
USENIX Association 	 12th USENIX Symposium on Operating Systems Design and Implementation	 1

12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16)

Errata Slip

In the paper “Gemini: A Computation-Centric Distributed Graph Processing System” by Xiaowei Zhu, Wenguang
Chen, and Weimin Zheng, Tsinghua University; Xiaosong Ma, Hamad Bin Khalifa University (Thursday session,
“Graph Processing and Machine Learning,” pp. 301-316 of the Proceedings), the following changes were made:

1. Table 1 (p. 302) contained incorrect numbers in the second (1-core; OST) column:

 Table 1 original Table 1 corrected

Related errors in Section 7.2 (p. 311):

Figure 9:

 Figure 9 original Figure 9 corrected

In the second paragraph:
Original text
“…, Gemini’s number is 3, which is lower than those of other systems measured [33], though Gemini’s 2-core
execution time is only 3.1% higher than the optimized single-thread implementation. Considering Gemini’s distributed
nature, a COST close to 2 illustrates its optimized computation efficiency and lightweight distributed execution
overhead.”

Corrected text
“…, Gemini’s number is 3 (with its 2-core execution time 30.2% higher than the optimized single-thread
implementation), which is lower than those of other systems measured [33]. Considering Gemini’s distributed nature,
the COST illustrates its optimized computation efficiency and lightweight distributed execution overhead.”

scales, from multi-core to multi-node platforms.
• We identify a simple yet surprisingly effective

chunk-based graph partitioning scheme, which fa-
cilitates exploitation of natural locality in input
graphs and enables seamless hierarchical refine-
ment. We present multiple optimizations enabled
by this new partitioning approach.

• We evaluate our Gemini prototype with extensive
experiments and compared it with five state-of-the-
art systems. Experiments with five applications on
five real-world graphs show that Gemini signifi-
cantly outperforms existing distributed implemen-
tations, delivering up to 39.8⇥ (from 8.91⇥) im-
provement over the fastest among them. We collect
detailed measurement for performance analysis and
validating internal design choices.

2 Motivation

While state-of-the-art shared-memory graph processing
systems are able to process graphs quite efficiently, the
lack of scalability makes them fail to handle graphs that
do not fit in the memory of a single machine. On the
other hand, while existing distributed solutions can scale
graph processing to larger magnitudes than their shared-
memory counterparts, their performance and cost effi-
ciencies are often unsatisfactory [33, 59, 60].

To study the performance loss, we profiled several rep-
resentative graph-parallel systems, including Ligra [47],
Galois [36], PowerGraph [16], PowerLyra [12], as well
as the optimized single-thread implementation proposed
in the COST paper [33] for reference. We set up ex-
periments on an 8-node high-performance cluster in-
terconnected with Infiniband EDR network (with up to
100Gbps bandwidth), each node containing two Intel
Xeon E5-2670 v3 CPUs (12 cores and 30MB L3 cache
per CPU) and 128 GB DRAM. We ran 20 iterations of
PageRank [38] on the twitter-2010 [28] graph, a test case
commonly used for evaluating graph-parallel systems.

Cores 1 24⇥1 24⇥8
System OST Ligra Galois PowerG. PowerL.

Runtime (s) 99.9 21.9 19.3 40.3 26.9
Instructions 525G 496G 482G 7.15T 6.06T
Mem. Ref. 15.8G 32.3G 23.4G 95.8G 87.2G

Comm. (GB) - - - 115 38.1
IPC 1.71 0.408 0.414 0.500 0.655

LLC Miss 8.77% 43.9% 49.7% 71.0% 54.9%
CPU Util. 100% 91.7% 96.8% 65.5% 68.4%

Table 1: Sample performance analysis of existing sys-
tems (20 iterations of PageRank on twitter-2010). OST
refers to the optimized single-thread implementation.

Table 1 gives detailed performance metrics for the five
targeted systems. Overall, systems lose efficiency as

we move from single-thread to shared memory, then to
distributed implementations. Though this is to be ex-
pected with communication/synchronization overhead,
load balance issues, and in general higher software com-
plexities, the large span in almost all measurement cate-
gories across alternative systems indicates a large room
for improvement.

As seen from the profiling results, the network is far
from saturated (e.g., lower than 3Gbps average aggre-
gate bandwidth usage with PowerGraph). Computation,
rather than communication, appears to be the actual bot-
tleneck of evaluated distributed systems, which echoes
recent findings on distributed data analytics frame-
works [37]. Compared with their shared-memory coun-
terparts, they have significantly more instructions and
memory references, poorer access localities, and lower
multi-core utilization. We further dig into the code and
find that such inefficiency comes from multiple sources,
such as (1) the use of hash maps to convert vertex IDs be-
tween global and local states, (2) the maintenance of ver-
tex replicas, (3) the communication-bound apply phase
in the GAS abstraction [16], and (4) the lack of dynamic
scheduling. They either enlarge the working set, produc-
ing more instructions and memory references, or prevent
the full utilization of multi-core CPUs.

