errors and prints the stack traces.

C programs do not have the uniform error interfaces.

Thus, PCHECK leverages the error identifiers defined by

specific system/library call semantics, i.e., the return val-

ues and errno. For example, if the access call returns -1,

it means the call failed when accessing the file (with the

reason being encoded in errno). In PCHECK, we prede-

fine the error identifiers for commonly-used system and

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 627

libc calls to decide whether a call succeeded or failed.

If the call fails, the checker reports configuration errors.

In addition to the anomalies exposed by system and

library APIs, a program usually contains hints of abnor-

mal program states. Such hints are instructions such as

exit, abort, throw, false assertion, error logging, etc.

PCHECK treats these hints as one type of anomalies. If

an instruction is post-dominated by any anomaly hints,

the instruction itself indicates an abnormal state of exe-

cution. Thus, PCHECK reports configuration errors when

the checker emulates such error instructions. PCHECK

records these hints during the code analysis in §3.1.2,

and inserts error-reporting instructions into the checker

at the corresponding locations.

PCHECK abandons the checkers that do not contain

any of the three types of error identifiers discussed above.

In other words, running such checkers cannot expose any

explicit anomalies (no evidence of configuration errors).

3.4 Invoking Early Checkers

Once the checkers are generated, PCHECK inserts call

instructions to invoke the checkers at the program loca-

tions specified by developers. The expected location is

at the end of the system initialization phase to make the

checkers the last defense against LC errors.

Figure 5 shows the locations annotated for PCHECK to

invoke the auto-generated checkers for Squid and HDFS.

For server systems like Squid, the checkers should be in-

voked before the server starts to listen and wait for client

requests. For distributed systems like HDFS, the check-

ers should be invoked before the system starts to connect

and join the cluster. As all the evaluated systems fall in

these two patterns, we believe that specifying the invoca-

tion locations is a simple practice for developers.

Some C programs may change user/group identities.

Typically, the program starts as root and then switches

to unprivileged users/groups (e.g., nobody) at the end of

initialization before handling user requests. In Figure 5,

the switch is performed inside mainInitialize. As the

checkers are invoked in the end of the initialization, the

checking results are not affected by user/group switches.

To capture the TOCTTOU errors, PCHECK also sup-

ports running the generated checkers periodically in a

separate thread. Periodical checking is particularly use-

ful for catching configuration errors that occur after the

initial checking (e.g., due to environment changes such

as remote host failures and inadvertent file deletion).

Avoiding redundant checking. PCHECK abandons the

redundant checkers which are constructed from instruc-

tions that would be executed before reaching the invoca-

tion location—any configuration errors reported by such

checkers should have already been detected by the sys-

int SquidMain(...) {

mainParseOptions(...);

parseConfigFile(...);

mainInitialize();

mainLoop.run();

...

...

...

NameNode namenode = createNameNode();

public static void main(...) {

}

...

...

namenode.join();

...

/* src/main.cc */

/* hadoop-hdfs/.../

NameNode.java */

Squid 3.4.10

HDFS 2.6.0

}

Initialization

Invoke

checkers

Initialization

Invoke

checkers

Figure 5: Locations to invoke the checkers in Squid and HDFS

NameNode. The auto-generated checkers are expected to be invoked

at the end of the initialization phase.

tem’s built-in checks, or have been exposed when the

configuration value is used, before the checker is called.

Creating standalone checking programs. Another op-

tion to invoking the early checkers is to create a stan-

dalone checking program comprised of the checkers, and

run it when the configuration file changes. This approach

eliminates the need to deal with internal side effect; on

the other hand, the checking program is still prohibited to

have external side effect. Note that the generated check-

ers start from the instructions that load configuration val-

ues (§3.1.1); therefore, the checking program needs to

include the procedures that parse configuration files and

store configuration values. This is straightforward for the

software systems with modularized parsing procedures7,

but could be difficult if the parsing procedures cannot be

easily decoupled from the initialization phase (the initial-

ization may have external side effects).

4 Experimental Evaluation

4.1 Methodology

We first evaluate the effectiveness of PCHECK using the

37 new LC errors discovered in our study. As discussed

in §2, all these new LC errors are from the latest versions

of the systems; any of them can impair the corresponding

RAS features such as fail-over and error handling.

As the design of PCHECK is inspired by the above LC

errors, our evaluation contains two more sets of bench-

marks to evaluate how PCHECK works beyond these er-

rors. First, we evaluate PCHECK on a distinct set of 21

real-world LC errors that caused system failures in the

past. These LC errors are collected from the datasets in

prior studies related to configurations [6, 11, 51, 55, 59];

all of them were introduced by real users and caused real-

world failures. Some of these cases have different code

7We implement this approach for HDFS, YARN, and HBase which

use modularized getter functions to parse/store configuration values.

628 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Historical New Setup effort

HDFS 7 17 6

YARN 6 9 7

HBase 3 3 6

Apache 2 3 6

Squid 2 3 4

MySQL 1 2 31

Total 21 37 N/A

Table 7: The number of LC error cases used in the evaluation, and

the setup efforts (the lines of specifications for identifying starting

points, c.f., §3.1.1 and annotations of invocation location, c.f., §3.4).

Type 1: Type and format errors (14 cases)

Ex. 1: Ill format settings, e.g., with untrimmed space [14, 16];

Ex. 2: Invalid type settings, e.g., 0.05 for integer [13];

Type 2: Undefined options or ranges (6 cases)

Ex. 1: Deprecated compression codec class set by users [15];

Ex. 2: Unsupported HTTP protocol settings [17];

Type 3: Incorrect file-path settings (19 cases)

Ex. 1: Non-existent paths which will be opened or executed [37];

Ex. 2: Wrong file types, e.g., set regular files for directories [27];

Type 4: Other erroneous settings (19 cases)

Ex. 1: Negative values used by sleep and thread join [18, 54];

Ex. 2: Invalid mail program [38] and unreachable emails [38];

Table 8: Types and examples of LC errors used in the evaluation.

patterns from the ones we discovered in §2. Table 7 lists

the number of these LC errors in each system.

Furthermore, we apply PCHECK to 830 configuration

files of the studied systems (except Squid) collected from

the official mailing lists of these systems and online tech-

nical forums such as ServerFault and StackOverflow [1].

This simulates the experience of using PCHECK on real-

world configuration files (§4.2). Moreover, it helps mea-

sure the false positive rate of the checking results (§4.6).

Note that we evaluate PCHECK upon all types of LC

errors, instead of any specific error types. Therefore, the

evaluation results indicate the checking effectiveness of

PCHECK in terms of all possible LC errors. Table 8 cat-

egorizes and exemplifies the LC errors used in the evalu-

ation based on their types.

Also, the evaluation does not use synthetic errors gen-

erated by mutation or fuzzing tools (e.g., ConfErr [23]).

Most of the synthetic errors are not LC errors—they are

manifested or detected by the system’s built-in checks at

the system’s initialization time. Thus, using such errors

would make the results less meaningful to LC errors.

For each system, we apply PCHECK to generate the

early checkers and insert them in the system’s program.

Table 7 lists the setup efforts for the each system evalu-

ated, measured by the lines of specifications for identi-

fying the start points (c.f., §3.1.1) and annotations of the

invocation locations (c.f., §3.4). Then, we apply the auto-

generated checkers to the configuration files that con-

tain these LC errors. We evaluate the effectiveness of

PCHECK based on how many of the real-world LC er-

rors can be reported by the auto-generated checkers.

Types of LC errors
(%) LC errors detected

Historical New

Type and format error 1/1 (100.0%) 13/13 (100.0%)

Undefined option/range 2/2 (100.0%) 4/4 (100.0%)

Incorrect file/dir path 9/12 (75.0%) 5/7 (71.4%)

Other erroneous setting 3/6 (50.0%) 7/13 (53.8%)

Total 15/21 (71.4%) 29/37 (78.4%)

Table 9: The number (percentage) of the LC errors detected by the

early checkers generated by PCHECK. PCHECK detects 7 (33.3%)

and 11 (29.7%) more LC errors among the historical and new LC-error

benchmarks respectively, compared to conf spellchecker, a state-

of-the-art configuration-error detection tool.

We compare the checking results of PCHECK with

conf spellchecker [2, 35], a state-of-the-art static con-

figuration checking tool built on top of automatic type

inference of configuration values [33, 35]. For each de-

fined type, conf spellchecker implements correspond-

ing checking functions which are invoked to check the

validity of the configuration settings.

4.2 Detecting Real-world LC Errors

PCHECK detects 70+% of both historical and new LC

errors (as shown in Table 9), preventing the latent mani-

festation and resultant system damage imposed by these

errors. The results are promising, especially considering

that we evaluate PCHECK using all types of configura-

tion errors instead of any specific type. Indeed, PCHECK

is by design generic to any types of configuration errors

that can be exposed through execution emulation. Many

of these LC errors cannot be detected by the state-of-the-

art detection tools, as discussed below and in §4.3.

Among the different types of LC errors, PCHECK de-

tects all the errors violating the types/formats and op-

tions/ranges constraints. These two types of errors usu-

ally go through straightforward code patterns and do not

have dependencies with the system’s runtime states. For

example, most type/format errors in HDFS and YARN

are manifested when these systems read and parse the

erroneous settings through the getter functions. As the

auto-generated checkers invoke the getter instructions, it

triggers exceptions and detects the errors.

PCHECK detects the majority of LC errors that vio-

late file-related constraints (including special files such

as directories and executables). We observe that the ma-

jority of the file parameters fall into recognized APIs,

such as open, fopen, and FileInputStream. The unde-

tected file-related LC errors are mainly caused by (1) un-

known external usage and (2) indeterminate context. The

former prevents the generated checkers from being exe-

cuted, and the latter stops generation of the checkers. For

example, some errors reside in parameters whose val-

ues are concatenated into shell command strings, used as

the argument of system() (to invoke /bin/sh to execute

the command). As PCHECK has no knowledge of any

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 629

Software # config files
(%) detected config. errors

All Env. specific

HDFS 245 40 15 (37.5%)

YARN 81 49 32 (65.3%)

HBase 405 139 95 (68.3%)

Apache 65 41 36 (87.8%)

MySQL 34 13 10 (76.9%)

Table 10: Configuration errors detected by applying the checkers

on real-world configuration files. Many of the errors can only be

detected by considering the system’s native environment (§4.3).

shell commands, it removes the system() call because

the side effects are unknown. The other undetected er-

rors are in directories or file prefixes which are merged

with dynamic contents from user requests which cannot

be obtained statically; thereby, the corresponding check-

ers cannot be generated. These two causes (unknown ex-

ternal usage and indeterminate context) also account for

the undetected errors in the “other” category.

In general, PCHECK is effective in checking errors that

are manifested through execution anomalies with error

identifiers defined in §3.3, such as those failing at sys-

tem/library calls or throwing exceptions in the controlled

branch. Whereas, it is hard for PCHECK to detect errors

defined by application-specific semantics, such as email

addresses, internal error code, etc.

We apply conf spellchecker on the same sets of LC

errors. Compared with PCHECK, conf spellchecker

detects 7 (33.3%) and 11 (29.7%) less LC errors in the

historical and new error benchmarks, respectively. The

main reason for PCHECK’s outperformance is that the

execution emulation can achieve fine-grained checking

towards high fidelity to the original execution. For ex-

ample, conf spellchecker can only infer the type of a

configuration setting to be a “File”. However, it does not

understand how the system accesses the file in the exe-

cution. Thus, it reports errors if and only if “the file is

neither readable nor writable” [2]. This heuristic would

miss LC errors such as read-only files to be written by the

system. Furthermore, type alone only describes a subset

of constraints. conf spellchecker misses the LC errors

that violate other types of constraints such as data ranges.

4.3 Checking Real-world Configuration Files

We apply the checkers generated by PCHECK to 830

real-world configuration files. PCHECK reports 282 true

configuration errors and three false alarms (discussed in

§4.6). As shown in Table 10, many (37.5%–87.8%) of

the reported configuration errors can only be detected by

considering the system’s native execution environment.

These configuration settings are valid in terms of format

and syntax (in fact, they are likely to be correct in the

original hosts). However, they are erroneous when used

on the current system because the values violate envi-

ronment constraints such as undefined environment vari-

Software # checked param. (# checkers) All params

HDFS 164 (252) 164

YARN 116 (200) 116

HBase 125 (201) 125

Apache 18 (41) 97

Squid 45 (74) 216

MySQL 32 (51) 462

Table 11: The number of parameters with checkers generated by

PCHECK and the total number of generated checkers (each repre-

sents a distinct parameter usage scenario).

ables, non-existent file paths, unreachable IP addresses,

etc. Since PCHECK emulates the execution that uses the

configuration values on the system’s native execution en-

vironment, it naturally detects these errors. On the other

hand, such configuration errors are not likely to be de-

tected by traditional detection methods [29,31,36,46,57]

that treat configuration values as string literals, and thus

are agnostic to the execution environment.

4.4 Checker Generation

Table 11 shows the number of configuration parameters

that have checkers generated by PCHECK and the total

number of generated checkers for the evaluated systems

(multiple checkers could be generated for a parameter).

PCHECK generates checkers for every recognized pa-

rameter of HDFS, YARN, and HBase. Each emulated

execution in these systems starts from the call instruc-

tions of getter functions, so the checkers are able to cap-

ture all the errors starting from the parsing phase to the

usage phase. For Apache, MySQL and Squid, PCHECK

generates fewer checkers. As these systems parse and

assign parameter settings to corresponding program vari-

ables at the initialization stage, PCHECK bypasses the

parsing phase and directly starts from the variables that

store the configuration value. Since a large number of the

Boolean and numeric variables are only used for branch

control with no error identifier (both branches are valid),

PCHECK does not generate checkers for them (c.f., §3.3).

Moreover, many of the variables are only used at the ini-

tialization phase before reaching the invocation location,

so their checkers are considered redundant and thus are

abandoned (c.f., §3.4).

The other issues that prevent checker generation in-

clude dependencies on the system’s runtime states and

uses of customized APIs (e.g., Apache uses customized

APR string operations which heavily rely on predefined

memory pools). Fortunately, as shown in §4.2, the ma-

jority of the LC errors have standard code patterns and

can be detected using PCHECK’s approach. Generating

checkers for the rest of the errors require more advanced

analysis and program-specific semantics.

Also, we can see that the total number of checkers

are well bounded, which is attributable to the execution

merging (§3.1.4) and redundancy elimination (§3.4).

630 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Time for running the checkers (millisec.)

HDFS [NameNode] 408 [DataNode] 311

YARN [ResourceMgr] 243 [NodeMgr] 486

HBase [HMaster] 780 [RegionServer] 777

Apache [httpd] 0.6 ————– —–

Squid [squid] 93.8 ————– —–

MySQL [mysqld] 1.7 ————– —–

Table 12: Checking overhead (measured by the time needed to run

the auto-generated checkers).

4.5 Checking Overhead

The checkers are only invoked at the initialization phase

or run in a separate thread, thus they have little impact

on the systems’ runtime performance. We measure their

overhead to be the time needed to execute these check-

ers, by inserting time counters before and after invoking

all the checkers. Table 12 shows the time in milliseconds

(ms) to run the checkers on a 4-core, 2.50GHz proces-

sor connected to a local network (for distributed systems

like HDFS, YARN, and HBase, the peer nodes are lo-

cated in the same local network). The checking overhead

for Apache and MySQL is negligible (less than 5ms);

Squid needs around 100ms because it has a parameter

that points to public IP addresses (announce host). The

overhead for the three Java programs is less than a sec-

ond. The main portion of the time is spent on network-

and file-related checking. Since PCHECK only performs

lightweight checks (e.g., metadata checks and reachabil-

ity checks), the overhead is small. Note that the checkers

are currently executed sequentially. It is straightforward

to invoke multiple checkers in parallel to reduce over-

head, as all the checkers are independent.

4.6 False Positives

We measure false positives by applying the checkers gen-

erated by PCHECK to both the default configuration val-

ues of the evaluated systems and the 830 real-world con-

figuration files, and examine whether or not our checkers

would falsely report errors. We also manually inspect the

code of the generated checkers in LLVM IR and Jimple

to look for potential incorrectness.

Among all the configuration parameters in the evalu-

ated systems, only three of them have false alarms re-

ported by the auto-generated checkers: two from YARN

and one from HBase. All these false positives are caused

by the checkers incorrectly skipping conditional instruc-

tions affected by the configuration value (§3.1.2), due to

unsound static analysis that misses control dependencies.

This results in emulating the execution that should never

happen in reality—certainly, the anomalies exposed in

such execution are unreal. The overall false positive rates

are low. YARN has the most configuration parameters

with false checkers, with the false positive rate of 1.7%

(2 over 116 parameters). Note that checkers with false

positives can be removed by the developers or disabled

by the administrators in the field (c.f., §3: Usage).

5 Limitations

No tool is perfect. PCHECK is no exception. Like many

other error detection tools, PCHECK is neither sound nor

complete for its checking scope and the design trade-offs.

PCHECK targets on the specific type of configuration

errors which are manifested through explicit, recogniz-

able instruction-level anomalies (c.f., §3.3). It cannot de-

tect legal misconfigurations [55] that have valid values

but do not deliver the intended system behavior. The

common legal misconfigurations include inappropriate

configuration settings that violate resource constraints

or performance requirements (e.g., insufficient heap size

and too small timeout). Such misconfigurations are no-

toriously hard to detect and are often manifested in a la-

tent fashion as well, such as runtime out-of-memory er-

rors [10] (resources are not used up immediately). How-

ever, detecting resource- and performance-related mis-

configurations would need dynamic information regard-

ing resource usage and performance profiling, which is

beyond the static methods of PCHECK.

In addition, PCHECK cannot emulate the execution

that depends on runtime inputs/workloads, or does not

have statically determinate context in the program code

(c.f., §3.1.3). Thus, it would miss the configuration errors

that are only manifested during such execution. Never-

theless, indeterminate context (e.g., those derived from

inputs and workloads) can potentially be modeled with

representative values, which could significantly improve

the capability of checker generation.

One design choice we make is to trade soundness for

safety and efficiency—PCHECK aims to detect common

LC errors without incurring side effects or much over-

head. For example, PCHECK does not look into file con-

tents but only checks if the file can be accessed as ex-

pected. Similarly, PCHECK only checks the reachability

of a configured IP address or host instead of connect-

ing and sending packets to the remote host. It is pos-

sible that certain sophisticated errors can escape from

PCHECK (e.g., the configured file is corrupted and thus

has wrong contents). As the first step, we target on basic,

common errors, as they already account for a large num-

ber of real-world LC errors [24, 43, 55]. Efficiently de-

tecting sophisticated errors may require not only deeper

analysis but also application semantics.

6 Concluding Remarks

This paper advocates early detection of configuration er-

rors to minimize failure damage, especially in cloud and

data-center systems. Despite all the efforts of validation,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 631

review, and testing, configuration errors (even those ob-

vious errors) still cause many high-impact incidents of

today’s Internet and cloud systems. We believe that this

is partly due to the lack of automatic solutions for cloud

and data-center systems to detect and defend against con-

figuration errors (the existing solutions are hard to be ap-

plied, due to their strong reliance on datasets).

We envisage that PCHECK is the first step towards a

generic and systematic solution to detect configuration

errors. PCHECK does not require collecting any exter-

nal datasets and is not specific to any specific rules. It

detects configuration errors based on how the system ac-

tually uses the configuration values. With PCHECK, we

demonstrate that such detection method can effectively

detect the majority (75+%) of real-world LC errors, with

little runtime overhead and setup effort.

7 Acknowledgement

We greatly appreciate the anonymous reviewers and our
shepherd, Peter M. Chen, for their insightful comments
and feedback. We thank the Opera group, the UCSD Sys-
tems and Networking group, and Shelby Thomas for use-
ful discussions and paper proofreading. Tao Cai partici-
pated in the implementation of PCHECK. Liqiong Yang
contributed to the study of RAS related configuration pa-
rameters. Yuanyuan Zhou’s group is supported in part by
NSF grants (CCR-1526966, CCR-1321006), and a gift
grant from Facebook, and supports from NetApp. Shan
Lu’s research is supported in part by NSF grants (IIS-
1546543, CNS-1563956, CNS-1514256, CCF-1514189,
CCF-1439091), and generous supports from Alfred P.
Sloan Foundation and Google Faculty Research Award.

References

[1] Configuration Datasets. https://github.com/

tianyin/configuration_datasets.

[2] conf spellchecker. https://github.com/roterdam/

jchord/tree/master/conf_spellchecker.

[3] Soot: a Java Optimization Framework. http://sable.

github.io/soot/.

[4] The LLVM Compiler Infrastructure Project. http://

llvm.org/.

[5] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-

tomating Root-Cause Diagnosis of Performance Anoma-

lies in Production Software. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and

Implementation (OSDI’12) (Hollywood, CA, USA, Oct.

2012).

[6] ATTARIYAN, M., AND FLINN, J. Automating Configu-

ration Troubleshooting with Dynamic Information Flow

Analysis. In Proceedings of the 9th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI’10) (Vancouver, BC, Canada, Oct. 2010).

[7] BARROSO, L. A., AND HÖLZLE, U. The Datacenter as a

Computer: An Introduction to the Design of Warehouse-

scale Machines. Morgan and Claypool Publishers, 2009.

[8] BEHRANG, F., COHEN, M. B., AND ORSO, A. Users

Beware: Preference Inconsistencies Ahead. In Proceed-

ings of the 10th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering (ES-

EC/FSE’15) (Bergamo, Italy, Aug. 2015).

[9] BRODKIN, J. Why Gmail went down: Google miscon-

figured load balancing servers. http://arstechnica.

com/information-technology/2012/12/why-

gmail-went-down-google-misconfigured-

chromes-sync-server/.

[10] FANG, L., NGUYEN, K., XU, G., DEMSKY, B., AND

LU, S. Interruptible Tasks: Treating Memory Pressure As

Interrupts for Highly Scalable Data-Parallel Programs. In

Proceedings of the 25th Symposium on Operating System

Principles (SOSP’15) (Monterey, CA, USA, Oct. 2015).

[11] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,

PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELI-

AZAR, K. J., LAKSONO, A., LUKMAN, J. F., MAR-

TIN, V., AND SATRIA, A. D. What Bugs Live in the

Cloud? A Study of 3000+ Issues in Cloud Systems. In

Proceedings of the 5th ACM Symposium on Cloud Com-

puting (SoCC’14) (Seattle, WA, USA, Nov. 2014).

[12] HADOOP ISSUE #134. JobTracker trapped in a loop if it

fails to localize a task. https://issues.apache.org/

jira/browse/HADOOP-134.

[13] HADOOP ISSUE #2081. Configuration getInt, getLong,

and getFloat replace invalid numbers with the default

value. https://issues.apache.org/jira/browse/

HADOOP-2081.

[14] HADOOP ISSUE #6578. Configuration should trim

whitespace around a lot of value types. https://

issues.apache.org/jira/browse/HADOOP-6578.

[15] HADOOP-USER MAILING LIST ARCHIVES. Compression

codec com.hadoop.compression.lzo.LzoCodec not found.

http://goo.gl/N9XFvt.

[16] HBASE ISSUE #6973. Trim trailing whitespace from

configuration values. https://issues.apache.org/

jira/browse/HBASE-6973.

[17] HDFS ISSUE 5872#. Validate configuration of

dfs.http.policy. https://issues.apache.org/jira/

browse/HDFS-5872.

[18] HDFS ISSUE #7726. Parse and check the configuration

settings of edit log to prevent runtime errors. https://

issues.apache.org/jira/browse/HDFS-7726.

[19] HDFS ISSUE #7727. Check and verify the auto-fence

settings to prevent failures of auto-failover. https://

issues.apache.org/jira/browse/HDFS-7727.

[20] HUANG, P. Understanding and Dealing with Failures in

Cloud-Scale Systems. PhD thesis, University of Califor-

nia San Diego, Computer Science and Engineering, 2016.

632 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/tianyin/configuration_datasets
https://github.com/tianyin/configuration_datasets
https://github.com/roterdam/jchord/tree/master/conf_spellchecker
https://github.com/roterdam/jchord/tree/master/conf_spellchecker
http://sable.github.io/soot/
http://sable.github.io/soot/
http://llvm.org/
http://llvm.org/
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/
https://issues.apache.org/jira/browse/HADOOP-134
https://issues.apache.org/jira/browse/HADOOP-134
https://issues.apache.org/jira/browse/HADOOP-2081
https://issues.apache.org/jira/browse/HADOOP-2081
https://issues.apache.org/jira/browse/HADOOP-6578
https://issues.apache.org/jira/browse/HADOOP-6578
http://goo.gl/N9XFvt
https://issues.apache.org/jira/browse/HBASE-6973
https://issues.apache.org/jira/browse/HBASE-6973
https://issues.apache.org/jira/browse/HDFS-5872
https://issues.apache.org/jira/browse/HDFS-5872
https://issues.apache.org/jira/browse/HDFS-7726
https://issues.apache.org/jira/browse/HDFS-7726
https://issues.apache.org/jira/browse/HDFS-7727
https://issues.apache.org/jira/browse/HDFS-7727

[21] JIANG, W., HU, C., PASUPATHY, S., KANEVSKY, A.,

LI, Z., AND ZHOU, Y. Understanding Customer Problem

Troubleshooting from Storage System Logs. In Proceed-

ings of the 7th USENIX Conference on File and Storage

Technologies (FAST’09) (San Francisco, CA, USA, Feb.

2009).

[22] JIN, D., COHEN, M. B., QU, X., AND ROBINSON, B.

PrefFinder: Getting the Right Preference in Configurable

Software Systems. In Proceedings of the 29th IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE’14) (Västerås, Sweden, Sep. 2014).

[23] KELLER, L., UPADHYAYA, P., AND CANDEA, G. Con-

fErr: A Tool for Assessing Resilience to Human Con-

figuration Errors. In Proceedings of the 38th Annual

IEEE/IFIP International Conference on Dependable Sys-

tems and Networks (DSN’08) (Anchorage, AK, USA,

Jun. 2008).

[24] MAURER, B. Fail at Scale: Reliability in the Face of

Rapid Change. Communications of the ACM 58, 11 (Nov.

2015), 44–49.

[25] MOSKOWITZ, A. Software Testing for Sysadmin Pro-

grams. USENIX ;login: 40, 2 (Apr. 2015), 37–45.

[26] MYSQL BUG #74720. No warn/error message if ”log-

error” is misconfigured (causing latent log loss). http://

bugs.mysql.com/bug.php?id=74720.

[27] MYSQL BUG #75645. Runtime Error Caused by Mis-

configured BackupDataDir. http://bugs.mysql.com/

bug.php?id=75645.

[28] OPPENHEIMER, D., GANAPATHI, A., AND PATTER-

SON, D. A. Why Do Internet Services Fail, and What

Can Be Done About It? In Proceedings of the 4th

USENIX Symposium on Internet Technologies and Sys-

tems (USITS’03) (Seattle, WA, USA, Mar. 2003).

[29] PALATIN, N., LEIZAROWITZ, A., SCHUSTER, A., AND

WOLFF, R. Mining for Misconfigured Machines in Grid

Systems. In Proceedings of the 12th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining (KDD’06) (Philadelphia, PA, USA, Aug. 2006).

[30] PATTERSON, D., BROWN, A., BROADWELL, P., CAN-

DEA, G., CHEN, M., CUTLER, J., ENRIQUEZ, P., FOX,

A., KICIMAN, E., MERZBACHER, M., OPPENHEIMER,

D., SASTRY, N., TETZLAFF, W., TRAUPMAN, J., AND

TREUHAFT, N. Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies.

Tech. Rep. UCB//CSD-02-1175, University of California

Berkeley, Mar. 2002.

[31] POTHARAJU, R., CHAN, J., HU, L., NITA-ROTARU,

C., WANG, M., ZHANG, L., AND JAIN, N. ConfSeer:

Leveraging Customer Support Knowledge Bases for Au-

tomated Misconfiguration Detection. In Proceedings of

the 35th International Conference on Very Large Data

Bases (VLDB’15) (Kohala Coast, HI, USA, Aug. 2015).

[32] RABKIN, A., AND KATZ, R. Precomputing Possible

Configuration Error Diagnosis. In Proceedings of the 26th

IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE’11) (Lawrence, KS, USA, Nov.

2011).

[33] RABKIN, A., AND KATZ, R. Static Extraction of Pro-

gram Configuration Options. In Proceedings of the

33th International Conference on Software Engineering

(ICSE’11) (Honolulu, HI, USA, May 2011).

[34] RABKIN, A., AND KATZ, R. How Hadoop Clusters

Break. IEEE Software Magazine 30, 4 (Jul. 2013), 88–

94.

[35] RABKIN, A. S. Using Program Analysis to Reduce Mis-

configuration in Open Source Systems Software. PhD the-

sis, University of California, Berkeley, 2012.

[36] SANTOLUCITO, M., ZHAI, E., AND PISKAC, R. Proba-

bilistic Automated Language Learning for Configuration

Files. In 28th International Conference on Computer

Aided Verification (CAV’16) (Toronto, Canada, Jul. 2016).

[37] SQUID BUG #1703. diskd related 100% CPU after

’squid -k rotate’. http://bugs.squid-cache.org/

show_bug.cgi?id=1703.

[38] SQUID BUG #4186. The mail notification feature

is buggy and does not deal with configuration er-

rors. http://bugs.squid-cache.org/show_bug.

cgi?id=4186.

[39] SRIDHARAN, M., FINK, S. J., AND BODÍK, R. Thin

Slicing. In Proceedings of the 28th ACM SIGPLAN Con-

ference on Programming Language Design and Imple-

mentation (PLDI’07) (San Diego, CA, USA, Jun. 2007).

[40] STACKOVERFLOW QUESTION #21253299.

Hadoop sshfence (permission denied). http://

stackoverflow.com/questions/21253299/

hadoop-sshfence-permission-denied.

[41] STACKOVERFLOW QUESTION #7732983. Core dump

file is not generated. http://stackoverflow.com/

questions/7732983/core-dump-file-is-not-

generated.

[42] SVERDLIK, Y. Microsoft: Misconfigured Net-

work Device Led to Azure Outage. http://www.

datacenterdynamics.com/focus/archive/2012/

07/microsoft-misconfigured-network-device-

led-azure-outage, 2012.

[43] TANG, C., KOOBURAT, T., VENKATACHALAM, P.,

CHANDER, A., WEN, Z., NARAYANAN, A., DOWELL,

P., AND KARL, R. Holistic Configuration Management

at Facebook. In Proceedings of the 25th Symposium on

Operating System Principles (SOSP’15) (Monterey, CA,

USA, Oct. 2015).

[44] THE AVAILABILITY DIGEST. Poor Documentation

Snags Google. http://www.availabilitydigest.

com/public_articles/0504/google_power_out.

pdf.

[45] THOMAS, K. Thanks, Amazon: The Cloud Crash

Reveals Your Importance. http://www.pcworld.com/

article/226033/thanks_amazon_for_making_

possible_much_of_the_internet.html.

[46] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R.,

AND WANG, Y.-M. Automatic Misconfiguration Trou-

bleshooting with PeerPressure. In Proceedings of the 6th

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 633

http://bugs.mysql.com/bug.php?id=74720
http://bugs.mysql.com/bug.php?id=74720
http://bugs.mysql.com/bug.php?id=75645
http://bugs.mysql.com/bug.php?id=75645
http://bugs.squid-cache.org/show_bug.cgi?id=1703
http://bugs.squid-cache.org/show_bug.cgi?id=1703
http://bugs.squid-cache.org/show_bug.cgi?id=4186
http://bugs.squid-cache.org/show_bug.cgi?id=4186
http://stackoverflow.com/questions/21253299/hadoop-sshfence-permission-denied
http://stackoverflow.com/questions/21253299/hadoop-sshfence-permission-denied
http://stackoverflow.com/questions/21253299/hadoop-sshfence-permission-denied
http://stackoverflow.com/questions/7732983/core-dump-file-is-not-generated
http://stackoverflow.com/questions/7732983/core-dump-file-is-not-generated
http://stackoverflow.com/questions/7732983/core-dump-file-is-not-generated
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.availabilitydigest.com/public_articles/0504/google_power_out.pdf
http://www.availabilitydigest.com/public_articles/0504/google_power_out.pdf
http://www.availabilitydigest.com/public_articles/0504/google_power_out.pdf
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html

USENIX Conference on Operating Systems Design and

Implementation (OSDI’04) (San Francisco, CA, USA,

Dec. 2004).

[47] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND

SOLAR-LEZAMA, A. Towards optimization-safe sys-

tems: Analyzing the impact of undefined behavior. In

Proceedings of the 24th Symposium on Operating Sys-

tem Principles (SOSP’13) (Farmington, PA, USA, Nov.

2013).

[48] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J.,

CHEN, Y., WANG, H. J., YUAN, C., AND ZHANG,

Z. STRIDER: A Black-box, State-based Approach to

Change and Configuration Management and Support.

In Proceedings of the 17th Large Installation Systems

Administration Conference (LISA’03) (San Diego, CA,

USA, Oct. 2003).

[49] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Con-

figuration Debugging as Search: Finding the Needle in

the Haystack. In Proceedings of the 6th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI’04) (San Francisco, CA, USA, Dec. 2004).

[50] WIKIPEDIA. Reliability, availability and service-

ability (computing). https://en.wikipedia.

org/wiki/Reliability,_availability_and_

serviceability_(computing), 2010.

[51] XU, T., JIN, L., FAN, X., ZHOU, Y., PASUPATHY, S.,

AND TALWADKER, R. Hey, You Have Given Me Too

Many Knobs! Understanding and Dealing with Over-

Designed Configuration in System Software. In Proceed-

ings of the 10th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering (ES-

EC/FSE’15) (Bergamo, Italy, Aug. 2015).

[52] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG,

T., YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do

Not Blame Users for Misconfigurations. In Proceedings

of the 24th Symposium on Operating System Principles

(SOSP’13) (Farmington, PA, USA, Nov. 2013).

[53] XU, T., AND ZHOU, Y. Systems Approaches to Tack-

ling Configuration Errors: A Survey. ACM Computing

Surveys (CSUR) 47, 4 (Jul. 2015).

[54] YARN ISSUE #2166. Timelineserver should vali-

date that yarn.timeline-service.leveldb-timeline-store.ttl-

interval-ms is greater than zero when level db is for

timeline store. https://issues.apache.org/jira/

browse/YARN-2166.

[55] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVA-

SUNDARAM, L. N., AND PASUPATHY, S. An Empirical

Study on Configuration Errors in Commercial and Open

Source Systems. In Proceedings of the 23rd ACM Sympo-

sium on Operating Systems Principles (SOSP’11) (Cas-

cais, Portugal, Oct. 2011).

[56] YUAN, C., LAO, N., WEN, J.-R., LI, J., ZHANG, Z.,

WANG, Y.-M., AND MA, W.-Y. Automated Known

Problem Diagnosis with Event Traces. In Proceedings of

the 1st EuroSys Conference (EuroSys’06) (Leuven, Bel-

gium, Apr. 2006).

[57] YUAN, D., XIE, Y., PANIGRAHY, R., YANG, J., VER-

BOWSKI, C., AND KUMAR, A. Context-based On-

line Configuration Error Detection. In Proceedings of

2011 USENIX Annual Technical Conference (USENIX

ATC’11) (Portland, OR, USA, Jun. 2011).

[58] ZHAI, E., CHEN, R., WOLINSKY, D. I., AND FORD, B.

Heading Off Correlated Failures through Independence-

as-a-Service. In Proceedings of the 11th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI’14) (Broomfield, CO, USA, Oct. 2014).

[59] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE,

N., BALA, V., XU, T., AND ZHOU, Y. EnCore: Ex-

ploiting System Environment and Correlation Informa-

tion for Misconfiguration Detection. In Proceedings of

the 19th International Conference on Architecture Sup-

port for Programming Languages and Operating Systems

(ASPLOS’14) (Salt Lake City, UT, USA, Mar. 2014).

[60] ZHANG, S., AND ERNST, M. D. Automated Diagnosis

of Software Conguration Errors. In Proceedings of the

35th International Conference on Software Engineering

(ICSE’13) (San Francisco, CA, USA, May 2013).

[61] ZHANG, S., AND ERNST, M. D. Which Configura-

tion Option Should I Change? In Proceedings of the

36th International Conference on Software Engineering

(ICSE’14) (Hyderabad, India, May 2014).

[62] ZHANG, S., AND ERNST, M. D. Proactive Detection

of Inadequate Diagnostic Messages for Software Config-

uration Errors. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis (ISSTA’15)

(Baltimore, MD, USA, Jul. 2015).

634 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Reliability,_availability_and_serviceability_(computing)
https://en.wikipedia.org/wiki/Reliability,_availability_and_serviceability_(computing)
https://en.wikipedia.org/wiki/Reliability,_availability_and_serviceability_(computing)
https://issues.apache.org/jira/browse/YARN-2166
https://issues.apache.org/jira/browse/YARN-2166

Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource
Utilization Bottlenecks in Large Scale Web Services

Kaushik Veeraraghavan Justin Meza David Chou Wonho Kim Sonia Margulis
Scott Michelson Rajesh Nishtala Daniel Obenshain Dmitri Perelman

Yee Jiun Song

Facebook Inc.

Abstract
Modern web services such as Facebook are made

up of hundreds of systems running in geographically-
distributed data centers. Each system needs to be allo-
cated capacity, configured, and tuned to use data center
resources efficiently. Keeping a model of capacity allo-
cation current is challenging given that user behavior and
software components evolve constantly.

Three insights motivate our work: (1) the live user
traffic accessing a web service provides the most current
target workload possible, (2) we can empirically test the
system to identify its scalability limits, and (3) the user
impact and operational overhead of empirical testing can
be largely eliminated by building automation which ad-
justs live traffic based on feedback.

We build on these insights in Kraken, a new system
that runs load tests by continually shifting live user traf-
fic to one or more data centers. Kraken enables empiri-
cal testing by monitoring user experience (e.g., latency)
and system health (e.g., error rate) in a feedback loop
between traffic shifts. We analyze the behavior of in-
dividual systems and groups of systems to identify re-
source utilization bottlenecks such as capacity, load bal-
ancing, software regressions, performance tuning, and so
on, which can be iteratively fixed and verified in sub-
sequent load tests. Kraken, which manages the traffic
generated by 1.7 billion users, has been in production at
Facebook for three years and has allowed us to improve
our hardware utilization by over 20%.

1 Introduction
Modern web services comprise software systems running
in multiple data centers that cater to a global user base.
At this scale, it is important to use all available data cen-
ter resources as efficiently as possible. Effective resource
utilization is challenging because:
• Evolving workload: The workload of a web ser-

vice is constantly changing as its user base grows
and new products are launched. Further, individual
software systems might be updated several times a
day [35] or even continually [27]. While model-
ing tools [20, 24, 46, 51] can estimate the initial ca-

pacity needs of a system, an evolving workload can
quickly render models obsolete.
• Infrastructure heterogeneity: Constructing data

centers at different points in time leads to a vari-
ety of networking topologies, different generations
of hardware, and other physical constraints in each
location that each affect how systems scale.
• Changing bottlenecks: Each data center runs hun-

dreds of software systems with complex interac-
tions that exhibit resource utilization bottlenecks,
including performance regressions, load imbalance,
and resource exhaustion, at a variety of scales from
single servers to entire data centers. The sheer size
of the system makes it impossible to understand all
the components. In addition, these systems change
over time, leading to different bottlenecks present-
ing themselves. Thus, we need a way to continually
identify and fix bottlenecks to ensure that the sys-
tems scale efficiently.

Our key insight is that the live user traffic accessing a
web service provides the most current workload possible,
with natural phenomena like non-uniform request arrival
rates. As a baseline, the web service must be capable
of executing its workload within a preset latency and er-
ror threshold. Ideally, the web service should be capable
of handling peak load (e.g., during Super Bowl) when
unexpected bottlenecks arise, and still achieve good per-
formance.

We propose Kraken, a new system that allows us to
run live traffic load tests to accurately assess the capac-
ity of a complex system. In building Kraken, we found
that reliably tracking system health is the most important
requirement for live traffic testing. But how do we se-
lect among thousands of candidate metrics? We aim to
provide a good experience to all users by ensuring that
a user served out of a data center undergoing a Kraken
test has a comparable experience to users being served
out of any other data center. We accomplish this goal
with a light-weight and configurable monitoring compo-
nent seeded with two topline metrics, the web server’s
99th percentile response time and HTTP fatal error rate,
as reliable proxies for user experience.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 635

We leverage Kraken as part of an iterative methodol-
ogy to improve capacity utilization. We begin by run-
ning a load test that directs user traffic at a target cluster
or region. A successful test concludes by hitting the uti-
lization targets without crossing the latency or error rate
thresholds. Tests can fail in two ways:
• We fail to hit the target utilization or exceed a pre-

set threshold. This is the usual outcome following
which we drill into test data to identify bottlenecks.
• Rarely, the load test results in a HTTP error spike or

some similar unexpected failure. When this occurs,
we analyze the test data to understand what mon-
itoring or system understanding we were missing.
In practice, sudden jumps in HTTP errors or other
topline metrics almost never happen; the set of aux-
iliary metrics we add to our monitoring are few in
number and are the result of small incidents rather
than catastrophic failure.

Each test provides a probe into an initially uncharac-
terized system, allowing us to learn new things. An un-
successful test provides data that allows us to either make
the next test safer to run or increase capacity by remov-
ing a bottleneck. As tests are non-disruptive to users, we
can run them regularly to determine both a data center’s
maximal load (e.g., requests per second, which we term
the system’s capacity), and continually identify and fix
bottlenecks to improve system utilization.

Our first year of operating Kraken in production ex-
posed several challenges. The first was that the systems
often exhibited a non-linear response where a small traf-
fic shift directed at a data center could trigger an error
spike. Our follow-up was to check the health of all the
major systems involved in serving user traffic to deter-
mine which ones were affected most during the test. This
dovetailed into our second challenge which was that sys-
tems have complex dependencies so it was often unclear
which system initially failed and then trigged errors in
seemingly unrelated downstream subsystems.

We addressed both of these challenges by encouraging
subsystem developers to identify system-specific coun-
ters for performance (e.g., response quality), error rate,
and latency, that could be monitored during a test. We
focused on these three metrics because they represent the
contracts that clients of a service rely on—we have found
that nearly every production system wishes to maintain
or decrease its latency and error rate while maintaining
or improving performance.

The third challenge was one of culture. Although we
ensure the tests are safe for users, load tests put signifi-
cant stress on many systems. Rather than treat load tests
as painful events for systems to survive, we worked hard
to create a collaborative environment where developers
looked forward to load tests to better understand their
systems. We planned tests ahead of time and commu-

nicated schedules widely to minimize surprise. We en-
couraged engineers to share tips on how to better moni-
tor their systems, handle different failure scenarios, and
build out levers to mitigate production issues. Further,
we used a shared IRC channel to track tests and debug
issues live. Often, we would use tests as an opportunity
for developers to test or validate improvements, which
made them an active part of the testing process. Engag-
ing engineers was critical for success; engaged engineers
improve their systems quickly and support a frequent test
cadence, allowing us to iterate quickly.

Our initial remediations to resolve bottlenecks were
mostly capacity allocations to the failing system. As
our understanding of Facebook’s systems has improved,
our mitigation toolset has also expanded to include con-
figuration and performance tuning, load balancing im-
provements, profiling-guided software changes and oc-
casionally a system redesign. Our monitoring has also
improved and as of October 2016, we have identified
metrics from 23 critical systems that are bellwethers of
non-linear behavior in our infrastructure. We use these
metrics as inputs to control Kraken’s behavior.

Kraken has been in use at Facebook for over three
years and has run thousands of load tests on production
systems using live user traffic. Our contributions:
• Kraken is the first live traffic load testing frame-

work to test systems ranging in size from individual
servers to entire data centers, to our knowledge.
• Kraken has allowed us to iteratively increase the ca-

pacity of Facebook’s infrastructure with an empir-
ical approach that improves the utilization of sys-
tems at every level of the stack.
• Kraken has allowed us to identify and remediate re-

gressions, address load imbalance and resource ex-
haustion across Facebook’s fleet. Our initial tests
stopped at about 70% of theoretical capacity, but
now routinely exceed 90%, providing a 20% in-
crease in request serving capacity.

The Kraken methodology is not applicable to all ser-
vices. These assumptions/caveats underpin our work:
• Assumption: stateless servers. We assume that

stateless servers handle requests without using
sticky sessions for server affinity. Stateless web
servers provide high availability despite system or
network failures by routing requests to any avail-
able machine. Note that stateless servers may still
communicate with services that are stateful (such as
a database) when handling a request.
• Caveat: load must be controllable by re-routing re-

quests. Subsystems that are global in nature may be
insensitive to where load enters the system. Such
systems may include batch processors, message
queues, storage, etc. Kraken is not designed as a
comprehensive capacity assessment tool for every

636 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

W
eb
	s
er
ve
r

W
eb
	s
er
ve
r

ClusterCluster

DNS
www.facebook.com

A	12.34.56.7
GET	/

<html>… Edge	
POP

(e.g.,	European	POP)

L4
	L
B

GET	/

<html>… Cluster

(e.g.,	Luleå)

L7
	L
B

GET	/

<html>…

W
eb
	s
er
ve
r

Figure 1: When a user sends a request to Facebook, a DNS
resolver points the request at an edge point-of-presence (POP)
close to the user. A L4 and L7 load balancer forward the request
to a particular data center and a web server respectively.

subsystem. These systems often need more special-
ized handling to test their limits.
• Assumption: downstream services respond to shifts

in upstream service load. Consider the case of a
web server querying a database. A database with
saturated disk bandwidth affects the number of re-
quests served by the web server. This observa-
tion extends to other system architectures such as
aggregator–leaf where a stateless aggregation server
collects data from a pool of leaf servers to service a
request.

2 The case for live traffic load tests
Broadly, two common approaches exist for identifying
resource utilization bottlenecks: (1) load modeling (or
simulation) and (2) load testing (or benchmarking).

Load modeling relies on analytical models of data cen-
ter resources to examine the trade-offs between perfor-
mance, reliability, and energy-efficiency [11, 13, 18, 40].
We argue that it is infeasible to accurately model a large
scale web service’s capacity given their evolving work-
load, frequent software release cycles, and complexity
of dependencies [27, 35], Alternatively, load test suites
such as TPC-C [44], YCSB [49] and JouleSort [34] use
system-level benchmarks to measure the load a system
can sustain. Unfortunately, their synthetic workloads
only cover very specific use cases, e.g., TPC-C performs
a certain set of queries on a SQL database with a fixed
set of inputs. An alternate design choice is to use shadow
traffic where an incoming request is logged and replayed
in a test environment. For the web server use case, most
operations have side-effects that propagate deep into the
system. Shadow tests must not trigger these side effects,
as doing so can alter user state. Stubbing out side effects
for shadow testing is not only impractical due to frequent
changes in server logic, but also reduces the fidelity of
the test by not stressing dependencies that would have
otherwise been affected.

In contrast, Kraken uses live traffic to perform load
tests. We prefer live traffic tests because:
• Live user traffic is a fully representative workload

that consists of both read and write requests with a

W
eb
	L
B

Frontend	Cluster

POP

DNS

Frontend	Cluster

Se
rv
ic
e	
LB

Service	Cluster

POP

Region

POP

Region

Region

Region

POPs Data	center	regions Data	center

Edge	weight Cluster	weight

Server	weight Server	weight

Figure 2: This figure provides an overview of the traffic man-
agement components at Facebook. User requests arrive at Edge
POPs (points-of-presence). A series of weights defined at the
edge, cluster, and server levels are used to route user requests
from a POP to a web server in one of Facebook’s data centers.

non-uniform arrival pattern, and traffic bursts.
• Live traffic tests can be run on production systems

without requiring alternate test setups. Further, live
traffic tests can expose bottlenecks that arise due to
complex system dependencies, which are hard to re-
produce in small scale test setups.
• Live traffic load tests on production systems have

the implicit benefit of forcing teams to harden their
systems to handle traffic bursts, overloads, etc., thus
increasing the system’s resilience to faults.

Safety is a key constraint when working with live traf-
fic on a production system. We identify two problematic
situations: (1) internal faults in system operation, such as
violation of performance, reliability, or other constraints;
and (2) external faults that result in capacity reduction
due to, for example, network partitions, or power loss.
Both situations require careful monitoring and fast traf-
fic adjustment to safeguard the production system.

3 Design
Kraken is constructed as a feedback loop that shifts user
traffic to evaluate the capacity of the system under test
and identify resource utilization bottlenecks.

3.1 Traffic shifting

Figure 1 provides an overview of how a user request to
Facebook is served. The user’s request is sent to their
ISP, which contacts a DNS resolver to map the URL
to an IP address. This IP address maps to one of tens
of edge point-of-presence (POP) locations distributed
worldwide. A POP consists of a small number of servers
on the edge of the network typically co-located with a
local internet service provider. The user’s SSL session
is terminated in a POP at a L7 load balancer, which then
forwards the request to one of the data centers.

At Facebook, we group 1–3 data centers in close prox-
imity into a “region”. Within each data center, we group
machines into one or more logical “frontend” clusters of
web servers, “backend” clusters of storage systems, and

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 637

multiple “service” clusters. In this paper, we define a
“service” as a set of sub-systems that provide a partic-
ular product either internally within Facebook’s infras-
tructure or externally to end users. Each cluster has a
few thousand generally heterogeneous machines. Many
services span clusters, but web server deployments are
confined to a single cluster.

As Figure 2 shows, the particular frontend cluster that
a request is routed to depends on two factors: (1) the edge
weight from a POP to a region, and (2) the cluster weight
assigned to each frontend cluster in a region. To under-
stand why we need edge weights, consider a request from
a user in Hamburg that is terminated at a hypothetical
POP in Europe. This POP might prefer forwarding user
requests to the Luleå, Sweden region rather than Forest
City, North Carolina to minimize latency, implying that
the Europen POP could assign a higher edge weight to
Luleå than Forest City. A data center might house multi-
ple frontend clusters with machines from different hard-
ware generations. The capability of a Haswell cluster
will exceed that of a Sandybridge cluster, resulting in dif-
fering cluster weights as well as individual servers being
assigned different server weights.

When a request reaches a frontend cluster, an L7 load
balancer forwards the request to one of many thousands
of web servers. The web server may communicate with
tens or hundreds of services residing in one or more ser-
vice clusters to gather the data required to generate a re-
sponse. Finally, the web server sends the response back
to the POP, which forwards the response to the user.

Because web servers and some services in this archi-
tecture are stateless, any such server can handle any re-
quest bound for it or its peers in the same service. This
implies that edge weights, cluster weights, and server
weights can be programmed to easily and quickly change
their destinations for requests. This allows us to pro-
grammatically shift different amounts of load to a par-
ticular region or cluster. We use live traffic shifting as
the mechanism to manipulate load on different resources.
Shifting live traffic allows us to gauge aggregate system
capacity in a realistic environment.

3.2 Monitoring

The most important requirements in live traffic testing
are reliable metrics that track the health of the system.
At Facebook, we use Gorilla [33], a time series database
that provides a fast way to store and query aggregated
metrics. Our intuition when developing Kraken was that
it could query Gorilla for the metrics of all important sys-
tems and use the results to compute the next traffic shift.

Our intuition proved impractical as Facebook is com-
posed of thousands of systems, each of which export
dozens of counters tracking their input request rate, in-
ternal state, and output. One of the goals of Kraken is to

W
eb
	L
B

Frontend	Cluster

Health	
Monitor

Feedback	
Control

Traffic	
Shifter

Edge	
POP

DNS

Frontend	Cluster

Measure	health

Se
rv
ic
e	
LB

Service	Cluster

Cluster	load	test
control	loop
Service	load	test
control	loop

Increase/reset	loadUpdate	weights

Kraken

Figure 3: Kraken is a framework that allows us to load test
large system units, such as clusters and entire data centers. To
do so, Kraken shifts traffic from POPs to different frontend
clusters while monitoring various health metrics to ensure they
do not exceed allowable levels. The solid red line shows this
control loop. In addition, Kraken can manage traffic in a more
fine-grained manner to load test individual services composed
of sets of servers, shown by the dotted green line.

gauge the true capacity of the system. If we prioritized
all systems equally and tried to ensure that every system
operated within its ideal performance or reliability enve-
lope, our focus would shift to constantly tuning individ-
ual systems rather than the overall user experience. This
would hurt our ability to identify the real bottlenecks to
system capacity, and instead give us the infeasible chal-
lenge of improving hundreds of systems at once.

Our insight was that Kraken running on a data center
is equivalent to an operational issue affecting the site—in
both cases our goal is to provide a good user experience.
We use two metrics, the web servers’ 99th percentile re-
sponse time and HTTP fatal error rate, as proxies for the
user experience, and determined in most cases this was
adequate to avoid bad outcomes. Over time, we have
added other metrics to improve safety such as the me-
dian queuing delay on web servers, the 99th percentile
CPU utilization on cache machines, etc. Each metric
has an explicit threshold demarcating the vitality of the
system’s health. Kraken stops the test when any metric
reaches its limit, before the system becomes unhealthy.

3.3 Putting it all together: Kraken

Kraken employs a feedback loop where the traffic shift-
ing module queries Gorilla for system health before de-
termining the next traffic shift to the system under test.
As Figure 3 shows, Kraken can shift traffic onto one
or more frontend clusters by manipulating the edge and
cluster weights. Notice that the generic nature of Kraken
also allows it to function as a framework that can be ap-
plied to any subset of the overall system.

638 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.4 Capacity measurement methodology

Web servers in frontend clusters are the largest compo-
nent of the infrastructure. Hence, a resource bottleneck
such as a performance regression or a load imbalance in
a smaller subsystem that limits the throughput of the web
servers is highly undesirable. We can use Kraken to iden-
tify the peak utilization a single web server can achieve.
A single web server is incapable of saturating the net-
work or any backend services, so obtaining true capacity
is not difficult. This empirical web server capacity multi-
plied by the number of web servers in a frontend cluster
yields us a theoretical frontend cluster capacity.

At Facebook, we have found taking this theoretical
number as truth does not yield good results. As we move
to larger groups of webservers, complex system effects
begin to dominate and our estimates tend to miss the true
capacity, sometimes by a wide margin. Kraken allows us
to continually run load tests on frontend clusters to ob-
tain the empirical frontend cluster capacity and measure
the deviation from the theoretical limit. We set ourselves
the aggressive goal of operating our frontend clusters at
(1) 93% of their theoretical capacity limits and (2) be-
low a target pre-defined latency threshold, while concur-
rently keeping pace with product evolution, user growth
and frequent software release cycles. On a less frequent
basis, this methodology is also applied to larger units of
capacity (regions comprising multiple data centers) with
a similarly aggressive goal of 90%.

3.5 Identifying and fixing bottlenecks

We have learned that running live traffic load tests with-
out compromising on system health is difficult. Succeed-
ing at this approach has required us to invest heavily in
instrumenting our software systems, using and building
new debugging tools, and encouraging engineers to col-
laborate on investigating and resolving issues.

Extensive data collection allows us to debug problems
in situ during a test and iterate quickly. We encourage
systems to leverage Scuba [1], an in-memory database
that supports storing arbitrary values and querying them
in real time. If a system displays a non-linear response
or other unexpected behavior during a test, an engineer
on call for the system can alert us and we can debug
the problem using Scuba data. We use standard tools
like perf as well as custom tracing and visualization
tools [14] in our debugging.

Initially, when we identified bottlenecks we mitigated
them by allocating additional capacity to the failing sys-
tem. In addition to being costly, we started encounter-
ing more difficult problems, such as load imbalance and
network saturation, where adding capacity had diminish-
ing returns. We would sometimes see cases where a sin-
gle shard of a backend system got orders of magnitude
more traffic than its peers, causing system saturation that

adding capacity could not resolve. As we developed ex-
pertise, we arrived at a more sustainable approach that
includes system reconfiguration, creating and deploying
new load balancing algorithms, performance tuning, and,
in rare cases, system redesign. We verify the efficacy of
these solutions in subsequent tests and keep iterating so
we can keep pace with Facebook’s evolving workload.

4 Implementation
We next describe the implementation of Kraken and how
it responds to various faults.

4.1 Traffic shifting module

At Facebook, we run Proxygen, an open source software
L4 and L7 load balancer. Rather than rely on a static
configuration, Proxygen running on L4 load balancers in
a POP reads configuration files from a distributed con-
figuration store [41]. This configuration file lists cus-
tomized edge and cluster weights for each POP as shown
in Figure 2. Proxygen uses these weights to determine
the fraction of user traffic to direct at each frontend clus-
ter. By adjusting cluster weights, we can increase the
relative fraction of traffic a cluster receives compared to
its peers. Using edge weights we can perform the same
adjustment for regions.

Kraken takes as input the target of the test and then
updates the routing file stored in the configuration store
with this change. The configuration store notifies the
Proxygen load balancers in a remote POP of the exis-
tence of the new configuration file. In practice, we’ve
found that it can take up to 60 seconds for Kraken to up-
date weights, the updated configuration to be delivered
to the POP, and for Proxygen to execute the requested
traffic shift. Since the monitoring system, Gorilla, aggre-
gates metrics in 60 second intervals, it takes about 120
seconds end-to-end for Kraken to initiate a traffic shift
and then verify the impact of that change on system load
and health.

4.2 Health monitoring module

The health monitoring system receives as input the sys-
tem being tested. It then queries Gorilla [33] for metrics
that can be compared to their thresholds. Gorilla stores
metrics as tuples consisting of 〈entity, key, value, times-
tamp〉. These tuples are either readily available or ag-
gregated once a minute. Thus, Kraken performs traffic
shifting decisions only after waiting 60 seconds from the
previous shift, but keeps querying the health monitoring
system continuously to quickly react to any changes in
health. Timestamps are only used to provide a monoton-
ically increasing ordering for the data from each server;
clocks do not have to be synchronized.

Table 1 provides some examples of the metrics the
health monitoring module considers when judging the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 639

Service type Metrics

Web servers CPU utilization, latency, er-
ror rate, fraction of opera-
tional servers

Aggregator–leaf CPU utilization, error rate,
response quality

Proxygen [39] CPU utilization, latency,
connections, retransmit rate,
ethernet utilization, memory
capacity utilization

Memcache [31] Latency, object lease count
TAO [10] CPU utilization, write suc-

cess rate, read latency
Batch processor Queue length, exception rate
Logging [23] Error rate
Search CPU utilization
Service discovery CPU utilization
Message delivery CPU utilization

Table 1: Health metrics for various systems that are af-
fected by web load.

health of various systems. These systems are all signif-
icantly impacted by user traffic and are bellwethers of
non-linear behavior. Note that the metrics in Table 1 are
not intended to be comprehensive. For example, CPU
utilization is the only health metric for several services,
but as these services add more features and establish dif-
ferent constraints on performance and quality over time,
other metrics may also become important in gauging
their health. Observe that we monitor multiple metrics
from lower-level systems like TAO, Memcache, and the
Proxygen load balancers as they have a large fan-out and
are critical to the health of higher-level systems.

We store the health metric definitions in a distributed
configuration management system [41]. Figure 4 shows
the definition for web service health in terms of error
rate. We use five levels of severity when reporting met-
ric health. level ranges define the range of values for
each of these levels. Metric values are sampled over
the amount of time specified by time window. To en-
sure high confidence in our assessment, we also stipulate
that at least sample fraction of the data points reside
above a level range. We use the highest level with at least
sample fraction data points above that level range. If
we do not receive samples, the health metric is marked as
unavailable and the service is considered unhealthy. We
define each of the health metrics in Table 1 in this way.

4.3 Feedback control

At the start of a test, Kraken aggressively increases load
and maintains the step size while the system is healthy.
We have observed a trade-off between the rate of load

web_error_rate = {

entity = ’cluster1.web’,

key = ’error.rate’,

level_ranges = [

{BOLD => (0.0, 0.00035)},

{MODERATE => (0.00035, 0.0004)},

{CAUTIOUS => (0.0004, 0.00045)},

{NOMORE => (0.00045, 0.0005)},

{BACKOF => (0.0005, 0.001)},

],

time_window = ’4m’,

sample_fraction = 0.4

}

Figure 4: The health metric definition for web error rate.

increase and system health. For systems that employ
caching, rapid shifts in load can lead to large cache miss
rates and lower system health than slow increases in load.
In practice, we find that initial load increase increments
of around 15% strike a good balance between load test
speed and system health.

As health metrics approach their thresholds, Kraken
dynamically reduces the magnitude of traffic shifts to
prevent the system from becoming overloaded. For ex-
ample, when any health metric is within 10% of its
threshold value, Kraken will decrease load increments to
1%. This behavior has the benefit of also allowing us to
collect more precise capacity information at high load.

4.4 Handling external conditions

Kraken’s feedback loop makes it responsive to any event
that causes a system being load tested to be unhealthy,
whether or not it was anticipated prior to the test. We
have found that the infrastructure is robust enough for
this mechanism alone to mitigate the majority of unex-
pected failures. For extreme events, we have a small set
of additional remediations as described below:
• Request spike. Facebook experiences request

spikes due to natural phenomena, national holidays,
and social events, for example, we have experi-
enced a 100% load increase in our News Feed sys-
tem in the course of 30 seconds during the Super
Bowl. Our simple mitigation strategy is to config-
ure Kraken to not run a load test during national hol-
idays or planned social and sporting events. In the
event of unexpected spikes, Kraken will abort any
running load tests and also distribute load to all data
centers by explicitly controlling the routing config-
uration file published to POPs.
• Major faults in system operation. Sometimes, a

critical low-level system might get overloaded or
might have a significant reliability bug, such as a
kernel crash, that is triggered during a load test. If

640 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60

Time (minutes)

60

80

100

120

140

160

180

200
R

e
q
u
e
st

s
p
e
r

S
e
co

n
d
 (

R
P
S
)

post processing window

Figure 5: To measure web server capacity accurately, we con-
tinuously load test 32 web servers.

this occurs, system health is bound to degrade sig-
nificantly. Kraken polls Gorilla for system metrics
every minute. If a fault is detected, Kraken imme-
diately aborts the test and directs POPs to distribute
load back to healthy clusters. We have recovered
numerous times from issues of this sort, each time
in about 2 minutes as it takes Kraken 60 seconds to
detect the fault and then about 60 seconds to deliver
an updated configuration to the POPs.
• External faults such as a network partition and

power loss. As in the case above, Kraken will de-
tect the problem and offload user traffic to other data
centers in 2 minutes. If the cluster or region being
tested does not recover, Kraken will decrease the
load to 0, which will drain the target of all user traf-
fic.

5 Evaluation
Kraken has been in use at Facebook for over three years
and has run thousands of production load tests. As we
mentioned in Section 4.2, we have augmented the set of
metrics that Kraken monitors beyond the initial two, user
perceivable latency and server error rate, to tens of other
metrics that track the health and performance of our crit-
ical systems (cf. Table 1).

Further, we have developed a methodology around
Kraken load tests that allows us to identify and resolve
blockers limiting system utilization. By maintaining the
pace and regularity of large scale load tests, we have
incentivized teams to build instrumentation and tooling
around collecting detailed data on system behavior under
load. When a blocker is identified, Kraken’s large scale
load tests provide a structured mechanism for iteration so
teams can experiment with different ideas for resolving
the bottleneck and also continually improve their system
performance and utilization.

Our evaluation answers the following questions:

100 110 120 130 140 150 160 170 180 190

Requests per Second (RPS)

0

10

20

30

40

50

60

Q
u
e
u
in

g
 L

a
te

n
cy

 p
e
r

R
e
q
u
e
st

 (
m

s)

Figure 6: This plot displays the variance in the raw data from
32 load tested web servers.

1. Does Kraken allow us to validate capacity measure-
ments at various scales?

2. Does Kraken provide a useful methodology for in-
creasing utilization?

5.1 Does Kraken allow us to validate capacity mea-
surements at various scales?

We evaluate this claim by first examining how Kraken
allows us to measure the capacity of an individual
server despite a continually changing workload, and then
demonstrating how Kraken allows us to measure cluster
and regional capacity.

5.1.1 Measuring an individual web server’s capacity

Apache JMeter [4] and other load testing tools are widely
employed to evaluate the capacity of an individual web
server. While existing systems use a synthetic workload,
Kraken directs live user traffic to measure system capac-
ity for complex and continually changing workloads. In
keeping with existing load testing systems, when mea-
suring the capacity of an individual web server in isola-
tion, Kraken assumes that all backend services and the
network are infinite in size and cannot be saturated.

Each cluster of web servers might run a different gen-
eration of server hardware and experience a different
composition of requests, so we need to run tests on web
servers in each production cluster to obtain the baseline
capacity for that cluster. As in a cluster load test, we use
a preset error rate and latency metric as thresholds for
when the system is operating at peak capacity. However,
as we are testing a less complex system, we can be more
exact. We use queuing latency on the server as our pri-
mary metric to gauge capacity—if the server begins to
queue consistently, it is no longer able to keep up with
the workload we are sending to it, and we have reached
the individual server’s max capacity.

We found that using a single server results in too much
variance in the output capacity number. Through experi-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 641

0 2 4 6 8 10 12 14 16 18

Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d
 M

e
tr

ic
cluster util.

p99 latency

5xx rate

Figure 7: Kraken runs a cluster load test by directing increas-
ing amounts of user traffic at a cluster. A load test affects
both the cluster’s CPU utilization and health metrics such as
the HTTP 5xx error rate and response latency.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Load

50

60

70

80

90

100

110

120

130

140

R
e
sp

o
n
se

 T
im

e
 (

m
s)

p
e
rf

 g

a
p

Cluster load test capacity

Theoretical capacity

(a) Performance gap between cluster load test capacity and theoret-
ical capacity.

0 20 40 60 80 100 120

Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 P

a
rt

 i
n
 L

a
te

n
cy

 B
re

a
kd

o
w

n

te
st

 s
ta

rt

te
st

 e
n
d

webserver

cache

services

(b) Latency breakdown in cluster load test.

Figure 8: (a) Demonstrates the performance gap between the
cluster load test capacity and theoretical capacity. (b) Shows
the latency breakdown that allows us to identify which of the
caching systems or miscellaneous services contribute most to
the performance gap. We observe an increase in time spent
waiting for cache response as the cluster load increases, indi-
cating that cache is the bottleneck.

mentation, we have found 32 servers to be an ideal num-
ber for our workload. Further increases in machine count
do not significantly reduce variance. Figure 5 depicts
a load test run on 32 independent web servers in a 60
minute interval. At the time this test was performed the
servers were able to perform about 175 requests per sec-
ond before the queuing latency threshold was reached.

Figure 6 shows the data points collected in a 30 minute
window during the load test shown in Figure 5. Each
data point plots the requests per second against CPU de-
lay per request in milliseconds for a single web server,
averaged over one minute. Our initial load test was run
with a relaxed threshold for the sake of illustration. Once
queuing begins, increases in allowed queuing result in
quickly diminishing returns on throughput. In practice,
we apply a more conservative limit of 20 ms queuing de-
lay. To get our baseline server capacity, we simply take
the average of the 32 servers. We use pick-2 load balanc-
ing [28] to ensure we evenly utilize servers, so we do not
need to worry about the variance in hardware between
servers. We can then derive the theoretical cluster capac-
ity by multiplying the per-server capacity by the number
of servers in a cluster.

5.1.2 Measuring a cluster’s capacity

Figure 7 shows the execution of a cluster load test with
Kraken. The line labeled cluster util. shows the cur-
rent requests per second coming in to the cluster normal-
ized by the cluster’s theoretical max requests per second.
Kraken initiates the cluster load test at minute 0 and the
test concludes at minute 18. Every 5 minutes, Kraken in-
spects the health of the cluster and makes a decision for
how to shift traffic. As described in Section 4.1, it takes
Kraken about 2 minutes to execute a load shift, which is
evident as cluster utilization changes around minute 7 for
a decision made at minute 5. Notice that as the test pro-
ceeds, the cluster’s health begins to degrade so Kraken
decreases the magnitude of the traffic shifts until a peak
utilization of 75% is hit. Kraken resets the load of the
cluster in two traffic shifts over the course of 10 minutes
(not shown in Figure 7).

Kraken closely monitors the health of the system when
running this load test. The lines labeled p99 latency and
5xx rate in Figure 7 correspond to the two initial health
metrics we monitor: user perceivable latency and server
error rate, respectively. Both of these metrics are normal-
ized to the minimum and maximum values measured dur-
ing the test. The three spikes in latency are a direct result
of Kraken directing new users at this cluster—requests
from the new users cause cache misses and require new
data to be fetched. This test stopped due to the p99 la-
tency, which is initially low but sustains above the thresh-
old level for too long after the third traffic shift.

The final utilization of this cluster was 75% of the the-

642 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

oretical maximal. This is below our target utilization of
93% of the theoretical maximum, and we consider this
load test unsuccessful. We next turn to how we identify
and fix the issues that prevent a cluster from getting close
to its theoretical maximal utilization.

Why did the cluster not hit its theoretical max uti-
lization? Figure 8(a) depicts a different load test that
hit a latency threshold. Here, the cluster performance
(solid line) diverges from the theoretical web server per-
formance (crossed line). To identify the utilization bot-
tleneck, we drill into the data for other subsystems in-
volved in serving a web request: the web server, cache,
and other services. Figure 8(b) breaks down the web
server response time between these three components.
As load increases, the proportion of web server latency
(the unmarked line) decreases while the proportion of
cache latency (the crossed line) increases from around
15% at the point labeled test start to around 40% at the
point labeled test end while service latency (the ◦ line)
remains unaffected, identifying cache as the bottleneck.

5.1.3 Measuring a region’s capacity

Figure 9(a) shows that we can use Kraken to direct user
traffic at multiple clusters simultaneously in a regional
load test to stress systems that span clusters. Kraken re-
acts to variances in system health (for example, 5xx error
rate, shown in Figure 9(b)) by decreasing user traffic to
the tested clusters. Kraken maintains high load at about
90% utilization for about an hour—we intentionally hold
the region under high load for an extended period of time
to allow latent effects to surface. Kraken stops the test at
minute 111 and quickly resets the load to normal levels
in 15 minutes.

5.2 Does Kraken provide a useful methodology for
increasing utilization?

Figure 10 depicts a load test from May 2015 where one
of Kraken’s regional load tests hit 75% utilization before
encountering bottlenecks. Test outcomes of this form
were the norm in 2014 and early 2015 as we were still
developing the Kraken methodology for identifying and
resolving bottlenecks encountered in cluster and regional
load tests. Figure 9 depicts our current status where our
regional load tests almost always hit their target utiliza-
tion of 90% theoretical max resulting in a 20% system
utilization improvement.

In this section, we describe how Kraken allowed us to
surface many bottlenecks that were hidden until the sys-
tems were under load. We identified problems, experi-
mented with remedies, and iterated on our solutions over
successive tests. Further, this process of continually test-
ing and fixing allowed us to develop a library of solutions
and verify health without permitting regressions.

0 20 40 60 80 100 120 140

Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
e
r

U
ti

liz
a
ti

o
n

cluster_1 utilization

cluster_2 utilization

cluster_3 utilization

cluster_4 utilization

(a) Cluster utilization

0 20 40 60 80 100 120 140

Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 5

x
x
 R

a
te

cluster_1 5xx rate

cluster_2 5xx rate

cluster_3 5xx rate

cluster_4 5xx rate

(b) Cluster 5xx error rate

Figure 9: Kraken measures the capacity of a region by direct-
ing user traffic to all of the frontend clusters in the region si-
multaneously. (a) shows the effects on the data center clusters’
utilization. (b) shows how the 5xx rate of the clusters changed
during this time. Notice that when a cluster’s HTTP fatals (5xx
errors) increase, Kraken reduces the load on the cluster so it
operates within a healthy range.

0 50 100 150 200 250

Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
e
r

U
ti

liz
a
ti

o
n

cluster_1 utilization

cluster_2 utilization

cluster_3 utilization

cluster_4 utilization

Figure 10: In this May 2015 test, Kraken pushes the frontend
clusters in a region to an average of 75.7% utilization of their
theoretical max before hitting pre-set thresholds. This load test
was unsuccessful.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 643

0 15 30 45 60 75

Time (days)

0

5

10

15

20
p
9
5
 -

 p
1
0
 o

f
C

P
U

-i
d
le

 (
%

)

ro
ll

o
u
t region_1

region_2

region_3

Figure 11: The spread in CPU utilization as measured by the
difference between the 95th and 10th percentile CPU utiliza-
tion in a cluster in different geographic regions. After using
Kraken to identify a bottleneck in the shared cache resource,
we deployed a technique to alleviate the bottleneck, resulting
in a lower CPU utilization spread.

5.2.1 Hash weights for cache

The cache bottleneck depicted in Figure 8(b) was the first
major issue that Kraken helped identify and resolve.

How did Kraken expose the cache bottleneck? Sev-
eral cluster load tests were blocked by latency increases.
Further inspection revealed that during the load test there
was a disproportionate increase in the fraction of time
spent retrieving data from TAO [10], a write-through
cache that stores heavily accessed data. We engaged
with the TAO engineers and after some instrumentation,
learned that the latency increase was due to just a few
cache machines that had significantly higher than aver-
age load during the test. It took several load tests to
gather sufficient data to diagnose the bottleneck.

What was the cache bottleneck? TAO scales by log-
ically partitioning its data into shards and randomly as-
signing these shards to individual cache servers. When
constructing the response to a request, the web server
might have to issue multiple rounds of data fetches,
which might access hundreds of cache servers. TAO’s
hashing algorithm had been designed 4 years prior to the
test. At that time, the ratio of shards to TAO servers was
larger, and the shards were more uniform in request rate.
Over time these assumptions changed, causing imbal-
ance among the servers. Kraken’s cluster load tests re-
vealed that a small number of cache servers were driven
out of CPU because they stored a significant fraction of
all frequently-accessed data (e.g., popular content); this
adversely affected all web servers that accessed that data.
Instead of assigning shards to cache servers with a uni-
form hash, the solution was to assign each server a tun-
able hash weight based on the frequency of access, giv-
ing us finer control to even out the distribution of shards

Figure 12: A spike in network traffic during a Kraken load
test saturates two top-of-rack network switches. Alleviating
this issue required relocating services running in the racks.

and balance load.
How did we validate the cache bottleneck fix? We

leveraged Kraken to run multiple cluster load tests in
different regions to validate the fix. Figure 11 depicts
the outcome of hash weights—the x-axis shows time in
days and the y-axis is the difference between the 95th and
10th percentile CPU utilization (i.e., the CPU utilization
spread between highly-loaded cache servers and lowly-
loaded cache servers) across the cache servers in clus-
ters spread among three regions. Notice that after hash
weights were rolled out, the spread in CPU utilization
was reduced from an initial 10–15% to less than 5%. In
tests following the fix, we were able to verify that this so-
lution maintained its effectiveness at high load, and that
we were able to apply more load to the clusters being
tested. This solution addressed our short term capacity
bottleneck and also significantly improved the reliability
and scalability of TAO.

5.2.2 Network saturation

Most of Kraken’s load tests in its first year of production
were blocked by issues and bottlenecks in our higher-
level software systems. As these bottlenecks were re-
solved, latent system issues at lower levels of the stack
were revealed. During one test, which failed due to high
latency, the latency effect was attributed to several dis-
connected services rathan than a single service. Further
analysis revealed that the effect was localized to partic-
ular data center racks, which are often composed of ma-
chines from different services.

Figure 12 depicts the bandwidth utilization of two top-
of-rack network switches during a Kraken load test. In
this figure (and in the other case study figures in this
section), we have labeled the phases of a load test: 1©
load test begins, 2© load test starts decreasing load, and
3© load test ends. The nominal switch bandwidth limit

of 10 Gbps, beyond which retransmissions or packet loss
may occur, has been labeled 4© (specific to Figure 12).

Notice that the load test results in rack switches expe-
riencing higher load due to the additional requests and

644 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 13: Saturated top-of-rack network switches result
in services in the rack experiencing a 3% error rate during a
Kraken load test.

responses being sent to/from servers located in the racks,
with peak bandwidth nearing 12 Gbps. These bandwidth
spikes resulted in response errors, shown in Figure 13.
Notice that around 13:30, nearly 3% of all requests ex-
perience an error.

An investigation revealed that these two racks housed
a large number of machines belonging to a high-volume
storage service that is used to retrieve posts when a user
loads News Feed. During the load test, these machines
received a higher volume of requests than normal due to
the increased user traffic directed at this cluster and their
responses saturated the uplink bandwidth of the top-of-
rack network switch. We mitigated this problem by dis-
tributing this service’s machines evenly across multiple
racks in the data center.

Prior to surfacing this issue, we were aware of network
saturation as a potential issue, but did not anticipate it as
a bottleneck. This demonstrated the ability of Kraken to
identify unexpected bottlenecks in the system. As a re-
sult we built a new network monitoring tool that identi-
fies network utilization bottlenecks during Kraken’s load
tests and alerts service developers.

5.2.3 Poor load balancing

During a Kraken load test, a critical classification service
in the data center under test experienced a 1.75% error
rate in serving its requests (Figure 14). Note that this
error rate is considered too high for the service.

Investigating uncovered the fact that the load was not
evenly distributed among instances of the service as
shown in Figure 15. Note that this load imbalance is
clearly visible at time 11:30 (before the test commences)
but it is only at time 13:30 that it is evident that imbal-
anced load imperils the service, as some fraction of ma-
chines are out of CPU. We can also observe an oscillation
in CPU utilization between 13:30 and 14:15, due to the
process hitting a failure condition because it is unable to
properly handle the excess load. The over-utilization of
a small handful of machines bottlenecks the entire region

Figure 14: A Kraken load test triggers a 1.75% error rate in a
critical classification service.

Figure 15: The multiple bands of CPU utilization clearly re-
veal a load imbalance in the machines running the classifica-
tion service. This imbalance worsens under load and becomes
a bottleneck that prevents us from fully utilizing the data center.

and results in a degraded performance.
In this case, pick-2 load balancing [28] was applied

to even the load between servers. Failing under heavy
load was also a suboptimal behavior we uncovered. For
some services, techniques such as adaptive load shed-
ding [17, 48] can be effective at reducing resource load
while still servicing requests. In the case of this ser-
vice, failures are difficult to tolerate, so a proportional-
integral-derivative controller [37] was implemented to
help continue to serve requests under high load.

5.2.4 Misconfiguration

Figure 16 shows an example of Kraken’s health monitor-
ing. One of the metrics that Kraken monitors is the error
rate of a story ranking and delivery service. Recall that
we have defined thresholds corresponding to how healthy
a metric is: MODERATE (labeled A), CAUTIOUS (labeled
B), NOMORE (labeled C), and BACKOFF (labeled D) (note
that BOLD is not labeled as it corresponds to the range be-
low MODERATE). Kraken uses the indicated thresholds for
this health metric when making load change decisions.

We then worked with the ranking service’s develop-
ers to instrument their system. Figure 17 shows that the
service was experiencing multiple types of errors under
load, with the most severe impact from “connection gat-
ing” where the number of concurrent threads requesting

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 645

Figure 16: A load test triggers error spikes in a misconfigured
service.

data from an external database was limited to a fixed
amount. While the intent of connection gating is to avoid
exacerbating the effects of requesting data from a slow
database instance, the actual gating value configured for
this service was too low for the request rate it was servic-
ing.

This bottleneck was resolved by increasing the number
of concurrent threads allowed to request data from the
database, and then running a follow-up Kraken load test
to verify that no failed responses were returned by the
ranking service, and that we could utilize the region more
effectively as a result.

5.2.5 Insufficient capacity

Well-tuned services without any hardware or software
bottlenecks may still lack sufficient capacity. This issue
arises due to organic increases in service usage that are
sometimes difficult for service developers to predict.

