
USENIX Association

October 6–8, 2014
Broomfield, CO

Proceedings of the 11th USENIX Symposium
on Operating Systems Design and

Implementation (OSDI ’14)

Conference Organizers

Program Co-Chairs
Jason Flinn, University of Michigan
Hank Levy, University of Washington

Program Committee
Lorenzo Alvisi, The University of Texas at Austin
Dave Andersen, Carnegie Mellon University
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Mihai Budiu, Microsoft Research
George Candea, École Polytechnique Fédérale de

Lausanne (EPFL)
Peter Chen, University of Michigan
Allen Clement, Google and Max Planck Institute for

Software Systems (MPI-SWS)
Landon Cox, Duke University
Nick Feamster, Georgia Institute of Technology
Bryan Ford, Yale University
Roxana Geambasu, Columbia University
Gernot Heiser, University of New South Wales

Australia/NICTA
M. Frans Kaashoek, MIT CSAIL
Ed Nightingale, Microsoft Research
Timothy Roscoe, ETH Zürich
Emin Gün Sirer, Cornell University
Doug Terry, Microsoft Research
Geoff Voelker, University of California, San Diego
Andrew Warfield, University of British Columbia
Emmett Witchel, The University of Texas at Austin
Junfeng Yang, Columbia University
Yuanyuan Zhou, University of California, San Diego
Willy Zwaenepoel, École Polytechnique Fédérale de

Lausanne (EPFL)

Poster Session Co-Chairs
Allen Clement, Google and Max Planck Institute for

Software Systems (MPI-SWS)
Roxana Geambasu, Columbia University

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison

Brad Chen, Google
Casey Henderson, USENIX
Brian Noble, University of Michigan
Margo Seltzer, Harvard School of Engineering and

Applied Sciences and Oracle
Chandu Thekkath, Microsoft Research Silicon Valley
Amin Vahdat, Google and University of California,

San Diego

External Review Committee
Atul Adya, Google
Emery Berger, University of Massachusetts
Luis Ceze, University of Washington
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Joseph Gonzalez, University of California, Berkeley
Andreas Haeberlen, University of Pennsylvania
Galen Hunt, Microsoft Research
Sam King, Twitter
Eddie Kohler, Harvard University
Ramakrishna Kotla, Microsoft Research
Jinyang Li, New York University
Wyatt Lloyd, Facebook and University of Southern

California
Shan Lu, University of Wisconsin—Madison
Jeff Mogul, Google
Satish Narayanasamy, University of Michigan
Jason Nieh, Columbia University
Vivek Pai, Princeton University
Rodrigo Rodrigues, CITI/NOVA University

of Lisbon
Bianca Schroeder, University of Toronto
Mike Swift, University of Wisconsin—Madison
Kaushik Veeraraghavan, Facebook
Hakim Weatherspoon, Cornell University
Matt Welsh, Google
John Wilkes, Google
Ding Yuan, University of Toronto
Nickolai Zeldovich, MIT CSAIL
Feng Zhao, Microsoft Research

External Reviewers
Radu Banabic
Julian Bangert
Pramod Bhatotia
Stefan Bucur
Haogang Chen
Vitaly Chipounov
Austin Clements
David Cock
Patrick Colp
Cody Cutler
Ricardo Dias
Pedro Fonseca
João Garcia
Qian Ge

Zhenyu Guo
Ji Hong
Anuj Kalia
Manos Kapritsos
Baris Kasikci
Volodymyr Kuznetsov
David Lazar
Geoffrey Lefebvre
João Leitão
Hyeontaek Lim
Yunxin Liu
Yandong Mao
Syed Akbar Mehdi
Dutch Meyer

Henrique Moniz
Iulian Moraru
Toby Murray
Mihir Nanavati
Neha Narula
Daniel Peek
Raluca Ada Popa
Daniel Porto
Dan Ports
Zhengping Qian
Shriram Rajagopalan
Franzi Roesner
Chunzhi Su
Philippe Suter

Stephen Tu
Jelle van den Hooff
Jonas Wagner
Xi Wang
Yang Wang
Ming Wu
Chao Xie
Fan Yang
Cristian Zamfir
Huanchen Zhang
Timmy Zhu

11th USENIX Symposium on
Operating Systems Design and Implementation

October 6–8, 2014
Broomfield, CO

Message from the Program Chair . ix

Monday, October 6, 2014
Who Put the Kernel in My OS Conference?
Arrakis: The Operating System is the Control Plane .1
Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, and Thomas Anderson,
University of Washington; Timothy Roscoe, ETH Zürich

Decoupling Cores, Kernels, and Operating Systems .17
Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe, ETH Zürich

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure .33
Xi Wang, David Lazar, Nickolai Zeldovich, and Adam Chlipala, MIT CSAIL; Zachary Tatlock, University
of Washington

IX: A Protected Dataplane Operating System for High Throughput and Low Latency 49
Adam Belay, Stanford University; George Prekas, École Polytechnique Fédérale de Lausanne (EPFL);
Ana Klimovic, Samuel Grossman, and Christos Kozyrakis, Stanford University; Edouard Bugnion, École
Polytechnique Fédérale de Lausanne (EPFL)

Data in the Abstract
Willow: A User-Programmable SSD .67
Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang Liu,
and Steven Swanson, University of California, San Diego

Physical Disentanglement in a Container-Based File System .81
Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin—Madison

Customizable and Extensible Deployment for Mobile/Cloud Applications .97
Irene Zhang, Adriana Szekeres, Dana Van Aken, and Isaac Ackerman, University of Washington; Steven D.
Gribble, Google and University of Washington; Arvind Krishnamurthy and Henry M. Levy, University of
Washington

Pebbles: Fine-Grained Data Management Abstractions for Modern Operating Systems 113
Riley Spahn and Jonathan Bell, Columbia University; Michael Lee, The University of Texas at Austin; Sravan
Bhamidipati, Roxana Geambasu, and Gail Kaiser, Columbia University

My Insecurities
Protecting Users by Confining JavaScript with COWL .131
Deian Stefan and Edward Z. Yang, Stanford University; Petr Marchenko, Google; Alejandro Russo, Chalmers
University of Technology; Dave Herman, Mozilla; Brad Karp, University College London; David Mazières,
Stanford University

Code-Pointer Integrity .147
Volodymyr Kuznetsov, École Polytechnique Fédérale de Lausanne (EPFL); László Szekeres, Stony Brook
University; Mathias Payer, Purdue University; George Candea, École Polytechnique Fédérale de Lausanne
(EPFL); R. Sekar, Stony Brook University; Dawn Song, University of California, Berkeley

(Monday, October 6, continues on next page)

Ironclad Apps: End-to-End Security via Automated Full-System Verification .165
Chris Hawblitzel, Jon Howell, and Jacob R. Lorch, Microsoft Research; Arjun Narayan, University
of Pennsylvania; Bryan Parno, Microsoft Research; Danfeng Zhang, Cornell University; Brian Zill,
Microsoft Research

Shill: A Secure Shell Scripting Language .183
Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong, Harvard University

Variety Pack
GPUnet: Networking Abstractions for GPU Programs .201
Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, and Emmett Witchel, The University of Texas at Austin;
Amir Wated and Mark Silberstein, Technion—Israel Institute of Technology

The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services 217
Michael Chow, University of Michigan; David Meisner, Facebook, Inc.; Jason Flinn, University of Michigan;
Daniel Peek, Facebook, Inc.; Thomas F. Wenisch, University of Michigan

End-to-end Performance Isolation Through Virtual Datacenters .233
Sebastian Angel, The University of Texas at Austin; Hitesh Ballani, Thomas Karagiannis, Greg O’Shea,
and Eno Thereska, Microsoft Research

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed 249
Data-Intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain,
and Michael Stumm, University of Toronto