We argue that many of the above side-effects could be
avoided when designing distributed graph-parallel sys-
tems, by building scalability on top of efficiency, instead
of focusing on the former in the first place. The subse-
quent distributed system design should pay close atten-
tion to the computation overhead of cross-node operation
over today’s high-speed interconnect, as well as the local
computation efficiency on partitioned graphs.

To this end, we adapt Ligra’s hybrid push-pull com-
putation model to a distributed form, which facilitates
efficient vertex-centric data update and message pass-
ing. A chunk-based partitioning scheme is adopted, al-
lowing low-overhead graph distribution as well as recur-
sive application at multiple system levels. We further de-
ploy multiple optimizations to aggressively compress the
computation time. Finally, we design a co-scheduling
mechanism to overlap computation and inter-node com-
munication tasks.

3 Gemini Graph Processing Abstraction

Viewing modern clusters as small or moderate number
of nodes interconnected with fast networks similar to
a shared-memory multi-core machine, Gemini adopts a
graph processing abstraction that enables a smooth ex-
tension of state-of-the-art single-node graph computation
models to cluster environments.

Before getting to details, let us first give the targeted
graph processing context. Like assumed in many graph-

scales, from multi-core to multi-node platforms.
• We identify a simple yet surprisingly effective

chunk-based graph partitioning scheme, which fa-
cilitates exploitation of natural locality in input
graphs and enables seamless hierarchical refine-
ment. We present multiple optimizations enabled
by this new partitioning approach.

• We evaluate our Gemini prototype with extensive
experiments and compared it with five state-of-the-
art systems. Experiments with five applications on
five real-world graphs show that Gemini signifi-
cantly outperforms existing distributed implemen-
tations, delivering up to 39.8⇥ (from 8.91⇥) im-
provement over the fastest among them. We collect
detailed measurement for performance analysis and
validating internal design choices.

2 Motivation

While state-of-the-art shared-memory graph processing
systems are able to process graphs quite efficiently, the
lack of scalability makes them fail to handle graphs that
do not fit in the memory of a single machine. On the
other hand, while existing distributed solutions can scale
graph processing to larger magnitudes than their shared-
memory counterparts, their performance and cost effi-
ciencies are often unsatisfactory [33, 59, 60].

To study the performance loss, we profiled several rep-
resentative graph-parallel systems, including Ligra [47],
Galois [36], PowerGraph [16], PowerLyra [12], as well
as the optimized single-thread implementation proposed
in the COST paper [33] for reference. We set up ex-
periments on an 8-node high-performance cluster in-
terconnected with Infiniband EDR network (with up to
100Gbps bandwidth), each node containing two Intel
Xeon E5-2670 v3 CPUs (12 cores and 30MB L3 cache
per CPU) and 128 GB DRAM. We ran 20 iterations of
PageRank [38] on the twitter-2010 [28] graph, a test case
commonly used for evaluating graph-parallel systems.

Cores 1 24⇥1 24⇥8
System OST Ligra Galois PowerG. PowerL.

Runtime (s) 79.1 21.9 19.3 40.3 26.9
Instructions 525G 496G 482G 7.15T 6.06T
Mem. Ref. 8.58G 32.3G 23.4G 95.8G 87.2G

Comm. (GB) - - - 115 38.1
IPC 2.16 0.408 0.414 0.500 0.655

LLC Miss 14.8% 43.9% 49.7% 71.0% 54.9%
CPU Util. 100% 91.7% 96.8% 65.5% 68.4%

Table 1: Sample performance analysis of existing sys-
tems (20 iterations of PageRank on twitter-2010). OST
refers to the optimized single-thread implementation.

Table 1 gives detailed performance metrics for the five
targeted systems. Overall, systems lose efficiency as

we move from single-thread to shared memory, then to
distributed implementations. Though this is to be ex-
pected with communication/synchronization overhead,
load balance issues, and in general higher software com-
plexities, the large span in almost all measurement cate-
gories across alternative systems indicates a large room
for improvement.