One surprising revelation was a Kraken load test that
exposed a capacity issue in Gorilla [33], the service that
Kraken relies on for monitoring and data collection. Dur-
ing a routine regional load test, Gorilla started experi-
encing increasing queuing, ultimately causing it to drop
some requests as they began timing out. Figure 18 de-
picts the decrease in Enqueued requests and the increase
in Dropped requests. Kraken aborted the load test as its
monitoring component registered incomplete metrics.

We followed up by analyzing Gorilla. It turned out
that the data center had recently acquired a new frontend
cluster. As a result, when Kraken ran a regional load
test, a much larger set of users were directed at the re-
gion and overloaded the existing Gorilla machines. The
link between web traffic and Gorilla traffic is indirect, as
Gorilla is accessed primarily by services rather than the
web servers themselves, so the developers of Gorilla did
not realize additional capacity would be required.

The mitigation was to allocate additional capacity to
Gorilla to keep pace with increased demand. Note that
these capacity allocations do not impact the service’s ef-

Figure 17: Failed responses in a misconfigured service.

ficiency requirements, which are benchmarked by regu-
lar load tests to ensure that performance regressions do
not creep in and decrease throughput under high load.

5.3 Service-level load testing

Regional load tests are effective at finding service-level
issues. However, service regressions and misconfigura-
tions can be identified without requiring large scale tests,
whereas problems like TAO load imbalance (see Sec-
tion 5.2.1) are system effects that only manifest as bot-
tlenecks at scale. Providing service owners a way to test
their systems independently allows us to focus on identi-
fying bottlenecks due to cross-system dependencies dur-
ing regional tests.

Encouraged by Kraken’s utility in characterizing sys-
tem performance, we extended it to support load tests on
individual services. When testing a service, Kraken dy-
namically updates the service’s load balancing configu-
ration to gradually concentrate traffic onto the designated
set of target machines. Kraken monitors service-specific
metrics that track resource usage, latency, and errors and
measures both the service capacity and its behavior under
load. Figure 3 illustrates how Kraken performs a service-
level load test.

The goal of service-level load tests is to enable devel-
opers to quickly identify performance issues in their ser-
vices without needing to wait until the next regional test.
In addition to identifying regressions, resource exhaus-
tion, and other utilization bottlenecks, service-specific
load tests allow developers to evaluate different opti-
mizations in production on a subset of their fleet.

For example, Figure 19 shows a load test performed on
a set of News Feed’s ranking aggregators. Load is mea-
sured in queries per second (QPS). As the test proceeds,
QPS increases and the fraction of idle CPU time de-
creases. Notice that when the fraction of idle CPU time
reaches 25%, the News Feed aggregator dynamically ad-
justs result ranking complexity. This ensures that the
News Feed aggregator can continue to serve all incoming
requests without exhausting CPU resources. This con-
tinues over the range of load labeled QoS control until,

646 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 18: Gorilla drops requests due to insufficient capacity.

eventually, the fraction of CPU idle time drops below a
pre-determined threshold and the load test ends.

6 Related Work
Large scale web services such as Amazon, Facebook,
Google, Microsoft, and others serve a global audience
that expect these services to be highly available. To en-
sure high availability in the face of disasters, these ser-
vices often operate out of multiple geo-replicated data
centers [3, 21]. Additionally, these services rely on mod-
eling for capacity planning and resource allocation.

Capacity management based on theoretical system
modeling is a widely studied topic. Some recent works
in this field [20, 24, 46, 51], recognize the challenges
of modeling multi-tier systems with changing workloads
and propose various schemes for dynamic workload-
driven adjustments to the theoretical allocations. There is
an understanding that large scale distributed systems of-
ten times demonstrate emergent behavior, which cannot
be predicted through analysis at any level simpler than
that of the system as a whole [22, 29, 43]. These prior
systems support Kraken’s motivation for load testing to
glean empirical data for dynamic capacity management.

Many prior systems such as Muse [11] and oth-
ers [5, 32, 38, 47] automate resource allocation using in-
strumentation to provide prior history, offline and online
analysis or simple feedback control to observe the sys-
tem under testing, and iteratively apply an optimization
policy until their objective function is satisfied. Doyle et.
al. [18] build on the Muse system and propose a model-
based approach to provisioning resources. Other systems
utilize queuing [24, 30, 40] or energy [13, 19] models
to predict how large systems will behave under load and
how much power they will consume, to aid capacity man-
agement or maximize resource utilization.

Rather than derive analytical models for managing
data centers, several recent systems propose experimen-
tation on production systems [6, 50]. JustRunIt [50] pro-
poses the use of sandboxed deployments that can execute
shadow traffic from a real world deployment to answer
various “what-if” questions. We make the same obser-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized QPS

0

10

20

30

40

50

60

70

80

C
P
U

-i
d
le

 (
%

)

QoS control

Limit

Figure 19: Kraken load testing News Feed. The range labeled
QoS control shows the News Feed aggregators dynamically
adjusting request quality to be able to serve more requests.

vation as JustRunIt but take their idea further as we wish
to evaluate the performance and capacity limits of a non-
virtualized production deployment.

Our strategy is to leverage load testing to evaluate and
manage our systems. There are many open source and
commercial load testing systems including Apache JMe-
ter [4] and its variants such as BlazeMeter [9] as well
as alternate frameworks such as Loader [25] that pro-
vide load testing as a service. We were unable to lever-
age these tools in our work, as they were limited in their
scope. For instance, JMeter does not execute JavaScript
while Loader only simulates connections to a web ser-
vice. Instead, Kraken allows us to load test production
systems with live user traffic.

Tang et. al. [42] leverage load testing to profile NUMA
usage at Google but do not describe how their technique
can be applied to identify higher-level bottlenecks or re-
source misallocation.

Kraken’s analytics share ideas with the deeply devel-
oped field of performance analysis, which has always
been crucial for detecting regressions and discovering
bottlenecks in large scale distributed systems. While
some previous performance analysis systems leverage
fine-grained instrumentation such as Spectroscope [36],
Magpie [7] and Pinpoint [12], others rely on passive an-
alytics, investigating network flows [2], or logging in-
formation [14]. Kraken infers the dominant causal de-
pendencies and bottlenecks by relying on the existing
monitoring mechanisms provided by individual services.
This allows for flexibility in the analysis of large hetero-
geneous systems. Various machine learning and statis-
tics techniques have been developed for improving per-
formance analysis of distributed systems [15, 16, 26];
Kraken’s algorithms are much simpler so that its oper-
ations can be easily reasoned about by a human.

Kraken is not the first large scale test framework that

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 647

works with live user traffic. Netflix’s Chaos Monkey [8,
45] induces failure in some component of an Amazon
Web Services deployment and empirically confirms that
the service is capable of tolerating faults and degrading
gracefully under duress.

7 Experience
Since deploying Kraken to production, we have run over
50 regional load tests and thousands of cluster load tests.
We list some lessons learned below:
• Generating capacity and utilization models with a

continually changing workload is difficult. A com-
peting approach, empirical testing, is a simpler al-
ternative.
• Simplicity is key to Kraken’s success. When load

causes multiple systems to fail in unexpected ways,
we need the stability of simple systems to debug
complex issues.
• Identifying the right metrics that capture a complex

system’s performance, error rate, and latency is dif-
ficult. We have found it useful to identify several
candidate metrics and then observe their behavior
over tens to hundreds of tests to determine which
ones provide the highest signal. However, once we
identify stable metrics, their thresholds are easy to
configure and almost never change once set.
• We find that specialized error handling mechanisms

such as automatic failover and fallback mechanism
can make systems harder to debug and lead to un-
expected costs. These mechanisms have the abil-
ity to hide problems without resolving root causes,
often leading small problems to snowball into big-
ger issues before detection and resolution. We find
that such mitigations need to be well-instrumented
to be effective in the long run, and prefer more di-
rect methods such as graceful degradation.
• Bottleneck resolutions such as allocating capacity

to needy services, changing system configuration
or selecting different load balancing strategies have
been critical for fixing production issues fast. We
turn to heavy-weight resolutions like profiling, per-
formance tuning, and system redesign only if the
benefit justifies the engineering and capacity cost.
• While some systems prefer running on non-standard

hardware or prefer non-uniform deployments in
data centers, we have found that trading off some
amount of efficiency and performance for simplicity
makes systems much easier to operate and debug.

8 Conclusion
Large scale web services are difficult to accurately
model because they are composed of hundreds of rapidly
evolving software systems, are distributed across geo-
replicated data centers, and have constantly changing

workloads. We propose Kraken, a system that leverages
live user traffic to empirically load test every level of the
infrastructure stack to measure capacity. Further, we de-
scribe a methodology for identifying bottlenecks and it-
erating over solutions with successive Kraken load tests
to continually improve infrastructure utilization. Kraken
has been in production for the past three years. In that
time, Kraken has run thousands of load tests and allowed
us to increase Facebook’s capacity to serve users by over
20% using the same hardware.

9 Acknowledgments
We thank the anonymous reviewers and our shepherd,
Rebecca Isaacs, for comments that greatly improved this
paper. We also thank Théo Dubourg, Constantin Dumi-
trascu, David Felty, Calvin Fu, Yun Jin, Silvio Soares
Ribeiro Junior, Daniel Peek, and the numerous develop-
ers at Facebook who have given us feedback on the tool-
ing, monitoring, and methodology of Kraken and helped
us improve our infrastructure utilization.

References
[1] ABRAHAM, L., ALLEN, J., BARYKIN, O.,

BORKAR, V., CHOPRA, B., GEREA, C., MERL,
D., METZLER, J., REISS, D., SUBRAMANIAN,
S., WIENER, J., AND ZED, O. Scuba: Diving into
data at Facebook. In Proceedings of the 39th In-
ternational Conference on Very Large Data Bases
(August 2013), VLDB ’13.

[2] AGUILERA, M. K., MOGUL, J. C., WIENER,
J. L., REYNOLDS, P., AND MUTHITACHAROEN,
A. Performance debugging for distributed sys-
tems of black boxes. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(2003), SOSP ’03.

[3] AMAZON. Regions and availability zones.
http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using-regions-

availability-zones.html.

[4] Apache JMeter. http://jmeter.apache.org/.

[5] ARON, M., DRUSCHEL, P., AND ZWAENEPOEL,
W. Cluster reserves: A mechanism for resource
management in cluster-based network servers. In
Proceedings of the 2000 ACM SIGMETRICS In-
ternational Conference on Measurement and Mod-
eling of Computer Systems (2000), SIGMET-
RICS ’00.

[6] BABU, S., BORISOV, N., DUAN, S.,
HERODOTOU, H., AND THUMMALA, V.
Automated experiment-driven management of
(database) systems. In Proceedings of the 12th

648 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://jmeter.apache.org/

Conference on Hot Topics in Operating Systems
(2009), HotOS ’09.

[7] BARHAM, P., DONNELLY, A., ISAACS, R., AND
MORTIER, R. Using Magpie for request extraction
and workload modelling. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design
and Implementation (2004), OSDI ’04.

[8] BASIRI, A., BEHNAM, N., DE ROOIJ, R.,
HOCHSTEIN, L., KOSEWSKI, L., REYNOLDS, J.,
AND ROSENTHAL, C. Chaos engineering. IEEE
Software 33, 3 (May 2016), 35–41.

[9] BlazeMeter. http://blazemeter.com/.

[10] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS,
J., GIARDULLO, A., KULKARNI, S., LI, H. C.,
MARCHUKOV, M., PETROV, D., PUZAR, L.,
SONG, Y. J., AND VENKATARAMANI, V. TAO:
Facebook’s distributed data store for the social
graph. In Proceedings of the 2013 USENIX Annual
Technical Conference (2013), USENIX ATC ’13.

[11] CHASE, J. S., ANDERSON, D. C., THAKAR,
P. N., VAHDAT, A. M., AND DOYLE, R. P. Man-
aging energy and server resources in hosting cen-
ters. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (2001), SOSP ’01.

[12] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX,
A., AND BREWER, E. Pinpoint: Problem de-
termination in large, dynamic internet services.
In Proceedings of the 2002 International Confer-
ence on Dependable Systems and Networks (2002),
DSN ’02.

[13] CHEN, Y., DAS, A., QIN, W., SIVASUBRAMA-
NIAM, A., WANG, Q., AND GAUTAM, N. Man-
aging server energy and operational costs in host-
ing centers. In Proceedings of the 2005 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems (2005),
SIGMETRICS ’05.

[14] CHOW, M., MEISNER, D., FLINN, J., PEEK, D.,
AND WENISCH, T. F. The mystery machine: End-
to-end performance analysis of large-scale internet
services. In Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (2014), OSDI ’14.

[15] COHEN, I., GOLDSZMIDT, M., KELLY, T.,
SYMONS, J., AND CHASE, J. S. Correlating in-
strumentation data to system states: A building

block for automated diagnosis and control. In Pro-
ceedings of the 6th USENIX Symposium on Oper-
ating Systems Design and Implementation (2004),
OSDI ’04.

[16] COHEN, I., ZHANG, S., GOLDSZMIDT, M.,
SYMONS, J., KELLY, T., AND FOX, A. Capturing,
indexing, clustering, and retrieving system history.
In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (2005), SOSP ’05.

[17] DAS, T., ZHONG, Y., STOICA, I., AND SHENKER,
S. Adaptive stream processing using dynamic
batch sizing. In Proceedings of the ACM Sympo-
sium on Cloud Computing (2014), SOCC ’14.

[18] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN,
W., AND VAHDAT, A. M. Model-based resource
provisioning in a web service utility. In Proceed-
ings of the 4th USENIX Symposium on Internet
Technologies and Systems (2003), USITS ’03.

[19] FAN, X., WEBER, W.-D., AND BARROSO, L. A.
Power provisioning for a warehouse-sized com-
puter. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture
(2007), ISCA ’07.

[20] GMACH, D., ROLIA, J., CHERKASOVA, L., AND
KEMPER, A. Resource pool management: Reac-
tive versus proactive or let’s be friends. Computer
Networks: The International Journal of Computer
and Telecommunications Networking 53, 17 (De-
cember 2009), 2905–2922.

[21] GOOGLE. Google compute engine: Regions and
zones. https://cloud.google.com/compute/

docs/zones.

[22] GRIBBLE, S. D. Robustness in complex systems.
In Proceedings of the 8th Workshop on Hot Topics
in Operating Systems (2001), HOTOS ’01.

[23] JAIN, N., BORTHAKUR, D., MURTHY, R., SHAO,
Z., ANTONY, S., THUSOO, A., SARMA, J., AND
LIU, H. Data Warehousing and Analytics Infras-
tructure at Facebook. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of Data (2010), SIGMOD ’10.

[24] LIU, X., HEO, J., AND SHA, L. Modeling 3-
tiered web applications. In Proceedings of the 13th
IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommu-
nication Systems (2005), MASCOTS ’16.

[25] Loader: simple cloud-based load testing. http:

//loader.io.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 649

http://blazemeter.com/
https://cloud.google.com/compute/docs/zones
https://cloud.google.com/compute/docs/zones
http://loader.io
http://loader.io

[26] MALIK, H. A methodology to support load test
analysis. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering
(2010), ICSE ’10.

[27] MICHELSEN, M. Continuous deployment
at Quora. http://engineering.quora.com/

Continuous-Deployment-at-Quora.

[28] MITZENMACHER, M. The power of two choices
in randomized load balancing. IEEE Transactions
on Parallel and Distributed Systems 12 (October
2001), 1094–1104.

[29] MOGUL, J. C. Emergent (mis)behavior vs. com-
plex software systems. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on
Computer Systems (2006), EuroSys ’06.

[30] NAIR, J., WIERMAN, A., AND ZWART, B. Pro-
visioning of large-scale systems: The interplay be-
tween network effects and strategic behavior in the
user base. Management Science 62, 6 (November
2016), 1830–1841.

[31] NISHTALA, R., FUGAL, H., GRIMM, S.,
KWIATKOWSKI, M., LEE, H., LI, H., MCEL-
ROY, R., PALECZNY, M., PEEK, D., SAAB, P.,
STAFFORD, D., TUNG, T., AND VENKATARA-
MANI, V. Scaling Memcache at Facebook. In
Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation
(2013), NSDI ’13.

[32] PADALA, P., SHIN, K. G., ZHU, X., UYSAL, M.,
WANG, Z., SINGHAL, S., MERCHANT, A., AND
SALEM, K. Adaptive control of virtualized re-
sources in utility computing environments. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems (2007), Eu-
roSys ’07.

[33] PELKONEN, T., FRANKLIN, S., TELLER, J., CAV-
ALLARO, P., HUANG, Q., MEZA, J., AND VEER-
ARAGHAVAN, K. Gorilla: A fast, scalable, in-
memory time series database. In Proceedings of the
41st International Conference on Very Large Data
Bases (2015), VLDB ’15.

[34] RIVIORE, S., SHAH, M. A., RANGANATHAN,
P., AND KOZYRAKIS, C. Joulesort: A balanced
energy-efficiency benchmark. In Proceedings of the
2007 ACM SIGMOD International Conference on
Management of Data (2007), SIGMOD ’07.

[35] ROSSI, C. Ship early and ship twice as often,
2012. https://www.facebook.com/notes/

facebook-engineering/ship-early-and-

ship-twice-as-often/10150985860363920.

[36] SAMBASIVAN, R. R., ZHENG, A. X., DE ROSA,
M., KREVAT, E., WHITMAN, S., STROUCKEN,
M., WANG, W., XU, L., AND GANGER, G. R.
Diagnosing performance changes by comparing re-
quest flows. In Proceedings of the 8th USENIX
Networked Systems Design and Implementation
(2011), NSDI ’11.

[37] SELLERS, D. An overview of proportional plus
integral plus derivative control and suggestions for
its successful application and implementation. In
Proceedings of the 1st International Conference for
Enhanced Building Operations (2001), ICEBO ’01.

[38] SHEN, K., TANG, H., YANG, T., AND CHU, L. In-
tegrated resource management for cluster-based in-
ternet services. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and im-
plementation (2002), OSDI ’02.

[39] SOMMERMANN, D., AND FRINDELL, A. Intro-
ducing Proxygen, Facebook’s C++ HTTP frame-
work, 2014. https://code.facebook.com/

posts/1503205539947302/introducing-

proxygen-facebook-s-c-http-framework/.

[40] STEWART, C., AND SHEN, K. Performance mod-
eling and system management for multi-component
online services. In Proceedings of the 2nd USENIX
Networked Systems Design and Implementation
(2005), NSDI ’05.

[41] TANG, C., KOOBURAT, T., VENKATACHALAM,
P., CHANDER, A., WEN, Z., NARAYANAN, A.,
DOWELL, P., AND KARL, R. Holistic configura-
tion management at Facebook. In Proceedings of
the 25th Symposium on Operating Systems Princi-
ples (October 2015), SOSP ’15.

[42] TANG, L., MARS, J., ZHANG, X., HAGMANN,
R., HUNDT, R., AND TUNE, E. Optimizing
Google’s warehouse scale computers: The NUMA
experience. In Proceedings of the 19th Interna-
tional Symposium on High-Performance Computer
Architecture (2013), HPCA ’13.

[43] THERESKA, E., AND GANGER, G. R. IRON-
Model: Robust performance models in the wild.
In Proceedings of the 2008 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems (2008), SIGMET-
RICS ’08.

[44] TPC-C. http://www.tpc.org/tpcc/.

650 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://engineering.quora.com/Continuous-Deployment-at-Quora
http://engineering.quora.com/Continuous-Deployment-at-Quora
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://code.facebook.com/posts/1503205539947302/introducing-proxygen-facebook-s-c-http-framework/
https://code.facebook.com/posts/1503205539947302/introducing-proxygen-facebook-s-c-http-framework/
https://code.facebook.com/posts/1503205539947302/introducing-proxygen-facebook-s-c-http-framework/
http://www.tpc.org/tpcc/

[45] TSEITLIN, A. The antifragile organization. Com-
munications of the ACM 56, 8 (August 2013), 40–
44.

[46] URGAONKAR, B., SHENOY, P., CHANDRA, A.,
GOYAL, P., AND WOOD, T. Agile dynamic pro-
visioning of multi-tier internet applications. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS) 3, 1 (March 2008), 1–39.

[47] URGAONKAR, B., SHENOY, P., AND ROSCOE, T.
Resource overbooking and application profiling in
shared hosting platforms. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design
and implementation (2002), OSDI ’02.

[48] WELSH, M., AND CULLER, D. Adaptive over-
load control for busy internet servers. In USENIX
Symposium on Internet Technologies and Systems
(2003), USITS ’03.

[49] Yahoo! cloud serving benchmark (YCSB).
https://github.com/brianfrankcooper/

YCSB/wiki.

[50] ZHENG, W., BIANCHINI, R., JANAKIRAMAN,
G. J., SANTOS, J. R., AND TURNER, Y. Just-
RunIt: Experiment-based management of virtual-
ized data centers. In Proceedings of the 2009
USENIX Annual Technical Conference (2009),
USENIX ’09.

[51] ZHU, X., YOUNG, D., WATSON, B. J., WANG,
Z., ROLIA, J., SINGHAL, S., MCKEE, B.,
HYSER, C., GMACH, D., GARDNER, R., CHRIS-
TIAN, T., AND CHERKASOVA, L. 1000 islands: In-
tegrated capacity and workload management for the
next generation data center. In Proceedings of the
2008 International Conference on Autonomic Com-
puting (2008), ICAC ’08.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 651

https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki

CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels

Ronghui Gu Zhong Shao Hao Chen Xiongnan (Newman) Wu
Jieung Kim Vilhelm Sjöberg David Costanzo

Yale University

Abstract

Complete formal verification of a non-trivial concurrent
OS kernel is widely considered a grand challenge. We
present a novel compositional approach for building cer-
tified concurrent OS kernels. Concurrency allows inter-
leaved execution of kernel/user modules across different
layers of abstraction. Each such layer can have a different
set of observable events. We insist on formally specifying
these layers and their observable events, and then verify-
ing each kernel module at its proper abstraction level. To
support certified linking with other CPUs or threads, we
prove a strong contextual refinement property for every
kernel function, which states that the implementation of
each such function will behave like its specification under
any kernel/user context with any valid interleaving. We
have successfully developed a practical concurrent OS
kernel and verified its (contextual) functional correctness
in Coq. Our certified kernel is written in 6500 lines of
C and x86 assembly and runs on stock x86 multicore
machines. To our knowledge, this is the first proof of
functional correctness of a complete, general-purpose
concurrent OS kernel with fine-grained locking.

1 Introduction

Operating System (OS) kernels and hypervisors form
the backbone of safety-critical software systems in the
world. Hence it is highly desirable to formally verify the
correctness of these programs [53]. Recent efforts [33,
58, 34, 25, 23, 13, 5, 14] have shown that it is feasible
to formally prove the functional correctness of simple
general-purpose kernels, file systems, and device drivers,
but none of these systems have addressed the important
issues of concurrency [31, 7], which include not just user
and I/O concurrency on a single CPU, but also multicore
parallelism with fine-grained locking. This severely limits
the applicability and power of today’s formally verified
system software.

What makes the verification of concurrent OS kernels
so challenging? First, concurrent kernels allow inter-
leaved execution of kernel/user modules across differ-
ent abstraction layers; they contain many interdependent
components that are difficult to untangle. Several re-
searchers [55, 51] believe that the combination of con-
currency and the kernels’ functional complexity makes
formal verification of functional correctness intractable,
and even if it is possible, its cost would far exceed that of
verifying a single-core sequential kernel.

Second, concurrent kernels need to support all three
types of concurrency (user, I/O, or multicore) and make
them work coherently with each other. User and I/O con-
currency rely on thread yield/sleep/wakeup primitives or
interrupts to switch control and support synchronization;
these constructs are difficult to reason about since they
transfer control from one thread to another. Multicore
concurrency with fine-grained locking requires sophisti-
cated spinlock implementations such as MCS locks [46],
which are also hard to verify.

Third, concurrent kernels should also guarantee that
each of their system calls eventually returns, but this de-
pends on the progress of the concurrent primitives used
in the kernels. Proving starvation-freedom [28] for con-
current objects only became possible recently [40]. Stan-
dard Mesa-style condition variables [35] do not guarantee
starvation-freedom; this can be fixed by using a FIFO
queue of condition variables, but the solution is not trivial
and even the popular, most up-to-date OS textbook [7,
Fig. 5.14] has gotten it wrong [6].

Fourth, given the high cost of building concurrent ker-
nels, it is important that they can be quickly adapted to
support new hardware platforms and applications [8, 45,
20]. One advantage of a certified kernel is the formal
specification for all of its components. In theory, this al-
lows us to add certified kernel plug-ins as long as they do
not violate any existing invariants. In practice, however,
if we are unable to encapsulate interference, even a small
edit could incur huge verification overhead.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 653

In this paper, we present a novel compositional ap-
proach that tackles all these challenges. We believe that,
to control the complexity of concurrent kernels and to
provide strong support for extensibility, we must first
have a compositional specification that can untangle all
the kernel interdependencies and encapsulate interference
among different kernel objects. Because the very purpose
of an OS kernel is to build layers of abstraction over bare
machines, we insist on meticulously uncovering and spec-
ifying these layers, and then verifying each kernel module
at its proper abstraction level.

The functional correctness of an OS kernel is often
stated as a refinement. This is shown by building forward
simulation [44] from the C/assembly implementation of a
kernel (K) to its abstract functional specification (S). Of
course, the ultimate goal of having a certified kernel is to
reason about programs running on top of (or along with)
the kernel. It is thus important to ensure that given any
kernel extension or user program P, the combined code
K&P also refines S&P. If this fails to hold, the kernel is
simply still incorrect since P can observe some difference
between K and S. Gu et al. [23] advocated proving such a
contextual refinement property, but they only considered
the sequential contexts (i.e., P is sequential).

For concurrent kernels, proving the contextual refine-
ment property becomes essential. In the sequential setting,
the only way that the context code P can interfere with the
kernel K is when K fails to encapsulate its private state;
that is, P can modify some internal state of K without K’s
permission. In the concurrent setting, the environment
context (ε) of a running kernel K could be other kernel
threads or a copy of K running on another CPU. With
shared-memory concurrency, the interference between ε

and K are both necessary and often common; the sequen-
tial atomic specification S is now replaced by the notion
of linearizability [29] plus a progress property such as
starvation-freedom [28].

In fact, linearizability proofs often require event re-
ordering that preserves the happens-before relation, so
K&ε may not even refine S&ε . Contextual refinement in
the concurrent setting requires that for any ε , we can find a
semantically related ε

′ such that K&ε refines S&ε
′. Sev-

eral researchers [22, 42, 40] have shown that contextual
refinement is precisely equivalent to the linearizability and
progress requirements for implementing compositional
concurrent objects [28, 29].

Our paper makes the following contributions:

• We present CertiKOS—a new extensible architecture
for building certified concurrent OS kernels. CertiKOS
uses contextual refinement over the “concurrent” envi-
ronment contexts (ε) as the unifying formalism for com-
posing different concurrent kernel/user objects at differ-
ent abstraction levels. Each ε defines a specific instance
on how other threads/CPUs/devices respond toward the

events generated by the current running threads. Each
abstraction layer, parameterized over a specific ε , is
an assembly-level machine extended with a particular
set of abstract objects (i.e., abstract states plus atomic
primitives). CertiKOS successfully decomposes an oth-
erwise prohibitive verification task into many simple
and easily automatable ones.

• We show how the use of an environment context at
each layer allows us to apply standard techniques for
verifying sequential programs to verify concurrent pro-
grams. Indeed, most of our kernel programs are writ-
ten in a variant of C (called ClightX) [23], verified
at the source level, and compiled and linked together
using CompCertX [23, 24]—a thread-safe version of
the CompCert compiler [37, 38]. As far as we know,
CertiKOS is the first architecture that can truly build
certified concurrent kernels and transfer global prop-
erties proved for programs (at the kernel specification
level) down to the concrete assembly machine level.

• We show how to impose temporal invariants over these
environment contexts so we can verify the progress of
various concurrent primitives. For example, to verify
the starvation-freedom of ticket locks or MCS locks,
we must assume that the multicore hardware (or the
OS scheduler) always generates a fair interleaving, and
those threads/CPUs which requested locks before the
current running thread will eventually acquire and then
release the lock. In a separate paper [24], we present the
formal theory of environment contexts and show how
these assumptions can be discharged when we compose
different threads/CPUs to form a complete system.

• Using CertiKOS, we have successfully developed a
fully certified concurrent OS kernel (called mC2) in the
Coq proof assistant [2]. Our kernel supports both fine-
grained locking and thread yield/sleep/wakeup prim-
itives, and can run on stock x86 multicore machines.
It can also double as a hypervisor and boot multiple
instances of Linux in guest VMs running on different
CPUs. Our certified hypervisor kernel consists of 6500
lines of C and x86 assembly. The entire proof effort for
supporting concurrency took less than 2 person years.
To our knowledge, this is the first proof of functional
correctness of a complete, general-purpose concurrent
OS kernel with fine-grained locking.

The rest of this paper is organized as follows. Section 2
gives an overview of our new CertiKOS architecture. Sec-
tion 3 shows how we use environment contexts to turn
concurrent layers into sequential ones. Section 4 presents
the design and development of the mC2 kernel and how
we verify various concurrent kernel objects. Section 5
presents an evaluation of CertiKOS. Sections 6-7 discuss
related work and then conclude.

654 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

x86mc

Asm Instructions

 mC2 kernel

code

mC2

Asm Instructions + System Calls

regs & atom obj

priv & shared mem

abstract state

contextual refinement

P
top

bottom
PK

regs & atom obj

priv & shared mem

Figure 1: Certified OS kernels: what to prove?

2 Overview of Our Approach

The ultimate goal of research on building certified OS
kernels is not just to verify the functional correctness of
a particular kernel, but rather to find the best OS design
and development methodologies that can be used to build
provably reliable, secure, and efficient computer systems
in a cost-effective way. We enumerate a few important
dimensions of concerns and evaluation metrics which we
have used so far to guide our work toward this goal:

• Support for new kernel design. Traditional OS ker-
nels use the hardware-enforced “red line” to define a
single system call API. A certified OS kernel opens up
the design space significantly as it can support multiple
certified kernel APIs at different abstraction levels. It is
important to support kernel extensions [9, 20, 45] and
novel ring-0 or guest-domain processes [30, 8] so we
can experiment and find the best trade-offs.

• Kernel performance. Verification should not impose
significant overhead on kernel performance. Of course,
different kernel designs may imply different perfor-
mance priorities. An L4-like microkernel [43] focuses
on fast inter-process communication (IPC), while a
Singularity-like kernel [30] emphasizes efficient sup-
port for type-safe ring-0 processes.

• Verification of global properties. A certified kernel
is much less interesting if it cannot be used to prove
global properties of the complete system built on top
of the kernel. Such global properties include not only
safety, liveness, and security properties of user-level
processes and virtual machines, but also resource usage
and availability properties (e.g., to counter denial-of-
service attacks).

• Quality of kernel specification. A good kernel specifi-
cation should capture precisely the contextually observ-
able behaviors of the implementation [23]. It must sup-
port transferring global properties proved at a high ab-
straction level down to any lower abstraction level [16].

• Cost of development and maintenance. Composi-
tionality is the key to minimize such cost. If the ma-
chine model is stable, verification of each kernel module

Figure 2: Contextual refinement between concurrent layers

should only need to be done once (to show that it im-
plements its deep functional specification [23]). Global
properties (e.g., information flow security) should be
derived from the kernel deep specification alone [16].

• Quality of formal proofs. We use the term cer-
tified kernels rather than verified kernels to empha-
size the importance of third-party machine-checkable
proof certificates [53]. Hand-written paper proofs are
error-prone [32]. Program verification without explicit
machine-checkable proof objects has been subject to
significant controversy [17].

Overview of CertiKOS Our new CertiKOS architec-
ture aims to address all these concerns and also tackle the
challenges described in Section 1. The CertiKOS archi-
tecture leverages the new certified programming method-
ologies developed by Gu et al. [23, 24] and applies them
to support building certified concurrent OS kernels.

A certified abstraction layer consists of a language con-
struct (L1,M,L2) and a mechanized proof object showing
that the layer implementation M, built on top of the in-
terface L1 (the underlay), is a contextual refinement of
the desirable interface L2 above (the overlay). A deep
specification (L2) of a module (M) captures everything
contextually observable about running the module over
its underlay (L1). Once we have certified M with a deep
specification L2, there is no need to ever look at M again,
and any property about M can be proved using L2 alone.

In Figure 1, we use x86mc to denote an assembly-level
multicore machine. Suppose we load such a machine with
the mC2 kernel K (in assembly) and user-level assembly
code P, and we use [[⋅]]x86mc to denote the whole-machine
semantics for x86mc, then proving any global property of
such a complete system amounts to reasoning about the
semantic object [[K&P]]x86mc, i.e., the set of observable
behaviors from running K&P on x86mc.

Reasoning at such a low level is difficult, so we formal-
ize a new mC2 machine that extends the x86mc machine
with the (deep) high-level specification of all system calls
implemented by K. We use [[⋅]]mC2 to denote its whole-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 655

C
PU

Se
ria

l

VGA
(Video)

K
ey

bo
ar

d

IO
A

PI
C

Legend

Hardware

Driver

drive

Use

Data

Kern. Module

Core 0

LAPIC 0

Core 1

LAPIC 1

Core 8

LAPIC 8...
Memory

Heap

B
IO

S

D
M

A

Sp
in

Lo

ck
s

Ticket MCS Container

Alloc Tbl

PMM

IPC

SleepQPendQ

ELF Ldr

Trap & Syscall

Per Core

RdyQ

Scheduler

Thread

Cur TID PCPUPe
r T

hr
ea

d

k_stack

TCB

k_contextTSC

Hz

Timer

LAPIC

ProcessVM Monitor

Lib MemSy
nc

.
&

M
ut

ua
l

Ex
cl

u. CVFIFOBBQ ...

Page Map VMM

Serial

VideoConsole Buffer

Kbd

Console

IO
AP

IC

APIC

Figure 3: System architecture for the mC2 kernel

machine semantics. The contextual refinement property
about the mC2 kernel can be stated as:

∀P, [[K&P]]x86mc ⊑ [[P]]mC2

Hence any global property proved about [[P]]mC2 can be
transferred to [[K&P]]x86mc.

To support concurrency, for each layer interface L, we
parameterize it with an active thread set A and then care-
fully define its set of valid environment contexts, denoted
as EC(L,A). Each environment context ε captures a spe-
cific instance—from a particular run—of the list of events
that other threads or CPUs (i.e., those not in A) return
when responding to the events generated by those in
A. We can then define a new thread-modular machine
ΠL(A)(P,ε) that will operate like the usual assembly ma-
chine when P switches control to those threads in A, but
will only obtain the list of events from the environment
context ε when P switches control to those outside A. The
semantics for a concurrent layer machine L is then:

[[P]]L(A) = { ΠL(A)(P,ε) ∣ ε ∈ EC(L,A) }

To support parallel layer composition, we carefully design
EC(L,A) so that the following property holds:

[[P]]L(A∪B) = [[P]]L(A) ∩ [[P]]L(B) if A∩B =∅

The formal details for EC(L,A) and [[⋅]]L(A) are pre-
sented in a separate paper [24]. Note that if A is a single-
ton, for each ε , ΠL(A) behaves like a sequential machine.

With our new compositional layer semantics, we can
take a multicore machine like x86mc and zoom into a
specific active CPU i by creating a logical “single-core”
machine layer for CPU i, and then apply techniques from
Gu et al. [23] to build a collection of certified “sequen-
tial” (per-CPU) layers (see Figure 2). When we want
to introduce kernel- or user-level threads, we can fur-
ther zoom into a particular thread (e.g., i0) and create

a corresponding logical machine layer. We can impose
specific invariants over the environment contexts (i.e., the
“rely” conditions) and use them to ensure that per-CPU
or per-thread reasoning can be soundly composed (when
their “rely” conditions are compatible with each other).
After we have added all the kernel components and im-
plemented all the system calls, we can combine these
per-thread machines into a single concurrent machine.

Under CertiKOS, building a new certified concurrent
kernel (or experimenting with a new design) is just a
matter of composing a collection of certified concurrent
layers, developed in a variant of C (called ClightX) or as-
sembly. Gu et al. [23] have developed a certified compiler
(CompCertX) that can compile certified ClightX layers
into certified assembly layers. Since all concurrent primi-
tives in CertiKOS are treated as CompCert-style external
calls or built-ins, they cannot be reordered or optimized
away by the compiler. Memory accesses over these ex-
ternal calls cannot be reordered either. Therefore, each
concurrent ClightX module (running over a particular per-
thread or per-CPU layer) is compiled by CompCertX as
if it were a sequential program performing many external-
call events. The correctness of CompCertX guarantees
that the generated x86 assembly behaves the same as the
source ClightX module. CompCertX can therefore serve
as a thread-safe version of CompCert.

CertiKOS can thus enjoy the full programming power
of both an ANSI C variant and an assembly language to
certify any efficient routines required by low-level kernel
programming. The layer mechanism allows us to certify
most kernel components at higher abstraction levels, even
though they all eventually get mapped (or compiled) down
to an assembly machine.

Overview of the mC2 kernel Figure 3 shows the sys-
tem architecture of mC2. The mC2 system was initially
developed in the context of a large DARPA-funded re-

656 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

search project. It is a concurrent OS kernel that can also
double as a hypervisor. It runs on an Unmanned Ground
Vehicle (UGV) with a multicore Intel Core i7 machine.
On top of mC2, we run three Ubuntu Linux systems as
guests (one each on the first three cores). Each virtual
machine runs several RADL (The Robot Architecture
Definition Language [39]) nodes that have fixed hardware
capabilities such as access to GPS, radar, etc. The kernel
also contains a few simple device drivers (e.g., interrupt
controllers, serial and keyboard devices). More complex
devices are either supported at the user level, or passed
through (via IOMMU) to various guest Linux VMs. By
running different RADL nodes in different VMs, mC2
provides strong isolation support so that even if attackers
take control of one VM, they still cannot break into other
VMs to compromise the overall mission of the UGV.

Within mC2, we have various shared objects such as
spinlock modules (Ticket, MCS), sleep queues (SleepQ)
for implementing queueing locks and condition variables,
pending queues (PendQ) for waking up a thread on an-
other CPU, container-based physical and virtual mem-
ory management modules (Container, PMM, VMM), a
Lib Mem module for implementing shared-memory IPC,
synchronization modules (FIFOBBQ, CV), and an IPC
module. Within each core (the purple box), we have
the per-CPU scheduler, the kernel-thread management
module, the process management module, and the virtual-
ization module (VM Monitor). Each kernel thread has its
own thread-control block (TCB), context, and stack.

What have we proved? Using CertiKOS, we have suc-
cessfully built a fully certified version of the mC2 kernel
and proved its contextual refinement property with re-
spect to a high-level deep specification for mC2. This
important functional correctness property implies that all
system calls and traps will strictly follow the high-level
specification and always run safely and terminate even-
tually; and there will be no data race, no code injection
attacks, no buffer overflows, no null pointer access, no
integer overflow, etc.

More importantly, because for any program P, we have
[[K&P]]x86mc refines [[P]]mC2, we can also derive the
important behavior equivalence property for P, that is,
whatever behavior a user can deduce about P based on the
high-level specification for the mC2 kernel K, the actual
linked system K&P running on the concrete x86mc ma-
chine would indeed behave exactly the same. All global
properties proved at the system-call specification level
can be transferred down to the lowest assembly machine.

Assumptions and limitations The mC2 kernel is obvi-
ously not as comprehensive as real-world kernels such
as Linux. The main goal of this paper is to show that
it is feasible to build certified concurrent kernels with
fine-grained locking. We did not try to incorporate all the

Shared
Module Mj

Shared Mem

Atom ObjPrivate Obj

Private
Module Mi

Overlay L2

Underlay L1

Private Obj Atom Obj

Private Mem

Private Mem

Shared Mem

ji

PendQ

ReadyQ

Running Thread

yield2

yield1

yield3sleep /2
wakeup by

CPU0

wakeup by
CPU1

SleepQs

sleep1

1

1

CPU0

Figure 4: Defining concurrent abstraction layers

latest advances for multicore kernels into mC2.
Our assembly machine assumes strong sequential con-

sistency for all atomic instructions. We believe our proof
should remain valid for the x86 TSO model because (1) all
our concurrent layers guarantee that non-atomic memory
accesses are properly synchronized; and (2) the TSO order
guarantees that all atomic synchronization operations are
properly ordered. Nevertheless, more formalization work
is needed to turn our proofs over sequential-consistent
machines into those over the TSO machines [55].

Since our machine does not model TLB, any code for
addressing TLB shootdown cannot be verified.

The mC2 kernel currently lacks a certified storage sys-
tem. We plan to incorporate recent advances in building
certified file systems [13, 5] into mC2 in the near future.

Our assembly machine only covers a small part of the
full x86 instruction set, so our contextual correctness re-
sults only apply to programs in this subset. Additional
instructions can be easily added if they have simple or
no interaction with our kernel. Costanzo et al. [16, Sec.
6] shows how the fidelity of the CompCert-style x86 ma-
chine model would impact the formal correctness or secu-
rity claims, and how such gap can be closed.

The CompCertX assembler for converting assembly
into machine code is unverified. We assume correctness of
the Coq proof checker and its code extraction mechanism.

The mC2 kernel also relies on a bootloader, a PreInit
module (which initializes the CPUs and the devices), and
an ELF loader. Their verification is left for future work.

3 Layer Design with Environment Context

In this section, we explain the general layer design princi-
ples and show how we use environment context to convert
a concurrent layer into CPU-local layers.

Multicore hardware allows all the CPUs to access
the same piece of memory simultaneously. In CertiKOS,
we logically distinguish the private memory (i.e., pri-
vate to a CPU or a thread) from the shared memory (i.e.,
shared by multiple CPUs or threads). The private memory
does not need to be synchronized, whereas non-atomic
shared memory accesses need to be protected by some
synchronization mechanisms (e.g., locks), which are nor-
mally implemented using atomic hardware instructions
(e.g., fetch-and-add). With proper protection, each shared
memory operation can be viewed as if it were atomic.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 657

Atomic object is an abstraction of well-synchronized
shared memory, combined with operations that can be
performed over that shared memory. It consists of a set
of primitives, an initial state, and a logical log containing
the entire history of the operations that were performed
on the object during an execution. Each primitive invoca-
tion records a single corresponding event in the log. We
require that these events contain enough information so
we can derive the current state of each atomic object by
replaying the entire log over the object’s initial state.

Concurrent layer interface contains both private ob-
jects (e.g., i in Fig. 4) and atomic objects (e.g., j in Fig. 4),
along with some invariants imposed on these objects. The
verification of a concurrent kernel requires repeatedly
building certified abstraction layers. The overlay inter-
face L2 is a new and more abstract interface, built on top
of the underlay interface L1, and implemented by module
Mi or M j (cf. Fig. 4). Private objects only access pri-
vate memory and are built following techniques similar
to those presented by Gu et al. [23]. Atomic objects are
implemented by shared modules (e.g., M j in Fig. 4) that
may access existing atomic objects, private objects, and
non-atomic shared memory.

Every atomic primitive in the overlay generates exactly
one event (this is why it is really atomic), while its imple-
mentation may trigger multiple events (by calling multiple
atomic primitives in the underlay).

It is difficult to build certified abstraction layers di-
rectly on a multicore, nondeterministic hardware model.
To construct an atomic object, we must reason about its
implementation under all possible interleavings and prove
that every access to shared memory is well synchronized.

In the rest of this section, we first present our x86 mul-
ticore machine model (Πx86mc), and then show how we
gradually refine this low-level model into a more abstract
machine model (Πloc) that is suitable for reasoning about
concurrent code in a CPU-local fashion.

3.1 Multicore hardware model

Our fine-grained multicore hardware model (Πx86mc)
allows arbitrary interleavings at the level of assem-
bly instructions. At each step, the hardware non-
deterministically chooses one CPU and executes the next
assembly instruction on that CPU. Each assembly instruc-
tion is classified as atomic, shared, or private, depending
on whether the instruction involves an atomic object call,
a non-atomic shared memory access, or only a private
object/memory access. One interleaving of an example
program running on two CPUs is as follows:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1

local
block 1

shared1

invalid

x
shared
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

Since only atomic operations generate events, this inter-
leaving produces the logical log [0.atom1,1.atom2].

3.2 Machine model with hardware scheduler

As a first step toward abstracting away the low-level de-
tails of the concurrent CPUs, we introduce a new machine
model (Πhs) configured with a hardware scheduler (εhs)
that specifies a particular interleaving for an execution.
This results in a deterministic machine model. To take
a program from Πx86mc and run it on top of Πhs, we in-
sert a logical switch point (denoted as “▶”) before each
assembly instruction. At each switch point, the machine
first queries the hardware scheduler and gets the CPU ID
that will execute next. All the switch decisions made by
εhs are stored in the log as switch events. The previous
example on Πx86mc can be simulated by the following εhs:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1

local
block 1

shared1

invalid

x
shared
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

The log recorded by this execution is as follows (a switch
from CPU i to j is denoted as i↪ j):

[0↪ 0,0.atom1,0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0,0↪ 0,0↪ 1]

The behavior of running a program P over this model
with a hardware scheduler εhs is denoted as Πhs(P,εhs),
indicating that it is parametrized over all possible εhs. Let
EChs represent the set of all possible hardware schedulers.
Then we define the whole-machine semantics:

[[P]]hs = { Πhs(P,εhs) ∣ εhs ∈ EChs }

Note this is a special case of the definition in Section 2
for the whole-machine semantics of a concurrent layer
machine, where the active set is the set of all CPUs. To
ensure correctness of this machine model with respect
to the hardware machine model, we prove that Πx86mc
contextually refines the new model. Before we state the
property, we first define contextual refinement formally.

Definition 1 (Contextual Refinement). We say that layer
L0 contextually refines layer L1 (written as ∀P,[[P]]L0 ⊑

[[P]]L1), if and only if for any P that does not go wrong
on ΠL1 under any configuration, we also have that (1) P
does not go wrong on ΠL0 under any configuration; and
(2) any observable behavior of P on ΠL0 under some con-
figuration is also observed on ΠL1 under some (possibly
different) configuration.

Lemma 1 (Correctness of the hardware scheduler model).

∀P,[[P]]x86mc ⊑ [[P]]hs

658 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 5: The contextual refinement chain from multicore hardware model Πx86mc to CPU-local model Πloc

3.3 Machine with local copy of shared memory

The above machine model does not restrict any access to
the shared memory. We therefore abstract the machine
model with hardware scheduler into a new model that
enforces well-synchronized accesses to shared memory.

In addition to the global shared memory concurrently
manipulated by all CPUs, each CPU on this new machine
model (Πlcm) also maintains a local copy of shared mem-
ory blocks along with a valid bit. The relation between a
CPU’s local copy and the global shared memory is main-
tained through two new logical primitives pull and push.

The pull operation over a particular CompCert-style
memory block [37] updates a CPU’s local copy of that
block to be equal to the one in the shared memory, mark-
ing the local block as valid and the shared version as
invalid. Conversely, the push operation updates the
shared version to be equal to the local block, marking the
shared version as valid and the local block as invalid.

If a program tries to pull an invalid shared memory
block, push an invalid local block, or access an invalid
local block, the program goes wrong. We make sure
that every shared memory access is always performed
on its valid local copy, thus systematically enforcing
valid accesses to the shared memory. Note that all of
these constructions are completely logical, and do not
correspond to any physical protection mechanisms; thus
they do not introduce any performance overhead.

The shared memory updates of the previous example
can be simulated on Πlcm as follows:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1

local
block 1

shared1

invalid

x
shared
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

Data-race freedom Among each shared memory block
and all of its local copies, only one can be valid at any
single moment of machine execution. Therefore, for any
program P with a potential data race, there exists a hard-
ware scheduler such that P goes wrong on Πlcm. By
showing that a program P is safe (never goes wrong) on
Πlcm for all possible hardware schedulers, we guarantee
that P is data-race free.

We have shown (in Coq) that Πlcm is correct with re-
spect to the previous machine model Πhs with the EChs.

Lemma 2 (Correctness of the local copy model).

∀P,[[P]]hs ⊑ [[P]]lcm

3.4 Partial machine with environment context

Although Πlcm provides a way to reason about shared
memory operations, it still does not have much support
for CPU-local reasoning. To achieve modular verification,
the machine model should provide a way to reason about
programs on each CPU locally by specifying expected
behaviors of the context programs on other CPUs. The
model should then provide a systematic way to link the
proofs of different local components together to form a
global claim about the whole system. To this purpose,
we introduce a partial machine model Πpt that can be
used to reason about the programs running on a subset of
CPUs, by parametrizing the model over the behaviors of
an environment context (i.e., the rest of the CPUs).

We call a given local subset of CPUs the active CPU set
(denoted as A). The partial machine model is configured
with an active CPU set and it queries the environment
context whenever it reaches a switch point that attempts
to switch to a CPU outside the active set.

The set of environment contexts for A in this machine
model is denoted as EC(pt,A). Each environment context
εpt(A) ∈ EC(pt,A) is a response function, which takes the
current log and returns a list of events from the context
programs (i.e., those outside of A). The response function
simulates the observable behavior of the context CPUs
and imposes some invariants over the context. The hard-
ware scheduler is also a part of the environment context,
i.e., the events returned by the response function include
switch events. The execution of CPU 0 in the previous
example can be simulated with a εpt({0}) function:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1

local
block 1

shared1

invalid

x
shared
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

For example, at the 3rd switch point, εpt({0}) returns the
event list [0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0].

Composition of partial machine models Suppose we
have verified that two programs, separately running with
two disjoint active CPU sets A and B, produce event lists
satisfying invariants INVA and INVB, respectively. If INVA
is consistent with the environment-context invariant of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 659

B, and INVB is consistent with the environment-context
invariant of A, then we can compose the two separate
programs into a single program with active set A∪B. This
combined program is guaranteed to produce event lists
satisfying the combined invariant INVA∧INVB. Using the
whole-machine semantics from Section 2, we express this
composition as a contextual refinement.

Lemma 3 (Composition of partial machine models).

∀P,[[P]]pt(A∪B) ⊑ [[P]]pt(A)∩ [[P]]pt(B) if A∩B =∅

After composing the programs on all CPUs, the context
CPU set becomes empty and the composed invariant holds
on the whole machine. Since there is no context CPU, the
environment context is reduced to the hardware scheduler,
which only generates the switch events. In other words,
letting C be the entire CPU set, we have that EC(pt,C) =

EChs. By showing that this composed machine with the
entire CPU set C is refined by Πlcm, the proofs can be
propagated down to the multicore hardware model.

Lemma 4 (Correctness of the composed total machine).

∀P,[[P]]lcm ⊑ [[P]]pt(C)

3.5 CPU-local machine model

If we focus on a single active CPU i, the partial machine
model is like a local machine with an environment con-
text representing all other CPUs. However, in this model
there is a switch point before each instruction, so pro-
gram verification still needs to handle many unnecessary
interleavings (e.g., those between private operations). In
this subsection, we introduce a CPU-local machine model
(denoted as Πloc) for a CPU i, in which switch points
only appear before atomic or push/pull operations. The
switch points before shared or private operations are re-
moved via two steps: shuffling and merging.

Shuffling switch points In Πloc, we introduce a log
cache — for the switch points before shared and private
operations, the query results from the environment context
are stored in a temporary log cache. The cached events
are applied to the logical log just before the next atomic
or push/pull operation. Thus, when we perform shared
or private operations, the observations of the environment
context are delayed until the next atomic or push/pull
operation. This is possible because a shared operation can
only be performed when the current local copy of shared
memory is valid, meaning that no other context program
can interfere with the operation.

Merging switch points Once the switch points are
shuffled properly, we merge all the adjacent switch points
together. When we merge switch points, we also need to
merge the switch events generated by the environment

context. For example, the change of switch points for the
previous example on CPU-local machine is as follows:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1

local
block 1

shared1

invalid

x
shared
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

Lemma 5 (Correctness of CPU-local machine model).

∀P,[[P]]pt({i}) ⊑ [[P]]loc({i})

Finally, we obtain the refinement relation from the mul-
ticore hardware model to the CPU-local machine model
by composing all of the refinement relations together (cf.
Fig. 5). We introduce and verify the mC2 kernel on top of
the CPU-local machine model Πloc. The refinement proof
guarantees that the proved properties can be propagated
down to the multicore hardware model Πx86mc.

All our proofs (including every step in Fig. 5 and Fig. 2)
are implemented, composed, and machine-checked in
Coq. Each refinement step is implemented as a CompCert-
style upward-forward simulation from one layer machine
to another. Each machine contains the usual (CPU-local)
abstract state, a logical global log (for shared state), and
an environment context. The simulation relation is de-
fined over these two machine states, and matches well the
informal intuitions given in this and next sections.

4 Certifying the mC2 Kernel

Contextual refinement provides an elegant formalism for
decomposing the verification of a complex kernel into a
large number of small tractable tasks: we define a series
of logical abstraction layers, which serve as increasingly
higher-level specifications for an increasing portion of
the kernel code. We design these abstraction layers in a
way such that complex interdependent kernel components
are untangled and converted into a well-organized kernel-
object stack with clean specification (cf. Fig. 2).

In the mC2 kernel, the pre-initialization module is the
bottom layer that connects to the CPU-local machine
model Πloc, instantiated with a particular active CPU (cf.
Sec. 3.5). The trap handler contains the top layer that pro-
vides system call interfaces and serves as a specification
of the whole kernel, instantiated with a particular active
thread running on that active CPU. Our main theorem
states that any global properties proved at the topmost
abstraction layer can be transferred down to the lowest
hardware machine. In this section, we explain selected
components in more details.

660 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) physical
memory

CR3

… … … …

dir# pt# offset 32-bit virtual address

(b)
physical
memory

PMapi

… … … …

… …
virtual

address
space i

hidden hidden

Figure 6: (a) Hardware MMU using two-level page map; (b) Virtual address space i set up by page map i

Each CPU-local pre-initialization machine defines the
x86 hardware behaviors including page table walk upon
memory load (when paging is turned on), saving and
restoring the trap frame in the case of interrupts and ex-
ceptions (e.g., page fault), and the data exchange between
devices and memory. The hardware memory manage-
ment unit (MMU) is modeled in a way that mirrors the
paging hardware (cf. Fig. 6a). When paging is enabled,
memory accesses made by both the kernel and the user
programs are translated using the page map pointed to by
CR3. When a page fault occurs, the fault information is
stored in CR2, the CPU mode is switched from user mode
to kernel mode, and the page fault handler is triggered.

The spinlock module provides fine-grained lock ob-
jects as the base of synchronization mechanisms.

Ticket Lock depends on an atomic ticket object, which
consists of two fields: ticket and now. Figure 7 shows
one implementation of a ticket lock. Here, L is declared
as an array of ticket locks; each shared data object can be
protected with one lock in the array, identified using a spe-
cific lock index (i). The atomic increment to the ticket is
achieved through the atomic fetch-and-increment (FAI)
operation (implemented using the xaddl instruction with
the lock prefix in x86). As described in Section 3.5,
the switch points at this abstraction level have been shuf-
fled and merged so that there is exactly one switch point
before each atomic operation. Thus, the lock implementa-
tions generate a list of events; for example, when CPU t
acquires the lock i (stored in L[i]), it continuously gen-
erates the event “t.get now i” (line 10) until the latest
now is increased to the ticket value returned by the event
“t.inc ticket i” (line 9), and then followed by the event
“t.pull i” (line 11):

wait_lock LHOLD

get_now iget_now iget_now iinc_ticket iCPUt

(9,5) (9,6) (9,8) (9,9)

enQ i 2CPU0

Queue i
observed
by CPU0

[3,2]

deQ i

[2,5][]

(myt, i.now)

returned
events

pull i

(9,9)

wait_lockCPUt wait_lock

LockOwnCPUt

CPUt acq_lock i

contextual refinement
The event list is as below:

[▶,t.inc ticket i,▶,t.get now i,⋯,▶,t.get now i]

Verifying the linearizability and starvation-freedom of
the ticket lock object is equivalent to proving that under a
fair hardware scheduler εhs, the ticket lock implementa-
tion is a termination-sensitive contextual refinement of its
atomic specification [42, 40]. There are two main proof

1 typedef struct {
2 volatile uint ticket;
3 volatile uint now;
4 } ticket_lock;
5 ticket_lock L[NUM_LOCK];
6

7 void acq_lock (uint i) {
8 uint t;

9 t=▶FAI(&L[i].ticket);
10 while(▶L[i].now!=t){}
11 ▶pull (i);
12 }
13 void rel_lock (uint i) {
14 ▶push (i);
15 ▶L[i].now ++;
16 }

Figure 7: Pseudocode of the ticket lock implementation

obligations: (1) the lock guarantees mutual exclusion, and
(2) the acq lock operation eventually succeeds.

Mutual exclusion is straightforward for a ticket lock.
At any time, only the thread whose ticket is equal
to the current serving ticket (i.e., now) can hold the
lock. Furthermore, each thread’s ticket is unique as
the fetch-and-increment operation is atomic (line 9).
Thanks to this mutual exclusion property, it is safe to pull
the shared memory associated with the lock i to the local
copy at line 11. Before releasing the lock, the local copy
is pushed back to the shared memory at line 14.

To prove that acq lock eventually succeeds, from the
fairness of εhs, we assume that between any two consec-
utive events from the same thread, there are at most m
events generated by other threads (for some m). We also
impose the following invariants on the environment:

Invariant 1 (Invariants for ticket lock). An environment
context that holds the lock i (1) never acquires lock i again
before releasing it; and (2) always releases lock i within
k steps (for some k).

Lemma 6 (Starvation-freedom of ticket lock). Acquiring
ticket-lock in the mC2 kernel eventually succeeds.

Proof. The full proofs are mechanized in Coq; here we
highlight the main ideas. Let n be the maximum number
of the total threads. Then (1) there are at most n threads
waiting before the current one; (2) the thread holding the
lock releases the lock within k steps, which generates at
most k events; and (3) the environment context generates
at most m events between each step of the lock holder.
Hence there are at most n×m× k events generated by
the context of the threads waiting before the current one.
Since the current thread belongs to this “context” and
each read to the now field generates one get now event,
there are at most n×m× k loop iterations at line 10 in
Fig. 7. Thus, acquiring lock always succeeds.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 661

After we abstract the lock implementation into an
atomic specification, each acquire-lock call in the higher
layers only generates a single event “t.acq lock i.” We
can compose such per-CPU specification with those of its
environment CPUs as long as they all follow Invariant 1.

MCS Lock is known to have better scalability than
ticket lock over machines with a larger number of CPUs.
In mC2, we have also implemented a version of MCS
locks [46]. The starvation-freedom proof is similar to that
of the ticket lock. The difference is that the MCS lock-
release operation waits in a loop until the next waiting
thread (if it exists) has added itself to a linked list, so we
need similar proofs for both acquire and release.

Physical memory management introduces the page
allocation table AT (with nps denoting the maximum phys-
ical page number). Since AT is shared among different
CPUs, we associate it with a lock lock AT. The page allo-
cator is then refined into an atomic object where the imple-
mentation for each of its methods (e.g., palloc in Fig. 8)
is proved to satisfy an atomic interface, with the proof
that lock utilization for lock AT satisfies Inv. 1. Once the
atomic allocator is introduced, lock acquire and release
for lock AT are not allowed to be invoked at higher lay-
ers. Thus, in this layered approach, it is not possible that
a thread holding a lock defined at a lower layer tries to
acquire another lock introduced at a higher layer, i.e., the
order that a thread acquires different locks is guided by
the layer order that the locks are introduced. This implicit
order of lock acquisitions prevents deadlocks in mC2.

Another function of the physical memory management
is to dynamically track and bound the memory usage of
each thread. A container object is used to record infor-
mation for each thread (array cn in Fig. 8); one piece of
information tracked is the thread’s quota. Inspired by the
notions of containers and quotas in HiStar [59], a thread
in mC2 is spawned with some quota specifying the maxi-
mum number of pages that the thread will ever be allowed
to allocate. As can be seen in Fig. 8, palloc returns an
error code if the requesting thread has no remaining quota
(lines 2 and 3), and the quota is decremented when a page
is successfully allocated (line 13). Quota enforcement
allows the kernel to prevent a denial-of-service attack,
where one thread repeatedly allocates pages and uses up
all available memory (thus denying other threads from
allocating pages). From a security standpoint [16], it also
prevents the undesirable information channel between
different threads that occurs due to such an attack.

Virtual memory management provides consecutive
virtual address spaces on top of physical memory man-
agement (see Fig. 6b), We prove that the primitives ma-
nipulating page maps are correct, and the initialization
procedure sets up the two-level page maps properly in
terms of the hardware address translation.

1 int palloc (uint tid) {
2 if (cn[tid].quota < 1)
3 return ERROR;
4 ▶acq_lock (lock_AT);
5 uint i=0,fp=nps;
6 while(fp==nps&&i<nps){
7 if (!AT[i].free)
8 fp = i;
9 i++; }

10 if (fp != nps) {
11 AT[i].free = 0;
12 AT[i].ref = 1;
13 cn[tid].quota --;
14 }
15 else fp = ERROR;
16 ▶rel_lock (lock_AT);
17 return fp;
18 }

Figure 8: Pseudocode of palloc

Invariant 2. (1) paging is enabled only after all the page
maps are initialized; (2) pages that store kernel-specific
data must have the kernel-only permission in all page
maps; (3) the kernel page map is an identity map; and (4)
non-shared parts of user processes’ memory are isolated.

By Inv. 2, we show that it is safe to run both the kernel
and user programs in the virtual address space when pag-
ing is enabled. In this way, memory accesses at higher
layers operate on the basis of the high-level, abstract de-
scriptions of address spaces rather than concrete page
directories and page tables stored in the memory itself.

Shared memory management provides a protocol to
share physical pages among different user processes. A
physical page can be mapped into multiple processes’
page maps. For each page, we maintain a logical owner
set. For example, a user process k1 can share its private
physical page i to another process k2 and the logical owner
set of page i is changed from {k1} to {k1,k2}. A shared
page can only be freed when its owner set is a singleton.

The shared queue library abstracts the queues imple-
mented as doubly-linked lists into abstract queue states
(i.e., Coq lists). The local enqueue and dequeue opera-
tions are specified over the abstract lists. As usual, we
associate each shared queue with a lock. The atomic
interfaces for shared queue operations are represented
by queue events “t.enQ i e” and “t.deQ i”, which can
be replayed to construct the shared queue. For instance,
starting from an empty initial queue, if the current log
of the i-th shared queue is [▶,t0.enQ i 2,▶,t0.deQ i],
and the event lists generated by the environment context
at two switch points are [t1.enQ i 3] and [t1.enQ i 5],
respectively, then the complete log for the queue i is:

[t1.enQ i 3,t0.enQ i 2,t1.enQ i 5,t0.deQ i]

By replaying the log, the shared queue state becomes
[2,5], and the last atomic dequeue operation returns 3.

Thread management introduces the thread control
block and manages the resources of dynamically spawned
threads (e.g., quotas) and their meta-data (e.g., children,
thread state). For each thread, one page (4KB) is allocated
for its kernel stack. We use an external tool [12] to show

662 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Shared
Module Mj

Shared Mem

Atom ObjPrivate Obj

Private
Module Mi

Overlay L2

Underlay L1

Private Obj Atom Obj

Private Mem

Private Mem

Shared Mem

ji

PendQ

ReadyQ

Running Thread

yield2

yield1

yield3sleep /2
wakeup by

CPU0

wakeup by
CPU1

SleepQs

sleep1

1

1

CPU0

Figure 9: Scheduling routines yield, sleep, and wakeup

that the stack usage of our compiled kernel is less than
4KB, so stack overflows cannot occur inside the kernel.

One interesting aspect of the thread module is the con-
text switch function. This assembly function saves the
register set of the current thread and restores the register
set from the kernel context of another thread on the same
CPU. Since the instruction pointer register (EIP) and stack
pointer register (ESP) are saved and restored in this proce-
dure, this kernel context switch function is verified at the
assembly level, and linked with other code that is verified
at the C level and then compiled by CompCertX.

The thread scheduling is done by three primitives:
yield, sleep, and wakeup. They are implemented us-
ing the shared queue library (cf. Fig. 9). Each CPU has a
private ready queue ReadyQ and a shared pending queue
PendQ. The context CPUs can insert threads to the current
CPU’s pending queue. The mC2 kernel also provides a set
of shared sleeping queues SleepQs. As shown in Fig. 9,
yield moves a thread from the pending queue to the ready
queue and then switches to the next ready thread. The
sleep primitive simply adds the running thread to a sleep-
ing queue and runs the next ready thread. The wakeup
primitive contains two cases. If the thread to be woken
up belongs to the current CPU, then the primitive adds
the thread to its ready queue. Otherwise, wakeup adds
the thread to the pending queue of the CPU it belongs
to. Except for the ready queue, all the other thread queue
operations are protected by fine-grained locks.

Thread-local machine models can be built based on
the thread management layers. The first step is to extend
the environment context with a software scheduler (i.e.,
abstracting the concrete scheduling procedure), result-
ing in a new environment context εss. The scheduling
primitives generate the yield and sleep events and εss
responds with the next thread ID to execute. One invariant
we impose on εss is that a sleeping thread can be resched-
uled only after a wakeup event is generated. The second
step is to introduce the active thread set to represent the
active threads on the active CPU, and extend the εss with
the context threads, i.e., the rest of the threads running
on the active CPU. The composition structure is similar
to the one of Lemma 3. In this way, higher layers can
be built upon a thread-local machine model with a single
active thread on the active CPU (cf. Fig. 2).

1 struct fifobbq {
2 Queue insrtQ, rmvQ;
3 int n_rmv, n_insrt;
4 int front, next;
5 int T[MAX]; lock l;
6 } q;
7

8 void remove(){
9 uint cv, pos, t;

10 ▶acq_lock (q.l);
11 pos = q.n_rmv ++;
12 cv = my_cv ();
13 ▶enQ (q.rmvQ, cv);
14 while(q.front < pos ||
15 q.front == q.next)

16 ▶wait (cv, q.l);
17

18 t = q.T[q.front % MAX]
19 q.front ++;
20

21 cv=▶peekQ (q.insrtQ);
22 if (cv != NULL)
23 ▶signal (cv);
24 ▶deQ (q.rmvQ);
25 cv = ▶peekQ (q.rmvQ);
26 if (cv != NULL)
27 ▶signal (cv);
28 ▶rel_lock (q.l);
29 return t;
30 }

Figure 10: Pseudocode of the remove method for FIFOBBQ

Starvation-free condition variable A condition vari-
able (CV) is a synchronization object that enables a thread
to wait for a change to be made to a shared state (protected
by a lock). Standard Mesa-style CVs [35] do not guar-
antee starvation-freedom: a thread waiting on a CV may
not be signaled within a bounded number of execution
steps. We have implemented a starvation-free version of
CV using condition queues as shown by Anderson and
Dahlin [7, Fig. 5.14]. However, we have found a bug in
the FIFOBBQ implementation shown in that textbook: in
some cases, their system can get stuck by allowing all the
signaling and waiting threads to be asleep simultaneously,
or the system can arrive at a dead end where the threads
on the remove queue (rmvQ) can no longer be woken
up. We fixed this issue by postponing the removal of the
CV of a waiting thread from the queue, until the waiting
thread finishes its work (cf. Fig. 10); the remover is now
responsible for removing itself from the rmvQ (line 24)
and waking up the next element in the rmvQ (line 27).
Here, peekQ reads the head item of a queue; and my cv
returns the CV assigned to the current running thread.

5 Evaluation

Proof effort and the cost of change We take the certi-
fied sequential mCertiKOS kernel [23], and extend the ker-
nel with various features such as dynamic memory man-
agement, container support for controlling resource con-
sumption, Intel hardware virtualization support, shared
memory IPC, single-copy synchronous IPC, ticket and
MCS locks, new schedulers, condition variables, etc.
Some of these features were initially added in the se-
quential setting but later ported to the concurrent setting.
During this development process, many of our certified
layers (including their implementation, their functional
specification, and the layer refinement proofs) have un-
dergone many rounds of modifications and extensions.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 663

CertiKOS makes such evolution process much easier. For
example, all certified layers in the sequential kernel can
be directly ported to the concurrent setting if they do not
use any synchronization. We have also merged the work
by Chen et al. [14] on the interruptible kernel with device
drivers using our multicore model.

Overall, our certified mC2 kernel consists of 6500 lines
of C and x86 assembly. We have also developed a general
linking theorem for composing multiple threads running
on the same CPU, and another theorem for combining
programs running on different CPUs. Our team completed
the verification of the new concurrency framework and
features in about 2 person years.

Regarding specification, there are 943 lines of code
used to specify the lowest layer axiomatizing the hard-
ware machine model, and 450 lines of code for the speci-
fication of the abstract system call interfaces. These are in
our trusted computing base. We keep these specifications
small to limit the room for errors and ease the review
process. Outside the trusted computing base, there are
5249 lines of additional specifications for the various ker-
nel functions, and about 40K lines of code used to define
auxiliary definitions, lemmas, theorems, and invariants.
Additionally, there are 50K lines of Coq proof scripts for
proving the newly-added concurrency features. At least
one third of these auxiliary definitions and proof scripts
are redundant and semi-automatically generated, which
makes our proof a little verbose. For example, many in-
variant proofs get duplicated across the layers whenever
there is a minor change to the entire set of invariants. We
are currently working on a new layer calculus to minimize
redundant definitions and proofs.

Bugs found Other than the FIFOBBQ bug, we have
also found a few other bugs during verification. Our
initial ticket-lock implementation contains a particularly
subtle bug: the spinning loop body (line 10 in Fig. 7) was
implemented as while(▶L[i].now<t){}. This passed all
our tests, but during the verification, we found that it did
not satisfy the atomic specification since the ticket field
might overflow. For example, if L[i].ticket is (232−1),
acq lock will cause an overflow (line 9 in Fig. 7) and
the returned ticket t equals 0. In this case, L[i].now is
not less than t and acq lock returns immediately, which
violates the order implied by the ticket. We fixed this bug
by changing the loop body to “while(▶L[i].now!=t){}”;
we completed the proof by showing that the maximum
number of concurrent threads is far below 232.

Performance evaluation Although the performance is
not the main emphasis of this paper, we have run a number
of micro and macro benchmarks to measure the speedup
and overhead of mC2 and to compare mC2 to existing sys-
tems such as KVM and seL4. All experiments have been
performed on an Intel Core i7-2600S (2.8GHz, 4 cores)

0%

20%

40%

60%

80%

100%

0

300

600

900

1200

1 2 3 4

ac
tu

al
 e

ffi
ci

en
cy

-b
ar

 g
ra

ph

la
te

nc
y

(c
yc

le
s)

-l

in
e

gr
ap

h

of cores
MCS lock ticket lock MCS lock ticket lock

Figure 11: The comparison between actual efficiency of ticket
lock and MCS lock implementations in mC2

with 8 MB L3 cache, 16 GB memory, and a 120 GB Intel
520 SSD. Since the power control code has not been veri-
fied, we disabled the turbo boost and power management
features of the hardware during experiments.

Concurrency overhead The run-time overhead intro-
duced by concurrency in mC2 mainly comes from the
latency of spinlocks and the contention of the shared data.

The mC2 kernel provides two kinds of spinlocks: ticket
lock and MCS lock. They have the same interface and
thus are interchangeable. In order to measure their perfor-
mance, we put an empty critical section (payload) under
the protection of a single lock. The latency is measured
by taking a sample of 10,000 consecutive lock acquires
and releases (transactions) on each round.

Figure 11 shows the results of our latency measure-
ment. In the single core case, ticket locks impose 34
cycles of overhead, while MCS locks impose 74 cycles
(line chart). As the number of cores grows, the latency
increases rapidly. However, note that all transactions are
protected by the same lock. Thus, it is expected that the
slowdown should be proportional to the number of cores.
In order to show the actual efficiency of the lock imple-
mentations, we normalize the latency against the baseline
(single core) multiplied by the number of cores (n∗t1

tn
). As

can be seen from the bar chart, efficiency remains about
the same for MCS lock, but decreases for ticket lock.

Now that we have compared MCS lock with ticket lock,
we present the remaining evaluations in this section using
only the ticket lock implementation of mC2.

To reduce contention, all shared objects in mC2 are
carefully designed and pre-allocated with a fine-grained
lock. We design a benchmark with server/client pairs
to evaluate the speedup of the system as more cores are
introduced. We run a pair of server/client processes on
each core, and we measure the total throughput (i.e., the
number of transactions that servers make in each millisec-
ond) across all available cores. A server’s transaction
consists of first performing an IPC receive from a channel
i, then executing a payload (certain number of ‘nop’ in-
structions), and finally sending a message to channel i+1.
Correspondingly, a client executes a constant payload of
500 cycles, sends an IPC message to channel i, and then

664 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

456

418

393

343

458

425

395

345 1.0x
1.3x
1.6x
1.9x
2.2x
2.5x
2.8x

340
360
380
400
420
440
460

0 500 1000 2000 Sp
ee

du
p

of
 th

ro
ug

hp
ut

-b
ar

 g
ra

ph

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/m

s)
-l

in
e

gr
ap

h

payload (cycles)

2 cores (mC2_bl) 3 cores (mC2_bl)
2 cores (mC2) 3 cores (mC2)
1 core (baseline of mC2_bl) 1 core (baseline of mC2)

Figure 12: Speedup of throughput of mC2 vs. mC2-bl in a
client/server benchmark under various server payloads (0-2,000)

receives its server’s message through channel i+1. When
the client has to wait for a reply from the server, the con-
trol is switched to a special system process which then
immediately yields back to the server process.

Figure 12 shows this server/client benchmark, com-
paring mC2 against a big-kernel-lock version of mC2
(mC2-bl). We insert a pair of lock acquire and release at
the top-most layer by hand, and replace all fine-grained
locks with an empty function. This does not introduce
bias because the speedup is normalized against its own
baseline (single core throughput) for each kernel version
separately. From the figure, we can see that the speedup
rate for big-kernel-lock is about 1.45x ∼ 1.66x with 2
cores and 1.64x ∼ 2.07x with 3 cores. On the other hand,
the fine-grained locks of mC2 yield better speedup as the
number of cores increases (roughly 1.77x ∼ 1.84x and
2.62x ∼ 2.71x with 2 and 3 cores, respectively). Note
that the server/client pairs are distributed into different
CPUs, and there is no cross core communication; there-
fore, one might expect perfect scaling as the number of
cores increases. We did not quite achieve this because
each core must execute some system processes which run
at constant rates and consume CPU resources, and we did
not align kernel data structures against cache-line size.

IPC Performance We measure the latency of IPC
send/recv in mC2 against various message sizes, and com-
pare the result with seL4’s IPC implementation.

A comparison of the performance of seL4 and mC2 is
not straightforward since the verified mC2 kernel runs on
a multicore x86 platform, while the verified seL4 kernel
runs on ARMv6 and ARMv7 hardware and only sup-
ports single-core. Thus, we use an unverified, single-
core version of seL4 for comparison. Moreover, the
synchronized IPC API in seL4 (Call/ReplyWait) has
a different semantics from mC2’s send/recv: it uses a
round-trip message passing protocol (with a one-off re-
ply channel created on the fly) while trapping into the
kernel twice, and it does not use any standard sleep
or wakeup procedures. To have a meaningful compar-
ison with respect to the efficiency of implementing sys-

Uncompress	LinuxCompile	LinuxApache	HTTPerfAvrora Batik Eclipse Fop H2
baremetial 9.755 6310 3077 40123 2007 16973
certikos 14.334 8380 3278 41930 2102 19381
kvm 13.252 8684 3707 147769 2188 17841
mC2 147% 108% 109.70% 133% 107% 105% 105% 114%
kvm 136% 109% 110.70% 138% 120% 368% 109% 105%

90%

100%

110%

120%

130%

140%

150% mC2

kvm

368%

DaCaPo Benchmark Set

Figure 13: Normalized performance for macro benchmarks
running over Linux on KVM vs. Linux on mC2; the baseline is
Linux on bare metal; a smaller ratio is better

tem calls, we compare (send + recv)× 2 of mC2 with
(Call+ReplyWait)+Null×2 of seL4, where Null is the
latency of a null system call in seL4.

We measure seL4’s performance using seL4’s IPC
benchmark sel4bench-manifest [3] with processes in dif-
ferent address spaces and with identical scheduler prior-
ities, both in slowpath and fastpath configurations. We
consulted the seL4 team [27] and used 158 cycles as the
cost of each null system call (Null) in seL4. To measure
mC2’s performance, we simply replace seL4’s Call and
ReplyWait system calls with mC2’s synchronous send and
receive calls. We found that, when the buffer size is zero,
mC2 takes about 3800 cycles to perform a round trip
IPC, while seL4’s fastpath IPC takes roughly 1200 cycles,
and seL4’s slowpath IPC takes 1800 cycles. When the
message size is larger than 2 words, the fastpath IPC of
seL4 falls back to the slowpath; in the 10-words IPC case,
mC2’s round trip IPC takes 3820 cycles, while seL4 takes
1830 cycles. Note that seL4 follows the microkernel de-
sign philosophy, and thus its IPC performance is critical.
IPC implementations in seL4 are highly optimized and
heavily tailored to specific hardware platforms.

Hypervisor Performance To evaluate mC2 as a hy-
pervisor, we measured the performance of some macro
benchmarks on Ubuntu 12.04.2 LTS running as a guest.
We ran the benchmarks on Linux as guest in both KVM
and mC2, as well as on the bare metal. The guest Ubuntu
is installed on an internal SSD drive. KVM and mC2 are
installed on a USB stick. We use the standard 4KB pages
in every setting — huge pages are not used.

Figure 13 contains a compilation of standard macro
benchmarks: unpacking of the Linux 4.0-rc4 kernel, com-
pilation of the Linux 4.0-rc4 kernel, Apache HTTPerf [47]
(running on loopback), and DaCaPo Benchmark 9.12 [11].
We normalize the running times of the benchmarks using
the bare metal performance as a baseline (100%). The
overhead of mC2 is moderate and comparable to KVM.
In some cases, mC2 performs better than KVM; we sus-
pect this is because KVM has a Linux host and thus has a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 665

larger cache footprint. For benchmarks with a large num-
ber of file operations, such as Uncompress Linux source
and Tomcat, mC2 performs worse. This is because mC2
expose the raw disk interface to the guest via VirtIO [52]
(instead of doing the pass-through), and its disk driver
does not provide good buffering support.

6 Related Work

Dijkstra [18, 19] proposed to “realize” a complex pro-
gram by decomposing it into a hierarchy of linearly or-
dered abstract machines. Based on this idea, the PSOS
team at SRI [48] developed the Hierarchical Develop-
ment Methodology (HDM) and applied it to design and
specify an OS using 20 hierarchically organized modules.
HDM was later also used for the KSOS system [50]. Gu
et al. [23] developed new languages and tools for build-
ing certified abstraction layers with deep specifications,
and showed how to apply the layered methodology to
construct fully certified (sequential) OS kernels in Coq.

Costanzo et al. [16] showed how to prove sophisticated
global properties (e.g., information-flow security) over
a deep specification of a certified OS kernel and then
transfer these properties from the specification level to
its correct assembly-level implementation. Chen et al.
[14] extended the layer methodology to build certified
kernels and device drivers running on multiple logical
CPUs. They treat the driver stack for each device as
if it were running on a logical CPU dedicated to that
device. Logical CPUs do not share any memory, and are
all eventually mapped onto a single physical CPU. None
of these systems, however, can support shared-memory
concurrency with fine-grained locking.