Tuesday, October 7, 2014
Head in the Cloud
Shielding Applications from an Untrusted Cloud with Haven .267
Andrew Baumann, Marcus Peinado, and Galen Hunt, Microsoft Research

Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing .285
Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, and Jingren Zhou, Microsoft; Zhengping Qian, Ming Wu,
and Lidong Zhou, Microsoft Research

The Power of Choice in Data-Aware Cluster Scheduling .301
Shivaram Venkataraman and Aurojit Panda, University of California, Berkeley; Ganesh Ananthanarayanan,
Microsoft Research; Michael J. Franklin and Ion Stoica, University of California, Berkeley

Heading Off Correlated Failures through Independence-as-a-Service . 317
Ennan Zhai, Yale University; Ruichuan Chen, Bell Labs and Alcatel-Lucent; David Isaac Wolinsky and
Bryan Ford, Yale University

Storage Runs Hot and Cold
Characterizing Storage Workloads with Counter Stacks .335
Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and Andrew Warfield, Coho Data

Pelican: A Building Block for Exascale Cold Data Storage .351
Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul England, Adam Glass, Dave Harper, and
Sergey Legtchenko, Microsoft Research; Aaron Ogus, Microsoft; Eric Peterson and Antony Rowstron,
Microsoft Research

A Self-Configurable Geo-Replicated Cloud Storage System .367
Masoud Saeida Ardekani, INRIA and Sorbonne Universités; Douglas B. Terry, Microsoft Research

(Wednesday, October 8, continues on next page)

f4: Facebook’s Warm BLOB Storage System .383
Subramanian Muralidhar, Facebook, Inc.; Wyatt Lloyd, University of Southern California and Facebook, Inc.;
Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, and Viswanath Sivakumar,
Facebook, Inc.; Linpeng Tang, Princeton University and Facebook, Inc.; Sanjeev Kumar, Facebook, Inc.

Pest Control
SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems 399
Tanakorn Leesatapornwongsa and Mingzhe Hao, University of Chicago; Pallavi Joshi, NEC Labs America;
Jeffrey F. Lukman, Surya University; Haryadi S. Gunawi, University of Chicago

Ski: Exposing Kernel Concurrency Bugs through Systematic Schedule Exploration .415
Pedro Fonseca, Max Planck Institute for Software Systems (MPI-SWS); Rodrigo Rodrigues, CITI/NOVA
University of Lisbon; Björn B. Brandenburg, Max Planck Institute for Software Systems (MPI-SWS)

All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications 433
Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin–Madison

Torturing Databases for Fun and Profit .449
Mai Zheng, The Ohio State University; Joseph Tucek, HP Labs; Dachuan Huang and Feng Qin, The Ohio State
University; Mark Lillibridge, Elizabeth S. Yang, and Bill W. Zhao, HP Labs; Shashank Singh, The Ohio State
University

Transaction Action
Fast Databases with Fast Durability and Recovery Through Multicore Parallelism .465
Wenting Zheng and Stephen Tu, Massachusetts Institute of Technology; Eddie Kohler, Harvard University;
Barbara Liskov, Massachusetts Institute of Technology

Extracting More Concurrency from Distributed Transactions .479
Shuai Mu, Tsinghua University and New York University; Yang Cui and Yang Zhang, New York University;
Wyatt Lloyd, University of Southern California and Facebook, Inc.; Jinyang Li, New York University

Salt: Combining ACID and BASE in a Distributed Database .495
Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh, Lorenzo Alvisi, and Prince Mahajan,
The University of Texas at Austin

Phase Reconciliation for Contended In-Memory Transactions .511
Neha Narula and Cody Cutler, MIT CSAIL; Eddie Kohler, Harvard University; Robert Morris, MIT CSAIL

Wednesday, October 8, 2014
Play It Again, Sam
Eidetic Systems .525
David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen, University of Michigan

Detecting Covert Timing Channels with Time-Deterministic Replay .541
Ang Chen, University of Pennsylvania; W. Brad Moore, Georgetown University; Hanjun Xiao, Andreas
Haeberlen, and Linh Thi Xuan Phan, University of Pennsylvania; Micah Sherr and Wenchao Zhou, Georgetown
University

Identifying Information Disclosure in Web Applications with Retroactive Auditing .555
Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek, MIT CSAIL

Help Me Learn
Project Adam: Building an Efficient and Scalable Deep Learning Training System .571
Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman, Microsoft Research

Scaling Distributed Machine Learning with the Parameter Server .583
Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and Jun Woo Park, Carnegie Mellon
University; Alexander J. Smola, Carnegie Mellon University and Google, Inc.; Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

GraphX: Graph Processing in a Distributed Dataflow Framework .599
Joseph E. Gonzalez, University of California, Berkeley; Reynold S. Xin, University of California, Berkeley, and
Databricks; Ankur Dave, Daniel Crankshaw, and Michael J. Franklin, University of California, Berkeley; Ion
Stoica, University of California, Berkeley, and Databricks

Hammers and Saws
Nail: A Practical Tool for Parsing and Generating Data Formats .615
Julian Bangert and Nickolai Zeldovich, MIT CSAIL

lprof: A Non-intrusive Request Flow Profiler for Distributed Systems .629
Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan, and Michael Stumm,
University of Toronto

Pydron: Semi-Automatic Parallelization for Multi-Core and the Cloud .645
Stefan C. Müller, ETH Zürich and University of Applied Sciences Northwestern Switzerland; Gustavo Alonso
and Adam Amara, ETH Zürich; André Csillaghy, University of Applied Sciences Northwestern Switzerland

User-Guided Device Driver Synthesis .661
Leonid Ryzhyk, University of Toronto, NICTA, and University of New South Wales; Adam Walker, NICTA
and University of New South Wales; John Keys, Intel Corporation; Alexander Legg, NICTA and University of
New South Wales; Arun Raghunath, Intel Corporation; Michael Stumm, University of Toronto; Mona Vij, Intel
Corporation

Message from the
OSDI ’14 Program Co-Chairs

We are delighted to welcome you to the 11th USENIX Symposium on Operating Systems Design and Implementa-
tion. This year’s program contains 42 papers representing some of the best research from academia and industry in
the area of experimental systems.

This year, we received 228 submissions that met the formatting guidelines for the conference. We used three rounds
of review, followed by electronic discussion after each round, to evaluate the submissions. Eleven papers were
designated as “quick-accepts” based on reviews and electronic discussions. An additional 66 papers were discussed
during a day-and-a-half-long PC meeting of which 31 were selected for the program.

For the first time at OSDI, the submission process included a response period in which authors could answer
reviewer questions and address factual errors in the reviews. Responses had a measurable impact on PC meeting
discussions, helping some papers and hurting others. Overall, we believe responses were quite useful in improving
the fairness of the review process and the quality of the selected program.

From the beginning of the process, our goal was to increase the number of papers appearing at OSDI to approxi-
mately 40 accepted papers. As the chart below shows, the number of submissions to the conference has steadily
increased over the years, while the number of accepted papers has not kept pace. At the same time, flagship confer-
ences in related fields (architecture, networking, programming languages, etc.) have all substantially increased
the number of accepted papers. This harms our field in several ways: some of our top work does not appear at our
flagship conferences, our researchers are at a competitive disadvantage compared to researchers in other fields, and
the review process becomes excessively negative. We believe that the 42 papers in the final program reflect both
the overall strength and the breadth of research in our community.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) ix

0

50

100

150

200

250

1996 1999 2000 2002 2004 2006 2008 2010 2012 2014

Submitted

Accepted

We wish to thank the members of the program committee and the external review committee who produced 950
 reviews in approximately 2 months time. We especially thank the many members of the external review committee
who volunteered to do extra reviews when the number of submissions came in higher than we expected. We also
thank the external reviewers who helped with reviews and the USENIX staff who organized the conference.