As seen from the profiling results, the network is far
from saturated (e.g., lower than 3Gbps average aggre-
gate bandwidth usage with PowerGraph). Computation,
rather than communication, appears to be the actual bot-
tleneck of evaluated distributed systems, which echoes
recent findings on distributed data analytics frame-
works [37]. Compared with their shared-memory coun-
terparts, they have significantly more instructions and
memory references, poorer access localities, and lower
multi-core utilization. We further dig into the code and
find that such inefficiency comes from multiple sources,
such as (1) the use of hash maps to convert vertex IDs be-
tween global and local states, (2) the maintenance of ver-
tex replicas, (3) the communication-bound apply phase
in the GAS abstraction [16], and (4) the lack of dynamic
scheduling. They either enlarge the working set, produc-
ing more instructions and memory references, or prevent
the full utilization of multi-core CPUs.

We argue that many of the above side-effects could be
avoided when designing distributed graph-parallel sys-
tems, by building scalability on top of efficiency, instead
of focusing on the former in the first place. The subse-
quent distributed system design should pay close atten-
tion to the computation overhead of cross-node operation
over today’s high-speed interconnect, as well as the local
computation efficiency on partitioned graphs.

To this end, we adapt Ligra’s hybrid push-pull com-
putation model to a distributed form, which facilitates
efficient vertex-centric data update and message pass-
ing. A chunk-based partitioning scheme is adopted, al-
lowing low-overhead graph distribution as well as recur-
sive application at multiple system levels. We further de-
ploy multiple optimizations to aggressively compress the
computation time. Finally, we design a co-scheduling
mechanism to overlap computation and inter-node com-
munication tasks.

3 Gemini Graph Processing Abstraction

Viewing modern clusters as small or moderate number
of nodes interconnected with fast networks similar to
a shared-memory multi-core machine, Gemini adopts a
graph processing abstraction that enables a smooth ex-
tension of state-of-the-art single-node graph computation
models to cluster environments.

Before getting to details, let us first give the targeted
graph processing context. Like assumed in many graph-

and memory accesses, and lowers the cache efficiency.
In contrast, while Gemini needs to store two copies

of edges (in CSR and CSC respectively) due to its dual-
mode propagation, the actual memory required is well
controlled. Especially, the relative space overhead de-
creases for larger graphs (e.g., within 2⇥ of the raw size
for clueweb-12). Gemini’s abstraction (chunk-based par-
titioning scheme, plus the sparse-dense signal-slot pro-
cessing model) adds very little overhead to the overall
system and preserves (or enhances when more nodes
are used) access locality present in the original graph.
The co-scheduling mechanism hides the communication
cost effectively under the high-speed Infiniband network.
Locality-aware chunking and fine-grained work-stealing
further improves inter-node and intra-node load balance.
These optimizations together enable Gemini to provide
scalability on top of efficiency.

7.2 Scalability
Next, we examine the scalability of Gemini, starting
from intra-node evaluation using 1 to 24 cores to run
PR on the twitter-2010 graph (Figure 9). Overall the
scalability is quite decent, achieving speedup of 1.9, 3.7,
and 6.8 at 2, 4, and 8 cores, respectively. As expected,
as more cores are used, inter-core load balancing be-
comes more challenging, synchronization cost becomes
more visible, and memory bandwidth/LLC contention
becomes intensified. Still, Gemini is able to achieve a
speedup of 9.4 at 12 cores and 15.5 at 24 cores.

1 2 4 8 12 24
Rf CRres

0

50

100

150

200

5
u

n
ti

m
e
 (

s)

2StimizeG SingOe ThreaG

Gemini

Figure 9: Intra-node scalability (PR on twitter-2010)

To further evaluate Gemini’s computation efficiency,
we compare it with the optimized single-thread imple-
mentation (which sorts edges in a Hilbert curve or-
der [33]), shown as the dashed horizontal line in Fig-
ure 9. Using the COST metric (i.e. how many cores a
parallel/distributed solution needs to outperform the op-
timized single-thread implementation), Gemini’s number
is 3, which is lower than those of other systems mea-
sured [33], though Gemini’s 2-core execution time is
only 3.1% higher than the optimized single-thread im-
plementation. Considering Gemini’s distributed nature, a

COST close to 2 illustrates its optimized computation ef-
ficiency and lightweight distributed execution overhead.

Figure 10 shows the inter-node scalability results,
comparing Gemini with PowerLyra, which we found to
have the best performance and scalability for our test
cases among existing open-source systems. Due to its
higher memory consumption, PowerLyra is not able to
complete in several test cases, as indicated by the missing
data points. All results are normalized to Gemini’s best
execution time of the test case in question. It shows that
though focused on computation optimization, Gemini is
able to deliver inter-node scalability very similar to that
by PowerLyra, approaching linear speedup with large
graphs (weibo-2013). With the smallest graph (enwiki-
2013), as expected, the scalability is poor for both sys-
tems as communication time dominates the execution.