The seL4 team [33, 34] was the first to verify the
functional correctness and security properties of a high-
performance L4-family microkernel. The seL4 micro-
kernel, however, does not support multicore concurrency
with fine-grained locking. Peters et al. [51] and von Tessin
[55] argued that for an seL4-like microkernel, concurrent
data accesses across multiple CPUs can be reduced to
a minimum, so a single big kernel lock (BKL) might be
good enough for achieving good performance on mul-
ticore machines. von Tessin [55] further showed how
to convert the single-core seL4 proofs into proofs for a
BKL-based clustered multikernel.

The Verisoft team [49, 36, 4] applied the VCC frame-
work [15] to formally verify Hyper-V, which is a widely
deployed multiprocessor hypervisor by Microsoft consist-
ing of 100 kLOC of concurrent C code and 5 kLOC of as-
sembly. However, only 20% of the code is verified [15]; it
is also only verified for function contracts and type invari-
ants, not the full functional correctness property. There is
a large body of other work [10, 58, 25, 13, 26, 56, 5, 54]
showing how to build verified OS kernels, hypervisors,

file systems, device drivers, and distributed systems, but
they do not address the issues on concurrency.

Xu et al. [57] developed a new verification framework
by combining rely-guarantee-based simulation [41] with
Feng et al.’s program logic for reasoning about inter-
rupts [21]. They have successfully verified key modules
in the µC/OS-II kernel [1]. Their work supports preemp-
tion but only on a single-core machine. They have not
verified any assembly code nor connected their verified C-
like source programs to any certified compiler so there is
no end-to-end theorem about the entire kernel. They have
not proved any progress properties so even their verified
kernel modules or interrupt handlers could still diverge.

7 Conclusion

We have presented a novel extensible architecture for
building certified concurrent OS kernels that have not only
an efficient assembly implementation but also machine-
checkable contextual correctness proofs. OS kernels de-
veloped using our layered methodology also come with
a clean, rigorous, and layered specification of all kernel
components. We show that building certified concurrent
kernels is not only feasible but also quite practical. Our
layered approach to certified concurrent kernels replaces
the hardware-enforced “red line” with a large number of
abstraction layers enforced via formal specification and
proofs. We believe this will open up a whole new di-
mension of research efforts toward building truly reliable,
secure, and extensible system software.

Acknowledgments

We would like to acknowledge the contribution of many
former and current team members on various CertiKOS-
related projects at Yale, especially Jérémie Koenig, Tahina
Ramananandro, Shu-Chun Weng, Liang Gu, Mengqi Liu,
Quentin Carbonneaux, Jan Hoffmann, Hernán Vanzetto,
Bryan Ford, Haozhong Zhang, Yu Guo, and Joshua Lock-
erman. We also want to thank our shepherd Gernot
Heiser and anonymous referees for helpful feedbacks
that improved this paper significantly. This research is
based on work supported in part by NSF grants 1065451,
1521523, and 1319671 and DARPA grants FA8750-12-2-
0293, FA8750-16-2-0274, and FA8750-15-C-0082. Hao
Chen’s work is also supported in part by China Schol-
arship Council. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

666 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] The real-time kernel: µC/OS-II. http://micrium.
com/rtos/ucosii, 1999 – 2012.

[2] The Coq proof assistant. http://coq.inria.fr,
1999 – 2016.

[3] The seL4 benchmark. https://github.com/
smaccm/sel4bench-manifest, 2015.

[4] E. Alkassar, M. A. Hillebrand, W. J. Paul, and
E. Petrova. Automated verification of a small hy-
pervisor. In Proc. 3rd International Conference
on Verified Software: Theories, Tools, Experiments
(VSTTE), pages 40–54, 2010.

[5] S. Amani, A. Hixon, Z. Chen, C. Rizkallah,
P. Chubb, L. O’Connor, J. Beeren, Y. Nagashima,
J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray,
G. Klein, and G. Heiser. CoGENT: Verifying high-
assurance file system implementations. In Proc. 21st
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 175–188, 2016.

[6] T. Anderson. Private communication, Apr. 2016.

[7] T. Anderson and M. Dahlin. Operating Systems
Principles and Practice. Recursive Books, 2011.

[8] A. Belay, A. Bittau, A. Mashtizadeh, D. Mazières,
and C. Kozyrakis. Dune: Safe user-level access to
privileged CPU features. In Proc. 10th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 335–348, 2012.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. J. Eggers. Extensibility, safety and performance
in the SPIN operating system. In Proc. 15th ACM
Symposium on Operating System Principles (SOSP),
pages 267–284, 1995.

[10] W. R. Bevier. Kit: A study in operating system verifi-
cation. IEEE Transactions on Software Engineering,
15(11):1382–1396, 1989.

[11] S. M. Blackburn, R. Garner, C. Hoffman, A. M.
Khan, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and anal-
ysis. In Proc. 21st ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA), pages 169–190. ACM
Press, Oct. 2006.

[12] Q. Carbonneaux, J. Hoffmann, T. Ramananandro,
and Z. Shao. End-to-end verification of stack-space
bounds for C programs. In Proc. 2014 ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 270–281,
2014.

[13] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using Crash Hoare
logic for certifying the FSCQ file system. In Proc.
25th ACM Symposium on Operating System Princi-
ples (SOSP), pages 18–37, 2015.

[14] H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu.
Toward compositional verification of interruptible
OS kernels and device drivers. In Proc. 2016 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 431–447,
2016.

[15] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinen-
bach, M. Moskal, T. Santen, W. Schulte, and S. To-
bies. VCC: A practical system for verifying concur-
rent C. In Proc. 22nd International Conference on
Theorem Proving in Higher Order Logics (TPHOLs),
pages 23–42, 2009.

[16] D. Costanzo, Z. Shao, and R. Gu. End-to-end ver-
ification of information-flow security for C and as-
sembly programs. In Proc. 2016 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 648–664, 2016.

[17] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social
processes and proofs of theorems and programs. In
Proc. 4th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 206–
214, Jan. 1977.

[18] E. W. Dijkstra. The structure of the “THE”-
multiprogramming system. Communications of the
ACM, pages 341–346, May 1968.

[19] E. W. Dijkstra. Notes on structured programming.
In O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
editors, Structured programming, pages 1–82. Aca-
demic Press, 1972. ISBN 0-12-200550-3.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proc.
15th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 251–266, Dec. 1995.

[21] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying
low-level programs with hardware interrupts and
preemptive threads. In Proc. 2008 ACM SIGPLAN

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 667

http://micrium.com/rtos/ucosii
http://micrium.com/rtos/ucosii
http://coq.inria.fr
https://github.com/smaccm/sel4bench-manifest
https://github.com/smaccm/sel4bench-manifest

Conference on Programming Language Design and
Implementation (PLDI), pages 170–182, 2008.

[22] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and
H. Yang. Abstraction for concurrent objects. Theo-
retical Computer Science, 411(51-52):4379–4398,
2010.

[23] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu,
S.-C. Weng, H. Zhang, and Y. Guo. Deep specifi-
cations and certified abstraction layers. In Proc.
42nd ACM Symposium on Principles of Program-
ming Languages (POPL), pages 595–608, 2015.

[24] R. Gu, Z. Shao, X. Wu, J. Kim, J. Koenig, T. Ra-
mananandro, V. Sjoberg, H. Chen, and D. Costanzo.
Language and compiler support for building certi-
fied concurrent abstraction layers. Technical Report
YALEU/DCS/TR-1530, Dept. of Computer Science,
Yale University, New Haven, CT, October 2016.

[25] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps:
End-to-end security via automated full-system veri-
fication. In Proc. 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 165–181, 2014.

[26] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. T. V. Setty, and B. Zill.
IronFleet: proving practical distributed systems cor-
rect. In Proc. 25th ACM Symposium on Operating
System Principles (SOSP), pages 1–17, 2015.

[27] G. Heiser. Private communication, September 2016.

[28] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, Apr. 2008.

[29] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, 1990.

[30] G. C. Hunt and J. R. Larus. Singularity: rethinking
the software stack. Operating Systems Review, 41
(2):37–49, 2007.

[31] M. F. Kaashoek. Parallel computing and the OS. In
Proc. SOSP History Day, pages 10:1–10:35, 2015.

[32] C. Klein, J. Clements, C. Dimoulas, C. Eastlund,
M. Felleisen, M. Flatt, J. McCarthy, J. Rafkind,
S. Tobin-stadt, and R. B. Findler. Run your research:
on the effectiveness of lightweight mechanization.
In Proc. 39th ACM Symposium on Principles of
Programming Languages (POPL), pages 285–296,
2012.

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In Proc. 22nd ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 207–220.
ACM, 2009.

[34] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Compre-
hensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1), Feb.
2014.

[35] B. W. Lampson. Experience with processes and
monitors in Mesa. Communications of the ACM, 23
(2), Feb. 1980.

[36] D. Leinenbach and T. Santen. Verifying the Mi-
crosoft Hyper-V hypervisor with VCC. In Proc. 2nd
World Congress on Formal Methods, pages 806–809,
2009.

[37] X. Leroy. The CompCert verified compiler. http:
//compcert.inria.fr/, 2005–2016.

[38] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[39] W. Li, L. Gerard, and N. Shankar. Design and
verification of multi-rate distributed systems. In
Proc. 2015 ACM/IEEE International Conference on
Formal Methods and Models for Codesign (MEM-
OCODE), pages 20–29, 2015.

[40] H. Liang and X. Feng. A program logic for concur-
rent objects under fair scheduling. In Proc. 43rd
ACM Symposium on Principles of Programming
Languages (POPL), pages 385–399, 2016.

[41] H. Liang, X. Feng, and M. Fu. A rely-guarantee-
based simulation for verifying concurrent program
transformations. In Proc. 39th ACM Symposium
on Principles of Programming Languages (POPL),
pages 455–468, 2012.

[42] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Char-
acterizing progress properties of concurrent objects
via contextual refinements. In Proc. 24th Interna-
tional Conference on Concurrency Theory (CON-
CUR), pages 227–241. Springer-Verlag, 2013.

[43] J. Liedtke. On micro-kernel construction. In Proc.
15th ACM Symposium on Operating System Princi-
ples (SOSP), pages 237–250, 1995.

[44] N. A. Lynch and F. W. Vaandrager. Forward and
backward simulations: I. Untimed systems. Infor-
mation and Computation, 121(2):214–233, 1995.

668 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://compcert.inria.fr/
http://compcert.inria.fr/

[45] A. Madhavapeddy, R. Mortier, C. Rostos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: library operating sys-
tems for the cloud. In Proc. 18th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
461–472, 2013.

[46] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory mul-
tiprocessors. ACM Transactions on Computer Sys-
tems, 9(1):21–65, Feb. 1991.

[47] D. Mosberger and T. Jin. Httperf - a tool for measur-
ing web server performance. SIGMETRICS Perfor-
mance Evaluation Review, 26(3):31–37, Dec. 1998.
ISSN 0163-5999.

[48] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N.
Levitt, and L. Robinson. A provably secure operat-
ing system: its system, its applications, and proofs.
Technical Report CSL-116, SRI Computer Science
Laboratory, May 1980.

[49] W. Paul, M. Broy, and T. In der Rieden. The Verisoft
XT Project. http://www.verisoftxt.de, 2010.

[50] T. Perrine, J. Codd, and B. Hardy. An overview
of the kernalized secure operating system (KSOS).
In Proc. 7th DoD/NBS Computer Security Initiative
Conference, pages 146–160, Sep 1984.

[51] S. Peters, A. Danis, K. Elphinstone, and G. Heiser.
For a microkernel, a big lock is fine. In APSys ’15
Asia Pacific Workshop on Systems, Tokyo, Japan,
2015.

[52] R. Russell. VirtIO: Towards a de-facto standard for
virtual I/O devices. Operating System Review, 42
(5):95–103, July 2008.

[53] Z. Shao. Certified software. Communications of the
ACM, 53(12):56–66, December 2010.

[54] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and
A. Datta. überspark: Enforcing verifiable object
abstractions for automated compositional security
analysis of a hypervisor. In Proc. 25th USENIX
Security Symposium, pages 87–104, 2016.

[55] M. von Tessin. The Clustered Multikernel: An
Approach to Formal Verification of Multiprocessor
Operating-System Kernels. PhD thesis, School of
Computer Science and Engineering, The University
of New South Wales, March 2013.

[56] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. E. Anderson. Verdi: a
framework for implementing and formally verifying
distributed systems. In Proc. 2015 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 357–368, 2015.

[57] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and
Z. Li. A practical verification framework for pre-
emptive OS kernels. In Proc. 28th International
Conference on Computer-Aided Verification (CAV),
Part II, pages 59–79, 2016.

[58] J. Yang and C. Hawblitzel. Safe to the last instruc-
tion: automated verification of a type-safe operating
system. In Proc. 2010 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 99–110, 2010.

[59] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proc. 7th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 263–278, 2006.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 669

http://www.verisoftxt.de

EbbRT: A Framework for Building Per-Application Library
Operating Systems

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, Jonathan Appavoo
Boston University

Abstract

General purpose operating systems sacrifice per-
application performance in order to preserve general-
ity. On the other hand, substantial effort is required to
customize or construct an operating system to meet the
needs of an application. This paper describes the design
and implementation of the Elastic Building Block Run-
time (EbbRT), a framework for building per-application
library operating systems. EbbRT reduces the effort re-
quired to construct and maintain library operating sys-
tems without hindering the degree of specialization re-
quired for high performance. We combine several tech-
niques in order to achieve this, including a distributed
OS architecture, a low-overhead component model, a
lightweight event-driven runtime, and many language-
level primitives. EbbRT is able to simultaneously enable
performance specialization, support for a broad range of
applications, and ease the burden of systems develop-
ment.

An EbbRT prototype demonstrates the degree of cus-
tomization made possible by our framework approach.
In an evaluation of memcached, EbbRT and is able to at-
tain 2.08× higher throughput than Linux. The node.js
runtime, ported to EbbRT, demonstrates the broad ap-
plicability and ease of development enabled by our ap-
proach.

1 Introduction

Performance is a key concern for modern cloud applica-
tions. Even relatively small performance gains can re-
sult in significant cost savings at scale. The end of Den-
nard scaling and increasingly high-speed I/O devices has
shifted the emphasis of performance to the CPU and, in
turn, the software stack on which an application is de-
ployed.

Existing general purpose operating systems sacrifice
per-application performance in favor of generality. In re-

sponse, there has been a renewed interest in library op-
erating systems [28, 38], hardware virtualization [5, 44],
and kernel bypass techniques [25, 48]. Common to these
approaches is the desire to enable applications to inter-
act with devices with minimal operating system involve-
ment. This allows developers to customize the entire
software stack to meet the needs of their application.

The problem with this approach is that it still requires
significant engineering effort to implement the required
system functionality. The consequence being that past
systems have either targeted a narrow class of applica-
tions (e.g. packet processing) or, in order to be broadly
applicable, constructed general purpose software stacks.

We believe that general purpose software stacks are
subject to the same trade-off between performance and
generality as existing commodity operating systems. In
order to achieve high performance for a broad set of
applications, we must bridge the gap between general
purpose software, on which application development is
easy, and the performance advantages obtained using
customized, per-application software stacks where the
development burden is high.

Our work addresses this gap with the Elastic Build-
ing Block Runtime (EbbRT), a framework for construct-
ing per-application library operating systems. EbbRT
reduces the effort required to construct and maintain li-
brary operating systems without restricting the degree of
specialization required for high performance. We com-
bine several techniques in order to achieve this.

1. EbbRT is comprised of a set of components, called
Elastic Building Blocks (Ebbs), that developers can
extend, replace, or discard in order to construct
and deploy a particular application. This enables
a greater degree of customization than a general
purpose system and promotes the reuse of non-
performance-critical components.

2. EbbRT uses a lightweight execution environment
that allows application logic to directly interact with

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 671

hardware resources, such as memory and devices.

3. EbbRT applications are distributed across both spe-
cialized and general purpose operating systems.
This allows functionality to be offloaded, which re-
duces the engineering effort required to port appli-
cations.

In this paper we describe the design and implementa-
tion of the EbbRT framework, along with several of its
system components (e.g., a scalable network stack and
a high-performance memory allocator). We demonstrate
that library operating systems constructed using EbbRT
outperform Linux on a series of compute and network
intensive workloads. For example, a memcached port to
EbbRT, run on a commodity hypervisor, is able to attain
2.08× greater throughput than memcached run on Linux.
Additionally, we show that, with modest developer ef-
fort, EbbRT is able to support large, complex applica-
tions. In particular, node.js, a managed runtime environ-
ment, was ported in two weeks by a single developer.

The remainder of the paper is structured as follows:
section 2 outlines the objectives of EbbRT, section 3
presents the high-level architecture and design of our
framework, section 4 describes the implementation, sec-
tion 5 presents the evaluation of EbbRT, section 6 dis-
cusses related work, and section 7 concludes.

2 Objectives

The following three objectives guide our design and im-
plementation:

Performance Specialization: To achieve high perfor-
mance we seek to allow applications to efficiently spe-
cialize the system at every level. To facilitate this,
we provide an event-driven execution environment with
minimal abstraction over the hardware; EbbRT applica-
tions can provide event handlers to directly serve hard-
ware interrupts. Also, our Ebb component model has low
enough overhead to be used throughout performance-
sensitive paths, while also enabling compiler optimiza-
tions, such as aggressive inlining.

Broad Applicability: To ensure high utility, a frame-
work should support a broad set of applications. EbbRT
is designed and implemented to support the rich set of ex-
isting libraries and complex managed runtimes on which
applications depend. We adopt a heterogeneous dis-
tributed architecture, called the MultiLibOS [49] model,
wherein EbbRT library operating systems run alongside
general purpose operating systems and offload function-
ality transparently. EbbRT library operating systems can
be integrated with a process of the general purpose OS.

Ease of Development: We strive to make the devel-
opment of application-specific systems easy. EbbRT ex-
ploits modern language techniques to simplify the task of
writing new system software, while the Ebb model pro-
vides an abstraction to encapsulate existing system com-
ponents. The barrier to porting existing applications is
lowered through the use of function offloading between
an EbbRT library OS and a general purpose OS.

Attaining all three of these objectives simultaneously
is a challenging but critical step towards bridging the gap
between general purpose and highly specialized software
stacks.

3 System Design

This section describes the high-level design of EbbRT. In
particular the three elements of the design discussed are:
1. a heterogeneous distributed structure, 2. a modular
system structure, and 3. a non-preemptive event-driven
execution environment.

ramcores nics

ramcores nicsCommodity
OS

VM0 VM1

ramcores nics

VM2

Frontend OS Process linked to Hosted library

Backend privileged protection-domain
linked to Native library OS

Hosted Native Native

Ebb Instance per-VM, per-core Representatives

Figure 1: High Level EbbRT architecture

3.1 Heterogeneous Distributed Structure

Our design is motivated in-part by the common deploy-
ment strategies of cloud applications. Infrastructure as
a Service enables a single application to be deployed
across multiple machines within an isolated network. In
this context, it is not necessary to run general purpose
operating systems on all the machines of a deployment.
Rather, an application can be deployed across a heteroge-
neous mix of specialized library OSs and general purpose
operating systems as illustrated in Figure 1.

To facilitate this deployment model, EbbRT is imple-
mented as both a lightweight bootable runtime and a
user-level library that can be linked into a process of a
general purpose OS [49]. We refer to the bootable library

672 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OS as the native runtime and the user-level library as the
hosted runtime.

The native runtime allows application software to be
written directly to hardware interfaces uninhibited by
legacy interfaces and protection mechanisms of a general
purpose operating system. The native runtime sets up
a single address space, basic system functionality (e.g.
timers, networking, memory allocation) and invokes an
application entry point, all while running at the highest
privilege level. The EbbRT design depends on applica-
tion isolation at the network layer, either through switch
programming or virtualization, making it amenable to
both virtualized and bare-metal environments.

The hosted user-space library allows EbbRT applica-
tions to integrate with legacy software. This frees the
native library OSs from the burden of providing compat-
ibility with legacy interfaces. Rather, functionality can
be offloaded via communication with the hosted environ-
ment.

A common deployment of a EbbRT application con-
sists of a hosted process and one or more native runtime
instances communicating across a local network. A user
is able to interact with the EbbRT application through the
hosted runtime, as they would any other process of the
general purpose OS, while the native runtime supports
the performance-critical portion of the application.

3.2 Modular System Structure

To provide a high degree of customization, EbbRT en-
ables application developers to modify or extend all lev-
els of the software stack. To support this, EbbRT appli-
cations are almost entirely comprised of objects we call
Elastic Building Blocks (Ebbs). As with objects in many
programming languages, Ebbs encapsulate implementa-
tion details behind a well-defined interface.

Ebbs are distributed, multi-core fragmented objects [9,
39, 51], where the namespace of Ebbs is shared across
both the native and hosted runtimes. Figure 1 illustrates
an Ebb spanning both hosted and native runtimes of an
application. An EbbRT application typically consists of
multiple Ebb instances. The framework is composed of
base Ebb types that a developer can use to construct an
EbbRT application.

When an Ebb is invoked, a local representative han-
dles the call. Representatives may communicate with
each other to satisfy the invocation. For example, an
object providing file access might have representatives
on a native instance simply function-ship requests to a
hosted representative which translates these requests into
requests on the local file system. By encapsulating the
distributed nature of the object, optimizations such as
RDMA, caching, using local storage, etc. would all be
hidden from clients of the filesystem Ebb.

Ebb reuse is critical to easing development effort. Ex-
ploiting modularity promotes reuse and evolution of the
EbbRT framework. Developers can build upon the Ebb
structure to provide additional libraries of components
that target specific application use cases.

3.3 Execution Model

Execution in EbbRT is non-preemptive and event-driven.
In the native runtime there is one event loop per core
which dispatches both external (e.g. timer completions,
device interrupts) and software generated events to reg-
istered handlers. This model is in contrast to a more stan-
dard threaded environment where preemptable threads
are multiplexed across one or more cores. Our non-
preemptive event-driven execution model provides a low
overhead abstraction over the hardware. This allows our
implementation to directly map application software to
device interrupts, avoiding the typical costs of schedul-
ing decisions or protection domain switches.

EbbRT provides an analogous environment within the
hosted library by providing an event loop using underly-
ing OS functionality such as poll or select. While
the hosted environment cannot achieve the same effi-
ciency as our native runtime, we provide a compati-
ble environment to allow software libraries to be reused
across both runtimes.

Many cloud applications are driven by external re-
quests such as network traffic so the event-driven pro-
gramming environment provides a natural way to struc-
ture the application. Indeed, many cloud applications use
a user-level library (e.g. libevent [46], libuv [34], Boost
ASIO [29]) to provide such an environment.

However, asynchronous, event-driven programming
may not be a good fit for all applications. To this end, we
provide a simple cooperative threading model on top of
events. This allows for blocking semantics and a concur-
rency model similar to the Go programming language.
We discuss support for long running events further in
Section 4.2.

The non-preemptive event execution, along with sup-
port for cooperative threading, allows the native runtime
to be lightweight yet provides sufficient flexibility for a
wide range of applications. Such qualities are critical in
enabling performance specialization without sacrificing
applicability.

4 Implementation

In this section we provide an overview of the system soft-
ware and then describe details of the implementation.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 673

Primitives External Libraries

Fu
tu

re
s

L
am

bd
as

IO
B

uf
s

st
d

c+
+

B
oo

st

In
te

l T
B

B

ca
pn

pr
ot

o

Description

PageAllocator 3 3 3 Power of two physical page frame allocator
VMemAllocator 3 Allocates virtual address space
SlabAllocator 3 3 Allocates fixed sized objects
GeneralPurposeAllocator 3 General purpose memory allocatorM

em
or

y

EbbAllocator 3 3 Allocates EbbIds
LocalIdMap 3 3 3 Local data store for Ebb data and fault resolution
GlobalIdMap 3 3 3 3 Application-wide data store for Ebb data

EventManager 3 3 3 3 Creates events and manages hardware interrupts

O
bj

ec
ts

Timer 3 3 Delay based scheduling of eventsE
v e

nt

NetworkManager 3 3 3 3 3 Implements TCP/IP stack
SharedPoolAllocator 3 3 Allocates network ports
NodeAllocator 3 3 3 3 Allocates, configures, and releases IAAS resources
Messenger 3 3 3 Cross node Ebb to Ebb communication
VirtioNet 3 3 VirtIO network device driver

I/
O

Table 1: The core Ebbs that make up EbbRT. A gray row indicates that the Ebb has a multi-core implementation (one
representative per core) while the others use a single shared representative.

4.1 Software Structure Overview

EbbRT is comprised of an x86_64 library OS and
toolchain as well as a Linux userspace library. Both
runtimes are written predominately in C++14 totaling
14,577 lines of new code [59]. The native library is pack-
aged with a GNU toolchain (gcc, binutils, libstdc++) and
libc (newlib) modified to support a x86_64-ebbrt build
target. Application code compiled with the toolchain will
produce a bootable ELF binary linked with the library
OS. We provide C and C++ standard library implemen-
tations which make it straightforward to use many third
party software libraries as shown in Table 1. The sup-
port and use of standard software libraries to implement
system-level functionality makes it much easier for li-
brary and application developers to understand and mod-
ify system-level Ebbs.

We chose not to strive for complete Linux or POSIX
compatibility. We feel that enforcing compatibility with
existing OS interfaces would be restrictive and, given the
function offloading enabled by our heterogeneous dis-
tributed structure, unnecessary. Rather, we provide min-
imalist interfaces above the hardware, which allows for a
broad set of software to be developed on top.

EbbRT provides the necessary functionality for events
to execute and Ebbs to be constructed and used. This
entails functionality such as memory management, net-

working, timers, and I/O. This functionality is provided
by the core system Ebbs shown in Table 1

4.2 Events

Both the hosted and native environments provide an
event driven execution model. Within the hosted envi-
ronment we use the Boost ASIO library [29] in order to
interface with the system APIs. Within the native envi-
ronment, our event-driven API is implemented directly
on top of the hardware interfaces. Here, we focus our
description on the implementation of events within the
native environment.

When the native environment boots, an event loop per
core is initialized. Drivers can allocate a hardware inter-
rupt from the EventManager and then bind a handler
to that interrupt. When an event completes and the next
hardware interrupt fires, a corresponding exception han-
dler is invoked. Each exception handler execution be-
gins on the top frame of a per-core stack. The exception
handler checks for an event handler bound to the corre-
sponding interrupt and then invokes it. When the event
handler returns, interrupts are enabled and more events
can be processed. Therefore events are non-preemptive
and typically generated by a hardware interrupt.

Applications can invoke synthetic events on any
core in the system. The Spawn method of the

674 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

EventManager receives an event handler, which is
later invoked from the event loop. Events invoked with
Spawn are only executed once. A handler for a reoccur-
ring event can be installed as an IdleHandler.

In order to prevent interrupt starvation, when an event
completes the EventManager, 1. enables then disables
interrupts, handling any pending interrupts, 2. dispatches
a single synthetic event, 3. invokes all IdleHandlers
and then 4. enables interrupts and halts. If any of these
steps result in an event handler being invoked, then the
process starts again at the beginning. This way, hardware
interrupts and synthetic events are given priority over re-
peatedly invoked IdleHandlers.

While our EventManager implementation is sim-
ple, it provides sufficient functionality to achieve inter-
esting dynamic behavior. For example, our network card
driver implements adaptive polling in the following way:
an interrupt is allocated from the EventManager and
the device is programmed to fire that interrupt when
packets are received. The event handler will process
each received packet to completion before returning con-
trol to the event loop. If the interrupt rate exceeds a
configurable threshold, the driver disables the receive
interrupt and installs an IdleHandler to process re-
ceived packets. The EventManager will repeatedly
call the idle handler from within the event loop, effec-
tively polling the device for more data. When the packet
arrival rate drops below a configurable threshold, the
driver re-enables the receive interrupt and disables the
idle handler, returning to interrupt-driven packet process-
ing.

Given our desire to enable reuse of existing software,
we adopt a cooperative threading model which allows
events to explicitly save and restore control state (e.g.,
stack and volatile register state). At the point where
the block would occur, the current event saves its state
and relinquishes control back to the event loop, where
the processing of pending events is resumed. The orig-
inal event state can be restored, and its execution re-
sumed, when the asynchronous work completes. The
save and restore event mechanisms enable explicit coop-
erative scheduling between events, facilitating familiar
blocking semantics. This has allowed us to quickly port
software libraries that require blocking system calls.

A limitation of non-preemptive execution is the diffi-
culty of mapping long-running threads with no I/O to an
event-driven model. If the processor is not yielded pe-
riodically, event starvation can occur. At present we do
not provide a completely satisfactory solution. Building
a preemptive scheduler on top of events would be possi-
ble, though we fear it would fragment the set of Ebbs into
those that depend on non-preemptive execution and those
that don’t. Alternatively, we have discussed dedicat-
ing processors to executing these long-running threads

and therefore avoiding any starvation issues, similar to
IX [5]. Nonetheless, we have not run into this problem
in practice; most cloud applications rely heavily on I/O,
and concern for starvation is reduced as we only support
the execution of a single process.

4.3 Elastic Building Blocks

Nearly all software in EbbRT is written as elastic build-
ing blocks, which encapsulate both the data and function
of a software component. Ebbs hide from clients the dis-
tributed or parallel nature of objects and can be extended
or replaced for customization. An Ebb provides an in-
terface using a standard C++ class definition. Every in-
stance of an Ebb has a system-wide unique EbbId (32
bits in our current implementation). Software invokes the
Ebb by converting the EbbId into an EbbRef which
can be dereferenced to a per-core representative which is
a reference to an instance of the underlying C++ class.
We use C++ templates to implement the EbbRef gener-
ically for all Ebb classes.

Ebbs may be invoked on any machine or core within
the application. Therefore, it is necessary for initializa-
tion of the per-core representatives to happen on-demand
to mitigate initialization overheads for short-lived Ebbs.
An EbbId provides an offset into a virtual memory re-
gion backed with distinct per-core pages which holds a
pointer to the per-core representative (or NULL if it does
not exist). When a function is called on an EbbRef, it
checks the per-core representative pointer — in the com-
mon case where it is non-null, it is dereferenced and the
call is made on the per-core representative. If the pointer
is null, then a type specific fault handler is invoked which
must return a reference to a representative to be called
or throw a language-level exception. Typically, a fault
handler will construct a representative and store it in the
per-core virtual memory region so future invocations will
take the fast-path. Our hosted implementation of Ebb
dereferences uses per-thread hash-tables to store repre-
sentative pointers.

The construction of a representative may require com-
munication with other representatives either within the
machine or on other machines. EbbRT provides core
Ebbs that support distributed data storage and messaging
services. These facilities span and enable communica-
tion between the EbbRT native and hosted instances and
utilize network communication as needed.

Ebb modularity is both flexible and efficient, making
them suitable for high-performance components. Pre-
vious systems providing a partitioned object model ei-
ther used relatively heavy weight invocation across a dis-
tributed system [56], or more efficient techniques con-
strained to a shared memory system [17, 30]. Ebbs are
unique in their ability to accommodate both use cases.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 675

The fast-path cost of an Ebb invocation is one predictable
conditional branch and one unconditional branch more
than a normal C++ object dereference. Additionally,
our use of static dispatch (EbbRef’s are templated by
the representative’s type) enables compiler optimizations
such as function inlining.

We intentionally avoided using interface definition
languages such as COM [60], CORBA [57], or Protocol
Buffers [21]. Our concern was that these often require se-
rialization and deserialization at all interface boundaries,
which would promote much coarser grained objects than
we desire. Our ability to use native C++ interfaces al-
lows Ebbs to pass complex data structures amongst each
other. This also necessitates that all Ebb invocations be
local. Ebb representative communication is encapsulated
and may internally serialize data structures as needed.

GeneralPurposeAllocator

PageAllocator VMemAllocator

Physical Memory

Identity Mapped Virtual Memory User Allocatable Virtual Memory

malloc() free()

Small allocations
served from
identity mapped
memory

Large allocations
reserve virtual
memory and map
physical pages

SlabAllocatorSlabAllocatorSlabAllocator

Figure 2: Memory Management Ebbs

4.4 Memory Management
Memory allocation is a performance critical facet of
many cloud applications, and our focus on short-lived
events puts increased pressure on the memory alloca-
tor to perform well. Here we present our default na-
tive memory allocator and highlight aspects of it which
demonstrate the synergy of the elements in the EbbRT
design. Figure 2 illustrates EbbRT’s memory manage-
ment infrastructure and the virtual and physical address
space relationships.

The EbbRT memory allocation subsystem is similar
to that of the Linux Kernel. The lowest-level allocator
is the PageAllocator, which allocates power of two
sized pages of memory. Our default PageAllocator
implementation uses buddy-allocators, one per NUMA
node. On top of the PageAllocator are the

SlabAllocator Ebbs, which are used to allocate
fixed size objects. Our default SlabAllocator im-
plementation uses per-core and per-NUMA node repre-
sentatives to store object free-lists and partially allocated
pages. This design is based on the Linux Kernel’s SLQB
allocator [12]. The GeneralPurposeAllocator,
invoked via malloc, is implemented using multi-
ple SlabAllocator instances, each responsible
for allocating objects of a different fixed size. To
serve a request, the GeneralPurposeAllocator
invokes the SlabAllocator with the closest
size greater or equal to the requested size. For
requests exceeding the largest SlabAllocator
size, the GeneralPurposeAllocator will al-
locate a virtual memory region mapped in from the
VMemAllocator and backed by pages mapped in
from the PageAllocator.

By defining the memory allocators as Ebbs, we al-
low any one of the components to be replaced or mod-
ified without impacting the others. In addition, be-
cause our implementation uses C++ templates for static
dispatch, the compiler is able to optimize calls across
Ebb interfaces. For example, calls to malloc that
pass a size known at compile time are optimized to di-
rectly invoke the correct SlabAllocator within the
GeneralPurposeAllocator.

A key property of memory allocations in EbbRT is
that most allocations are serviced from identity mapped
physical memory. This applies to all allocations made by
the GeneralPurposeAllocator that do not exceed
the largest SlabAllocator size (virtual mappings are
used for larger allocations). Identity mapped memory al-
lows application software to perform zero-copy I/O with
standard allocations rather than needing to allocate mem-
ory specifically for DMA.

Another benefit of the EbbRT design is that, due to
the lack of preemption, most allocations can be ser-
viced from a per-core cache without any synchroniza-
tion. Avoiding atomic operations is so important that
high performance allocators like TCMalloc [19] and je-
malloc [14] use per-thread caches to do so. These al-
locators then require complicated algorithms to balance
the caching across a potentially dynamic set of threads.
In contrast, the number of cores is typically static and
generally not too large, simplifying EbbRT’s balancing
algorithm.

While a portion of the virtual address space is reserved
to identity map physical memory and some virtual mem-
ory is used to provide per-core regions for Ebb invo-
cation, the vast majority of the virtual address space is
available for application use. Applications can allocate
virtual regions by invoking the VMemAllocator and
passing in a handler to be invoked on faults to that al-
located region. This allows applications to implement

676 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 // Sends out an IPv4 packet over Ethernet
2 Future<void> EthIpv4Send(uint16_t eth_proto, const Ipv4Header& ip_hdr, IOBuf buf) {
3 Ipv4Address local_dest = Route(ip_hdr.dst);
4 Future<EthAddr> future_macaddr = ArpFind(local_dest); /* asynchronous call */
5 return future_macaddr.Then(
6 // continuation is passed in as an argument
7 [buf = move(buf), eth_proto](Future<EthAddr> f) { /* lambda definition */
8 auto& eth_hdr = buf->Get<EthernetHeader>();
9 eth_hdr.dst = f.Get();

10 eth_hdr.src = Address();
11 eth_hdr.type = htons(eth_proto);
12 Send(move(buf));
13 }); /* end of Then() call */
14 }

Figure 3: Network code path to route and send and Ethernet frame.

arbitrary paging policies.
Our memory management demonstrates some of the

advantages provided by EbbRT’s design. First, we use
Ebbs to create per-core representatives for multi-core
scalability and to provide encapsulation to enable the
different allocators to be replaced. Second, the lack of
preemption enables us to use the per-core representa-
tives without synchronization. Third, the library OS de-
sign enables tighter collaboration between system com-
ponents and application components — as exemplified
by the application’s ability to directly manage virtual
memory regions and achieve zero-copy interactions with
device code.

4.5 Lambdas and Futures
One of the core objectives of our design is mitigating
complexity to ease development. Critics of event-driven
programming point out several properties which place in-
creased burden on the developer.

One concern is that event-driven programming tends
to obfuscate the control flow of the application [58].
For example, a call path that requires the completion of
an asynchronous event will often pass along a callback
function to be invoked when the event completes. The
callback is invoked within a context different than that
of the original call path, so it falls on the programmer to
construct continuations, i.e. control mechanisms used
to save and restore state across invocations. C++ has
recently added support for anonymous inline functions
called lambdas. Lambdas can capture local state that can
be referred to when the lambda is invoked. This removes
the burden of manually saving and restoring state, and
makes code easier to follow. We use lambdas in EbbRT
to alleviate the burden of constructing continuations.

Another concern with event-driven programming is
that error handling is much more complicated. The pre-

dominant mechanism for error handling in C++ is ex-
ceptions. When an error is encountered, an exception is
thrown and the stack unwound to the most recent try/-
catch block, which will handle the error. Because event-
driven programming splits one logical flow of control
across multiple stacks, exceptions must be handled at ev-
ery event boundary. This puts the burden on the devel-
oper to catch exceptions at additional points in the code
and either handle them or forward them to an error han-
dling callback.

Our solution to these problems is our implementation
of monadic futures. Futures are a data type for asyn-
chronously produced values, originally developed for use
in the construction of distributed systems [37]. Figure 3
illustrates a code path in the EbbRT network stack that
utilizes lambdas and futures to route and send an Eth-
ernet frame. The ArpFind function (line 4) translates
an IP address to the corresponding MAC address either
through a lookup into the ARP cache or by sending out
an ARP request to be processed asynchronously. In ei-
ther case, ArpFind returns a Future<EthAddr>,
which represents the future result of the ARP transla-
tion. A future cannot be directly operated on. Instead, a
lambda can be applied to it using the Then method (line
5). This lambda is invoked once the future is fulfilled.
When invoked, the lambda receives the fulfilled future as
a parameter and can use the Get method to retrieve its
underlying value (line 9). In the event that the future is
fulfilled before the Then method is invoked (for exam-
ple, ArpFind retrieves the translation directly from the
ARP cache) the lambda is invoked synchronously.

The Thenmethod of a future returns a new future rep-
resenting the value to be returned by the applied func-
tion, hence the term monadic. This allows other soft-
ware components to chain further functions to be invoked
on completion. In this example, the EthIpv4Send
method returns a Future<void> which merely rep-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 677

resents the completion of some action and provides no
data.

Futures also aid in error processing. Each time Get is
invoked, the future may throw an exception representing
a failure to produce the value. If not explicitly handled,
the future returned by Then will hold this exception in-
stead of a value. The only invocation of Then that must
handle the error is the final one, any intermediate excep-
tions will naturally flow to the first function which at-
tempts to catch the exception. This behavior mirrors the
behavior of exceptions in synchronous code. In this ex-
ample, any error in ARP resolution will be propagated to
the future returned by EthIpv4Send and handled by
higher-level code.

C++ has an implementation of futures in the standard
library. Unlike our implementation, it provides no Then
function, necessary for chaining callbacks. Instead users
are expected to block on a future (using Get). Other
languages such as C# and JavaScript provide monadic
futures similar to ours.

As seen in Table 1, futures are used pervasively in
interface definitions for Ebbs, and lambdas are used in
place of more manual continuation construction. Our ex-
perience using lambdas and futures has been positive.
Initially, some members of our group had reservations
about using these unfamiliar primitives as they hide a
fair amount of potentially performance sensitive behav-
ior. As we have gained more experience with these prim-
itives, it has been clear that the behavior they encapsulate
is common to many cases. Futures in particular encap-
sulate sometimes subtle synchronization code around in-
stalling a callback and providing a value (potentially con-
currently). While this code has not been without bugs,
we have more confidence in its correctness based on its
use across EbbRT.

4.6 Network Stack

We originally looked into porting an existing network
stack to EbbRT. However, we eventually implemented
a new network stack for the native environment, provid-
ing IPv4, UDP/TCP, and DHCP functionality in order to
provide an event-driven interface to applications, min-
imize multi-core synchronization, and enable pervasive
zero-copy. The network stack does not provide a stan-
dard BSD socket interface, but rather enables tighter in-
tegration with the application to manage the resources of
a network connection.

During the development of EbbRT we found it nec-
essary to create a common primitive for managing data
that could be received from or sent to hardware devices.
To support the development of zero-copy software, we
created the IOBuf primitive. An IOBuf is a descrip-
tor which manages ownership of a region of memory

as well as a view of a portion of that memory. Rather
than having applications explicitly invoke read with a
buffer to be populated, they install a handler which is
passed an IOBuf containing network data for their con-
nection. This IOBuf is passed synchronously from the
device driver through the network stack. The network
stack does not provide any buffering, it will invoke the
application as long as data arrives. Likewise, the inter-
face to send data accepts a chain of IOBufs which can
use scatter/gather interfaces.

Most systems have fixed size buffers in the kernel
which are used to pace connections (e.g. manage TCP
window size, cause UDP drops). In contrast, EbbRT al-
lows the application to directly manage its own buffer-
ing. In the case of UDP, an overwhelmed application
may have to drop datagrams. For a TCP connection, an
application can explicitly set the window size to prevent
further sends from the remote host. Applications must
also check that outgoing TCP data fits within the cur-
rently advertised sender window before telling the net-
work stack to send it or buffer it otherwise. This allows
the application to decide whether or not to delay sending
to aggregate multiple sends into a single TCP segment.
Other systems typically accomplish this using Nagle’s al-
gorithm which is often associated with poor latency [41].
An advantage of EbbRT’s approach to networking is the
degree to which an application can tune the behavior of
its connections at runtime. We provide default behaviors
which can be inherited from for those applications which
do not require this degree of customization.

One challenge with high-performance networking is
the need to synchronize when accessing connection
state [47]. EbbRT stores connection state in an RCU [40]
hash table which allows common connection lookup op-
erations to proceed without any atomic operations. Due
to the event-driven execution model of EbbRT, RCU is
a natural primitive to provide. Because we lack preemp-
tion, entering and exiting RCU critical sections are free.
Connection state is only manipulated on a single core
which is chosen by the application when the connection
is established. Therefore, common case network opera-
tions require no synchronization.

The EbbRT network stack is an example of the de-
gree of performance specialization our design enables.
By involving the application in network resource man-
agement, the networking stack avoids significant com-
plexity. Historically, network stack buffering and queu-
ing has been a significant factor in network performance.
EbbRT’s design does not solve these problems, but in-
stead enables applications to more directly control these
properties and customize the system to their characteris-
tics. The zero-copy optimization illustrates the value of
having all physical memory identity mapped, unpaged,
and within a single address space.

678 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Evaluation

Through evaluating EbbRT we aim to affirm that our im-
plementation fulfills the following three objectives dis-
cussed in Section 2: 1. supports high-performance spe-
cialization, 2. provides support for a broad set of appli-
cations, and 3. simplifies the development of applica-
tion-specific systems software.

We run our evaluations on a cluster of servers con-
nected via a 10GbE network and commodity switch.
Each machine contains two 6-core Xeon E5-2630L pro-
cessors (run at 2.4 GHz), 120 GB of RAM, and an Intel
X520 network card (82599 chipset). The machines have
been configured to disable Turbo Boost, hyper-threads,
and dynamic frequency scaling. Additionally, we dis-
able IRQ balancing and explicitly assign NIC IRQ affin-
ity. For the evaluation, we pin each application thread to
a dedicated physical core.

Each machine boots Ubuntu 14.04 (trusty) with Linux
kernel version 3.13. The EbbRT native library OSs
are run as virtual machines, which are deployed using
QEMU (2.5.0) and the KVM kernel module. In addition,
the VMs use a virtio-net paravirtualized network
card with support of the vhost kernel module. We en-
able multiqueue receive flow steering for multicore ex-
periments. Unless otherwise stated, all Linux applica-
tions are run within a similarly configured VM and on
the same OS and kernel version as the host.

The evaluations are broken down as follows: 1. mi-
cro-benchmarks designed to quantify the base over-
heads of the primitives in our native environment and
2. macro-benchmarks that exercise EbbRT in the context
of real applications. While the EbbRT hosted library is a
primary component of our design, it is not intended for
high-performance, but rather to facilitate the integration
of functionality between a general purpose OS process
and native instances of EbbRT. Therefore, we focus our
evaluation on the EbbRT native environment.

5.1 Microbenchmarks

The first micro-benchmark evaluates the memory alloca-
tor and aims to establish that the overheads of our Ebb
mechanism do not preclude the construction of high-
performance components. The second set of micro-
benchmarks evaluate the latencies and throughput of our
network stack and exercise several of the system features
we’ve discussed, including idle event processing, lamb-
das, and the IOBuf mechanism.

5.1.1 Memory Allocation

In K42 [30], we did not define its memory allocator as
a fragmented object because the invocation overheads

(e.g., virtual function dispatch) were thought to be too
expensive. A goal for the design of our Ebb mechanism
is to provide near-zero overhead so that all components
of the system can be defined as Ebbs.

The costs of managing memory is critical to the overall
performance of an application. Indeed, custom memory
allocators have shown substantial improvements in appli-
cation performance [7]. We’ve ported threadtest from the
Hoard [6] benchmark suite to EbbRT in order to compare
the performance of the default EbbRT memory allocator
to that of the glibc 2.2.5 and jemalloc 4.2.1 allocators.

1 2 4 6 8

Threads

2

4

6

8

10

12

14

16

B
ill

io
n
s

o
f

C
y
cl

e
s

I.

1 2 4 6 8

Threads

II.
EbbRT

glibc

jemalloc

Figure 4: Hoard Threadtest. Y-axis represents threads, t.
I.) N=100,000, i=1000; II.) N=100, i=1,000,000.

In threadtest, each thread t allocates and frees N
t 8

byte objects. This task is repeated for i iterations. Fig-
ure 4 shows the cycles required to complete the work-
load across varying amounts of threads. We run thread-
test in two configurations. In configuration I., the num-
ber of objects, N, is large, while the number of iterations
is small. In configuration II. the number of objects is
smaller and the iteration count is increased. The total
number of memory operations is the same across both
configurations.

In the figure we see EbbRT’s memory allocator scales
competitively with the production allocators. Our scala-
bility advantage is in part due to locality enabled by the
per-core Ebb representatives of the memory allocator and
our lack of preemption which remove any synchroniza-
tion requirements between representatives. The jemalloc
allocator achieves similar scalability benefits by avoiding
synchronization through the use of per-thread caches.

This comparison is not intended to establish the
EbbRT memory allocator to be the best in all situations,
nor is it an exhaustive memory allocator study. Rather,
we aim to demonstrate that the overheads of the Ebb
mechanism do not preclude us from the construction of
high-performance components.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 679

5.1.2 Network Stack

To evaluate the performance of our network stack we
ported the NetPIPE [52] and iPerf [54] benchmarks
to EbbRT. NetPIPE is a popular ping-pong benchmark
where a client sends a fixed-size message to the server,
which is then echoed back after being completely re-
ceived. In the iPerf benchmark, a client opens a TCP
stream and sends fixed-size messages which the server
receives and discards. With small message sizes, the
NetPIPE benchmark illustrates the latency of sending
and receiving data over TCP. The iPerf benchmark con-
firms that our run-to-completion network stack doesn’t
preclude high throughput applications. An EbbRT iPerf
server was shown to saturate our 10GbE network with a
stream of 1 kB message sizes.

Figure 5 shows NetPIPE goodput achieved as a func-
tion of message size. Two EbbRT servers achieve a
one-way latency of 24.53 µs for 64 B message sizes and
are able to attain 4 Gbps of goodput with messages as
small as 100 kB. In contrast, two Linux VMs achieve
a one-way latency of 34.27 µs for 64 B message sizes
and required 200 kB sized messages to achieve equiva-
lent goodput.

100k 200k 300k 400k 5000K 600K 700K

Message Size (B)

2000

4000

6000

8000

G
o
o
d
p
u
t

(M
b
p
s)

Linux VM EbbRT

0 2 4 6 8

1

2

3

Figure 5: NetPIPE performance as a function of message
size. Inset shows small message sizes.

With small messages, both systems suffer some ad-
ditional latency due to hypervisor processing involved
in implementing the paravirtualized NIC. However,
EbbRT’s short path from (virtual) hardware to appli-
cation achieves a 40% improvement in latency with
NetPIPE. This result illustrates the benefits of a non-
preemptive event-driven execution model and zero-copy
instruction path. With large messages, both systems must
suffer a copy on packet reception due to the hypervi-
sor, but EbbRT does no further copies, whereas Linux
must copy to user-space and then again on transmission.

25k 50k 75k 100k 125k 150k

Throughput (RPS)

200

400

600

800

La
te

n
cy

 (
u
s)

OSv Linux VM Linux EbbRT

Figure 6: Memcached Single Core Performance

This explains the difference in Netpipe goodput before
the network becomes the bottleneck.

5.2 Memcached

We evaluate memcached [15], an in-memory key-value
store that has become a common benchmark in the ex-
amination and optimization of networked systems. Pre-
vious work has shown that memcached incurs signifi-
cant OS overhead [27], and hence is a natural target for
OS customization. Rather than port the existing mem-
cached and associated event-driven libraries to EbbRT
we re-implemented memcached, writing it directly to the
EbbRT interfaces.

Our memcached implementation is a multi-core ap-
plication that supports the standard memcached binary
protocol. In our implementation, TCP data is received
synchronously from the network card and passed up to
the application. The application parses the client request
and constructs a reply, which is sent out synchronously.
The entire execution path, up to the application and back
again, is run without pre-emption. Key-value pairs are
stored in an RCU hash table to alleviate lock contention,
a common cause for poor scalability in memcached.
Our implementation of memcached totals 361 lines of
code. We lack some features of the standard memcached
(namely authentication and some of per-key commands
such as queue operations), but are otherwise protocol
compatible. Functionality support has been added incre-
mentally as needed by our workloads.

We compare our EbbRT implementation of mem-
cached, run within a VM, to the standard implementation
(v.1.4.22) run within a Linux VM, and as a Linux process
run natively on our machine. We use the mutilate
[31] benchmarking tool to place a particular load on
the server and measure response latency. We configure

680 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Request/sec Inst/cycle Inst/request LLC ref/cycle I-cache miss/cycle
EbbRT 379387 0.81 5557 0.0081 0.0079
Linux VM 137194 0.71 13604 0.0098 0.0339

Table 2: Memcached CPU-efficiency metrics

200k 400k 600k 800k 1000K 1200K

Throughput (RPS)

200

400

600

800

La
te

n
cy

 (
u
s)

Linux VM Linux (thread) Linux (process) EbbRT

Figure 7: Memcached Multicore Performance

mutilate to generate load representative of the Face-
book ETC workload [2], which has 20 B–70 B keys and
most values sized between 1 B–1024 B. All requests are
issued as separate memcached requests (no multiget)
over TCP. The client is configured to pipeline up to four
requests per TCP connection. We dedicate 7 machines to
act as load-generating clients for a total of 664 connec-
tions per server.

Figure 6 presents the 99th percentile latency as a func-
tion of throughput for single core memcached servers.
At a 500 µs 99th percentile Service Level Agreement
(SLA), single core EbbRT is able to attain 1.88× higher
throughput than Linux within a VM. EbbRT outperforms
Linux running natively by 1.15×, even with the hypervi-
sor overheads incurred. Additionally, we evaluated the
performance of OSv [28], a general purpose library OS
that similarly targets cloud applications run in a virtual-
ized environment. OSv differs from EbbRT by providing
a Linux ABI compatible environment, rather than sup-
porting a high-degree of specialization. We found that
the performance of memcached on OSv was not com-
petitive with either Linux or EbbRT with a single core.
Additionally, OSv’s performance degrades when scaled
up to six cores (omitted from figure 7) due to a lack of
multiqueue support in their virtio-net device driver.

Figure 7 presents the evaluation of memcached run-
ning across six cores. At a 500 µs 99th percentile SLA,
six core EbbRT is able to attain a 2.08× higher through-
put than Linux within a VM and 1.50× higher than

Linux native. To eliminate the performance impact of
application-level contention, we also evaluated mem-
cached run natively as six separate processes, rather than
a single multithreaded process (“Linux (process)” in Fig-
ure 7). EbbRT outperforms the multiprocess memcached
by 1.30× at 500 µs 99th percentile SLA.

To gain insight into the source of EbbRT’s perfor-
mance advantages, we examine the CPU-efficiency of
the memcached servers. We use the Linux Kernel perf
utility to gather data across a 10 second duration of a
fully-loaded single core memcached server run within a
VM. Table 2 presents these statistics. We see that the
EbbRT server is processing requests at 2.75× the rate
of Linux. This can be largely attributed to our shorter
non-preemptive instruction path for processing requests.
Observe that the Linux rate of instructions per request
is 2.44× that of EbbRT. The instructions per cycle rate
in EbbRT, a 12.6% increase over Linux, shows that we
are running more efficiently overall. This can be again
observed through our decreased per-cycle rates of last
level cache (LLC) reference and icache misses, which,
on Linux, increase by 1.21× and 4.27×, respectively.

The above efficiency results suggest that our perfor-
mance advantages are largely achieved through the con-
struction of specialized system software to take advan-
tage of properties of the memcached workload. We illus-
trate this in greater detail by examining the per-request
latency for EbbRT and Linux (native) broken down into
time spent processing network ingress, application logic,
and network egress. For Linux, we used the perf tool
to gather stacktrace samples over 30 seconds of a fully
loaded, single core memcached instance and categorized
each trace. For EbbRT, we instrumented the source code
with timestamp counters. Table 3 presents this result. It
should be noted that, for Linux, the “Application” cate-
gory includes time spent scheduling, context switching,
and handling event notification (e.g. epoll). The la-
tency breakdown demonstrates that the performance ad-
vantage comes from specialization across the entire soft-
ware stack, and not just one component.

By writing to our interfaces, memcached is imple-
mented to directly handle memory filled by the device,
and can likewise send replies without copying. A re-
quest is handled synchronously from the device driver
without pre-emption, which enables a significant perfor-
mance advantage. EbbRT primitives, such as IOBufs
and RCU data structures, are used throughout the ap-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 681

Ingress Application Egress Total
EbbRT 0.89 µs 0.86 µs 0.83 µs 2.59 µs
Linux 1.05 µs 1.30 µs 1.46 µs 3.81 µs

Table 3: Memcached Per-Request Latency

plication to simplify the development of the zero-copy,
lock-free code.

In the past, significant effort has gone into improving
the performance of memcached and similar key-value
stores. However, many of these optimizations require
client modifications [35, 43] or the use of custom hard-
ware [26, 36]. By writing memcached as an EbbRT
application, we are able to achieve significant perfor-
mance improvements while maintaining compatibility
with standard clients, protocols, and hardware.

5.3 Node.js

It is often the case that specialized systems can demon-
strate high performance for a particular workload, such
as packet processing, but fail to provide similar benefits
to more full-featured applications. A key objective of
EbbRT is to provide an efficient base set of primitives
on top of which a broad set of applications can be con-
structed.

We evaluate node.js, a popular JavaScript execution
environment for server-side applications. In compari-
son to memcached, node.js uses many more features of
an operating system, including virtual memory mapping,
file I/O, periodic timers, etc. Node.js links with several
C/C++ libraries to provide its event-driven environment.
In particular, the two libraries which involved the most
effort to port were V8 [23], Google’s JavaScript engine,
and libuv [34], which abstracts OS functionality and call-
back based event-driven execution.

Porting V8 was relatively straightforward as EbbRT
supports the C++ standard library, on which V8 de-
pends. Additional OS functionality required such as
clocks, timers, and virtual memory, are provided by the
core Ebbs of the system. Porting libuv required signif-
icantly more effort, as there are over 100 functions of
the libuv interface which require OS specific implemen-
tations. In the end, our approach enables the libuv call-
backs to be invoked directly from a hardware interrupt,
in the same way that our memcached implementation re-
ceives incoming requests.

The effort to port node.js was significantly simpli-
fied by exploiting EbbRT’s model of function offload-
ing. For example, the port included the construction
of an application-specific FileSystem Ebb. Rather
than implement a file system and hard disk driver within
the EbbRT library OS, the Ebb calls are offloaded to

a (hosted) representative running in a Linux process.
Our default implementation of the FileSystem Ebb
is naïve, sending messages and incurring round trip costs
for every access, rather than caching data on local repre-
sentatives. For evaluation purposes we use a modified
version of the FileSystem Ebb which performs no
communication and serves a single static node.js script
as stdin. This implementation allows us to evaluate
the following workloads (which perform no file access)
without also involving a hosted library.

One key observation of the node.js port is the mod-
est development effort required to get a large piece of
software functional, and, more importantly, the ability
to reuse many of the software mechanisms used in our
memcached application. The port was largely completed
by a single developer in two weeks. Concretely, node.js
and its dependencies total over one million lines of code,
the majority of which is the v8 JavaScript engine. We
wrote about 3000 lines of new code in order to support
node.js on EbbRT. A significant factor in simplifying the
port is the fact that EbbRT is distributed with a custom
toolchain. Rather than needing to modify the existing
node.js build system, we specified EbbRT as a target and
built it as we would any other cross compiled binary.
This illustrates EbbRT’s support for a broad class of soft-
ware as well as the manner in which we reduce developer
burden required to develop specialized systems.

5.3.1 V8 JavaScript Benchmark

To compare the performance of our port to that of Linux,
we launch node.js running version 7 of the V8 JavaScript
benchmark suite [22]. This collection of purely compute-
bound benchmarks stresses the core performance of the
V8 JavaScript engine. Figure 8 shows the benchmark
scores. Scores are computed by inverting the running
time of the benchmark and scaling it by the score of a
reference implementation (higher is better). The overall
score is the geometric mean of the 8 individual scores.
The figure normalizes each score to the Linux result.

EbbRT outperforms Linux run within a VM on each
benchmark, with a 5.1% improvement in overall score.
Most prominently, EbbRT is able to attain a 30.3% im-
provement in the memory intensive Splay benchmark.
As we’ve made no modification to the V8 software, just
running it on EbbRT accounts for the improved perfor-
mance.

We further investigate the sources of the performance
advantage by running the Linux perf utility to measure
several CPU efficiency metrics. Table 4 displays these
results. Several interesting aspects of this table deserve
highlighting. First, EbbRT has a slightly better IPC ef-
ficiency (3.76%), which can in part be attributed to its
performance advantage. One reason for decreased effi-

682 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Inst/cycle LLC ref/cycle TLB miss/cycle VM exit Hypervisor time Guest kernel time
EbbRT 2.48 0.0021 1.18e-5 5950 0.33% N/A
Linux VM 2.39 0.0028 9.92e-5 66851 0.74% 1.08%

Table 4: V8 JavaScript Benchmark CPU-efficiency metrics

ciency of the Linux VM is simply having to execute more
instructions, such as additional VM Exits and extraneous
kernel functionality (e.g., scheduling). Second, the ad-
ditional interactions with the hypervisor and kernel on
Linux increase the working set size and cause a 33% in-
crease in LLC accesses. Third, Linux suffers nearly 9×
more TLB misses than EbbRT. We attribute our TLB ef-
ficiency to our use of large pages throughout the system.

Crypto

DeltaBlue

EarleyBoyer

NavierStokes

RayTrace
RegExp

Richards
Splay

Overall
0.9

1.0

1.1

1.2

1.3

N
o
rm

a
liz

e
d
 S

co
re

EbbRT Linux VM

Figure 8: V8 JavaScript Benchmark

5.3.2 Node.js Webserver

Lastly, we evaluate a trivial webserver written for
node.js, which uses the builtin http module and re-
sponds to each GET request with a small static mes-
sage totaling 148 bytes. We use the wrk [20] bench-
mark to place moderate load on the webserver and mea-
sure mean and 99th percentile response-time latencies.
EbbRT achieved 91.1 µs mean and 100.0 µs 99th per-
centile latencies. Linux achieved 103.5 µs mean and
120.6 µs 99th percentile latencies. The node.js webserver
running on Linux has a 13.61% higher mean latency than
the same webserver run on EbbRT. 99th percentile la-
tency is 20.65% higher on Linux over EbbRT.

These results suggest that an entire class of server-
side application written for node.js can achieve immedi-
ate performance advantages by simply running on top of
EbbRT. Similar to our memcached evaluation, the ability
for node.js to serve requests directly from hardware inter-
rupts, without context switching or pre-emption, enables
greater network performance. The non-preemptive run-
to-completion execution model particularly improves tail
latency. Our V8 benchmark results show that the use of
large pages and simplified execution paths increases the
efficiency of CPU and memory intensive workloads.

Finally, our approach opens up the application to fur-
ther optimizations opportunities. For example, one could
modify V8 to directly access the page tables to improve
garbage collection [4]. We expect that greater perfor-
mance can be achieved through continued system spe-
cialization.

6 Related Work

The Exokernel [13] introduced the library operating sys-
tem structure — where system functionality is directly
linked into the application and executes in the same ad-
dress space and protection domain. Library operating
systems have been shown to provide many useful prop-
erties, such as portability [45, 55], security [3, 38], and
efficiency [28]. OSv [28] and Mirage [38] are similar
to EbbRT in that they target virtual machines deployed
in IaaS clouds. OSv constructs a general purpose li-
brary OS and supports the Linux ABI. Mirage uses the
OCaml programming language to construct minimal sys-
tems for security. EbbRT takes a middle ground, sup-
porting source-level portability for existing applications
through rich C++ functionality and standard libraries, but
avoiding general purpose OS interfaces.

CNK [42], Libra [1], Azul [53], and, more recently,
Arrakis [44] and IX [5] have pursued architectures that
enable specialized execution environments for perfor-
mance sensitive data flow. While their approaches vary,
these systems must each make a trade-off between tar-
geting a narrow class of applications (e.g., HPC, Java
web applications, or packet processing) and targeting a
broad class of applications. Rather than supporting a
single specialized execution environment, EbbRT pro-
vides a framework to enable the construction of various
application-specific library operating systems.

Considerable work has been done on system software
customization [8, 11, 17, 30, 50]. Much of this work fo-
cuses on developing general purpose operating that are
customizable, while EbbRT is focused on the construc-
tion of specialized systems.

Choices [10] and OSKit [16] provide operating system
frameworks; in the case of Choices, for maintainability
and extensibility, and in the case of OSKit, to simplify
the construction of new operating systems. EbbRT dif-
fers most significantly in its performance objectives and
its focus on enabling application developers to extend
and customize system software. For example, by pro-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 683

viding EbbRT as a modified toolchain, application-level
software libraries (e.g. boost) can be used in a systems
context with little to no modification.

Others have considered the interaction of an object-
oriented framework with the goal of enabling high per-
formance. CHAOSarc [18] and TinyOS [32] have both
explored the use of a fine grain object framework in
the resource limited setting of embedded systems. Like
TinyOS, EbbRT combines language support for event
driven execution and method dispatch mechanisms that
are friendly to compiler optimization. In a recent retro-
spective [33], the authors recognized that their develop-
ment and use of the nesC programming language lim-
ited TinyOS from even broader, long-term use. EbbRT,
however, focuses on integration with existing software
tooling, development patterns, and libraries to encourage
continued applicability.

7 Concluding Remarks

We have presented EbbRT, a framework for constructing
specialized systems for cloud applications. Through our
evaluation we have established that EbbRT applications
achieve their performance advantages through system-
wide specialization rather than one particular technique.
In addition, we have shown that existing applications can
be ported to EbbRT with modest effort and achieve a no-
ticeable performance gain. Throughout this paper we
have conveyed how our primary design elements, i.e.,
elastic building blocks, an event-driven execution envi-
ronment, and a heterogeneous deployment model work-
ing alongside advanced language constructs and new sys-
tem primitives, have proven to be a novel, effective ap-
proach to achieving our stated objectives.

By encapsulating system components with minimal
dispatch overhead, we enable application-specific per-
formance specialization throughout all parts of our sys-
tem. Furthermore, we have shown that our default Ebb
implementations provide a foundation for achieving per-
formance advantages. For example, our results illustrate
the combined benefits of using a non-preemptive event-
driven execution model, identity mapped memory, and
zero-copy paths.

As we gained experience with the system the issue of
easing development efforts arose naturally. An early fo-
cus on enabling use of standard libraries, including the
addition of blocking primitives, greatly simplified devel-
opment. Our monadic futures implementation addressed
concrete concerns we had with event-driven program-
ming. Futures are now used throughout our implemen-
tation. IOBufs came about as a solution for us to enable
pervasive zero-copy with little added complexity or over-
head.

EbbRT’s long-term utility hinges on its ability to be

used for a broad range of applications, while continuing
to enable a high degree of per-application specialization.
Our previous work on fragmented objects gives us con-
fidence that various specialized implementations of our
existing Ebbs can be introduced, as needed, without di-
minishing the overall value and integrity of the frame-
work.

Future work involves further exploration of system
specialization. Our focus has primarily revolved around
networked applications, however, data storage applica-
tions should equally benefit from specialization. Addi-
tionally, EbbRT can be used to accelerate existing appli-
cations in a fine-grained fashion. We believe the hosted
library can be used not just for compatibility for new ap-
plications, but as a way to offload performance critical
functionality to one or more library operating systems.

The EbbRT framework is open source and actively
used in ongoing systems research. We invite develop-
ers and researchers alike to visit our online codebase at
https://github.com/sesa/ebbrt/

Acknowledgments: We owe a great deal of gratitude
to the Massachusetts Open Cloud (MOC) team for their
help and support in getting EbbRT running and debugged
on HIL [24]. We would like to thank Michael Stumm,
Larry Rudolph and Frank Bellosa for feedback on early
drafts of this paper. Thanks to Tommy Unger, Kyle
Hogan and David Yeung for helping us get the nits out.
We would also like to thank our shepherd, Andrew Bau-
mann, for his help in preparing the final version. This
work was supported by the National Science Foundation
under award IDs CNS-1012798, CNS-1254029, CCF-
1533663 and CNS-1414119. Early work was supported
by by the Department of Energy under Award Number
DE-SC0005365.

684 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sesa/ebbrt/

References

[1] Glenn Ammons, Jonathan Appavoo, Maria
Butrico, Dilma Da Silva, David Grove, Kiyokuni
Kawachiya, Orran Krieger, Bryan Rosenburg,
Eric Van Hensbergen, and Robert W. Wisniewski.
Libra: A Library Operating System for a Jvm in a
Virtualized Execution Environment. In Proceed-
ings of the 3rd International Conference on Virtual
Execution Environments, VEE ’07, pages 44–54.
ACM, 2007.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg,
Song Jiang, and Mike Paleczny. Workload Anal-
ysis of a Large-scale Key-value Store. In Pro-
ceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIG-
METRICS ’12, pages 53–64. ACM, 2012.

[3] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Untrusted
Cloud with Haven. ACM Trans. Comput. Syst.,
33(3):8:1–8:26, August 2015.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh,
David Terei, David Mazières, and Christos
Kozyrakis. Dune: Safe User-level Access to Priv-
ileged CPU Features. In Proceedings of the 10th
USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 335–
348. USENIX Association, 2012.

[5] Adam Belay, George Prekas, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. IX: A Protected Dataplane
Operating System for High Throughput and Low
Latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14),
pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[6] Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson. Hoard: A Scal-
able Memory Allocator for Multithreaded Appli-
cations. In Proceedings of the Ninth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS
IX, pages 117–128. ACM, 2000.

[7] Emery D. Berger, Benjamin G. Zorn, and
Kathryn S. McKinley. Composing High-
performance Memory Allocators. In Proceedings
of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’01, pages 114–124. ACM, 2001.

[8] Brian N. Bershad, Craig Chambers, Susan Eg-
gers, Chris Maeda, Dylan McNamee, Przemysław
Pardyak, Stefan Savage, and Emin Gün Sirer.
SPIN - an Extensible Microkernel for Application-
specific Operating System Services. SIGOPS Oper.
Syst. Rev., 29(1):74–77, January 1995.

[9] Georges Brun-Cottan and Mesaac Makpangou.
Adaptable Replicated Objects in Distributed Envi-
ronments. Research Report RR-2593, 1995. Project
SOR.

[10] Roy H. Campbell, Nayeem Islam, and Peter
Madany. Choices, frameworks and refinement.
Computing Systems, 5(3):217–257, 1992.

[11] David R. Cheriton and Kenneth J. Duda. A Caching
Model of Operating System Kernel Functional-
ity. In Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation,
OSDI ’94. USENIX Association, 1994.

[12] Jonathan Corbet. SLQB - and then there were four.
http://lwn.net/Articles/311502, Dec.
2008.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In Pro-
ceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, SOSP ’95, pages 251–
266. ACM, 1995.

[14] Jason Evans. Scalable memory allocation us-
ing jemalloc. http://www.canonware.com/
jemalloc/, 2011.

[15] Brad Fitzpatrick. Distributed Caching with Mem-
cached. Linux Journal, 2004(124):5, August 2004.

[16] Bryan Ford, Godmar Back, Greg Benson, Jay Lep-
reau, Albert Lin, and Olin Shivers. The Flux OSKit:
A Substrate for Kernel and Language Research.
In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, SOSP ’97, pages
38–51. ACM, 1997.

[17] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing Locality
and Concurrency in a Shared Memory Multiproces-
sor Operating System. In Proceedings of the Third
Symposium on Operating Systems Design and Im-
plementation, OSDI ’99, pages 87–100. USENIX
Association, 1999.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 685

http://lwn.net/Articles/311502
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/

[18] Ahmed Gheith and Karsten Schwan. CHAOSarc:
Kernel Support for Multiweight Objects, Invoca-
tions, and Atomicity in Real-time Multiproces-
sor Applications. ACM Trans. Comput. Syst.,
11(1):33–72, February 1993.

[19] Sanjay Ghemawat and Paul Menage. Tc-
malloc: Thread-caching malloc. http:
//goog-perftools.sourceforge.net/
doc/tcmalloc.html, 2009.

[20] Will Glozer. wrk: Modern HTTP benchmarking
tool. https://github.com/wg/wrk, 2014.

[21] Google. Protocol Buffers: Google’s Data In-
terchange Format. https://developers.
google.com/protocol-buffers.

[22] Google. V8 Benchmark Suit - Version 7.
https://v8.googlecode.com/svn/
data/benchmarks/v7/.

[23] Google. V8 JavaScript Engine. http://code.
google.com/p/v8/.

[24] Jason Hennessey, Sahil Tikale, Ata Turk, Em-
ine Ugur Kaynar, Chris Hill, Peter Desnoyers, and
Orran Krieger. HIL: Designing an Exokernel for
the Data Center. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, pages 155–
168. ACM, 2016.

[25] Intel Corporation. Intel DPDK: Data Plane Devel-
opment Kit. http://dpdk.org.

[26] Jithin Jose, Hari Subramoni, Miao Luo, Min-
jia Zhang, Jian Huang, Md. Wasi-ur Rahman,
Nusrat S. Islam, Xiangyong Ouyang, Hao Wang,
Sayantan Sur, and Dhabaleswar K. Panda. Mem-
cached Design on High Performance RDMA Capa-
ble Interconnects. In Proceedings of the 2011 Inter-
national Conference on Parallel Processing, ICPP
’11, pages 743–752. IEEE Computer Society, 2011.

[27] Rishi Kapoor, George Porter, Malveeka Tewari,
Geoffrey M. Voelker, and Amin Vahdat. Chronos:
Predictable Low Latency for Data Center Applica-
tions. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 9:1–9:14.
ACM, 2012.

[28] Avi Kivity, Dor Laor, Glauber Costa, Pekka
Enberg, Nadav Har’El, Don Marti, and Vlad
Zolotarov. OSv—Optimizing the Operating Sys-
tem for Virtual Machines. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages
61–72. USENIX Association, June 2014.

[29] Kohlhoff, Christopher. Boost.Asio. http:
//www.boost.org/doc/libs/1_55_0/
doc/html/boost_asio.html.

[30] Orran Krieger, Marc Auslander, Bryan Rosen-
burg, Robert W. Wisniewski, Jimi Xenidis, Dilma
Da Silva, Michal Ostrowski, Jonathan Appavoo,
Maria Butrico, Mark Mergen, Amos Waterland,
and Volkmar Uhlig. K42: Building a Complete
Operating System. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, EuroSys ’06, pages 133–145.
ACM, 2006.

[31] Jacob Leverich. Mutilate: High-Performance
Memcached Load Generator. https:
//github.com/leverich/mutilate,
2014.

[32] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An Operat-
ing System for Sensor Networks, pages 115–148.
Ambient Intelligence. Springer Berlin Heidelberg,
2005.

[33] Philip Levis. Experiences from a Decade of
TinyOS Development. In Proceedings of the 10th
USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 207–
220. USENIX Association, 2012.

[34] libuv. http://libuv.org.

[35] Hyeontaek Lim, Dongsu Han, David G. Andersen,
and Michael Kaminsky. MICA: A Holistic Ap-
proach to Fast In-Memory Key-Value Storage. In
11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 429–
444. USENIX Association, April 2014.

[36] Kevin Lim, David Meisner, Ali G. Saidi,
Parthasarathy Ranganathan, and Thomas F.
Wenisch. Thin Servers with Smart Pipes: De-
signing SoC Accelerators for Memcached. In
Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13,
pages 36–47. ACM, 2013.

[37] Barbara Liskov and Liuba Shrira. Promises: Lin-
guistic Support for Efficient Asynchronous Proce-
dure Calls in Distributed Systems. In Proceedings
of the ACM SIGPLAN 1988 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’88, pages 260–267. ACM, 1988.

686 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/wg/wrk
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://v8.googlecode.com/svn/data/benchmarks/v7/
https://v8.googlecode.com/svn/data/benchmarks/v7/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://dpdk.org
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
http://libuv.org

[38] Anil Madhavapeddy, Richard Mortier, Charalam-
pos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. SIGPLAN Not., 48(4):461–472,
March 2013.

[39] Mesaac Makpangou, Yvon Gourhant, and Jean
pierre Le Narzul. Fragmented Objects for Dis-
tributed Abstractions. In Readings in Distributed
Computing Systems, pages 170–186. IEEE Com-
puter Society Press, 1992.

[40] Paul E. McKenney, Jonathan Appavoo, Andi
Kleen, Orran Krieger, Rusty Russell, Dipankar
Sarma, and Maneesh Soni. Read-Copy Update. In
Ottawa Linux Symposium, July 2001.

[41] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul,
and Ben Verghese. Application Performance Pit-
falls and TCP’s Nagle Algorithm. SIGMETRICS
Perform. Eval. Rev., 27(4):36–44, March 2000.

[42] José Moreira, Michael Brutman, José Castaños,
Thomas Engelsiepen, Mark Giampapa, Tom Good-
ing, Roger Haskin, Todd Inglett, Derek Lieber, Pat
McCarthy, Mike Mundy, Jeff Parker, and Brian
Wallenfelt. Designing a Highly-Scalable Operating
System: The Blue Gene/L story. In Proceedings of
the 2006 ACM/IEEE conference on Supercomput-
ing, SC ’06. ACM, 2006.

[43] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan
McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’13, pages 385–398. USENIX Association,
2013.

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The
Operating System is the Control Plane. In 11th
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 1–16.
USENIX Association, October 2014.

[45] Donald E. Porter, Silas Boyd-Wickizer, Jon How-
ell, Reuben Olinsky, and Galen C. Hunt. Rethink-
ing the Library OS from the Top Down. In Proceed-
ings of the Sixteenth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 291–
304. ACM, 2011.

[46] Niels Provos and Nick Mathewson. libevent - an
event notification library. http://libevent.
org/, 2003.

[47] Injong Rhee, Nallathambi Balaguru, and George N.
Rouskas. MTCP: Scalable TCP-like Congestion
Control for Reliable Multicast. Comput. Netw.,
38(5):553–575, April 2002.

[48] Luigi Rizzo. Netmap: A Novel Framework for
Fast Packet I/O. In Proceedings of the 2012
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, page 9. USENIX Associa-
tion, 2012.

[49] Dan Schatzberg, James Cadden, Orran Krieger, and
Jonathan Appavoo. A Way Forward: Enabling Op-
erating System Innovation in the Cloud. In 6th
USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 14). USENIX Association, June
2014.

[50] Margo I. Seltzer, Yasuhiro Endo, Christopher
Small, and Keith A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. In Pro-
ceedings of the Second USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI
’96, pages 213–227, New York, NY, USA, 1996.
ACM.

[51] Marc Shapiro, Yvon Gourhant, Sabine Habert,
Laurence Mosseri, Michel Ruffin, and Céline Valot.
SOS: An Object-Oriented Operating System - As-
sessment and Perspectives. Computing Systems,
2:287–337, 1991.

[52] Quinn O Snell, Armin R Mikler, and John L
Gustafson. Netpipe: A Network Protocol Indepen-
dent Performance Evaluator. In IASTED Interna-
tional Conference on Intelligent Information Man-
agement and Systems, 1996.

[53] Gil Tene, Balaji Iyengar, and Michael Wolf. C4:
The Continuously Concurrent Compacting Collec-
tor. In Proceedings of the International Symposium
on Memory Management, ISMM ’11, pages 79–88.
ACM, 2011.

[54] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Fer-
guson, and Kevin Gibbs. Iperf: The TCP/UDP
bandwidth measurement tool. https://iperf.
fr/.

[55] Chia-Che Tsai, Kumar Saurabh Arora, Nehal
Bandi, Bhushan Jain, William Jannen, Jitin John,
Harry A. Kalodner, Vrushali Kulkarni, Daniela
Oliveira, and Donald E. Porter. Cooperation

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 687

http://libevent.org/
http://libevent.org/
https://iperf.fr/
https://iperf.fr/

and Security Isolation of Library OSes for Multi-
process Applications. In Proceedings of the Ninth
European Conference on Computer Systems, Eu-
roSys ’14, pages 9:1–9:14. ACM, 2014.

[56] Maarten van Steen, Philip Homburg, and An-
drew S. Tanenbaum. Globe: A Wide-Area Dis-
tributed System. IEEE Concurrency, 7(1):70–78,
January 1999.

[57] S. Vinoski. CORBA: Integrating Diverse Appli-
cations Within Distributed Heterogeneous Environ-
ments. Comm. Mag., 35(2):46–55, February 1997.

[58] Rob von Behren, Jeremy Condit, and Eric Brewer.
Why Events Are a Bad Idea (for High-concurrency
Servers). In Proceedings of the 9th Conference on
Hot Topics in Operating Systems - Volume 9, HO-
TOS’03, page 4. USENIX Association, 2003.

[59] David A Wheeler. SLOCCount. http://www.
dwheeler.com/sloccount/.

[60] Sara Williams and Charlie Kindel. The Component
Object Model: A Technical Overview. Dr. Dobbs
Journal, 356:356–375, 1994.

688 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

SCONE: Secure Linux Containers with Intel SGX

Sergei Arnautov1, Bohdan Trach1, Franz Gregor1, Thomas Knauth1, Andre Martin1,
Christian Priebe2, Joshua Lind2, Divya Muthukumaran2, Dan O’Keeffe2, Mark L Stillwell2,

David Goltzsche3, David Eyers4, Rüdiger Kapitza3, Peter Pietzuch2, and Christof Fetzer1

1Fakultät Informatik, TU Dresden, christof.fetzer@tu-dresden.de
2Dept. of Computing, Imperial College London, prp@imperial.ac.uk

3Informatik, TU Braunschweig, rrkapitz@ibr.cs.tu-bs.de
4Dept. of Computer Science, University of Otago, dme@cs.otago.ac.nz

Abstract

In multi-tenant environments, Linux containers managed
by Docker or Kubernetes have a lower resource footprint,
faster startup times, and higher I/O performance com-
pared to virtual machines (VMs) on hypervisors. Yet
their weaker isolation guarantees, enforced through soft-
ware kernel mechanisms, make it easier for attackers to
compromise the confidentiality and integrity of applica-
tion data within containers.