Jason Flinn, University of Michigan
Hank Levy, University of Washington
OSDI ’14 Program Co-Chairs

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 1

Arrakis: The Operating System is the Control Plane

Simon Peter∗ Jialin Li∗ Irene Zhang∗ Dan R. K. Ports∗ Doug Woos∗

Arvind Krishnamurthy∗ Thomas Anderson∗ Timothy Roscoe†

University of Washington∗ ETH Zurich†

Abstract
Recent device hardware trends enable a new approach to
the design of network server operating systems. In a tra-
ditional operating system, the kernel mediates access to
device hardware by server applications, to enforce process
isolation as well as network and disk security. We have de-
signed and implemented a new operating system, Arrakis,
that splits the traditional role of the kernel in two. Applica-
tions have direct access to virtualized I/O devices, allowing
most I/O operations to skip the kernel entirely, while the
kernel is re-engineered to provide network and disk pro-
tection without kernel mediation of every operation. We
describe the hardware and software changes needed to
take advantage of this new abstraction, and we illustrate its
power by showing improvements of 2-5× in latency and
9× in throughput for a popular persistent NoSQL store
relative to a well-tuned Linux implementation.

1 Introduction
Reducing the overhead of the operating system process
abstraction has been a longstanding goal of systems design.
This issue has become particularly salient with modern
client-server computing. The combination of high speed
Ethernet and low latency persistent memories is consid-
erably raising the efficiency bar for I/O intensive software.
Many servers spend much of their time executing operating
system code: delivering interrupts, demultiplexing and
copying network packets, and maintaining file system
meta-data. Server applications often perform very simple
functions, such as key-value table lookup and storage, yet
traverse the OS kernel multiple times per client request.

These trends have led to a long line of research aimed
at optimizing kernel code paths for various use cases:
eliminating redundant copies in the kernel [45], reducing
the overhead for large numbers of connections [27],
protocol specialization [44], resource containers [8, 39],
direct transfers between disk and network buffers [45],
interrupt steering [46], system call batching [49], hardware
TCP acceleration, etc. Much of this has been adopted in
mainline commercial OSes, and yet it has been a losing
battle: we show that the Linux network and file system
stacks have latency and throughput many times worse than
that achieved by the raw hardware.

Twenty years ago, researchers proposed streamlining
packet handling for parallel computing over a network of
workstations by mapping the network hardware directly

into user space [19, 22, 54]. Although commercially
unsuccessful at the time, the virtualization market has now
led hardware vendors to revive the idea [6, 38, 48], and
also extend it to disks [52, 53].

This paper explores the OS implications of removing
the kernel from the data path for nearly all I/O operations.
We argue that doing this must provide applications with
the same security model as traditional designs; it is easy to
get good performance by extending the trusted computing
base to include application code, e.g., by allowing
applications unfiltered direct access to the network/disk.

We demonstrate that operating system protection is not
contradictory with high performance. For our prototype
implementation, a client request to the Redis persistent
NoSQL store has 2× better read latency, 5× better write la-
tency, and 9× better write throughput compared to Linux.

We make three specific contributions:

• We give an architecture for the division of labor between
the device hardware, kernel, and runtime for direct
network and disk I/O by unprivileged processes, and
we show how to efficiently emulate our model for I/O
devices that do not fully support virtualization (§3).

• We implement a prototype of our model as a set of
modifications to the open source Barrelfish operating
system, running on commercially available multi-core
computers and I/O device hardware (§3.8).

• We use our prototype to quantify the potential benefits
of user-level I/O for several widely used network
services, including a distributed object cache, Redis, an
IP-layer middlebox, and an HTTP load balancer (§4).
We show that significant gains are possible in terms of
both latency and scalability, relative to Linux, in many
cases without modifying the application programming
interface; additional gains are possible by changing the
POSIX API (§4.3).

2 Background
We first give a detailed breakdown of the OS and appli-
cation overheads in network and storage operations today,
followed by a discussion of current hardware technologies
that support user-level networking and I/O virtualization.

To analyze the sources of overhead, we record
timestamps at various stages of kernel and user-space pro-
cessing. Our experiments are conducted on a six machine
cluster consisting of 6-core Intel Xeon E5-2430 (Sandy
Bridge) systems at 2.2 GHz running Ubuntu Linux 13.04.

1

2 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Linux Arrakis

Receiver running CPU idle Arrakis/P Arrakis/N

Network stack in 1.26 (37.6%) 1.24 (20.0%) 0.32 (22.3%) 0.21 (55.3%)
out 1.05 (31.3%) 1.42 (22.9%) 0.27 (18.7%) 0.17 (44.7%)

Scheduler 0.17 (5.0%) 2.40 (38.8%) - -

Copy in 0.24 (7.1%) 0.25 (4.0%) 0.27 (18.7%) -
out 0.44 (13.2%) 0.55 (8.9%) 0.58 (40.3%) -

Kernel crossing return 0.10 (2.9%) 0.20 (3.3%) - -
syscall 0.10 (2.9%) 0.13 (2.1%) - -

Total 3.36 (σ =0.66) 6.19 (σ =0.82) 1.44 (σ <0.01) 0.38 (σ <0.01)

Table 1: Sources of packet processing overhead in Linux and Arrakis. All times are averages over 1,000 samples, given in µs (and
standard deviation for totals). Arrakis/P uses the POSIX interface, Arrakis/N uses the native Arrakis interface.

The systems have an Intel X520 (82599-based) 10Gb
Ethernet adapter and an Intel MegaRAID RS3DC040
RAID controller with 1GB of flash-backed DRAM in
front of a 100GB Intel DC S3700 SSD. All machines are
connected to a 10Gb Dell PowerConnect 8024F Ethernet
switch. One system (the server) executes the application
under scrutiny, while the others act as clients.

2.1 Networking Stack Overheads

Consider a UDP echo server implemented as a Linux
process. The server performs recvmsg and sendmsg
calls in a loop, with no application-level processing, so
it stresses packet processing in the OS. Figure 1 depicts
the typical workflow for such an application. As Table 1
shows, operating system overhead for packet processing
falls into four main categories.

• Network stack costs: packet processing at the
hardware, IP, and UDP layers.

• Scheduler overhead: waking up a process (if neces-
sary), selecting it to run, and context switching to it.

• Kernel crossings: from kernel to user space and back.
• Copying of packet data: from the kernel to a user

buffer on receive, and back on send.

Of the total 3.36 µs (see Table 1) spent processing each
packet in Linux, nearly 70% is spent in the network stack.
This work is mostly software demultiplexing, security
checks, and overhead due to indirection at various layers.
The kernel must validate the header of incoming packets
and perform security checks on arguments provided by
the application when it sends a packet. The stack also
performs checks at layer boundaries.

Scheduler overhead depends significantly on whether
the receiving process is currently running. If it is, only
5% of processing time is spent in the scheduler; if it is
not, the time to context-switch to the server process from
the idle process adds an extra 2.2 µs and a further 0.6 µs
slowdown in other parts of the network stack.

Cache and lock contention issues on multicore systems
add further overhead and are exacerbated by the fact that
incoming messages can be delivered on different queues
by the network card, causing them to be processed by dif-
ferent CPU cores—which may not be the same as the cores
on which the user-level process is scheduled, as depicted in
Figure 1. Advanced hardware support such as accelerated
receive flow steering [4] aims to mitigate this cost, but these
solutions themselves impose non-trivial setup costs [46].

By leveraging hardware support to remove kernel
mediation from the data plane, Arrakis can eliminate
certain categories of overhead entirely, and minimize the
effect of others. Table 1 also shows the corresponding
overhead for two variants of Arrakis. Arrakis eliminates
scheduling and kernel crossing overhead entirely, because
packets are delivered directly to user space. Network stack
processing is still required, of course, but it is greatly
simplified: it is no longer necessary to demultiplex packets
for different applications, and the user-level network
stack need not validate parameters provided by the user
as extensively as a kernel implementation must. Because
each application has a separate network stack, and packets
are delivered to cores where the application is running,
lock contention and cache effects are reduced.

