12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16)

Errata Slip

In the paper “Gemini: A Computation-Centric Distributed Graph Processing System” by Xiaowei Zhu, Wenguang
Chen, and Weimin Zheng, Tsinghua University; Xiaosong Ma, Hamad Bin Khalifa University (Thursday session,
“Graph Processing and Machine Learning,” pp. 301-316 of the Proceedings), the following changes were made:

1. Table 1 (p. 302) contained incorrect numbers in the second (1-core; OST) column:

Cores 1 24 x1 24 x 8 Cores 1 24 %1 24 x 8
System OST Ligra Galois PowerG. PowerL. System OST Ligra Galois PowerG. PowerL.
Runtime (s) 99.9 21.9 19.3 40.3 26.9 Runtime (s) 79.1 21.9 19.3 40.3 26.9
Instructions 525G 496G 482G 7.15T 6.06T Instructions 525G 496G 482G 7.15T 6.06T
Mem. Ref. 158G 323G 234G 958G 87.2G Mem. Ref. 8.58G 323G 234G 958G 87.2G
Comm. (GB) - - - 115 38.1 Comm. (GB) - - 115 38.1
IPC 1.71 0.408 0.414 0.500 0.655 IPC 2.16 0.408 0.414 0.500 0.655
LLC Miss 877% 439% 49.7% T1.0% 54.9% LLC Miss 148% 439% 49.7% 71.0% 54.9%
CPU Util. 100% 91.7% 96.8% 65.5% 68.4% CPU Util. 100% 91.7% 96.8% 65.5% 68.4%
Table 1 original Table 1 corrected

Related errors in Section 7.2 (p. 311):

Figure 9:
200+ — - Optimized Single Threal 200+ — - Optimized Single Thread
e Gemini o Gemini
O @ 150}
(] [
€ €
=] S 1001
c c
3 3
4 4
50+
0
12 4 8 12 24 12 4 8 12 24
of Cores # of Cores
Figure 9 original Figure 9 corrected

In the second paragraph:

Original text

“..., Gemini’s number is 3, which is lower than those of other systems measured [33], though Gemini’s 2-core
execution time is only 3.1% higher than the optimized single-thread implementation. Considering Gemini’s distributed
nature, a COST close to 2 illustrates its optimized computation efficiency and lightweight distributed execution
overhead.”

Corrected text

“..., Gemini’s number is 3 (with its 2-core execution time 30.2% higher than the optimized single-thread
implementation), which is lower than those of other systems measured [33]. Considering Gemini’s distributed nature,
the COST illustrates its optimized computation efficiency and lightweight distributed execution overhead.”

Continues on next page

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 1

class Graph<E> {
VertexID vertices;
EdgelD edges;
VertexID [] outDegree;
VertexID [] inDegree;
def allocVertexArray<V>() -> V [];
def allocVertexSet() -> VertexSet;
def processVertices<A> (
work: (VertexID) -> A,
active: VertexSet,
reduce: (A, A) -> A,
)->A;
def processEdges<A, M> (
sparseSignal: (VertexID) -> void,
sparseSlot: (VertexID, M, OutEdgelterator<E>) -> A,
denseSignal: (VertexID, InEdgelterator<E>) -> void,
denseSlot: (VertexID, M) -> A,
reduce: (A, A) -> A,
active: VertexSet
)->A;
def emit<M> (recipient: VertexID, message: M) -> void;

b

Figure 2 original

Graph<empty> g (...); // load a graph from the file system
VertexSet activeCurr = g.allocVertexSet();
VertexSet activeNext = g.allocVertexSet();
activeCurr.fill(); // add all vertices to the set
VertexID [] label = g.allocVertexArray <VertexID> ();
def add (VertexID a, VertexID b) : VertexID {
return a + b;
}
definitialize (VertexID v) : VertexID {
label[v] = v;
return 1;
}
VertexID activated = g.processVertices <VertexID> (
initialize,
activeCurr

)i

Figure 3 original

2. The pseudo-codes in Figures 2-3 (p. 304) contained some errors, with red boxes marking the changes:

class Graph<E> {
VertexID vertices;
EdgelD edges;
VertexID [] outDegree;
VertexID [] inDegree;
def allocVertexArray<V>() -> V [];
def allocVertexSet() -> VertexSet;
def processVertices<A> (
work: (VertexID) -> A,
active: VertexSet,
reduce: (A, A) -> A,
)-> A
def processEdges<A, M> (
sparseSignal: (VertexID) ->void,
sparseSlot: (VertexID, M, OutEdgelterator<t>) -> A,
denseSignal: (VertexID, InEdgelterator<E>) -> void,
denseSlot: (VertexID, M) -> A,
active: VertexSet,
reduce: (A, A) -> A
)-> A
def emit<M> (recipient: VertexID, message: M) -> void;