For twitter-2010, Gemini has poor scaling after 4
nodes, mainly due to the emerging bottleneck from ver-
tex indices access and message production/consumption.
This is confirmed by the change of subgraph dimensions
shown in Table 6: when more nodes are used, both |Ei|
and |Vi| scales down perfectly, reducing edge process-
ing cost. The vertex set including mirrors, V 0

i , however,
does not shrink accordingly, making its processing cost
increasingly significant.

p · s TPR (s) S|Vi|/(p · s) S|Ei|/(p · s) S|V 0
i |/(p · s)

1 ·2 12.7 20.8M 734M 27.6M
2 ·2 7.01 10.4M 367M 19.6M
4 ·2 3.88 5.21M 184M 13.5M
8 ·2 3.02 2.60M 91.8M 10.5M

Table 6: Subgraph sizes with growing cluster size

7.3 Design Choices
Below we evaluate the performance impact of several
major design choices in Gemini. Though it is tempting to
find out the relative significance among these optimiza-
tions themselves, we have found it hard to compare the
contribution of individual techniques, as they often assist
each other (such as chunk-based partitioning and intra-
node work-stealing). In addition, when we incrementally
add these optimizations to a baseline system, the appar-
ent gains measured highly depend on the order used in
such compounding. Therefore we present and discuss
the advantages of individual design decisions, where re-
sults do not indicate their relative strength.

7.3.1 Adaptive Sparse-Dense Dual Mode

Adaptive switching between sparse and dense modes ac-
cording to the density of active edges improves the per-
formance of Gemini significantly. We propose an exper-

and memory accesses, and lowers the cache efficiency.
In contrast, while Gemini needs to store two copies

of edges (in CSR and CSC respectively) due to its dual-
mode propagation, the actual memory required is well
controlled. Especially, the relative space overhead de-
creases for larger graphs (e.g., within 2⇥ of the raw size
for clueweb-12). Gemini’s abstraction (chunk-based par-
titioning scheme, plus the sparse-dense signal-slot pro-
cessing model) adds very little overhead to the overall
system and preserves (or enhances when more nodes
are used) access locality present in the original graph.
The co-scheduling mechanism hides the communication
cost effectively under the high-speed Infiniband network.
Locality-aware chunking and fine-grained work-stealing
further improves inter-node and intra-node load balance.
These optimizations together enable Gemini to provide
scalability on top of efficiency.

7.2 Scalability

Next, we examine the scalability of Gemini, starting
from intra-node evaluation using 1 to 24 cores to run
PR on the twitter-2010 graph (Figure 9). Overall the
scalability is quite decent, achieving speedup of 1.9, 3.7,
and 6.8 at 2, 4, and 8 cores, respectively. As expected,
as more cores are used, inter-core load balancing be-
comes more challenging, synchronization cost becomes
more visible, and memory bandwidth/LLC contention
becomes intensified. Still, Gemini is able to achieve a
speedup of 9.4 at 12 cores and 15.5 at 24 cores.

1 2 4 8 12 24
Rf CRres

0

50

100

150

200

5
u

n
ti

m
e
 (

s)

2StimizeG SingOe ThreaG

Gemini

Figure 9: Intra-node scalability (PR on twitter-2010)

To further evaluate Gemini’s computation efficiency,
we compare it with the optimized single-thread imple-
mentation (which sorts edges in a Hilbert curve order to
improve locality in both source and destination vertex ac-
cesses [33]), shown as the dashed horizontal line in Fig-
ure 9. Using the COST metric (i.e. how many cores a
parallel/distributed solution needs to outperform the op-
timized single-thread implementation), Gemini’s number
is 3, which is lower than those of other systems mea-
sured [33]. Considering Gemini’s distributed nature, the

COST illustrates its optimized computation efficiency
and lightweight distributed execution overhead.

Figure 10 shows the inter-node scalability results,
comparing Gemini with PowerLyra, which we found to
have the best performance and scalability for our test
cases among existing open-source systems. Due to its
higher memory consumption, PowerLyra is not able to
complete in several test cases, as indicated by the missing
data points. All results are normalized to Gemini’s best
execution time of the test case in question. It shows that
though focused on computation optimization, Gemini is
able to deliver inter-node scalability very similar to that
by PowerLyra, approaching linear speedup with large
graphs (weibo-2013). With the smallest graph (enwiki-
2013), as expected, the scalability is poor for both sys-
tems as communication time dominates the execution.