We describe SCONE, a secure container mechanism
for Docker that uses the SGX trusted execution support
of Intel CPUs to protect container processes from out-
side attacks. The design of SCONE leads to (i) a small
trusted computing base (TCB) and (ii) a low performance
overhead: SCONE offers a secure C standard library in-
terface that transparently encrypts/decrypts I/O data; to
reduce the performance impact of thread synchronization
and system calls within SGX enclaves, SCONE supports
user-level threading and asynchronous system calls. Our
evaluation shows that it protects unmodified applications
with SGX, achieving 0.6✓–1.2✓ of native throughput.

1 Introduction

Container-based virtualization [53] has become popu-
lar recently. Many multi-tenant environments use Linux
containers [24] for performance isolation of applications,
Docker [42] for the packaging of the containers, and
Docker Swarm [56] or Kubernetes [35] for their deploy-
ment. Despite improved support for hardware virtual-
ization [21, 1, 60], containers retain a performance ad-
vantage over virtual machines (VMs) on hypervisors:
not only are their startup times faster but also their I/O
throughput and latency are superior [22]. Arguably they
offer weaker security properties than VMs because the
host OS kernel must protect a larger interface, and often
uses only software mechanisms for isolation [8].

More fundamentally, existing container isolation

mechanisms focus on protecting the environment from
accesses by untrusted containers. Tenants, however,
want to protect the confidentiality and integrity of their
application data from accesses by unauthorized parties—
not only from other containers but also from higher-
privileged system software, such as the OS kernel and
the hypervisor. Attackers typically target vulnerabilities
in existing virtualized system software [17, 18, 19], or
they compromise the credentials of privileged system ad-
ministrators [65].

Until recently, there was no widely-available hard-
ware mechanism for protecting user-level software from
privileged system software. In 2015, Intel released the
Software Guard eXtensions (SGX) [31] for their CPUs,
which add support for secure enclaves [26]. An enclave
shields application code and data from accesses by other
software, including higher-privileged software. Memory
pages belonging to an enclave reside in the enclave page
cache (EPC), which cannot be accessed by code outside
of the enclave. This makes SGX a promising candidate
for protecting containers: the application process of a
container can execute inside an enclave to ensure the con-
fidentiality and integrity of the data.

The design of a secure container mechanism using
SGX raises two challenges: (i) minimizing the size of
the trusted computing base (TCB) inside an enclave
while supporting existing applications in secure contain-
ers; and (ii) maintaining a low performance overhead for
secure containers, given the restrictions of SGX.

Regarding the TCB size, prior work [6] has demon-
strated that Windows applications can be executed in en-
claves, but at the cost of a large TCB (millions of LOC),
which includes system libraries and a library OS. Any
vulnerability in the TCB may allow an attacker to access
application data or compromise its integrity, which mo-
tivates us to keep a container’s TCB size inside of the
enclave small.

The performance overhead of enclaves comes from the
fact that, since the OS kernel is untrusted, enclave code

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 689

christof.fetzer@tu-dresden.de
prp@imperial.ac.uk
rrkapitz@ibr.cs.tu-bs.de
dme@cs.otago.ac.nz

cannot execute system calls. An enclave thread must
copy memory-based arguments and leave the enclave be-
fore a system call. These thread transitions are expen-
sive because they involve saving and restoring the en-
clave’s execution state. In addition, enclaves have lower
memory performance because, after cache misses, cache
lines must be decrypted when fetched from memory. Ac-
cesses to enclave pages outside of the EPC cause expen-
sive page faults.

To maintain a small TCB for secure containers, we ob-
serve that containers typically execute network services
such as Memcached [23], Apache [44], NGINX [47] and
Redis [46], which require only a limited interface for sys-
tem support: they communicate with the outside via net-
work sockets or stdin/stdout streams, use isolated or
ephemeral file systems, and do not access other I/O de-
vices directly. To mitigate the overhead of secure con-
tainers, we note that enclave code can access memory
outside of the enclave without a performance penalty.
However, for applications with a high system call fre-
quency, the overhead of leaving and re-entering the en-
clave for each system call remains expensive.

We describe SCONE, a Secure CONtainer Environ-
ment for Docker that uses SGX to run Linux applications
in secure containers. It has several desirable properties:

(1) Secure containers have a small TCB. SCONE
exposes a C standard library interface to container
processes, which is implemented by statically linking
against a libc library [38] within the enclave. System
calls are executed outside of the enclave, but they are
shielded by transparently encrypting/decrypting applica-
tion data on a per-file-descriptor basis: files stored out-
side of the enclave are therefore encrypted, and network
communication is protected by transport layer secu-
rity (TLS) [20]. SCONE also provides secure ephemeral
file system semantics.

(2) Secure containers have a low overhead. To reduce
costly enclave transitions of threads, SCONE provides a
user-level threading implementation that maximizes the
time that threads spend inside the enclave. SCONE maps
OS threads to logical application threads in the enclave,
scheduling OS threads between application threads when
they are blocked due to thread synchronization.

SCONE combines this with an asynchronous system
call mechanism in which OS threads outside the enclave
execute system calls, thus avoiding the need for enclave
threads to exit the enclave. In addition, SCONE reduces
expensive memory accesses within the enclave by main-
taining encrypted application data, such as cached files
and network buffers, in non-enclave memory.

(3) Secure containers are transparent to Docker. Se-
cure containers behave like regular containers in the

Docker engine. Since container images are typically gen-
erated by experts, less experienced users can therefore
benefit from SCONE, as long as they trust the creator of a
secure container image. When executing secure contain-
ers, SCONE requires only an SGX-capable Intel CPU,
an SGX kernel driver and an optional kernel module for
asynchronous system call support.

Our experimental evaluation of SCONE on SGX hard-
ware demonstrates that, despite the performance limi-
tations of current SGX implementations, the through-
put of popular services such as Apache, Redis, NGINX,
and Memcached is 0.6✓–1.2✓ of native execution, with
a 0.6✓–2✓ increase in code size. The performance of
SCONE benefits from the asynchronous system calls and
the transparent TLS encryption of client connections.

2 Secure Containers

Our goal is to create a secure container mechanism that
protects the confidentiality and integrity of a Linux pro-
cess’ memory, code, and external file and network I/O
from unauthorized and potentially privileged attackers.

2.1 Linux containers

Containers use OS-level virtualization [35] and have be-
come increasingly popular for packaging, deploying and
managing services such as key/value stores [46, 23] and
web servers [47, 25]. Unlike VMs, they do not require
hypervisors or a dedicated OS kernel. Instead, they use
kernel features to isolate processes, and thus do not need
to trap system calls or emulate hardware devices. This
means that container processes can run as normal sys-
tem processes, though features such as overlay file sys-
tems [10] can add performance overheads [22]. Another
advantage of containers is that they are lightweight—
they do not include the rich functionality of a standalone
OS, but instead use the host OS for I/O operations, re-
source management, etc.

Projects such as LXC [24] and Docker [42] create
containers using a number of Linux kernel features, in-
cluding namespaces and the cgroups interface. By us-
ing the namespace feature, a parent process can create
a child that has a restricted view of resources, includ-
ing a remapped root file system and virtual network de-
vices. The cgroups interface provides performance isola-
tion between containers using scheduler features already
present in the kernel.

For the deployment and orchestration of containers,
frameworks such as Docker Swarm [56] and Kuber-
netes [35] instantiate and coordinate the interactions of
containers across a cluster. For example, micro-service
architectures [58] are built in this manner: a number

690 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of lightweight containers that interact over well-defined
network interfaces.

2.2 Threat model
Analogous to prior work [50, 6], we assume a power-
ful and active adversary who has superuser access to the
system and also access to the physical hardware. They
can control the entire software stack, including privi-
leged code, such as the container engine, the OS kernel,
and other system software. This empowers the adversary
to replay, record, modify, and drop any network packets
or file system accesses.

We assume that container services were not designed
with the above privileged attacker model in mind. They
may compromise data confidentiality or integrity by
trusting OS functionality. Any programming bugs or in-
advertent design flaws in the application beyond trust-
ing the OS are outside of our threat model, as mitigation
would require orthogonal solutions for software reliabil-
ity. In our threat model, we also do not target denial-of-
service attacks, or side-channel attacks that exploit tim-
ing and page faults [63]. These are difficult to exploit
in practice, and existing mitigation strategies introduce a
high performance overhead [9].

2.3 Intel SGX
Intel’s Software Guard Extensions (SGX) [29, 30, 15] al-
low applications to ensure confidentiality and integrity,
even if the OS, hypervisor or BIOS are compromised.
They also protect against attackers with physical access,
assuming the CPU package is not breached.

Enclaves are trusted execution environments provided by
SGX to applications. Enclave code and data reside in a
region of protected physical memory called the enclave
page cache (EPC). While cache-resident, enclave code
and data are guarded by CPU access controls. When
moved to DRAM, data in EPC pages is protected at the
granularity of cache lines. An on-chip memory encryp-
tion engine (MEE) encrypts and decrypts cache lines in
the EPC written to and fetched from DRAM. Enclave
memory is also integrity protected meaning that memory
modifications and rollbacks are detected.

Non-enclave code cannot access enclave memory, but
enclave code can access untrusted DRAM outside the
EPC directly, e.g., to pass function call parameters and
results. It is the responsibility of the enclave code, how-
ever, to verify the integrity of all untrusted data.

Enclave life-cycle. Enclaves are created by untrusted
code using the ECREATE instruction, which initializes an
SGX enclave control structure (SECS) in the EPC. The
EADD instruction adds pages to the enclave. SGX records

the enclave to which the page was added, its virtual ad-
dress and its permissions, and it subsequently enforces
security restrictions, such as ensuring the enclave maps
the page at the accessed virtual address. When all en-
clave pages are loaded, the EINIT instruction creates a
cryptographic measurement, which can be used by re-
mote parties for attestation.

For Intel Skylake CPUs [31], the EPC size is be-
tween 64 MB and 128 MB. To support enclave applica-
tions with more memory, SGX provides a paging mecha-
nism for swapping pages between the EPC and untrusted
DRAM: the system software uses privileged instructions
to cause the hardware to copy a page into an encrypted
buffer in DRAM outside of the EPC. Before reusing
the freed EPC page, the system software must follow a
hardware-enforced protocol to flush TLB entries.

Threading. After enclave initialization, an unprivileged
application can execute enclave code through the EENTER
instruction, which switches the CPU to enclave mode and
jumps to a predefined enclave offset. Conversely, the
EEXIT instruction causes a thread to leave the enclave.
SGX supports multi-threaded execution inside enclaves,
with each thread’s enclave execution state stored in a
4 KB thread control structure (TCS).

Performance overhead. SGX incurs a performance
overhead when executing enclave code: (i) since priv-
ileged instructions cannot execute inside the enclave,
threads must exit the enclave prior to system calls. Such
enclave transitions come at a cost—for security reasons,
a series of checks and updates must be performed, in-
cluding a TLB flush. Memory-based enclave arguments
must also be copied between trusted and untrusted mem-
ory; (ii) enclave code also pays a penalty for writes
to memory and cache misses because the MEE must
encrypt and decrypt cache lines; and (iii) applications
whose memory requirements exceed the EPC size must
swap pages between the EPC and unprotected DRAM.
Eviction of EPC pages is costly because they must be
encrypted and integrity-protected before being copied to
outside DRAM. To prevent address translation attacks,
the eviction protocol interrupts all enclave threads and
flushes the TLB.

2.4 Design trade-offs

Designing a secure Linux container using SGX requires
a fundamental decision: what system support should be
placed inside an enclave to enable the secure execution
of Linux processes in a container? As we explore in
this section, this design decision affects both (i) the se-
curity properties of containers, in terms of the size of the
TCB and the exposed interface to the outside world, and
(ii) the performance impact due to the inherent restric-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 691

Service TCB No. host Avg. Latency CPU
size system calls throughput utilization

Redis 6.9✓ <0.1✓ 0.6✓ 2.6✓ 1.1✓
NGINX 5.7✓ 0.3✓ 0.8✓ 4.5✓ 1.5✓
SQLite 3.8✓ 3.1✓ 0.3✓ 4.2✓ 1.1✓

Table 1: Relative comparison of the LKL Linux library
OS (no SGX) against native processes that use glibc

tions of SGX. To justify the design of SCONE, we first
explore alternate design choices.

(1) External container interface. To execute unmod-
ified processes inside secure containers, the container
must support a C standard library (libc) interface. Since
any libc implementation must use system calls, which
cannot be executed inside of an enclave, a secure con-
tainer must also expose an external interface to the host
OS. As the host OS is untrusted, the external interface
becomes an attack vector, and thus its design has secu-
rity implications: an attacker who controls the host OS
can use this interface to compromise processes running
inside a secure container. A crucial decision becomes
the size of (a) the external interface, and (b) the TCB re-
quired to implement the interface within the enclave.

Figure 1a shows a prior design point, as demonstrated
by Haven [6], which minimizes the external interface by
placing an entire Windows library OS inside the enclave.
A benefit of this approach is that it exposes only a small
external interface with 22 calls because a large portion of
a process’ system support can be provided by the library
OS. The library OS, however, increases the TCB size in-
side of the enclave. In addition, it may add a perfor-
mance overhead due to the extra abstractions (e.g., when
performing I/O) introduced by the library OS.

We explore a similar design for Linux container pro-
cesses. We deploy three typical containerized services
using the Linux Kernel Library (LKL) [45] and the musl
libc library [38], thus building a simple Linux library OS.
The external interface of LKL has 28 calls, which is com-
parable to Haven.

Table 1 reports the performance and resource metrics
for each service using the Linux library OS compared
to a native glibc deployment. On average, the library
OS increases the TCB size by 5✓, the service latency
by 4✓ and halves the service throughput. For Redis and
NGINX, the number of system calls that propagate to
the untrusted host OS are reduced as the library OS can
handle many system calls directly. For SQLite, however,
the number of system calls made to the host OS increases
because LKL performs I/O at a finer granularity.

While our library OS lacks optimizations, e.g., mini-
mizing the interactions between the library OS and the
host OS, the results show that there is a performance

Application Code

Shielding layer

Host OS

Application Code

Shim C Library

C Library
Host OS

Application Code

Host OS

Libraries

Library OS
C Library
Libraries

C Library
Libraries

Shielding layer

(a)

Untrusted system calls Minimal TCBLibrary OS inside TCB

(c)(b)

Ex
te

rn
al

co
nt

ain
er

 in
te

rfa
ce

tr
us

te
d

un
tru

st
ed

Figure 1: Alternative secure container designs

degradation for both throughput and latency due to the
kernel abstractions of the library OS. We conclude that
the large TCB inside of the enclave and the performance
overhead of this design is not a natural fit for containers.

Figure 1b shows the opposite, extreme design point:
the external interface is used to perform all libc library
calls made by the application. This raises the challenge
of protecting the confidentiality and integrity of applica-
tion data whilst exposing a wide interface. For example,
I/O calls such as read and write could be used to com-
promise data within the enclave, and code inside the se-
cure container cannot trust returned data. A benefit of
this approach is that it leads to a minimal TCB inside the
enclave—only a small shim C library needs to relay libc
calls to the host libc library outside of the enclave.

Finally, Figure 1c shows a middle ground by defin-
ing the external interface at the level of system calls ex-
ecuted by the libc implementation. As we describe in
§3, the design of SCONE explores the security and per-
formance characteristics of this particular point in the
design space. Defining the external container interface
around system calls has the advantage that system calls
already implement a privileged interface. While this de-
sign does not rely on a minimalist external interface to
the host OS, we show that shield libraries can be used to
protect a security-sensitive set of system calls: file de-
scriptor based I/O calls, such as read, write, send, and
recv, are shielded by transparently encrypting and de-
crypting the user data. While SCONE does not support
some system calls, such as fork, exec, and clone, due to
its user space threading model and the architectural lim-
itations of SGX, they were not essential for the micro-
services that we targeted.

(2) System call overhead. All designs explored above
pay the cost of executing system calls outside of the
enclave (see §2.3). For container services with a high
system call frequency, e.g., network-heavy services, this
may result in a substantial performance impact. To quan-
tify this issue, we conduct a micro-benchmark on an Intel
Xeon CPU E3-1230 v5 at 3.4 GHz measuring the maxi-
mum rate at which pwrite system calls can be executed
with and without an enclave. The benchmark is imple-
mented using the Intel SGX SDK for Linux [32], which

692 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

l

l

l

l

l

l

l

l

10

100

1000

10000

1 2 3 4 5 6 7 8
Threads

Sy
st

em
 c

al
ls

 (1
00

0s
/s

)

glibc (32 B)

glibc (64 KB)

SGX SDK (32 B)

SGX SDK (64 KB)

Figure 2: Number of executed pwrite system calls
with an increasing number of threads

performs synchronous system calls with threads leav-
ing and re-entering the enclave. We vary the number of
threads and the pwrite buffer size.

Figure 2 shows that the enclave adds an overhead of
an order of magnitude. The performance with large
buffer sizes is limited by the copy overhead of the
memory-based arguments; with small buffers, the main
cost comes from the threads performing enclave tran-
sitions. We conclude that efficient system call support
is a crucial requirement for secure containers. A se-
cure container design must therefore go beyond simple
synchronous support for system calls implemented using
thread transitions.

(3) Memory access overhead. The memory accesses
of a secure container process are affected by the higher
overhead of accessing enclave pages (see §2.3). We ex-
plore this overhead using a micro-benchmark built with
the Linux SGX SDK on the same hardware. The bench-
mark measures the time for both sequential and random
read/write operations, normalized against a deployment
without an enclave. All operations process a total of
256 MB, but access differently-sized memory regions.

Figure 3 shows that, as long as the accessed memory
fits into the 8 MB L3 cache, the overheads are negligible.
With L3 cache misses, there is a performance overhead
of up to 12✓ for the random memory accesses. When the
accessed memory is beyond the available EPC size, the
triggered page faults lead to an overhead of three orders
of magnitude. Sequential operations achieve better per-
formance due to CPU prefetching, which hides some of
the decryption overheads: they experience no overhead
for memory ranges within the EPC size and a 2✓ over-
head for sizes beyond that.

These results show that, for performance reasons, a
secure container design should reduce access to enclave
memory. Ideally, it should use untrusted non-enclave
memory as much as possible, without compromising the
offered security guarantees.

● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

av
ai

la
bl

e
EP

C
 s

ize
av

ai
la

bl
e

EP
C

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

L3
 c

ac
he

 s
ize

1

10

100

1000

1 2 4 8 16 32 64 128 25692
Allocated memory size (MB)

N
or

m
al

ize
d

ru
n

tim
e

(w
.r.

t.
na

tiv
e)

sequential reads and writes

random writes

random reads

Figure 3: Normalized overhead of memory accesses
with SGX enclaves

3 SCONE Design

Our objective is to offer secure containers on top of an
untrusted OS: a secure container must protect container-
ized services from the threats defined in §2.2. We also
want secure containers to fit transparently into existing
Docker container environments: system administrators
should be able to build secure container images with the
help of Docker in a trusted environment and run secure
containers in an untrusted environment.

3.1 Architecture

Figure 4 gives an overview of the SCONE architecture:
(1) SCONE exposes an external interface based on

system calls to the host OS, which is shielded from at-
tacks. Similar to what is done by the OS kernel to pro-
tect itself from user space attacks, SCONE performs san-
ity checks and copies all memory-based return values to
the inside of the enclave before passing the arguments
to the application (see §3.4). To protect the integrity
and confidentiality of data processed via file descriptors,
SCONE supports transparent encryption and authentica-
tion of data through shields (see §3.2).

(2) SCONE implements M:N threading to avoid the
cost of unnecessary enclave transitions: M enclave-
bound application threads are multiplexed across N OS
threads. When an application thread issues a system call,
SCONE checks if there is another application thread that
it can wake and execute until the result of the system call
is available (see §3.3).

(3) SCONE offers container processes an asyn-
chronous system call interface to the host OS. Its imple-
mentation uses shared memory to pass the system call
arguments and return values, and to signal that a sys-
tem call should be executed. System calls are executed
by separate threads running in a SCONE kernel module.
Hence, the threads inside the enclave do not have to exit
when performing system calls (see §3.4).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 693

Host operating system (Linux)
Container

SCONE kernel
module

Enclave
Sy

st
em

 c
al

l
re

qu
es

ts

SGX-aware C library
Asynchronous system call interface

Application-specific libraries
File system shieldNetwork shield

trusted

Sy
st

em
 c

al
l

re
sp

on
se

s

lock-free
queuesscall4

scall5
scall6

SCONE
component

Intel SGX
driver

resp2
resp3

M:N Threading

Application Code

Ex
te

rn
al

co
nt

ain
er

 in
te

rfa
ce

tr
us

te
d

un
tru

st
ed

resp1

Figure 4: SCONE architecture

(4) SCONE integrates with existing Docker container
environments, and ensures that secure containers are
compatible with standard Linux containers (see §3.5).
The host OS, however, must include a Linux SGX driver
and, to boost performance, a SCONE kernel module.
Note that SCONE does not use any functionality from the
Intel Linux SDK [32] apart from the Linux SGX driver.

3.2 External interface shielding

So far, many popular services, such as Redis and Mem-
cached, have been created under the assumption that the
underlying OS is trusted. Such services therefore store
files in the clear, communicate with other processes via
unencrypted TCP channels (i.e., without TLS), and out-
put to stdout and stderr directly.

To protect such services in secure containers, SCONE
supports a set of shields. Shields focus on (1) prevent-
ing low-level attacks, such as the OS kernel controlling
pointers and buffer sizes passed to the service (see §3.4);
and (2) ensuring the confidentiality and integrity of the
application data passed through the OS. A shield is en-
abled by statically linking the service with a given shield
library. SCONE supports shields for (1) the transpar-
ent encryption of files, (2) the transparent encryption of
communication channels via TLS, and (3) the transpar-
ent encryption of console streams.

When a file descriptor is opened, SCONE can asso-
ciate the descriptor with a shield. A shield also has con-
figuration parameters, which are encrypted and can be
accessed only after the enclave has been initialized.

Note that the shields described below focus only on
application data, and do not verify data maintained by
the OS, such as file system metadata. If the integrity of
such data is important, further shields can be added.

File system shield. The file system shield protects the

confidentiality and integrity of files: files are authenti-
cated and encrypted, transparently to the service. For the
file system shield, a container image creator must define
three disjoint sets of file path prefixes: prefixes of (1) un-
protected files, (2) encrypted and authenticated files, and
(3) authenticated files. When a file is opened, the shield
determines the longest matching prefix for the file name.
Depending on the match, the file is authenticated, en-
crypted, or just passed through to the host OS.

The file system shield splits files into blocks of fixed
sizes. For each block, the shield keeps an authentication
tag and a nonce in a metadata file. The metadata file is
also authenticated to detect modifications. The keys used
to encrypt and authenticate files as well as the three prefix
sets are part of the configuration parameters passed to
the file system shield during startup. For immutable file
systems, the authentication tag of the metadata file is part
of the configuration parameters for the file system shield.
At runtime the metadata is maintained inside the enclave.

Containerized services often exclusively use a read-
only file system and consider writes to be ephemeral.
While processes in a secure container have access to
the standard Docker tmpfs, it requires costly interaction
with the kernel and its file system implementation. As
a lightweight alternative, SCONE also supports a dedi-
cated secure ephemeral file system through its file sys-
tem shield. The shield ensures the integrity and confi-
dentiality of ephemeral files: the ephemeral file system
maintains the state of modified files in non-enclave mem-
ory. Our evaluation results show that the performance of
ephemeral files is better than those of tmpfs (see §4.3).

The ephemeral file system implementation is resilient
against rollback attack: after restarting the container pro-
cess, the file system returns to a preconfigured startup
state that is validated by the file system shield, and there-
fore it is not possible for an attacker to rollback the file
system to an intermediate state. This is also true dur-
ing runtime, since the metadata for files’ blocks resides
within the enclave.

Network shield. Some container services, such as
Apache [44] and NGINX [47], always encrypt network
traffic; others, such as Redis [46] and Memcached [23],
assume that the traffic is protected by orthogonal means,
such as TLS proxies, which terminate the encrypted con-
nection and forward the traffic to the service in plaintext.
Such a setup is appropriate only for data centers in which
the communication between the proxy and the service is
assumed to be trusted, which is incompatible with our
threat model: an attacker could control the unprotected
channel between the proxy and the service and modify
the data. Therefore, for secure containers, a TLS net-
work connection must be terminated inside the enclave.

SCONE permits clients to establish secure tunnels to

694 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

M:N scheduler

TCS

EENTER

M app. threads
(variable)

enclave

N OS threads (fixed)
~ #hardware threads

thread control
structures (TCS)

SCONE kernel
module

asynchronous system
call execution

system call threads
~ #app. threads

IOCTL

scheduler

EENTER

IOCTL

TCS TCS

IOCTL

EENTER

IOCTL

Figure 5: M:N threading model

container services using TLS. It wraps all socket opera-
tions and redirects them to a network shield. The network
shield, upon establishing a new connection, performs a
TLS handshake and encrypts/decrypts any data transmit-
ted through the socket. This approach does not require
client- or service-side changes. The private key and cer-
tificate are read from the container’s file system. Thus,
they are protected by the file system shield.

Console shield. Container environments permit autho-
rized processes to attach to the stdin, stdout, and stderr
console streams. To ensure the confidentiality of appli-
cation data sent to these streams, SCONE supports trans-
parent encryption for them. The symmetric encryption
key is exchanged between the secure container and the
SCONE client during the startup procedure (see §3.5).

Console streams are unidirectional, which means that
they cannot be protected by the network shield whose
underlying TLS implementation requires bidirectional
streams. A console shield encrypts a stream by splitting
it into variable-sized blocks based on flushing patterns.
A stream is protected against replay and reordering at-
tacks by assigning each block a unique identifier, which
is checked by the authorized SCONE client.

3.3 Threading model
SCONE supports an M:N threading model in which
M application threads inside the enclave are mapped to
N OS threads. SCONE thus has fewer enclave tran-
sitions, and, even though the maximum thread count
must be specified at enclave creation time in SGX ver-
sion 1 [29], SCONE supports a variable number of ap-
plication threads.

As shown in Figure 5, multiple OS threads in SCONE
can enter an enclave. Each thread executes the scheduler,
which checks if: (i) an application thread needs to be wo-
ken due to an expired timeout or the arrival of a system
call response; or (ii) an application thread is waiting to be
scheduled. In both cases, the scheduler executes the as-
sociated thread. If no threads can be executed, the sched-

uler backs off: an OS thread may choose to sleep outside
of the enclave when the back-off time is longer than the
time that it takes to leave and reenter the enclave.

The number of OS threads inside the enclave is typi-
cally bound by the number of CPU cores. In this way,
SCONE utilizes all cores without the need for a large
number of OS threads inside the enclave. The sched-
uler does not support preemption. This is not a limi-
tation in practice because almost all application threads
perform either system calls or synchronization primitives
at which point the scheduler can reschedule threads.

In addition to spawning N OS threads inside the en-
clave, SCONE also “captures” several OS threads in-
side the SCONE kernel module. The threads dequeue
requests from the system call request queue, perform
system calls, and enqueue results into the response
queue (see Figure 4). The system call threads reside in
the kernel indefinitely to eliminate the overhead of ker-
nel mode switches. The number of system call threads
must be at least the number of application threads to
avoid stalling when system call threads block. Periodi-
cally, the system call threads leave the kernel module to
trigger Linux housekeeping tasks, such as the cleanup of
TCP state. When there are no pending system calls, the
threads back-off exponentially to reduce CPU load.

SCONE does not support the fork system call. En-
clave memory is tied to a specific process, and therefore
the execution of fork would require the allocation, ini-
tialization, and attestation of an independent copy of an
enclave. In current SGX implementations, the OS kernel
cannot copy enclave memory to achieve this.

3.4 Asynchronous system calls

Since SGX does not allow system calls to be issued from
within an enclave, they must be implemented with the
help of calls to functions outside of the enclave. This
means that the executing thread must copy memory-
based arguments to non-enclave memory, exit the en-
clave and execute the outside function to issue the system
call. When the system call returns, the thread must re-
enter the enclave, and copy memory-based results back
to the enclave. As we showed in §2.4, such synchronous
system calls have acceptable performance only for appli-
cations with a low system call rate.

To address this problem, SCONE also provides an
asynchronous system call interface [52] (see Figure 6).
This interface consists of two lock-free, multi-producer,
multi-consumer queues: a request queue and a response
queue. System calls are issued by placing a request into
the request queue. An OS thread inside the SCONE ker-
nel module receives and processes these requests. When
the system call returns, the OS thread places the result
into the response queue.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 695

System call
requests

app thread 1

scall1
scall2
scall3

app thread 2

syscall slot

thread
local

memory
args

syscall slot

thread
local

memory
args FI

FO
 q

ue
ue

s

memory
args

st
at

ic
 a

llo
ca

tio
n

scheduler threads

System call
responses

ret3
ret2
ret1

copy1

2 4

3

5

yield

resume
6

Enclave

Figure 6: Asynchronous system calls

As shown in Figure 6, an application thread first
copies memory-based arguments outside of the en-
clave 1 and adds a description of the system call to a
syscall slot data structure 2 , containing the system call
number and arguments. The syscall slot and the argu-
ments use thread-local storage, which is reused by sub-
sequent system calls. Next the application thread yields
to the scheduler 3 , which will execute other application
threads until the reply to the system call is received in the
response queue. The system call is issued by placing a
reference to the syscall slot into the request queue 4 .
When the result is available in the response queue 5 ,
buffers are copied to the inside of the enclave, and all
pointers are updated to point to enclave memory buffers.
As part of the copy operation, there are checks of the
buffer sizes, ensuring that no malicious pointers refer-
ring to the outside of an enclave can reach the applica-
tion. Finally, the associated application thread is sched-
uled again 6 .

The enclave code handling system calls also ensures
that pointers passed by the OS to the enclave do not point
to enclave memory. This check protects the enclave from
memory-based Iago attacks [12] and is performed for all
shield libraries.

3.5 Docker integration
We chose to integrate SCONE with Docker because it
is the most popular and widely used container platform.
A future version of SCONE may use the open container
platform [28], which would make it compatible with both
Docker and rkt (CoreOS) [48]. With SCONE, a secure
container consists of a single Linux process that is pro-
tected by an enclave, but otherwise it is indistinguish-
able from a regular Docker container, e.g., relying on the
shared host OS kernel for the execution of system calls.

The integration of secure containers with Docker re-
quires changes to the build process of secure images,
and client-side extensions for spawning secure contain-
ers and for secure communication with these containers.

trusted

not trusted

Secure Image Enclave

Repository

SCONE Client
Docker client

Docker
Engine

1: push
image

2: pull
image

3: pull
image

4: execute

5: secure
communication

Figure 7: Using secure containers with Docker

SCONE does not require modifications to the Docker En-
gine or its API, but it relies on a wrapper around the orig-
inal Docker client. A secure SCONE client is used to
create configuration files and launch containers in an un-
trusted environment. SCONE supports a typical Docker
workflow: a developer publishes an image with their ap-
plication, and a user can customize the image by adding
extra layers.

Image creation. Images are created in a trusted environ-
ment (see Figure 7). The image creator must be famil-
iar with the security-relevant aspects of the service, e.g.,
which files to protect and which shields to activate.

To create a secure container image, the image creator
first builds a SCONE executable of the application. They
statically compile the application with its library depen-
dencies and the SCONE library. SCONE does not sup-
port shared libraries by design to ensure that all enclave
code is verified by SGX when an enclave is created.

Next, the image creator uses the SCONE client to cre-
ate the metadata necessary to protect the file system.
The client encrypts specified files and creates a file sys-
tem (FS) protection file, which contains the message au-
thentication codes (MACs) for file chunks and the keys
used for encryption. The FS protection file itself is en-
crypted and added to the image. After that, the secure
image is published using standard Docker mechanisms.
SCONE does not need to trust the Docker registry, be-
cause the security-relevant parts are protected by the FS
protection file.

If the image creator wants to support the composition
of a secure Docker image [42], they only sign the FS
protection file with their public key, but do not encrypt
it. In this way, only its integrity is ensured, permitting
additional customization. The confidentiality of the files
is assured only after finishing the customization process.

Container startup. Each secure container requires a
startup configuration file (SCF). The SCF contains keys
to encrypt standard I/O streams, a hash of the FS pro-
tection file and its encryption key, application arguments
and environment variables. Only an enclave whose iden-
tity has been verified can access the SCF. Since SGX
does not protect the confidentiality of enclave code, em-

696 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bedding the startup configuration in the enclave itself is
not an option. Instead, after the executable has initial-
ized the enclave, the SCF is received through a TLS-
protected network connection, established during en-
clave startup [2]. In production use, the container owner
would validate that the container is configured securely
before sending it the SCF. The SGX remote attestation
mechanism [29] can attest to the enclave to enable this
validation, but our current SCONE prototype does not
support remote attestation.

4 Evaluation

Our evaluation of SCONE on SGX hardware is split
into three parts: (i) we present application benchmarks
for Apache [44], NGINX [47], Redis [46] and Mem-
cached [23]. We compare the performance of these ap-
plications with SCONE against native variants (§4.2);
(ii) we evaluate the performance impact of SCONE’s file
system shield with a set of micro-benchmarks (§4.3); and
(iii) we discuss results from a micro-benchmark regard-
ing the system call overhead (§4.4).

4.1 Methodology

All experiments use an Intel Xeon E3-1270 v5 CPU with
4 cores at 3.6 GHz and 8 hyper-threads (2 per core) and
8 MB cache. The server has 64 GB of memory and runs
Ubuntu 14.04.4 LTS with Linux kernel version 4.2. We
disable dynamic frequency scaling to reduce interfer-
ence. The workload generators run on a machine with
two 14-core Intel Xeon E5-2683 v3 CPUs at 2 GHz with
112 GB of RAM and Ubuntu 15.10. Each machine has
a 10 Gb Ethernet NIC connected to a dedicated switch.
The disk configuration is irrelevant as the workloads fit
entirely into memory.

We evaluate two web servers, Apache [44], and
NGINX [47]; Memcached [23]; Redis [46]; and
SQLite [55]. The applications include a mix of compute
(e.g., SQLite) and I/O intensive (e.g., Apache and Mem-
cached) workloads. We compare the performance of
three variants for each application: (i) one built with the
GNU C library (glibc); (ii) one built with the musl [38]
C library adapted to run inside SGX enclaves with syn-
chronous system calls (SCONE-sync); and (iii) one built
with the same musl C library but with asynchronous sys-
tem calls (SCONE-async). We compare with glibc be-
cause it is the standard C library for most Linux distribu-
tions, and constitutes a more conservative baseline than
musl. In our experiments, applications compiled against
glibc perform the same or better than the musl-based vari-
ants. The application process (and Stunnel) execute in-
side a Docker container.

Appli-
cation

Worker
threads

Enclave
threads

Syscall
threads

async sync async sync async sync

Apache 25 25 4 8 32 -
NGINX 1 1 1 1 16 -
Redis 1 1 1 1 16 -
Memcached 4 8 4 8 32 -

Table 2: Thread configuration used for applications

SCONE-async uses the SCONE kernel module to cap-
ture system call threads in the kernel. For each appli-
cation and variant, we configure the number of threads
(see §3.3) to give the best results, as determined experi-
mentally. We summarize the thread configuration in Ta-
ble 2. Worker threads are threads created by the appli-
cation, e.g., using pthread create(). In the glibc vari-
ant, worker threads are real OS threads, while in SCONE
they represent user space threads. Enclave threads are
OS threads that run permanently inside the enclave,
while system call threads are OS threads that run per-
manently outside. With SCONE-sync, there are no ded-
icated system call threads because the enclave threads
synchronously exit the enclave to perform system calls.

For applications that do not support encryption (e.g.,
Memcached and Redis), we use Stunnel [61] to encrypt
their communication in the glibc variant. When reporting
CPU utilization, the application’s glibc variant includes
the utilization due to Stunnel processes. In SCONE, the
network shield subsumes the functionality of Stunnel.

Reported data points are based on ten runs, and we
compute the 30% trimmed mean (i.e., without the top
and bottom 30% outliers) and its variance. The trimmed
mean is a robust estimator insensitive to outliers: it mea-
sures the central tendency even with jitter. Unless stated
otherwise, the variance is small, and we omit error bars.

4.2 Application benchmarks

Apache is a highly configurable and mature web server,
originally designed to spawn a process for each con-
nection. This differs from the architecture of the other
benchmarked web server—NGINX employs an event-
driven design. By default, it uses a single thread but cur-
rent versions can be configured to use multiple threads.

We use wrk2 [62] to fetch a web page. We increase the
number of concurrent clients and the frequency at which
they retrieve the page until the response times start to de-
grade. Since Apache supports application-level encryp-
tion in the form of HTTPS, we do not use Stunnel or
SCONE’s network shield.

Figure 8a shows that all three variants exhibit compa-
rable performance until about 32,000 requests per sec-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 697

● ● ● ● ● ● ● ●

●

●

0

1

2

3

4

0 20 40 60
Throughput (k.req/s)

La
te

nc
y

(s
)

● Glibc SCONE−async SCONE−sync

(a) Apache

● ● ● ● ●

●●●●

0

1

2

3

4

0 50 100 150 200
Throughput (k.op/s)

La
te

nc
y

(m
s)

● Glibc + Stunnel SCONE−async SCONE−sync

(b) Redis

● ● ●
●

●
●
●
●

●

●

0

1

2

3

0 100 200 300
Throughput (k.op/s)

La
te

nc
y

(m
s)

● Glibc + Stunnel SCONE−async SCONE−sync

(c) Memcached

Figure 8: Throughput versus latency for Apache, Redis, and Memcached

●
●

●
●

●

●
●

●

0

200

400

600

800

0 20 40 60
Throughput (k.req/s)

C
PU

 U
til

iz
at

io
n

(%
)

● Glibc SCONE−async SCONE−sync

(a) Apache

●
●

●

●

●

●●

0

200

400

600

800

0 50 100 150 200
Throughput (k.op/s)

C
PU

 U
til

iz
at

io
n

(%
)

● Glibc + Stunnel SCONE−async SCONE−sync

(b) Redis

●

●

●

●

●

●
●●

0

200

400

600

800

0 100 200 300
Throughput (k.op/s)

C
PU

 U
til

iz
at

io
n

(%
)

● Glibc + Stunnel SCONE−async SCONE−sync

(c) Memcached

Figure 9: CPU utilization for Apache, Redis, and Memcached

ond, at which point the latency of the SCONE-sync in-
creases dramatically. SCONE-async performs slightly
better, reaching 38,000 requests per second. The glibc
variant achieves 48,000 requests per second.

As shown in Figure 9a, SCONE-sync utilizes the CPU
more despite the fact that SCONE-async uses extra
threads to execute system calls. As we show below, the
synchronous system call interface is not as performant
as the asynchronous interface, resulting in a higher CPU
utilization. However, SCONE-async has a higher CPU
utilization than glibc. This is caused by the slower exe-
cution time of Apache running inside the enclave as well
as the extra threads used in the SCONE kernel module to
execute the system calls.

Redis is a distributed in-memory key/value store and rep-
resents an I/O-intensive network service. Typical work-
loads with many concurrent operations exhibit a high
system call frequency. Persistence in Redis is achieved
by forking and writing the state to stable storage in the
background. Fundamentally, forking for enclave ap-
plications is difficult to implement and not supported
by SCONE. Hence, we deploy Redis solely as an in-
memory store.

We use workloads A to D from the YCSB benchmark
suite [14]. In these workloads, both the application code

and data fit into the EPC, so the SGX driver does not need
to page-in EPC pages. We present results only for work-
load A (50% reads and 50% updates); the other work-
loads exhibit similar behaviour. We deploy 100 clients
and increase their request frequency until reaching max-
imum throughput.

Figure 8b shows that Redis with glibc achieves a
throughput of 189,000 operations per second. At this
point, as shown in Figure 9b, Redis, which is single-
threaded, becomes CPU-bound with an overall CPU uti-
lization of 400% (4 hyper-threads): 1 hyper-thread is
used by Redis, and 3 hyper-threads are used by Stunnel.

SCONE-sync cannot scale beyond 40,000 operations
per second (21% of glibc), also due to Redis’ single ap-
plication thread. By design, SCONE-sync performs en-
cryption as part of the network shield within the appli-
cation thread. Hence, it cannot balance the encryption
overhead across multiple hyper-threads, as Stunnel does,
and its utilization peaks at 100%.

SCONE-async reaches a maximum throughput of
116,000 operations per second (61% of glibc). In addi-
tion to the single application thread, multiple OS threads
execute system calls inside the SCONE kernel module.
Ultimately, SCONE-async is also limited by the single
Redis application thread, which is why CPU utilization
peaks at 200% under maximum throughput. The per-

698 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Variant LOC libc.a Apache NGINX Redis Memcached SQLite
(1000s) Size (KB) Size (KB) Size (KB) Size (KB) Size (KB) Size (KB)

glibc 1195 4710 5437 3975 2445 1143 801
musl 88 1498 4546 3088 682 289 832
SCONE libc 97 1572 4829 3286 853 357 880
Shielded SCONE libc 187 2491 5496 4082 1665 1208 1724

Table 3: Comparison of the binary sizes of statically linked applications using SCONE with native libc variants

● ● ● ● ● ● ● ●0

1

2

3

4

0 20 40 60
Throughput (k.req/s)

La
te

nc
y

(s
)

● Glibc SCONE−async SCONE−sync

Figure 10: Throughput versus latency for NGINX

formance of SCONE-async is better than SCONE-sync
because SCONE-async has a higher single thread system
call throughput. However, as SCONE-async does not as-
sign TLS termination to a separate thread either, it cannot
reach the throughput of glibc.

Memcached, a popular key/value cache, is evaluated
with the same YCSB workloads as Redis. We increase
the number of clients until each variant reaches its satu-
ration point. Again, the application fits into the EPC.

Figure 8c shows that the client latencies of all three
variants exhibited for a given throughput are similar until
approximately 230,000 operations per second, at which
point the latency of glibc starts to increase faster than
that of SCONE-async and SCONE-sync. The maximum
achieved throughput of the SCONE variants (277,000
operations per second for SCONE-async and 270,000
operations per second for SCONE-sync) is higher than
that of the glibc variant (238,000 operations per second).

For all three variants, the CPU utilization in Figure 9c
increases with throughput. Both SCONE variants expe-
rience a lower CPU utilization than the Memcached and
Stunnel deployment. This differs from single-threaded
Redis, as Memcached can utilize more CPU cores with
multiple threads and starts to compete for CPU cycles
with Stunnel. SCONE’s network shield encryption is
more efficient, allowing it to have a lower CPU load and
achieve higher throughput.

NGINX is a web server with an alternative architecture
to Apache—NGINX typically uses one worker process
per CPU core. Each worker process executes a non-

●
● ● ● ● ● ● ● ●

0

200

400

600

800

0 20 40 60
Throughput (k.req/s)

C
PU

 U
til

iz
at

io
n

(%
)

● Glibc SCONE−async SCONE−sync

Figure 11: CPU utilization for NGINX

blocking, event-driven loop to handle connections, pro-
cess requests and send replies. We configure NGINX to
use a single worker process.

Figure 10 and Figure 11 show the throughput and CPU
utilization for NGINX, respectively. The glibc variant
achieves approximately 50,000 requests per second—
similar to Apache, but at a much lower utilization
(>300% vs. 100%). SCONE-sync shows good perfor-
mance up to 18,000 requests per second. This is less than
Apache, but NGINX also only utilizes a single thread.
With SCONE-async, NGINX achieves 80% of the na-
tive performance again at a much lower overall CPU uti-
lization than Apache (200% vs. 500%). This demon-
strates that SCONE can achieve acceptable performance
both for multi-threaded applications, such as Apache,
and non-blocking, event-based servers, such as NGINX.

Code size. We compare the code sizes of our applica-
tions in Table 3. The size of applications linked against
the musl C library is in most cases smaller than that of
applications linked against glibc. The modifications to
musl for running inside of enclaves add 11,000 LOC,
primarily due to the asynchronous system call wrappers
(5000 LOC of generated code). The shields increase
the code size further (around 99,000 LOC), primarily
due to the TLS library. Nevertheless, the binary sizes
of shielded applications increase only to 0.6✓–2✓ com-
pared to the glibc-linked variants.

Although the binary size of the SCONE libc variant is
only 74 KB larger than musl, the binary size of some pro-
grams compiled against SCONE increase by more than
this amount. This is due to how we build the SCONE

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 699

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

0.1

1.0

10.0

4 8 12 16
Record size (KB)

Th
ro

ug
hp

ut
 (G

B/
s)

●

●

Encrypted read
Encrypted write

Ephemeral read
Ephemeral write

Read
Write

Figure 12: Throughput of random reads/writes with
ephemeral file system versus tmpfs

Application SCONE-async

T’put CPU util.

Apache 0.8✓ 1.4✓
Redis 0.6✓ 1.0✓
Memcached 1.2✓ 0.6✓
NGINX 0.8✓ 1.8✓

Table 4: Normalized application performance

binary: an application and all its dependent libraries are
linked into a position-independent shared object file. The
relocation information included in the shared object file
comprises up to a few hundred kilobytes.

Discussion. Table 4 summarizes the normalized results
for all the throughput-oriented applications. For Apache,
SCONE-async achieves performance on par with that of
the native version. The performance of SCONE-async is,
as expected, faster than that of SCONE-sync—SCONE-
async can switch to another Apache thread while waiting
for system call results.

For single-threaded applications such as Redis, asyn-
chronous system calls offer limited benefit, mostly due
to the faster response times compared to synchronous
system calls. However, SCONE-async cannot run other
application threads while waiting for the result of a sys-
tem call. The same is true for NGINX despite support-
ing multiple threads. In our experiments, NGINX did not
scale as well as Apache with the same number of threads.

The results demonstrate that SCONE-async can exe-
cute scalable container services with throughput and la-
tency that are comparable to native versions. This is in
some sense surprising given the micro-benchmarks from
§2.4, as they would suggest that applications inside SGX
enclaves would suffer a more serious performance hit.

4.3 File system shield
We evaluate the performance of the file system shield
with micro-benchmarks. We use IOZone [34] to sub-

●

●

●
●●● ● ● ● ● ● ● ●

0

200

400

600

800

0 250 500 750 1000
Number of Keys (1000s)

Th
ro

ug
hp

ut
 (k

.o
p/

s)

●

Shielded SQLCipher
Shielded SQLite (encrypted)

SQLCipher (glibc)
SQLite (glibc)

Figure 13: Throughput of SQLite and SQLCipher with
file system shield

ject the shield to random and sequential reads/writes.
We compare the throughput of three different IOZone
versions: (i) native glibc accessing a tmpfs file system;
(ii) SCONE with the ephemeral file system without pro-
tection; and (iii) SCONE with an encrypted ephemeral
file system.

Figure 12 shows the measured throughput as we vary
the record size. We observe that IOZone on an ephemeral
file system achieves a higher throughput than the native
glibc IOZone on tmpfs. This is because the application
does not issue any system calls when accessing data on
the ephemeral file system—instead, it accesses the un-
trusted memory directly, without exiting the enclave. En-
abling encryption on the ephemeral file system reduces
the throughput by an order of magnitude.

In addition to the synthetic IOZone benchmark, we
also measure how the shield impacts the performance
of SQLite. We compare four versions: (i) SQLite with
no protection; (ii) SQLCipher [54], which is SQLite
with application level encryption; (iii) shielded SQLite
on an encrypted ephemeral file system; and (iv) SQL-
Cipher on an ephemeral file system (no authentication
or encryption). The shielded versions use the memory-
backed ephemeral file system, whereas the glibc versions
of SQLite and SQLCipher use the standard Linux tmpfs.
All protected versions use 256-bit keys.

Figure 13 shows the result of the SQLite benchmark.
With small datasets (1000 keys), no cryptographic op-
erations are necessary because the working set fits into
SQLite’s in-memory cache. This results in compa-
rable performance across all versions. With bigger
datasets, however, performance of the different versions
diverge from the baseline, as SQLite starts to persist
data on the file system resulting in an increasing num-
ber of cryptographic operations. We observe that the
achieved throughput of the SQLCipher versions (approx.
60,000 operations per second) is about 35% of the base-
line (approx. 170,000 operations per second), while the
shielded SQLite version (approx. 140,000 operations per
second) reaches about 80%. This is because the file

700 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

●

●
●

● ● ● ● ●

●

●
●

● ● ● ● ●

10

100

1000

10000

1 2 3 4 5 6 7 8
Threads

Sy
st

em
 c

al
ls

 (1
00

0s
/s

)

●

●

Glibc 32B

Glibc 64KB

SCONE−async 32B

SCONE−async 64KB

SCONE−sync 32B

SCONE−sync 64KB

Figure 14: Frequency of system calls with asyn-
chronous system call support

system shield of SCONE uses AES-GCM encryption,
which outperforms AES in cipher block chaining (CBC)
mode as used by default in SQLCipher. CBC mode re-
stricts parallelism and requires an additional authentica-
tion mechanism.

4.4 Asynchronous system calls
Similar to Figure 2, Figure 14 shows how many pwrite
calls can be executed by SCONE-async, SCONE-sync
and natively. The x-axis refers to the number of OS-
visible enclave threads for SCONE-async and SCONE-
sync; for glibc, this is the number of native Linux threads.
We vary the buffer size to see how the copy overhead
influences the system call frequency. Larger buffers in-
crease the overhead to move system call parameters from
the enclave to the outside memory (§3.4); smaller buffers
stress the shared memory queues to pass system call data.

For one OS thread, SCONE-async reaches almost the
same number of system calls per second as glibc. Further
scalability is likely to be possible by specialising our im-
plementation of the lock-free FIFO queue.

5 Related Work

We discuss (i) software approaches that protect applica-
tions from privileged code, (ii) trusted hardware support
and (iii) asynchronous system calls.

Software protection against privileged code. Protect-
ing applications and their data from unauthorized access
by privileged system software is a long-standing research
objective. Initial work such as NGSCB [11, 43] and
Proxos [57] executes untrusted and trusted OSs side-by-
side using virtualization, with security-sensitive applica-
tions hosted by the trusted OS.

Subsequent work, including Overshadow [13],
SP3 [64], InkTag [27] and Virtual Ghost [16], has
focused on reducing the size of the TCB by directly
protecting application memory from unauthorized OS

accesses. SEGO [36] extends these approaches by
securing data handling inside and across devices using
trusted metadata. Minibox [37] is a hypervisor-based
sandbox that provides two-way protection between
native applications and the guest OS. Unlike SCONE,
all of these systems assume a trusted virtualization layer
and struggle to protect applications from an attacker
with physical access to the machine or who controls the
virtualization layer.

Trusted hardware can protect security-sensitive appli-
cations, and implementations differ in their performance,
commoditization, and security functionality.

Secure co-processors [39] offer tamper-proof physical
isolation and can host arbitrary functionality. However,
they are usually costly and limited in processing power.
While in practice used to protect high-value secrets such
as cryptographic keys [51], Bajaj and Sion [4, 5] demon-
strate that secure co-processors can be used to split a
database engine into trusted and untrusted parts. SCONE
instead focuses on securing entire commodity container
workloads and uses SGX to achieve better performance.

Trusted platform modules (TPM) [59] offer tailored
services for securing commodity systems. They sup-
port remote attestation, size-restricted trusted storage and
sealing of application data. Flicker [41] enables the mul-
tiplexing of secure modules that are integrity protected
by the TPM. What limits Flicker’s usability for arbitrary
applications is the high cost of switching between secure
and untrusted processing modes due to the performance
limitations of current TPM implementations. TrustVi-
sor [40] and CloudVisor [66] avoid the problem of fre-
quent TPM usage by including the hypervisor within the
TCB using remote attestation. This virtualization layer
increases the size of the TCB, and neither solution can
protect against an attacker with physical access to the
machine’s DRAM.

ARM TrustZone [3] has two system personalities, se-
cure and normal world. This split meets the needs of mo-
bile devices in which a rich OS must be separated from
the system software controlling basic operations. Santos
et al. [49] use TrustZone to establish trusted components
for securing mobile applications. However, isolation of
mutually distrustful components requires a trusted lan-
guage runtime in the TCB because there is only a single
secure world. TrustZone also does not protect against
attackers with physical DRAM access.

As we described in §2.3, Intel SGX [29] offers fine-
grained confidentiality and integrity at the enclave level.
However, unlike TrustZone’s secure world, enclaves can-
not execute privileged code. Along the lines of the orig-
inal SGX design goals of protecting tailored code for
specific security-sensitive tasks [26], Intel provides an
SDK [32, 33] to facilitate the implementation of simple

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 701

enclaves. It features an interface definition language to-
gether with a code generator and a basic enclave library.
Unlike SCONE, the SDK misses support for system calls
and offers only restricted functionality inside the enclave.

Haven [6] aims to execute unmodified legacy Win-
dows applications inside SGX enclaves by porting a Win-
dows library OS to SGX. Relative to the limited EPC size
of current SGX hardware, the memory requirements of a
library OS are large. In addition, porting a complete li-
brary OS with a TCB containing millions of LOC also
results in a large attack surface. By using only a modi-
fied C standard library, SCONE targets the demands of
Linux containers, keeping the TCB small and addressing
current SGX hardware constraints. Using asynchronous
system calls, SCONE reduces enclave transition costs
and puts emphasis on securing file and network commu-
nication for applications that do not use encryption.

VC3 [50] uses SGX to achieve confidentiality and in-
tegrity as part of the MapReduce programming model.
VC3 jobs follow the executor interface of Hadoop but are
not permitted to perform system calls. SCONE focuses
on generic system support for container-based, interac-
tive workloads but could be used as a basis for VC3 jobs
that require extended system functionality.

Asynchronous system calls. FlexSC [52] batches sys-
tem calls, reducing user/kernel transitions: when a batch
is available, FlexSC signals the OS. In SCONE, appli-
cation threads place system calls into a shared queue in-
stead, which permits the OS threads to switch to other
threads and stay inside the enclave. Moreover, SCONE
uses a kernel module to execute system calls, while
FlexSC requires invasive changes to the Linux kernel.
Earlier work such as ULRPC [7] improves the perfor-
mance of inter-process communication (IPC) using asyn-
chronous, cross address space procedure calls via shared
memory. In contrast, SCONE uses asynchronous system
calls for all privileged operations, not just IPC.

6 Conclusion

SCONE increases the confidentiality and integrity of
containerized services using Intel SGX. The secure con-
tainers of SCONE feature a TCB of only 0.6✓–2✓ the
application code size and are compatible with Docker.
Using asynchronous system calls and a kernel module,
SGX-imposed enclave transition overheads are reduced
effectively. For all evaluated services, we achieve at
least 60% of the native throughput; for Memcached, the
throughput with SCONE is even higher than with native
execution. At the same time, SCONE does not require
changes to applications or the Linux kernel besides static
recompilation of the application and the loading of a ker-
nel module.

Acknowledgments. The authors thank the anonymous
reviewers and our shepherd, Jeff Chase, for their valu-
able feedback. The work has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreements 645011 (SERECA)
and 690111 (SecureCloud), and from the UK Engineer-
ing and Physical Sciences Research Council (EPSRC)
under the CloudSafetyNet project (EP/K008129).

References
[1] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S.,

NEIGER, G., REGNIER, G., SANKARAN, R., SCHOINAS, I.,
UHLIG, R., VEMBU, B., AND WIEGERT, J. Intel Virtualization
Technology for Directed I/O. Intel Technology Journal (2006).

[2] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative Technology for CPU Based Attestation and Sealing.
In HASP (2013).

[3] ARM LIMITED. ARM Security Technology - Building a Secure
System using TrustZone Technology, 2009.

[4] BAJAJ, S., AND SION, R. TrustedDB: A Trusted Hardware
Based Database with Privacy and Data Confidentiality. In SIG-
MOD (2011).

[5] BAJAJ, S., AND SION, R. CorrectDB: SQL Engine with Practi-
cal Query Authentication. VLDB (2013).

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding Ap-
plications from an Untrusted Cloud with Haven. In OSDI (2014).

[7] BERSHAD, B. N., ANDERSON, T. E., LAZOWSKA, E. D., AND
LEVY, H. M. User-level interprocess communication for shared
memory multiprocessors. ACM TOCS 9, 2 (May 1991), 175–198.

[8] BREWER, E. A. Kubernetes and the Path to Cloud Native. In
SoCC (2015).

[9] BRICKELL, E., GRAUNKE, G., NEVE, M., AND SEIFERT, J.-P.
Software mitigations to hedge AES against cache-based software
side channel vulnerabilities. IACR Cryptology ePrint Archive
2006 (2006), 52.

[10] BROWN, N. Linux Kernel Overlay Filesystem Docu-
mentation. https://www.kernel.org/doc/Documentation/
filesystems/overlayfs.txt, 2015.

[11] CARROLL, A., JUAREZ, M., POLK, J., AND LEININGER, T.
Microsoft Palladium: A Business Overview. Microsoft Content
Security Business Unit (2002), 1–9.

[12] CHECKOWAY, S., AND SHACHAM, H. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. In ASPLOS
(2013).

[13] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND
PORTS, D. R. Overshadow: A Virtualization-based Approach
to Retrofitting Protection in Commodity Operating Systems. In
ASPLOS (2008).

[14] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking Cloud Serving Systems with
YCSB. In SoCC (2010).

[15] COSTAN, V., AND DEVADAS, S. Intel SGX explained. Tech.
rep., Cryptology ePrint Archive, Report 2016/086, 2016.

[16] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. Virtual
Ghost: Protecting Applications from Hostile Operating Systems.
In ASPLOS (2014).

[17] CVE-ID: CVE-2014-9357. Available from MITRE at https:
//cve.mitre.org, Dec. 2014.

702 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://cve.mitre.org
https://cve.mitre.org

[18] CVE-ID: CVE-2015-3456. Available from MITRE at https:
//cve.mitre.org, May 2015.

[19] CVE-ID: CVE-2015-5154. Available from MITRE at https:
//cve.mitre.org, Aug. 2015.

[20] DIERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
Aug. 2008. Updated by RFCs 5746, 5878, 6176, 7465, 7507,
7568, 7627, 7685.

[21] DONG, Y., YANG, X., LI, J., LIAO, G., TIAN, K., AND GUAN,
H. High performance network virtualization with SR-IOV. Jour-
nal of Parallel and Distributed Computing 72, 11 (2012), 1471–
1480.

[22] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO,
J. An updated performance comparison of virtual machines and
Linux containers. In ISPASS (2015).

[23] FITZPATRICK, B. Distributed caching with memcached. Linux
Journal (Aug. 2004).

[24] GRABER, H. LXC Linux Containers, 2014.

[25] HAPROXY. http://www.haproxy.org, 2016.

[26] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND
DEL CUVILLO, J. Using Innovative Instructions to Create Trust-
worthy Software Solutions. In HASP (2013).

[27] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND
WITCHEL, E. InkTag: Secure Applications on an Untrusted Op-
erating System. In ASPLOS (2013).

[28] INITIATIVE, T. O. C. https://www.opencontainers.org,
2016.

[29] INTEL CORP. Software Guard Extensions Programming Ref-
erence, Ref. 329298-002US. https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf,
Oct. 2014.

[30] INTEL CORP. Intel Software Guard Extensions (Intel SGX), Ref.
332680-002. https://software.intel.com/sites/default/
files/332680-002.pdf, June 2015.

[31] INTEL CORP. Product Change Notification
114074-00. https://qdms.intel.com/dm/i.aspx/
5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.
pdf, October 2015.

[32] INTEL CORP. Intel Software Guard Extensions for Linux
OS. https://01.org/intel-softwareguard-extensions,
June 2016.

[33] INTEL CORP. Intel Software Guard Extensions (Intel SGX) SDK.
https://software.intel.com/sgx-sdk, 2016.

[34] IOZONE. http://www.iozone.org, 2016.

[35] KUBERNETES. http://kubernetes.io, 2016.

[36] KWON, Y., DUNN, A. M., LEE, M. Z., HOFMANN, O. S., XU,
Y., AND WITCHEL, E. Sego: Pervasive Trusted Metadata for Ef-
ficiently Verified Untrusted System Services. In ASPLOS (2016).

[37] LI, Y., MCCUNE, J., NEWSOME, J., PERRIG, A., BAKER, B.,
AND DREWRY, W. MiniBox: A Two-Way Sandbox for x86 Na-
tive Code. In ATC (2014).

[38] LIBC, M. https://www.musl-libc.org, 2016.

[39] LINDEMANN, M., PEREZ, R., SAILER, R., VAN DOORN, L.,
AND SMITH, S. Building the IBM 4758 Secure Coprocessor.
Computer 34, 10 (Oct 2001), 57–66.

[40] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB Re-
duction and Attestation. In S&P (2010).

[41] MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An Execution Infrastructure for TCB
Minimization. In EuroSys (2008).

[42] MERKEL, D. Docker: Lightweight Linux Containers for Consis-
tent Development and Deployment. Linux Journal (Mar. 2014).

[43] PEINADO, M., CHEN, Y., ENGLAND, P., AND MANFERDELLI,
J. NGSCB: A Trusted Open System. In ACISP (2004).

[44] PROJECT, A. H. S. https://httpd.apache.org, 2016.

[45] PURDILA, O., GRIJINCU, L. A., AND TAPUS, N. LKL: The
Linux kernel library. In RoEduNet (2010).

[46] REDIS. http://redis.io, 2016.

[47] REESE, W. Nginx: the High-Performance Web Server and Re-
verse Proxy. Linux Journal (Sept. 2008).

[48] RKT (COREOS). https://coreos.com/rkt, 2016.

[49] SANTOS, N., RAJ, H., SAROIU, S., AND WOLMAN, A. Using
ARM TrustZone to build a trusted language runtime for mobile
applications. In ASPLOS (2014).

[50] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy Data Analytics in the Cloud using SGX. In
S&P (2015).

[51] SERVICES, A. W. AWS CloudHSM Getting Started Guide.
http://aws.amazon.com/cloudhsm, 2016.

[52] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call
Scheduling with Exception-less System Calls. In OSDI (2010).

[53] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A.,
AND PETERSON, L. Container-based operating system virtual-
ization: A scalable, high-performance alternative to hypervisors.
SIGOPS OSR (Mar. 2007).

[54] SQLCIPHER. https://www.zetetic.net/sqlcipher, 2016.

[55] SQLite. https://www.sqlite.org, 2016.

[56] SWARM, D. https://docs.docker.com/swarm, 2016.

[57] TA-MIN, R., LITTY, L., AND LIE, D. Splitting Interfaces: Mak-
ing Trust Between Applications and Operating Systems Config-
urable. In OSDI (2006).

[58] THONES, J. Microservices. IEEE Software 32, 1 (2015), 116–
116.

[59] TRUSTED COMPUTING GROUP. Trusted Platform Module Main
Specification, version 1.2, revision 116, 2011.

[60] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F., ANDERSON, A. V., BENNETT, S. M., KÄGI, A.,
LEUNG, F. H., AND SMITH, L. Intel virtualization technology.
Computer 38, 5 (2005), 48–56.

[61] WONG, W. Stunnel: SSLing Internet Services Easily. SANS
Institute, November (2001).

[62] A HTTP benchmarking tool based mostly on wrk. https://
github.com/giltene/wrk2, 2016.

[63] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In S&P (2015).

[64] YANG, J., AND SHIN, K. G. Using Hypervisor to Provide Data
Secrecy for User Applications on a Per-page Basis. In VEE
(2008).

[65] ZETTER, K. NSA Hacker Chief Explains How to Keep Him Out
of Your System. Wired (Jan. 2016).

[66] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In SOSP (2011).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 703

https://cve.mitre.org
https://cve.mitre.org
https://cve.mitre.org
https://cve.mitre.org
http://www.haproxy.org
https://www.opencontainers.org
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://01.org/intel-softwareguard-extensions
https://software.intel.com/sgx-sdk
http://www.iozone.org
http://kubernetes.io
https://www.musl-libc.org
https://httpd.apache.org
http://redis.io
https://coreos.com/rkt
http://aws.amazon.com/cloudhsm
https://www.zetetic.net/sqlcipher
https://www.sqlite.org
https://docs.docker.com/swarm
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2

Coordinated and Efficient Huge Page Management with Ingens

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach1, Emmett Witchel
The University of Texas at Austin

1The University of Texas at Austin and VMware Research Group

Abstract
Modern computing is hungry for RAM, with today’s enor-
mous capacities eagerly consumed by diverse workloads.
Hardware address translation overheads have grown with
memory capacity, motivating hardware manufacturers to
provide TLBs with thousands of entries for large page
sizes (called huge pages). Operating systems and hypervi-
sors support huge pages with a hodge-podge of best-effort
algorithms and spot fixes that made sense for architectures
with limited huge page support, but the time has come for
a more fundamental redesign.

Ingens is a framework for huge page support that re-
lies on a handful of basic primitives to provide trans-
parent huge page support in a principled, coordinated
way. By managing contiguity as a first-class resource and
by tracking utilization and access frequency of memory
pages, Ingens is able to eliminate a number of fairness
and performance pathologies that plague current systems.
Experiments with our prototype demonstrate fairness im-
provements, performance improvements (up to 18%), tail-
latency reduction (up to 41%), and reduction of memory
bloat from 69% to less than 1% for important applications
like Web services (e.g., the Cloudstone benchmark) and
the Redis key-value store.

1 Introduction
Modern computing platforms can support terabytes of
RAM and workloads able to take advantage of such large
memories are now commonplace [51]. However, in-
creased capacity represents a significant challenge for
address translation. All modern processors use page ta-
bles for address translation and TLBs to cache virtual-
to-physical mappings. Because TLB capacities cannot
scale at the same rate as DRAM, TLB misses and address
translation can incur crippling performance penalties for
large memory workloads [44, 53] when these workloads
use traditional page sizes (i.e., 4KB). Hardware-supported
address virtualization (e.g., AMD’s nested page tables) in-
creases average-case address translation overhead because

multi-dimensional page tables amplify worst-case trans-
lation costs by 6× [59]. Hardware manufacturers have
addressed increasing DRAM capacity with better support
for larger page sizes, or huge pages, which reduce address
translation overheads by reducing the frequency of TLB
misses. However, the success of these mechanisms is crit-
ically dependent on the ability of the operating systems
and hypervisors to manage huge pages.

While huge pages have been commonly supported in
hardware since the 90s [75, 76], until recently, processors
have had a very small number of TLB entries reserved
for huge pages, limiting their usability. Newer architec-
tures support thousands of huge page entries in dual-level
TLBs (e.g., 1,536 in Intel’s Skylake [1]), which is a major
change: the onus of better huge page support has shifted
from the hardware to the system software. There is now
both an urgent need and an opportunity to modernize
memory management.

Operating system memory management has generally
responded to huge page hardware with best-effort algo-
rithms and spot fixes, choosing to keep their management
algorithms focused on the 4KB page (which we call a base
page). For example, Linux and KVM (Linux’s in-kernel
hypervisor) adequately support many large-memory work-
loads (i.e., ones with simple, static memory allocation be-
havior), but a variety of common workloads are exposed
to unacceptable performance overheads, wasted memory
capacity, and unfair performance variability when using
huge pages. These problems are common and severe
enough that administrators generally disable huge pages
(e.g., MongoDB, Couchbase, Redis, SAP, Splunk, etc.)
despite their obvious average-case performance advan-
tages [24, 9, 11, 30, 26, 32, 34, 37]. Other operating
systems have similar or even more severe problems sup-
porting huge pages (see §2.2 and §3.4).

Ingens1 is a memory manager for the operating system
and hypervisor that replaces the best-effort mechanisms

1Ingens is Latin for huge.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 705

and spot-fixes of the past with a coordinated, unified ap-
proach to huge pages; one that is better targeted to the
increased TLB capacity in modern processors. Ingens
does not interfere with workloads that perform well with
current huge page support: the prototype adds 0.7% over-
head on average (Table 4). Ingens addresses the following
problems endemic to current huge page support, and we
quantify the impact of these problems on real workloads
using our prototype.
• Latency. Huge pages expose applications to high

latency variation and increased tail latency (§3.1). Ingens
improves the Cloudstone benchmark [77] by 18% and
reduces 90th percentile tail-latency by 41%.
• Bloat. Huge pages can make a process or virtual

machine (VM) occupy a large amount of physical memory
while much of that memory remains unusable due to
internal fragmentation (§3.2). For Redis, Linux bloats
memory use by 69%, while Ingens bloats by just 0.8%.
• Unfairness. Simple, greedy allocation of huge

pages is unfair, causing large and persistent performance
variation across identical processes or VMs (§3.5). Ingens
makes huge page allocation fair (e.g., Figure 5).
• High-performance memory savings. Services that

reduce memory consumption, such as kernel same-page
merging (KSM), can prevent a VM from using huge pages
(§3.6). On one workload (Figure 11), Linux saves 9.2%
of memory but slows down the programs by 6.8–19%.
Ingens saves 71.3% of the memory that Linux/KVM can
save with only a 1.5–2.6% slowdown.

Ingens is a memory management redesign that brings
performance, memory savings and fairness to memory-
intensive applications with dynamic memory behavior.
It is based on two principles: (1) memory contiguity is
an explicit resource to be allocated across processes and
(2) good information about spatial and temporal access
patterns is essential to managing contiguity; it allows the
OS to tell/predict when contiguity is/will be profitably
used. The measured performance of the Ingens prototype
on realistic workloads validates the approach.

2 Background
Current trends in memory management hardware are mak-
ing it critical that system software support huge pages ef-
ficiently and flexibly. This section considers those trends
along with the challenges huge page support creates for
the OS and hypervisor. We provide an overview of huge
page support in modern operating systems and conclude
with experiments that show the performance benefits for
the state-of-the-art in huge page management.

2.1 Virtual memory hardware trends

Virtual memory decouples the address space used by pro-
grams from that exported by physical memory (RAM).
A page table maps virtual to physical page number, with

recently used page table entries cached in the hardware
translation lookaside buffer (TLB). Increasing the page
size increases TLB reach (the amount of data covered by
translations cached in the TLB), but larger pages require
larger regions of contiguous physical memory. Large
pages can suffer from internal fragmentation (unused por-
tions within the unit of allocation) and can also increase
external fragmentation (reducing the remaining supply
of contiguous physical memory). Using larger pages re-
quires more active memory management from the system
software to increase available contiguity and avoid frag-
mentation.

Seminal work in huge page management recognized
the importance of explicitly managing memory contiguity
in the OS [68] and formed the basis for huge page support
in FreeBSD. Innovations of Ingens relative to previous
work are considered in detail in Section 3.4; here we
survey recent hardware trends that make the need for
system support of huge pages more urgent.

DRAM Growth. Larger DRAM sizes have led to
deeper page tables, increasing the number of memory
references needed to look up a virtual page number. x86
uses a 4-level page table with a worst case of four page
table memory references to perform a single address trans-
lation.

Hardware memory virtualization. Extended page ta-
bles (Intel) or nested page tables (AMD) require addi-
tional indirection for each stage of memory address trans-
lation, making the process of resolving a virtual page
number even more complex. With extended page tables,
both the guest OS and host hypervisor perform virtual to
physical translations to satisfy a single request. During
translation, guest physical addresses are treated as host
virtual addresses, which use hardware page-table walkers
to perform the entire translation. Each layer of lookup in
the guest can require a multi-level translation in the host,
amplifying the maximum cost to 24 lookups [59, 40], and
increasing average latencies [67].

Increased TLB reach. Recently, Intel has moved to
a two-level TLB design, and in the past few years has
provided a significant number of second-level TLB entries
for huge pages, going from zero for Sandy Bridge and
Ivy Bridge to 1,024 for Haswell [2] (2013) and 1,536 for
Skylake [1] (2015).

Better hardware support for multiple page sizes creates
an opportunity for the OS and the hypervisor, but it puts
stress on the current memory management algorithms.
In addition to managing the complexity of different page
granularities, system software must generate and maintain
significant memory contiguity to use larger page sizes.

706 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Name Suite/Application Description
429.mcf SPEC CPU 2006 [33] Single-threaded scientific computation
Canneal PARSEC 3.0 [28] Parallel scientific computation
SVM [64] Liblinear [22] Machine learning, Support vector machine
Tunkrank [8] PowerGraph [55] Large scale in-memory graph analytics
Nutch [19] Hadoop [4] Web search indexing using MapReduce
MovieRecmd [25] Spark/MLlib [5] Machine learning, Movie recommendation
Olio Cloudstone [8] Social-event Web service (ngnix/php/mysql)
Redis Redis [29] In-memory Key-value store
MongoDB MongoDB [23] In-memory NoSQL database

Table 1: Summary of memory intensive workloads.

Issue OS Hyp
Page fault latency (§3.1) O
Bloat (§3.2) O
Fragmentation (§3.3) O O
Unfair allocation (§3.5) O O
Memory sharing (§3.6) O

Table 2: Summary of issues
in Linux as the guest OS and
KVM as the host hypervisor.

2.2 Operating system support for huge pages

Early operating system support for huge pages provided a
separate interface for explicit huge page allocation from a
dedicated huge page pool configured by the system admin-
istrator. Windows and OS X continue to have this level of
support. In Windows, applications must use an explicit
memory allocation API for huge page allocation [21] and
Windows recommends that applications allocate huge
pages all at once when they begin. OS X applications also
must set an explicit flag in the memory allocation API to
use huge pages [15].

Initial huge page support in Linux used a similar sep-
arate interface for huge page allocation that a developer
must invoke explicitly (called hugetlbfs). Developers
did not like the burden of this alternate API and kernel
developers wanted to bring the benefits of huge pages to
legacy applications and applications with dynamic mem-
ory behavior [6, 36]. Hence, the primary way huge pages
are allocated in Linux today is transparently by the kernel.

Transparent support is vital. Transparent huge page
support [80, 68] is the only practical way to bring the
benefits of huge pages to all applications, which can re-
main unchanged while the system provides them with the
often significant performance advantages of huge pages.
With transparent huge page support, the kernel allocates
memory to applications using base pages. We say the ker-
nel promotes a sequence of 512 properly aligned pages
to a huge page (and demotes a huge page into 512 base
pages).

Transparent management of huge pages best supports
the multi-programmed and dynamic workloads typical
of web applications and analytics where memory is con-
tended and access patterns are often unpredictable. To
the contrary, when a single big-memory application is
the only important program running, the application can
simply map a large region and keep it mapped for the
duration of execution, for example fast network functions
using Intel’s Data Plane Development Kit [10]. These
simple programs are well supported by even the rudimen-
tary huge page support in Windows and OS X. However,

multi-programmed workloads and workloads with more
complex memory behavior are common in enterprise and
cloud computing, so Ingens focuses on OS support for
these more challenging cases. While transparent huge
page support is far more developer-friendly than explicit
allocation, it creates memory management challenges in
the operating system that Ingens addresses.

Linux running on Intel processors currently has the
best transparent huge page support among commodity
OSes so we base our prototype on it and most of our
discussion focuses on Linux. We quantify Linux’s perfor-
mance advantages in Section 3.4. The design of Ingens
focuses on 4 KB (base) and 2 MB (huge) pages because
these are most useful to applications with dynamic mem-
ory behavior (1 GB are usually too large for user data
structures).

Linux is greedy and aggressive. Linux’s huge page
management algorithms are greedy: it promotes huge
pages in the page fault handler based on local information.
Linux is also aggressive: it will always try to allocate
a huge page. Huge pages require 2 MB of contiguous
free physical memory but sometimes contiguous phys-
ical memory is in short supply (e.g., when memory is
fragmented). Linux’s approach to huge page allocation
works well for simple applications that allocate a large
memory region and use it uniformly, but we demonstrate
many applications that have more complex behavior and
are penalized by Linux’s greedy and aggressive promo-
tion of huge pages (§3). Ingens recognizes that memory
contiguity is a valuable resource and explicitly manages
it.

2.3 Hypervisor support for huge pages

Ingens focuses on the case where Linux is used both as
the guest operating system and as the host hypervisor
(i.e., KVM [62]). The Linux/KVM pair is widely used in
cloud deployments [27, 16, 3]. In the hypervisor, Ingens
supports host huge pages mapped from guest physical
memory. When promoting guest physical memory, In-
gens modifies the extended page table to use huge pages
because it is acting as a hypervisor, not as an operating

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 707

Workloads h B g H h H g B h H g H
429.mcf 1.18 1.13 1.43
Canneal 1.11 1.10 1.32
SVM 1.14 1.17 1.53
Tunkrank 1.11 1.11 1.30
Nutch 1.01 1.07 1.12
MovieRecmd 1.03 1.02 1.11
Olio 1.43 1.08 1.46
Redis 1.12 1.04 1.20
MongoDB 1.08 1.22 1.37

Table 3: Application speed up for huge page (2 MB)
support relative to host (h) and guest (g) using base (4 KB)
pages. For example, h B means the host uses base pages
and h H means the host uses both base and huge pages.

system.
Because operating system and hypervisor memory man-

agement are unified in Linux, Ingens adopts the unified
model. Some of the problems with huge pages that we de-
scribe in Section 3 only apply to the OS and some only to
the hypervisor (summarized in Table 2). For example, ad-
dressing memory sharing vs. performance (§3.6) requires
only hypervisor modifications and would be as successful
for a Windows guest as it is for a Linux guest. We leave
for future work determining the most efficient way to
implement Ingens for operating systems and hypervisors
that do not share memory management code.

2.4 Performance improvement from huge pages

Table 1 describes a variety of memory-intensive real-
world applications including web infrastructure such as
key/value stores and databases, as well as scientific ap-
plications, data analytics and recommendation systems.
Measurements with hardware performance counters show
they all spend a significant portion of their execution time
doing page walks. For example, when using base pages
for both guest and host, we measure 429.mcf spending
47.5% of its execution time doing page walks (24.2% for
the extended page table and 23.3% for the guest page
table). On the other hand, 429.mcf spends only 4.2% of
its execution time walking page tables when using huge
pages for both the guest and host.

We execute all workloads in a KVM virtual machine
running Linux with default transparent huge page sup-
port [80] for both the application (in the guest OS) and
the virtual machine (in the host OS). The hardware con-
figuration is detailed in Section 6.

Table 3 shows the performance improvements gained
with transparent huge page support for both the guest
and the host operating system. The table shows speedup
normalized to the case where both host and guest use
only base pages. In every case, huge page support helps

performance, often significantly (up to 53%). The largest
speedup is always attained when both host and guest use
huge pages.

These results show the value of huge page support
and show that Linux’s memory manager can obtain that
benefit under simple operating conditions. However, a
variety of more challenging circumstances expose the
limitations of Linux’s memory management.

3 Current huge page problems
This section quantifies the limitations in performance
and fairness for the state-of-the-art in transparent huge
page management. We examine virtualized systems with
Linux/KVM as the guest OS and hypervisor. The variety
and severity of the limitations motivate our redesign of
page management. All data is collected using the experi-
mental setup described in Section 2.4.

3.1 Page fault latency and synchronous promotion

When a process faults on an anonymous memory region,
the page fault handler allocates physical memory to back
the page. Both base and huge pages share this code path.
Linux is greedy and aggressive in its allocation of huge
pages, so if an application faults on a base page, Linux
will immediately try to upgrade the request and allocate a
huge page if it can.

This greedy approach fundamentally increases page
fault latency for two reasons. First, Linux must zero pages
before returning them to the user. Huge pages are 512×
larger than base pages, and thus are much slower to clear.
Second, huge page allocation requires 2 MB of physically
contiguous memory. When memory is fragmented, the
OS often must compact memory to generate that much
contiguity. Previous work shows that memory quickly
fragments in multi-tenant cloud environments [41]. When
memory is fragmented, Linux will often synchronously
compact memory in the page fault handler, increasing
average and tail latency.