In the Arrakis network stack, the time to copy packet
data to and from user-provided buffers dominates the
processing cost, a consequence of the mismatch between
the POSIX interface (Arrakis/P) and NIC packet queues.
Arriving data is first placed by the network hardware into a
network buffer and then copied into the location specified
by the POSIX read call. Data to be transmitted is moved
into a buffer that can be placed in the network hardware
queue; the POSIX write can then return, allowing the user
memory to be reused before the data is sent. Although
researchers have investigated ways to eliminate this copy
from kernel network stacks [45], as Table 1 shows, most
of the overhead for a kernel-resident network stack is
elsewhere. Once the overhead of traversing the kernel is

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 3

App

Core Core Core Kernel

NIC

Userspace

Incoming Q's Outgoing Q's

App

Figure 1: Linux networking architecture and workflow.

removed, there is an opportunity to rethink the POSIX API
for more streamlined networking. In addition to a POSIX
compatible interface, Arrakis provides a native interface
(Arrakis/N) which supports true zero-copy I/O.

2.2 Storage Stack Overheads

To illustrate the overhead of today’s OS storage stacks,
we conduct an experiment, where we execute small write
operations immediately followed by an fsync1 system call
in a tight loop of 10,000 iterations, measuring each oper-
ation’s latency. We store the file system on a RAM disk,
so the measured latencies represent purely CPU overhead.

The overheads shown in Figure 2 stem from data copy-
ing between user and kernel space, parameter and access
control checks, block and inode allocation, virtualization
(the VFS layer), snapshot maintenance (btrfs), as well as
metadata updates, in many cases via a journal [53].

While historically these CPU overheads have been
insignificant compared to disk access time, recent hard-
ware trends have drastically reduced common-case write
storage latency by introducing flash-backed DRAM onto
the device. In these systems, OS storage stack overhead
becomes a major factor. We measured average write
latency to our RAID cache to be 25 µs. PCIe-attached
flash storage adapters, like Fusion-IO’s ioDrive2, report
hardware access latencies as low as 15 µs [24]. In
comparison, OS storage stack overheads are high, adding
between 40% and 200% for the extended file systems,
depending on journal use, and up to 5× for btrfs. The large
standard deviation for btrfs stems from its highly threaded
design, used to flush non-critical file system metadata and
update reference counts in the background.

2.3 Application Overheads

What do these I/O stack overheads mean to operation
latencies within a typical datacenter application? Consider
the Redis [18] NoSQL store. Redis persists each write via
an operational log (called append-only file)2 and serves
reads from an in-memory data structure.

To serve a read, Redis performs a series of operations:
First, epoll is called to await data for reading, followed

1We also tried fdatasync, with negligible difference in latency.
2Redis also supports snapshot persistence because of the high

per-operation overhead imposed by Linux.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ext2 64B

ext2 1KB

ext3 64B

ext3 1KB

ext4 64B

ext4 1KB

btrfs 64B

btrfs 1KB

S
y
s
te

m
 c

a
ll

d
u
ra

ti
o
n
 [
u
s
]

write
fsync

Figure 2: Average overhead in µs of various Linux file system
implementations, when conducting small, persistent writes.
Error bars show standard deviation.

by recv to receive a request. After receiving, the (textual)
request is parsed and the key looked-up in memory. Once
found, a response is prepared and then, after epoll is
called again to check whether the socket is ready, sent
to the client via send. For writes, Redis additionally
marshals the operation into log format, writes the log
and waits for persistence (via the fsync call) before
responding. Redis also spends time in accounting, access
checks, and connection handling (Other row in Table 2).

Table 2 shows that a total of 76% of the latency in an
average read hit on Linux is due to socket operations.
In Arrakis, we reduce socket operation latency by 68%.
Similarly, 90% of the latency of a write on Linux is due to
I/O operations. In Arrakis we reduce I/O latency by 82%.

We can also see that Arrakis reduces some application-
level overheads. This is due to better cache behavior of the
user-level I/O stacks and the control/data plane separation
evading all kernel crossings. Arrakis’ write latency is still
dominated by storage access latency (25µs in our system).
We expect the gap between Linux and Arrakis performance
to widen as faster storage devices appear on the market.

2.4 Hardware I/O Virtualization

Single-Root I/O Virtualization (SR-IOV) [38] is a
hardware technology intended to support high-speed I/O
for multiple virtual machines sharing a single physical
machine. An SR-IOV-capable I/O adapter appears on the
PCIe interconnect as a single “physical function” (PCI
parlance for a device) which can in turn dynamically create
additional “virtual functions”. Each of these resembles a
PCI device, which can be directly mapped into a different
virtual machine and access can be protected via IOMMU
(e.g. Intel’s VT-d [34]). To the guest operating system,
each virtual function can be programmed as if it was
a regular physical device, with a normal device driver
and an unchanged I/O stack. Hypervisor software with
access to the physical hardware (such as Domain 0 in
a Xen [9] installation) creates and deletes these virtual
functions, and configures filters in the SR-IOV adapter
to demultiplex hardware operations to different virtual
functions and therefore different guest operating systems.

3

4 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Read hit Durable write

Linux Arrakis/P Linux Arrakis/P
epoll 2.42 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
Log marshaling - - 3.64 (2.23%) 2.43 (7.71%)
write - - 6.33 (3.88%) 0.10 (0.32%)
fsync - - 137.84 (84.49%) 24.26 (76.99%)
Prepare response 0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)
send 3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)
Other 0.55 (6.34%) 0.46 (11.30%) 2.12 (1.30%) 0.52 (1.65%)

Total 8.67 (σ =2.55) 4.07 (σ =0.44) 163.14 (σ =13.68) 31.51 (σ =1.91)
99th percentile 15.21 4.25 188.67 35.76

Table 2: Overheads in the Redis NoSQL store for memory reads (hits) and durable writes (legend in Table 1).

In Arrakis, we use SR-IOV, the IOMMU, and supporting
adapters to provide direct application-level access to I/O
devices. This is a modern implementation of an idea which
was implemented twenty years ago with U-Net [54], but
generalized to flash storage and Ethernet network adapters.
To make user-level I/O stacks tractable, we need a
hardware-independent device model and API that captures
the important features of SR-IOV adapters [31, 40, 41, 51];
a hardware-specific device driver matches our API to the
specifics of the particular device. We discuss this model
in the next section, along with potential improvements to
the existing hardware to better support user-level I/O.

Remote Direct Memory Access (RDMA) is another
popular model for user-level networking [48]. RDMA
gives applications the ability to read from or write to a
region of virtual memory on a remote machine directly
from user-space, bypassing the operating system kernel on
both sides. The intended use case is for a parallel program
to be able to directly read and modify its data structures
even when they are stored on remote machines.

While RDMA provides the performance benefits
of user-level networking to parallel applications, it is
challenging to apply the model to a broader class of client-
server applications [21]. Most importantly, RDMA is
point-to-point. Each participant receives an authenticator
providing it permission to remotely read/write a particular
region of memory. Since clients in client-server computing
are not mutually trusted, the hardware would need to keep
a separate region of memory for each active connection.
Therefore we do not consider RDMA operations here.

3 Design and Implementation
Arrakis has the following design goals:

• Minimize kernel involvement for data-plane opera-
tions: Arrakis is designed to limit or remove kernel me-
diation for most I/O operations. I/O requests are routed

to and from the application’s address space without
requiring kernel involvement and without sacrificing
security and isolation properties.