b

Figure 2 corrected

Graph<empty> g (...); // load a graph from the file system
VertexSet activeCurr = g.allocVertexSet();
VertexSet activeNext = g.allocVertexSet();
activeCurrAfill(); // add all vertices to the set
VertexID [] label = g.allocVertexArray <VertexID> ();
def add (VertexID a, VertexID b) : VertexID {
return a + b;
}
def initialize (VertexID v) : VertexID {
label[v] = v;
return 1;
}
VertexID activated = g.processVertices <VertexID> (
initialize,
activeCurr,
);

Figure 3 corrected

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation

2

In the paper “Yak: A High-Performance Big-Data-Friendly Garbage Collector” by Khanh Nguyen, Lu Fang,
Guoqing Xu, and Brian Demsky; University of California, Irvine; Shan Lu, University of Chicago; Sanazsadat
Alamian, University of California, Irvine; Onur Mutlu, ETH Zurich (Thursday session, “Languages and Software
Engineering,” pp. 349-365 of the Proceedings), the following correction was made to Figure 10 (p. 360):

. e .
Original:
BGC Time O Region ion Time B GC Time O Region Deallocation Time 8 GC Time O Region ion Time
1000 B Computation Time Peak Memory 25 1000 & Computation Time Peak Memory 10 250 & Computation Time Peak Memory 10
800 202 _ 800 =z _ 8=
2 2z 2z z
= 5% §% g
e e e 2 e
s S 3 £l K
& 600 1572 8 600 A 6%
2 o% °s 5
H] z:]
=] £E £Z g
F 400 10% £400 2 4 2
H £ 2 % :
g 34 22 2
Z 200 5 g 4 200 = 2g
0 0 0 0
2z 22| |elz| |2z |2z |2z % 3
Nk R i R "~ R - -
programs| 8|2 2 g gl |2z % g g¢ Programs Programs 8|S g
20GB Heap 24GB Heap 2GB Heap 3GB Heap ‘ ‘ 6GB Heap _ 8GB Heap
(a) Hyracks (b) Hadoop (c) GraphChi
Corrected:
BGC Time O Region Deallocation Time 8GC Time O Region ion Time BGC Time ORegion ion Time
1000 8 Computation Time Peak Memory 25 1000 8 Computation Time Peak Memory 10 250 & Computation Time Peak Memory 10
800 20 2 _ 800 8z 200 8 2
z £z 2 £
E R E] H
o e e El 5l
g 28 2 g 2
& 600 152 & 600 6'a &150 63
by &3 b S
£ g ZE Z
=] =]
< 400 i 10;_;400 45 £100 43
€ g€ g 2 2
& 200 s g0 28 & 50 2 g
0 o 0 0 0
AP 0 2 ”
HEID SIS <
@ o o
Programs| = &4 z a g Programs| O
20GB Heap 24GB Heap 2GB Heap 3GB Heap 6GB Heap ‘ $GB Heap
(a) Hyracks (b) Hadoop (¢) GraphChi

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 3

For the paper “Consolidating Concurrency Control and Consensus for Commits under Conflicts by Shuai Mu and
Lamont Nelson, New York University; Wyatt Lloyd, University of Southern California; Jinyang Li, New York Uni-
versity (Thursday session, “Fault Tolerance and Consensus,” pp. 517-532 of the Proceedings):

The most up to date and preferred version of this paper is available at http://mpaxos.com/pub/janus-osdil6.pdf.
It contains corrections for minor typographic errors as well as changes in the prose and pseudocode for clarity. The
notable changes are itemized below:

Removed an unnecessary paragraph break in the Accept phase portion of section 3.2.

A formula in section 3.3 was updated to indicate when a recovery coordinator is guaranteed to observe conflicting
transactions dependencies. The formula (FNM)N(FNM) # 0 was changed to (FNM)N(F NM') # 0.
Extra prime symbols are added to clarify that they are not the same set.

Edited all psuedocode for clarity:

1. The conditions referencing reaching the ‘committing’ status as ‘committing’ were changed to ‘is committing’.
2. The Accept phase of Algorithm 1 is more concise; a reference to parallel message delivery was omitted.

3. Commented pseudocode in Algorithm 2 was removed.

4. The visual format of the psuedocode was adjusted to remove extra spacing.

5. Ballot number is better viewed as state associated with a dependency instead of state associated with status.
Therefore, it is extracted from the status as a separate eld.

6. Use © * instead of ‘=" for assigning.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 4