To measure these effects, we compare page fault la-
tency when huge pages are enabled and disabled, in frag-
mented and non-fragmented settings. We quantify frag-
mentation using the free memory fragmentation index
(FMFI) [58], a value between 0 (unfragmented) and 1
(highly fragmented). A microbenchmark maps 10 GB of
anonymous virtual memory and reads it sequentially.

When memory is unfragmented (FMFI < 0.1), page
clearing overheads increase average page fault latency
from 3.6 µs for base pages only to 378 µs for huge pages
(105× slower). When memory is heavily fragmented,
(FMFI = 0.9), the 3.6 µs average latency for base pages
grows to 8.1 µs (2.1× slower) for base and huge pages.
Average latency is lower in the fragmented case because
98% of the allocations fall back to base pages (e.g. be-
cause memory is too fragmented to allocate a huge page).

708 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

SVM Synchronous Asynchronous
Exec. time (sec) 178 (1.30×) 228 (1.02×)
Huge page 4.8 GB 468 MB
Promotion speed immediate 1.6 MB/s

Table 4: Comparison of synchronous promotion and asyn-
chronous promotion when both host and guest use huge
pages. The parenthesis is speedup compared to not using
huge pages. We use the default asynchronous promotion
speed of Ubuntu 14.04.

Workload Using huge pages Not using huge pages
Redis 20.7 GB (1.69×) 12.2 GB
MongoDB 12.4 GB (1.23×) 10.1 GB

Table 5: Physical memory size of Redis and MongoDB.

Compacting and zeroing memory in the page fault handler
penalizes applications that are sensitive to average latency
and to tail latency, such as Web services.

To avoid this additional page fault latency, Linux can
promote huge pages asynchronously, based on a config-
urable asynchronous promotion speed (in MB/s). Table 4
shows performance measurements for asynchronous-only
huge page promotion when executing SVM in a virtual
machine. Asynchronous-only promotion turns a 30%
speedup into a 2% speedup: it does not promote fast
enough. Simply increasing the promotion speed does
not solve the problem. Earlier implementations of Linux
did more aggressive asynchronous promotion, incurring
unacceptably high CPU utilization for memory scanning
and compaction. The CPU use of aggressive promotion
reduced or in some cases erased the performance benefits
of huge pages, causing users to disable transparent huge
page support in practice [17, 14, 13, 7].

3.2 Increased memory footprint (bloat)

Huge pages improve performance, but applications do
not always fully utilize the huge pages allocated to them.
Linux greedily allocates huge pages even though under-
utilized huge pages create internal fragmentation. A huge
page might eliminate TLB misses, but the cost is that a
process using less than a full huge page has to reserve the
entire region.

Table 5 shows memory bloat from huge pages when
running Redis and MongoDB, each within their own vir-
tual machine. For Redis, we populate 2 million keys with
8 KB objects and then delete 70% of the keys randomly.
Redis frees the memory backing the deleted objects which
leaves physical memory sparsely allocated. Linux pro-
motes the sparsely allocated memory to huge pages, creat-
ing internal fragmentation and causing Redis to use 69%
more memory compared to not using huge pages. We
demonstrate the same problem in MongoDB, making 10

0 20 40 60 80 100
time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ag

m
en

ta
tio

n
in

de
x

Redis using huge page
Redis not using huge page

Figure 1: Fragmentation index in Linux when running a
Redis server, with Linux using (and not using) huge pages.
The System has 24 GB memory. Redis uses 13 GB, other
processes use 5 GB, and system has 6 GB free memory.

million get requests for 15 million 1 KB objects which
are initially in persistent storage. MongoDB allocates the
objects sparsely in a large virtual address space. Linux
promotes huge pages including unused memory, and as
a result, MongoDB uses 23% more memory relative to
running without huge page support.

Greedy and aggressive allocation of huge pages makes
it impossible to predict an application’s total memory
usage in production because memory usage depends on
huge page use, which in turn depends on memory frag-
mentation and the allocation pattern of applications. Ta-
ble 5 shows if an administrator provisions 18 GB memory
(1.5× over-provisioning relative to using only base pages),
Redis starts swapping when it uses huge pages, negating
the benefits of caching objects in memory [31].

While these experiments illustrate the potential impact
of bloat for a handful of workloads, it is important to
note that the problem is fundamental to Linux’s current
design. Memory bloating can happen in any working
set, memory, and TLB size: application-level memory
usage can conspire with aggressive promotion to create
internal fragmentation that the OS cannot address. In
such situations, such applications will eventually put the
system under memory pressure regardless of physical
memory size.

3.3 Huge pages increase fragmentation

One common theme in analyzing page fault latency (§3.1)
and memory bloat (§3.2) is Linux’s greedy allocation and
promotion of huge pages. We now measure how aggres-
sive promotion of huge pages quickly consumes available
physical memory contiguity, which then increases mem-
ory fragmentation for the remaining physical memory.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 709

OS SVM Canneal Redis
FreeBSD 1.28 1.13 1.02
Linux 1.30 1.21 1.15

Table 6: Performance speedup when using huge page in
different operating systems.

Increasing fragmentation is the precondition for problems
with page fault latency and memory bloat, so greedy pro-
motion creates a vicious cycle. We again rely on the free
memory fragmentation index, or FMFI to quantify the
relationship between huge page allocation and fragmenta-
tion.

Figure 1 shows the fragmentation index over time when
running the popular key-value store application Redis in a
virtual machine. Initially, the system is lightly fragmented
(FMFI = 0.3) by other processes. Through the measure-
ment period, Redis clients populate the server with 13 GB
of key/value pairs. Redis rapidly consumes contiguous
memory as Linux allocates huge pages to it, increasing
the fragmentation index. When the FMFI is equal to 1,
the remaining physical memory is so fragmented, Linux
starts memory compaction to allocate huge pages.

3.4 Comparison with FreeBSD huge page support

FreeBSD supports transparent huge pages using
reservation-based huge page allocation [68]. When ap-
plications start accessing a 2 MB virtual address region,
the page fault handler reserves contiguous memory, but
does not promote the region to a huge page. It allocates
base pages from the reserved memory for subsequent
page faults in the region. FreeBSD monitors page utiliza-
tion of the region and promotes it to a huge page only
when all base pages of the reserved memory are allocated.
FreeBSD is therefore slower to promote huge pages than
Linux and promotion requires complete utilization of a
2 MB region.

FreeBSD supports huge pages for file-cached pages.
x86 hardware maintains access/dirty bits for entire huge
pages—any read or write will set the huge page’s ac-
cess/dirty bit. FreeBSD wants to avoid increasing IO
traffic when evicting from the page cache or swapping.
Therefore it is conservative about creating writable huge
pages. When FreeBSD promotes a huge page, it marks
it read-only, with writes demoting the huge page. Only
when all pages in the region are modified will FreeBSD
then promote the region to a writable huge page. The
read-only promotion design does not increase IO traffic
from the page cache because huge pages consist of either
all clean (read-only) or all modified base pages.

FreeBSD promotion of huge pages is more conservative
than in Linux, which reduces memory bloating, but yields
slower performance. Table 6 compares the performance
benefits of huge pages in FreeBSD and Linux. Applica-

0 100 200 300 400 500 600 700 800
time (sec)

0

500

1000

1500

2000

2500

3000

H
ug

e
pa

ge
co

ns
um

pt
io

n
(M

B
) VM3

VM1

VM2

SVM VM1 VM2 VM3
Exec. time (sec) 533 (1.12×) 589 (1.24×) 475

Figure 2: Unfair allocation of huge pages in KVM. Three
virtual machines run concurrently, each executing SVM.
The line graph is huge page size (MB) over time and the
table shows execution time of SVM for 2 iterations.

tions with dense, uniform access memory patterns (e.g.,
SVM) enjoy similar speedups on Linux and FreeBSD.
However, FreeBSD does not support asynchronous pro-
motion, so applications which allocate memory gradually
(e.g., Canneal) show less benefit. Redis makes frequent
hash table updates and exhibits many read-only huge page
demotions in FreeBSD. Consequently, Redis also shows
limited speedup compared with Linux.

3.5 Unfair performance

All of our measurements are on virtual machines where
Linux is the guest operating system, and KVM (Linux’s
in-kernel hypervisor) is the host hypervisor. Ingens mod-
ifies the memory management code of both Linux and
KVM. The previous sections focused on problems with
operating system memory management, the remaining
sections describe problems with KVM memory manage-
ment.

Unfair huge page allocation can lead to unfair per-
formance differences when huge pages become scarce.
Linux does not fairly redistribute contiguity, which can
lead to unfair performance imbalance. To demonstrate
this problem, we run 4 virtual machines in a setting where
memory is initially fragmented (FMFI = 0.85). Each VM
uses 8 GB of memory. VM0 starts first and obtains all
huge pages that are available (3 GB). Later, VM1 starts
and begins allocating memory, during which VM2 and
VM3 start. VM0 then terminates, releasing its 3 GB of
huge pages. We measure how Linux redistributes that
contiguity to the remaining identical VMs.

The graph in Figure 2 shows the amount of huge page

710 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Policy Mem saving Performance slowdown H/M

No
sharing –

429.mcf: 278
SVM: 191

Tunkrank: 236

429.mcf: 99%
SVM: 99%

Tunkrank: 99%

KVM
(Linux)

1.19 GB
(9.2%)

429.mcf: 331 (19.0%)
SVM: 204 (6.8%)

Tunkrank: 268 (13.5%)

429.mcf: 66%
SVM: 90%

Tunkrank: 69%

Huge page
sharing

199 MB
(1.5%)

429.mcf: 278 (0.0%)
SVM: 194 (1.5%)

Tunkrank: 238 (0.8%)

429.mcf: 99%
SVM: 99%

Tunkrank: 99%

Table 7: Memory saving and performance trade off for a multi-
process workload. Each row is an experiment where all work-
loads run concurrently in separate virtual machines. H/M - huge
page ratio out of total memory used. Parentheses in the Mem
saving column expresses the memory saved as a percentage of
the total memory (13 GB) allocated to all three virtual machines.

memory allocated to VM1, VM2, and VM3 (all running
SVM) over time, starting 10 seconds before the termina-
tion of VM0. When VM1 allocates memory, Linux com-
pacts memory for huge page allocation, but compaction
begins to fail at 810 MB. VM2 and VM3 start without
huge pages. When VM0 terminates 10 seconds into the ex-
periment, Linux allocates all 3 GB of recently freed huge
pages to VM3 through asynchronous promotion. This
creates significant and persistent performance inequality
among the VMs. The table in Figure 2 shows the variation
in performance (NB: to avoid IO measurement noise, data
loading time is excluded from the measurement). In a
cloud provider scenario, with purchased VM instances of
the same type, users have good reason to expect similar
performance from identical virtual machine instances, but
VM2 is 24% slower than VM3.

3.6 Memory sharing vs. performance

Modern hypervisors detect and share memory pages from
different virtual machines whose contents are identi-
cal [81, 63]. The ability to share identical memory re-
duces the memory consumed by guest VMs, increasing
VM consolidation ratios. In KVM, identical page sharing
in the host is done transparently in units of base pages.
If the contents of a base page are duplicated in a differ-
ent VM, but the duplicated base page is contained within
a huge page, KVM will split the huge page into base
pages to enable sharing. This policy prioritizes reducing
memory footprint over preservation of huge pages, so it
penalizes performance.

Another possible policy, which we call huge page shar-
ing, would not split huge pages. A base page is not al-
lowed to share pages belonging to a huge page to prevent
the demotion of the huge page but it can share base pages.
In contrast, a huge page is only allowed to share huge
pages. We implement huge page sharing to compare
with KVM and the result is shown in Table 7. We fit

Promote-kth

Scan-kth

Page fault
handler

Util radix tree (per process)

Util bit vector (512 bit)

…

Physical page metadata

Access bit vector
(8 bit)

Update / Lookup

Update

Promotion
request

Code Data structures

Lookup

Identical
page sharing

service

Lookup

Huge

Base

Huge

Figure 3: Important code and data structures in the Ingens
memory manager.

the virtual machine memory size to the working set size
of each workload to avoid spurious sharing of zeroed
pages. KVM saves 9.2% of memory but the workloads
show a slowdown of up to 19.0% because TLB misses
are increased by splitting huge pages (the percentage of
huge pages in use (H/M) goes down to 66%). On the
other hand, while huge page sharing preserves good per-
formance, it provides only reduced memory consumption
by 1.5%. This tradeoff between performance and memory
savings is avoidable. Identical page sharing services can
and should be coordinated with huge page management
to obtain both performance and memory saving benefits.

4 Design

Ingens’s goal is to enable transparent huge page support
that reduces latency, latency variability and bloat while
providing meaningful fairness guarantees and reasonable
tradeoffs between high performance and memory sav-
ings. Ingens builds on a handful of basic primitives to
achieve these goals: utilization tracking, access frequency
tracking, and contiguity monitoring.

While the discussion in this section is mostly expressed
in terms of process behavior, Ingens techniques apply
equally to processes and to virtual machines. Figure 3
shows the major data structures and code paths of Ingens,
which we describe in this section.

4.1 Monitoring space and time

Ingens unifies and coordinates huge page management
by introducing two efficient mechanisms to measure the
utilization of huge-page sized regions (space) and how
frequently huge-page sized regions are accessed (time).
Ingens collects this information efficiently and then lever-
ages it throughout the kernel to make policy decisions,
using two bitvectors. We describe both.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 711

Util bitvector. The util bitvector records which base
pages are used within each huge-page sized memory re-
gion (an aligned 2 MB region containing 512 base pages).
Each bit set in the util bitvector indicates that the corre-
sponding base page is in use. The bitvector is stored in a
radix tree and Ingens uses a huge-page number as the key
to lookup a bitvector. The page fault handler updates the
util bitvector.

Access bitvector. The access bitvector records the re-
cent access history of a process to its pages (base or huge).
Scan-kth periodically scans a process’ hardware access
bits in its page table to maintain per-page (base or huge)
access frequency information, stored as an 8-bit vector
within Linux’ page metadata. Ingens computes the expo-
nential moving average (EMA) [12] from the bitvector
which we define as follows:

Ft = α(weight(util bitvector))+(1−α)Ft−1 (1)

The weight is the sum of set bits in the bitvector, Ft is
the access frequency value at time t, and α is a parame-
ter. Based on a sensitivity analysis using our workloads,
we set α to 0.4, meaning Ingens considers the page “fre-
quently accessed” when Ft ≥ 3×bitvector size/4 (i.e., 6
in our case).

We can experimentally verify the accuracy of the fre-
quency information by checking whether pages classified
as frequently accessed have their access bit set in the
next scan interval: in most workloads we find the mis-
prediction ratio to be under 3%, although random access
patterns (e.g. Redis, MongoDB) can yield higher error
rates depending on the dynamic request pattern.

4.2 Fast page faults

To keep the page fault handling path fast, Ingens decou-
ples promotion decisions (policy) from huge page alloca-
tion (mechanism). The page fault handler decides when
to promote a huge page and signals a background thread
(called Promote-kth) to do the promotion (and alloca-
tion if necessary) asynchronously (Figure 3). Promote-kth
compacts memory if necessary and promotes the pages
identified by the page fault handler. The Ingens page
fault handler never does a high-latency huge page alloca-
tion. When Promote-kth starts executing, it has a list of
viable candidates for promotion; after promoting them,
it resumes its scan of virtual memory to find additional
candidates.

4.3 Utilization-based promotion (mitigate bloat)

Ingens explicitly and conservatively manages memory
contiguity as a resource, allocating contiguous memory
only when it decides a process (or VM) will use most of
the allocated region based on utilization. Ingens allocates
only base pages in the page fault handler and tracks base
page allocations in the util bitvector. If a huge page region

accumulates enough allocated base pages (90% in our
prototype), the page fault handler wakes up Promote-kth
to promote the base pages to a huge page.

Utilization tracking lets Ingens mitigate memory bloat-
ing. Because Ingens allocates contiguous resources only
for highly utilized virtual address regions, it can control
internal fragmentation. The utilization threshold provides
an upper bound on memory bloat. For example, if an
administrator sets the threshold to 90%, processes can
use only 10% more memory in the worst case compared
to a system using base pages only. The administrator
can simply provision 10% additional memory to avoid
unexpected swapping.

Utilization-based demotion (performance). Pro-
cesses can free a base page, usually by calling free. If a
freed base page is contained within a huge page, Linux
demotes the huge page instantly. For example, Redis
frees objects when deleting keys which results in a system
call to free the memory. Redis uses jemalloc [20], whose
free implementation makes an madvise system call
with the MADV_DONTNEED flag to release the memory2.
Linux demotes the huge page that contains the freed base
page3.

Demoting in-use huge pages hurts performance. Con-
sequently, Ingens defers the demotion of high utilization
huge pages. When a base page is freed within a huge
page, Ingens clears the bit for the page in the util bitvec-
tor. When utilization drops below a threshold, Ingens
demotes the huge page and frees the base pages whose
bits are clear in the util bitvector.

4.4 Proactive batched compaction (reduce fragmen-
tation)

Maintaining available free contiguous memory is impor-
tant to satisfy large size allocation requests required when
Ingens decides to promote a region to a huge page, or to
satisfy other system-level contiguity in service of, for ex-
ample, device drivers or user-level DMA. To this end, In-
gens monitors the fragmentation state of physical memory
and proactively compacts memory to reduce the latency
of large contiguous allocations.

Ingens’s goal is to control memory fragmentation by
keeping FMFI below a threshold (that defaults to 0.8).
Proactive compaction happens in Promote-kth after per-
forming periodic scanning. Aggressive proactive com-
paction causes high CPU utilization, interfering with user
applications. Ingens limits the maximum amount of com-
pacted memory to 100 MB for each compaction. Com-
paction moves pages, which necessitates TLB invalida-
tions. Ingens does not move frequently accessed pages to

2TCMalloc [35] also functions this way.
3Kernel version 4.5 introduces a new mechanism to free memory

efficiently, called MADV FREE but it also demotes huge pages instantly
and causes the same memory bloating problem as MADV DONTNEED.

712 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

reduce the performance impact of compaction.

4.5 Balance page sharing with performance

Ingens uses access frequency information to balance iden-
tical page sharing with application performance. It de-
cides whether or not huge pages should be demoted to
enable sharing of identical base pages contained within
the huge page. In contrast to KVM, which always priori-
tizes memory savings over contiguity, Ingens implements
a policy that avoids demoting frequently accessed huge
pages. When encountering a matching identical base-page
sized region within a huge page, Ingens denies sharing if
that huge page is frequently accessed, otherwise it allows
the huge page to be demoted for sharing.

For page sharing, the kernel marks a shared page read-
only. When a process writes the page, the kernel stops
sharing the page and allocates a new page to the process
(similar to a copy-on-write mechanism). Ingens checks
the utilization for the huge page region enclosing the new
page and if it is highly utilized, it promotes the page
(while Linux would wait for asychronous promotion).

4.6 Proportional promotion manages contiguity

Ingens monitors and distributes memory contiguity fairly
among processes and VMs, employing techniques for
proportional fair sharing of memory with an idleness
penalty [81]. Each process has a share priority for mem-
ory that begins at an arbitrary but standard value (e.g,
10,000). Ingens allocates huge pages in proportion to the
share value. Ingens counts infrequently accessed pages as
idle memory and imposes a penalty for the idle memory.
An application that has received many huge pages but is
not using them actively does not get more.

We adapt ESX’s adjusted shares-per-page ratio [81] to
express our per-process memory promotion metric mathe-
matically as follows.

M =
S

H · (f + τ(1− f))
(2)

where S is a process’ (or virtual machine’s or con-
tainer’s) huge page share priority and H is the number
of bytes backed by huge pages allocated to the process.
(f +τ(1− f)) is a penalty factor for idle huge pages. f is
the fraction of idle huge pages relative to the total number
of huge pages used by this process (0≤ f ≤ 1) and τ , with
0 < τ ≤ 1, is a parameter to control the idleness penalty.
Larger values of M receive higher priority for huge page
promotion.

Intuitively, if two processes’ S value are similar and
one process has fewer huge pages (H is smaller), then the
kernel prioritizes promotion (or allocation and promotion)
of huge pages for that process. If S and H values are
similar among a group of processes, the process with
the largest fraction of idle pages has the smaller M , and

hence the lowest priority for obtaining new huge pages.
τ = 1 means M disregards idle memory while τ close
to 0 means M ’s value is inversely proportional to the
amount of idle memory.

A kernel thread (called Scan-kth) periodically pro-
files the idle fraction of huge pages in each process and
updates the value of M for fair promotion.

4.7 Fair promotion

Promote-kth performs fair allocation of contiguity using
the promotion metric. When contiguity is contended,
fairness is achieved when all processes have a priority-
proportional share of the available contiguity. Mathe-
matically this is achieved by minimizing O , defined as
follows:

O = ∑
i
(Mi−M̄)2 (3)

The Mi indicates the promotion metric of process/VM i
and M̄ is the mean of all process’ promotion metrics.
Intuitively, the formula characterizes how much process’
contiguity allocation (Mi) deviates from a fair state (M̄):
in a perfectly fair state, all the Mi equal M̄ , yielding a
0-valued O .

In practice, to optimize O , it suffices to iteratively se-
lect the process with the biggest Mi, scan its address
space to promote huge pages, and update Mi and O . It-
eration stops when O is close to 0 or when Promote-kth
cannot generate any additional huge pages (e.g., all pro-
cess are completely backed by huge pages).

An important benefit of this approach is that it does not
require a performance model and it applies equally well
to processes and virtual machines.

5 Implementation
Ingens is implemented in Linux 4.3.0 and contains new
mechanisms to support page utilization and access fre-
quency tracking. It also uses Linux infrastructure for huge
page page table mappings and memory compaction.

5.1 Huge page promotion

Promote-kth runs as a background kernel thread and
schedules huge page promotions (replacing Linux’s
khugepaged). Promote-kth maintains two priority lists:
high and normal. The high priority list is a global list
containing promotion requests from the page fault handler
and the normal priority list is a per-application list filled
in as Promote-kth periodically scans the address space.
The page fault handler or a periodic timer wakes Promote-
kth, which then examines the two lists and promotes in
priority order.

Ingens does not reserve contiguous memory in the page
fault handler. When the page fault handler requests a huge
page promotion, the physical memory backing the base
pages might not be contiguous. In this case, Promote-kth
allocates a new 2 MB contiguous physical memory region,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 713

copies the data from the discontiguous physical memory,
and maps the contiguous physical memory into the pro-
cess’ virtual address space. After promotion, Promote-kth
frees the original discontiguous physical memory.

An application’s virtual address space can grow, shrink,
or be merged with other virtual address regions. These
changes make new opportunities for huge page promo-
tion which both Linux and Ingens detect by periodically
scanning address spaces in the normal priority list (Linux
in khugepaged, Ingens in Promote-kth). For example,
a virtual address region that is smaller than the size of a
huge page might merge with another region, allowing it
to be part of a huge page.

Promote-kth compares the promotion metric (§4.6) of
each application and selects the process with the highest
deviation from a fair state (§4.7). It scans 16 MB of pages
and sleeps for 10 seconds which is also Linux’s default
settings (i.e., the 1.6 MB/s in Table 4). After scanning
a process’ entire address space, Promote-kth records the
number of promoted huge pages and if an application has
too few promotions (zero in the prototype), Promote-kth
excludes the application from the normal priority list for
120 seconds. This mechanism prevents an adversarial
application that can monopolize Promote-kth. Such an
application would have a small number of huge pages and
would appear to be a good candidate to scan to increase
fairness (§4.7)).

5.2 Access frequency tracking

In 2015, Linux added an access bit tracking frame-
work [70] for version 4.3. The kernel adds an idle flag
for each physical page and uses hardware access bits to
track when a page remains unused. If the hardware sets
an access bit, the kernel clears the idle bit. The framework
provides APIs to query the idle flags and clear the access
bit. Scan-kth uses this framework to find idle memory
during a periodic scan of application memory. The default
period is 2 seconds. Scan-kth clears the access bits at the
beginning of the profiling period and queries the idle flag
at the end.

In the x86 architecture, clearing the access bit causes
a TLB invalidation for the corresponding page. Conse-
quently, frequent periodic scanning can have a negative
performance impact. To ameliorate this problem, Ingens
supports frequency-aware profiling and sampling. When
Scan-kth needs to clear the access bit of a page, it checks
whether the page is frequently accessed or not. If it is
not frequently accessed, Scan-kth clears the access bit,
otherwise it clears it with 20% probability. Ingens uses an
efficient hardware-based random number generator [18].

To verify that sampling reduces worst case overheads,
we run a synthetic benchmark which reads 10 GB mem-
ory randomly without any computation, and measure the
execution time for one million iterations. When Ingens

resets all access bits, the execution time of the workload
is degraded by 29%. Sampling-based scanning reduces
the overhead to 8%. In contrast to this worst-case mi-
crobenchmark, Section 6 shows that slowdowns of Ingens
on real workloads average 1%.

5.3 Limitations and future work

Linux supports transparent huge pages only for anony-
mous memory because huge page support for page cache
pages can significantly increase I/O traffic, potentially
offsetting the benefits of huge pages. If Linux adds huge
pages to the page cache, it will make sense to extend In-
gens to manage them with the goal of improving the read-
only page cache support (implemented in FreeBSD [68]),
while avoiding significant increases in I/O traffic for write-
back of huge pages which are sparsely modified.

Hardware support for finer-grain tracking of access and
dirty bits for huge pages would benefit Ingens. Hardware-
managed access and dirty bits for all base pages within a
huge page region could avoid wasted I/O on write-back
of dirty pages, and enable much better informed decisions
about when to demote a huge page or when huge pages
can be reclaimed fairly under memory pressure.

NUMA considerations. Ingens maintains Linux’s
NUMA heuristics, preferring pages from a node’s local
NUMA region, and refusing to allocate a huge page from
a different NUMA domain. All of our measurements are
within a single NUMA region.

Previous work has shown that if memory is shared
across NUMA nodes, huge pages may contribute to mem-
ory request imbalance across different memory controllers
and reduced locality of accesses, decreasing their perfor-
mance benefit [54]. This happens due to page-level false
sharing, where unrelated data is accessed on the same
page, and the hot page effect, which is exacerbated by
the large page size. The authors propose extensions to
Linux’ huge page allocation mechanism to balance huge
pages among NUMA domains and to split huge pages if
false sharing is detected or if they become too hot. These
extensions integrate nicely with Ingens. Scan-kth can al-
ready measure page access frequencies and Promote-kth
can check whether huge pages need to be demoted.

6 Evaluation
We evaluate Ingens using the applications in Table 1,
comparing against the performance of Linux’s huge page
support which is state-of-the-art. Experiments are per-
formed on two Intel Xeon E5-2640 v3 2.60GHz CPUs
(Haswell) with 64 GB memory and two 256 MB SSDs.
We use Linux 4.3 and Ubuntu 14.04 for both the guest
and host system. Intel supports multiple hardware page
sizes of 4 KB, 2 MB and 1 GB; our experiments use only
4 KB and 2 MB huge pages. We set the number of vCPUs
equal to the number of application threads.

714 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

42
9.

m
cf

Tu
nk

ra
nk

M
ov

ie
R

ec
m

d
S

V
M

R
ed

is
O

lio
M

on
go

D
B

N
ut

ch
B

la
ck

sc
ho

le
s

B
od

yt
ra

ck
C

an
ne

al
D

ed
up

Fa
ce

si
m

Fe
rr

et
Fl

ui
da

ni
m

at
e

Fr
eq

m
in

e
R

ay
tra

ce
S

tre
am

cl
us

te
r

S
w

ap
tio

ns
V

ip
s

X
26

4
Av

g.

0.0%

1.0%

2.0%

3.0%
S

lo
w

do
w

n
Ingens overhead

Figure 4: Performance slowdown of utilization-based pro-
motion relative to Linux when memory is not fragmented.

Background task CPU utilization
Proactive compaction 1.3%
Access bit tracking 11.4%

Table 8: CPU utilization of background tasks in Ingens.
For access bit tracking, Scan-kth scans memory of Mon-
goDB that uses 10.7GB memory.

We characterize the overheads of Ingens’s basic mech-
anisms such as access tracking and utilization-based
huge page promotion. We evaluate the performance of
utilization-based promotion and demotion and Ingens abil-
ity to provide fairness across applications using huge
pages. Finally, we show that Ingens’s access frequency-
based same page merging achieves good memory savings
while preserving most of the performance benefit of huge
pages. We use a single configuration to evaluate Ingens
which is consistent with our examples in Sections 4 and
5: utilization threshold is 90%, Scan-kth period is 10s,
access frequency tracking interval is 2 sec, and sampling
ratio is 20%. Proactive batched compaction happens when
FMFI is below 0.8, with an interval of 5 seconds; the max-
imum amount of compacted memory is 100MB; and a
page is frequently accessed if Ft ≥ 6.

6.1 Ingens overhead

Figure 4 shows the overheads introduced by Ingens for
memory intensive workloads. To evaluate the perfor-
mance of utilization-based huge page promotion in the
unfragmented case, we run a number of benchmarks and
compare their run time with Linux. Ingens’s utilization-
based huge page promotion slows applications down 3.0%
in the worst case and 0.7% on average. The slowdowns
stem primarily from Ingens not promoting huge pages
as aggressively as Linux, so the workload executes with
slower base pages for a short time until Ingens promotes
huge pages. A secondary overhead stems from the com-
putation of huge page utilization.

To verify that Ingens does not interfere with the perfor-
mance of “normal” workloads, we measure an average
performance penalty of 0.8% across the entire PARSEC
3.0 benchmark suite.

Linux Ingens
922.3 1091.9 (1.18×)

(a) Throughput of full operation mix (requests/sec and speedup
normalized to Linux).

Event view Homepage visit Tag search
Linux Ingens Linux Ingens Linux Ingens

Average 478 338 236 207 289 240
90th 605 354 372 226 417 299
MAX 694 649 379 385 518 507

(b) Latency (millisecond) of read-dominant operations.

Table 9: Performance result of Cloudstone WEB 2.0
Benchmark (Olio) when memory is fragmented.

Table 8 shows the CPU utilization of background tasks
in Ingens. We measure the CPU utilization across 1 sec-
ond intervals and take the average. For proactive com-
paction, we set Ingens to compact 100 MB of memory
every 2 seconds (which is more aggressive than the de-
fault of 5 seconds). CPU overhead of access bit tracking
depends on how many pages are scanned, so we measure
the CPU utilization of Scan-kth while running MongoDB
using 10.7 GB of memory.

6.2 Utilization-based promotion

To evaluate Ingens’s utilization-based huge page promo-
tion, we compare a mix of operations from the Cloudstone
WEB 2.0 benchmark, which simulates a social event web-
site. Cloudstone models a LAMP stack, consisting of a
web server (nginx), PHP, and MySQL. We run Cloudstone
in a KVM virtual machine and use the Rain workload gen-
erator [45] for load.

A study of the top million websites showed that in
2015 the average size exceeded 2 MB [50]. In light of
this, we modify Cloudstone to serve some web pages that
use about 2 MB of memory, enabling the benchmark to
make better use of huge pages. The Cloudstone bench-
mark consists of 7 web pages, and we only modify the
homepage and a page that displays social event details to
use 2 MB memory. The other pages remain unchanged.

We compare throughput and latency for Cloudstone on
Linux and Ingens when memory is fragmented from prior
activity (FMFI = 0.9). To cause fragmentation, we run a
program that allocates a large region of memory and then
partially frees it.

We use Cloudstone’s default operation mix: 85% read
(viewing events, visiting homepage, and searching event
by tag), 10% login, and 5% write (adding new events and
inviting people). Our test database has 7,000 events, 2,000
people, and 900 tags. Table 9 (a) shows the throughput
attained by the benchmark running on Linux and Ingens.
Ingens’s utilization-based promotion achieves a speedup
of 1.18× over Linux. Table 9 (b) shows average and tail

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 715

Linux-nohuge Linux Ingens-90% Ingens-70% Ingens-50%
12.2 GB 20.7 GB 12.3 GB 12.9 GB 17.8 GB

(a) Redis memory consumption in different configurations. The
percentage in the label is a utilization threshold.

Throughput 90th lat. 99th lat. 99.9th lat.
Linux-nohuge 19.0K 4 5 109
Linux 21.7K 3 4 8
Ingens-90% 20.9K 3 4 64
Ingens-70% 21.1K 3 4 55
Ingens-50% 21.6K 3 4 23

(b) Redis GET Performance: Throughput (operations/sec) and
latency (millisecond).

Table 10: Redis memory use and performance.

latency of the read operations in the benchmark. Ingens
reduces an average latency up to 29.2% over Linux. In
the tail, the reduction improves further, up to 41.4% at the
90th percentile.

Performance for Ingens improves because it reduces
the average page-fault latency by not compacting memory
synchronously in the page fault handler. We measure
461,383 page compactions throughout the run time of the
benchmark in Linux when memory is fragmented.

When memory is not fragmented, Ingens reduces
throughput by 13.4% and increases latency up to 18.1%
compared with Linux. The benchmark contains many
short-lived requests and Linux’s greedy huge page allo-
cation pays off by drastically reducing the total number
of page faults. Ingens is less aggressive about huge page
allocation to avoid memory bloat, so it incurs many more
page faults.

Ingens copes with this performance problem with an
adaptive policy. When memory fragmentation is below
0.5 Ingens mimics Linux’s aggressive huge page alloca-
tion. This policy restores Ingens’s performance to Linux’s
levels. However, while bloat (§3.2) is not a problem for
this workload, the adaptive policy increases risk of bloat
in the general case. Like any management problem, it
might not be possible to find a single policy that has every
desirable property for a given workload. We verified that
this policy performs similarly to the default policy used
in Table 4, but it is most appropriate for workloads with
many short-lived processes.

6.3 Memory bloating evalution

To evaluate Ingens’s ability to minimize memory bloating
without impacting performance, we evaluate the memory
use and throughput of a benchmark using the Redis key-
value store. Redis is known to be susceptible to memory
bloat, as its memory allocations are often sparse. To create
a sparse address space in our benchmark, we first populate
Redis with 2 million keys, each with 8 KB objects and

0 50 100 150 200 250
100
200
300
400
500
600
700
800
900

1000

H
ug

e
pa

ge
co

ns
um

p.
(M

B
) Ingens huge page promotion

Canneal-1
Canneal-2
Canneal-3

0 50 100 150 200 250

time (sec)

100
200
300
400
500
600
700
800
900

1000

H
ug

e
pa

ge
co

ns
um

p.
(M

B
) Linux huge page promotion

Canneal-1
Canneal-2
Canneal-3

Canneal-1 Canneal-2 Canneal-3
Linux 181 192 195
Ingens 186 186 187

Figure 5: Huge page consumption (MB) and execution
time (second). 3 instances of canneal (Parsec 3.0 bench-
mark) run concurrently and Promote-kth promotes huge
pages. Execution time in the table excludes data loading
time.

then delete 70% of the key space using a random pattern.
We then measure the GET performance using the bench-
mark tool shipped with Redis. For Ingens, we evaluate
different utilization thresholds for huge page promotion.

Table 10 shows that memory use for the 90% and 70%
utilization-based configurations is very close to the case
where only base pages are used. Only at 50% utiliza-
tion does Ingens approach the memory use of Linux’s
aggressive huge page promotion.

The throughput and latency of the utilization-based
approach is very close to using only huge pages. Only
in the 99.9th percentile does Ingens deviate from Linux
using huge pages only, while still delivering much better
tail latency than Linux using base pages only.

6.4 Fair huge page promotion

Ingens guarantees a fair distribution of huge pages. If
applications have the same share priority (§4.6), Ingens
provides the same amount of huge pages. To evaluate fair-
ness, we run a set of three identical applications concur-
rently with the same share priority and idleness parameter,
and measure the amount of huge pages each one holds at
any point in time.

Figure 5 shows that Linux does not allocate huge pages
fairly, it simply allocates huge pages to the first applica-
tion that can use them (Canneal-1). In fact, Linux asyn-
chronously promotes huge pages by scanning linearly
through each application’s address space, only consid-
ering the next application when it is finished with the
current application. Time 160 is when Linux has pro-

716 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Policy Mem saving Performance slowdown H/M

KVM
(Linux)

1438 MB
(9.6%)

Tunkrank: 274 (12.7%)
MovieRecmd: 210 (6.5%)

SVM: 232 (20.2%)

Tunkrank: 66%
MovieRecmd: 10%

SVM: 72%

Huge page
sharing

317 MB
(2.1%)

Tunkrank: 243
MovieRecmd: 197

SVM: 193

Tunkrank: 99%
MovieRecmd: 99%

SVM: 99%

Ingens 1026 MB
(6.8%)

Tunkrank: 247 (1.6%)
MovieRecmd: 200 (1.5%)

SVM: 198 (2.5%)

Tunkrank: 90%
MovieRecmd: 79%

SVM: 94%

Table 11: Memory saving (MB) and performance (second)
trade off. H/M - huge page ratio out of total memory used.
Parentheses in the Mem saving column expresses the memory
saved as a percentage of the total memory (15 GB) allocated to
all three virtual machines.

moted almost all of Canneal-1’s address space to huge
pages so only then does it begin to allocate huge pages to
Canneal-2.

In contrast, Ingens promotes huge pages based on
the fairness objective described in Section 4.7 and thus
equally distributes the available huge pages to each appli-
cation. Fair distribution of huge pages translates to fair
end-to-end execution time as well. All applications finish
at the same time in Ingens, while Canneal-1 finishes well
before 2 and 3 on Linux.

6.5 Trade off of memory saving and performance

Finally, we evaluate the memory and performance trade-
offs of identical page sharing. We run a workload mix of
three different applications, each in its own virtual ma-
chine. We measure their memory use and performance
slowdown under three different OS configurations: (1)
KVM with aggressive page sharing, where huge pages
are demoted if underlying base pages can be shared. (2)
KVM where only pages of the same type may be shared
and huge pages are never broken up (huge page sharing).
(3) Ingens, where only infrequently used huge pages are
demoted for page sharing. To avoid unused memory sav-
ing, we intentionally fit guest physical memory size to
memory usages of the workloads.

Table 11 shows that KVM’s aggressive page sharing
saves the most memory (9.6%), but also cedes the most
performance (between 6.5% and 20.2% slowdown) when
compared to huge page sharing. When sharing only pages
of the same type, it saves memory only 2.1%. Finally,
Ingens allows us to save 6.8% of memory, while only
slowing down the application up to 2.5%. The main
reason for the low performance degradation is that the
ratio of huge pages to total pages remains high in Ingens,
due to its access frequency-based approach to huge page
demotion and instant promotion when Ingens stops page
sharing.

7 Related work
Virtual memory is an active research area. Our evidence
of performance degradation from address translation over-
heads is well-corroborated [44, 53, 47, 67].

Operating system support. Navarro et al. [68] imple-
ment OS support for multiple page sizes with contiguity-
awareness and fragmentation reduction as primary con-
cerns. They propose reservation-based allocation, allocat-
ing contiguous ranges of pages in advance, and deferring
promotion. Many of their ideas are widely used [80], and
it forms the basis of FreeBSD’s huge page support. In-
gens’s utilization-based promotion uses a util bitvector
that is similar to the population map [68]. In contrast
to that work, Ingens does not use reservation-based al-
location, decouples huge page allocation from promo-
tion decisions, and redistributes contiguity fairly when it
becomes available (e.g., after process termination). In-
gens has higher performance because it promotes more
huge pages; it does not require promoted pages to be
read-only or completely modified (§3.4). Features in mod-
ern systems such as memory compaction and same-page
merging [63] pose new challenges not addressed by this
previous work.

Gorman et al. [56] propose a placement policy for an
OS’s physical page allocator that mitigates fragmentation
and promotes contiguity by grouping pages according to
relocatability. Subsequent work [57] proposes a software-
exposed interface for applications to explicitly request
huge pages like libhugetlbfs [65]. The foci of In-
gens, including trade-offs between memory sharing and
performance, and unfair allocation of huge pages are un-
addressed by previous work.

Hardware support. TLB miss overheads can be re-
duced by accelerating page table walks [42, 46] or re-
ducing their frequency [52]; by reducing the number of
TLB misses (e.g. through prefetching [48, 60, 74], pre-
diction [69], or structural change to the TLB [79, 72, 71]
or TLB hierarchy [47, 66, 78, 39, 38, 61, 44, 53]). Multi-
page mapping techniques [79, 72, 71] map multiple pages
with a single TLB entry, improving TLB reach by a small
factor (e.g. to 8 or 16); much greater improvements to
TLB reach are needed to deal with modern memory sizes.
Direct segments [44, 53] extend standard paging with a
large segment to map the majority of an address space
to a contiguous physical memory region, but require ap-
plication modifications and are limited to workloads able
to a single large segment. Redundant memory mappings
(RMM) [61] extend TLB reach by mapping ranges of
virtually and physically contiguous pages in a range TLB.
The level of additional architectural support is significant,
while Ingens works on current hardware.

A number of related works propose hardware support
to recover and expose contiguity. GLUE [73] groups

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 717

contiguous, aligned small page translations under a single
speculative huge page translation in the TLB. Speculative
translations, (similar to SpecTLB [43]) can be verified
by off-critical-path page-table walks, reducing effective
page-table walk latency. GTSM [49] provides hardware
support to leverage contiguity of physical memory extents
even when pages have been retired due to bit errors. Were
such features to become available, hardware mechanisms
for preserving contiguity could reduce overheads induced
by proactive compaction in Ingens.

Architectural assists are ultimately complementary to
our own work. Hardware support can help, but higher-
level coordination of hardware mechanisms by software
is a fundamental necessity. Additionally, as none of these
assists are likely to be realized in imminently available
hardware, using techniques such as those we propose in
Ingens are a de facto necessity.

8 Conclusion
Hardware vendors are betting on huge pages to make
address translation overheads acceptable as memory ca-
pacities continue to grow. Ingens provides principled, co-
ordinated transparent huge page support for the operating
system and hypervisor, enabling challenging workloads
to achieve the expected benefits of huge pages, without
harming workloads that are well served by state-of the art
huge page support. Ingens reduces tail-latency and bloat,
while improving fairness and performance.

Acknowledgement
For their insights and comments we thank readers Mark
Silberstein, Nadav Amit, Reza Taheri, Kathryn S. McKin-
ley, the anonymous reviewers, and our shepherd Sasha
Fedorova. We acknowledge funding from NSF grants
CNS-1228843 and CNS-1618563.

References
[1] http://www.7-cpu.com/cpu/Skylake.

html. [Accessed April, 2016].

[2] http://www.7-cpu.com/cpu/Haswell.
html. [Accessed April, 2016].

[3] Apache Cloudstack. https://en.wikipedia.
org/wiki/Apache_CloudStack. [Accessed
April, 2016].

[4] Apache Hadoop. http://hadoop.apache.
org/. [Accessed April, 2016].

[5] Apache Spark. http://spark.apache.org/
docs/latest/index.html. [Accessed April,
2016].

[6] Application-friendly kernel interfaces. https:
//lwn.net/Articles/227818/. [March,
2007].

[7] Cloudera recommends turning off mem-
ory compaction due to high CPU utiliza-
tion. http://www.cloudera.com/
documentation/enterprise/latest/
topics/cdh_admin_performance.html.
[Accessed April, 2016].

[8] Cloudsuite. http://parsa.epfl.ch/
cloudsuite/graph.html. [Accessed April,
2016].

[9] CouchBase recommends disabling huge pages.
http://blog.couchbase.com/often-
overlooked-linux-os-tweaks. [March,
2014].

[10] Data Plane Development Kit. http://www.
dpdk.org/. [Accessed April-2016].

[11] DokuDB recommends disabling huge pages.
https://www.percona.com/blog/
2014/07/23/why-tokudb-hates-
transparent-hugepages/. [July, 2014].

[12] Exponential moving average. https://en.
wikipedia.org/wiki/Moving_average#
Exponential_moving_average. [Accessed
April, 2016].

[13] High CPU utilization in Hadoop due to transparent
huge pages. https://www.ghostar.org/
2015/02/transparent-huge-pages-on-
hadoop-makes-me-sad/. [February, 2015].

[14] High CPU utilization in Mysql due to transparent
huge pages. http://developer.okta.com/
blog/2015/05/22/tcmalloc. [May, 2015].

718 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
https://en.wikipedia.org/wiki/Apache_CloudStack
https://en.wikipedia.org/wiki/Apache_CloudStack
http://hadoop.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
https://lwn.net/Articles/227818/
https://lwn.net/Articles/227818/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://www.dpdk.org/
http://www.dpdk.org/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
http://developer.okta.com/blog/2015/05/22/tcmalloc
http://developer.okta.com/blog/2015/05/22/tcmalloc

[15] Huge page support in Mac OS X. https:
//developer.apple.com/legacy/
library/documentation/Darwin/
Reference/ManPages/man2/mmap.2.
html. [Accessed April-2016].

[16] IBM cloud with KVM hypervisor. http:
//www.networkworld.com/article/
2230172/opensource-subnet/red-
hat-s-kvm-virtualization-proves-
itself-in-ibm-s-cloud.html. [March,
2010].

[17] IBM recommends turning off huge pages
due to high CPU utilization. http://www-
01.ibm.com/support/docview.wss?
uid=swg21677458. [July, 2014].

[18] Intel hardware random number generator.
https://software.intel.com/en-
us/articles/intel-digital-random-
number-generator-drng-software-
implementation-guide. [May, 2014].

[19] Intel HiBench. https://github.com/
intel-hadoop/HiBench/tree/master/
workloads. [Accessed April, 2016].

[20] Jemalloc. http://www.canonware.com/
jemalloc/. [Accessed April-2016].

[21] Large-page support in Windows. https://
msdn.microsoft.com/en-us/library/
windows/desktop/aa366720(v=vs.85)
.aspx. [Accessed April-2016].

[22] Liblinear. https://www.csie.ntu.edu.
tw/˜cjlin/liblinear/. [Accessed April,
2016].

[23] MongoDB. https://www.mongodb.com/.
[Accessed April, 2016].

[24] MongoDB recommends disabling huge pages.
https://docs.mongodb.org/manual/
tutorial/transparent-huge-pages/.
[Accessed April, 2016].

[25] Movie recommendation with Spark. http:
//ampcamp.berkeley.edu/big-data-
mini-course/movie-recommendation-
with-mllib.html. [Accessed April, 2016].

[26] NuoDB recommends disabling huge pages. http:
//www.nuodb.com/techblog/linux-
transparent-huge-pages-jemalloc-
and-nuodb. [May, 2014].

[27] OpenStack. https://
openvirtualizationalliance.org/
what-kvm/openstack. [Accessed April-
2016].

[28] PARSEC 3.0 benchmark suite. http://parsec.
cs.princeton.edu/. [Accessed April, 2016].

[29] Redis. http://redis.io/. [Accessed April,
2016].

[30] Redis recommends disabling huge pages. http:
//redis.io/topics/latency. [Accessed
April, 2016].

[31] Redis SSD swap discussion. http://antirez.
com/news/52. [March, 2013].

[32] SAP IQ recommends disabling huge pages. http:
//scn.sap.com/people/markmumy/
blog/2014/05/22/sap-iq-and-linux-
hugepagestransparent-hugepages.
[May, 2014].

[33] SPEC CPU 2006. https://www.spec.org/
cpu2006/. [Accessed April, 2016].

[34] Splunk recommends disabling huge
pages. http://docs.splunk.com/
Documentation/Splunk/6.1.3/
ReleaseNotes/SplunkandTHP. [December,
2013].

[35] Thread-caching malloc. http://goog-
perftools.sourceforge.net/doc/
tcmalloc.html. [Accessed April-2016].

[36] Transparent huge pages in 2.6.38. https://lwn.
net/Articles/423584/. [January, 2011].

[37] VoltDB recommends disabling huge
pages. https://docs.voltdb.com/
AdminGuide/adminmemmgt.php. [Accessed
April, 2016].

[38] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh.
Revisiting hardware-assisted page walks for virtual-
ized systems. In International Symposium on Com-
puter Architecture (ISCA), 2012.

[39] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh.
Fast two-level address translation for virtualized sys-
tems. In IEEE Transactions on Computers, 2015.

[40] AMD. AMD-V Nested Paging, 2010. http://
developer.amd.com/wordpress/media/
2012/10/NPT-WP-1%201-final-TM.pdf.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 719

https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://github.com/intel-hadoop/HiBench/tree/master/workloads
https://github.com/intel-hadoop/HiBench/tree/master/workloads
https://github.com/intel-hadoop/HiBench/tree/master/workloads
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.mongodb.com/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
https://openvirtualizationalliance.org/what-kvm/openstack
https://openvirtualizationalliance.org/what-kvm/openstack
https://openvirtualizationalliance.org/what-kvm/openstack
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
http://redis.io/
http://redis.io/topics/latency
http://redis.io/topics/latency
http://antirez.com/news/52
http://antirez.com/news/52
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf

[41] Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino
Matias, and Ibrahim Beicker. Experimental eval-
uation of software aging effects on the eucalyptus
cloud computing infrastructure. In Middleware In-
dustry Track Workshop, 2011.

[42] Thomas W. Barr, Alan L. Cox, and Scott Rixner.
Translation caching: Skip, don’t walk (the page
table). In International Symposium on Computer
Architecture (ISCA), 2010.

[43] Thomas W. Barr, Alan L. Cox, and Scott Rixner.
Spectlb: A mechanism for speculative address trans-
lation. In International Symposium on Computer
Architecture (ISCA), 2011.

[44] Arkapravu Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient vir-
tual memory for big memory servers. In Interna-
tional Symposium on Computer Architecture (ISCA),
2013.

[45] Aaron Beitch, Brandon Liu, Timothy Yung, Rean
Griffith, Armando Fox, and David Patterson. Rain:
A workload generation toolkit for cloud computing
applications. In U.C. Berkeley Technical Publica-
tions (UCB/EECS-2010-14), 2010.

[46] Abhishek Bhattacharjee. Large-reach memory man-
agement unit caches. In International Symposium
on Microarchitecture, 2013.

[47] Abhishek Bhattacharjee, Daniel Lustig, and Mar-
garet Martonosi. Shared last-level TLBs for chip
multiprocessors. In IEEE International Sympo-
sium on High Performance Computer Architecture
(HPCA), 2011.

[48] Abhishek Bhattacharjee and Margaret Martonosi.
Characterizing the TLB behavior of emerging par-
allel workloads on chip multiprocessors. In Inter-
national Conference on Parallel Architectures and
Compilation Techniques (PACT), 2009.

[49] Yu Du, Miao Zhou, B.R. Childers, D. Mosse,
and R. Melhem. Supporting superpages in non-
contiguous physical memory. In IEEE International
Symposium on High Performance Computer Archi-
tecture (HPCA), 2015.

[50] Tammy Everts. The average web page is more
than 2 MB size. https://www.soasta.com/
blog/page-bloat-average-web-page-
2-mb/. [June, 2015].

[51] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevd-
jic, Cansu Kaynak, Adrian Daniel Popescu, Anasta-
sia Ailamaki, and Babak Falsafi. Clearing the clouds:

A study of emerging scale-out workloads on modern
hardware. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, pages 37–48, New York, NY, USA,
2012. ACM.

[52] Jayneel Gandhi, , Mark D. Hill, and Michael M.
Swift. Exceeding the best of nested and shadow
paging. In International Symposium on Computer
Architecture (ISCA), 2016.

[53] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Efficient memory virtualization.
In International Symposium on Microarchitecture,
2014.

[54] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant,
Justin Funston, Alexandra Fedorova, and Vivien
Quéma. Large pages may be harmful on numa sys-
tems. In Proceedings of the 2014 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 231–242, Berkeley, CA,
USA, 2014. USENIX Association.

[55] Joseph E. Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural
graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 12), pages 17–30, Hollywood,
CA, 2012. USENIX.

[56] Mel Gorman and Patrick Healy. Supporting super-
page allocation without additional hardware support.
In Proceedings of the 7th International Symposium
on Memory Management, 2008.

[57] Mel Gorman and Patrick Healy. Performance charac-
teristics of explicit superpage support. In Workshorp
on the Interaction between Operating Systems and
Computer Architecture (WIOSCA), 2010.

[58] Mel Gorman and Andy Whitcroft. The what, the
why and the where to of anti-fragmentation. In Linux
Symposium, 2005.

[59] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual, 2016. https://
www-ssl.intel.com/content/dam/www/
public/us/en/documents/manuals/64-
ia-32-architectures-software-
developer-manual-325462.pdf.

[60] Gokul B. Kandiraju and Anand Sivasubramaniam.
Going the distance for TLB prefetching: An
application-driven study. In International Sympo-
sium on Computer Architecture (ISCA), 2002.

720 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[61] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrin Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman
nsal. Redundant memory mappings for fast access
to large memories. In International Symposium on
Computer Architecture (ISCA), 2015.

[62] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. KVM: The linux virtual machine
monitor. In Linux Symposium, 2007.

[63] Kernel Same-page Merging. https://en.
wikipedia.org/wiki/Kernel_same-
page_merging. [Accessed April, 2016].

[64] Ching-Pei Lee and Chih-Jen Lin. Large-scale linear
RankSVM. Neural Comput., 26(4):781–817, April
2014.

[65] Huge Pages Part 2 (Interfaces). https://lwn.
net/Articles/375096/. [February, 2010].

[66] Daniel Lustig, Abhishek Bhattacharjee, and Mar-
garet Martonosi. TLB improvements for chip multi-
processors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 2013.

[67] Timothy Merrifield and H. Reza Taheri. Perfor-
mance implications of extended page tables on vir-
tualized x86 processors. In Proceedings of the12th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’16, pages
25–35, New York, NY, USA, 2016. ACM.

[68] Juan Navarro, Sitaram Iyer, Peter Druschel, and
Alan Cox. Practical, transparent operating system
support for superpages. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2002.

[69] M.-M. Papadopoulou, Xin Tong, A. Seznec, and
A. Moshovos. Prediction-based superpage-friendly
TLB designs. In IEEE International Symposium on
High Performance Computer Architecture (HPCA),
2015.

[70] Idle Page Tracking. http://lxr.
free-electrons.com/source/
Documentation/vm/idle_page_
tracking.txt. [November, 2015].

[71] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert,
and Gabriel H. Loh. Increasing TLB reach by ex-
ploiting clustering in page translations. In IEEE In-

ternational Symposium on High Performance Com-
puter Architecture (HPCA), 2014.

[72] Binh Pham, Viswanathan Vaidyanathan, Aamer
Jaleel, and Abhishek Bhattacharjee. CoLT: Coa-
lesced large-reach TLBs. In International Sympo-
sium on Microarchitecture, 2012.

[73] Binh Pham, Jan Vesely, Gabriel Loh, and Abhishek
Bhattacharjee. Large pages and lightweight mem-
ory management in virtualized systems: Can you
have it both ways? In International Symposium on
Microarchitecture, 2015.

[74] Ashley Saulsbury, Fredrik Dahlgren, and Per Sten-
ström. Recency-based TLB preloading. In Interna-
tional Symposium on Computer Architecture (ISCA),
2000.

[75] Tom Shanley. Pentium Pro Processor System Archi-
tecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1996.

[76] Richard L. Sites and Richard T. Witek. ALPHA ar-
chitecture reference manual. Digital Press, Boston,
Oxford, Melbourne, 1998.

[77] Will Sobel, Shanti Subramanyam, Akara Suchar-
itakul, Jimmy Nguyen, Hubert Wong, Arthur
Klepchukov, Sheetal Patil, O Fox, and David Patter-
son. Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for web 2.0,
2008.

[78] Shekhar Srikantaiah and Mahmut Kandemir. Syner-
gistic tlbs for high performance address translation
in chip multiprocessors. In International Symposium
on Microarchitecture, 2010.

[79] M. Talluri and M. D. Hill. Surpassing the TLB
performance of superpages with less operating sys-
tem support. In International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), 1994.

[80] Transparent Hugepages. https://lwn.net/
Articles/359158/. [October, 2009].

[81] Carl A. Waldspurger. Memory resource manage-
ment in VMware ESX server. In USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2002.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 721

https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
https://lwn.net/Articles/359158/
https://lwn.net/Articles/359158/

Diamond: Automating Data Management and Storage
for Wide-area, Reactive Applications

Irene Zhang Niel Lebeck Pedro Fonseca Brandon Holt Raymond Cheng
Ariadna Norberg Arvind Krishnamurthy Henry M. Levy

University of Washington

Abstract
Users of today’s popular wide-area apps (e.g., Twitter,
Google Docs, and Words with Friends) must no longer
save and reload when updating shared data; instead, these
applications are reactive, providing the illusion of con-
tinuous synchronization across mobile devices and the
cloud. Achieving this illusion poses a complex distributed
data management problem for programmers. This pa-
per presents the first reactive data management service,
called Diamond, which provides persistent cloud storage,
reliable synchronization between storage and mobile de-
vices, and automated execution of application code in
response to shared data updates. We demonstrate that
Diamond greatly simplifies the design of reactive appli-
cations, strengthens distributed data sharing guarantees,
and supports automated reactivity with low performance
overhead.

1 Introduction
The modern world’s ubiquitous mobile devices, infinite
cloud storage, and nearly constant network connectivity
are changing applications. Led by social networks (e.g.,
Twitter), social games (e.g., Words with Friends) and col-
laboration tools (e.g., Google Docs), today’s popular ap-
plications are reactive [41]: they provide users with the
illusion of continuous synchronization across their de-
vices without requiring them to explicitly save, reload,
and exchange shared data. This trend, not limited merely
to mobile apps, includes the latest distributed versions
of traditional desktop apps on both Windows [13] and
OSX [4].

Maintaining this illusion presents a challenging dis-
tributed data management problem for application pro-
grammers. Modern reactive applications consist of widely
distributed processes sharing data across mobile devices,
desktops, and cloud servers. These processes make concur-
rent data updates, can stop or fail at any time, and may be
connected by slow or unreliable links. While distributed
storage systems [17, 77, 15, 23, 20] provide persistence
and availability, programmers still face the formidable
challenge of synchronizing updates between application
processes and distributed storage in a fault-tolerant, con-

sistent manner.
This paper presents Diamond, the first reactive data

management service (RDS) for wide-area applications
that continuously synchronizes shared application data
across distributed processes. Specifically, Diamond per-
forms the following functions on behalf of an application:
(1) it ensures that updates to shared data are consistent
and durable, (2) it reliably coordinates and synchronizes
shared data updates across processes, and (3) it automati-
cally triggers reactive code when shared data changes so
that processes can perform appropriate tasks. For example,
when a user updates data on one device (e.g., a move in a
multi-player game), Diamond persists the update, reliably
propagates it to other users’ devices, and transparently
triggers application code on those devices to react to the
changes.

Reactive data management in the wide-area context re-
quires a balanced consideration of performance trade-offs
and reasoning about complex correctness requirements in
the face of concurrency. Diamond implements the difficult
mechanisms required by these applications (such as log-
ging and concurrency control), letting programmers focus
on high-level data-sharing requirements (e.g., atomicity,
concurrency, and data layout). Diamond introduces three
new concepts:

1. Reactive Data Map (rmap), a primitive that lets ap-
plications create reactive data types – shared, per-
sistent data structures – and map them into the Dia-
mond data management service so it can automati-
cally synchronize them across distributed processes
and persistent storage.

2. Reactive Transactions, an interactive transaction
type that automatically re-executes in response to
shared data updates. These “live” transactions run
application code to make local, application-specific
updates (e.g., UI changes).

3. Data-type Optimistic Concurrency Control
(DOCC), a mechanism that leverages data-type
semantics to concurrently commit transactions
executing commutative operations (e.g., writes to
different list elements, increments to a counter). Our
experiments show that DOCC copes with wide-area

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 723

latencies very effectively, reducing abort rates by up
to 5x.

We designed and implemented a Diamond prototype in
C++ with language bindings for C++, Python, and Java on
both x86 and Android platforms. We evaluate Diamond
by building and measuring both Diamond and custom ver-
sions (using explicit data management) of four reactive
apps. Our experiments show that Diamond significantly
reduces the complexity and size of reactive applications,
provides strong transactional guarantees that eliminate
data races, and supports automatic reactivity with perfor-
mance close to that of custom-written reactive apps.

2 Traditional Data Management Tech-
niques for Reactive Apps

Reactive applications require synchronized access to dis-
tributed shared data, similar to shared virtual memory sys-
tems [46, 10]. For practical performance in the wide-area
environment, apps must be able to control: (1) what data
in each process is shared, (2) how often it is synchronized,
and (3) when concurrency control is needed. Existing
applications use one of several approaches to achieve syn-
chronization with control. This section demonstrates that
these approaches are all complex, error-prone, and make
it difficult to reason about application data consistency.

As an example, we analyze a simple social game based
on the 100 game [1]. Such games are played by mil-
lions [78], and their popularity changes constantly; there-
fore, game developers want to build them quickly and
focus on game logic rather than data management. Be-
cause game play increasingly uses real money (almost $2
billion last year [24]), their design parallels other reactive
applications where correctness is crucial (e.g., apps for
first responders [52] and payment apps [81, 72]).

In the 100 game, players alternately add a number be-
tween 1 and 10 to the current sum, and the first to reach
100 wins. Players make moves and can join or leave the
game at different times; application processes can fail at
any time. Thus, for safety, the game must maintain tradi-
tional ACID guarantees – atomicity, consistency, isolation
and durability – as well as reactivity for data updates. We
call this combination of properties ACID+R. While a stor-
age system provides ACID guarantees for its own data,
those guarantees do not extend to application processes.
In particular, pushing updates to storage on mobile devices
is insufficient for reactivity because application processes
must re-compute local data derived from shared data to
make changes visible to users and other components.

2.1 Roll-your-own Data Management

Many current reactive apps “roll-their-own”
application-specific synchronization across distributed
processes on top of general-purpose distributed stor-
age (e.g., Spanner [17], Dropbox [23]). Figure 1

Client Device

Clo
ud

players

curplay

myturn?

turn

sum

2

10

[Alice,Bob]

false

Alice

myname Bob

9

10

Distributed Storage
players

turn

[Alice,Bob]

2

10sum

Cloud ServerCloud ServerPut(tur
n,3)

Put(sum
,15)

N
o
t
i
f
y
(
B
o
b
)Get

(tu
rn)

Sum: 10
Your turn:

Get
(su

m)

Sum: 10
Your turn: 5

Notify(Bob)

M
o
v
e
(
5
)

G
e
t
M
o
v
e
(
)

Client Device

players

curplay

2

10

[Alice,Bob]

myturn? true

Alice

turn

sum

myname Alice

1

2

7

 Notification Service
notifications=[]

5
6

3

4

8

Figure 1: The 100 game. Each box is a separate address space.
players, turn and sum are shared across address spaces and the
storage system; myturn? and curplay are derived from shared
data. When shared values change, the app manually updates
distributed storage, other processes with the shared data, and any
data in those processes derived from shared data, as shown by
the numbered steps needed to propagate Alice’s move to Bob.

shows a typical three-tiered architecture used by these
apps (e.g., PlayFish uses it to serve over 50 million
users/month [34]). Processes on client devices access
stateless cloud servers, which store persistent game
state in a distributed storage system and use a reliable
notification service (e.g., Thialfi [3]) to trigger changes
in other processes for reactivity. While all application
processes can fail, we assume strong guarantees – such
as durability and linearizability – for the storage system
and notification service. Although such apps could rely
on a single server to run the game, this would create a
centralized failure point. Clients cache game data to give
users a responsive experience and to reduce load on the
cloud servers [34].

The numbers in Figure 1 show the data management
steps that the application must explicitly perform for Al-
ice’s move (adding 5 to the sum). Alice’s client: (1) up-
dates turn and sum locally, (2) calculates new values for
myturn? and curplay, and (3) sends the move to a cloud
server. The server: (4) writes turn and sum to distributed
storage, and (5) sends a notification to Bob. The notifica-
tion service: (6) delivers the notification to Bob’s client,
which (7) contacts a cloud server to get the latest move.
The server: (8) reads from distributed storage and returns
the latest turn and sum. Bob’s client: (9) updates turn and
sum locally, and (10) re-calculates myturn? and curplay.

Note that such data management must be customized
to such games, making it difficult to implement a
general-purpose solution. For example, only the appli-
cation knows that: (1) clients share turn and sum (but not
myname), (2) it needs to synchronize turn and sum after
each turn (but not players), and (3) it does not need con-
currency control because turn already coordinates moves.

Correctly managing this application data demands that
the programmer reason about failures and data races at
every step. For example, the cloud server could fail in the

724 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

middle of step 4, violating atomicity. It could also fail
between steps 4 and 5, making the application appear as
if it is no longer reactive.

A new player, Charlie, could join the game while Bob
makes his move, leading to a race; if Alice receives Bob’s
notification first, but Charlie writes to storage first, then
both Alice and Charlie would think that it was their turn,
violating isolation.

Finally, even if the programmer were to correctly han-
dle every failure and data race and write bug-free code,
reasoning about the consistency of application data would
prove difficult. Enforcing a single global ordering of join,
leave and move operations requires application processes
to either forgo caching shared data (or data derived from
shared data) altogether or invalidate all cached copies and
update the storage system atomically on every operation.
The first option is not realistic in a wide-area environ-
ment, while the second is not possible when clients may
be unreachable.

2.2 Wide-area Storage Systems

A simple, alternative way to manage data manually is
to store shared application data in a wide-area storage
system (e.g., Dropbox [23]). That is, rather than calling
move in step 3, the application stores and updates turn and
sum in a wide-area storage system. Though simple, this
design can be very expensive. Distributed file systems are
not designed to frequently synchronize small pieces of
data, so their coarse granularity can lead to moving more
data than necessary and false sharing.

Further, while this solution synchronizes Alice’s up-
dates with the cloud, it does not ensure that Bob receives
Alice’s updates. To simulate reactive behavior and en-
sure that Bob sees Alice’s updates, Alice must still use a
wide-area notification system (e.g., Apple Push Notifica-
tions [6]) to notify Bob’s client after her update. Unfor-
tunately, this introduces a race condition: if Bob’s client
receives the notification before the wide-area storage sys-
tem synchronizes Alice’s update, then Bob will not see
Alice’s changes. Worse, Bob will never check the storage
system again, so he will never see Alice’s update, leaving
him unable to make progress. Thus, this solution retains
all of the race conditions described in Section 2.1 and
introduces some new ones.

2.3 Reactive Programming Frameworks

Several programming frameworks (e.g., Firebase [26],
Parse [60] with React [64], Meteor [51]) have recently
been commercially developed for reactive applications.
These frameworks combine storage and notification sys-
tems and automate data management and synchronization
across systems. However, they do not provide a clear con-
sistency model, making it difficult for programmers to
reason about the guarantees provided by their synchro-

Client Device

Di
am

on
d

players

curplay

myturn?

turn

sum

2

10

[Alice,Bob]

false

Alice

myname Bob

Sum: 10
Your turn:

Client Device

players

curplay

2

10

[Alice,Bob]

myturn? true

Alice

turn

sum

myname Alice

Sum: 10
Your turn: 5

libDiamond libDiamond

 Diamond Cloud Storage
players

turn

[Alice,Bob]

2

10sum

Figure 2: Diamond 100 game data model. The app rmaps
players, turn and sum, updates them in read-write transactions
and computes myturn? and curplay in a reactive transaction.

nization mechanisms. Further, they offer no distributed
concurrency control, leaving application programmers to
contend with race conditions; for example, they can lead
to the race condition described in Section 2.1.

3 Diamond’s System and Programming
Model

Diamond is a new programming platform designed to sim-
plify the development of wide-area reactive applications.
This section specifies its data and transaction models and
system call API.

3.1 System Model

Diamond applications consist of processes running on
mobile devices and cloud servers. Processes can commu-
nicate through Diamond or over a network, which can
vary from local IPC to the Internet. Every application pro-
cess is linked to a client-side library, called LIBDIAMOND,
which provides access to the shared Diamond cloud – a
highly available, fault-tolerant, durable storage system.
Diamond subsumes some applications’ server-side func-
tionality, but our goal is not to eliminate such code. We
expect cloud servers to continue providing reliable and
efficient access to computation and datacenter services
(e.g., data mining) while accessing shared data needed for
these tasks through Diamond.

Figure 2 shows the 100 game data model using Dia-
mond. Compared to Figure 1, the application can directly
read and write to shared data in memory, and Diamond
ensures updates are propagated to cloud storage and other
processes. Further, Diamond’s strong transactional guar-
antees eliminate the need for programmers to reason about
failures and concurrency.

3.2 Data Model

Diamond supports reactive data types for fine-grained
synchronization, efficient concurrency control, and persis-
tence. As with popular data structure stores [19], such as
Redis [67] and Riak [68], we found that simple data types
are general enough to support a wide range of applications

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 725

Table 1: Reactive data types.

Type Operations Description

Boolean Get(), Put(bool) Primitive boolean
Long Get(), Put(long) Primitive number
String Get(), Put(str) Primitive string
Counter Get(), Put(long)

Increment(long)

Decrement(long)

Long Counter

IDGen GetUID() Unique ID generator
LongSet Get(idx), Contains(long)

Insert(long)

Ordered number set

LongList Get(idx), Set(idx, long)

Append(long)

Number list

StringSet Get(idx), Contains(str)
Insert(str)

Ordered string set

StringList Get(idx), Set(idx, str)

Append(str)

String list

HashTable Get(key), Set(key, val) Unordered map

and provide the necessary semantics to enable commuta-
tivity and avoid false sharing. Table 1 lists the supported
persistent data types and their operations. In addition to
primitive data types, like String, Diamond supports sim-
ple Conflict-free Replicated Data-types (CRDTs) [69]
(e.g., Counter) and collection types (e.g., LongSet) with
efficient type-specific interfaces. Using the most specific
type possible provides the best performance (e.g., using a
Counter for records that are frequently incremented).

A single Diamond instance provides a set of tables;
each table is a key-to-data-type map, where each entry,
or record, has a single persistent data type. Applications
access Diamond through language bindings; however, ap-
plications need not be written in a single language. We
currently support C++, Python and Java on both x86 and
Android but could easily add support for other languages
(e.g., Swift [5]).

3.3 System Calls

While apps interact with Diamond largely through reactive
data types, we provide a minimal system call interface,
shown in Table 2, to support transactions and rmap.

3.3.1 The rmap Primitive

rmap is Diamond’s key abstraction for providing shared
memory that is flexible, persistent, and reactive across
wide-area application processes. Applications call rmap
with an application variable and a key to the Diamond
record, giving them control over what data in their address
space is shared and how it is organized. In this way, dif-
ferent application processes (e.g., an iOS and an Android
client) and different application versions (e.g., a new and
current code release) can effectively share data. When
rmapping records to variables, the data types must match.
Diamond’s system call library checks at runtime and re-
turns an error from the rmap call if a mismatch occurs.

Table 2: Diamond system calls.

System call Description

create(table, [isolation]) Create table
status = rmap(var, table, key) Bind var to key

id = execute txn(func, cb) Start read-write transaction
id = register reactxn(func) Start reactive transaction
reactxn stop(txn id) Stop re-executing
commit txn(), abort txn() Commit/Abort and exit

3.3.2 Transaction model

Application processes use Diamond transactions to read
and write rmapped variables. Diamond transactions are
interactive [73], i.e., they let applications interleave ap-
plication code with accesses to reactive data types. We
support both standard read-write transactions and new
reactive transactions. Applications cannot execute trans-
actions across rmapped variables from different tables,
while operations executed outside transactions are treated
as single-op transactions.

Read-write transactions. Diamond’s read-write trans-
actions let programmers safely and easily access shared re-
active data types despite failures and concurrency. Appli-
cations invoke read-write transactions using execute txn.
The application passes closures for both the transaction
and a completion callback. Within the transaction closure,
the application can read or write rmapped variables and
variables in the closure, but it cannot modify program
variables outside the closure. This limitation ensures: (1)
the transaction can access all needed variables when it
executes asynchronously (and they have not changed),
and (2) the application is not affected by the side effects
of aborted transactions. Writes to rmapped variables are
buffered locally until commit, while reads go to the client-
side cache or to cloud storage.

Before execute txn returns, Diamond logs the trans-
action, with its read and write sets, to persistent storage.
This step guarantees that the transaction will eventually
execute and that the completion callback will eventually
execute even if the client crashes and restarts. This guar-
antee lets applications buffer transactions if the network is
unavailable and easily implement custom retry functional-
ity in the completion callback. If the callback reports that
the transaction successfully committed, then Diamond
guarantees ACID+R semantics for all accesses to rmapped
records; we discuss these in more detail in Section 3.4.
On abort, Diamond rolls back all local modifications to
rmapped variables.

Reactive transactions. Reactive transactions help ap-
plication processes automatically propagate changes
made to reactive data types. Each time a read-write trans-
action modifies an rmapped variable in a reactive transac-
tion’s read set, the reactive transaction re-executes, prop-

726 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

agating changes to derived local variables. As a result,
reactive transactions provide a “live” view that gives the
illusion of reactivity while maintaining an imperative
programming style comfortable to application program-
mers. Further, because they read a consistent snapshot of
rmapped data, reactive transactions avoid application-level
bugs common to reactive programming models [48].

Applications do not explicitly invoke reactive transac-
tions; instead, they register them by passing a closure to
register reactxn, which returns a txn id that can be used
to unregister the transaction with reactxn stop. Within
the reactive transaction closure, the application can read
but not write rmapped records, preventing potential data
flow cycles. Since reactive transactions are designed to
propagate changes to local variables, the application can
read and write to local variables at any time and trigger
side-effects (i.e., print-outs, updating the UI). Diamond
guarantees that reactive transactions never abort because
it commits read-only transactions locally at the client.
Section 4 details the protocol for reactive transactions.

Reactive transactions run in a background thread, con-
currently with application threads. Diamond transactions
do not protect accesses to local variables, so the program-
mer must synchronize with locks or other mechanisms.
The read set of a reactive transaction can change on every
execution; Diamond tracks the read set from the latest
execution. Section 6.2 explains how to use reactive trans-
actions to build general-purpose, reactive UI elements.

3.4 Reactive Data Management Guarantees

Diamond’s guarantees were designed to meet the require-
ments of reactive applications specified in Section 2, elim-
inating the need for each application to implement its own
complex data management. To do so, Diamond enforces
ACID+R guarantees for reactive data types:

• Atomicity: All or no updates to shared records in a
read-write transaction succeed.

• Consistency: Accesses in all transactions reflect a
consistent view of shared records.1

• Isolation: Accesses in all transactions reflect a
global ordering of committed read-write transac-
tions.

• Durability: Updates to shared records in committed
read-write transactions are never lost.

• Reactivity: Accesses to modified records in regis-
tered reactive transactions will eventually re-execute.

These guarantees create a producer-consumer relation-
ship: Diamond’s read-write transactions produce updates
to reactive data types, while reactive transactions con-
sume those updates and propagate them to locally derived
data. However, unlike the traditional producer-consumer

1The C in ACID is not well defined outside a database context.
Diamond simply guarantees that each transaction reads a consistent
snapshot.

Table 3: Diamond’s isolation levels. Isolation levels for read-
write transactions and associated ones for reactive transactions.

Read-write Isolation Level Reactive Isolation Level

Strict Serializability

Snapshot Isolation

Read Committed

Stronger
Guarantees

Fewer
Aborts

Serializable Snapshot

Serializable Snapshot

Read Committed

paradigm, this mechanism is transparent to applications
because the ACID+R guarantees ensure that Diamond
automatically re-executes the appropriate reactive trans-
actions when read-write transactions commit.

Table 3 lists Diamond’s isolation levels, which can be
set per table. Diamond’s default is strict serializability
because it eliminates the need for application program-
mers to deal with inconsistencies caused by data races
and failures. Lowering the isolation level leads to fewer
aborts and more concurrency; however, more anomalies
arise, so applications should either expect few conflicts, re-
quire offline access, or tolerate inaccuracy (e.g., Twitter’s
most popular hash tag statistics). Section 5.1 describes
how DOCC increases concurrency and reduces aborts for
transactions even at the highest isolation levels.

3.5 A Simple Code Example

To demonstrate the power of Diamond to simplify reactive
applications, Figure 3 shows code to implement the 100
game from Section 2 in Diamond. This implementation
provides persistence, atomicity, isolation and reactivity
for every join and move operation in only 34 lines of code.
We use three reactive data types for shared game data,
declared on line 2 and rmapped in lines 7-9. It is important
to ensure a strict ordering of updates, so we create a table
in strict serializable mode on line 6. On line 12, we de-
fine a general-purpose transaction callback for potential
transaction failures. On line 16, we execute a read-write
transaction to add the player to the game, passing myname

by value into the transaction closure. Using DOCC allows
Diamond to commit two concurrent executions of this
transaction while guaranteeing strict serializability.

Line 20 registers a reactive transaction to print out the
score and current turn. Diamond’s ACID+R guarantees
ensure that the transaction re-executes if players, turn
or sum change, so the user always has a consistent, up-to-
date view. Note that we can print to stdout because the
reactive transaction will not abort, and the printouts reflect
a serializable snapshot, avoiding reactive glitches [48]. On
line 32, we wait for user input in the while loop and use a
read-write transaction to commit the entered move.

Diamond’s strong guarantees eliminate the need for
programmers to reason about data races or failures. Tak-
ing our examples from Section 2, Diamond ensures that
when the game commits Alice’s move, the move is never

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 727

1 int main(int argc , char **argv) {
2 DStringSet players; DCounter sum , turn;
3 string myname = string(argv [1]);
4
5 / / Map game s t a t e
6 create("100 game", STRICT_SERIALIZABLE);
7 rmap(players , "100 game", "players");
8 rmap(sum , "100 game", "sum");
9 rmap(turn , "100 game", "turn");
10
11 / / General−purpose c a l l b a c k , e x i t i f t x n f a i l e d
12 auto cb = [] (txn_func_t txn , int status) {
13 if (status == REPLY_FAIL) exit (1); };
14
15 / / Add u s e r t o t h e game
16 execute_txn ([myname] () {
17 players.Insert(myname); }, cb);
18
19 / / S e t up our p r i n t o u t s
20 register_reactxn ([myname] () {
21 string curplay =
22 players[turn % players.size ()];
23 bool myturn = myname == curplay;
24 cout << "Sum: " << sum << "\n";
25 if (sum >= 100)
26 cout << curplay << " won!";
27 else if (myturn)
28 cout << "Your turn: ";
29 });
30
31 / / Cyc le on u s e r i n p u t
32 while (1) {
33 int inc; cin >> inc;
34 execute_txn ([myname , inc] () {
35 bool myturn =
36 myname == players[turn % players.size ()];
37 / / check i n p u t s
38 if (! myturn || inc < 1 || inc > 10) {
39 abort_txn (); return;
40 }
41 sum += inc; if (sum < 100) turn ++;
42 }, cb);
43 }
44 return 0;
45 }

Figure 3: Diamond code example. Implementation of the 100
game using Diamond. Omitting includes, set up, and error han-
dling, this code implements a working, C++ version of the 100
game [1]. DStringSet, DLong and DCounter are reactive data
types provided by the Diamond C++ library.

lost and Bob eventually sees it. Diamond also ensures
that, if Charlie joins before Bob makes his move, Alice
either sees Charlie join without Bob’s move, or both, but
never sees Bob’s move without seeing Charlie join. As a
result, programmers no longer need to reason about race
conditions, greatly simplifying the game’s design. To our
knowledge, no other system provides all of Diamond’s
ACID+R properties.

3.6 Offline Support

Wi-Fi and cellular data networks have become widely
available, and reactive applications typically have limited
offline functionality; thus, Diamond focuses on providing
online reactivity, unlike storage systems (e.g., Bayou [77]
and Simba [61]). However, Diamond still provides limited
offline support. If the network is unavailable, execute txn

logs and transparently retries, while Diamond’s CRDTs
make it more likely that transactions commit after be-

Diamond front-end servers

store

get
prepare
commit

register notify

publishsubscribe

App Client
libDiamond

App Server
libDiamond

App Client
libDiamond

store store store

Figure 4: Diamond architecture. Distributed processes share a
single instance of the Diamond storage system.

ing retried. For applications with higher contention, Dia-
mond’s read committed mode enables commits locally at
the client while offline, and any modifications eventually
converge to a consistent state for Diamond’s CRDTs.