• Transparency to the application programmer: Ar-
rakis is designed to significantly improve performance
without requiring modifications to applications written
to the POSIX API. Additional performance gains are
possible if the developer can modify the application.

• Appropriate OS/hardware abstractions: Arrakis’ ab-
stractions should be sufficiently flexible to efficiently
support a broad range of I/O patterns, scale well on mul-
ticore systems, and support application requirements for
locality and load balance.

In this section, we show how we achieve these goals in
Arrakis. We describe an ideal set of hardware facilities that
should be present to take full advantage of this architecture,
and we detail the design of the control plane and data
plane interfaces that we provide to the application. Finally,
we describe our implementation of Arrakis based on the
Barrelfish operating system.

3.1 Architecture Overview

Arrakis targets I/O hardware with support for virtualiza-
tion, and Figure 3 shows the overall architecture. In this
paper, we focus on hardware that can present multiple
instances of itself to the operating system and the appli-
cations running on the node. For each of these virtualized
device instances, the underlying physical device provides
unique memory mapped register files, descriptor queues,
and interrupts, hence allowing the control plane to map
each device instance to a separate protection domain. The
device exports a management interface that is accessible
from the control plane in order to create or destroy vir-
tual device instances, associate individual instances with
network flows or storage areas, and allocate shared re-
sources to the different instances. Applications conduct I/O

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 5

App Control
Plane

Ke
rn

el

VNIC

U
se

rs
pa

ceApp

libos libos

VNIC

SwitchNIC
VSAVSA

Storage Controller

VSIC VSIC

VSA

Figure 3: Arrakis architecture. The storage controller maps
VSAs to physical storage.

through their protected virtual device instance without re-
quiring kernel intervention. In order to perform these oper-
ations, applications rely on a user-level I/O stack that is pro-
vided as a library. The user-level I/O stack can be tailored to
the application as it can assume exclusive access to a virtu-
alized device instance, allowing us to remove any features
not necessary for the application’s functionality. Finally,
(de-)multiplexing operations and security checks are not
needed in this dedicated environment and can be removed.

The user naming and protection model is unchanged.
A global naming system is provided by the control plane.
This is especially important for sharing stored data.
Applications implement their own storage, while the
control plane manages naming and coarse-grain allocation,
by associating each application with the directories and
files it manages. Other applications can still read those
files by indirecting through the kernel, which hands the
directory or read request to the appropriate application.

3.2 Hardware Model

A key element of our work is to develop a hardware-
independent layer for virtualized I/O—that is, a device
model providing an “ideal” set of hardware features.
This device model captures the functionality required
to implement in hardware the data plane operations of a
traditional kernel. Our model resembles what is already
provided by some hardware I/O adapters; we hope it will
provide guidance as to what is needed to support secure
user-level networking and storage.

In particular, we assume our network devices provide
support for virtualization by presenting themselves as
multiple virtual network interface cards (VNICs) and
that they can also multiplex/demultiplex packets based on
complex filter expressions, directly to queues that can be
managed entirely in user space without the need for kernel
intervention. Similarly, each storage controller exposes
multiple virtual storage interface controllers (VSICs)
in our model. Each VSIC provides independent storage
command queues (e.g., of SCSI or ATA format) that are
multiplexed by the hardware. Associated with each such
virtual interface card (VIC) are queues and rate limiters.

VNICs also provide filters and VSICs provide virtual
storage areas. We discuss these components below.

Queues: Each VIC contains multiple pairs of DMA
queues for user-space send and receive. The exact form
of these VIC queues could depend on the specifics of
the I/O interface card. For example, it could support a
scatter/gather interface to aggregate multiple physically-
disjoint memory regions into a single data transfer. For
NICs, it could also optionally support hardware checksum
offload and TCP segmentation facilities. These features
enable I/O to be handled more efficiently by performing
additional work in hardware. In such cases, the Arrakis
system offloads operations and further reduces overheads.

Transmit and receive filters: A transmit filter is a pred-
icate on network packet header fields that the hardware
will use to determine whether to send the packet or discard
it (possibly signaling an error either to the application or
the OS). The transmit filter prevents applications from
spoofing information such as IP addresses and VLAN
tags and thus eliminates kernel mediation to enforce these
security checks. It can also be used to limit an application
to communicate with only a pre-selected set of nodes.

A receive filter is a similar predicate that determines
which packets received from the network will be delivered
to a VNIC and to a specific queue associated with the target
VNIC. For example, a VNIC can be set up to receive all
packets sent to a particular port, so both connection setup
and data transfers can happen at user-level. Installation
of transmit and receive filters are privileged operations
performed via the kernel control plane.

Virtual storage areas: Storage controllers need to pro-
vide an interface via their physical function to map virtual
storage areas (VSAs) to extents of physical drives, and
associate them with VSICs. A typical VSA will be large
enough to allow the application to ignore the underlying
multiplexing—e.g., multiple erasure blocks on flash, or
cylinder groups on disk. An application can store multiple
sub-directories and files in a single VSA, providing precise
control over multi-object serialization constraints.

A VSA is thus a persistent segment [13]. Applications
reference blocks in the VSA using virtual offsets,
converted by hardware into physical storage locations. A
VSIC may have multiple VSAs, and each VSA may be
mapped into multiple VSICs for interprocess sharing.

Bandwidth allocators: This includes support for re-
source allocation mechanisms such as rate limiters and
pacing/traffic shaping of I/O. Once a frame has been
removed from a transmit rate-limited or paced queue, the
next time another frame could be fetched from that queue
is regulated by the rate limits and the inter-packet pacing
controls associated with the queue. Installation of these
controls are also privileged operations.

5

6 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In addition, we assume that the I/O device driver
supports an introspection interface allowing the control
plane to query for resource limits (e.g., the number of
queues) and check for the availability of hardware support
for I/O processing (e.g., checksumming or segmentation).

Network cards that support SR-IOV have the key
elements of this model: they allow the creation of multiple
VNICs that each may have multiple send and receive
queues, and support at least rudimentary transmit and
receive filters. Not all NICs provide the rich filtering seman-
tics we desire; for example, the Intel 82599 can filter only
based on source or destination MAC addresses and VLAN
tags, not arbitrary predicates on header fields. However,
this capability is within reach: some network cards (e.g.,
Solarflare 10Gb adapters) can already filter packets on all
header fields, and the hardware support required for more
general VNIC transmit and receive filtering is closely re-
lated to that used for techniques like Receive-Side Scaling,
which is ubiquitous in high-performance network cards.

Storage controllers have some parts of the technology
needed to provide the interface we describe. For example,
RAID adapters have a translation layer that is able
to provide virtual disks above physical extents, and
SSDs use a flash translation layer for wear-leveling.
SCSI host-bus adapters support SR-IOV technology for
virtualization [40, 41] and can expose multiple VSICs,
and the NVMe standard proposes multiple command
queues for scalability [35]. Only the required protection
mechanism is missing. We anticipate VSAs to be allocated
in large chunks and thus hardware protection mechanisms
can be coarse-grained and lightweight.

Finally, the number of hardware-supported VICs
might be limited. The 82599 [31] and SAS3008 [41]
support 64. This number is adequate with respect to the
capabilities of the rest of the hardware (e.g., the number
of CPU cores), but we expect it to rise. The PCI working
group has already ratified an addendum to SR-IOV that
increases the supported number of virtual functions to
2048. Bandwidth allocation within the 82599 is limited
to weighted round-robin scheduling and rate limiting of
each of the 128 transmit/receive queues. Recent research
has demonstrated that precise rate limiting in hardware
can scale to tens of thousands of traffic classes, enabling
sophisticated bandwidth allocation policies [47].

Arrakis currently assumes hardware that can filter
and demultiplex flows at a level (packet headers, etc.)
corresponding roughly to a traditional OS API, but no
higher. An open question is the extent to which hardware
that can filter on application-level properties (including
content) would provide additional performance benefits.