For twitter-2010, Gemini has poor scaling after 4
nodes, mainly due to the emerging bottleneck from ver-
tex index access and message production/consumption.
This is confirmed by the change of subgraph dimensions
shown in Table 6: when more nodes are used, both |Ei|
and |Vi| scales down, reducing edge processing cost. The
vertex set including mirrors, V 0

i , however, does not shrink
perfectly, making its processing cost increasingly signif-
icant.

p · s TPR (s) S|Vi|/(p · s) S|Ei|/(p · s) S|V 0
i |/(p · s)

1 ·2 12.7 20.8M 734M 27.6M
2 ·2 7.01 10.4M 367M 19.6M
4 ·2 3.88 5.21M 184M 13.5M
8 ·2 3.02 2.60M 91.8M 10.5M

Table 6: Subgraph sizes with growing cluster size

7.3 Design Choices
Below we evaluate the performance impact of several
major design choices in Gemini. Though it is tempting to
find out the relative significance among these optimiza-
tions themselves, we have found it hard to compare the
contribution of individual techniques, as they often assist
each other (such as chunk-based partitioning and intra-
node work-stealing). In addition, when we incrementally
add these optimizations to a baseline system, the appar-
ent gains measured highly depend on the order used in
such compounding. Therefore we present and discuss
the advantages of individual design decisions, where re-
sults do not indicate their relative strength.

7.3.1 Adaptive Sparse-Dense Dual Mode

Adaptive switching between sparse and dense modes ac-
cording to the density of active edges improves the per-
formance of Gemini significantly. We propose an exper-

Continues on next page

USENIX Association 	 12th USENIX Symposium on Operating Systems Design and Implementation	 2

2. The pseudo-codes in Figures 2-3 (p. 304) contained some errors, with red boxes marking the changes:

 Figure 2 original Figure 2 corrected

 Figure 3 original Figure 3 corrected

class%Graph<E>){)
%%%%VertexID)ver2ces;)
%%%%EdgeID)edges;%
))))VertexID)[])outDegree;)
))))VertexID)[])inDegree;)
))))def)allocVertexArray<V>())C>)V)[];)
%%%%def)allocVertexSet())C>)VertexSet;)
%%%%def)processVer2ces<A>)()
))))))))work:)(VertexID))C>)A,)
))))))))ac2ve:)VertexSet,)
))))))))reduce:)(A,)A))C>)A,)
))))))C>)A;)
%%%%def)processEdges<A,)M>)()
))))))))sparseSignal:)(VertexID))C>)void,)
))))))))sparseSlot:)(VertexID,)M,)OutEdgeIterator<E>))C>)A,)
))))))))denseSignal:)(VertexID,)InEdgeIterator<E>))C>)void,)
))))))))denseSlot:)(VertexID,)M))C>)A,)
))))))))reduce:)(A,)A))C>)A,)
))))))))ac2ve:)VertexSet)
))))))C>)A;)
))))def)emit<M>)(recipient:)VertexID,)message:)M))C>)void;%
};)

//

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>,g,(…);,//,load,a,graph,from,the,file,system
VertexSet activeCurr =,g.allocVertexSet();
VertexSet activeNext =,g.allocVertexSet();
activeCurr.fill();,//,add,all,vertices,to,the,set
VertexID [],label,=,g.allocVertexArray <VertexID>,();
def add (VertexID a,,VertexID b),:,VertexID {
return(a,+,b;

}
def initialize,(VertexID v),:,VertexID {

label[v],=,v;
return 1;

}
VertexID activated,=,g.processVertices <VertexID>,(

initialize,
activeCurr

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v)4{
g.emit(v,4label[v]);

}

def CCSparseSlot (VertexID v,4VertexID msg,4OEI4iter)4:4VertexID
{

VertexID activated4=40;

while (iter.hasNext())4 {
VertexID dst =4iter.next().neighbour;

if (msg <4label[dst]4&&4atomicWriteMin(label[dst],4 msg))4 {
activeNext.add(dst);4//4add4‘dst’4 to4the4next4frontier

activated4+=41;

}

}

return activated;
}

def CCDenseSignal (VertexID v,4IEI4iter)4:4void4{
VertexIDmsg =4v;

while,(iter.hasNext())4 {
VertexID src =4iter.next().neighbour;

msg =4msg <4label[src]4?4msg :4label[src];

}

if (msg <4v)4g.emit(v,4msg);
}

def CCDenseSlot (VertexID v,4VertexIDmsg)4 :4VertexID {
if (msg <4label[v]4&&4atomicWriteMin(label[v],4msg))4 {
activeNext.add(v);4//4add4‘v’4to4the4next4frontier

return 1;
}

else4return 0;
}

while (activated>0)4{
activeNext.clear();4//4make4an4empty4vertex4set

activated4=4g.processEdges <VertexID,4VertexID>4(

CCSparseSignal,

CCSparseSlot,

CCDenseSignal,

CCDenseSlot,

activeCurr,

add

);