3.7 Security

Similar to existing client-focused services, like Fire-
base [26] and Dropbox [23], Diamond trusts application
clients not to be malicious. Application clients authenti-
cate with the Diamond cloud through their LIBDIAMOND

client before they can rmap or access reactive data types.
Diamond supports isolation between users through ac-
cess control lists (ACLs); applications can set rmap, read,
and write permissions per table. Within tables, keys func-
tion as capabilities; a client with a key to a record has
permission to access it. Applications can defend against
potentially malicious clients by implementing server-side
security checks using reactive transactions on a secure
cloud server.

4 Diamond’s System Design
This section relates Diamond’s architecture, the design of
rmap, and its transaction protocols.

4.1 Data Management Architecture

Figure 4 presents an overview of Diamond’s key com-
ponents. Each LIBDIAMOND client provides client-side
caching and access to cloud storage for the application
process. It also registers, tracks and re-executes reactive
transactions and keeps a persistent transaction log to han-
dle device and network failures.

The Diamond cloud consists of front-end servers and
back-end storage servers, which together provide durable
storage and reliable notifications for reactive transactions.
Front-end servers are scalable, stateless nodes that pro-
vide LIBDIAMOND clients access to Diamond’s back-end
storage, which is partitioned for scalability and replicated
(using Viewstamped Replication (VR) [58]) for fault toler-
ance. LIBDIAMOND clients could directly access back-end
storage, but front-end servers give clients a single connec-
tion point to the Diamond cloud, avoiding the need for

728 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

them to authenticate with many back-end servers or track
the partitioning scheme.

4.2 rmap and Language Bindings

Diamond language bindings implement the library of reac-
tive data types for apps to use as rmap variables. Diamond
interposes on every operation to an rmapped variable. Dur-
ing a transaction, LIBDIAMOND collects an operation set
for DOCC to later check for conflicts. Reads may hit the
LIBDIAMOND client-side cache or require a wide-area ac-
cess to the Diamond cloud, while writes (and increments,
appends, etc.) are buffered in the cache until commit.

4.3 Transaction Coordination Overview

Figure 5 shows the coordination needed across LIBDIA-
MOND clients, front-end servers and back-end storage for
both read-write and reactive transactions. This section
briefly describes the transaction protocols.

Diamond uses timestamp ordering to enforce isolation
across LIBDIAMOND clients and back-end storage; it as-
signs every read-write transaction a unique commit times-
tamp that is provided by a replicated timestamp service
(tss) (not shown in Figure 4). Commit timestamps reflect
the transaction commit order, e.g., in strict serializability
mode, they reflect a single linearizable ordering of com-
mitted, read-write transactions. Both Diamond’s client-
side cache and back-end storage are multi-versioned using
these commit timestamps.

4.3.1 Running Distributed Transactions

Read-write and reactive transactions execute similarly;
however, as Section 5 relates, reactive transactions can
commit locally and often avoid wide-area accesses alto-
gether. We lack the space to cover Diamond’s transaction
protocol in depth; however, it is similar to Spanner’s [17]
with two key differences: (1) Diamond uses DOCC for
concurrency control rather than a locking mechanism, and
(2) Diamond uses commit timestamps from the timestamp
service (tss) rather than TrueTime [17].

As shown in Figure 5 (left), transactions progress
through two phases, execution and commit. During the
execution phase, LIBDIAMOND runs the application code
in the transaction closure passed into txn execute. It runs
the code locally on the LIBDIAMOND client node (i.e., not
on a storage node like a stored procedure).

The execution phase completes when the application
exits the transaction closure or calls txn commit explic-
itly. Reactive transactions commit locally; for read-write
transactions, LIBDIAMOND sends the operation sets to the
front-end server, which acts as the coordinator for a two-
phase commit (2PC) protocol, as follows:

1. It sends Prepare to all participants (i.e., partitions
of the Diamond back-end that hold records in the
operation sets), which replicate it via VR.

Alice libDiamond Front-end Back-end

read(a)

<1,[11,13)>

gettimestamp

Front-end libDiamond Bob

write(b,1)

commit prepare

validation

okok
commit

pub
(b,1,16) notify

(b,1,16) re-exec
read(b)

register

read(b,14)

<0,[11,15)>
reg(14,[b])sub

(b,14)e
x

e
c

u
t
e

c
o

m
m

it

callback

Read-Write Transaction Reactive Transaction

R
e

g
is

t
e

r
N

o
t
if

y

Figure 5: Diamond transaction coordination. Left: Alice exe-
cutes a read-write transaction that reads A and writes B. Right:
Bob registers a reactive transaction that reads B (we omit the
txn id). When Alice commits her transaction, the back-end
server publishes the update to the front-end, which pushes the
notification and the update to Bob’s LIBDIAMOND, which can
then re-execute the reactive transaction locally.

2. Each participant runs a DOCC validation check (de-
scribed in Section 5); if DOCC validation succeeds,
the participant adds the transaction to a prepared list
and returns true; otherwise, it returns false.

3. As an optimization, the front-end server concurrently
retrieves a commit timestamp from the tss.

4. If all participants respond true, the front-end sends
Commits to the participants with the commit times-
tamp; otherwise, it sends Aborts. Then, it returns the
transaction outcome to the LIBDIAMOND client.

When the client receives the response, it logs the transac-
tion outcome and invokes the transaction callback.

4.3.2 Managing Reactive Transactions

As shown in Figure 5 (right), when an application registers
a reactive transaction, the LIBDIAMOND client: (1) gives
the reactive transaction a txn id, (2) executes the reactive
transaction at its latest known timestamp, and (3) sends
the txn id, the timestamp, and the read set in a Register

request to the front-end server. For each key in the read
set, the front-end server creates a Subscribe request and
sends those requests, along with the timestamp, to each
key’s back-end partition.

For efficiency, LIBDIAMOND tracks read set changes
between executions and re-registers. We expect each reac-
tive transaction’s read set to change infrequently, reducing
the overhead of registrations; if it changes often, we can
use other techniques (e.g., map objectrange described in
Section 6.2) to improve performance.

When read-write transactions commit, Diamond exe-
cutes the following steps for each updated record:

1. The leader in the partition sends a Publish request
with the transaction’s commit timestamp to each
front-end subscribed to the updated record.

2. For each Publish, the front-end server looks up the
reactive transactions that have the updated record in
their read sets and checks if the commit timestamp

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 729

is bigger than the last notification sent to that client.
3. If so, the front-end server sends a Notify request to

the client with the commit timestamp and the reactive
transaction id.

4. The client logs the notification on receipt, updates its
latest known timestamp, and re-executes the reactive
transaction at the commit timestamp.

For keys that are updated frequently, back- and front-end
servers batch updates. Application clients can bound the
batching latency (e.g., to 5 seconds), ensuring that reactive
transactions refresh at least once per batching latency
when clients are connected.

4.3.3 Handling Failures

While both the back-end storage and tss are replicated us-
ing VR, Diamond can suffer failures of the LIBDIAMOND

clients or front-end servers. On client failure, LIBDIA-
MOND runs a client recovery protocol using its transaction
log to ensure that read-write transactions eventually com-
mit. For each completed but unprocessed transaction (i.e.,
in the log but with no outcome), LIBDIAMOND retries the
commit. If the cloud store has a record of the transaction,
it returns the outcome; otherwise, it re-runs 2PC. For each
reactive transaction, the application re-registers on recov-
ery. LIBDIAMOND uses its log to find the last timestamp at
which it ran the transaction.

Although front-end servers are stateless, LIBDIAMOND

clients must set up a new front-end server connection
when they fail. They use the client recovery protocol to
do this and re-register each reactive transaction with its
latest notification timestamp. Front-end servers also act
as coordinators for 2PC, so back-end storage servers use
the cooperative termination protocol [11] if they do not
receive Commit requests after some timeout.

5 Wide-area Optimizations
This section discusses Diamond’s optimizations to reduce
wide-area overhead.

5.1 Data-type Optimistic Concurrency Control

Diamond uses an optimistic concurrency control (OCC)
mechanism to avoid locking across wide-area clients. Un-
fortunately, OCC can perform poorly across the wide area
due to the higher latency between a transaction’s read
of a record and its subsequent commit. This raises the
likelihood that a concurrent write will invalidate the read,
thereby causing a transaction abort. For example, to in-
crement a counter, the transaction reads the current value,
increments it, and then commits the updated value; if an-
other transaction attempts the same operation at the same
time, an abort occurs.

DOCC tackles this issue in two ways. First, it uses fine-
grained concurrency control based on the semantics of
reactive data types, e.g., allowing concurrent updates to
different list elements. Second, it uses conflict-free data

Table 4: DOCC validation matrix. Matrix shows whether the
committing transaction can commit (C) or must abort (A) on
conflicts. Each column is further divided by the isolation level
(RC=read committed, SI=snapshot isolation, SS=strict serializ-
ability). Commutative CRDT operations have the same outcome.

read
write

C

read
RC SI SS

write
RC SI SS

CRDT op
RC SI SS

C C C C A C C A
C C A C A A C A A

CRDT op C C A C A A C C C

Prepared
Commiting

Op
Op

Isolation Level

types with commutative operations, such as counters and
ordered sets. As noted in Section 4.3.1, LIBDIAMOND col-
lects an operation set for every data type operation during
the transaction’s execution phase. For each operation, it
collects the key and table. It also collects the read version
for every Get, the written value for every Put, the index
(e.g., list index or hash table key) for every collection op-
eration, and the diff (e.g., the increment value or the insert
or append element) for every commutative CRDT oper-
ation. We show in Section 6 that although fine-grained
tracking slightly increases DOCC overhead, it improves
overall performance.

Using operation sets, DOCC runs a validation proce-
dure that checks every committing transaction for poten-
tial violations of isolation guarantees. A conflicting access
occurs for an operation if the table, key, and index (for
collection types) match an operation in a prepared trans-
action. For a read, a conflict also occurs if the latest write
version (or commutative CRDT operation) to the table,
key, and index is bigger than the read version. For each,
DOCC makes an abort decision, as noted in Table 4.

Since transactions that contain only commutative oper-
ations can concurrently commit, DOCC can allow many
concurrent transactions that modify the same keys. This
property is important for workloads with high write con-
tention, e.g., the Twitter “like” counter for popular celebri-
ties [36]. Further, because Diamond runs read-only and
reactive transactions in serializable snapshot mode, they
do not conflict with read-write transactions with commu-
tative CRDT operations.

5.2 Client Caching with Bounded Validity Intervals

Some clients in the wide-area setting may occasionally be
unavailable, making it impossible to atomically invalidate
all cache entries on every write to enforce strong order-
ing. Diamond therefore uses multi-versioning in both the
client-side cache and back-end storage to enforce a global
ordering of transactions. To do this, it tags each version
with a validity interval [62], which begins at the start
timestamp and is terminated by the end timestamp. In
Diamond’s back-end storage, a version’s start timestamp
is the commit timestamp of the transaction that wrote the

730 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Diamond
Client
Cache

Diamond
Cloud
Storage

10

B

C

A

11 12 13 14 15 16

10

B

C

A

11 12 13 14 15 16

Figure 6: Diamond versioned cache. Every Diamond client
has a cache of the versions of records stored by the Diamond
cloud storage system. The bottom half shows versions for three
keys (A, B and C), and the top half shows cached versions of
those same keys. Note that the cache is missing some versions,
and all of the validity intervals in the cache are bounded.

version. The end timestamp is either the commit times-
tamp of the transaction writing the next version (making
that version out-of-date) or unbounded for the latest ver-
sion. Figure 6 shows an example of back-end storage with
three keys.

On reads, the Diamond cloud tags the returned value
with a validity interval for the LIBDIAMOND client-side
cache. These validity intervals are conservative; back-end
storage guarantees that the returned version is valid at
least within the validity interval, although it may be valid
beyond. If the version is the latest, back-end storage will
bound the validity interval by setting the end timestamp to
the latest commit timestamp of a transaction that accessed
that record. For example, in Figure 6, the validity interval
of the latest version of B and C are capped at timestamp 16
in the cache, while they are unbounded in storage. Most
importantly, bounded validity intervals eliminate the need
for cache invalidations because the version is always valid
within the validity interval. Diamond eventually garbage
collects cached versions as they become too outdated to
use.

5.3 Data Push Notifications

Reactive transactions require many round-trips to syn-
chronously fetch each update; these can be expensive in
a wide-area network. Fortunately, unlike stand-alone no-
tifications services (e.g., Thialfi), Diamond has insight
into what data the application is likely to access when
the reactive transaction re-executes. Thus, Diamond uses
data push notifications to batch updates along with notifi-
cations, reducing wide-area round trips.

When front-end servers receive Publish requests from
back-end storage, they perform a snapshot read of every
key in the reactive transaction’s last read set at the up-
dating transaction’s commit timestamp, then piggyback
the results with the Notify request to the LIBDIAMOND

client. LIBDIAMOND re-executes the reactive transaction
at the commit timestamp; therefore, if its read set has
not changed, then it requires no additional wide-area re-

Table 5: Application comparison. Diamond both reduces code
size and adds to the application’s ACID+R guarantees.

Application LoC w/o
Diamond

LoC w/
Diamond

LoC
Saved

Added

A C I D R

100 Game 46 34 26% DDD

Chat Room 355 225 33% DDD D

PyScrabble 8729 7603 13% D D

Twitter clone 14278 12554 13% DDD

quests. Further, since the reads were done at the commit
timestamp, LIBDIAMOND knows that the transaction can
be serialized at that timestamp and committed locally,
eliminating all wide-area communication.

6 Experience and Evaluation
This section evaluates Diamond with respect to both pro-
gramming ease and performance. Overall, our results
demonstrate that Diamond simplifies the design of re-
active applications, provides stronger guarantees than ex-
isting custom solutions, and supports automated reactivity
with low performance overhead.

6.1 Prototype Implementation

We implemented a Diamond prototype in 11,795 lines
of C++, including support for C++, Python and Java lan-
guage bindings on both x86 and ARM. The Java bindings
(939 LoC) use javacpp [39], and the Python bindings
(115 LoC) use Boost [2]. We cross-compiled Diamond
and its dependencies for Android using the NDK stan-
dalone toolchain [29]. We implemented most Diamond
data types, but not all are supported by DOCC. Our cur-
rent prototype does not include client-side persistence and
relies on in-memory replication for the back-end store;
however, we expect disk latency on SSDs to have a low
performance impact compared to wide-area network la-
tency, with NVRAM reducing storage latency even further
in the future.

6.2 Programming Experience

This section evaluates our experience in building new
Diamond apps, porting existing apps to Diamond, and cre-
ating libraries to support the needs of reactive programs.

6.2.1 Simplifying Reactive Applications

To evaluate Diamond’s programming benefits, we imple-
mented applications both with and without Diamond. Ta-
ble 5 shows the lines of code for both cases. For all of the
apps, Diamond simultaneously decreased program size
and added important reliability or correctness properties.
We briefly describe the programs and results below.

100 Game. Our non-Diamond version of the 100 game
is based on the design in Figure 1. For simplicity, we used
Redis [67] for both storage and notifications. We found

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 731

several data races between storage updates and notifica-
tions when running experiments for Figure 9, forcing us
to include updates in the notifications to ensure clients did
not read stale data from the store. The Diamond version
eliminated these bugs and the complexities described in
Section 2 and guaranteed correctness with atomicity and
isolation; in addition, it reduced the code size by 26%.

Chat Room. As another simple but representative ex-
ample of a reactive app, we implemented two versions of
a chat room. Our version with explicit data management
used Redis for storage and the Jetty [40] web server to
implement a REST [25] API. It used POST requests to send
messages and polled using GET requests for displaying the
log. This design is similar to that used by Twitter [80, 35]
to manage its reactive data (e.g., Twitter has POST and
GET requests for tweets, timelines, etc.). The Diamond
version used a StringList for the chat log, a read-write
transaction to append messages, and a reactive transac-
tion to display the log. In comparison, Diamond not only
eliminated the need for a server or storage system, it also
provided atomicity (the Redis version has no failure guar-
antees), isolation (the Redis version could not guarantee
that all clients saw a consistent view of the chat log), and
reactivity (the Redis version polled for new messages).
Diamond also shrunk the 355-line app by 130 lines, or
33%.

PyScrabble and Diamond Scrabble. To evaluate the
impact of reactive data management in an existing appli-
cation, we built a Diamond version of PyScrabble [16],
an open-source, multiplayer Scrabble game. The original
PyScrabble does not implement persistence (i.e., it has no
storage system) and uses a centralized server to process
moves and notify players. The centralized server enforces
isolation and consistency only if there are no failures. We
made some changes to add persistence and accommodate
Diamond’s transaction model. We chose to directly rmap

the Scrabble board to reactive data types and update the
UI in a reactive transaction, so our implementation had to
commit and share every update to make it visible to the
user; thus, other users could see the player lay down tiles
in real-time rather than at the end of the move, as in the
original design. Overall, our port of PyScrabble to Dia-
mond removed over 1000 lines of code from the 8700-line
app (13%) while transparently simplifying the structure
(removing the server), adding fault tolerance (persistence)
and atomicity, and retaining strong isolation.

Twimight and Diamond Dove. As another modern re-
active application, we implemented a subset of Twitter us-
ing an open-source Android Twitter client (Twimight [79])
and a custom back-end. The Diamond version eliminated
much of the data management in the Twimight version,
i.e., pushing and retrying updates to the server and main-
taining consistency between a client-side SQLite [71]

cache and back-end storage. Diamond directly plugged
into UI elements and published updates with read-write
transactions. As a result, it simplified the design, elim-
inated 1700 lines (13%) from the 14K-line application,
transparently provided stronger atomicity and isolation
guarantees, and eliminated inconsistent behaviors (e.g., a
user seeing a retweet before the original tweet).

6.2.2 Simplifying Reactive Libraries

In addition to simplifying the design and programming
of reactive apps, we found that Diamond facilitates the
creation of general-purpose reactive libraries. As one ex-
ample, Diamond transactions naturally lend themselves
to managing UI elements. For instance, a check box usu-
ally rmaps a Boolean, re-draws a UI element in a reac-
tive transaction, and writes to the Boolean in a read-write
transaction when the user checks/unchecks the box. We
implemented a general library of Android UI elements, in-
cluding a text box and check box. Each element required
under 50 lines of code yet provided strong ACID+R guar-
antees. Note that these elements tie the user’s UI to shared
data, making it impossible to update the UI only locally;
for example, if a user wants to preview a message before
sharing it with others, the app must update the UI in some
other way.

For generality, Diamond makes no assumptions about
an app’s data model, but we can build libraries using
rmap for common data models. For example, we imple-
mented object-relational mapping for Java objects whose
fields were Diamond data types. Using Java reflection,
rmap object maps each Diamond data type inside an ob-
ject to a key derived from a base key and the field’s name.
We also support rmap for subsets of Diamond collections,
e.g., rmap range for Diamond’s primitive list types, which
binds a subset of the list to an array, and rmap objectrange,
which maps a list of objects using rmap object.

These library functions were easy to build (under 75
lines of code) and greatly simplified several applications;
for example, our Diamond Twitter implementation stores
a user’s timeline as a LongList of tweet ids and uses
map objectrange to directly bind the tail of the user’s
timeline into a custom Android adapter, which then plugs
into the Twimight Android client and automatically man-
ages reactivity. In addition to reducing application com-
plexity, these abstractions also provide valuable hints for
prefetching and for how reactive transaction read sets
might change. Overall, we found Diamond’s program-
ming model to be extremely flexible, powerful, and easy
to generalize into widely useful libraries.

6.3 Performance Evaluation

Our performance measurements demonstrate that Dia-
mond’s automated data management and strong consis-
tency impose a low performance cost relative to custom-

732 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Strong Operation Ordering

Linearizable Txns
Strong Transaction Ordering

Figure 7: Peak throughput for explicit data management vs
Diamond. We compare an implementation using Redis and Jetty
to Diamond at different isolation levels with and without DOCC.
We label the ordering guarantees provided by each configuration.
In all cases, the back-end servers were the bottleneck.

written applications. Using transactions with strong isola-
tion properties lowers throughput, as one would expect.
We also show that Diamond’s DOCC improves perfor-
mance of transactional guarantees, and that data push no-
tifications reduce the latency of wide-area transactions.
Finally, our experiments prove that Diamond has low over-
head on mobile devices and can recover quickly from
failures.

6.3.1 Experimental Setup

We ran experiments on Google Compute Engine [30] us-
ing 16 front-end servers and 5 back-end partitions, each
with 3 replicas placed in different availability zones in
the same geographic region (US-Central). Our replica-
tion protocol used adaptive batching with a batch size
of 64. We placed clients in a different geographic re-
gion in the same country (US-East). The latency between
zones was ≈1 ms, while the latency between regions was
≈36 ms. For our mobile device experiments, we used
Google Nexus 7 LRX22G tablets connected via Wi-Fi
and, for desktop experiments, we used a Dell workstation
with an Intel Xeon E5-1650 CPU and 16 GB RAM.

We used a benchmark based on Retwis [45], a Redis-
based Twitter clone previously used to benchmark transac-
tional storage systems [84]. The benchmark was designed
to be a representative, although not realistic, reflection of
a Twitter-like workload that provides control over con-
tention. It ran a mix of five transactions that range from
4-21 operations, including: loading a user’s home time-
line (50%), posting a tweet (20%), following a user (5%),
creating a new user (1%), and “like”-ing a tweet (24%).
To increase contention, we used 100K keys and a Zipf
distribution with a co-efficient of 0.8.

6.3.2 Overhead of Automated Data Management

For comparison, we built an implementation of the Retwis
benchmark that explicitly manages reactive data using
Jetty [40] and Redis [67]. The Redis WAIT command offers
synchronous in-memory replication, which matches Dia-
mond’s fault-tolerance guarantees but provides no opera-
tion or transaction ordering [66]. The leftmost bar in Fig-
ure 7 shows the peak Retwis throughput of 31K trans./sec.
for the Redis-based implementation, while the second bar

in Figure 7 shows the Diamond read-committed (RC)
version, whose performance (30.5K trans./sec.) is nearly
identical. Unlike the Redis-based implementation, how-
ever, the Diamond benchmark provides strong consistency
based on VR, i.e., it enforces a single global order of op-
erations but not transactions. The Diamond version also
provides all of its reactivity support features. Diamond
therefore provides better consistency properties and sim-
plifies programming at little additional cost.

As we add stronger isolation through transactions,
throughput declines because two-phase commit requires
each back-end server to process an extra message per
transaction. As the graph shows, snapshot isolation (SI)
and strict serializability (SS) reduce throughput by nearly
50% from RC. The graph also shows SI and SS both with
and without DOCC; eliminating DOCC hurts SS more
than SI (27% vs. 13%) because SI lets transactions with
read-write conflicts commit (leading to write skew).

From this experiment, we conclude that Diamond’s
general-purpose data management imposes almost no
throughput overhead. Also, achieving strong transactional
isolation guarantees does impose a cost due to the more
complex message protocol required. Depending on the
application, programmers can choose to offset the cost
by allocating more servers or tolerate inconsistencies that
result from weaker transactional guarantees.

6.3.3 Benefit of DOCC

DOCC’s benefit depends on both contention and trans-
action duration. To evaluate this effect, we measured the
throughput improvement of DOCC for each type of Retwis
transaction with at least one CRDT operation (Figure 8).

The add user and like transactions are short and thus
unlikely to abort, but they still see close to a 2x improve-
ment. add follower gets a larger benefit (4x) because it is
a longer transaction with more commutative operations.
Even get timeline, a read-only transaction, gets a tiny im-
provement (2.5%) due to reduced load on the servers from
aborting transactions. Further, because get timeline runs
in serializable snapshot mode, post tweet transactions
can commit concurrently with get timeline transactions.

The post tweet transaction appends a user’s new tweet
to his timeline and his followers’ home timelines (each
user has between 5 and 20 followers). If a user follows
a large number of people that tweet frequently, conven-
tional OCC makes it highly likely that a conflicting Append

would cause the entire transaction to fail. With DOCC, all
Appends to a user’s home timeline can commute, avoid-
ing these aborts. As a result, we saw a 5x improvement
in abort rate with DOCC over conventional OCC for
post tweet, leading to a 25x improvement in throughput.
Overall, these results show that Diamond’s support for
data types in its API and concurrency control mechanism
is crucial to reducing the cost of transactional guarantees.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 733

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t

0X
1X
2X
3X
4X
5X

add_user add_follower post_tweet get_timeline like

2X
1X

25X
4X

2X

25x

Figure 8: Throughput improvement with DOCC for each
Retwis transaction type.

La
ten

cy

0 s
0.25 s

0.5 s
0.75 s

1 s

No Data Push Data Push Redis
Figure 9: Latency comparison for 100 game rounds with
data push notifications. Each round consist of 1 move by each
of 2 players; latency is measured from 1 client. We implemented
explicit data management and notifications using Redis and
Diamond notifications with and without batched updates.

6.3.4 Benefit of Data Push Notifications

Although Diamond’s automated data management im-
poses a low throughput overhead, it can hurt latency due
to wide-area round trips to the Diamond cloud. For exam-
ple, the latency of a Retwis transaction is twice as high for
Diamond relative to our Redis implementation because
Diamond requires two round trips per transaction, one to
read and one to commit, while Redis needs only one.

Data push notifications reduce this latency by batching
updates with reactive transaction notifications to popu-
late the client-side cache. We turned our implementation
of the 100 game from Figure 3 into a benchmark: two
players join each game, and players make a move as soon
as the other player finishes (i.e., zero “think” time). This
experiment is ideal because the read set of the reactive
transaction does not change, and it overlaps with the read
set of the read-write transaction. We also design an imple-
mentation using Redis, where notifications carry updates
to clients as a manual version of data push notifications.
We measure the latency from one player’s client for each
player to take a turn or for one round of the game. Fig-
ure 9 shows that data push notifications reduce the overall
latency by almost 50% by eliminating wide-area reads for
both the reactive and read-write transactions in the game.
As a result, Diamond has 30% lower latency and stronger
transactional guarantees than our Redis implementation.

6.3.5 Impact of Wide-area Storage Server Failures

Failures affect the latency of both reactive and read-write
transactions. To measure this impact, we used the same
100 game workload and killed a back-end server during
the game. To increase the recovery overhead, we geo-
replicated the back-end servers across Asia, US-Central
and Europe, while clients remained in US-East.

La
ten

cy

0 s
2 s
4 s
6 s
8 s

Number of Rounds Passed

6 7 8 9 10 11 12 13 14 15 16 17

Figure 10: Latency of 100 game rounds during failure. We
measured the latency for both players to make a move and killed
the leader of the storage partition after about 15 seconds. Af-
ter recovery, the leader moves to another geographic region,
increasing overall messaging latency on each move.

Figure 10 shows the latency of each round. Note that
the latency is higher than that in the previous experiment
because the VR leader has to wait for a response from a
quorum of replicas, which take at least 100 ms, and up
to 150 ms, to contact. About 15 seconds into the game,
we kill the leader in US-Central, switching it to Europe.
The latency of each round increases to almost 4 seconds
afterwards: the latency between the front-end servers and
the leader in Europe increases to 100 ms, and the latency
from the leader to the remaining replica in Asia increases
to 250 ms. Despite this, the round during the failure takes
only 7 seconds, meaning that Diamond can detect the
failure and replace the leader in less than 3 seconds.

6.3.6 End-user Application Latency

To evaluate Diamond’s impact on the user experience, we
measure the latency of user operations in two apps from
Section 6.2 built with and without Diamond. PyScrabble
is a desktop application, while our Chat Room app runs
on Android. The ping times to the Diamond cloud were
≈38 ms on the desktop and ≈46 ms on the Android tablet.

Figure 11 (left) shows two operations for PyScrabble:
MakeMove commits a transaction that updates the user’s
move, and DisplayMove includes MakeMove plus the no-
tification and reactive transaction to make it visible. Com-
pared to the original PyScrabble, Diamond’s latency is
slightly higher (9% and 16%, respectively). Figure 11
(right) shows operations for the Chat Room on an Android
tablet. ReadLog gets the full chat log, and PostMessage gets
the chat log, appends a message, and commits it back. The
Diamond version is a few percent faster than the Redis
version because it runs in native C++, while the Redis
version uses a Java HTTP client. Overall, we found the
latency differences between Diamond and non-Diamond
operations were not perceivable to users.

7 Related Work
Diamond takes inspiration from wide-area storage sys-
tems, transactional storage systems and databases, reac-
tive programming, distributed programming frameworks,
shared memory systems and notification systems.

Several commercial platforms [51, 26, 60] provide

734 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: End-user operation latency for PyScrabble and
Chat Room on Diamond and non-Diamond implementa-
tions.

an early form of reactive data management without dis-
tributed transactions. Other open source projects [38, 55,
21, 59, 70] have replicated the success of their commercial
counterparts. Combined, they comprise a mobile back-end
market of $1.32 billion dollars [49].

However, these products do not meet the requirements
of reactive applications, still requiring programmers to ad-
dress failures and race conditions. Meteor [51] lets client-
side code directly access the database interface. How-
ever, because it uses existing databases (MongoDB [53],
and most recently, Postgres [63]) that do not support dis-
tributed transactions and offer weak consistency guar-
antees by default, programmers must still reason about
race conditions and consistency bugs. Parse [60] and
Firebase [26] similarly enable clients to read, write, and
subscribe to objects that are automatically synchronized
across mobile devices; however, these systems offer no
concurrency control or transactions. As demonstrated by
these Stack Overflow questions [56, 50], programmers
find this to be a significant issue with these systems. Di-
amond addresses this clear developer need by providing
ACID+R guarantees for reactive applications.

There has been significant work in wide-area storage
systems for distributed and mobile applications, including
numerous traditional instantiations [77, 42, 57] as well
as more recent work [18, 9, 74, 61, 75]. Many mobile ap-
plications today use commercial storage services such as
Dropbox and others [23, 22, 37], while users can also em-
ploy revision-based storage (e.g., git [27]). Applications
often combine distributed storage with notifications [3, 6].
As discussed, these systems help with data management,
but none offers a complete solution.

Diamond shares a data-type-based storage model with
data structure stores [67, 68]. Document stores (e.g., Mon-
goDB [53]) support application objects; this prevents
them from leveraging semantics for better performance.
These datastores, along with more traditional key-value
and relational storage systems [15, 8, 44, 76], were not
designed for wide-area use although they could support
reactive applications with additional work.

Reactive transactions in Diamond are similar to
database triggers [47], events [14], and materialized
views [12]. They differ from these mechanisms because
they modify local application state and execute applica-
tion code rather than database queries that update storage

state. Diamond’s design draws on Thialfi [3]; however,
Thialfi cannot efficiently support data push notifications
without insight into the application’s access patterns.

DOCC is similar to Herlihy [32, 31] and Weihl’s [83]
work on concurrency control for abstract data types. How-
ever, Diamond applies their techniques to CRDTs [69]
over a range of isolation levels in the wide area. DOCC
is also related to MDCC [43] and Egalitarian Paxos [54];
however, DOCC uses commutativity for transactional con-
currency control rather than Paxos ordering and supports
more data types. DOCC extends recent work on software
transactional objects [33] for single-node databases to the
wide area; integrating the two would let programmers
implement custom data types in Diamond.

Diamond does not strive to support a fully reactive,
data-flow-based programming model, like functional re-
active or constraint-based programming [82, 7]; however,
reactive transactions are based on the idea of change
propagation. Recent interest in reactive programming
for web client UIs has resulted in Facebook’s popular
React.js [64], the ReactiveX projects [65], and Google’s
Agera[28]. DREAM [48], a recently proposed, distributed
reactive platform, lacks transactional guarantees. Sap-
phire [85], another recent programming platform for mo-
bile/could applications, does not support reactivity, dis-
tributed transactions, or general-purpose data manage-
ment.

8 Conclusion
This paper described Diamond, the first data management
service for wide-area reactive applications. Diamond in-
troduced three new concepts: the rmap primitive, reactive
transactions, and DOCC. Our evaluation demonstrated
that: (1) Diamond’s programming model greatly simpli-
fies reactive applications, (2) Diamond’s strong transac-
tional guarantees eliminate data race bugs, and (3) Dia-
mond’s low performance overhead has no impact on the
end-user.

9 Acknowledgements
We thank the UW systems lab for their comments through-
out the project. This work was supported by Google, Na-
tional Science Foundation grant CNS-1518702 and NSF
GRFP, and MSR Ph.D. fellowships. We also thank our
anonymous reviewers and our shepherd, Bryan Ford, for
their feedback.

References
[1] Nim, Feb 2016. https://en.wikipedia.org/wiki/Nim#The

100 game.

[2] D. Abrahams and S. Seefeld. Boost C++ libraries,
2015. http://www.boost.org/doc/libs/1 60 0/libs/python/
doc/html/index.html.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 735

https://en.wikipedia.org/wiki/Nim#The_100_game
https://en.wikipedia.org/wiki/Nim#The_100_game
http://www.boost.org/doc/libs/1_60_0/libs/python/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/python/doc/html/index.html

[3] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi: a
client notification service for internet-scale applications.
In Proc. of SOSP, 2011.

[4] S. Alvos-Bock. The convergence of iOS and OSX
user interface design, July 2015. http://www.solstice-
mobile.com/blog/the-convergence-of-ios-and-os-x-user-
interface-design.

[5] Apple. The Swift programming language, 2016.
https://developer.apple.com/library/ios/documentation/
Swift/Conceptual/Swift Programming Language/#/
/apple ref/doc/uid/TP40014097-CH3-ID0.

[6] Apple push notification service, 2015. https:
//developer.apple.com/library/ios/documentation/
NetworkingInternet/Conceptual/RemoteNotificationsPG/
Chapters/ApplePushService.html.

[7] K. Apt. Principles of Constraint Programming. Cam-
bridge University Press, 2003.

[8] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In Proc. of CIDR, 2011.

[9] N. M. Belaramani, J. Zheng, A. Nayate, R. Soulé,
M. Dahlin, and R. Grimm. PADS: A policy architecture
for distributed storage systems. In Proc. of NSDI, 2009.

[10] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific memory
coherence. In Proc. of PPOPP, 1990.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[12] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently
updating materialized views. In Proc. of SIGMOD, 1986.

[13] J. Callaham. Yes, windows 10 is the next ver-
sion of windows phone. Windows Central, Sept
2014. http://www.windowscentral.com/yes-windows-10-
next-version-windows-phone.

[14] S. Chakravarthy. Sentinel: an object-oriented DBMS with
event-based rules. In Proc. of SIGMOD, 1997.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems, 2008.

[16] K. Conaway. Pyscrabble. http://pyscrabble.sourceforge.
net/.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In Proc. of OSDI, 2012.

[18] M. Dahlin, L. Gao, A. Nayate, A. Venkataramana, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Proc. of
NSDI, 2006.

[19] DB-engine’s ranking of key-value stores, 10 2015. http:
//db-engines.com/en/ranking/key-value+store.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. of SOSP, 2007.

[21] deepstream. deepstream.io: a scalable server for realtime
web apps. https://deepstream.io/.

[22] Google Drive, 2016. http://drive.google.com.

[23] Dropbox, 2015. http://www.dropbox.com.

[24] eMarketer. Mobile game revenues to grow 16.5%
in 2015, surpassing $3 billion, Feb 2015. http:
//www.emarketer.com/Article/Mobile-Game-Revenues-
Grow-165-2015-Surpassing-3-Billion/1012063.

[25] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Uni-
versity of California, Irvine, 2000.

[26] Firebase, 2015. https://www.firebase.com/.

[27] Git, 2015. https://git-scm.com/.

[28] Google. Agera. https://github.com/google/agera.

[29] Google. Android standalone toolchain,
2016. http://developer.android.com/ndk/guides/
standalone toolchain.html.

[30] Google Compute Engine. https://cloud.google.com/
products/compute-engine/.

[31] M. Herlihy. Optimistic concurrency control for abstract
data types. In Proc. of PODC. ACM, 1986.

[32] M. Herlihy. Apologizing versus asking permission: Opti-
mistic concurrency control for abstract data types. ACM
Transactions on Database Systems, 1990.

[33] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler,
B. Liskov, and L. Shrira. Type-aware transactions for
faster concurrent code. In eurosys, 2016.

[34] T. Hoff. Playfish’s social gaming architecture - 50 million
monthly users and growing. High Scalability, Sept 2010.
highscalability.com/blog/2010/9/21/playfishs-social-
gaming-architecture-50-million-monthly-user.html.

[35] T. Hoff. The architecture that Twitter uses to deal with
150m active users, 300k qps, a 22 mb/s firehose, and
send tweets in under 5 seconds. High Scalability, July
2013. http://highscalability.com/blog/2013/7/8/the-
architecture-twitter-uses-to-deal-with-150m-active-
users.html.

[36] M. Humphries. Ellen DeGeneres crashes Twitter with
Oscar selfie, 2014. http://www.geek.com/mobile/ellen-
degeneres-crashes-twitter-with-an-oscars-selfie-
1586464/.

[37] Apple iCloud, 2016. https://www.icloud.com/.

[38] A. Incubator. Apache Usergrid. http://usergrid.apache.
org/.

[39] JavaCPP: The missing bridge between Java and native
C++. github, Mar 2016. https://github.com/bytedeco/
javacpp.

736 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design
http://www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design
http://www.solstice-mobile.com/blog/the-convergence-of-ios-and-os-x-user-interface-design
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-ID0
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://www.windowscentral.com/yes-windows-10-next-version-windows-phone
http://www.windowscentral.com/yes-windows-10-next-version-windows-phone
http://pyscrabble.sourceforge.net/
http://pyscrabble.sourceforge.net/
http://db-engines.com/en/ranking/key-value+store
http://db-engines.com/en/ranking/key-value+store
https://deepstream.io/
http://drive.google.com
http://www.dropbox.com
http://www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063
http://www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063
http://www.emarketer.com/Article/Mobile-Game-Revenues-Grow-165-2015-Surpassing-3-Billion/1012063
https://www.firebase.com/
https://git-scm.com/
https://github.com/google/agera
http://developer.android.com/ndk/guides/standalone_toolchain.html
http://developer.android.com/ndk/guides/standalone_toolchain.html
https://cloud.google.com/products/compute-engine/
https://cloud.google.com/products/compute-engine/
highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html
highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://www.geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-selfie-1586464/
http://www.geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-selfie-1586464/
http://www.geek.com/mobile/ellen-degeneres-crashes-twitter-with-an-oscars-selfie-1586464/
https://www.icloud.com/
http://usergrid.apache.org/
http://usergrid.apache.org/
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp

[40] Jetty web server. http://www.eclipse.org/jetty/.

[41] R. K. Jonas Boner, Dave Farley and M. Thompson. The re-
active manifesto, Sept 2014. http://www.reactivemanifesto.
org/.

[42] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the coda file system. ACM Transactions on
Computer Systems, 1992.

[43] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: multi-data center consistency. In
Proc. of EuroSys, 2013.

[44] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. ACM SIGOPS Operating Sys-
tems Review, 2010.

[45] C. Leau. Spring Data Redis - Retwis-J,
2013. http://docs.spring.io/spring-data/data-
keyvalue/examples/retwisj/current/.

[46] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM Transactions on Computer
Systems, 1989.

[47] B. F. Lieuwen, N. Gehani, and R. Arlein. The Ode active
database: trigger semantics and implementation. In Proc.
of ICDE, Feb 1996.

[48] A. Margara and G. Salvaneschi. We have a DREAM:
Distributed reactive programming with consistency guar-
antees. In Proc. of DEBS. ACM, 2014.

[49] Markets and Markets. Backend as a service (BaaS)
market worth 28.10 billion USD by 2020. http://www.
marketsandmarkets.com/PressReleases/baas.asp.

[50] martypdx. Firebase data consistency across
multiple nodes. Stack Overflow, Apr 2015.
http://stackoverflow.com/questions/29947898/firebase-
data-consistency-across-multiple-nodes.

[51] Meteor, 2015. http://www.meteor.com.

[52] M. Mode. New mobile apps revolutionize how orga-
nizations respond to crises and operations issues, Aug
2014. http://www.missionmode.com/new-mobile-apps-
revolutionize-organizations-respond-crises-operations-
issues/.

[53] MongoDB, 2015. https://www.mongodb.org.

[54] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proc. of
SOSP, 2013.

[55] Mozilla. Kinto. http://kinto.readthedocs.org/en/latest/.

[56] R. Mulia. Firebase - maintain/guarantee con-
sistency. Stack Overflow, Jan 2016. http:
//stackoverflow.com/questions/34678083/firebase-
maintain-guarantee-data-consistency.

[57] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proc. of SOSP, 2001.

[58] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support highly-available
distributed systems. In Proc. of PODC, 1988.

[59] openio. openio.io: object storage grid for apps. http:
//openio.io/.

[60] Parse, 2015. http://www.parse.com.

[61] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu. Simba: tunable end-to-
end data consistency for mobile apps. In Proc. of EuroSys,
2015.

[62] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and
B. Liskov. Transactional consistency and automatic man-
agement in an application data cache. In Proc. of OSDI,
2010.

[63] PostgreSQL, 2013. http://www.postgresql.org/.

[64] React: A JavaScript library for building user interfaces.
Github, 2016. https://facebook.github.io/react/.

[65] ReactiveX: An api for asynchronous programming with
observable streams, 2016. http://reactivex.io/.

[66] Redis. Wait numslaves timeout. http://redis.io/commands/
WAIT.

[67] Redis: Open source data structure server, 2013. http://
redis.io/.

[68] Riak, 2015. http://basho.com/products/riak-kv/.

[69] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. of SSS, 2011.

[70] socketcluster.io. socketcluster.io: a scalable framework for
realtime apps and microservices. http://socketcluster.io/#!
/.

[71] Sqlite home page, 2015. https://www.sqlite.org/.

[72] Square cash. https://cash.me/.

[73] M. Stonebraker and J. M. Hellerstein. Readings in
Database Systems. Morgan Kaufmann San Francisco,
1998.

[74] J. Strauss, J. M. Paluska, C. Lesniewski-Laas, B. Ford,
R. Morris, and M. F. Kaashoek. Eyo: Device-transparent
personal storage. In Proc. of USENIX ATC, 2011.

[75] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.
Kaashoek, and R. Morris. Flexible, wide-area storage for
distributed systems with WheelFS. In Proc. of NSDI, 2009.

[76] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and
S. Shah. Serving large-scale batch computed data with
Project Voldemort. In Proc. of FAST, 2012.

[77] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update con-
flicts in bayou, a weakly connected replicated storage sys-
tem. In Proc. of SOSP, 1995.

[78] Global social gaming market to reach US$17.4 bn
by 2019 propelled by rising popularity of fun games.
Transparency Market Research Press Release, Sept
2015. http://www.transparencymarketresearch.com/
pressrelease/social-gaming-market.htm.

[79] Twimight open-source Twitter client for Android, 2013.
http://code.google.com/p/twimight/.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 737

http://www.eclipse.org/jetty/
http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
http://www.marketsandmarkets.com/PressReleases/baas.asp
http://www.marketsandmarkets.com/PressReleases/baas.asp
http://stackoverflow.com/questions/29947898/firebase-data-consistency-across-multiple-nodes
http://stackoverflow.com/questions/29947898/firebase-data-consistency-across-multiple-nodes
http://www.meteor.com
http://www.missionmode.com/new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/
http://www.missionmode.com/new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/
http://www.missionmode.com/new-mobile-apps-revolutionize-organizations-respond-crises-operations-issues/
https://www.mongodb.org
http://kinto.readthedocs.org/en/latest/
http://stackoverflow.com/questions/34678083/firebase-maintain-guarantee-data-consistency
http://stackoverflow.com/questions/34678083/firebase-maintain-guarantee-data-consistency
http://stackoverflow.com/questions/34678083/firebase-maintain-guarantee-data-consistency
http://openio.io/
http://openio.io/
http://www.parse.com
 http://www.postgresql.org/
https://facebook.github.io/react/
http://reactivex.io/
http://redis.io/commands/WAIT
http://redis.io/commands/WAIT
http://redis.io/
http://redis.io/
http://basho.com/products/riak-kv/
http://socketcluster.io/#!/
http://socketcluster.io/#!/
https://www.sqlite.org/
https://cash.me/
http://www.transparencymarketresearch.com/pressrelease/social-gaming-market.htm
http://www.transparencymarketresearch.com/pressrelease/social-gaming-market.htm
 http://code.google.com/p/twimight/

[80] Twitter. Twitter developer API, 2014. https://dev.twitter.
com/overview/api.

[81] Venmo. https://venmo.com/.

[82] Z. Wan and P. Hudak. Functional reactive programming
from first principles. In Proc. of PLDI, 2000.

[83] W. E. Weihl. Local atomicity properties: modular concur-
rency control for abstract data types. ACM Trans. Prog.
Lang. Syst., 1989.

[84] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurhty,
and D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proc. of SOSP, 2015.

[85] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D.
Gribble, A. Krishnamurthy, and H. M. Levy. Customizable
and extensible deployment for mobile/cloud applications.
In Proc. of OSDI, 2014.

738 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dev.twitter.com/overview/api
https://dev.twitter.com/overview/api
https://venmo.com/

Slicer: Auto-Sharding for Datacenter Applications

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,
Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry Kai,

Alexander Shraer, Arif Merchant, and Kfir Lev-Ari†

Google †Technion - Israel

Abstract
Sharding is a fundamental building block of large-scale
applications, but most have their own custom, ad-hoc
implementations. Our goal is to make sharding as eas-
ily reusable as a filesystem or lock manager. Slicer is
Google’s general purpose sharding service. It monitors
signals such as load hotspots and server health to dy-
namically shard work over a set of servers. Its goals are
to maintain high availability and reduce load imbalance
while minimizing churn from moved work.

In this paper, we describe Slicer’s design and imple-
mentation. Slicer has the consistency and global opti-
mization of a centralized sharder while approaching the
high availability, scalability, and low latency of systems
that make local decisions. It achieves this by separating
concerns: a reliable data plane forwards requests, and a
smart control plane makes load-balancing decisions off
the critical path. Slicer’s small but powerful API has
proven useful and easy to adopt in dozens of Google ap-
plications. It is used to allocate resources for web ser-
vice front-ends, coalesce writes to increase storage band-
width, and increase the efficiency of a web cache. It
currently handles 2-7M req/s of production traffic. The
median production Slicer-managed workload uses 63%
fewer resources than it would with static sharding.

1 Introduction
Many applications require the resources of more than one
computer, especially at Google’s typical scale. An ap-
plication that distributes its work across multiple com-
puters requires some scheme for splitting it up. Often,
work is simply split randomly. This is ubiquitous in web
services, where the dominant architecture puts a round-
robin load-balancer in front of a fleet of interchangeable
application processes (“tasks”).

However, in many applications, it is hard to ensure
that every task can service any request. For example,

0 1 2 3 4 5 6 7
time (days)

0
2
4
6
8

M
re

q/
s

0 2 4 6 8
Mreq/s

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Figure 1: Over five-minute intervals in a recent week, Slicer
directed a median of 2 Mreq/s of production traffic with peaks
exceeding 7 Mreq/s.

Google’s speech recognizer (§3.2.1) uses a different ma-
chine learning model for each spoken language. Loading
a model is too slow for interactive use: a language must
be resident before a request arrives. One task cannot fit
every model, making random request balancing unten-
able. Instead, each task loads only a subset of languages,
and incoming requests are routed to a prepared task.

In the past, Google applications like the speech recog-
nizer had their own one-off sharders. Experience taught
us that sharding is hard to get right: the plumbing is
tedious, and it can take years to tune and cover corner
cases. Rebuilding a sharder for every application wastes
engineering effort and often produces brittle results.

In practice, custom sharders typically make do with
simplistic static sharding that is unresponsive to changes
in workload distribution and task availability. Simple
schemes utilize resources poorly. In the speech recog-
nizer, resources required per language peak at different
times as speakers wake and sleep. When tasks fail, re-
quests must be redistributed among the healthy tasks.
When a datacenter fails, a great wave of traffic sloshes
over to the remaining datacenters, dramatically altering
the request mix. Before Slicer, the speech team handled
variation with overprovisioning and manual intervention.

Slicer refactors sharding into a reusable and easily
adopted building block akin to a filesystem or lock man-
ager. Slicer is a general-purpose infrastructure service

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 739

that partitions work across tasks in applications that ben-
efit from affinity. Slicer is minimally invasive to appli-
cations: they need only associate incoming requests with
a key of their choice that is used to rendezvous requests
with tasks. In the speech recognizer, the slice key is the
language. Other applications use fine-grained slice keys,
such as usernames or URLs. Slicer assigns part of the
key space to each task and routes incoming requests to
them via integration with Google’s front-end load bal-
ancers and RPC system.

Slicer addresses these needs by sharding dynamically.
It monitors the request load to detect hotspots. It moni-
tors task availability changes due to service provisioning,
system updates, and hardware failures. It rebalances the
key mapping to maintain availability of all keys and re-
duce load imbalance among tasks while minimizing key
churn.

Slicer can trade off consistency with availability, offer-
ing either strongly or eventually consistent assignments.
In consistent assignment mode, no task ever believes a
key is assigned to it if the Assigner does not agree. The
simplest application of this property ensures that at most
one task is authoritative for a key, reducing availability
but making it easy to write a correct application that mu-
tates state. Alternatively, Slicer can distribute overlap-
ping eventually consistent assignments, eliminating pe-
riods of unavailability and reacting rapidly to load shifts.

Slicer’s design differs significantly from past shard-
ing systems, driven by its use in dozens of large-scale
systems at Google. Slicer provides global optimization
and consistency guarantees possible with a centralized
load-balancer, but it achieves nearly the same resilience
to failures and low latency as systems that make purely
local decisions, such as distributed hash tables.

In a production environment, customers cannot tol-
erate flag days (synchronized restarts). By separat-
ing the forwarding data plane from the policy control
plane, Slicer simplifies customer-linked libraries and
keeps complexity in a central service where the team can
more easily coordinate changes.

This functionality is all exposed through a narrow,
readily adopted API that has proven useful in Google ap-
plications with a variety of needs:

Avoiding storage overhead. A stateless front-end that
accesses underlying durable storage on every request is
conceptually simple but pays a high performance cost
over keeping state in RAM. In some applications, includ-
ing our speech recognizer, this overhead dwarfs all other
time spent serving a user request. For example, a Google
pub-sub service[9] processes 600 Kreq/s, most of which
do one hash and one comparison to a hash in memory.

Fetching the hash via a storage RPC would be correct
but incur far more overhead and latency.

Automatic scaling. Many cluster management sys-
tems can automatically expand the number of tasks as-
signed to a job based on load, but these are typically
coarse-grained decisions with heavyweight configura-
tion. Our speech recognizer handles dozens of lan-
guages, and Slicer’s key redundancy provides a single-
configuration mechanism to independently scale those
many fine-grained resources.

Write aggregation. Several event processors at
Google (§3.3.1) ingest huge numbers of small events
and summarize them by key (such as data source) into
a database. Aggregating writes from stateless front ends
is possible, but aggregating like keys on the same task
can be more efficient; Data Analysis Pipeline sees 80%
fewer storage requests. Affinity provides similar bene-
fits for other expensive, immobile resources like network
sockets: Slicer routes requests for an external host to one
task with the socket already open.

Sharding state is well-studied; see Section 6. Slicer
draws on storage sharding [2, 14, 15] but applies to
more classes of application. Compared to other general-
purpose sharding systems [5, 10, 8, 13], Slicer offers
more features (better load balancing, optional assign-
ment consistency, and key replication) and an architec-
ture focused on high availability.

This paper makes the following contributions:

• An architecture that separates the assignment gen-
eration “control plane” from the request forwarding
“data plane”, which provides algorithmic versatil-
ity, high performance, resilience to failure, and ex-
ploits existing lease managers and storage systems
as robust building blocks.

• An effective load-balancing algorithm that mini-
mizes key churn and has proven effective in a va-
riety of applications.

• An evaluation on production deployments of sev-
eral large applications that shows the benefits and
availability of the Slicer architecture.

2 Slicer Overview and API
Slicer is a general-purpose sharding service that splits
an application’s work across a set of tasks that form a
job within a datacenter, balancing load across the tasks.
A “task” is an application process running on a multi-
tenant host machine alongside tasks from other applica-
tions. The unit of sharding in Slicer is a key, chosen by
the application. Slicer integrates with Google’s Stubby
RPC system to easily route RPCs originating in other ser-
vices and with Google’s frontend HTTP load balancers to

740 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

route HTTP requests from external browsers and REST
clients.

Slicer has the following components: a centralized
Slicer Service; the Clerk, a library linked into applica-
tion clients; and the Slicelet, a library linked into appli-
cation server tasks. (Figure 2). The Service is written
in Java; the libraries are available in C++, Java, and Go.
The Slicer Service generates an assignment mapping key
ranges (“slices”) to tasks and distributes it to the Clerks
and Slicelets, together called the subscribers. The Clerk
directs client requests for a key to the assigned task. The
Slicelet enables a task to learn when it is assigned or re-
lieved of a slice. The Slicer Service monitors load and
task availability to generate new assignments to main-
tain availability of all keys. Application code interacts
only indirectly with the Slicer Service via the Clerk and
Slicelet libraries.

2.1 Sharding Model
Application keys may be fine-grained, such as user IDs,
or coarse-grained, such as the languages in the speech
recognizer described in Section 3.2.1. Keys are an
atomic unit of work placement: all state associated with
a single key will be collocated on those task replicas to
which the key is assigned, but different keys may be as-
signed to different tasks. Slicer does not observe applica-
tion state; it merely notifies the task of the keys the task
should serve.

Slicer hashes each application key into a 63-bit slice
key; each slice in an assignment is a range in this hashed
keyspace. Manipulating key ranges makes Slicer’s work-
load independent of whether an application has ten keys
or a billion and means that an application can create new
keys without Slicer on the critical path. As a result, there
is no limit on the number of keys nor must they be enu-
merated.

Hashing keys simplifies the load balancing algorithm
because clusters of hot keys in the application’s keyspace
are likely uniformly distributed in the hashed keyspace.

Slicer
Service

RPCs
Assignments

(distributed in
background)

Job
Server
Slicelet

Server
Slicelet

Server
Slicelet

Client
Clerk

Figure 2: Abstract Slicer architecture.

The cost is lost locality: contiguous application keys are
scattered. Many Google applications are already struc-
tured around single-key operations rather than scans, en-
couraged by the behavior of existing storage systems.
For others, Section 2.2 offers a mitigation.

Some applications require all requests for the same
key to be served by the same task, for example, to main-
tain a write-through cache. For these, Slicer offers a con-
sistency guarantee on what assignments a Slicelet can
observe (§4.5). For many other applications, weaker se-
mantics are correct even when requests for the same key
are served by different tasks. For example, such systems
serve read-only data (such as Google Fonts), or provide
weak consistency to their users (such as Cloud DNS), or
have an underlying storage system that provides strong
consistency (such as event aggregation systems).

Such applications can configure Slicer with key re-
dundancy, allowing assignment of each slice to multi-
ple tasks. Slicer honors a minimum redundancy to pro-
tect availability and automatically increases replication
for hot slices, which we call asymmetric key redundancy.

2.2 Slicelet Interface
The application server task interacts with Slicer via the
“Slicelet” API (Figure 3). A simple application, like the
Flywheel URL status cache (§3.1.1), is free to ignore
this API entirely and answer whatever requests arrive;
Slicer transparently improves performance. An applica-
tion may register a SliceletListener to learn when
slices arrive and depart, so it can prefetch and garbage-
collect state (such as the speech models in Section 3.2.1).

A few affinity-mode applications use isAffin-
itizedKey to discover misrouted requests, such as
when retrying a request from the client is cheaper than
processing it at the wrong server (§3.3).

interface Slicelet {
boolean isAffinitizedKey(String key);
Opaque getSliceKeyHandle(String key);
boolean isAssignedContinuously(Opaque handle);

}
interface SliceletListener {
void onChangedSlices(List<Slice> assigned,

List<Slice> unassigned);
}

Figure 3: Slicer Server API

To support applications that require exclusive key
ownership to maintain consistent in-memory state, the
Slicelet provides an API inspired by Centrifuge [10]. The
task calls getSliceKeyHandle when a request ar-
rives, and passes the handle back to isAssignedCon-
tinuously before externalizing the result. Note that
checking assignment at beginning and end is insufficient,
since the slice may have been unassigned and reassigned

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 741

in the meantime. A task may also cache a handle across
multiple requests, for example to cache a user’s inbox
during a session.

To scan its store to preload state, an application may
need to map from hashed slices keys back to original
application keys. Applications with few keys (such as
language names in the speech recognizer) can precom-
pute an index at each task. Applications with many keys
typically adjust their storage schema, either by prefixing
the primary key with the hashed slice key or by adding
a secondary index. In future work, Slicer will support
unhashed application-defined keys and implement range
sharding to preserve locality among adjacent application-
defined keys.

By default, Slicer load balances on request rate (req/s).
The Slicelet integrates with Stubby to transparently mon-
itor request rate per slice. Some applications have highly
variable cost per request, or want to balance a different
metric like task CPU utilization. An extension to the API
of Figure 3 lets tasks report a custom load metric.
2.3 Clerk Interface
The Clerk provides a single function which maps a key to
the addresses of its assigned tasks (Figure 4). Most appli-
cations ignore this API and simply enable transparent in-
tegration with Google’s RPC system Stubby or Google’s
HTTP proxy GFE (Google Front End).

interface Clerk {
Set<Addr> getAssignedTasks(String key);

}

Figure 4: Slicer Client API

Stubby typically directs RPCs round-robin from each
client to a subset of tasks in a job. We extended Stubby to
accept an additional slice key argument with each RPC,
causing the task to be selected using Slicer’s assignment.
Stubby also has support for Google’s global load bal-
ancer, which selects the network-closest datacenter for
each RPC. With both enabled, the global load balancer
picks a datacenter, and Slicer picks the task from the job
in that datacenter.

The GFE is an HTTP proxy that accepts requests from
the Internet and routes each to an internal task. The GFE
offers a declarative language for selecting routing fea-
tures from a request’s URL, parameters, cookies, headers
and more. Slicer integration interprets any such feature
as a slice key.
3 Slicer Uses in Production Systems
Slicer is used by more than 20 client services at Google,
and it balances 2-7M requests per second with more than
100,000 application client processes and server tasks
connected to it (Figure 1). Prospective customers eval-

uate their systems against a test instance of Slicer that
routes another 2 Mreq/s.

This section illustrates some of Slicer’s use cases. Cur-
rent uses of Slicer fit three categories: in-memory cache,
in-memory store, and aggregation.
3.1 In-memory Cache Applications
Slicer is most commonly used for in-memory dynamic
caches over storage state.
3.1.1 Flywheel
Flywheel is an optimizing HTTP proxy for mobile de-
vices [11]. Flywheel tracks which websites have recently
been unreachable, enabling an immediate response to
a client that averts a timeout. Flywheel uses a set of
“tracker” tasks as a repository of website reachability.
In the original design, updates and requests were sent
to a random tracker task. Because the semantics are
forgiving, this worked but converged slowly. To hasten
unreachability detection, Flywheel now uses Slicer with
website server name as the key, so that updates and re-
quests converge on a single task.
3.1.2 Other cache uses
Many other services use Slicer to manage caches.

1. Meeting scheduler: manages meetings and provides
calendar functions. Includes a per-user cache for
faster responses.

2. Crawl manager: crawls pages and extracts meta-
data. Retains last crawl time per URL to provide
crawl rate-limiting.

3. Fonts service: serves fonts to various web and mo-
bile applications. Caches font files and subsets of
font files.

4. Configuration sync service: periodically checks
end-to-end configurations for entities from multiple
sources. Entity affinitization allows comparisons of
configurations from multiple sources.

5. Data analysis pipeline: analyzes stored data and
serves summary results. Caches query results per
source.

6. Job profiling: caches metadata used for job profiling
by job name.

7. User Contacts Cache: caches user’s contacts infor-
mation when fetched by a user’s mobile or web ap-
plication.

8. User Metadata Cache: caches user’s meta-
data/preferences for a user in a video display ap-
plication.

9. Service Control: caches aggregated metrics and
logs for public APIs.

742 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.2 In-memory Store Applications
The in-memory caches in the previous section handle
shard reassignment by discarding state, causing future
requests to the moved keys to see a cache miss. In con-
trast, the tasks of an in-memory store load any missing
data from an underlying store, and thus resharding events
only affect latency; the stored data remains available.
3.2.1 Speech Recognition
As mentioned in Section 1, a speech recognition system
uses Slicer to assign languages to tasks and route incom-
ing requests to a task with the required model loaded.
The speech team originally manually partitioned lan-
guages into task-sized sets and put each set in a separate
job. This approach required peak provisioning, failing
to multiplex resources to exploit diurnal shifts as popu-
lations wake and sleep. It was also operationally com-
plex, incurring manual overhead to monitor, maintain,
upgrade, and debug separately-configured jobs.
3.2.2 Cloud DNS
Google’s Cloud DNS service, which hosts millions of
domains owned by Google and its customers, uses Slicer
to assign DNS records to tasks, allowing the tasks to
quickly make purely local decisions using in-memory
state. Furthermore, Slicer’s key redundancy and load
balancing support allows the service to respond to load
changes in the key space. Since the application provides
DNS semantics, Slicer’s affinity mode is sufficient.

3.3 Aggregation Applications
Tasks receive requests for some key (e.g., customer id,
pubsub topic) and they aggregate them into larger writes
to a backing store. This reduces traffic on the under-
lying store: Event Pipeline 2 achieved a 4

5 reduction.
Slicer’s asymmetric key replication is particularly ef-
fective for aggregation, spreading hot key traffic across
many tasks. The tasks write concurrently and depend on
key-granularity append semantics at the store to preserve
correctness [14].
3.3.1 Event analysis
Two event analysis systems shard events by source id to
build up a model. Without Slicer, these systems would
have to read, modify and write the model on every event,
since aggregating writes would incur frequent expensive
optimistic concurrency control conflicts.

With Slicer, requests for a source id key are almost1

always routed to the same task. Therefore, a task can
afford to aggregate writes coarsely, since write conflicts
are rare. It can also cache the last model state it wrote,

1These services use Slicer’s affinity mode, which provides high
availability at the cost of perfect consistency (§4.5), relying on the
backend store’s conflict detection for data consistency.

skipping the read step of read-modify-write unless the
backend store detects a conflict. In these systems, traffic
per source varies by several orders of magnitude, making
load balancing essential.
3.3.2 Client Push: Pubsub System for Mobile De-

vices
Client Push [3] is a pubsub system that allows mobile
clients to subscribe to topics and receive all messages
published on that topic. Tasks are sharded by topic; they
write subscriptions to a table in which the slice key is
the prefix of the storage key. Slicer affinitization im-
proves efficiency by aggregating requests for a range of
keys to the storage servers. Slicer’s asymmetric replica-
tion spreads hot topics across many tasks, avoiding bot-
tlenecks.
4 Slicer Service Implementation
Slicer aims to combine the high-quality, strongly con-
sistent sharding decisions of a centralized system with
the scalability, low latency, and fault tolerance associated
with local decisions. This section describes how Slicer
achieves the best of both worlds.

The Assigner is the core of Slicer’s backend service.
It collects health, task provisioning, and load signals. It
uses its central view of those signals to produce a coher-
ent assignment of work to tasks (§4.4) that is strongly
consistent for applications that need it (§4.5).

Though the Slicer Service is conceptually centralized
(Figure 2), the implementation is highly distributed (Fig-
ure 5). By combining client-side caching, Distributors,
and Backup Distributors that provide a backstop against
catastrophic failures, the backend service also achieves
scalability (§4.2) and fault tolerance (§4.3) similar to a
purely local service.
4.1 Assignment Generation
The Assigner generates assignments using a sharding al-
gorithm described in Section 4.4. To enhance availabil-
ity, we run the Assigner service in several Google data-
centers around the world. Any Assigner may generate an
assignment for any job in any datacenter.

Deploying multiple Assigners increases availability
but admits the possibility of disagreement. Section 4.5
explains how subscribers can observe consistent assign-
ments. But even for eventually consistent applications,
the Assigners should converge, not thrash among com-
peting decisions. To facilitate convergence, Assigners
write decisions into optimistically-consistent storage. An
Assigner reads the stored assignment, generates a new
assignment, and assigns it a monotonic generation num-
ber. It writes the new assignment back to storage transac-
tionally conditioned on overwriting the previously read
value. If a concurrent write has occurred, the transac-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 743

Assigner

Store
(job state)

Client Watch
assignments

Server
Job

data
center

Job size
signal

Health
signal

Load
signal

RPCs

Distributor

Backup
Distributor

Watch
assignments

Slow
polling

Watch
assignments

Write and watch
assignments

Figure 5: Slicer backend service architecture. The Assigner
collects signals and uses them to make an assignment, informed
by a stored prior assignment to minimize churn. The Assigner
disseminates assignments to subscribers (Clerks and Slicelets)
through the distributor and through a passive backup path via
a store. All of this traffic is off the critical path of client-
server communications. The Assigner and Distributors are
replicated across datacenters; each component can serve any
job at Google.

tion fails, the Assigner abandons its new assignment, re-
trieves the new current assignment, and tries again.

For efficiency, in the steady state only a single pre-
ferred Assigner generates an assignment for a particular
job. Each Assigner periodically polls Google’s global
load balancer service to see if it is network-closest, and
hence preferred, for the jobs for which it is generating as-
signments. This definition is eventually consistent: there
may be brief periods when multiple Assigners are pre-
ferred.

Assignment storage makes the distributed Assigners
act as a single logical process. When failure causes a
change in preferred Assigner, the new one learns the de-
cisions of the prior one and carries them forward. Should
two Assigners both believe they are preferred, they will
thrash, but storage concurrency control prevents diver-
gence.

Slicer makes assignments for one job in one datacenter
at a time. Customers who run jobs in multiple datacen-
ters use a higher-level Google load balancer to route a
request to a datacenter, and then within that datacenter,
use Slicer to pick one task from the job.

4.2 Scalable Assignment Distribution
Because Slicer manipulates ranges of a hashed keyspace,
assignments have a concise representation. Even then,
large applications with thousands of tasks produce large
assignments that need to be distributed to all server tasks
and their clients (together, the subscribers). This distri-
bution must occur quickly after assignment change. At
large scales, distribution becomes a computational and
network bottleneck. We address it with a two-tier dis-

tribution tree: an Assigner generates and distributes an
assignment to a tier of Distributors, which distribute it to
the subscribers. Nothing in our model precludes adding
an additional tier to the tree.

Distribution is a pull model: a subscriber asks a Dis-
tributor for a job’s assignment; if the Distributor doesn’t
have it, the distrubutor asks the Assigner, which gen-
erates and distributes the assignment. Each Clerk and
Slicelet library maintains a long-lived stream with the
Distributor service using Google’s standard load bal-
ancer service, which routes its stream to the closest avail-
able instance.

Assignment distribution is asynchronous. Affinity ap-
plications can tolerate temporary inconsistency, and con-
sistent applications ensure consistency via a separate
control channel (§4.5).

This architecture admits running Distributors in data-
centers close to subscribers to minimize WAN traffic. In
practice, to ease administration, we currently tolerate the
WAN traffic and run Distributors in the same datacenters
as Assigners.

Evolving Slicer is easier if we decouple our release
schedule from those of our customers. One design alter-
native we rejected was to have Slicer’s subscriber library
coordinate peer-to-peer assignment distribution among
customer tasks. The cost is that the Slicer team must
provision its own resources for assignment distribution,
but the benefit is to minimize logic linked into customer
binaries. Likewise, putting the logic that identifies the
preferred Assigner in the Distributor tier keeps it out of
subscriber libraries.

4.3 Fault Tolerance
We’ve designed Slicer to maintain request routing de-
spite failures of infrastructure and of Slicer itself.
Slicer’s control-plane separation ensures that most fail-
ures merely hinder timely re-optimization of the assign-
ment, yet requests continue to flow. The rest of this sec-
tion enumerates properties of the system which achieve
these goals.

Backup Assignment Retrieval Path. When an ap-
plication client or server task starts, it must fetch the cur-
rent assignment through the network of Distributors. The
Distributors share a nontrivial code base and thus risk a
correlated failure due to a code or configuration error. We
have yet to experience such a correlated failure, but our
paranoia and institutional wisdom motivated us to guard
against it.

Hence the Slicer Service includes a Backup Distribu-
tor which satisfies application requests simply by read-
ing the assignment from the store (§4.1). The Backup

744 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributor is simple, slowly evolving, and mostly inde-
pendent of the Distributor and Assigner code base.

If the Backup Distributor is the only one operating, the
system degrades to static sharding based on slightly stale
load and health information. This mode requires only:

1. Library code linked into application binaries,

2. the Backup Distributor service, and

3. a valid assignment in persistent storage.

Because it does not react to load shifts or server task fail-
ure, degraded mode is intended as a stopgap until an on-
call engineer restores the Assigner and Distributor net-
work.

Geographic Diversity. Distributors and Assigners run
in datacenters around the world. Any subscriber can
reach any Distributor via the Google global load balanc-
ing service, and likewise any Distributor can reach any
Assigner. If the preferred Assigner for a job has failed,
any Assigner can become preferred. This diversity toler-
ates machine, datacenter, and network failures.

Geographic Proximity. The preferred Assigner for
each job is the Assigner network-closest to the job (§4.1),
and a Distributor runs wherever there is an Assigner;
these decisions reduce dependence on WAN connectiv-
ity. If customers demanded it, Slicer Service could run
in every customer cell, eliminating all cross-datacenter
dependency.

Fate-Shared Storage Placement. Although no pro-
duction customers are configured this way, Slicer’s im-
plementation allows storing assignments in the same dat-
acenter as the job. By also placing an Assigner in the
same datacenter, the job can tolerate a network partition
of the datacenter.

Service-Independent Mode. Ultimately, even if ev-
ery component of the Slicer Service fails, requests con-
tinue to flow using the most recent assignment cached in
applicaion libraries. This mode has the same limitations
as the Backup Distributor mode, plus new or restarted
application client tasks are unable to initialize.

In summary, Slicer’s design tolerates machine, data-
center, and network failures including complete datacen-
ter partitions. It degrades gracefully under correlated bug
and configuration faults that destroy the Assigners, Dis-
tributors, or the entire Slicer Service.

4.4 Load Balancing
The ultimate goal of load balancing is to minimize peak
load; this enables a service to be provisioned with fewer
resources. We balance load because we do not know
the future: unexpected surges of traffic arrive at abritary
tasks. Maintaining the system in a balanced state max-

imizes the buffer between current load and capacity for
each task, buying the system time to observe and react.

Slicer’s initial assignment divides the keyspace
equally among available tasks, assuming that key load
is uniform (key distribution is uniform due to hashing).
If there is variation in either the rate at which different
keys receive requests or in the resources required to sat-
isfy those requests, some tasks may become overloaded
while others are underutilized. Slicer monitors key load
– either request rate, which can be automatically tracked
via the Slicelet integration with Stubby, or application-
reported custom metrics – to determine if load balancing
changes are required. The primary goal of load balanc-
ing is to minimize the load imbalance, which we define
as the ratio of the maximum task load to the mean task
load. In a perfectly balanced job where each task is han-
dling the same load, the imbalance is 1.

To provide intuition for the definition: the worst case
imbalance Slicer can cause is n/r, where r is the job’s
minimum key redundancy configuration and n is the task
count. For example, with n = 10 and r = 2, the worst de-
cision Slicer can make is to direct Stubby to route every
key to one of two tasks, giving a load imbalance value of
5.

Load imbalance can be reduced by adding or remov-
ing redundant tasks for a key or by reassigning keys from
one task to another. Besides reducing imbalance, Slicer
must respect configurations constraining the minimum
and maximum number of tasks that may be assigned to a
key. It should also limit key churn, the fraction of the key
space affected by reassignment. Key churn itself creates
load and increases overhead.

To scale to billions of keys, Slicer represents assign-
ments compactly with key ranges. Hence sometimes it
must split a hot slice—replace a key range [a,c) with two
ranges [a,b), [b,c)—so that its load can be distributed
among multiple tasks. To prevent unbounded assign-
ment size growth, Slicer must also create opportunities to
merge slices. It does so by assigning adjacent cool slices
to the same tasks, then merging the slice representations
into a single range.

At Google, independent mechanisms (sometimes hu-
mans) decide when to add or remove tasks from a job,
or add or remove CPU or memory from tasks in a job.
Thus Slicer focuses exclusively on redistributing imbal-
anced load among available tasks, not on reprovisioning
resources for sustained load changes.

4.4.1 Sharding Algorithm: Weighted-move
When Slicer determines that resharding is necessary, due
to changing load metrics or changes to the set of tasks in

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 745

the job, it produces a new assignment using the sharding
algorithm, which proceeds in the following phases:

1. Reassign keys away from tasks that are no longer
part of the job (e.g., due to hardware failure).

2. Increase/decrease key redundancy as required to
conform to configured constraints (e.g. due to a
change in the configuration).

3. Merge adjacent cold slices, moving one onto the
same task as the other, to defragment the assign-
ment. This step proceeds as long as

(a) there are more than 50 slices per task in aggre-
gate,

(b) merging two slices creates a slice with less
than mean slice load,

(c) merging two slices does not drive the receiv-
ing task’s load above the maximum task load,
and

(d) no more than 1% of the keyspace has moved.

4. In this phase, the sharding algorithm picks a se-
quence of moves with the highest weight, which we
define as the reduction in load imbalance for the
tasks affected by the move (benefit) divided by the
key churn (cost). Moves are applied to the assign-
ment in descending weight order until a key churn
budget (9% of the keyspace) is exhausted.

5. Split hot slices without changing their task assign-
ments. Splitting captures finer-grained load mea-
surements and opens new move options in the next
round. This step proceeds as long as

(a) the split slice is at least twice as hot as the
mean slice, and

(b) there are fewer than 150 slices per task in ag-
gregate.

In each iteration of phase 4, only moves affecting
the hottest task can reduce load imbalance (as defined
above), and for each slice in the hottest task, three pos-
sible moves are considered: reassigning the slice to the
coldest task to displace the load, redundantly assigning
the slice to the coldest task to spread the load, or re-
moving the slice which offsets the load to existing as-
signees. Note that increasing or decreasing assignment
redundancy may be illegal given the configuration for
the job, so some moves are disqualified. The algorithm
greedily makes the best move and repeats until the key
churn (cost) budget is exhausted. Successive iterations
of the loop may affect different tasks as prior moves re-
vise the estimate of which task is “hottest”.

The constants in the algorithm (50–150 slices per task,
1% and 9% key movement per adjustment) were cho-
sen by observing existing applications. Experience sug-
gests the system is not very sensitive to these values,
but we have not measured sensitivity rigorously. Future
work will estimate application-specific churn cost to bet-
ter tune the cost-benefit tradeoff.
4.4.2 Rebalancing suppression
Slicer balances request rate, task CPU utilization, or an
application-specified custom metric. When balancing
CPU and the maximum task load is less than 25% (an
arbitrary threshold), Slicer suppresses rebalancing: Be-
cause no task is at risk of overload, churn is waste.
4.4.3 Limitations
When balancing the request rate, Slicer ignores task het-
erogeneity: one task may be cool with 10,000 req/s but
another is swamped. CPU utilization balancing inher-
ently adjusts for such heterogeneity.

Some applications make high memory demands for
each key. If Slicer colocates many infrequently requested
keys on one task, that task may exhaust memory despite
manageable CPU load. Our future work will include
measuring memory usage and honoring constraints in the
algorithm.
4.4.4 A rejected design alternative
A variant of consistent hashing [22] with load balanc-
ing support [10] yielded both unsatisfactory load balanc-
ing and large, fragmented assignments. We refer to this
scheme as load-aware consistent hashing. Some appli-
cations had too few slice keys (tens to hundreds per task)
for consistent hashing to result in good statistical load
balancing.

Consistent hashing enables very compact assignments,
so long as the client carries the decoding algorithm.
Since evolving clients is burdensome (§4.2), Slicer in-
stead distributes assignments in decoded form. Consis-
tent hashing works best with many (1000) virtual nodes
per physical task but introduces a significant cost dis-
tributing decoded assignments.

More importantly, consistent hashing gives us less
control over hot spots. We can cool off a task by reduc-
ing its virtual node count, but the displaced traffic ends
up randomly distributed, not directed at a cool task, giv-
ing a poor tradeoff between key movement and balance
improvement.

We were originally drawn to the statelessness of con-
sistent hashing: it produces the same output from the
same inputs, which allowed recovering from an Assigner
failure without requiring access to the previous assign-
ment. In practice, once the Assigner begins balancing
load, creating a profitable reassignment requires knowl-

746 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

edge of the previous assignment, and thus it is important
that a recovering Assigner have access to prior state.

The load-aware consistent hashing algorithm we aban-
doned is similar to that in Centrifuge [10]. It was more
sophisticated in that it supported key replication, asym-
metric replication, and proportional response to imbal-
ance for faster reaction. After 18 months in service,
we replaced it with the weighted-move algorithm, which
balances better with less key churn (§5.2.1).

4.5 Strong Consistency
An application that needs to maintain data consistency
can do so by building upon Slicer’s optional assignment
consistency. It defines an authoritative assignment for
every moment and guarantees that no task ever believes a
key is assigned to it if that assignment does not agree. By
configuring the job for at most one replica of each key, at
no time will two Slicelets believe they are both assigned
the same key. The consistency feature is implemented,
but it is not yet deployed by customers in production.

The simplest way to provide strong consistency guar-
antees for keys would be to allocate a lease for each
key from a central lease manager. We opted against this
model, because it would require provisioning lease man-
ager resources in proportion to the number of keys, and
hundreds of millions of keys per sharded job are com-
mon. Existing lease managers such as Chubby [12] do
not scale to that level, so this would require building a
highly available, scalable lease manager and running it
in every datacenter at Google, which is a non-trivial ef-
fort.

While insufficiently scalable to provide a lease per key,
Chubby is highly available (the code is battle-tested, and
the system has its own operations team) and present in
every data center at Google. Slicer builds on Chubby to
provide a scalable lease-per-key abstraction using only
three Chubby locks per job. The scheme ensures that
only the keys being reassigned are unavailable during an
assignment change. The design preserves the robustness
of Slicer’s data plane, so that even if Slicer Service is
down, RPCs continue to flow with strong consistency,
since lease granting and maintenance is performed by the
highly-available and battle-tested Chubby. The Assigner
is only required for resharding.

The following describes how the leases provide strong
consistency.

To protect the work done while changing a strongly-
consistent assignment, an Assigner acquires the exclu-
sive job lease to ensure that exactly one Assigner per-
forms the work for writing. If the Assigner crashes dur-
ing the assignment-change operation, another Assigner

can acquire the job lease and resume the unfinished work.
Only Assigners interact with the job lease.

To achieve consistent assignment, the Assigner dis-
tributes assignments in the usual way, then writes the as-
signment generation number as the value of the guard
lease. A consistent Slicelet may only use an assignment
once it acquires the guard lease for reading. Clerks re-
quire no lease, since the only harm of a transient in-
consistent assignment at the Clerk is a misrouted request
bounced back for retry.

Changing the assignment entails recalling the guard
lease from Slicelet readers so the Assigner can rewrite its
value. In any large-scale system, recalling a lease often
means waiting out the expiration period for any task that
may have died while holding its lease. This recall period
entails complete application unavailability.