3.3 VSIC Emulation

To validate our model given limited support from storage
devices, we developed prototype VSIC support by

dedicating a processor core to emulate the functionality
we expect from hardware. The same technique can be used
to run Arrakis on systems without VNIC support.

To handle I/O requests from the OS, our RAID controller
provides one request and one response descriptor queue
of fixed size, implemented as circular buffers along with
a software-controlled register (PR) pointing to the head of
the request descriptor queue. Request descriptors (RQDs)
have a size of 256 bytes and contain a SCSI command, a
scatter-gather array of system memory ranges, and a target
logical disk number. The SCSI command specifies the type
of operation (read or write), total transfer size and on-disk
base logical block address (LBA). The scatter-gather array
specifies the request’s corresponding regions in system
memory. Response descriptors refer to completed RQDs
by their queue entry and contain a completion code. An
RQD can be reused only after its response is received.

We replicate this setup for each VSIC by allocating
queue pairs and register files of the same format in system
memory mapped into applications and to a dedicated
VSIC core. Like the 82599, we limit the maximum number
of VSICs to 64. In addition, the VSIC core keeps an
array of up to 4 VSA mappings for each VSIC that is
programmable only from the control plane. The mappings
contain the size of the VSA and an LBA offset within a
logical disk, effectively specifying an extent.

In the steady state, the VSIC core polls each VSIC’s
PR and the latest entry of the response queue of the
physical controller in a round-robin fashion. When
a new RQD is posted via PRi on VSIC i, the VSIC
core interprets the RQD’s logical disk number n as
a VSA mapping entry and checks whether the corre-
sponding transfer fits within that VSA’s boundaries (i.e.,
RQD.LBA + RQD.size ≤ VSAn.size). If so, the core
copies the RQD to the physical controller’s queue, adding
VSAn.offset to RQD.LBA, and sets an unused RQD field
to identify the corresponding RQD in the source VSIC
before updating the controller’s PR register. Upon a
response from the controller, the VSIC core copies the
response to the corresponding VSIC response queue.

We did not consider VSIC interrupts in our prototype.
They can be supported via inter-processor interrupts.
To support untrusted applications, our prototype has to
translate virtual addresses. This requires it to traverse appli-
cation page tables for each entry in an RQD’s scatter-gather
array. In a real system, the IOMMU carries out this task.

On a microbenchmark of 10,000 fixed size write opera-
tions of 1KB via a single VSIC to a single VSA, the average
overhead of the emulation is 3µs. Executing virtualization
code takes 1µs on the VSIC core; the other 2µs are due to
cache overheads that we did not quantify further. To mea-
sure the expected VSIC performance with direct hardware
support, we map the single RAID hardware VSIC directly
into the application memory; we report those results in §4.

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 7

3.4 Control Plane Interface

The interface between an application and the Arrakis
control plane is used to request resources from the system
and direct I/O flows to and from user programs. The
key abstractions presented by this interface are VICs,
doorbells, filters, VSAs, and rate specifiers.

An application can create and delete VICs, and associate
doorbells with particular events on particular VICs. A
doorbell is an IPC end-point used to notify the application
that an event (e.g. packet arrival or I/O completion) has
occurred, and is discussed below. VICs are hardware
resources and so Arrakis must allocate them among
applications according to an OS policy. Currently this
is done on a first-come-first-served basis, followed by
spilling to software emulation (§3.3).

Filters have a type (transmit or receive) and a predicate
which corresponds to a convex sub-volume of the
packet header space (for example, obtained with a set
of mask-and-compare operations). Filters can be used
to specify ranges of IP addresses and port numbers
associated with valid packets transmitted/received at each
VNIC. Filters are a better abstraction for our purposes
than a conventional connection identifier (such as a
TCP/IP 5-tuple), since they can encode a wider variety of
communication patterns, as well as subsuming traditional
port allocation and interface specification.

For example, in the “map” phase of a MapReduce job
we would like the application to send to, and receive from,
an entire class of machines using the same communication
end-point, but nevertheless isolate the data comprising the
shuffle from other data. As a second example, web servers
with a high rate of incoming TCP connections can run into
scalability problems processing connection requests [46].
In Arrakis, a single filter can safely express both a listening
socket and all subsequent connections to that socket,
allowing server-side TCP connection establishment to
avoid kernel mediation.

Applications create a filter with a control plane oper-
ation. In the common case, a simple higher-level wrapper
suffices: filter = create_filter(flags, peerlist, servicelist).
flags specifies the filter direction (transmit or receive)
and whether the filter refers to the Ethernet, IP, TCP, or
UDP header. peerlist is a list of accepted communication
peers specified according to the filter type, and servicelist
contains a list of accepted service addresses (e.g., port
numbers) for the filter. Wildcards are permitted.

The call to create_filter returns filter, a kernel-
protected capability conferring authority to send or
receive packets matching its predicate, and which can
then be assigned to a specific queue on a VNIC. VSAs are
acquired and assigned to VSICs in a similar fashion.

Finally, a rate specifier can also be assigned to a queue,
either to throttle incoming traffic (in the network receive
case) or pace outgoing packets and I/O requests. Rate

specifiers and filters associated with a VIC queue can
be updated dynamically, but all such updates require
mediation from the Arrakis control plane.

Our network filters are less expressive than OpenFlow
matching tables, in that they do not support priority-based
overlapping matches. This is a deliberate choice based on
hardware capabilities: NICs today only support simple
matching, and to support priorities in the API would lead
to unpredictable consumption of hardware resources
below the abstraction. Our philosophy is therefore to
support expressing such policies only when the hardware
can implement them efficiently.

3.5 File Name Lookup

A design principle in Arrakis is to separate file naming
from implementation. In a traditional system, the fully-
qualified filename specifies the file system used to store
the file and thus its metadata format. To work around this,
many applications build their own metadata indirection
inside the file abstraction [28]. Instead, Arrakis provides
applications direct control over VSA storage allocation:
an application is free to use its VSA to store metadata,
directories, and file data. To allow other applications ac-
cess to its data, an application can export file and directory
names to the kernel virtual file system (VFS). To the rest of
the VFS, an application-managed file or directory appears
like a remote mount point—an indirection to a file system
implemented elsewhere. Operations within the file or
directory are handled locally, without kernel intervention.

Other applications can gain access to these files in three
ways. By default, the Arrakis application library managing
the VSA exports a file server interface; other applications
can use normal POSIX API calls via user-level RPC to the
embedded library file server. This library can also run as
a standalone process to provide access when the original
application is not active. Just like a regular mounted file
system, the library needs to implement only functionality
required for file access on its VSA and may choose to skip
any POSIX features that it does not directly support.

Second, VSAs can be mapped into multiple processes.
If an application, like a virus checker or backup system,
has both permission to read the application’s metadata and
the appropriate library support, it can directly access the
file data in the VSA. In this case, access control is done
for the entire VSA and not per file or directory. Finally,
the user can direct the originating application to export
its data into a standard format, such as a PDF file, stored
as a normal file in the kernel-provided file system.

The combination of VFS and library code implement
POSIX semantics seamlessly. For example, if execute
rights are revoked from a directory, the VFS prevents
future traversal of that directory’s subtree, but existing
RPC connections to parts of the subtree may remain intact
until closed. This is akin to a POSIX process retaining a

7

8 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

subdirectory as the current working directory—relative
traversals are still permitted.

3.6 Network Data Plane Interface

In Arrakis, applications send and receive network packets
by directly communicating with hardware. The data
plane interface is therefore implemented in an application
library, allowing it to be co-designed with the application
[43]. The Arrakis library provides two interfaces to
applications. We describe the native Arrakis interface,
which departs slightly from the POSIX standard to
support true zero-copy I/O; Arrakis also provides a POSIX
compatibility layer that supports unmodified applications.