swap(activeCurr,4activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-

class%Graph<E>){
VertexID vertices;
EdgeID edges;
VertexID [])outDegree;
VertexID [])inDegree;
def allocVertexArray<V>())B>)V)[];
def allocVertexSet())B>)VertexSet;
def processVertices<A>)(

work:)(VertexID))B>)A,
active:)VertexSet,
reduce:)(A,)A))B>)A,

))B>)A;
def processEdges<A,)M>)(

sparseSignal:)(VertexID))B>)void,
sparseSlot:)(VertexID,)M,)OutEdgeIterator<E>))B>)A,
denseSignal:) (VertexID,)InEdgeIterator<E>))B>)void,
denseSlot:) (VertexID,)M))B>)A,
active:)VertexSet,
reduce:)(A,)A))B>)A

))B>)A;
def emit<M>)(recipient:)VertexID,)message:)M))B>)void;

};

//

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>,g,(…);,//,load,a,graph,from,the,file,system,,,,,,,,,s
VertexSet activeCurr =,g.allocVertexSet();
VertexSet activeNext =,g.allocVertexSet();
activeCurr.fill();,//,add,all,vertices,to,the,set
VertexID [],label,=,g.allocVertexArray <VertexID>,();
def add (VertexID a,,VertexID b),:,VertexID {
return(a,+,b;

}
def initialize,(VertexID v),:,VertexID {

label[v],=,v;
return 1;

}
VertexID activated,=,g.processVertices <VertexID>,(

initialize,
activeCurr,
add

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v) :5void5{
g.emit(v,5label[v]);

}

def CCSparseSlot (VertexID v,5VertexID msg,5OEI5iter)5:5VertexID
{

VertexID activated5=50;

while (iter.hasNext())5 {
VertexID dst =5iter.next().neighbour;

if (msg <5label[dst]5&&5atomicWriteMin(label[dst],5 msg))5 {
activeNext.add(dst);5//5add5‘dst’5 to5the5next5frontier

activated5+=51;

}

}

return activated;
}

def CCDenseSignal (VertexID v,5IEI5iter)5:5void5{
VertexIDmsg =5v;

while,(iter.hasNext())5 {
VertexID src =5iter.next().neighbour;

msg =5msg <5label[src]5?5msg :5label[src];

}

if (msg <5v)5g.emit(v,5msg);
}

def CCDenseSlot (VertexID v,5VertexIDmsg)5 :5VertexID {
if (msg <5label[v]5&&5atomicWriteMin(label[v],5msg))5 {
activeNext.add(v);5//5add5‘v’5to5the5next5frontier

return 1;
}

else return 0;
}

while (activated>0)5{
activeNext.clear();5//5make5an5empty5vertex5set

activated5=5g.processEdges <VertexID,5VertexID>5(

CCSparseSignal,

CCSparseSlot,

CCDenseSignal,

CCDenseSlot,

activeCurr,

add

);

swap(activeCurr,5activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-

class%Graph<E>){)
%%%%VertexID)ver2ces;)
%%%%EdgeID)edges;%
))))VertexID)[])outDegree;)
))))VertexID)[])inDegree;)
))))def)allocVertexArray<V>())C>)V)[];)
%%%%def)allocVertexSet())C>)VertexSet;)
%%%%def)processVer2ces<A>)()
))))))))work:)(VertexID))C>)A,)
))))))))ac2ve:)VertexSet,)
))))))))reduce:)(A,)A))C>)A,)
))))))C>)A;)
%%%%def)processEdges<A,)M>)()
))))))))sparseSignal:)(VertexID))C>)void,)
))))))))sparseSlot:)(VertexID,)M,)OutEdgeIterator<E>))C>)A,)
))))))))denseSignal:)(VertexID,)InEdgeIterator<E>))C>)void,)
))))))))denseSlot:)(VertexID,)M))C>)A,)
))))))))reduce:)(A,)A))C>)A,)
))))))))ac2ve:)VertexSet)
))))))C>)A;)
))))def)emit<M>)(recipient:)VertexID,)message:)M))C>)void;%
};)

//

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>,g,(…);,//,load,a,graph,from,the,file,system
VertexSet activeCurr =,g.allocVertexSet();
VertexSet activeNext =,g.allocVertexSet();
activeCurr.fill();,//,add,all,vertices,to,the,set
VertexID [],label,=,g.allocVertexArray <VertexID>,();
def add (VertexID a,,VertexID b),:,VertexID {
return(a,+,b;

}
def initialize,(VertexID v),:,VertexID {

label[v],=,v;
return 1;

}
VertexID activated,=,g.processVertices <VertexID>,(

initialize,
activeCurr

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v)4{
g.emit(v,4label[v]);