We make the observation that when an assignment A1
is replaced by A2, there is no reason to make unavailable
the unchanged slices, those that have identical assign-
ments in A1 ∩A2. A third bridge lease bridges over the
transition from A1 to A2, making A1∩A2 available during
the gap. The Assigner writes and distributes assignment
A2, creates the bridge lease, delays for Slicelets to ac-
quire the bridge lease for reading, and only then does it
recall and rewrite the guard lease. A Slicelet is allowed
to use the intersection if it holds the bridge lease.

For a synthetic benchmark, we measured a median
lease recall period of 2.6 s and 99th percentile period
of 4.1 s, implying that absent a bridge lease an entire
application would suffer seconds of unavailability when-
ever an assignment changes. Section 5.2.5 reports on a
benchmark that demonstrates how the bridge lease im-
proves availability.

Nothing about the consistent-assignment mechanism
limits it to the simple consistency propery of at most one
Slicelet per key; the Assigner could easily enforce an at-
most-three policy. The simpler policy is easy for applica-
tions to exploit, whereas allowing plural replicas would
require the application to consistently coordinate those
replicas, perhaps with state machine replication [24].
5 Evaluation
This section evaluates Slicer using both measurements
from the deployed system and experiments with real and
synthetic workloads.
5.1 Production Measurements
We measure production customers to evaluate Slicer’s
availability, load balancing, scale, and assignment con-
vergence time.
5.1.1 Availability
As the primary – but pessimistic – measure of produc-
tion availability, we evaluated the integration of Slicer

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 747

and Stubby. Specifically, we considered how often Slicer
was able to select a task for a Stubby client issuing an
RPC. Normally, Stubby selects any task in the destina-
tion job which the client locally believes to be healthy.
With Slicer, Stubby selects a healthy task from the set of
Slicer-provided candidates. If all tasks are unhealthy or
no assignment is available, the selection fails.

Over a one-week period, Slicer performed 260 bil-
lion task selections for a subset of its Stubby clients, of
which 99.98% succeeded. This value underestimates the
availability of Slicer, because some of the failures may
have been because all tasks were unhealthy, and ordinary
Stubby would also have failed to select a task, but we ex-
pect that such cases are rare. Thus, in those cases where
standard Stubby could have sent an RPC, then Stubby
with Slicer could have sent an RPC at least 99.98% of
the time.

We also examine availability at the server side. In an-
other week, we observed 272 billion requests arrive at
server tasks, of which only 11.6 million (0.004%) had
been misrouted. This measure overestimates availability
because it only considers requests that made it to a server
task, and it underestimates availability because many ap-
plications can tolerate misdirected requests with only an
impact on latency or overhead, not availability.

A secondary measure of availability is that of the
Slicer service itself. Our production monitoring period-
ically requests an assignment from each Distributor in-
stance. In one week, 99.75% of 329,978 requests suc-
ceeded. This probe underestimates availability because it
requires computation of a new assignment, whereas the
common path returns a cached one.

These measurements are over an admittedly short win-
dow, limited by production monitoring data retention
policy. That said, they indicate Slicer is a suitable build-
ing block for highly available applications.
5.1.2 Load balancing
We evaluate how well Slicer balances load across tasks,
how much key movement it incurs, and how much it im-
proves over static strategies.

Figure 6 shows the effectiveness of load balancing for
several production customer jobs belonging to three ser-
vices. Sampling five minute windows over a six hour pe-
riod, we measure the number of requests each task han-
dles, normalized as a fraction of the mean request count
for all tasks in the job during the window. The vast ma-
jority of time windows had values close to the mean, in-
dicating that the tasks were well-balanced. Peak loads
varied between 1.3× – 2.8× the mean load.

Figure 7 shows key churn for tasks in the same jobs
as in Figure 6. Churn counts the number of key-moves:

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Fraction of Mean Server Load

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Cloud DNS (max 1.1)
Continuous Profiling (max 2.3)
Crawl Manager (max 1.4)
Event Pipeline 1 (max 1.9)
Flywheel (max 1.4)
Fonts (max 2.3)
Notification (max 1.3)
Service Control (max 1.3)

Figure 6: Slicer successfully balances load: tasks in a job
rarely experience load 5% greater than the mean task load.

0.0 0.5 1.0 1.5 2.0
Fraction of keyspace loaded per hour

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Cloud DNS
Cloud ML
Continuous Profiling
Crawl Manager
Event Pipeline 1
Flywheel
Fonts
Notification
Service Control

Figure 7: Key movement costs for jobs belonging to customer
production services, sampled over one week. The median hour
in every job sees less than 20% of the keyspace move.

one key moving ten times in one hour produces the same
value as ten keys moving once. Here we see a broader
range of values, as some jobs exhibit higher variance
over time (e.g., Cloud DNS, which moves up to 40% of
its keys per hour), and some are quite stable over time
(e.g., Flywheel, which moves only 16% of its keys). We
report fraction of keyspace but not bytes of objects ac-
tually unloaded and reloaded because, by design, Slicer
does not know which keys in the key space actually ex-
ist, nor is it aware of the data associated with those keys
(§2.1).

Our production monitoring captured a shift from load-
aware consistent hashing to the weighted move algo-
rithm. Figure 8 shows the request rate per task for
the general-purpose key-value cache discussed in Sec-
tion 3.1 during the rollout of the weighted-move algo-
rithm. Under consistent hashing, the hottest task was
50% hotter than the mean. The weighted move algorithm
improves the balance, enabling operations engineers to
make tighter capacity planning decisions.

Ultimately, customers care about Slicer’s load balanc-
ing because it offers a big win over home-brew alterna-
tives. We observed production key distributions and load
distributions for all customer jobs. We built a model to
infer the load on the tasks had the load been balanced

748 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

11:20 11:30 11:40 11:50 12:00 12:10
Time

500

1000

1500

2000

3000

2500

R
eq

ue
st

s
pe

r s
ec

on
d

Figure 8: Load per task on a production key/value cache when
switching from load-aware consistent hashing to the weighted-
move algorithm at 11:50.

Ev
en

t P
ip

el
in

e
2

C
lo

ud
 D

N
S

N
ot

ifi
ca

tio
n

Fo
nt

s

Vo
ic

e
Se

ar
ch

Ev
en

t P
ip

el
in

e
1

C
ra

w
l M

an
ag

er
C

on
tin

uo
us

 P
ro

fil
in

g
Fl

yw
he

el

Se
rv

ic
e

C
on

tro
l0

2
4
6
8

10
12
14

M
ax

/M
ea

n
lo

ad

21
4

13
6

Static model
Slicer

Figure 9: Load balance for production jobs grouped by ser-
vice, contrasted with a static model. Slicer makes the median
job’s hottest task 63% less loaded.

statically. If the customer supplied an initial load esti-
mate, the model uses it; otherwise it spreads the keyspace
uniformly across tasks. The model mitigates random
clumping by partitioning the keyspace into 100 slices per
task.

Figure 9 contrasts, for each job, the actual load im-
balance under Slicer versus the load imbalance under the
static model. Load imbalance is the ratio between the
CPU load of the most loaded task and the mean CPU
load across tasks. Each pair of points shows the most
imbalanced hour in a one-week observation. For under-
loaded jobs, Slicer defers load balancing, and thus acts
identically to the static model; Figure 9 elides such jobs.
Service operators provision for peak loads; Slicer pro-
vides a median reduction of 63% and as much as 99.3%
for the most skewed job.

5.1.3 Scale

Slicer serves more than 20 unique systems (§3). Each
is a unique software stack that integrates Slicer in a
different way. This table extracts aggregate statistics
from production monitoring.

0 2 4 6 8 10
Assignment distribution time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

fra
ct

io
n

95.0%
 < 1.7s

99.0%
 < 5.9s

99.9%
 < 9.0s

Figure 10: Once emitted by the Assigner, 95% of assignments
reach subscribers within 2 s.

Services 22 mean / mean /
Jobs 263 service job
Tasks (Slicelets) 11387 517 43
Clerks 113,338 5151 430
Requests/sec 6M 266K 22K
Assignments/hour 662 30 2.5
Assignment traffic 180 8.2 0.37

(MBps)
Key churn/hour 4%

Presently the production Slicer Service includes six
Assigners provisioned with three cores each. Sampling
one minute windows on each task over one week, the
median sample utilizes 0.13 core, and the 99th percentile
utilizes 2.34 cores. Considering the entire Service—
Assigners, Distributors, Backup Distributors—Slicer
uses 0.3% of the CPU and 0.2% of the RAM used by
the sliced services and their clients.
5.1.4 Assignment Convergence Time
It is desirable for Slicer to effect assignment changes
rapidly, to minimize the period of divergence among sub-
scribers. Figure 10 shows the CDF of assignment dis-
tribution latencies across affinity-mode production cus-
tomers for one week. Assignments generally arrive
within the second.
5.1.5 Assignment Computation Time
Most production assignments take a fraction of a second
to compute; the 64th percentile is 17ms and the maxi-
mum a few seconds.
5.2 Experiments
Experiments in this section explore details and trade-offs
under controlled conditions.
5.2.1 Comparing load balancing strategies
We recorded slice keys for RPCs issued to three pro-
duction users of Slicer: Client Push (see Section 3.3.2),
Cloud DNS (see Section 3.2.2) and Flywheel (see Sec-
tion 3.1.1). We then replayed these requests against
three algorithms: static uniform sharding (in which the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 749

Client Push Cloud DNS Flywheel
0

2

4

6

8

10

12

14
Im

ba
la

nc
e

(lo
w

er
 is

 b
et

te
r)

Static
Load-aware Consistent Hashing (no asymmetric replication)
Load-aware Consistent Hashing
Weighted Move (no asymmetric replication)
Weighted Move

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
hu

rn
 (l

ow
er

 is
 b

et
te

r)

Figure 11: Slicer’s centralized weighted move algorithm
balances better than static and load-aware consistent hashing
schemes, and churns less than load-aware consistent hashing.

key space is divided uniformly amongst all tasks), load-
aware consistent hashing (see Section 4.4.4) and Slicer’s
weighted-move algorithm (see Section 4.4.1). In addi-
tion, we compared the performance of the algorithms
with and without asymmetric key redundancy (not appli-
cable for static sharding which cannot dynamically as-
sign keys to additional tasks).

Figure 11 shows the mean across all resharding de-
cisions for measurements of load imbalance, the ratio of
the max task load to the mean task load, and of key churn,
the fraction of the key space reassigned (both defined in
§4.4). Slicer’s algorithm – weighted-move with redun-
dancy – significantly outperforms both other algorithms
on load imbalance, with reduced key churn relative to
consistent hashing (though not static sharding, which be-
ing static has no key churn). Asymmetric replication pro-
vides significant load balancing benefits, though with a
small increase in key churn (due to increased opportuni-
ties to address imbalance).

Note that this experiment isolates the impact of load
balancing from other factors such as task failures and
pre-emption.
5.2.2 Assigner Failure and Recovery
To evaluate Slicer’s robustness to Assigner failure, we
presented power-law skewed load to twenty tasks. Once
the system stabilized, we killed the Assigner task, caus-
ing clients and server tasks to continue using the last-
generated assignment. After 2 hours, we restored the
Assigner.

Results are shown in Figure 12. The pre-failure and
post-recovery curves are essentially identical: the As-
signer rebalanced load upon recovery. The outage curve
shows degraded load balancing, since the assignment
stagnated while the load changed. However, the recent
static balance is better than uniform sharding (not shown
in Figure 12) on the same workload. Production work-
loads tend to be more stable over time; the outage curve

0 1 2 3 4
Fraction of mean server load

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Before Assigner failure
After Assigner failure
After Assigner restored

Figure 12: Load balancing before, during, and after an As-
signer failure.

0 200 400 600 800 1000
Reassignment Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

99% < 719

Figure 13: The Assigner typically effects a response to a load
shift in 480 seconds.

for such workloads should remain closer to the actively-
balanced curves.

In practice, if an Assigner fails, any other Assigner
can pick up the slack. We configured a test job with two
Assigners, killed the active one, and observed that the
other became initialized 17.1 s later (σ = 2.7 s). This
delay is the period of polls to the Google load balancer
for preferred Assigner checks (§4.1).
5.2.3 Load Reaction Time
How quickly does Slicer respond to a load shift? In
this experiment, five client tasks offer 8 Kreq/s of syn-
thetic load to ten server tasks, consisting of 100 keys in
a power-law distribution with exponent 1.5. Every nine-
teen minutes, the clients’ distribution shifts to move the
hottest load to different keys. We report the latency from
clients shifting load to tasks reporting a max/mean load
imbalance below 1.2. Figure 13 shows a median delay
of 480 s, which is a function of the 1 m delay from the
Google monitoring system and Slicer’s 5 m load obser-
vation window. One window is insufficient because, un-
less the load shifts very early in the window, Slicer’s first
observation doesn’t convince it to shift enough load to
completely restore balance.
5.2.4 Scaling Benchmark
One of Slicer’s essential architectural decisions is cen-
tral decisionmaking and a distributed data plane. In the
experiment in Figure 14, we contrast Slicer’s plumbing
with a natural alternative that indirects routing decisions
to a centralized authority. In the centralized version,
clients preface each request with a request to the au-
thority, and server tasks contact the authority on each
request to confirm the routing decision. Here the au-
thority is implemented as a single Clerk task relaying

750 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9
goodput (Kreq/s)

0

10

20

30

40

50
la

te
nc

y
(m

s)
central authority
Slicer

0 1 2 3 4 5 6 7 8 9
goodput (Kreq/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
PU

 (c
or

es
)

Authority
Distributor
Assigner
Distributor
Assigner

Figure 14: On the left is a latency-throughput curve, on the
right CPU consumption versus retired load. Once the central
authority saturates its CPU allocaton at 5 Kreq/s, it encounters a
scaling limit. This simple experiment lacks admission control,
so the throughput drops under overload; a production system
would hit the same wall more gracefully.

decisions from an Assigner and Distributor, although a
real centralized system would simply colocate load bal-
ancing with the authority interface. In both cases, a set
of 2000 clients simulated on 100 tasks offers increasing
load against 50 server tasks. The authority saturates its
CPU at 5 Kreq/s, but Slicer scales smoothly since every
component’s workload is independent of aggregate client
request rate.
5.2.5 Consistency Benchmark
Section 4.5 described how Slicer preserves availability
in consistent assignment mode by using bridge leases
to carry unchanged key assignments across the distribu-
tion period of a new assignment. We evaluate its impor-
tance under a synthetic dynamically skewed workload in
which 25 clients drive 43 Kreq/s against 50 server tasks.
Over three days, 99.85% of requests were satisfied; ab-
sent bridging, only 99.19% of requests would have been
satisfied.

The getSliceKeyHandle operation takes 153 µs
and isAssignedContinuously takes 94 µs.

6 Related Work
As a general purpose sharding system, Slicer is similar
to Centrifuge [10], Orleans [13], Ringpop [8], and Mi-
crosoft Service Fabric [5].

It is most similar to Centrifuge, which also uses a cen-
tral manager, assigns ranges of a hashed keyspace, and
provides leases. Slicer differs in four respects. First,
Slicer’s architecture is more available. If the Centrifuge
manager is unavailable, all leases expire and no RPCs
flow. Slicer’s control-plane separation ensures that as-
signments remain valid and RPCs flow even if the entire
Slicer service fails. Slicer’s separate backup distribution
path keeps working even when the service is down. Sec-
ond, Slicer’s separation of assignment distiribution from

assignment generation enables much higher scales: an
Assigner can servie 104 Distributors, and a Distributor
104 subscribers. Third, Centrifuge is a single-cluster
system. Slicer’s Assigner can be accessed from a dif-
ferent cluster, enabling failover across clusters. Fourth,
Slicer’s load balancing is better than Centrifuge’s. Slicer
moved from Centrifuge-style consistent hashing (S4.4.4)
to the weighted-move algorithm (§4.4). It achieves better
balance while moving an order-of-magnitude fewer keys
(§5), works for both many and few application keys, and
creates more compact assignments. Slicer’s load balanc-
ing supports custom metrics and key redundancy.

As compared to Orleans and Ringpop, Slicer uses a
centralized algorithm rather than a client-based consis-
tent hashing [22], which allows it to provide better load
balancing and to offer consistency guarantees, which
those systems cannot. Service Fabric does not support
dynamic sharding: sharding must be specified by the ap-
plication and cannot be adjusted on the fly to balance
load [6]. Additionally, both Orleans and Service Fab-
ric are frameworks and are more invasive to applications
than Slicer’s small API.

As a sharding manager, Slicer also has elements in
common with sharding managers embedded in storage
systems. For example, Bigtable [14], HBase [2], and
Spanner [15] are all structured in terms of ranges of an
application-defined keyspace. Only the HBase algorithm
is publically described; it has several strategies, all of
which have splits and moves as base operations. Un-
like Slicer, it does not support key redundancy or bal-
ancing on application-defined metrics. Moreover, stor-
age system sharding managers are not usable outside
of the storage system, and they often make storage-
specific assumptions that limit their flexibility. For ex-
ample, Bigtable requires at most one task per tablet to
enforce consistency, whereas Slicer is free to add redun-
dant copies of keys if permitted by the application

Social Hash [28] makes cluster-level sharding deci-
sions for HTTP requests and storage systems. Slicer
shares Social Hash’s separation of coordinated central
decisionmaking from distributed forwarding. Where
Slicer treats keys independently, Social Hash optimizes
placement using inter-key locality available in social
graphs. Slicer operates at fine granularity in space (tasks)
and in time (seconds to minutes). Slicer supports a wide
variety of applications and supports consistent assign-
ment.

BASIL [19] and Kunkle [23] balance I/O workloads
in large-scale storage systems; like Slicer, they perform
what-if planning and evaluate migrating hot data. They
differ from Slicer in several important respects. First,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 751

they place a relatively small number of items, and they
have application-specific load data for each item. For ex-
ample, BASIL places virtual disks within a storage array.
This is a different problem than in Slicer, which places a
potentially vast number of items (e.g., hundreds of mil-
lions), is agnostic to the application, and can only col-
lect information at coarse granularity. Second, Slicer has
a larger space of possible load balancing moves avail-
able; in addition to migrating slices, it can also split and
merge them, and it can add or remove redundant copies.
Besides minimizing imbalance, Slicer’s algorithm also
minimizes assignment fragmentation.

In theory, sufficiently fast storage available to all front-
ends can sometimes obviate the need to cache sharded
data in the front-end. Caches such as Memcached [4]
and Redis [7] as well as in-memory stores such as Ram-
Cloud [25] and Dynamo [16] can be used. However,
remote storage always adds the cost of (un)marshalling
data along with a network roundtrip to access data. In
addition, such solutions do not help when the shared re-
source isn’t state, such as a network socket. Finally,
eliminating external caches and collocating data with
code reduces how many services must be provisioned
and maintained.

Sharding solutions have been recently proposed [29,
27, 20] for specific databases, focusing on dynamic load
balancing (as opposed to balancing the number of keys
per task). Accordion [27] places partitions but does not
modify their boundaries and thus cannot handle hot data.
SPORE [20] replicates hot keys but does not support dy-
namic task membership or key migration. EStore [29] is
a dynamic sharding manager that like SPORE identifies
hot keys and migrates them, but it does does not support
key redundancy. When hot keys cool down, EStore mi-
grates previously hot keys back to their original shards,
which creates unnecessary churn.

Software and hardware network load balancers [17,
26, 18, 21, 1] employ one or more controllers that ei-
ther process messages themselves or program a set of
distributed switches to carry out a load balancing pol-
icy. Such load balancers may have a notion of affinity
or session “stickiness”. However, such balancers imple-
ment static hashing for requests or sessions; when they
react to load shifts, they do not maximize affinity. The
do not provide server tasks with early assigment signals
to facilitate prefetching, or termination signals to facil-
itate garbage collection. They do not offer asymmetric
key redundancy, nor do they enable assignment consis-
tency.

7 Conclusions
Slicer is a highly available, low-latency, scalable and
adaptive sharding service that remains decoupled from
customer binaries and offers optional assignment con-
sistency. These features and the consequent architecture
were driven by the needs of real applications at Google.
Slicer makes it easy to exploit sharding affinity and has
proven to offer a diversity of benefits, such as object
caching, write aggregation, and socket aggregation, to
dozens of deployed applications.

Production deployment of Slicer shows that the system
meets its load balancing and availability goals. Real ap-
plications experience a max:mean load ratio of 1.3–2.8,
assisting peak load capacity planning. Slicer balances
load better than load-aware consistent hashing, and does
so while creating an order of magnitude less key churn.
Slicer is available, correctly routing production customer
requests at least 99.98% of the time, making it a build-
ing block for highly-available applications. Adoption by
over 20 projects with a variety of use cases demonstrates
the generality of its API.

References
[1] Amazon ELB. https://aws.amazon.com/

elasticloadbalancing/.

[2] Apache HBase. https://hbase.apache.org/.

[3] Firebase topic messaging. https://firebase.
google.com/docs/cloud-messaging/android/
topic-messaging.

[4] Memcached. https://memcached.org/.

[5] Microsoft service fabric. https://azure.
microsoft.com/en-us/documentation/services/
service-fabric/.

[6] Partitioning in microsoft service fabric. https://azure.
microsoft.com/en-us/documentation/articles/
service-fabric-concepts-partitioning/.

[7] Redis. http://redis.io/.

[8] Uber ringpop. https://eng.uber.com/
intro-to-ringpop/.

[9] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi: A client
notification service for internet-scale applications. In Proc. 23rd
ACM Symposium on Operating Systems Principles (SOSP), pages
129–142, 2011.

[10] A. Adya, J. Dunagan, and A. Wolman. Centrifuge: Integrated
lease management and partitioning for cloud services. In Pro-
ceedings of the 7th USENIX conference on Networked systems de-
sign and implementation, pages 1–1. USENIX Association, 2010.

[11] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Green-
stein, S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin.
Flywheel: Google’s data compression proxy for the mobile web.
In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 367–380, 2015.

[12] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In Proc. of OSDI, 2006.

752 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://hbase.apache.org/
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://memcached.org/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
http://redis.io/
https://eng.uber.com/intro-to-ringpop/
https://eng.uber.com/intro-to-ringpop/

[13] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. The-
lin. Orleans: cloud computing for everyone. In ACM SOCC,
2011.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[15] J. Corbett et al. Spanner: Google’s globally distributed database.
ACM Trans. Comput. Syst., 31(3), Aug. 2013.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available key-value store. In
ACM SIGOPS Operating Systems Review, volume 41, pages 205–
220. ACM, 2007.

[17] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein. Maglev: A fast and reliable software network load
balancer. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16), pages 523–535, 2016.

[18] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang. Duet: Cloud scale load balancing with hardware and
software. ACM SIGCOMM Computer Communication Review,
44(4):27–38, 2015.

[19] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL: Au-
tomated io load balancing across storage devices. In File and
Storage Technologies (FAST), 2010.

[20] Y.-J. Hong and M. Thottethodi. Understanding and mitigating the
impact of load imbalance in the memory caching tier. In Proceed-
ings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 13:1–13:17, New York, NY, USA, 2013. ACM.

[21] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford. Ef-
ficient traffic splitting on commodity switches. In Conference on
Emerging Networking Experiments and Technologies (CoNEXT),
2015.

[22] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In STOC, pages 654–663, 1997.

[23] D. Kunkle and J. Schindler. A load balancing framework for clus-
tered storage systems. In High Performance Computing-HiPC
2008, pages 57–72. Springer, 2008.

[24] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[25] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosen-
blum, et al. The case for ramclouds: scalable high-performance
storage entirely in dram. ACM SIGOPS Operating Systems Re-
view, 43(4):92–105, 2010.

[26] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, et al. Ananta: cloud
scale load balancing. ACM SIGCOMM Computer Communica-
tion Review, 43(4):207–218, 2013.

[27] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and
U. F. Minhas. Accordion: Elastic scalability for database systems
supporting distributed transactions. Proceedings of the VLDB En-
dowment, 7(12):1035–1046, 2014.

[28] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta, A. Ad-
cock, H. Kllapi, and M. Stumm. Social Hash: An assignment
framework for optimizing distributed systems operations on so-
cial networks. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages 455–468,
Santa Clara, CA, Mar. 2016. USENIX Association.

[29] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-
grained elastic partitioning for distributed transaction processing
systems. Proceedings of the VLDB Endowment, 8(3):245–256,
2014.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 753

History-Based Harvesting of Spare Cycles and Storage in
Large-Scale Datacenters

Yunqi Zhang†⇤ George Prekas‡⇤ Giovanni Matteo Fumarolad

Marcus Fontourad Íñigo Goiri? Ricardo Bianchini?

†University of Michigan ‡EPFL d Microsoft ?Microsoft Research

Abstract
An effective way to increase utilization and reduce costs
in datacenters is to co-locate their latency-critical ser-
vices and batch workloads. In this paper, we describe
systems that harvest spare compute cycles and storage
space for co-location purposes. The main challenge
is minimizing the performance impact on the services,
while accounting for their utilization and management
patterns. To overcome this challenge, we propose tech-
niques for giving the services priority over the resources,
and leveraging historical information about them. Based
on this information, we schedule related batch tasks on
servers that exhibit similar patterns and will likely have
enough available resources for the tasks’ durations, and
place data replicas at servers that exhibit diverse patterns.
We characterize the dynamics of how services are uti-
lized and managed in ten large-scale production datacen-
ters. Using real experiments and simulations, we show
that our techniques eliminate data loss and unavailability
in many scenarios, while protecting the co-located ser-
vices and improving batch job execution time.

1 Introduction

Motivation. Purchasing servers dominates the total cost
of ownership (TCO) of large-scale datacenters [4], such
as those operated by Google and Microsoft. Unfortu-
nately, the servers’ average utilization is often low, es-
pecially in clusters that host user-facing, interactive ser-
vices [4, 10]. The reasons for this include: these services
are often latency-critical (i.e., require low tail response
times); may exhibit high peaks in user load; and must
reserve capacity for unexpected load spikes and failures.

An effective approach for extracting more value from
the servers is the co-location of useful batch workloads
(e.g., data analytics, machine learning) and the data they
require on the same servers that perform other functions,

⇤This work was done while Zhang and Prekas were interns at MSR.

including those that run latency-critical services. How-
ever, for co-location with these services to be acceptable,
we must shield them from any non-trivial performance
interference produced by the batch workloads or their
storage accesses, even when unexpected events occur. If
co-location starts to degrade response times, the sched-
uler must throttle or even kill (and re-start elsewhere) the
culprit batch workloads. In either case, the performance
of the batch workloads suffers. Nevertheless, co-location
ultimately reduces TCO [37], as the batch workloads are
not latency-critical and share the same infrastructure as
the services, instead of needing their own.

Recent scheduling research has considered how to
carefully select which batch workload to co-locate with
each service to minimize the potential for interference
(most commonly, last-level cache interference), e.g. [9,
10, 25, 42]. However, these works either assume sim-
ple sequential batch applications or overlook the resource
utilization dynamics of real services. Scheduling data-
intensive workloads comprising many distributed tasks
(e.g., data analytics jobs) is challenging, as scheduling
decisions must be made in tandem for collections of
these tasks for best performance. The resource utiliza-
tion dynamics make matters worse. For example, a long-
running workload may have some of its tasks throttled or
killed when the load on a co-located service increases.

Moreover, no prior study has explored in detail the
co-location of services with data for batch workloads.
Real services often leave large amounts of spare storage
space (and bandwidth) that can be used to store the data
needed by the batch workloads. However, co-locating
storage raises even more challenges, as the management
and utilization of the services may affect data durabil-
ity and availability. For example, service engineers and
the management system itself may reimage (reformat)
disks, deleting all of their data. Reimaging typically re-
sults from persistent state management, service deploy-
ment, robustness testing, or disk failure. Co-location and
reimaging may cause all replicas of a data block to be

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 755

destroyed before they can be re-generated.
Our work. In this paper, we propose techniques for har-
vesting the spare compute cycles and storage space in
datacenters for distributed batch workloads. We refer to
the original workloads of each server as its “primary ten-
ant”, and to any resource-harvesting workload (i.e., batch
compute tasks or their storage accesses) on the server as
a “secondary tenant”. We give priority over each server’s
resources to its primary tenant; secondary tenants may
be killed (in case of tasks) or denied (in case of storage
accesses) when the primary tenant needs the resources.

To reduce the number of task killings and improve data
availability and durability, we propose task scheduling
and data placement techniques that rely on historical re-
source utilization and disk reimaging patterns. We logi-
cally group primary tenants that exhibit similar patterns
in these dimensions. Using the utilization groups, our
scheduling technique schedules related batch tasks on
servers that have similar patterns and enough resources
for the tasks’ expected durations, and thereby avoids cre-
ating stragglers due to a lack of resources. Using the uti-
lization and reimaging groups, our data placement tech-
nique places data replicas in servers with diverse pat-
terns, and thereby increases durability and availability
despite the harvested nature of the storage resources.

To create the groups, we characterize the primary ten-
ants’ utilization and reimaging patterns in ten production
datacenters,1 including a popular search engine and its
supporting services. Each datacenter hosts up to tens of
thousands of servers. Our characterization shows that the
common wisdom that datacenter workloads are periodic
is inaccurate, since often most servers do not execute in-
teractive services. We target all servers for harvesting.
Implementation and results. We implement our tech-
niques into the YARN scheduler, Tez job manager, and
HDFS file system [11, 29, 36] from the Apache Hadoop
stack. (Primary tenants use their own scheduling and file
systems.) Stock YARN and HDFS assume there are no
external workloads, so we also make these systems aware
of primary tenants and their resource usage.

We evaluate our systems using 102 servers in a pro-
duction datacenter, with utilization and reimaging behav-
iors scaled down from it. We also use simulations to
study our systems for longer periods and for larger clus-
ters. The results show that our systems (1) can improve
the average batch job execution time by up to 90%; and
(2) can reduce data loss by more than two orders of mag-
nitude when blocks are replicated three times, eliminate
data loss under four-way replication, and eliminate data
unavailability for most utilization levels.

Finally, we recently deployed our file system in large-

1For confidentiality, we omit certain information, such as absolute
numbers of servers and actual utilizations, focusing instead on coarse
behavior patterns and full-range utilization exploration.

scale production (our scheduler is next), so we discuss
our experience and lessons that may be useful to others.
Summary and conclusions. Our contributions are:
• We characterize the dynamics of how servers are used

and managed in ten production datacenters.
• We propose techniques for improving task scheduling

and data placement based on the historical behavior of
primary tenants and how they are managed.

• We extend the Hadoop stack to harvest the spare cy-
cles and storage in datacenters using our techniques.

• We evaluate our systems using real experiments and
simulations, and show large improvements in batch
job performance, data durability, and data availability.

• We discuss our experience with large-scale production
deployments of our techniques.
We conclude that resource harvesting benefits signifi-

cantly from a detailed accounting of the resource usage
and management patterns of the primary workloads. This
accounting enables higher utilization and lower TCO.

2 Related Work

Datacenter characterization. Prior works from data-
center operators have studied selected production clus-
ters, not entire datacenters, e.g. [37]. Instead, we char-
acterize all primary tenants in ten datacenters, includ-
ing those used for production latency-critical and non-
critical services, for service development and testing, and
those awaiting use or being prepared for decommission.
Harvesting of resources without co-location. Prior
works have proposed to harvest resources for batch
workloads in the absence of co-located latency-critical
services, e.g. [22, 23]. Our work focuses on the more
challenging co-location scenario in modern datacenters.
Co-location of latency-critical and batch tasks. Re-
cent research has targeted two aspects of co-location: (1)
performance isolation – ensuring that batch tasks do not
interfere with services, after they have been co-located
on the same server [19, 20, 21, 24, 27, 31, 32, 38, 42]; or
(2) scheduling – selecting which tasks to co-locate with
each service to minimize interference or improve pack-
ing quality [9, 10, 12, 25, 37, 43]. Borg addresses both
aspects in Google’s datacenters, using Linux cgroup-
based containers, special treatment for latency-critical
tasks, and resource harvesting from containers [37].

Our work differs substantially from these efforts. As
isolation and interference-aware scheduling have been
well-studied, we leave the implementation of these tech-
niques for future work. Instead, we reserve compute re-
sources that cannot be given to batch tasks; a spiking pri-
mary tenant can immediately consume this reserve until
our software can react (within a few seconds at most) to
replenish the reserve. Combining our systems with finer
grained isolation techniques will enable smaller reserves.

756 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Moreover, unlike services at Google, our primary ten-
ants “own” their servers, and do not declare their poten-
tial resource needs. This means that we must harvest
resources carefully to prevent interference with latency-
critical services and degraded batch job performance.
Thus, we go beyond prior works by understanding and
exploiting the primary tenants’ resource usage dynam-
ics to reduce the need for killing batch tasks. With re-
spect to resource usage dynamics, a related paper is [5],
which derives Service-Level Objectives (SLOs) for re-
source availability from historical utilization data. We
leverage similar data but for dynamic task scheduling,
which their paper did not address.

Also importantly, we are the first to explore in detail
the harvesting of storage space from primary tenants for
data-intensive batch jobs. This scenario involves under-
standing how primary tenants are managed, as well as
their resource usage.

For both compute and storage harvesting, we lever-
age primary and secondary tenants’ historical behav-
iors, which are often more accurate than user annota-
tions/estimates (e.g., [35]). Any system that harvests re-
sources from latency-critical workloads can benefit from
leveraging the same behaviors.
Data-processing frameworks and co-location. Re-
searchers have proposed improvements to the Hadoop
stack in the absence of co-location, e.g. [3, 8, 13, 14,
15, 18, 39]. Others considered Hadoop (version 1) in co-
location scenarios using virtual machines, but ran HDFS
on dedicated servers [7, 30, 41]. Lin et al. [22] stored
data on dedicated and volunteered computers (idle desk-
tops), but in the absence of primary tenants. We are not
aware of studies of Mesos [16] in co-location scenarios.
Bistro [12] relies on static resource reservations for ser-
vices, and schedules batch jobs on the leftover resources.
In contrast to these works, we propose dynamic schedul-
ing and data placement techniques for the Hadoop stack,
and explore the performance, data availability, and data
durability of co-located primary and secondary tenants.

3 Characterizing Behavior Patterns

We now characterize the primary tenants in ten produc-
tion datacenters. In later sections, we use the characteri-
zation for our co-location techniques and results.

3.1 Data sources and terminology
We leverage data collected by AutoPilot [17], the pri-
mary tenant management and deployment system used
in the datacenters. Under AutoPilot, each server is part
of an environment (a collection of servers that are log-
ically related, e.g. indexing servers of a search engine)

and executes a machine function (a specific functional-
ity, e.g. result ranking). Environments can be used for
production, development, or testing. In our terminology,
each primary tenant is equivalent to an <environment,
machine function> pair. Primary tenants run on physical
hardware, without virtualization. Each datacenter has be-
tween a few hundred to a few thousand primary tenants.

Though our study focuses on AutoPilot-managed dat-
acenters, our characterization and techniques should be
easily applicable to other management systems as well.
In fact, similar telemetry is commonly collected in other
production datacenters, e.g. GWP [28] at Google and
Scuba [2] at Facebook.

3.2 Resource utilization
AutoPilot records the primary tenant utilization per
server for all hardware resources, but for simplicity we
focus on the CPU in this paper. It records the CPU uti-
lization every two minutes. As the load is not always
evenly balanced across all servers of a primary tenant,
we compute the average of their utilizations in each time
slot, and use the utilization of this “average” server for
one month to represent the primary tenant.

We then identify trends in the tenants’ utilizations,
using signal processing. Specifically, we use the Fast
Fourier Transform (FFT) on the data from each primary
tenant individually. The FFT transforms the utilization
time series into the frequency domain, making it easy to
identify any periodicity (and its strength) in the series.

We identify three main classes of primary tenants: pe-
riodic, unpredictable, and (roughly) constant. Figure 1
shows the CPU utilization trends of a periodic and an
unpredictable primary tenant in the time and frequency
domains. Figure 1b shows a strong signal at frequency
31, because there are 31 days (load peaks and valleys)
in that month. In contrast, Figure 1d shows a decreas-
ing trend in signal strength as the frequency increases, as
the majority of the signal derives from events that rarely
happen (i.e., exhibit lower frequency).

As one would expect, user-facing primary tenants of-
ten exhibit periodic utilization (e.g., high during the day
and low at night), whereas non-user-facing (e.g., Web
crawling, batch data analytics) or non-production (e.g.,
development, testing) primary tenants often do not. For
example, a Web crawling or data scrubber tenant may
exhibit (roughly) constant utilization, whereas a testing
tenant often exhibits unpredictable utilization behavior.

More interestingly, Figure 2 shows that user-facing
(periodic) primary tenants are actually a small minority.
The vast majority of primary tenants exhibit roughly con-
stant CPU utilization. Nevertheless, Figure 3 shows that
the periodic primary tenants represent a large percent-
age (⇠40% on average) of the servers in each datacenter.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 757

(a) Periodic – time (b) Periodic – frequency

(c) Unpredictable – time (d) Unpredictable – frequency

Figure 1: Sample periodic and unpredictable one-month traces in the time and frequency domains.

Figure 2: Percentages of primary tenants per class.

Still, the non-periodic primary tenants account for more
than half of the tenants and servers.

Most importantly, the vast majority of servers (⇠75%)
run primary tenants (periodic and constant) for which
the historical utilization data is a good predictor of fu-
ture behaviors (the utilizations repeat periodically or all
the time). Thus, leveraging this data should improve the
quality of both our task scheduling and data placement.

3.3 Disk reimaging
Disk reimages are relatively frequent for some primary
tenants, which by itself potentially threatens data dura-
bility under co-location. Even worse, disk reimages are
often correlated, i.e. many servers might be reimaged at
the same time (e.g., when servers are repurposed from
one primary tenant to another). Thus, it is critical for
data durability to account for reimages and correlations.

AutoPilot collects disk reimaging (reformatting) data

Figure 3: Percentages of servers per class.

per server. This data includes reimages of multiple types:
(1) those initiated manually by developers or service op-
erators intending to re-deploy their environments (pri-
mary tenants) or re-start them from scratch; (2) those
initiated by AutoPilot to test the resilience of production
services; and (3) those initiated by AutoPilot when disks
have undergone maintenance (e.g., tested for failure).

We now study the reimaging patterns using three years
of data from AutoPilot. As an example of the reimaging
frequencies we observe, Figure 4 shows the Cumulative
Distribution Function (CDF) of the average number of
reimages per month for each server in three years in five
representative datacenters in our sample. Figure 5 shows
the CDF of the average number of reimages per server
per month for each primary tenant for the same years and
datacenters. The discontinuities in this figure are due to
short-lived primary tenants.

We make three observations from these figures. First
and most importantly, there is a good amount of diver-

758 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

40

60

80

100

0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f s
er

ve
rs

Reimages / month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 4: Per-server number of reimages in three years.

0

20

40

60

80

100

0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f p
rim

ar
y

te
na

nt
s

Reimages / server / month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 5: Per-tenant number of reimages in three years.

sity in average reimaging frequency across primary ten-
ants in each datacenter (Figure 5 does not show nearly
vertical lines). Second, the reimaging frequencies per
month are fairly low in all datacenters. For example, at
least 90% of servers are reimaged once or fewer times
per month on average, whereas at least 80% of primary
tenants are reimaged once or fewer times per server per
month on average. This shows that reimaging by primary
tenant engineers and AutoPilot is not overly aggressive
on average, but there is a significant tail of servers (10%)
and primary tenants (20%) that are reimaged relatively
frequently. Third, the primary tenant reimaging behav-
iors are fairly consistent across datacenters, though three
datacenters show substantially lower reimaging rates per
server (we show two of those datacenters in Figure 4).

The remaining question is whether each primary ten-
ant exhibits roughly the same frequencies month after
month. In this respect, we find that there is substantial
variation, as frequencies sometimes change substantially.

Nevertheless, when compared to each other, primary
tenants tend to rank consistently in the same part of the
spectrum. In other words, primary tenants that experi-
ence a relatively small (large) number of reimages in a
month tend to experience a relatively small (large) num-
ber of reimages in the following month. To verify this
trend, we split the primary tenants of a datacenter into
three frequency groups, each with the same number of
tenants: infrequent, intermediate, and frequent. Then,
we track the movement of the primary tenants across
these groups over time. Figure 6 plots the CDF of the
number of times a primary tenant changed groups from
one month to the next. At least 80% of primary tenants

0

20

40

60

80

100

0 5 10 15 20

Pe
rc

en
ta

ge
 o

f p
rim

ar
y

te
na

nt
s

Group changes from month to month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 6: Number of times a primary tenant changed
reimage frequency groups in three years.

changed groups only 8 or fewer times out of the possible
35 changes in three years. This behavior is also consis-
tent across datacenters.

Again, these figures show that historical reimaging
data should provide meaningful information about the
future. Using this data should improve data placement.

4 Smart Co-location Techniques

In this section, we describe our techniques for smart task
scheduling and data placement, which leverage the pri-
mary tenants’ historical behavior patterns.

4.1 Smart task scheduling
We seek to schedule batch tasks (secondary tenants) to
harvest spare cycles from servers that natively run in-
teractive services and their supporting workloads (pri-
mary tenants). Modern cluster schedulers achieve high
job performance and/or fairness, so they are good candi-
dates for this use. However, their designs typically as-
sume dedicated servers, i.e. there are no primary tenants
running on the same servers. Thus, we must (1) mod-
ify them to become aware of the primary tenants and
the primary tenants’ priority over the servers’ resources;
and (2) endow them with scheduling algorithms that re-
duce the number of task killings resulting from the co-
located primary tenants’ need for resources. The first re-
quirement is fairly easy to accomplish, so we describe
our implementation in Section 5. Here, we focus on the
second requirement, i.e. smart task scheduling, and use
historical primary tenant utilization data to select servers
that will most likely have the required resources available
throughout the tasks’ entire executions.

Due to the sheer number of primary tenants, it would
be impractical to treat them independently during task
scheduling. Thus, our scheduling technique first clus-
ters together primary tenants that have similar utilization
patterns into the same utilization class, and then select a
class for the tasks of a job. Next, we discuss our cluster-
ing and class selection algorithms in turn.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 759

Algorithm 1 Class selection algorithm.
1: Given: Classes C, Headroom(type,c), Ranking Weights W
2: function SCHEDULE(Batch job J)
3: J.type = Length (short, medium, or long) from its last run
4: J.req = Max amount of concurrent resources from DAG
5: for each c 2C do
6: c.weightedroom=Headroom(J.type,c) ⇥ W [J.type,c.class]
7: end for
8: F = {8c 2C| Headroom(J.type,c) � J.req}
9: if F 6= /0 then

10: Pick 1 class c 2 F probabilistically µ c.weightedroom
11: return {c}
12: else if Job J can fit in multiple classes combined then
13: Pick {c0, . . . ,ck}✓C probabilistically µ c.weightedroom
14: return {c0, . . . ,ck}
15: else
16: Do not pick classes
17: return { /0}
18: end if
19: end function

The clustering algorithm periodically (e.g., once per
day) takes the most recent time series of CPU utiliza-
tions from the average server of each primary tenant, runs
the FFT algorithm on the series, groups the tenants into
the three patterns described in Section 3 (periodic, con-
stant, unpredictable) based on their frequency profiles,
and then uses the K-Means algorithm to cluster the pro-
files in each pattern into classes. Clustering tags each
class with the utilization pattern, its average utilization,
and its peak utilization. It also maintains a mapping be-
tween the classes and their primary tenants.

As we detail in Algorithm 1, our class selection al-
gorithm relies on the classes defined by the clustering
algorithm. When we need to allocate resources for a
job’s tasks, the algorithm selects a class (or classes) ac-
cording to the expected job length (line 3) and a pre-
determined ranking of classes for the length. We rep-
resent the desired ranking using weights (line 6); higher
weight means higher ranking. For a long job, we give pri-
ority to constant classes first, then periodic classes, and
finally unpredictable classes. We prioritize the constant
classes in this case because constant-utilization primary
tenants with enough available resources are unlikely to
take resources away from the job during its execution. At
the other extreme, a short job does not require an assur-
ance of resource availability long into the future; know-
ing the current utilization is enough. Thus, for a short
job, we rank the classes unpredictable first, then peri-
odic, and finally constant. For a medium job, the ranking
is periodic first, then constant, and finally unpredictable.

We categorize a job as short, medium, or long by
comparing the duration of its last execution to two pre-
defined thresholds (line 3). We set the thresholds based
on the historical distribution of job lengths and the cur-
rent computational capacity of each preferred tenant
class (e.g., the total computation required by long jobs

(8) (469) (113) (126) (138) (6) (1)
Number of Concurrent Tasks

Mapper 2
(469)

Mapper 8 Reducer 3
(113)

Mapper 9
(3)

Mapper 10
(2)

Mapper 11
(1)

Reducer 6
(6)

Reducer 7
(1)

Reducer 4
(126)

Reducer 5
(138)

(1)

Mapper 1
(1)

Figure 7: Example job execution DAG.

should be proportional to the computational capacity of
constant primary tenants). Importantly, the last duration
need not be an accurate execution time estimate. Our
goal is much easier: to categorize jobs into three rough
types. We assume that a job that has not executed before
is a medium job. After a possible error in this first guess,
we find that a job consistently falls into the same type.

We estimate the maximum amount of concurrent re-
sources that the job will need (line 4) using a breadth-
first traversal of the job’s directed acyclic graph (DAG),
which is a common representation of execution flows in
many frameworks [1, 29, 40]. We find this estimate to be
accurate for our workloads. Figure 7 shows an example
job DAG (query 19 from TPC-DS [34]), for which we
estimate a maximum of 469 concurrent containers.

Whether a job “fits” in a class (line 8) depends on the
amount of available resources (or the amount of head-
room) that the servers in the class currently exhibit, as
we define below. When multiple classes could host the
job, the algorithm selects one with probability propor-
tional to its weighted headroom (lines 9 and 10). If mul-
tiple classes are necessary, it selects as many classes as
needed, again probabilistically (lines 12 and 13). If there
are not enough resources available in any combination of
classes, it does not select any class (line 16).

The headroom depends on the job type. For a short
job, we define it as 1 minus the current average CPU uti-
lization of the servers in the class. For a medium job, we
use 1 minus Max(average CPU utilization, current CPU
utilization). For a long job, we use 1 minus Max(peak
CPU utilization, current CPU utilization).

4.2 Smart data placement
Modern distributed file systems achieve high data ac-
cess performance, availability, and durability, so there
is a strong incentive for using them in our harvesting
scenario. However, like cluster schedulers, they assume
dedicated servers without primary tenants running and
storing data on the same servers, and without primary
tenant owners deliberately reimaging disks. Thus, we

760 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 Replica placement algorithm.
1: Given: Storage space available in each server, Primary reimaging
2: stats, Primary peak CPU util stats, Desired replication R
3: function PLACE REPLICAS(Block B)
4: Cluster primary tenants wrt reimaging and peak CPU util
5: into 9 classes, each with the same total space
6: Select the class of the server creating the block
7: Select the server creating the block for one replica
8: for r = 2; r R; r = r + 1 do
9: Select the next class randomly under two constraints:

10: No class in the same row has been picked
11: No class in the same column has been picked
12: Pick a random primary tenant of this class as long as
13: its environment has not received a replica
14: Pick a server in this primary tenant for the next replica
15: if (r mod 3) == 0 then
16: Forget rows and columns that have been selected so far
17: end if
18: end for
19: end function

must (1) modify them to become co-location-aware; and
(2) endow them with replica placement algorithms that
improve data availability and durability in the face of pri-
mary tenants and how they are managed. Again, the first
requirement is fairly easy to accomplish, so we discuss
our implementation in Section 5. Here, we focus on the
second requirement, i.e. smart replica placement.

The challenge is that the primary tenants and the man-
agement system may hurt data availability and durability
for any block: (1) if the replicas of a block are stored
in primary tenants that load-spike at the same time, the
block may become unavailable; (2) if developers or the
management system reimage the disks containing all the
replicas of a block in a short time span, the block will be
lost. A replica placement algorithm must then account
for primary tenant and management system activity.

An intuitive best-first approach would be to try to find
primary tenants that reimage their disks the least, and
from these primary tenants select the ones that have low-
est CPU utilizations. However, this greedy approach has
two serious flaws. First, it treats durability and avail-
ability independently, one after the other, ignoring their
interactions. Second, after the space at all the “good”
primary tenants is exhausted, new replicas would have
to be created at locations that would likely lead to poor
durability, poor availability, or both.

We prefer to make decisions that promote durabil-
ity and availability at the same time, while consis-
tently spreading the replicas around as evenly as pos-
sible across all types of primary tenants. Thus, our
replica placement algorithm (Algorithm 2) creates a two-
dimensional clustering scheme, where one dimension
corresponds to durability (disk reimages) and the other
to availability (peak CPU utilization). It splits the two-
dimensional space into 3⇥ 3 classes (infrequent, inter-
mediate, and frequent reimages versus low, medium,

and high peak utilizations), each of which has the same
amount of available storage for harvesting S/9, where S
is the total amount of currently available storage (lines 4
and 5). This idea can be applied to splits other than 3 ⇥ 3,
as long as they provide enough primary tenant diversity.

The above approach tries to balance the available
space across classes. However, perfect balancing may be
impossible when primary tenants have widely different
amounts of available space, and the file system starts to
become full. The reason is that balancing space perfectly
could require splitting a large primary tenant across two
or more classes. We prevent this situation by selecting a
single class for each tenant, to avoid hurting placement
diversity. The side effect is that small primary tenants
get filled more quickly, causing larger primary tenants to
eventually become the only possible targets for the repli-
cas. This effect can be eliminated by not filling the file
system to the point that less than three primary tenants
remain as possible targets for replicas. In essence, there
is a tradeoff between space utilization and diversity. We
discuss this tradeoff further in Section 7.

When a client creates a new block, our algorithm se-
lects one class for each replica. The first class is that
of the server creating the block; the algorithm places a
replica at this server to promote locality (lines 6 and 7).
If the desired replication is greater than 1, it repeatedly
selects classes randomly, in such a way that no row or
column of the two-dimensional space has two selections
(lines 9, 10, and 11). It places a replica in (a randomly
selected server of) a randomly selected primary tenant in
this class, while ensuring that no two primary tenants in
the same environment receive a replica (lines 12, 13, and
14). Finally, for a desired replication level larger than
3, it does extra rounds of selections. At the beginning
of each round, it forgets the history of row and column
selections from the previous round (lines 15, 16, and 17).

The environment constraint is the only aspect of our
techniques that is AutoPilot-specific. However, the con-
straints generalize to any management system: avoid pla-
cing multiple replicas in any logical (e.g., environment)
or physical (e.g., rack) server grouping that induces cor-
relations in resource usage, reimaging, or failures.

Figure 8 shows an example of our clustering scheme
and primary tenant selection, assuming all primary ten-
ants have the same amount of available storage. The rows
defining the peak utilization classes do not align, as we
ensure that the available storage is the same in all classes.

5 System Implementations

We implement our techniques into YARN, Tez, and
HDFS. Next, we overview these systems. Then, we de-
scribe our implementation guidelines and systems, called
YARN-H, Tez-H, and HDFS-H (“-H” refers to history).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 761

100

0 0.5 1 1.5 2

Pe
ak

 u
til

iz
at

io
n

(%
)

Reimages / server / month

0

20

40

60

80
Primary tenant
Selected primary tenant

Figure 8: Two-dimensional clustering scheme.

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

RM-H

CS

NN-H

AP

Dedicated

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

Figure 9: Overview of YARN-H (RM-H and NM-H),
Tez-H (AM-H), and HDFS-H (NN-H and DN-H) in a
co-location scenario. Our new clustering service (CS)
interacts with all three systems. The arrows represent in-
formation flow. Ci = Container i; AP = AutoPilot.

5.1 Background
YARN [36] comprises a global Resource Manager (RM)
running on a dedicated server, a Node Manager (NM)
per server, and a per-job Application Master (AM) run-
ning on one of the servers. The RM arbitrates the use of
resources (currently, cores and memory) across the clus-
ter. The (primary) RM is often backed up by a secondary
RM in case of failure. Each AM requests containers from
the RM for running the tasks of its job. Each container
request specifies the desired core and memory alloca-
tions for it, and optionally a “node label”. The RM se-
lects a destination server for each container that has the
requested resources available and the same label. The
AM decides which tasks it should execute in each con-
tainer. The AM also tracks the tasks’ execution, sequenc-
ing them appropriately, and re-starting any killed tasks.
Each NM creates containers and reports the amount of
locally available resources to the RM in periodic “heart-
beats”. The NM kills any container that tries to utilize
more memory than its allocation.

Tez [29] is a popular framework upon which MapRe-
duce, Hive, Pig, and other applications can be built. Tez
provides an AM that executes complex jobs as DAGs.

HDFS [11] comprises a global Name Node (NN) run-
ning on a dedicated server, and a Data Node (DN) per

System Main extensions
YARN Report primary tenant utilization to the RM

Kill containers due to primary tenant needs
Maintain resource reserve for primary tenant
Probabilistically balance load

Tez Leverage information on the observed job lengths
Estimate max concurrent resource requirements
Track primary tenant utilization patterns
Schedule tasks on servers unlikely to kill them
Schedule tasks on servers with similar primaries

HDFS Track primary tenant utilization, deny accesses
Report primary tenant status to the NN
Exclude busy servers from info given to clients
Track primary disk reimaging, peak utilizations
Place replicas at servers with diverse patterns

General Create dedicated environment for main components

Table 1: Our main extensions to YARN, Tez, and HDFS.

server. The NN manages the namespace and the map-
ping of file blocks to DNs. The (primary) NN is typically
backed up by a secondary NN. By default, the NN repli-
cates each block (256 MBytes) three times: one replica
in the server that created the block, one in another server
of the same rack, and one in a remote rack. Upon a block
access, the NN informs the client about the servers that
store the block’s replicas. The client then contacts the
DN on any of these servers directly to complete the ac-
cess. The DNs heartbeat to the NN; after a few missing
heartbeats from a DN, the NN starts to re-create the cor-
responding replicas in other servers without overloading
the network (30 blocks/hour/server).

5.2 Implementation guidelines
We first must modify the systems to become aware of
the primary tenants and their priority over the servers’
resources. Because of this priority, we must ensure that
the key components of these systems (RMs and NNs) do
not share their servers with any primary tenants. Second,
we want to integrate our history-based task scheduling
and data placement algorithms into these systems.

Figure 9 overviews our systems. The arrows in the
figure represent information flow. Each shared server re-
ceives one instance of our systems; other workloads are
considered primary tenants. Table 1 overviews our main
extensions. The next sections describe our systems.

5.3 YARN-H and Tez-H
Design goals: (G1) ensure that the primary tenant al-
ways gets the cores and memory it desires; (G2) ensure
that there is always a reserve of resources for the pri-
mary tenant to spike into; and (G3) schedule the tasks on
servers where they are less likely to be killed due to the
resource needs of the corresponding primary tenants.

762 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Primary tenant awareness. We implement goals G1
and G2 in YARN-H by modifying the NM to (1) track the
primary tenant’s core and memory utilizations; (2) round
them up to the next integer number of cores and the
next integer MB of memory; and (3) report the sum of
these rounded values and the secondary tenants’ core and
memory allocations in its heartbeat to RM-H. If NM-H
detects that there is no longer enough reserved resources,
it replenishes the reserve back to the pre-defined amount
by killing enough containers from youngest to oldest.
Smart task scheduling. We implement goal G3 by im-
plementing a service that performs our clustering algo-
rithm, and integrating our class selection algorithm into
Tez-H. We described both algorithms in Section 4.1.

Tez-H requests the estimated maximum number of
concurrent containers from RM-H. When Tez-H selects
one class, the request names the node label for the class.
When Tez-H selects multiple classes, it uses a disjunc-
tion expression naming the labels. RM-H schedules a
container to a heartbeating server of the correct class
with a probability proportional to the server’s available
resources. If Tez-H does not name a label, RM-H selects
destination servers using its default policy.
Overheads. Our modifications introduce negligible
overheads. For primary tenant awareness, we add a few
system calls to the NM to get the resource utilizations,
perform a few arithmetic operations, and piggyback the
results to RM-H using the existing heartbeat. The clus-
tering service works off the critical path of job execution,
computes headrooms using a few arithmetic operations,
and imposes very little load on RM-H. In comparison
to its querying of RM-H once per minute, every server
heartbeats to RM-H every 3 seconds. Tez-H requires a
single interaction with the clustering service per job.

5.4 HDFS-H
Design goals: (G1) ensure that we never use more space
at a server than allowed by its primary tenant; (G2) en-
sure that HDFS-H data accesses do not interfere with the
primary tenant when it needs the server resources; and
(G3) place the replicas of each block so that it will be
as durable and available as possible, given the resource
usage of the primary tenants and how they are managed.

Note that full data durability cannot be guaranteed
when using harvested storage. For example, service en-
gineers or the management system may reimage a large
number of disks at the same time, destroying multiple
replicas of a block. Obviously, one can increase durabil-
ity by using more replicas. We explore this in Section 6.
Primary tenant awareness. For goal G1, we use an ex-
isting mechanism in HDFS: the primary tenants declare
how much storage HDFS-H can use in each server.

Implementing goal G2 is more difficult. To make our

changes seamless to clients, we modify the DN to deny
data accesses when its replica is unavailable (i.e., when
allowing the access would consume some of the resource
reserve), causing the client to try another replica. (If all
replicas of a desired block are busy, the block becomes
unavailable and Tez will fail the corresponding task.) In
addition, DN-H reports being “busy” or available to NN-
H in its heartbeats. If DN-H says that it is busy, NN-
H stops listing it as a potential source for replicas (and
stops using it as a destination for new replicas as well).
When the CPU utilization goes below the reserve thresh-
old, NN-H will again list the server as a source for repli-
cas (and use it as a destination for new ones).
Smart replica placement. For goal G3, we integrate our
replica placement algorithm (Section 4.2) into NN-H.
Overheads. Our extensions to HDFS impose negligible
overheads. For primary tenant awareness, we add a few
system calls to the DN to get the primary tenant CPU uti-
lization, and piggyback the results to NN-H in the heart-
beat. Denying a request under heavy load adds two net-
work transfers, but this overhead is minimal compared
to that of disk accesses. For smart replica placement,
our modifications add the clustering algorithm to the NN,
and the extra communication needed for it to receive the
algorithm inputs. The clustering and data structure up-
dates happen in the background, off the critical path.

6 Evaluation

6.1 Methodology
Experimental testbed. Our testbed is a 102-server
setup, where each server has 12 cores and 32GB of mem-
ory. We reserve 4 cores (33%) and 10GB (31%) of mem-
ory for primary tenants to burst into based on empiri-
cal measurements of interference. (Recall that perfor-
mance isolation technology at each server would enable
smaller resource reserves.) To mimic realistic primary
tenants, each server runs a copy of the Apache Lucene
search engine [26], and uses more threads (up to 12) with
higher load. We direct traffic to the servers to reproduce
the CPU utilization of 21 primary tenants (13 periodic,
3 constant, and 5 unpredictable) from datacenter DC-9.
We also reproduce the disk reimaging statistics of these
primary tenants. For the batch workloads, we run 52
different Hive [33] queries (which translate into DAGs
of relational processing tasks) from the TPC-DS bench-
mark [34]. We assume Poisson inter-arrival times (mean
300 seconds) for the queries.

We use multiple baselines. When studying schedul-
ing, the first baseline is stock YARN and Tez. We call it
“YARN-Stock”. The second baseline combines primary-
tenant-aware YARN with stock Tez, but does not im-
plement smart task scheduling. We call it “YARN-PT”.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 763

We call our full system “YARN-H/Tez-H”. Given the
workload above, we set the thresholds for distinguishing
task length types to 173 and 433 seconds. Jobs shorter
than 173 seconds are short, and longer than 433 sec-
onds are long. These values produce resource require-
ments for the jobs of each type that roughly correspond
to the amount of available capacity in the preferred pri-
mary tenant class for the type. We use HDFS-Stock with
YARN-Stock, and HDFS-PT with the other YARN ver-
sions. The latter combination isolates the impact of pri-
mary tenant awareness in YARN from that in HDFS.

When studying data placement and access, the first
baseline is “HDFS-Stock”, i.e. stock HDFS unaware of
primary tenants. The second baseline is “HDFS-PT”,
which brings primary tenant awareness to data accesses
but does not implement smart data placement. We call
our full system “HDFS-H”. We use YARN and Tez
with HDFS-Stock, and YARN-PT and Tez with the other
HDFS versions. Again, we seek to isolate the impact of
primary tenant awareness in HDFS and YARN.

Simulator. Because we cannot experiment with en-
tire datacenters and need to capture long-term behaviors
(e.g., months to years), we also built a simulator that
reproduces the CPU utilization and reimaging behavior
of all the primary tenants (thousands of servers) in the
datacenters we study. We simulate servers of the same
size and resource reserve as in our real experiments. To
study a spectrum of utilizations, we also experiment with
higher and lower traffic levels, each time multiplying the
CPU utilization time series by a constant factor and sat-
urating at 100%. Because of the inaccuracy introduced
by saturation, we also study a method in which we scale
the CPU utilizations using nth-root functions (e.g., square
root, cube root). These functions make the higher uti-
lizations change less than the lower ones when we scale
them, reducing the chance of saturations.

When studying task scheduling and data availability,
we simulate each datacenter for one month. When study-
ing data durability, we simulate each datacenter for one
year. We use the same set of Hive queries to drive our
simulator, but multiply their lengths and container usage
by a scaling factor to generate enough load for our large
datacenters (many thousands of servers) while limiting
the simulation time.

In the simulator, we use the same code that imple-
ments clustering, task scheduling, and data placement
in our real systems. The simulator also reproduces key
behaviors from the real systems, e.g. it reconstructs lost
replicas at the same rate as our real HDFS systems. How-
ever, it does not model the primary tenants’ response
times. We compare our systems to the second base-
line (YARN-PT) in task scheduling, and the first baseline
(HDFS-Stock) in data placement and access.

Figure 10: Primary tenant’s tail latency in the real testbed
for versions of YARN and Tez.

6.2 Performance microbenchmarks
The most expensive operations in our systems are the
clustering and class selection in task scheduling and data
placement. For task scheduling, clustering takes on av-
erage 2 minutes for the primary tenants of DC-9, when
running single-threaded. (Recall that this clustering hap-
pens in the clustering service once per day, off the criti-
cal scheduling path.) The clustering produces 23 classes
(13 periodic, 5 constant, and 5 unpredictable) for DC-9.
For this datacenter, class selection takes less than 1 msec
on average. For data placement, clustering and class se-
lection take on average 2.55 msecs per new block (0.81
msecs in HDFS-Stock) for DC-9. (Clustering here can
be done off the critical data placement path as well.)

6.3 Experimental results
Task scheduling comparisons. We start by investigat-
ing the impact of harvesting spare compute cycles on the
performance of the primary tenant. Figure 10 shows the
average of the servers’ 99th-percentile response times (in
ms) every minute during a five-hour experiment. The
curve labeled “No Harvesting” depicts the tail latencies
when we run Lucene in isolation. The other curves depict
the Lucene tail latencies under different systems, when
TPC-DS jobs harvest spare cycles across the cluster. The
figure shows that YARN-Stock hurts tail latency signif-
icantly, as it disregards the primary tenant. In contrast,
YARN-PT keeps tail latencies significantly lower and
more consistent. The main reason is that YARN-PT ac-
tually kills tasks to ensure that the primary tenant’s load
can burst up without a latency penalty. Finally, YARN-
H/Tez-H exhibits tail latencies that nearly match those of
the No-Harvesting execution. The maximum tail latency
difference is only 44 ms, which is commensurate with
the amount of variance in the No-Harvesting execution
(average tail latencies ranging from 369 to 406 ms). The
improved tail latencies come from the more balanced uti-
lization of the cluster capacity in YARN-H.

Another key characteristic of YARN-H/Tez-H is its
smart scheduling of tasks to servers where they are less

764 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: Secondary tenants’ run times in the real
testbed for versions of YARN and Tez.

likely to be killed. Figure 11 shows the execution times
of all jobs in TPC-DS for YARN-Stock, YARN-PT, and
YARN-H/Tez-H. As one would expect, YARN-Stock ex-
hibits the lowest execution times. Unfortunately, this per-
formance comes at the cost of ruining that of the primary
tenant, which is unacceptable. Because YARN-PT must
kill (and re-run) tasks when the primary tenant’s load
bursts, it exhibits substantially higher execution times,
1181 seconds on average. YARN-H/Tez-H lowers these
times significantly to 938 seconds on average.

In these experiments, YARN-H/Tez-H improves the
average CPU utilization from 33% to 54%, which is a
significant improvement given that we reserve 33% of
the CPU for primary tenant bursts. The utilization im-
provement depends on the utilization of the primary ten-
ants (the lower their utilization, the more resources we
can harvest), the resource demand coming from sec-
ondary tenants (the higher the demand, the more tasks
we can schedule), and the resource reserve (the smaller
the reserve, the more resources we can harvest).

Overall, these results clearly show that YARN-H/Tez-
H is capable of both protecting primary tenant perfor-
mance and increasing the performance of batch jobs.
Data placement and access comparisons. We now in-
vestigate whether HDFS-H is able to protect the per-
formance of the primary tenant and provide higher data
availability than its counterparts. Figure 12 depicts the
average of the servers’ 99th-percentile response times
(in ms) every minute during another five-hour experi-
ment. As expected, the figure shows that HDFS-Stock
degrades tail latency significantly. HDFS-PT and HDFS-
H reduce the degradation to at most 47 ms. The reason is
that these versions avoid accessing/creating data at busy
servers. However, HDFS-PT actually led to 47 failed ac-
cesses, i.e. these blocks could not be accessed as all of
their replicas were busy. By using our smart data place-
ment algorithm, HDFS-H eliminated all failed accesses.

6.4 Simulation results
Task scheduling comparisons. We start our simulation
study by considering the full spectrum of CPU utiliza-

Figure 12: Primary tenant’s tail latency in the real testbed
for versions of HDFS.

Figure 13: Secondary tenants’ run time improvements in
DC-9 under YARN-H/Tez-H for root and linear scalings.

tions, assuming the size and behavior of our real pro-
duction datacenters. Recall that we use two methods
to scale utilizations (up and down) from the real utiliza-
tions: linear and root scalings. To isolate the benefit of
our use of historical primary tenant utilizations, we com-
pare YARN-H/Tez-H to YARN-PT. Figure 13 depicts the
average batch job execution time in DC-9 under both sys-
tems and scalings, as a function of utilization. Each point
along the curves shows the average of five runs, whereas
the intervals range from the minimum average to the
maximum average across the runs. As one would expect,
high utilization causes higher queuing delays and longer
execution times. (Recall that we reserve 33% of the re-
sources for primary tenants to burst into, so queues are
already long when we approach 60% utilization.) How-
ever, YARN-PT under linear scaling behaves differently;
the average execution times start to increase significantly
at lower utilizations. The reason is that linear scaling
produces greater temporal variation in the CPU utiliza-
tions of each primary tenant than root scaling. Higher
utilization variation means that YARN-PT is more likely
to have to kill tasks, as it does not know the historical uti-
lization patterns of the primary tenants. For example, at
45% utilization, YARN-PT under linear scaling kills 4⇥
more tasks than the other system-scaling combinations.

Because YARN-H/Tez-H uses our clustering and
smart task scheduling, it improves job performance sig-
nificantly across most of the utilization spectrum. Un-
der linear scaling, the average execution time reduction

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 765

Figure 14: Secondary tenants’ run time improvements
from YARN-H/Tez-H for root and linear scalings.

Figure 15: Lost blocks for two replication levels.

ranges from 0% to 55%, whereas under root scaling it
ranges between 3% and 41%. The YARN-H/Tez-H ad-
vantage is larger under linear scaling, since the utilization
pattern of each primary tenant varies more over time.

To see the impact of primary tenants with different
characteristics than in DC-9, Figure 14 depicts the min-
imum, average, and maximum job execution time im-
provements from YARN-H/Tez-H across the utilization
spectrum for each datacenter (five runs for each utiliza-
tion level). The average improvements range from 12%
to 56% under linear scaling, and 5% to 45% under root
scaling. The lowest average improvements are for DC-
0 and DC-2, which exhibit the least amount of primary
tenant utilization variation over time. At the other ex-
treme, the largest average improvements come for DC-1
and DC-4, as many of their primary tenants exhibit sig-
nificant temporal utilization variations. The largest max-
imum improvements (⇠90% and ⇠70% under linear and
root scaling, respectively) also come from these two dat-
acenters, regardless of scaling type.
Data placement and access comparisons. We now con-
sider the data durability in HDFS-H. Figure 15 shows
the percentage of lost blocks under two replication lev-
els (three and four replicas per block), as we simulate
one year of reimages and 4M blocks. Each bar depicts
the average of five runs, and the intervals range from the
minimum to the maximum percent data loss in those sim-
ulations. The missing bars mean that there is no data loss
in any of the corresponding five simulations. Note that a
single lost block represents a 10�5 (< 100⇥1/4M) per-
centage of lost blocks, i.e. 6 nines of durability.

Figure 16: Failed accesses under linear scaling.

The figure shows that HDFS-H reduces data loss more
than two orders of magnitude under three-way replica-
tion, compared to HDFS-Stock. Moreover, for one of
the datacenters, HDFS-H eliminates all data loss under
three-way replication. The maximum number of losses
of HDFS-H in any datacenter was only 81 blocks (DC-3).
Under four-way replication, HDFS-H completely elimi-
nates data loss for all datacenters, whereas HDFS-Stock
still exhibits losses across the board. These results show
that our data placement algorithm provides significant
improvements in durability, despite the harvested nature
of the disk space and the relatively high reimage rate for
many primary tenants. In fact, the losses with HDFS-
H and three-way replication are lower than those with
HDFS-Stock and four-way replication for all but one dat-
acenter; i.e. our algorithm almost always achieves higher
durability at a lower space overhead than HDFS-Stock.

Our data availability results are also positive. Fig-
ure 16 depicts the percentage of failed accesses under
the two replication levels and linear scaling, as a func-
tion of the average utilization. The figure includes range
bars from five runs, but they are all too small to see. The
figure shows that HDFS-H exhibits no data unavailabil-
ity up to higher utilizations (⇠40%) than HDFS-Stock,
and low unavailability for even higher utilization (50%),
under both replication levels. At 50% utilization, HDFS-
Stock already exhibits relatively high unavailability un-
der both replication levels. Around 66% utilization, un-
availability starts to increase faster (accesses cannot pro-
ceed if CPU utilization is higher than 66%). More inter-
estingly, our smart data placement under three-way repli-
cation achieves lower unavailability than HDFS-Stock
under four-way replication below 75% utilization. The
trends are similar under root scaling, except that HDFS-
H exhibits no unavailability up to a higher utilization
(50%) than with linear scaling. Regardless of the scaling
type, HDFS-H can achieve higher availability at a lower
space overhead than HDFS-Stock for most utilizations.

7 Experiences in Production

As a first rollout stage, we deployed HDFS-H to a pro-
duction cluster with thousands of servers eleven months

766 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ago. Since then, we have been enabling/adding features
as our deployment grows. For example, we extended
the set of placement constraints beyond environments to
include machine functions and physical racks. In addi-
tion, we initially configured the system to treat the replica
placement constraints as “soft”, e.g. the placement algo-
rithm would allow multiple replicas in the same environ-
ment, to prevent the block creation from failing when
the available space was becoming scarce. This initial
decision promoted space utilization over diversity. Sec-
tion 4.2 discusses this tradeoff.

Since its production deployment, our system has elim-
inated all data losses, except for a small number of losses
due to corner-case bugs or promoting space over diver-
sity. Due to the latter losses, we started promoting diver-
sity over space utilization more than nine months ago.
Since then, we have not lost blocks. For comparison,
when the stock HDFS policy was activated by mistake in
this cluster for just three days during this period, dozens
of blocks were lost.

We also deployed YARN-H’s primary tenant aware-
ness code to production fourteen months ago, and have
not experienced any issues with it (other than needing
to fix a few small bugs). We are now productizing our
scheduling algorithm and will deploy it to production.

In the process of devising, productizing, deploying,
and operating our systems, we learned many lessons.
1. Even well-tested open-source systems require ad-
ditional hardening in production. We had to create
watchdogs that monitor key components of our systems
to detect unavailability and failures. Because of the non-
trivial probability of concurrent failures, we increased
the number of RMs and NNs to four instead of two. Fi-
nally, we introduced extensive telemetry to simplify de-
bugging and operation. For example, we collect exten-
sive information about HDFS-H blocks to estimate its
placement quality.
2. Synchronous operations and unavailability. Syn-
chronous operations are inadequate when resources or
other systems become unavailable. For example, our
production deployments interact with a performance iso-
lation manager (similar to [24]). This interaction was
unexpectedly harmful to HDFS-H. The reason is that
the manager throttles the secondary tenants’ disk activity
when the primary tenant performs substantial disk I/O.
This caused the DN heartbeats on these servers to stop
flowing, as the heartbeat thread does synchronous I/O to
get the status of modified blocks and free space. As a
result, the NN started a replication storm for data that it
thought was lost. We then changed the heartbeat thread
to become asynchronous and report the status that it most
recently found.
3. Data durability is king. As we mention above, our
initial HDFS-H deployment favored space over diversity,

which caused blocks to be lost and the affected users to
become quite exercised. By default, we now monitor the
quality of placements and stop consuming more space
when diversity becomes low. To recover some space, we
still favor space usage over diversity for those files that
do not have strict durability requirements.
4. Complexity is your enemy. As others have sug-
gested [6], simplicity, modularity, and maintainability
are highly valued in large production systems, especially
as engineering teams change and systems evolve. For
example, our initial task scheduling technique was more
complex than described in Section 4.1. We had to sim-
plify it, while retaining most of the expected gains.
5. Scaling resource harvesting to massive datacenters
requires additional infrastructure. Stock YARN and
HDFS are typically used in relatively small clusters (less
than 4k servers), due to their centralized structure and
the need to process heartbeats from all servers. Our goal
is to deploy our systems to much larger installations, so
we are now in the process of creating an implementation
of HDFS-H that federates multiple smaller clusters and
automatically moves files/folders across them based on
primary tenant behaviors, and our algorithm’s ability to
provide high data availability and durability.
6. Contributing to the open-source community.
Though our techniques are general, some of the code we
introduced in our systems was tied to our deployments.
This posed challenges when contributing changes to and
staying in-sync with their open-source versions. For ex-
ample, some of the YARN-H primary tenant awareness
changes we made to Hadoop version 2.6 were difficult to
port to version 2.7. Based on this experience, we refac-
tored our code to isolate the most basic and general func-
tionality, which we could then contribute back; some of
these changes will appear in version 2.8.

8 Conclusion

In this paper, we first characterized all servers of ten
large-scale datacenters. Then, we introduced techniques
and systems that effectively harvest spare compute cycles
and storage space from datacenters for batch workloads.
Our systems embody knowledge of the existing primary
workloads, and leverage historical utilization and man-
agement information about them. Our results from an
experimental testbed and from simulations of the ten dat-
acenters showed that our systems eliminate data loss and
unavailability in many scenarios, while protecting pri-
mary workloads and significantly improving batch job
performance. Based on these results, we conclude that
our systems in general, and our task scheduling and data
placement policies in particular, should enable datacen-
ter operators to increase utilization and reduce TCO.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 767

Acknowledgments

We thank our shepherd, Michael Stumm, for his help in
improving the paper and his patience with us. We also
thank Paulo Tomita, Sekhar Pasupuleti, Robert Grandl,
and Srikanth Kandula for their help with our experimen-
tal setup. We are indebted to Karthik Kambatla for his
help with open-sourcing some of our changes to YARN.
We are also indebted to Sriram Rao, Carlo Curino, Chris
Douglas, Vivek Narasayya, Manoj Syamala, Sameh El-
nikety, Thomas F. Wenisch, and Willy Zwaenepoel for
our many discussions about this work and their com-
ments to our paper. Finally, we thank Gaurav Sareen and
Eric Boyd for their support of this project.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: A System for Large-Scale Machine Learn-
ing. In Proceedings of the 12th USENIX Sympo-
sium on Operating System Design and Implemen-
tation, 2016.

[2] L. Abraham, J. Allen, O. Barykin, V. Borkar,
B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss,
S. Subramanian, J. L. Wiener, and O. Zed. Scuba:
Diving into Data at Facebook. Proceedings of the
VLDB Endowment, 2013.

[3] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Tarazu: Optimizing MapRe-
duce on Heterogeneous Clusters. In Proceedings of
the 17th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, 2012.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle. The Dat-
acenter as a Computer: An Introduction to the De-
sign of Warehouse-Scale Machines. Synthesis Lec-
tures on Computer Architecture, 2013.

[5] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes.
Long-term SLOs for Reclaimed Cloud Computing
Resources. In Proceedings of the ACM Symposium
on Cloud Computing, 2014.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Transactions on
Computer Systems, 2008.

[7] R. B. Clay, Z. Shen, and X. Ma. Accelerating Batch
Analytics With Residual Resources From Interac-
tive Clouds. In Proceedings of the 21st Interna-
tional Symposium on Modelling, Analysis and Sim-
ulation of Computer and Telecommunication Sys-
tems, 2013.

[8] C. Curino, D. E. Difallah, C. Douglas, S. Krish-
nan, R. Ramakrishnan, and S. Rao. Reservation-
based Scheduling: If You’Re Late Don’T Blame
Us! In Proceedings of the ACM Symposium on
Cloud Computing, 2014.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters.
In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, 2013.

[10] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In Proceedings of the 19th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2014.

[11] A. Foundation. HDFS Architecture Guide, 2008.

[12] A. Goder, A. Spiridonov, and Y. Wang. Bistro:
Scheduling Data-Parallel Jobs Against Live Pro-
duction Systems. In Proceedings of the USENIX
Annual Technical Conference, 2015.

[13] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D.
Nguyen. ApproxHadoop: Bringing Approxima-
tions to MapReduce Frameworks. In Proceedings
of the 20th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, 2015.

[14] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Tor-
res, and R. Bianchini. GreenHadoop: Leveraging
Green Energy in Data-processing Frameworks. In
Proceedings of the 7th ACM European Conference
on Computer Systems, 2012.

[15] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-Resource Packing
for Cluster Schedulers. In Proceedings of the 2014
ACM SIGCOMM Conference, 2014.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. In Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, 2011.

768 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[17] M. Isard. Autopilot: Automatic Data Center Man-
agement. SIGOPS Operating Systems Review,
2007.

[18] K. Karanasos, S. Rao, C. Curino, C. Douglas,
K. Chaliparambil, G. M. Fumarola, S. Heddaya,
R. Ramakrishnan, and S. Sakalanaga. Mercury:
Hybrid Centralized and Distributed Scheduling in
Large Shared Clusters. In Proceedings of the
USENIX Annual Technical Conference, 2015.

[19] H. Kasture and D. Sanchez. Ubik: Efficient Cache
Sharing with Strict Qos for Latency-Critical Work-
loads. In Proceedings of the 19th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2014.

[20] M. A. Laurenzano, Y. Zhang, L. Tang, and
J. Mars. Protean Code: Achieving Near-Free On-
line Code Transformations for Warehouse Scale
Computers. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microar-
chitecture, 2014.

[21] J. Leverich and C. Kozyrakis. Reconciling High
Server Utilization and Sub-Millisecond Quality-of-
Service. In Proceedings of the 9th European Con-
ference on Computer Systems, 2014.

[22] H. Lin, X. Ma, J. Archuleta, W.-C. Feng, M. Gard-
ner, and Z. Zhang. MOON: MapReduce On Op-
portunistic eNvironments. In Proceedings of the
19th ACM International Symposium on High Per-
formance Distributed Computing, 2010.

[23] M. J. Litzkow, M. Livny, and M. W. Mutka.
Condor-A Hunter of Idle Workstations. In Proceed-
ings of the 8th International Conference on Dis-
tributed Computing Systems, 1988.