Applications send and receive packets on queues, which
have previously been assigned filters as described above.
While filters can include IP, TCP, and UDP field predicates,
Arrakis does not require the hardware to perform protocol
processing, only multiplexing. In our implementation, Ar-
rakis provides a user-space network stack above the data
plane interface. This stack is designed to maximize both
latency and throughput. We maintain a clean separation be-
tween three aspects of packet transmission and reception.

Firstly, packets are transferred asynchronously between
the network and main memory using conventional DMA
techniques using rings of packet buffer descriptors.

Secondly, the application transfers ownership of a trans-
mit packet to the network hardware by enqueuing a chain
of buffers onto the hardware descriptor rings, and acquires
a received packet by the reverse process. This is performed
by two VNIC driver functions. send_packet(queue,
packet_array) sends a packet on a queue; the packet is
specified by the scatter-gather array packet_array, and
must conform to a filter already associated with the queue.
receive_packet(queue) = packet receives a packet from
a queue and returns a pointer to it. Both operations are
asynchronous. packet_done(packet) returns ownership
of a received packet to the VNIC.

For optimal performance, the Arrakis stack would in-
teract with the hardware queues not through these calls but
directly via compiler-generated, optimized code tailored to
the NIC descriptor format. However, the implementation
we report on in this paper uses function calls to the driver.

Thirdly, we handle asynchronous notification of events
using doorbells associated with queues. Doorbells are
delivered directly from hardware to user programs via
hardware virtualized interrupts when applications are
running and via the control plane to invoke the scheduler
when applications are not running. In the latter case,
higher latency is tolerable. Doorbells are exposed to
Arrakis programs via regular event delivery mechanisms
(e.g., a file descriptor event) and are fully integrated
with existing I/O multiplexing interfaces (e.g., select).
They are useful both to notify an application of general
availability of packets in receive queues, as well as a

lightweight notification mechanism for I/O completion
and the reception of packets in high-priority queues.

This design results in a protocol stack that decouples
hardware from software as much as possible using the
descriptor rings as a buffer, maximizing throughput and
minimizing overhead under high packet rates, yielding low
latency. On top of this native interface, Arrakis provides
POSIX-compatible sockets. This compatibility layer
allows Arrakis to support unmodified Linux applications.
However, we show that performance gains can be achieved
by using the asynchronous native interface.

3.7 Storage Data Plane Interface

The low-level storage API provides a set of commands
to asynchronously read, write, and flush hardware caches
at any offset and of arbitrary size in a VSA via a command
queue in the associated VSIC. To do so, the caller provides
an array of virtual memory ranges (address and size)
in RAM to be read/written, the VSA identifier, queue
number, and matching array of ranges (offset and size)
within the VSA. The implementation enqueues the
corresponding commands to the VSIC, coalescing and
reordering commands if this makes sense to the underlying
media. I/O completion events are reported using doorbells.
On top of this, a POSIX-compliant file system is provided.

We have also designed a library of persistent data struc-
tures, Caladan, to take advantage of low-latency storage
devices. Persistent data structures can be more efficient
than a simple read/write interface provided by file systems.
Their drawback is a lack of backwards-compatibility to the
POSIX API. Our design goals for persistent data structures
are that (1) operations are immediately persistent, (2) the
structure is robust versus crash failures, and (3) operations
have minimal latency.

We have designed persistent log and queue data
structures according to these goals and modified a number
of applications to use them (e.g., §4.4). These data
structures manage all metadata required for persistence,
which allows tailoring of that data to reduce latency. For
example, metadata can be allocated along with each data
structure entry and persisted in a single hardware write
operation. For the log and queue, the only metadata that
needs to be kept is where they start and end. Pointers
link entries to accommodate wrap-arounds and holes,
optimizing for linear access and efficient prefetch of
entries. By contrast, a filesystem typically has separate
inodes to manage block allocation. The in-memory layout
of Caladan structures is as stored, eliminating marshaling.

The log API includes operations to open and close a log,
create log entries (for metadata allocation), append them to
the log (for persistence), iterate through the log (for read-
ing), and trim the log. The queue API adds apop operation
to combine trimming and reading the queue. Persistence
is asynchronous: an append operation returns immediately

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 9

with a callback on persistence. This allows us to mask
remaining write latencies, e.g., by optimistically preparing
network responses to clients, while an entry is persisted.

Entries are allocated in multiples of the storage
hardware’s minimum transfer unit (MTU—512 bytes
for our RAID controller, based on SCSI) and contain a
header that denotes the true (byte-granularity) size of the
entry and points to the offset of the next entry in a VSA.
This allows entries to be written directly from memory,
without additional marshaling. At the end of each entry
is a marker that is used to determine whether an entry
was fully written (empty VSA space is always zero). By
issuing appropriate cache flush commands to the storage
hardware, Caladan ensures that markers are written after
the rest of the entry (cf. [17]).

Both data structures are identified by a header at the
beginning of the VSA that contains a version number, the
number of entries, the MTU of the storage device, and a
pointer to the beginning and end of the structure within the
VSA. Caladan repairs a corrupted or outdated header lazily
in the background upon opening, by looking for additional,
complete entries from the purported end of the structure.

3.8 Implementation

The Arrakis operating system is based upon a fork of the
Barrelfish [10] multicore OS code base [1]. We added
33,786 lines of code to the Barrelfish code base in order
to implement Arrakis. Barrelfish lends itself well to our
approach, as it already provides a library OS. We could
have also chosen to base Arrakis on the Xen [9] hypervisor
or the Intel Data Plane Development Kit (DPDK) [32]
running on Linux; both provide user-level access to the
network interface via hardware virtualization. However,
implementing a library OS from scratch on top of a
monolithic OS would have been more time consuming
than extending the Barrelfish library OS.

We extended Barrelfish with support for SR-IOV, which
required modifying the existing PCI device manager to rec-
ognize and handle SR-IOV extended PCI capabilities. We
implemented a physical function driver for the Intel 82599
10G Ethernet Adapter [31] that can initialize and manage
a number of virtual functions. We also implemented a
virtual function driver for the 82599, including support for
Extended Message Signaled Interrupts (MSI-X), which are
used to deliver per-VNIC doorbell events to applications.
Finally, we implemented drivers for the Intel IOMMU [34]
and the Intel RS3 family of RAID controllers [33]. In
addition—to support our benchmark applications—we
added several POSIX APIs that were not implemented in
the Barrelfish code base, such as POSIX threads, many
functions of the POSIX sockets API, as well as the epoll
interface found in Linux to allow scalable polling of a large
number of file descriptors. Barrelfish already supports
standalone user-mode device drivers, akin to those found

in microkernels. We created shared library versions of the
drivers, which we link to each application.

We have developed our own user-level network stack,
Extaris. Extaris is a shared library that interfaces directly
with the virtual function device driver and provides the
POSIX sockets API and Arrakis’s native API to the
application. Extaris is based in part on the low-level
packet processing code of the lwIP network stack [42]. It
has identical capabilities to lwIP, but supports hardware
offload of layer 3 and 4 checksum operations and does
not require any synchronization points or serialization
of packet operations. We have also developed our own
storage API layer, as described in §3.7 and our library of
persistent data structures, Caladan.

3.9 Limitations and Future Work

Due to the limited filtering support of the 82599 NIC,
our implementation uses a different MAC address for
each VNIC, which we use to direct flows to applications
and then do more fine-grain filtering in software, within
applications. The availability of more general-purpose
filters would eliminate this software overhead.

Our implementation of the virtual function driver
does not currently support the “transmit descriptor head
writeback” feature of the 82599, which reduces the
number of PCI bus transactions necessary for transmit
operations. We expect to see a 5% network performance
improvement from adding this support.