}

def CCSparseSlot (VertexID v,4VertexID msg,4OEI4iter)4:4VertexID
{

VertexID activated4=40;

while (iter.hasNext())4 {
VertexID dst =4iter.next().neighbour;

if (msg <4label[dst]4&&4atomicWriteMin(label[dst],4 msg))4 {
activeNext.add(dst);4//4add4‘dst’4 to4the4next4frontier

activated4+=41;

}

}

return activated;
}

def CCDenseSignal (VertexID v,4IEI4iter)4:4void4{
VertexIDmsg =4v;

while,(iter.hasNext())4 {
VertexID src =4iter.next().neighbour;

msg =4msg <4label[src]4?4msg :4label[src];

}

if (msg <4v)4g.emit(v,4msg);
}

def CCDenseSlot (VertexID v,4VertexIDmsg)4 :4VertexID {
if (msg <4label[v]4&&4atomicWriteMin(label[v],4msg))4 {
activeNext.add(v);4//4add4‘v’4to4the4next4frontier

return 1;
}

else4return 0;
}

while (activated>0)4{
activeNext.clear();4//4make4an4empty4vertex4set

activated4=4g.processEdges <VertexID,4VertexID>4(

CCSparseSignal,

CCSparseSlot,

CCDenseSignal,

CCDenseSlot,

activeCurr,

add

);

swap(activeCurr,4activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-

class%Graph<E>){
VertexID vertices;
EdgeID edges;
VertexID [])outDegree;
VertexID [])inDegree;
def allocVertexArray<V>())B>)V)[];
def allocVertexSet())B>)VertexSet;
def processVertices<A>)(

work:)(VertexID))B>)A,
active:)VertexSet,
reduce:)(A,)A))B>)A,

))B>)A;
def processEdges<A,)M>)(

sparseSignal:)(VertexID))B>)void,
sparseSlot:)(VertexID,)M,)OutEdgeIterator<E>))B>)A,
denseSignal:) (VertexID,)InEdgeIterator<E>))B>)void,
denseSlot:) (VertexID,)M))B>)A,
active:)VertexSet,
reduce:)(A,)A))B>)A

))B>)A;
def emit<M>)(recipient:)VertexID,)message:)M))B>)void;

};

//

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>,g,(…);,//,load,a,graph,from,the,file,system,,,,,,,,,s
VertexSet activeCurr =,g.allocVertexSet();
VertexSet activeNext =,g.allocVertexSet();
activeCurr.fill();,//,add,all,vertices,to,the,set
VertexID [],label,=,g.allocVertexArray <VertexID>,();
def add (VertexID a,,VertexID b),:,VertexID {
return(a,+,b;

}
def initialize,(VertexID v),:,VertexID {

label[v],=,v;
return 1;

}
VertexID activated,=,g.processVertices <VertexID>,(

initialize,
activeCurr,
add

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v) :5void5{
g.emit(v,5label[v]);

}

def CCSparseSlot (VertexID v,5VertexID msg,5OEI5iter)5:5VertexID
{

VertexID activated5=50;

while (iter.hasNext())5 {
VertexID dst =5iter.next().neighbour;

if (msg <5label[dst]5&&5atomicWriteMin(label[dst],5 msg))5 {
activeNext.add(dst);5//5add5‘dst’5 to5the5next5frontier

activated5+=51;

}

}

return activated;
}

def CCDenseSignal (VertexID v,5IEI5iter)5:5void5{
VertexIDmsg =5v;

while,(iter.hasNext())5 {
VertexID src =5iter.next().neighbour;

msg =5msg <5label[src]5?5msg :5label[src];

}

if (msg <5v)5g.emit(v,5msg);
}

def CCDenseSlot (VertexID v,5VertexIDmsg)5 :5VertexID {
if (msg <5label[v]5&&5atomicWriteMin(label[v],5msg))5 {
activeNext.add(v);5//5add5‘v’5to5the5next5frontier

return 1;
}

else return 0;
}

while (activated>0)5{
activeNext.clear();5//5make5an5empty5vertex5set

activated5=5g.processEdges <VertexID,5VertexID>5(

CCSparseSignal,

CCSparseSlot,

CCDenseSignal,

CCDenseSlot,

activeCurr,

add

);

swap(activeCurr,5activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-

USENIX Association 	 12th USENIX Symposium on Operating Systems Design and Implementation	 3

In the paper “Yak: A High-Performance Big-Data-Friendly Garbage Collector” by Khanh Nguyen, Lu Fang,
Guoqing Xu, and Brian Demsky; University of California, Irvine; Shan Lu, University of Chicago; Sanazsadat
Alamian, University of California, Irvine; Onur Mutlu, ETH Zurich (Thursday session, “Languages and Software
Engineering,” pp. 349-365 of the Proceedings), the following correction was made to Figure 10 (p. 360):