[24] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42nd An-
nual International Symposium on Computer Archi-
tecture, 2015.

[25] J. Mars, L. Tang, R. Hundt, K. Skadron, and
M. L. Soffa. Bubble-Up: Increasing Utilization in
Modern Warehouse Scale Computers via Sensible
Co-locations. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microar-
chitecture, 2011.

[26] M. McCandless, E. Hatcher, and O. Gospodnetic.
Lucene in Action: Covers Apache Lucene 3.0.
Manning Publications Co., 2010.

[27] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic,
and R. Bianchini. DeepDive: Transparently Iden-
tifying and Managing Performance Interference in
Virtualized Environments. In Proceedings of the
USENIX Annual Technical Conference, 2013.

[28] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and
R. Hundt. Google-Wide Profiling: A Continuous
Profiling Infrastructure for Data Centers. IEEE Mi-
cro, 2010.

[29] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, and C. Curino. Apache Tez: A Uni-
fying Framework for Modeling and Building Data
Processing Applications. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data, 2015.

[30] B. Sharma, T. Wood, and C. R. Das. HybridMR:
A Hierarchical MapReduce Scheduler for Hybrid
Data Centers. In Proceedings of the 33rd Interna-
tional Conference on Distributed Computing Sys-
tems, 2013.

[31] L. Tang, J. Mars, and M. L. Soffa. Compiling for
Niceness: Mitigating Contention for QoS in Ware-
house Scale Computers. In Proceedings of the 10th
International Symposium on Code Generation and
Optimization, 2012.

[32] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa.
ReQoS: Reactive Static/Dynamic Compilation for
QoS in Warehouse Scale Computers. In Proceed-
ings of the 18th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, 2013.

[33] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy.
Hive: A Warehousing Solution Over a Map-Reduce
Framework. Proceedings of the VLDB Endowment,
2009.

[34] Transaction Processing Performance Council. TPC
Benchmarks.

[35] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Back-
filling Using System-Generated Predictions Rather
Than User Runtime Estimates. IEEE Transactions
on Parallel and Distributed Systems, 2007.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th An-
nual Symposium on Cloud Computing, 2013.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 769

[37] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale Cluster
Management at Google with Borg. In Proceedings
of the 10th European Conference on Computer Sys-
tems, 2015.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-
flux: Precise Online QoS Management for In-
creased Utilization in Warehouse Scale Computers.
In Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013.

[39] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay Scheduling: A
Simple Technique for Achieving Locality and Fair-
ness in Cluster Scheduling. In Proceedings of the
5th European Conference on Computer Systems,
2010.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Comput-
ing with Working Sets. In Proceedings of the 2nd

USENIX Workshop on Hot Topics in Cloud Com-
puting, 2010.

[41] W. Zhang, S. Rajasekaran, S. Duan, T. Wood, and
M. Zhuy. Minimizing Interference and Maximizing
Progress for Hadoop Virtual Machines. SIGMET-
RICS Performance Evaluation Review, 2015.

[42] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU Perfor-
mance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference
on Computer Systems, 2013.

[43] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang.
SMiTe: Precise QoS Prediction on Real-System
SMT Processors to Improve Utilization in Ware-
house Scale Computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014.

770 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DQBarge: Improving data-quality tradeoffs in large-scale Internet services

Michael Chow∗, Kaushik Veeraraghavan†, Michael Cafarella∗, and Jason Flinn∗,
University of Michigan∗ Facebook, Inc.†

Abstract
Modern Internet services often involve hundreds of dis-
tinct software components cooperating to handle a single
user request. Each component must balance the compet-
ing goals of minimizing service response time and max-
imizing the quality of the service provided. This leads
to low-level components making data-quality tradeoffs,
which we define to be explicit decisions to return lower-
fidelity data in order to improve response time or mini-
mize resource usage.

We first perform a comprehensive study of low-level
data-quality tradeoffs at Facebook. We find that such
tradeoffs are widespread. We also find that existing
data-quality tradeoffs are often suboptimal because the
low-level components making the tradeoffs lack global
knowledge that could enable better decisions. Finally, we
find that most tradeoffs are reactive, rather than proac-
tive, and so waste resources and fail to mitigate system
overload.

Next, we develop DQBarge, a system that enables
better data-quality tradeoffs by propagating critical in-
formation along the causal path of request processing.
This information includes data provenance, load metrics,
and critical path predictions. DQBarge generates perfor-
mance and quality models that help low-level compo-
nents make better, more proactive, tradeoffs. Our eval-
uation shows that DQBarge helps Internet services miti-
gate load spikes, improve utilization of spare resources,
and implement dynamic capacity planning.

1 Introduction
A data-quality tradeoff is an explicit decision by a

software component to return lower-fidelity data in order
to improve response time or minimize resource usage.
Data-quality tradeoffs are often found in Internet services
due to the need to balance the competing goals of min-
imizing the service response time perceived by the end
user and maximizing the quality of the service provided.
Tradeoffs in large-scale services are pervasive since hun-
dreds or thousands of distinct software components may
be invoked to service a single request and each compo-
nent may make individual data-quality tradeoffs.

Data-quality tradeoffs in low-level software compo-
nents often arise from defensive programming. A pro-
grammer or team responsible for a specific component

wishes to bound the response time of their component
even when the resource usage or latency of a sub-service
is unpredictable. For instance, a common practice is to
time out when a sub-service is slow to respond and sup-
ply a default value in lieu of the requested data.

To quantify the prevalence of data-quality tradeoffs,
we undertake a systematic study of software components
at Facebook. We find that over 90% of components
perform data-quality tradeoffs instead of failing. Some
tradeoffs we observe are using default values, calculating
aggregates from a subset of input values, and retrieving
alternate values from a stale or lower-quality data source.
Further, we observe that the vast majority of data-quality
tradeoffs are reactive rather than proactive, e.g., compo-
nents typically set timeouts and make data-quality trade-
offs when timers expires rather than predict which ac-
tions can be performed within a desired time bound.

These existing data-quality tradeoffs are suboptimal
for three reasons. First, they consider only local knowl-
edge available to the low-level software component be-
cause of the difficulty in accessing higher-level knowl-
edge such as the provenance of data, system load, and
whether the component is on the critical request path.
Second, the tradeoffs are usually reactive (e.g., happen-
ing only after a timeout) rather than proactive (e.g., is-
suing only the amount of sub-service requests that can
be expected to complete within a time bound); reactive
tradeoffs waste resources and exacerbate system over-
load. Finally, there is no mechanism to trace the set of
data-quality tradeoffs made during a request, and this
makes understanding the quality and performance impact
of such tradeoffs on actual requests difficult.

DQBarge addresses these problems by propagating
critical information along the causal path of request pro-
cessing. The propagated data includes load metrics, as
well as the expected critical path and slack for individ-
ual software components. It also includes provenance
for request data such as the data sources queried and the
software components that have transformed the data. Fi-
nally, it includes the specific data-quality tradeoffs that
have been made for each request; e.g., which data values
were left out of aggregations.

In an offline stage, DQBarge uses this data to generate
performance and quality models for low-level tradeoffs
in the service pipeline. Later, while handling production

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 771

traffic, it consults the models to proactively determine
which tradeoffs to make.

DQBarge generates performance and quality models
by sampling a small percentage of the total requests pro-
cessed by the service and redundantly executing them
to compare the performance and quality when different
tradeoffs are employed. Redundant execution minimizes
interference with production traffic; duplicated requests
run offline on execution pipelines dedicated to model
generation. Performance models capture how throughput
and latency are affected by specific data-quality tradeoffs
as a factor of overall system load and provenance. Qual-
ity models capture how the fidelity of the final response
is affected by specific tradeoffs as a function of input data
provenance.

These models enable better tradeoffs during the pro-
cessing of subsequent production requests. For each pro-
duction request, DQBarge passes extra data along the
causal path of request processing. It predicts the crit-
ical path for each request and which software compo-
nents will have substantial slack in processing time. It
also measures current system load. This global and
request-specific state is attached to the request at ingress.
As the request propagates through software components,
DQBarge annotates data objects with provenance. This
information and the generated models are propagated to
the low-level components, enabling them to make better
tradeoffs.

We investigate three scenarios in which better data-
quality tradeoffs can help. First, during unanticipated
load spikes, making better data quality tradeoffs can
maintain end-to-end latency goals while minimizing the
loss in fidelity perceived by users. Second, when load
levels permit, components with slack in their completion
time can improve the fidelity of the response without im-
pacting end-to-end latency. Finally, understanding the
potential effects of low-level data-quality tradeoffs can
inform dynamic capacity planning and maximize utility
as a function of the resources required to produce output.

One way to frame this work is that data-quality
tradeoffs are a specific type of quality-of-service trade-
off [7, 25, 29], akin to recent work in approximate com-
puting [4, 8, 19, 18, 28, 30]. The distinguishing fea-
ture of data-quality tradeoffs is that they are embedded
in low-level software components within complex Inter-
net pipelines. This leads to a lack of global knowledge
and makes it difficult for individual components to de-
termine how making specific tradeoffs will impact over-
all service latency and quality. DQBarge addresses this
issue by incorporating principles from the literature on
causal tracing [5, 9, 10, 13, 23, 26, 27, 31] to propagate
needed knowledge along the path of request processing,
enabling better tradeoffs by providing the ability to as-
sess the impact of tradeoffs.

Thus, this work makes the following contributions.
First, we provide the first comprehensive study of low-
level data-quality tradeoffs in a large-scale Internet ser-
vice. Second, we observe that causal propagation of re-
quest statistics and provenance enables better and more
proactive data-quality tradeoffs. Finally, we demonstrate
the feasibility of this approach by designing, implement-
ing, and evaluating DQBarge, an end-to-end approach
for tracing, modeling, and actuating data-quality trade-
offs in Internet service pipelines.

We have added a complete, end-to-end implementa-
tion of DQBarge to Sirius [15], an open-source, personal
digital assistant service. We have also implemented and
evaluated the main components of the DQBarge archi-
tecture at Facebook and validated them with production
data. Our results show that DQBarge can meet latency
goals during load spikes, utilize spare resources without
impacting end-to-end latency, and maximize utility by
dynamically adjusting capacity for a service.

2 Study of data-quality tradeoffs

In this section, we quantify the prevalence and type
of data-quality tradeoffs in production software at Face-
book. We perform a comprehensive study of Facebook
client services that use an internal key-value store called
Laser. Laser enables online accessing of the results of a
batch offline computation such as a Hive [33] query.

We chose to study clients of Laser for several rea-
sons. First, Laser had 463 client services, giving us a
broad base of software to examine. We systematically in-
clude all 463 services in our study to gain a representative
picture of how often data-quality tradeoffs are employed
at Facebook. Second, many details about timeouts and
tradeoffs are specified in client-specific RPC configura-
tion files for this store. We processed these files auto-
matically, which reduced the amount of manual code in-
spection required for the study. Finally, we believe a key-
value store is representative of the low-level components
employed by most large-scale Internet companies.

Table 1 shows the results of our study for the 50 client
services that invoke Laser most frequently, and Table 2
shows results for all 463 client services. We categorize
how clients make data-quality decisions along two di-
mensions: proactivity and resultant action. Each entry
shows the number of clients that make at least one data
quality decision with a specific proactivity/action combi-
nation. For most clients, all decisions fall into a single
category. A few clients use different strategies at differ-
ent points in their code. We list these clients in multiple
categories, so the total number of values in each table is
slightly more than the number of client services.

772 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Failure Data-quality tradeoff
Default Omit Alternate

Reactive 5 (10%) 14 (28%) 30 (60%) 1 (2%)

Proactive 0 (0%) 0 (0%) 2 (4%) 1 (2%)

Table 1: Data-quality decisions of the top 50 Laser clients.
Each box shows the number of clients that make decisions ac-
cording to the specified combination of reactive/proactive de-
termination and resultant action. The total number of values is
greater than 50 since a few clients use more than one strategy.

2.1 Proactivity

We consider a tradeoff to be reactive if the client ser-
vice always initiates the request and then uses a timeout
or return code to determine if the request is taking too
long or consuming too many resources. For instance, we
observed many latency-sensitive clients that set a strict
timeout for how long to wait for a response. If Laser
takes longer than the timeout, such clients make a data-
quality tradeoff or return a failure.

A proactive check predicts whether the expected la-
tency or resource cost of processing the request will ex-
ceed a threshold. If so, a data-quality tradeoff is made
immediately without issuing the request. For example,
we observed a client that determines whether or not a
query will require cross-data-center communication be-
cause such communication would cause it to exceed its
latency bound. If there are no hosts that can service the
query in its data center, it makes a data-quality tradeoff.

2.2 Resultant actions

We also examine the actions taken in response to la-
tency or resource usage exceeding a threshold. Failure
shows the number of clients that require a response from
Laser. If the store responds with an error or timeout, the
client fails. Such instances mean a programmer has cho-
sen to not make a data-quality tradeoff.

The remaining categories represent different types of
data-quality tradeoffs. Default shows the number of
clients that return a pre-defined default answer when a
tradeoff is made. For instance, we observed a client ser-
vice that ranks chat threads according to their activity
level. The set of most active chat groups are retrieved
from Laser and boosted to the top of a chat bar. If re-
trieving this set fails or times out, chat groups and con-
tacts are listed alphabetically.

The Omit category is common in clients that aggre-
gate hundreds of values from different sources; e.g., to
generate a model. If an error or timeout occurs retrieving
values from one of these sources, those values are left
out and the aggregation is performed over the values that
were retrieved successfully.

One example we observed is a recommendation en-
gine that aggregates candidates and features from sev-
eral data sources. It is resilient to missing candidates

Failure Data-quality tradeoff
Default Omit Alternate

Reactive 40 (9%) 250 (54%) 174 (38%) 4 (1%)

Proactive 0 (0%) 3 (1%) 7 (2%) 1 (0%)

Table 2: Data-quality decisions made by all Laser clients.
Each box shows the number of clients that make tradeoffs ac-
cording to the specified combination of reactive/proactive de-
termination and resultant action. The total number of values is
greater than 463 since a few clients use more than one strategy.

and features. Although missing candidates are excluded
from the final recommendation and missing features neg-
atively affect candidate scores in calculating the recom-
mendation, the exclusion of a portion of these values al-
lows a usable but slightly lower-fidelity recommendation
to be returned in a timely manner in the event of failure
or unexpected system load.

The Alternate category denotes clients that make a
tradeoff by retrieving an alternate, reduced quality, value
from a different data source. For example, we observed a
client that requests a pre-computed list of top videos for
a given user. If a timeout or failure occurs retrieving this
list, the client retrieves a more generic set of videos for
that user. As a further example, we observed a client that
chooses among a pre-ranked list of optimal data sources.
On error or timeout, the client retrieves the data from the
next best data source. This process continues until a re-
sponse is received.

Before performing our study, we hypothesized that
client services might try to retrieve data of equal fidelity
from an alternate data store in response to a failure. How-
ever, we did not observe any instance of this behavior in
our study (all alternate sources had lower-fidelity data).

2.3 Discussion of results
Tables 1 and 2 show that data quality tradeoffs are per-

vasive in the client services we study. 90% of the top 50
Laser clients and 91% of all 463 clients perform a data-
quality tradeoff in response to a failure or timeout; the re-
maining 9-10% of clients consider the failure to retrieve
data in a timely manner to be a fatal error. Thus, in the
Facebook environment, making data-quality tradeoffs is
normal behavior, and failures are the exception.

For the top 50 clients, the most common action when
faced with a failure or timeout is to omit the requested
value from the calculation of an aggregate (60%). The
next most common action (28%) is to use a default value
in lieu of the requested data. These trends are reversed
when considering all clients. Only 36% of all 463 clients
omit the requested values from an aggregation, whereas
52% use a default value.

We were surprised that only a few clients react to fail-
ure or timeout by attempting to retrieve the requested
data from an alternate source (4% of the top 50 clients
and 1% of all clients). This may be due to tight time or

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 773

resource constraints; e.g., if the original query takes too
long, there may be no time left to initiate another query.

Only 6% of the top 50 clients and 2% of all clients
are proactive. The lack of proactivity represents a signif-
icant lost opportunity for optimization because requests
that timeout or fail consume resources but produce no
benefit. This effect can be especially prominent when
requests are failing due to excessive load; a proactive
strategy would decrease the overall stress on the system.
When a proactive check fails, the service performing that
check always makes a data-quality tradeoff (as opposed
to terminating its processing with a failure); it would be
very pessimistic for a client to return a failure without at
least attempting to fetch the needed data.

In our inspection of source code, we observed that
low-level data-quality decisions are almost always en-
capsulated within clients and not reported to higher-level
components or attached to the response data. Thus, there
is no easy way for operators to check how the quality of
the response being sent to the user has been impacted by
low-level quality tradeoffs during request processing.

3 Design and implementation
Motivated by our study results, we designed DQBarge

to help developers understand the impact of data-quality
tradeoffs and make better, more proactive tradeoffs to im-
prove quality and performance. Our hypothesis is that
propagating additional information along the causal path
of request processing will provide the additional context
necessary to reach these goals.

DQBarge has two stages of operation. During the of-
fline stage, it samples a small percentage of production
requests, and it runs a copy of each sampled request on
a duplicate execution pipeline. It perturbs these requests
by making specific data quality tradeoffs and measuring
the request latency and result quality. DQBarge gener-
ates performance and quality models by systematically
sweeping through the space of varying request load and
data provenance dimensions specified by the developer
and using multidimension linear regression over the data
to predict performance and quality as a factor of load and
provenance. Note that because requests are duplicated,
end users are not affected by the perturbations required to
gather model data. Further, DQBarge minimizes interfer-
ence with production traffic by using dedicated resources
for running duplicate requests as much as possible.

During the online stage, DQBarge uses the quality
and performance models to decide when to make data-
quality tradeoffs for production traffic in order to realize
a configured goal such as maximizing quality subject to
a specified latency constraint. It gathers the inputs to the
models (load levels, critical path predictions, and prove-
nance of data) and propagates them along the critical
path of request execution by embedding the data in RPC

objects associated with the request. At each potential
tradeoff site, the low-level component calls DQBarge.
DQBarge performs a model lookup to determine whether
to make a data-quality tradeoff, and, if so, the specific
tradeoff to make (e.g., which values to leave out of an ag-
gregation). The software service then makes these trade-
offs proactively. DQBarge can optionally log the deci-
sions that are made so that developers can understand
how they are affecting production results.

The separation of work into online and offline stages
is designed to minimize overhead for production traffic.
These stages can run simultaneously; DQBarge can gen-
erate a new model offline by duplicating requests while
simultaneously using an older model to determine what
tradeoffs to make for production traffic. The downside
of this design is that DQBarge will not react immediately
to environmental changes outside the model parameters
such as a code update that modifies resource usage. In-
stead, such changes will be reflected only after a new
model is generated. We therefore envision that models
are regenerated regularly (e.g., every day) or after sig-
nificant environmental changes occur (e.g., after a major
push of new code).

Section 3.1 describes how DQBarge gathers and prop-
agates data about request processing, including system
load, critical path and slack predictions, data provenance,
and a history of the tradeoffs made during request pro-
cessing. This data gathering and propagation is used by
both the online and offline stages. Section 3.2 relates
how DQBarge duplicates the execution of a small sample
of requests for the offline stage and builds models of per-
formance and quality for potential data-quality tradeoffs.
As described in Section 3.3, DQBarge uses these models
during the online stage to make better tradeoffs for sub-
sequent requests: it makes proactive tradeoffs to reduce
resource wastage, and it uses provenance to choose trade-
offs that lead to better quality at a reduced performance
cost. Finally, Section 3.4 describes how DQBarge logs
all tradeoffs made during request processing so that op-
erators can review how system performance and request
quality have been impacted.

3.1 Data gathering and propagation

DQBarge provides a library for developers to specify
the information that should be propagated along the crit-
ical path. The library is implemented in 3268 lines of
C++ code, plus Java bindings for services implemented
in that language. Developers use the library interface
to annotate objects during request processing and query
those annotations at later stages of the pipeline. Table 3
shows selected functions from the DQBarge library API
to which we will refer in the following discussion.

The DQBarge library has a RPC-package-specific
back-end that modifies and queries existing RPC objects

774 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DQBarge API
putMetric(scope, key, type, value)

getMetric(key) → (type, value)

addProvenance(data object, key, type, value)

removeProvenance(data object, key)

getProvenance(data object) → list <key, type, value>
makeAggregationTradeoff(performance model, quality model, list<key>, list<object>) → list<object>

Table 3: Selected functions from the DQBarge API

Load
Metrics

Critical
Path

Request ResponseTradeoff

Quality model

Performance model

Provenance

Data object

Critical path
Load metrics

MetersRequest object

Provenance

Data object

Critical path
Load metrics

Request object

Tradeoff

Figure 1: DQBarge overview.

to propagate the information. It modifies RPC objects
by adding additional fields that contain data to be prop-
agated along the causal path. It supports three object
scopes: request-level, component-level, and data-level.

Request-level data are passed through all components
involved in processing the request, following the causal
path of request execution; such data includes system-
wide load metrics, slack predictions, and a list of actual
data-quality tradeoffs made during execution of the par-
ticular request. Services call putMetric to add this data
to the request, specifying request as the scope and a
typed key-value pair to track. Later, they may retrieve
the data by calling getMetric with the specified key.
The services in our case studies both have a global object
containing a unique request identifier; DQBarge appends
request-level information to this object. This technique
for passing and propagating information is widely used
in other tracing systems that follow the causal path of
execution [13, 23].

Component-level objects persist from the beginning
to end of processing for a specific software component
within the request pipeline. Such objects are passed
to all sub-components that are called during the execu-
tion of the higher-level component. DQBarge appends
component-specific data to these objects, so such data
will be automatically deallocated when execution passes
beyond the specified component. Component-specific
load metrics are one example of such data. To add this
data, services call putMetric and specify a component-
level RPC object as the scope.

Data-level objects are the specific data items be-
ing propagated as a result of request execution.

addProvenance associates a typed key-value pair with
a specific data object, since the provenance is meaningful
only as long as the data object exists. A data object may
have multiple provenance values.

Our library provide a useful interface for manip-
ulating RPC objects, but developers must still make
domain-specific decisions, e.g., what metrics and prove-
nance values to add, what objects to associate with those
values, and what rules to use to model the propaga-
tion of provenance. For instance, to reflect the flow
of provenance in a component, developers should call
getProvenance to retrieve the provenance of the in-
puts and addProvenance and removeProvenance to
show causal propagation to outputs. Figure 1 shows an
overview of how this data propagates through the system.

Load metrics may be relevant to the entire request
or only to certain components. Each load metric is a
typed key-value pair (e.g., a floating point value asso-
ciated with the key “requests/second”). Currently sup-
ported load metrics are throughput, CPU load, and mem-
ory usage.

Critical path and slack predictions are specified as di-
rected acyclic graphs. Each software component in the
graph has a weight that corresponds to its predicted slack
(the amount of additional time it could take to process a
request without affecting the end-to-end latency of the
request). Components on the critical path of request ex-
ecution have zero slack. DQBarge relies on an external
component, the Mystery Machine, to make critical path
and slack predictions; [11] describes the details of that
system. Currently, slack predictions are made at request
ingress; such predictions may cover the entire request or

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 775

only specific components of the request. The graphs for
our two case studies in Section 4 are relatively small, so
we transmit this data by value along the request process-
ing path (using PutMetric and a graph type). If we were
to deploy DQBarge along the entire Facebook request
processing path, then the graphs would be much larger,
and we would likely need to transmit them by reference
or only send relevant subgraphs to components.

DQBarge associates provenance with the data objects
it describes. Provenance can be a data source or the al-
gorithm employed to generate a particular object. Prove-
nance is represented as an unordered collection of typed
key-value pairs. DQBarge supports both discrete and
continuous types. DQBarge extracts a schema for the
quality model from the data objects passed to tradeoff
functions such as makeAggregationTradeoff by it-
erating through all provenance entries attached to each
object to read the provenance keys and their associated
types. Components are treated as black boxes, so devel-
opers must specify how provenance is propagated when a
component modifies existing data objects or creates new
ones.

Finally, DQBarge stores the tradeoffs that were made
during request processing in a request-level object. As
described in Section 3.4, this information may be logged
and used for reporting the effect of tradeoffs on quality
and performance.

3.2 Model generation

For each potential tradeoff, DQBarge creates a perfor-
mance model and a quality model that capture how the
tradeoff affects request execution. Performance models
predict how throughput and latency are affected by spe-
cific data-quality tradeoffs as a factor of overall system
load and the provenance of input data. Quality models
capture how the fidelity of the final response is affected
by specific tradeoffs as a function of provenance.

DQBarge uses request duplication to generate models
from production traffic without adversely affecting the
user experience. At the RPC layer, it randomly samples
incoming requests from production traffic, and it routes
a copy of the selected requests to one or more request
duplication pipelines. Such pipelines execute isolated,
redundant copies of the request for which DQBarge can
make different data-quality tradeoffs. These pipelines do
not return results to the end user and they are prevented
from making modifications to persistent stores in the pro-
duction environment; in all other respects, request execu-
tion is identical to production systems. Many production
systems, including those at Facebook, already have sim-
ilar functionality for testing purposes, so adding support
for model generation required minimal code changes.

DQBarge controls the rate at which requests en-
ter the duplication pipeline by changing the sampling

frequency. At each potential tradeoff site, services
query DQBarge to determine which tradeoffs to make;
DQBarge uses these hooks to systematically explore dif-
ferent tradeoff combinations and generate models. For
instance, makeAggregationTradeoff specifies a point
where values can be omitted from an aggregation; this
function returns a list of values to omit (an empty list
means no tradeoff). DQBarge has similar functions for
each type of tradeoff identified in Section 2.

To generate a performance model, DQBarge uses load
testing [20, 24]. Each data-quality tradeoff offers multi-
ple fidelities. A default value may be used or not. Dif-
ferent types or percentages of values can be left out of an
aggregation. Multiple alternate data stores may be used.
For each fidelity, DQBarge starts with a low request rate
and increases the request rate until the latency exceeds a
threshold. Thus, the resulting model shows request pro-
cessing latency as a function of request rate and tradeoffs
made (i.e., the fidelity of the tradeoff selected). DQBarge
also records the provenance of the input data for making
the tradeoff; the distribution of provenance is represen-
tative of production traffic since the requests in the du-
plication pipeline are a random sampling of that traffic.
DQBarge determines whether the resulting latency distri-
bution varies as a result of the input provenance; if so, it
generates separate models for each provenance category.
However, in the systems we study in Section 4, prove-
nance does not have a statistically significant effect on
performance (though it does significantly affect quality).

Quality models capture how the fidelity of the final
response is affected by data-quality tradeoffs during re-
quest processing. To generate a quality model, DQBarge
sends each request to two duplication pipelines. The
first pipeline makes no tradeoffs, and so produces a full-
fidelity response. The second pipeline makes a speci-
fied tradeoff, and so produces a potentially lower-fidelity
response. DQBarge measures the quality impact of the
tradeoff by comparing the two responses and applying
a service-specific quality ranking specified by the devel-
oper. For example, if the output of the request is a ranked
list of Web pages, then a service-specific quality metric
might be the distance between where pages appear in the
two rankings.

DQBarge next learns a model of how provenance af-
fects request quality. As described in the previous sec-
tion, input data objects to the component making the
tradeoff are annotated with provenance in the form of
typed key-value pairs. These pairs are the features in the
quality model. DQBarge generates observations by mak-
ing tradeoffs for objects with different provenance; e.g.,
systematically using default values for different types of
objects. DQBarge uses multidimension linear regression
to model the importance of each provenance feature in
the quality of the request result. For example, if a data-

776 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

quality tradeoff omits values from an aggregation, then
omitting values from one data source may have less im-
pact than omitting values from a different source.

Provenance can substantially reduce the number of
observations needed to generate a quality model. Re-
call that all RPC data objects are annotated with prove-
nance; thus, the objects in the final request result have
provenance data. In many cases, the provenance rela-
tionship is direct; an output object depends only on a
specific input provenance. In such cases, we can infer
that the effect of a data-quality tradeoff would be to omit
the specified output object, replace it with a default value,
etc. Thus, given a specific output annotated with prove-
nance, we can infer what the quality would be if further
tradeoffs were made (e.g., a specific set of provenance
features were used to omit objects from an aggregation).
In such cases, the processing of one request can generate
many data points for the quality model. If the provenance
relationship is not direct, DQBarge generates these data
points by sampling more requests and making different
tradeoffs.

3.3 Using the models

DQBarge uses its performance and quality mod-
els to make better, more proactive data-quality trade-
offs. System operators specify a high-level goal such
as maximizing quality given a latency cap on re-
quest processing. Components call functions such as
makeAggregationTradeoff at each potential tradeoff
point during request processing; DQBarge returns a de-
cision as to whether a tradeoff should be made and, if ap-
propriate, what fidelity should be employed (e.g., which
data source to use or which values to leave out of an ag-
gregation). Services provide a reference to the perfor-
mance and quality models, as well as a list of load met-
rics (identified by key) and identifiers for objects with
provenance. The service then implements the tradeoff
decision proactively; i.e., it makes the tradeoff immedi-
ately. This design does not preclude reactive tradeoffs.
An unexpectedly delayed response may still lead to a
timeout and result in a data-quality tradeoff.

DQBarge currently supports three high-level goals:
maximizing quality subject to a latency constraint, max-
imizing quality using slack execution time available dur-
ing request processing, and maximizing utility as a func-
tion of quality and performance. These goals are use-
ful for mitigating load spikes, efficiently using spare re-
sources, and implementing dynamic capacity planning,
respectively. We next describe these three goals.

3.3.1 Load Spikes
Services are provisioned to handle peak request loads.

However, changes in usage or traffic are unpredictable;
e.g., the launch of a new feature may introduce additional
traffic. Thus, systems are designed to handle unexpected

load spikes; the reactive data-quality tradeoffs we saw in
Section 2 are one such mechanism. DQBarge improves
on existing practice by letting an operator specify a maxi-
mum latency for a request or a component of request pro-
cessing. It maximizes quality subject to this constraint by
making data-quality tradeoffs.

At each tradeoff site, there may be many potential
tradeoffs that can be made (e.g., sets of values with
different provenance may be left out of an aggrega-
tion or distinct alternate data stores may be queried).
DQBarge orders possible tradeoffs by “bang for the
buck” and greedily selects tradeoffs until the latency goal
is reached. It ranks each potential tradeoff by the ratio
of the projected improvement in latency (given by the
performance model) to the decrease in request fidelity
(given by the quality model). The independent param-
eters of the models are the current system load and the
provenance of the input data. DQBarge selects tradeoffs
in descending order of this ratio until the performance
model predicts that the latency limit will be met.
3.3.2 Utilizing spare resources

DQBarge obtains a prediction of which components
are on the critical path and which components have slack
available from the Mystery Machine [11]. If a compo-
nent has slack, DQBarge can make tradeoffs that improve
quality without negatively impacting the end-to-end re-
quest latency observed by the user. Similar to the previ-
ous scenario, DQBarge calculates the ratio of quality im-
provement to latency decrease for each potential tradeoff
(the difference is that this goal involves improving qual-
ity rather than performance). It greedily selects tradeoffs
according to this order until the additional latency would
exceed the projected slack time.
3.3.3 Dynamic capacity planning

DQBarge allows operators to specify the utility (e.g.,
the dollar value) of reducing latency and improving qual-
ity. It then selects the tradeoffs that improve utility until
no more such tradeoffs are available. DQBarge also al-
lows operators to specify the impact of adding or remov-
ing resources (e.g., compute nodes) as a utility function
parameter. DQBarge compares the value of the maxi-
mum utility function with more and less resources and
generates a callback if adding or removing resources
would improve the current utility. Such callbacks allow
dynamic re-provisioning. Since DQBarge uses multidi-
mension linear regression, it will not model significantly
non-linear relationships in quality or performance; more
sophisticated learning methods could be used in such
cases.

3.4 Logging data-quality decisions
DQBarge optionally logs all data-quality decisions

and includes them in the provenance of the request data
objects. The information logged includes the software

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 777

component, the point in the execution where a tradeoff
decision was made, and the specific decision that was
made (e.g., which values were left out of an aggrega-
tion). To reduce the amount of data that is logged, only
instances where a tradeoff was made are recorded. Time-
outs and error return codes are also logged if they re-
sult in a reactive data-quality tradeoff. This informa-
tion helps system administrators and developers under-
stand how low-level data-quality tradeoffs are affecting
the performance and quality of production request pro-
cessing.

3.5 Discussion

DQBarge does not guarantee an optimal solution
since it employs greedy algorithms to search through po-
tential tradeoffs. However, an optimal solution is likely
unnecessary given the inevitable noise that arises from
predicting traffic and from errors in modeling. For the
last use case, DQBarge assumes that developers can
quantify the impact of changes to service response times,
quality, and the utilization of additional resources in or-
der to set appropriate goals. DQBarge also assumes that
tradeoffs are independent, since calculating models over
joint distributions would be difficult. Finally, because
DQBarge compares quality across different executions
of the same request with different tradeoffs, it assumes
that request processing is mostly deterministic.

Using DQBarge requires a reasonably-detailed under-
standing of the service being modified. Developers must
identify points in the code where data-quality tradeoffs
should be made. They must specify what performance
and quality metrics are important to their service. Fi-
nally, they must select which provenance values to track
and specify how these values are propagated through
black-box components. For both of the case studies in
Section 4, a single developer who was initially unfa-
miliar with the service being modified was able to add
all needed modifications, and these modifications com-
prised less than 450 lines of code in each case.

DQBarge works best for large-scale services. Al-
though it generates models offline to reduce interference
with production traffic, model generation does consume
extra resources through duplication of request process-
ing. For large Internet services like Facebook, the ex-
tra resource usage is a tiny percentage of that consumed
by production traffic. However, for a small service that
sees only a few requests per minute, the extra resources
needed to generate the model may not be justified by the
improvement in production traffic processing.

4 Case studies

We have implemented the main components of
DQBarge in a portion of the Facebook request processing
pipeline, and we have evaluated the results using Face-

book production traffic. Our current Facebook imple-
mentation allows us to track provenance, generate per-
formance and quality models and measure the efficacy
of the data-quality tradeoffs available through these mod-
els. This implementation thus allows us to understand the
feasibility and potential benefit of applying these ideas to
current production code.

We have also implemented the complete DQBarge
system in Sirius [15], an open-source personal digital as-
sistant akin to Siri. Our Sirius implementation enables
end-to-end evaluation of DQBarge, such as observing
how data-quality tradeoffs can be used to react to traffic
spikes and the availability of slack in the request pipeline.

4.1 Facebook

Our implementation of DQBarge at Facebook focuses
on a page ranking service, which we will call Ranker in
this paper. When a user loads the Facebook home page,
Ranker uses various parameters of the request, such as
the identity of the requester, to generate a ranked list of
page recommendations. Ranker first generates candidate
recommendations. It has a flexible architecture that al-
lows the creation and use of multiple candidate genera-
tors; each generator is a specific algorithm for identify-
ing possible recommendations. At the time of our study,
there were over 30 generators that collectively produced
hundreds of possible recommendations for each request.

Ranker retrieves feature vectors for each candidate
from Laser, the key-value store we studied in Section 2.
Ranker is a service that makes reactive data-quality
tradeoffs. If an error or timeout occurs when retrieving
features, Ranker omits the candidate(s) associated with
those features from the aggregation of candidates and
features considered by the rest of the Ranker pipeline.

Ranker uses the features to calculate a score for each
candidate. The algorithm for calculating the score was
opaque to us (it is based on a machine learning model
regenerated daily). It then orders candidate by score and
returns the top N candidates.

DQBarge leverages existing tracing and monitoring
infrastructure at Facebook. It uses a production version
of the Mystery Machine tracing and performance analy-
sis infrastructure [11]. This tool discovers and reports
performance characteristics of the processing of Face-
book requests, including which components are on the
critical path. From this data, we can calculate the slack
available for each component of request processing; prior
results have shown that, given an observation of past re-
quests by the same user, slack for future requests can be
predicted with high accuracy. Existing Facebook sys-
tems monitor load at each component in the pipeline.

DQBarge annotates data passed along the pipeline
with provenance. The data object for each candidate
is annotated with the generator that produced the data.

778 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Similarly, features and other data retrieved for each can-
didate are associated with their data source.

We implemented meters at the end of the Ranker
pipeline that measure the latency and quality of the fi-
nal response. To measure quality, we compare the differ-
ence in ranking of the top N pages returned from the full-
quality response (with no data-quality tradeoffs made)
and the lower-fidelity response (that includes some trade-
offs). For example, if the highest-ranked page in the
lower-fidelity response is the third-ranked page in the
full-quality response, the quality drop is two.

4.2 Sirius

We also applied DQBarge to Sirius [15], an open-
source personal assistant similar to Apple’s Siri or
Google Now. Sirius answers fact-based questions based
on a set of configurable data sources. The default source
is an indexed Wikipedia database; an operator may add
other sources such as online search engines.

Sirius generates several queries from a question; each
query represents a unique method of parsing the ques-
tion. For each query, it generates a list of documents that
are relevant to answering the query. Each document is
passed through a natural language processing pipeline to
derive possible answers. Sirius assigns each answer a
numerical score and returns the top-ranked answer.

Data-quality tradeoffs in Sirius occur when aggre-
gating values from multiple sub-service queries. Our
DQBarge implementation makes these tradeoffs proac-
tively by using quality and performance models to decide
which documents to leave out of the aggregation when
the system is under load.

Initially, Sirius did not have request tracing or load
monitoring infrastructure. We therefore added the ability
to trace requests and predict slack by adding the Mystery
Machine to Sirius. For load, we added counters at each
pipeline stage to measure request rates. Additionally, we
track the CPU load and memory usage of the entire ser-
vice. The performance data, predicted slack, and load
information are all propagated by DQBarge as each re-
quest flows through the Sirius pipeline.

In each stage of the Sirius pipeline, provenance is
propagated along with data objects. For example, when
queries are formed from the original question, the algo-
rithm used to generate the query is associated with the
query object. Sirius provenance also includes the data
used to generate the list of candidate documents.

Since Sirius did not have a request duplication mech-
anism, we added the ability to sample requests and send
the same request through multiple instances of the Sir-
ius pipeline. User requests are read-only with respect to
Sirius data stores, so we did not have to isolate any mod-
ifications to service state from duplicated requests.

0 1000 2000 3000 4000 5000 6000 7000
Requests per minute

0

50

100

150

200

250

300

350

M
e
d
ia
n
 L
a
te
n
cy
 (
m
s)

0%

30%

50%

70%

90%

Figure 2: Ranker performance model This graph shows the
effect of varying the frequency of data-quality tradeoffs on
Ranker request latency. We varied the request rate by sampling
different percentages of live production traffic at Facebook.

5 Evaluation
Our evaluation answers the following questions:
• Do data-quality tradeoffs improve performance?
• How much does provenance improve tradeoffs?
• How much does proactivity improve tradeoffs?
• How well does DQBarge meet end-to-end perfor-

mance and quality goals?

5.1 Experimental setup

For Ranker, we perform our evaluation on Facebook
servers using live Facebook traffic by sampling and du-
plicating Ranker requests. Our entire implementation
uses duplicate pipelines, so as to not affect the results re-
turned to Facebook users. Each pipeline duplicates traf-
fic to a single isolated front-end server that is identical to
those used in production. The duplicate pipelines share
services from production back-end servers, e.g., those
hosting key-value stores, but they are a small percent-
age of the total load seen by such servers. We change
the load within a pipeline by sampling a larger or smaller
number of Ranker requests and redirecting the sampled
requests to a single front-end server for the pipeline.

For Sirius, we evaluated our end-to-end implementa-
tion of DQBarge on 16-core 3.1 GHz Xeon servers with
96 GB of memory. We send Sirius questions sampled
from an archive from previous TREC conferences [32].

5.2 Performance benefits

We first measure the effect of data-quality tradeoffs on
throughput and latency by generating performance mod-
els for Ranker and Sirius; Section 5.3 considers the ef-
fect of these tradeoffs on quality. DQBarge performs a
full parameter sweep through the dimensions of request
rate, tradeoff frequency, and provenance of the data be-
ing considered for each tradeoff, sampling at regular in-
tervals. For brevity, we report a portion of these results.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 779

0 50 100 150 200
Requests per minute

0

1

2

3

4

5

6

7
M
e
d
ia
n
 l
a
te
n
cy
 (
s)

0%

10%

30%

50%

70%

90%

Figure 3: Sirius performance model. This graph shows the
effect of varying the frequency of data-quality tradeoffs on Sir-
ius request latency. Each curve shows a different tradeoff rate.

We show the median response time calculated over the
sampling period at a specified request rate and tradeoff
rate. For Sirius, 900 requests were sent over the sam-
pling period. Median response time is shown because it
is used for the remainder of the evaluation.

5.2.1 Ranker

Figure 2 shows the latency-response curve for Ranker
when DQBarge varies the incoming request rate. Each
curve shows the best fit for samples taken at a different
tradeoff rate, which we define to be the object-level fre-
quency at which data tradeoffs are actually made. When
making tradeoffs, Ranker omits objects from aggrega-
tions; thus, to achieve a target tradeoff rate of x% during
model generation, DQBarge will instruct Ranker to drop
x% of the specific candidates. At a tradeoff rate of 0%,
no candidates are dropped.

These results show that data-quality tradeoffs substan-
tially improve Ranker latency at low loads (less than
2500 requests/minute); e.g., at a 30% tradeoff rate, me-
dian latency decreases by 28% and latency of requests
in the 99th percentile decreases by 30%. Prior work
has shown that server slack at Facebook is predictable
on a per-request basis [11]. Thus, Ranker could make
more tradeoffs to reduce end-to-end response time when
Ranker is on the critical path of request processing, yet
it could still provide full-fidelity responses when it has
slack time for further processing.

Data-quality tradeoffs also improve scalability under
load. Taking 250 ms as a reasonable knee in the latency-
response curve, Ranker can process approximately 2500
requests per minute without making tradeoffs, but it can
handle 4300 requests per minute when the tradeoff rate
is 50% (a 72% increase). This allows Ranker to run at a
lower fidelity during a load spike.

DQBarge found that the provenance of the data values
selected for tradeoffs does not significantly affect perfor-

mance. In other words, while the number of tradeoffs
made has the effect shown in Figure 2, the specific can-
didates that are proactively omitted from an aggregation
do not matter. Thus, we only show the effect of the re-
quest rate and tradeoff rate.
5.2.2 Sirius

Figure 3 shows results for Sirius. Like Ranker, the
provenance of the data items selected for tradeoffs did
not affect performance, so we show latency-response
curves that vary both request rate and tradeoff rate.

The results for Sirius are similar to those for Ranker.
A tradeoff rate of 50% reduces median end-to-end re-
quest latency by 26% and the latency of requests in the
99th percentile by 38%. Under load, a 50% tradeoff rate
increases Sirius throughput by approximately 200%.

5.3 Effect of provenance
We next consider how much provenance improves the

tradeoffs made by DQBarge. We consider a baseline
quality model that does not take into account any prove-
nance; e.g., given a target tradeoff rate, it randomly omits
data values from an aggregation. This is essentially the
policy in existing systems like Ranker and Sirius because
there is no inherent order in requests from lower-level
services to data stores; thus, timeouts affect a random
sampling of the values returned. In contrast, DQBarge
uses its quality model to select which values to omit, with
the objective of choosing those that affect the final output
the least.
5.3.1 Ranker

We first used DQBarge to sample production traffic
at Facebook and construct a quality model for Ranker.
DQBarge determined that, by far, the most important
provenance parameter affecting quality is the generator
used to produce a candidate. For example, one particular
generator produces approximately 17% of the top-ranked
pages but only 1% of the candidates. Another generator
produces only 1% of the top-ranked pages but accounts
for 3% of the candidates.

Figure 4 compares the quality of request results for
DQBarge with a baseline that makes tradeoffs without
using provenance. We sample live Facebook traffic, so
the requests in this experiment are different from those
used to generate the quality model. We vary the tradeoff
rate and measure the quality drop of the top ranked page;
this is the difference between where the page appears in
the request that makes a data-quality tradeoff and where
it would appear if no data-quality tradeoffs were made.
The ideal quality drop is zero. While Sirius returns a sin-
gle result, Ranker may return up to 3 results. We exam-
ined quality drops for the second and third Ranker results
and found that they are similar to that of the top-ranked
result; thus, we only show the top-ranked result for both
services.

780 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0
Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

11%
5% 4% 2%

6%
1% 1% 1%

Baseline
Provenance

(a) Tradeoff rate 10%

>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

43%

25%
17%

9%

33%

11%
3% 2%

Baseline
Provenance

(b) Tradeoff rate 50%

>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

62%

47%

28%

12%

59%

37%

15%

6%

Baseline
Provenance

(c) Tradeoff rate 80%
Figure 4: Impact of provenance on Ranker quality. We compare response quality using provenance with a baseline that does not
consider provenance. Each graph shows the quality drop of the top ranked page, which is the difference between where it appears
in the Ranker rankings with and without data-quality tradeoffs. A quality drop of 0 is ideal.

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

13%
6% 3% 0%

7%
1% 0% 0%

Baseline

Provenance

(a) Tradeoff rate 10%

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

46%

25%
19%

0%

23%

8% 4%
0%

Baseline

Provenance

(b) Tradeoff rate 50%

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s 73%

45%

29%

0%

48%

15%
9%

0%

Baseline

Provenance

(c) Tradeoff rate 80%
Figure 5: Impact of provenance on Sirius quality. We compare response quality using provenance with a baseline that does not
consider provenance. Each graph shows the quality drop of the Sirius answer, which is the difference between where it appears in
the Sirius rankings with and without data-quality tradeoffs. A quality drop of 0 is ideal.

As shown in Figure 4a, at a low tradeoff rate of 10%,
using provenance reduces the percentage of requests that
experience any quality drop at all from 11% to 6%. With
provenance, only 1% of requests experienced a quality
drop of more than three, compared to 5% without prove-
nance. Figure 4b shows a higher tradeoff rate of 50%.
Using provenance decreases the percentage of requests
that experience any quality drop at all from 43% to 33%.
Only 3% of requests experienced a quality drop of 10 or
more, compared to a baseline result of 17%. Figure 4c
compares quality at a high tradeoff rate of 80%. Use of
provenance still provides a modest benefit: 59% of re-
quests experience a quality drop, compared to 62% for
the baseline. Further, with provenance, the quality drop
is 10 or more for only 15% of requests compared with
28% for the baseline.

5.3.2 Sirius

For Sirius, we used k-fold cross validation to sepa-
rate our benchmark set of questions into training and test
data. The training data was used to generate a quality
model based on provenance features, which included the
language parsing algorithm used, the number of occur-
rences of key words derived from the question, the length

of the data source document considered, and a weighted
score relating the query words to the source document.

Figure 5 compares the quality drop for the result re-
turned by Sirius for DQBarge using provenance with a
baseline that does not use provenance. As shown in Fig-
ure 5a, at a tradeoff rate of 10%, provenance decreases
the percentage of requests that see any quality drop at
all from 13% to 7%. Only 1% of requests see a qual-
ity drop of 10 or more using provenance, compared to
6% for the basline. Figure 5b shows that, for a higher
tradeoff rate of 50%, provenance decreases the percent-
age of requests that see any quality drop from 46% to
23%. Further, only 8% of requests see a quality drop of
10 or more using provenance, compared to 25% for the
baseline. Figure 5c shows a tradeoff rate of 80%; prove-
nance decreases the percentage of requests that see any
quality drop from 73% to 48%.

5.4 Effect of proactivity

We next examine how proactivity affects data-quality
tradeoffs. In this experiment, we send requests to Sir-
ius at a high rate of 120 requests per minute. Without
DQBarge, this rate occasionally triggers a 1.5 second
timeout for retrieving documents, causing some docu-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 781

0 5000 10000 15000 20000 25000 30000
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
cd

f

Reactive

Proactive

Figure 6: Performance of reactive tradeoffs. This graph
compares the distribution of request latencies for Sirius when
tradeoffs are made reactively via timeouts and when they are
made proactively via DQBarge.

>0 >10 >50
Quality drop

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

20%
18%

15%

0%

19%

6%
4%

0%

Reactive

Proactive

Figure 7: This graph shows that using proactive tradeoffs at a
tradeoff rate of 40% can achieve higher quality tradeoffs than
using reactive tradeoffs with a timeout of 1.5 s in Sirius.

ments to be left out of the aggregation. These trade-
offs are reactive in that they occur only after a timeout
expires. In contrast, with DQBarge, tradeoffs are made
proactively at a rate of 40%, a value selected to meet the
latency goal of not exceeding the mean latency without
DQBarge.

Figure 6 shows request latency as a CDF for both the
reactive and proactive methods of making data-quality
tradeoffs and Figure 7 shows the quality drop for both
methods. The results show that DQBarge proactivity
simultaneously improves both performance and quality
when making tradeoffs. Comparing the two distributions
in Figure 6 shows that DQBarge improves performance
across the board; e.g., the median request latency is 3.4
seconds for proactive tradeoffs and 3.6 seconds for reac-
tive tradeoffs. For quality, DQBarge proactivity slightly
decreases the number of requests that have any quality
drop from 20% to 19%. More significantly, it reduces
the number of requests that have a quality drop of more
than 10 from 18% to 6%.

Under high loads, reactive tradeoffs hurt performance
because they waste resources (e.g., trying to retrieve doc-
uments that are not used in the aggregation). Further,
their impact on quality is greater than with DQBarge be-

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
v
e
ra
g
e
 l
a
te
n
cy

 (
se

c)

Sirius w/o DQBarge

Sirius with DQBarge

Figure 8: DQBarge Overhead. This graph compares time to
process 140 Sirius questions with and without DQBarge; error
bars are 95% confidence intervals.

0 50 100 150 200 250 300 350 400
Elasped Time (s)

0

5

10

15

20

25

30

35

M
e
d
ia
n
 L
a
te
n
cy
 (
s)

Without DQBarge

With DQBarge

Figure 9: Response to a load spike. DQBarge makes data-
quality tradeoffs to meet a median latency goal of 6 seconds.

cause timeouts affect a random sampling of the values re-
turned, whereas proactive tradeoffs omit retrieving those
documents that are least likely to impact the reply.

5.5 Overhead

We measured the online overhead of DQBarge by
comparing the mean latency of a set of 140 Sirius re-
quests with and without DQBarge. Figure 8 shows that
DQBarge added a 1.6% latency overhead; the difference
is within the experimental error of the measurements.

DQBarge incurs additional space overhead in mes-
sage payloads for propagating load metrics, critical path
and slack predictions, and provenance features. For Sir-
ius, DQBarge adds up to 176 bytes per request for data
such as load metrics and slack predictions. Tracking
provenance appends an extra 32 bytes per object; on
average, this added 14% more bytes per provenance-
annotated object.

5.6 End-to-end case studies

We next evaluate DQBarge with three end-to-end case
studies on our Sirius testbed.
5.6.1 Load spikes

In this scenario, we introduce a load spike to see if
DQBarge can maintain end-to-end latency and through-
put goals by making data-quality tradeoffs. We set a
target median response rate of 6 seconds. Normally,
Sirius receives 50 requests/minute, but it experiences
a two-minute load spike of 150 requests/minute in the

782 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

>0 >10 >50
Quality Drop

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Fr
a
ct
io
n
 o
f
re
q
u
e
st
s

38%

15%

9%

0%

22%

8%
5%

0%

Without spare resources

With spare resources

Figure 10: Quality improvement using spare resources.
DQBarge uses slack in request pipeline stages to improve re-
sponse quality.

middle of the experiment. Figure 9 shows that without
DQBarge, the end-to-end latency increases significantly
due to the load spike. The median latency within the load
spike region averages 25.2 seconds across 5 trials.

In comparison, DQBarge keeps median request la-
tency below the 6 second goal throughout the experi-
ment. Across 5 runs, the median end-to-end latency dur-
ing the spike region is 5.4 seconds. In order to meet the
desired latency goal, DQBarge generally selects a trade-
off rate of 50%, resulting in a mean quality drop of 6.7.

5.6.2 Utilizing spare resources
Next, DQBarge tries to use spare capacity and slack in

the request processing pipeline to increase quality with-
out affecting end-to-end latency. Sirius is configured
to use both its default Wikipedia database and the Bing
Search API [6] to answer queries. Each source has a sep-
arate pipeline that executes in parallel before results from
all sources are compared at the end. The Bing pipeline
tends to take longer than the default pipeline, so slack
typically exists in the default pipeline stages.

As described in Section 4.2, DQBarge predicts the
critical path for each request and the slack for pipeline
stages not on the critical path. If DQBarge predicts there
is slack available for a processing pipeline, it reduces the
tradeoff frequency to increase quality until the predicted
added latency would exceed the predicted slack. To give
DQBarge room to increase quality, we set the default
tradeoff rate to 50% for this experiment; note that this
simply represents a specific choice between quality and
latency made by the operator of the system.

Figure 10 shows that DQBarge increases quality for
this experiment by using spare resources; the percent-
age of requests that exprience any quality drop decreases
from 38% to 22% (as compared to a full-fidelity response
with no data-quality tradeoffs). Figure 11 shows a CDF
of request response times; because the extra processing
occurs off the critical path, the end-to-end request latency
is unchanged when DQBarge attempts to employ only
spare resources to increase quality.

0 2000 4000 6000 8000 10000 12000
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Without utilizing spare resources
With utilizing spare resources

Figure 11: Performance impact of using spare resources.
When DQBarge uses slack in request pipeline stages, it does
not impact end-to-end latency.

0 1 2 3 4 5 6 7
Latency

0

20

40

60

80

100

U
ti
lit
y

Latency

0 20 40 60 80 100
Tradeoff Rate

0

50

100

150

200

U
ti
lit
y

Quality

Figure 12: Utility parameters for dynamic capacity plan-
ning. These values are added together to calculate final utility.

5.6.3 Dynamic capacity planning
Finally, we show how DQBarge can be used in dy-

namic capacity planning. We specify a utility function
that provides a dollar value for reducing latency, im-
proving quality, and provisioning additional servers. The
utility of latency and quality are shown in Figure 12.
DQBarge makes data-quality tradeoffs that maximize the
utility function at the incoming request rate.

In this scenario, we examine the benefit of using
DQBarge to decide when to provision additional re-
sources. We compare DQBarge with dynamic capac-
ity planning against DQBarge without dynamic capacity
planning. Figure 13 shows the total utility of the sys-
tem over time. When the request rate increases to 160
requests per minute, DQBarge reports that provisioning
another server would provide a net positive utility. Using
this server increases utility by an average of 58% com-
pared to a system without dynamic capacity planning.

DQBarge is also able to reduce the number of servers
in use. Figure 13 shows that when the request rate sub-
sides, DQBarge reports that taking away a server max-
imizes utility. In other words, the request rate is low
enough that using only one server maximizes utility.

6 Related work
Although there is an extremely rich history of quality-

of-service tradeoffs [7, 25, 29] and approximate comput-
ing [4, 8, 19, 18, 28, 30] in software systems, our work
focuses specifically on using the causal propagation of
request information and data provenance to make better

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 783

0 50 100 150 200
Elapsed Time (s)

0

5000

10000

15000

20000

25000

30000

35000
U
ti
lit
y

Without dynamic provisioning

With dynamic provisioning

0 50 100 150 200
Elasped Time (s)

0

50

100

150

200

R
e
q
u
e
st
s
p
e
r
m
in
u
te

Figure 13: Benefit of dynamic capacity planning. With dy-
namic capacity planning, DQBarge improves utility by provi-
sioning an additional server. When it is no longer needed, it
removes the additional server.

data-quality tradeoffs in low-level software components.
Our study revealed the need for such an approach: ex-
isting Facebook services make mostly reactive tradeoffs
that are suboptimal due to limited information. Our eval-
uation of DQBarge showed that causal propagation can
substantially improve both request performance and re-
sponse quality.

Many systems have used causal propagation of in-
formation through distributed systems to trace related
events [5, 9, 10, 13, 23, 26, 27, 31]. For example,
Pivot Tracing [23] propagates generic key-value meta-
data, called baggage, along the causal path of request
processing. DQBarge uses a similar approach to prop-
agate specific data such as provenance, critical path pre-
dictions, and load metrics.

DQBarge focuses on data-quality tradeoffs in Inter-
net service pipelines. Approximate Query Processing
systems trade accuracy for performance during analytic
queries over large data sets [1, 2, 3, 17, 22]. These sys-
tems use different methods to sample data and return a
representative answer within a time bound. BlinkDB [2]
uses an error-latency profile to make tradeoffs during
query processing. Similarly, ApproxHadoop [14] uses
input data sampling, task dropping, and user-defined ap-
proximation to sample the number of inputs and bound
errors introduced from approximation. These techniques
are similar to DQBarge’s performance and quality mod-
els, and DQBarge could potentially leverage quality data
from ApproxHadoop in lieu of generating its own model.

LazyBase [12] is a NoSQL database that supports
trading off data freshness for performance in data ana-
lytic queries. It is able to provide faster read queries
to stale-but-consistent versions of the data by omitting
newer updates. It batches and pipelines updates so that
intermediate values of data freshness can be queried.
Similar to how LazyBase uses data freshness to make

a tradeoff, DQBarge uses its quality model to determine
the best tradeoff that minimizes the effect on the quality.

Some Internet services have been adapted to provide
partial responses after a latency deadline [16, 21, 22].
They rely on timeouts to make tradeoffs, whereas the
tradeoffs DQBarge makes are proactive. PowerDial [19]
adds knobs to server applications to trade performance
for energy. These systems do not employ provenance to
make better tradeoffs.

7 Conclusion

In this paper, we showed that data-quality tradeoffs
are prevalent in Internet service pipelines through a sur-
vey of existing software at Facebook. We found that
such tradeoffs are often suboptimal because they are re-
active and because they fail to consider global informa-
tion. DQBarge enables better tradeoffs by propagating
data along the causal path of request processing and gen-
erating models of performance and quality for potential
tradeoffs. Our evaluation shows that this improves re-
sponses to load spikes, utilization of spare resources, and
dynamic capacity planning.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Rebecca Isaacs, for their thoughtful comments. We also
thank Qi Hu and Jason Brewer for their help with the
Facebook infrastructure. This work has been supported
by the National Science Foundation under grant CNS-
1421441. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath
Poosala, and Sridhar Ramaswamy. The aqua ap-
proximate query answering system. In Proceedings
of the 1999 ACM SIGMOD International Confer-
ence on Management of Data, 1999.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda,
Henry Milner, Samuel Madden, and Ion Stoica.
Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings
of the 8th ACM European Conference on Computer
Systems, 2013.

[3] Brian Babcock, Surajit Chaudhuri, and Gautam
Das. Dynamic sample selection for approximate
query processing. In Proceedings of the 2003
ACM SIGMOD International Conference on Man-
agement of Data, 2003.

784 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[4] Woongki Baek and Trishul M. Chilimbi. Green:
A framework for supporting energy-conscious pro-
gramming using controlled approximation. In Pro-
ceedings of the ACM SIGPLAN 2010 Conference
on Programming Language Design and Implemen-
tation, 2010.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs,
and Richard Mortier. Using Magpie for request
extraction and workload modelling. In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation, pages 259–272, San
Francisco, CA, December 2004.

[6] https://datamarket.azure.com/dataset/

bing/search.

[7] Josep M. Blanquer, Antoni Batchelli, Klaus
Schauser, and Rich Wolski. Quorum: Flexible
quality of service for internet services. Proceedings
of the 2nd USENIX Symposium on Networked
Systems Design and Implementation, 2005.

[8] Michael Carbin, Deokhwan Kim, Sasa Misailovic,
and Martin C. Rinard. Proving acceptablility prop-
erties of relaxed nondeterministic approximate pro-
grams. In Proceedings of the ACM SIGPLAN 2012
Conference on Programming Language Design and
Implementation.

[9] Anupam Chanda, Alan L. Cox, and Willy
Zwanepoel. Whodunit: Transactional profiling for
multi-tier applications. In Proceedings of the 2nd
ACM European Conference on Computer Systems,
Lisboa, Portugal, March 2007.

[10] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Ar-
mando Fox, and Eric Brewer. Pinpoint: Prob-
lem determination in large, dynamic Internet ser-
vices. In Proceedings of the 32nd Annual IEEE/I-
FIP International Conference on Dependable Sys-
tems and Networks, pages 595–604, Bethesda, MD,
June 2002.

[11] Michael Chow, David Meisner, Jason Flinn, Daniel
Peek, and Thomas F. Wenisch. The Mystery Ma-
chine: End-to-end performance analysis of large-
scale internet services. In Proceedings of the 11th
Symposium on Operating Systems Design and Im-
plementation, October 2014.

[12] James Cipar, Greg Ganger, Kimberly Keeton,
Charles B. Morrey III, Craig A.N. Soules, and Al-
istair Veitch. Lazybase: Trading freshness for per-
formance in a scalable database. In Proceedings
of the 7th ACM European Conference on Computer
Systems.

[13] Rodrigo Fonseca, George Porter, Randy H. Katz,
Scott Shenker, and Ion Stoica. X-trace: A perva-
sive network tracing framework. In Proceedings of
the 4th USENIX Symposium on Networked Systems
Design and Implementation, pages 271–284, Cam-
bridge, MA, April 2007.

[14] Inigo Goiri, Ricardo Bianchini, Santosh Na-
garakatte, and Thu D. Nguyen. Approxhadoop:
Bringing approximations to mapreduce frame-
works. In Proceedings of the 20th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, Istanbul,
Turkey, March 2015.

[15] Johann Hauswald, Michael A. Laurenzano, Yunqi
Zhang, Cheng Li, Austin Rovinski, Arjun Khurana,
Ron Dreslinski, Trevor Mudge, Vinicius Petrucci,
Lingjia Tang, and Jason Mars. Sirius: An open
end-to-end voice and vision personal assistant and
its implications for future warehouse scale comput-
ers. In Proceedings of the 20th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, 2015.

[16] Yuxiong He, Sameh Elnikety, James Larus, and
Chenyu Yan. Zeta: Scheduling interactive ser-
vices with partial execution. In Proceedings of
the Third ACM Symposium on Cloud Computing
(SOCC ’12), 2012.

[17] Joseph M. Hellerstein, Peter J. Haas, and Helen J.
Wang. Online aggregation. In Proceedings of the
1997 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’97, 1997.

[18] Henry Hoffmann. Jouleguard: Energy guarantees
for approximate applications. In Proceedings of the
25th ACM Symposium on Operating Systems Prin-
ciples, 2015.

[19] Henry Hoffmann, Stelios Sidiroglou, Michael
Carbin, Sasa Misailovic, Anant Agarwal, and Mar-
tin Rinard. Dynamic knobs for responsive power-
aware computing. In Proceedings of the 16th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
Newport Beach, California, March 2011.

[20] Raj Jain. The Art of Computer Systems Perfor-
mance Analysis: Techniques for Experimental De-
sign, Measurement, Simulation, and Modeling. Wi-
ley, 1991.

[21] Virajith Jalaparti, Peter Bodik, Srikanth Kandula,
Ishai Menache, Mikhail Rybalkin, and Chenyu
Yan. Speeding up distributed request-response

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 785

workflows. In Proceedings of the Symposium on
Communications Architectures and Protocols (SIG-
COMM ’13), 2013.

[22] Gautam Kumar, Ganesh Ananthanarayanan, Sylvia
Ratnasamy, and Ion Stoica. Hold ’em or fold ’em?
aggregation queries under performance variations.
In Proceedings of the 11th ACM European Confer-
ence on Computer Systems, 2016.

[23] Jonathan Mace, Ryan Roelke, and Rodrigo Fon-
seca. Pivot tracing: Dynamic causal monitoring
for distributed systems. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles,
2015.

[24] Justin Meza, Dmitri Perelman, Wonho Kim, So-
nia Margulis, Daniel Peek, Kaushik Veeraraghavan,
and Yee Jiun Song. Kraken: A framework for iden-
tifying and alleviating resource utilization bottle-
necks in large scale web services. In Proceedings
of the 12th Symposium on Operating Systems De-
sign and Implementation, Savannah, GA, Novem-
ber 2016.

[25] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, J. Eric Tilton, Jason Flinn, and
Kevin R. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages
276–287, Saint-Malo, France, October 1997.

[26] Lenin Ravindranath, Jitendra Padjye, Sharad
Agrawal, Ratul Mahajan, Ian Obermiller, and
Shahin Shayandeh. AppInsight: Mobile app per-
formance monitoring in the wild. In Proceedings
of the 10th Symposium on Operating Systems De-
sign and Implementation, Hollywood, CA, October
2012.

[27] Lenin Ravindranath, Jitendra Pahye, Ratul Maha-
jan, and Hari Balakrishnan. Timecard: Controlling
user-perceived delays in server-based mobile appli-
cations. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles, Farmington,
PA, October 2013.

[28] Adrian Sampson, Werner Dietl, Emily Fortuna,
Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. Enerj: Approximate data types for safe
and general low-power consumption. In Proceed-
ings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementa-
tion, 2011.

[29] Kai Shen, Hong Tang, Tao Yang, and Lingkun Chu.
Integrated resource management for cluster-based

internet services. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implemen-
tation, Boston, Massachusetts, December 2002.

[30] Stelios Sidiroglou, Sasa Misailovic, Henry Hoff-
mann, and Martin Ricard. Managing performance
vs accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foun-
dations of Software Engineering, 2011.

[31] Benjamin H. Sigelman, Luiz Andr Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald
Beaver, Saul Jaspan, and Chandan Shanbhag. Dap-
per, a large-scale distributed systems tracing infras-
tructure. Technical report, Google, Inc., 2010.

[32] http://trec.nist.gov/.

[33] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. Hive –
a warehousing solution over a map-reduce frame-
work. In 35th International Conference on Very
Large Data Bases (VLDB), Lyon, France, August
2009.

786 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	osdi16-sigurbjarnarson
	Introduction
	Overview
	Specification
	Implementation
	Verification
	Optimizations and compilation
	Summary

	The Yggdrasil architecture
	Reasoning about systems with crashes
	The verifier
	The counterexample visualizer
	The optimizer

	The Yxv6 file system
	Design overview
	Stacking layers of abstraction
	Refining disk layouts
	Refining crash consistency models
	Summary of design trade-offs

	Beyond file systems
	Discussion
	Implementation
	Evaluation
	Related work
	Conclusion

	osdi16-woude
	Introduction
	Background
	Prediction vs. Resilience
	Memory Volatility

	Design
	Idempotent Sections
	Implicit Idempotency Violations
	Checkpoints
	Recovery
	Challenges
	Optimizations
	Interprocedural Idempotency Violations
	Redundant Checkpoints
	Special Purpose Registers

	Architecture Specific Tradeoffs

	Implementation
	Compiler
	Energy Harvesting Simulator
	Idempotent Libraries

	Evaluation
	Performance
	Correctness
	Impact of Compiler Optimizations
	Code size increase from Ratchet

	Discussion
	Output Commit Problem
	Hand-Written Assembly
	Ensuring Completion

	Related Work
	Rollback Recovery
	Intermittently Powered Computing
	Hardware-assisted Checkpointing
	Software-only Checkpointing

	Idempotence

	Conclusion

	osdi16-kaestle
	Introduction
	Motivation and background
	The move to message passing
	Communication in multicores
	Group communication primitives
	Common tree topologies

	Design
	Modelling broadcasts on multicore
	Populating the machine model
	Tree generation: adaptive tree
	Base algorithm
	Incremental optimization

	Finding the optimal solution

	Implementation
	Transport layer
	Collective layer
	Concepts
	Collective operations

	Evaluation
	Message passing tree topologies
	Multicast topologies
	Comparison with MPI and OpenMP
	Barriers micro-benchmarks
	Streamcluster
	Agreement
	Key-value store

	Conclusion
	Future work

	osdi16-litton
	osdi16-grandl
	Introduction
	Motivation
	Illustration of Altruism
	Opportunities in Analytics DAGs

	Altruistic Multi-Resource Scheduling
	Problem Statement
	Complexity and Desirable Properties
	Offline Altruistic Scheduling
	Solution Approach
	Increasing Leftover via Inter-Job Scheduling
	Determining Leftover for Individual Jobs
	Redistribution via Leftover Scheduling
	Properties of the Offline Scheduler

	From Offline to Online
	Analysis of Online Altruistic Scheduling
	Bounding Altruism

	Discussion

	Design Details
	Enabling Altruism in Clusters Schedulers
	Carbyne System
	Demand Estimation

	Evaluation
	Experimental Setup
	Carbyne in Testbed Experiments
	Performance vs. Efficiency vs. Fairness
	JCT Improvements Across Entire Workloads
	Sources of Improvements
	Scheduling Overheads

	Performance in Trace-Driven Simulations
	Benchmarks' Performance in Simulations
	Large-Scale Simulation on Production Trace

	Sensitivity Analysis
	Impact of Contention
	Impact of Misestimations
	Impact of Altruism Levels

	Impact of a Better DAG Scheduler
	Comparison To Multi-Objective Schedulers

	Related Work
	Conclusion

	osdi16-grandl1
	osdi16-gog
	osdi16-jyothi
	osdi16-lu
	Introduction
	Background
	The SNOW Properties
	Strict Serializability
	Non-Blocking Operations
	One Response Per Read
	Write Transactions that Conflict

	The SNOW Theorem
	Models, Definitions, and Assumptions
	SNOW is Impossible
	Tightness and SNOW-Optimality
	Spectrums of Properties

	Read-Only Transaction Designs
	Exploring Improvements with SNOW
	Common Insight for Optimal Reads
	COPS-SNOW Design
	Rococo-SNOW Design

	Evaluation
	COPS-SNOW
	Rococo-SNOW

	Related Work
	Conclusion

	osdi16-alagappan
	osdi16-guerraoui
	Introduction
	Overview & Related Work
	Consistency Choices
	ICG: Incremental Consistency Guarantees
	Client-side Handling of ICG

	Correctables
	From Promises to Correctables
	Decoupling Semantics from Implementation

	Correctables in Action
	Decoupling Applications from Storage
	Speculating with Correctables
	Exploiting Application Semantics
	Exposing Data Incrementally
	Discussion: Applicability of ICG

	Bindings
	Binding API
	Efficiency and Server-side Support

	Evaluation
	Methodology
	Potential for Exploiting ICG
	Potential for Exploiting ICG in Cassandra
	Potential for Exploiting ICG in ZooKeeper

	Case Studies for Exploiting ICG
	Speculation Case Studies
	Selling Tickets to Events

	Conclusions

	osdi16-kalia
	osdi16-panda
	Introduction
	Background and Motivation
	Building NFs
	Running NFs

	Design
	Programming Abstractions
	Execution Environment

	Implementation
	Two Example NFs
	Operator Interface
	Implementation of Abstractions
	Execution Environment

	Evaluation
	Setup
	Building NFs
	Framework Overheads
	Generality of Programming Abstractions

	Execution Environment
	Cost of Isolation: Single NF
	Cost of Isolation: NF Chains

	Related Work
	Conclusion
	Acknowledgment

	osdi16-fayaz
	osdi16-tammana
	Introduction
	PathDump Overview
	PathDump Interface
	PathDump Design Overview
	Example applications
	Reducing debugging space

	PathDump Implementation
	Tracing packet trajectory
	Server stack
	PathDump controller

	Applications
	Path conformance check
	Load imbalance diagnosis
	Silent random packet drops
	Blackhole diagnosis
	Routing loop debugging
	TCP performance anomaly diagnosis

	System Evaluation
	Experimental setup
	Query performance
	Overheads

	Related Work
	Conclusion

	osdi16-gao
	osdi16-abadi
	osdi16-zhang
	Introduction
	Motivation and Background
	Programming Model
	Data
	3D Partitioning
	Computation
	Bipartite Graph
	Compare with GAS
	Examples

	Cube
	Graph Loading and Partitioning
	Update
	Push, Pull, Sink
	Matrix-based data structure

	Evaluation
	Evaluation setup
	Micro Benchmarks
	SpMM
	SumV
	SumE
	Summary

	Real Applications
	Implementation
	Execution Time
	Communication Cost

	Scalability
	Memory Consumption
	Partitioning Time
	Discussion

	Other Related Work
	Conclusion
	Acknowledgments

	osdi16-zhu
	osdi16-shi
	Introduction
	Background
	RDF and SPARQL
	Existing Solutions
	RDMA and Its Characteristics

	Overview
	Graph-based RDF Data Modeling
	Graph Model and Indexes
	Differentiated Graph Partitioning
	RDMA-friendly Predicate-based Store

	Query Processing
	Basic Query Processing
	Full-history Pruning
	Migrating Execution or Data
	Concurrent Query Processing

	Implementation
	Evaluation
	Experimental Setup
	Single Query Performance
	Factor Analysis of Improvement
	Scalability
	Throughput of Mixed Workloads
	Memory Consumption
	Other Datasets

	Related Work
	Conclusion
	Acknowledgments

	osdi16-porter
	Introduction
	Approach
	Dana: An implementation platform for runtime adaptive micro-variation
	Fusing third-party system composition with first-party instantiation
	A protocol for seamless runtime adaptation
	Structuring for discoverable code
	Interface to higher system layers

	Perception, Assembly and Learning
	Assembly
	Perception
	Learning
	Interface to higher system layers

	Linear bandits for rapid emergence
	Problem definition
	The Multi-armed Bandit Formulation
	Forming beliefs
	Implementation
	Handling deployment environment changes

	Experimental Evaluation
	Adaptation characteristics
	Manual analysis of divergent optimality
	Learning evaluation

	Related Work
	Conclusion

	osdi16-nguyen
	osdi16-williams-king
	Introduction
	Background and Threat Model
	Threat Model

	Design
	Goals
	Architecture
	Challenges

	Implementation
	Transformations to Support Shuffling
	Completeness of Disassembly
	Bootstrapping and Requirements
	Full Shuffling Requirements

	Implementation Optimizations

	Performance Evaluation
	SPEC CPU2006 Overhead
	Static overhead on SPEC CPU

	Nginx Overhead
	Other Macro Benchmarks
	Memory Overhead
	TASR Performance Comparison

	Security Analysis
	Analysis of Traditional Attacks
	Shuffler-specific Attacks
	Case Studies

	Discussion and Future Work
	Conclusion
	Acknowledgements

	osdi16-lion
	osdi16-rashmi
	osdi16-curtis-maury
	osdi16-viswanathan
	Introduction
	Background and Motivation
	Geo-Distributed Analytics
	Illustrative Examples for Drawbacks of Current GDA Query Processing

	Clarinet's Design
	Single Query WAN-Awareness
	Assigning Locations to Tasks in a QEP
	Scheduling tasks in a QEP

	Multiple Contending Queries
	Strawman Iterative QEP Selection
	Final Heuristic to Combat Resource Fragmentation
	Enhancements

	Implementation
	Evaluation
	Testbed Deployment Results
	Simulation Results
	Clarinet's heuristics and design decisions
	Profiling gains of queries (simulation)

	Related Work
	Discussion
	Conclusion

	osdi16-quinn
	Introduction
	Motivation
	Background
	DIFT
	Deterministic replay

	Design and implementation
	Local DIFT
	Partitioning
	Aggregation
	Parallelizing aggregation: A failed attempt
	Backward pass
	Forward pass
	Pre-pruning
	Summary

	Evaluation
	Experimental Setup
	Benchmarks
	Scalability
	Analysis of first-query bottlenecks
	Analysis of second-query bottlenecks
	Optimizations

	Related work
	Conclusion

	osdi16-li
	osdi16-liu
	osdi16-setty
	1 Introduction
	2 Building cloud applications: challenges
	2.1 A common storage model
	2.2 A case study: supporting snapshots

	3 Locks with intent
	3.1 Intents: Exactly-once execution
	3.2 Mutual exclusion with exactly-once semantics

	4 Applications and experience
	4.1 Snapshots
	4.2 Live table re-partitioning
	4.3 Secondary indices
	4.4 Transactions
	4.5 Evaluation: ease of development

	5 Experimental evaluation
	5.1 Implementation
	5.2 Setup and method
	5.3 Cost of Olive's exactly-once semantics
	5.4 End-to-end performance: snapshots
	5.5 End-to-end performance: live re-partitioning
	5.6 Storage overheads
	5.7 Summary

	6 Discussion
	7 Related work
	8 Conclusion

	osdi16-mu
	Introduction
	Overview
	System Setup
	Background and Motivation
	A Unified Approach to Concurrency Control and Consensus

	Design
	Basic Protocol
	Handling Contention Without Aborts
	Handling Coordinator Failure

	General Transactions
	Implementation
	Evaluation
	Experimental Setup
	Microbenchmark
	TPC-C

	Related Work
	Conclusion

	osdi16-hunt
	osdi16-angel
	osdi16-lazar
	Introduction
	Related work
	Overview
	Overall design
	Security goals
	Threat model

	Add-friend protocol
	Identity-based encryption
	Distributing trust
	Ciphertext anonymity
	Forward secrecy
	Authenticating requests
	Registering email addresses
	Computing a shared secret

	Dialing protocol
	Keywheel synchronization
	Bloom filter encoding
	Intents

	Sender anonymity
	Implementation
	Evaluation
	Experimental setup
	Client performance
	Server performance
	Skewed popularity
	Application integration
	Cryptographic strength

	Discussion and Limitations
	Conclusion

	osdi16-papadimitriou
	osdi16-zhao
	osdi16-xu
	Introduction
	Motivation
	State of the Art
	Our Contributions

	Understanding Root Causes of Latent Configuration Errors
	Methodology
	Findings
	Implication

	PCheck Design and Implementation
	Emulating Execution
	Identifying Starting Points
	Extracting Instructions Using Configurations
	Producing Execution Context
	Encapsulation

	Preventing Side Effects
	Capturing Anomalies
	Invoking Early Checkers

	Experimental Evaluation
	Methodology
	Detecting Real-world LC Errors
	Checking Real-world Configuration Files
	Checker Generation
	Checking Overhead
	False Positives

	Limitations
	Concluding Remarks
	Acknowledgement

	osdi16-meza
	osdi16-gu
	osdi16-schatzberg
	Introduction
	Objectives
	System Design
	Heterogeneous Distributed Structure
	Modular System Structure
	Execution Model

	Implementation
	Software Structure Overview
	Events
	Elastic Building Blocks
	Memory Management
	Lambdas and Futures
	Network Stack

	Evaluation
	Microbenchmarks
	Memory Allocation
	Network Stack

	Memcached
	Node.js
	V8 JavaScript Benchmark
	Node.js Webserver

	Related Work
	Concluding Remarks

	osdi16-arnautov
	osdi16-kwon
	osdi16-zhang1
	Introduction
	Traditional Data Management Techniques for Reactive Apps
	Roll-your-own Data Management
	Wide-area Storage Systems
	Reactive Programming Frameworks

	Diamond's System and Programming Model
	System Model
	Data Model
	System Calls
	The rmap Primitive
	Transaction model

	Reactive Data Management Guarantees
	A Simple Code Example
	Offline Support
	Security

	Diamond's System Design
	Data Management Architecture
	rmap and Language Bindings
	Transaction Coordination Overview
	Running Distributed Transactions
	Managing Reactive Transactions
	Handling Failures

	Wide-area Optimizations
	Data-type Optimistic Concurrency Control
	Client Caching with Bounded Validity Intervals
	Data Push Notifications

	Experience and Evaluation
	Prototype Implementation
	Programming Experience
	Simplifying Reactive Applications
	Simplifying Reactive Libraries

	Performance Evaluation
	Experimental Setup
	Overhead of Automated Data Management
	Benefit of Docc
	Benefit of Data Push Notifications
	Impact of Wide-area Storage Server Failures
	End-user Application Latency

	Related Work
	Conclusion
	Acknowledgements

	osdi16-adya
	osdi16-zhang2
	osdi16-chow
	Blank Page