(a) Hyracks (c) GraphChi(b) Hadoop

0

5

10

15

20

25

0

200

400

600

800

1000

E
S

-P
S

E
S

-Y
ak

W
C

 -
PS

W
C

 -
Ya

k

D
G

 -
PS

D
G

 -
Ya

k

E
S

-P
S

E
S

-Y
ak

W
C

 -
PS

W
C

 -
Ya

k

D
G

 -
PS

D
G

 -
Ya

k

20GB Heap 24GB Heap

M
em

ory C
onsum

ption (G
B

)E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

0

2

4

6

8

10

0

200

400

600

800

1000

IC
 -

PS
IC

 -
Ya

k

T
S

-P
S

T
S

-Y
ak

D
F

-P
S

D
F

-Y
ak

IC
 -

PS
IC

 -
Ya

k

T
S

-P
S

T
S

-Y
ak

D
F

-P
S

D
F

-Y
ak

2GB Heap 3GB Heap

M
em

ory C
onsum

ption (G
B)E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

0

2

4

6

8

10

0

50

100

150

200

250

C
C

 -
PS

C
C

 -
Ya

k

C
D

 -
PS

C
D

 -
Ya

k

PR
 -

PS
PR

 -
Ya

k

C
C

 -
PS

C
C

 -
Ya

k

C
D

 -
PS

C
D

 -
Ya

k

PR
 -

PS
PR

 -
Ya

k

6GB Heap 8GB Heap

M
em

ory C
onsum

ption (G
B

)E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

Original:

(a) Hyracks (c) GraphChi(b) Hadoop

0

5

10

15

20

25

0

200

400

600

800

1000

E
S

-P
S

E
S

-Y
ak

W
C

 -
PS

W
C

 -
Ya

k

D
G

 -
PS

D
G

 -
Ya

k

E
S

-P
S

E
S

-Y
ak

W
C

 -
PS

W
C

 -
Ya

k

D
G

 -
PS

D
G

 -
Ya

k

20GB Heap 24GB Heap

M
em

ory C
onsum

ption (G
B)E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

0

2

4

6

8

10

0

50

100

150

200

250

C
C

 -
PS

C
C

 -
Ya

k

C
D

 -
PS

C
D

 -
Ya

k

PR
 -

PS
PR

 -
Ya

k

C
C

 -
PS

C
C

 -
Ya

k

C
D

 -
PS

C
D

 -
Ya

k

PR
 -

PS
PR

 -
Ya

k

6GB Heap 8GB Heap

M
em

ory C
onsum

ption (G
B

)E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

0

2

4

6

8

10

0

200

400

600

800

1000

IC
 -

PS
IC

 -
Ya

k

T
S

-P
S

T
S

-Y
ak

D
F

-P
S

D
F

-Y
ak

IC
 -

PS
IC

 -
Ya

k

T
S

-P
S

T
S

-Y
ak

D
F

-P
S

D
F

-Y
ak

2GB Heap 3GB Heap

M
em

ory C
onsum

ption (G
B

)E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

GC Time Region Deallocation Time
Computation Time Peak Memory

Programs

Corrected:

USENIX Association 	 12th USENIX Symposium on Operating Systems Design and Implementation	 4

For the paper “Consolidating Concurrency Control and Consensus for Commits under Conflicts by Shuai Mu and
Lamont Nelson, New York University; Wyatt Lloyd, University of Southern California; Jinyang Li, New York Uni-
versity (Thursday session, “Fault Tolerance and Consensus,” pp. 517–532 of the Proceedings):

The most up to date and preferred version of this paper is available at http://mpaxos.com/pub/janus-osdi16.pdf.
It contains corrections for minor typographic errors as well as changes in the prose and pseudocode for clarity. The
notable changes are itemized below:

Removed an unnecessary paragraph break in the Accept phase portion of section 3.2.

A formula in section 3.3 was updated to indicate when a recovery coordinator is guaranteed to observe conflicting
transactions dependencies. The formula was changed to
Extra prime symbols are added to clarify that they are not the same set.

Edited all psuedocode for clarity:

1. The conditions referencing reaching the ‘committing’ status as ‘committing’ were changed to ‘is committing’.

2. The Accept phase of Algorithm 1 is more concise; a reference to parallel message delivery was omitted.

3. Commented pseudocode in Algorithm 2 was removed.

4. The visual format of the psuedocode was adjusted to remove extra spacing.

5. Ballot number is better viewed as state associated with a dependency instead of state associated with status.
Therefore, it is extracted from the status as a separate eld.

6. Use ‘ ‘ instead of ‘=’ for assigning.