The RS3 RAID controller we used in our experiments
does not support SR-IOV or VSAs. Hence, we use its
physical function, which provides one hardware queue,
and we map a VSA to each logical disk provided by the
controller. We still use the IOMMU for protected access
to application virtual memory, but the controller does not
protect access to logical disks based on capabilities. Our
experience with the 82599 suggests that hardware I/O
virtualization incurs negligible performance overhead
versus direct access to the physical function. We expect
this to be similar for storage controllers.

4 Evaluation
We evaluate Arrakis on four cloud application workloads:
a typical, read-heavy load pattern observed in many large
deployments of the memcached distributed object caching
system, a write-heavy load pattern to the Redis persistent
NoSQL store, a workload consisting of a large number
of individual client HTTP requests made to a farm of
web servers via an HTTP load balancer and, finally, the
same benchmark via an IP-layer middlebox. We also
examine the system under maximum load in a series of
microbenchmarks and analyze performance crosstalk
among multiple networked applications. Using these
experiments, we seek to answer the following questions:

9

10 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

• What are the major contributors to performance
overhead in Arrakis and how do they compare to those
of Linux (presented in §2)?

• Does Arrakis provide better latency and throughput
for real-world cloud applications? How does the
throughput scale with the number of CPU cores for
these workloads?

• Can Arrakis retain the benefits of user-level application
execution and kernel enforcement, while providing
high-performance packet-level network IO?

• What additional performance gains are possible by
departing from the POSIX interface?

We compare the performance of the following OS
configurations: Linux kernel version 3.8 (Ubuntu version
13.04), Arrakis using the POSIX interface (Arrakis/P),
and Arrakis using its native interface (Arrakis/N).

We tuned Linux network performance by installing the
latest ixgbe device driver version 3.17.3 and disabling
receive side scaling (RSS) when applications execute on
only one processor. RSS spreads packets over several NIC
receive queues, but incurs needless coherence overhead on
a single core. The changes yield a throughput improvement
of 10% over non-tuned Linux. We use the kernel-shipped
MegaRAID driver version 6.600.18.00-rc1.

Linux uses a number of performance-enhancing
features of the network hardware, which Arrakis does
not currently support. Among these features is the use
of direct processor cache access by the NIC, TCP and
UDP segmentation offload, large receive offload, and
network packet header splitting. All of these features
can be implemented in Arrakis; thus, our performance
comparison is weighted in favor of Linux.

4.1 Server-side Packet Processing Performance

We load the UDP echo benchmark from §2 on the server
and use all other machines in the cluster as load generators.
These generate 1 KB UDP packets at a fixed rate and record
the rate at which their echoes arrive. Each experiment
exposes the server to maximum load for 20 seconds.

Shown in Table 1, compared to Linux, Arrakis elimi-
nates two system calls, software demultiplexing overhead,
socket buffer locks, and security checks. In Arrakis/N, we
additionally eliminate two socket buffer copies. Arrakis/P
incurs a total server-side overhead of 1.44 µs, 57% less
than Linux. Arrakis/N reduces this overhead to 0.38 µs.

The echo server is able to add a configurable delay
before sending back each packet. We use this delay to
simulate additional application-level processing time at
the server. Figure 4 shows the average throughput attained
by each system over various such delays; the theoretical
line rate is 1.26M pps with zero processing.

In the best case (no additional processing time),
Arrakis/P achieves 2.3× the throughput of Linux. By

 0

 200

 400

 600

 800

 1000

 1200

0 1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
[k

 p
a

c
k
e

ts
 /

 s
]

Processing time [us]

Linux
Arrakis/P
Arrakis/N

Driver

Figure 4: Average UDP echo throughput for packets with 1024
byte payload over various processing times. The top y-axis value
shows theoretical maximum throughput on the 10G network.
Error bars in this and following figures show min/max measured
over 5 repeats of the experiment.

departing from POSIX, Arrakis/N achieves 3.9× the
throughput of Linux. The relative benefit of Arrakis
disappears at 64 µs. To gauge how close Arrakis comes
to the maximum possible throughput, we embedded a
minimal echo server directly into the NIC device driver,
eliminating any remaining API overhead. Arrakis/N
achieves 94% of the driver limit.

4.2 Memcached Key-Value Store

Memcached is an in-memory key-value store used by
many cloud applications. It incurs a processing overhead
of 2–3 µs for an average object fetch request, comparable
to the overhead of OS kernel network processing.

We benchmark memcached 1.4.15 by sending it
requests at a constant rate via its binary UDP protocol,
using a tool similar to the popular memslap benchmark [2].
We configure a workload pattern of 90% fetch and 10%
store requests on a pre-generated range of 128 different
keys of a fixed size of 64 bytes and a value size of 1 KB,
in line with real cloud deployments [7].

To measure network stack scalability for multiple cores,
we vary the number of memcached server processes. Each
server process executes independently on its own port
number, such that measurements are not impacted by scal-
ability bottlenecks in memcached itself, and we distribute
load equally among the available memcached instances.
On Linux, memcached processes share the kernel-level
network stack. On Arrakis, each process obtains its own
VNIC with an independent set of packet queues, each
controlled by an independent instance of Extaris.

Figure 5 shows that memcached on Arrakis/P achieves
1.7× the throughput of Linux on one core, and attains near
line-rate at 4 CPU cores. The slightly lower throughput
on all 6 cores is due to contention with Barrelfish
system management processes [10]. By contrast, Linux
throughput nearly plateaus beyond two cores. A single,
multi-threaded memcached instance shows no noticeable
throughput difference to the multi-process scenario. This
is not surprising as memcached is optimized to scale well.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 11

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 6T
h

ro
u

g
h

p
u

t
[k

 t
ra

n
s
a

c
ti
o

n
s
 /
 s

]

Number of CPU cores

Linux threads
Linux procs

Arrakis/P

Figure 5: Average memcached transaction throughput and
scalability. Top y-axis value = 10Gb/s.

To conclude, the separation of network stack and appli-
cation in Linux provides only limited information about
the application’s packet processing and poses difficulty as-
signing threads to the right CPU core. The resulting cache
misses and socket lock contention are responsible for much
of the Linux overhead. In Arrakis, the application is in con-
trol of the whole packet processing flow: assignment of
packets to packet queues, packet queues to cores, and fi-
nally the scheduling of its own threads on these cores. The
network stack thus does not need to acquire any locks, and
packet data is always available in the right processor cache.

Memcached is also an excellent example of the com-
munication endpoint abstraction: we can create hardware
filters to allow packet reception and transmission only
between the memcached server and a designated list of
client machines that are part of the cloud application. In the
Linux case, we have to filter connections in the application.

4.3 Arrakis Native Interface Case Study

As a case study, we modified memcached to make use
of Arrakis/N. In total, 74 lines of code were changed,
with 11 pertaining to the receive side, and 63 to the send
side. On the receive side, the changes involve eliminating
memcached’s receive buffer and working directly with
pointers to packet buffers provided by Extaris, as well
as returning completed buffers to Extaris. The changes
increase average throughput by 9% over Arrakis/P. On the
send side, changes include allocating a number of send
buffers to allow buffering of responses until fully sent
by the NIC, which now must be done within memcached
itself. They also involve the addition of reference counts
to hash table entries and send buffers to determine when
it is safe to reuse buffers and hash table entries that might
otherwise still be processed by the NIC. We gain an
additional 10% average throughput when using the send
side API in addition to the receive side API.

4.4 Redis NoSQL Store

Redis [18] extends the memcached model from a cache
to a persistent NoSQL object store. Our results in Table 2
show that Redis operations—while more laborious than
Memcached—are still dominated by I/O stack overheads.

 0

 50

 100

 150

 200

 250

 300

GET SETT
h

ro
u

g
h

p
u

t
[k

 t
ra

n
s
a

c
ti
o

n
s
 /
 s

]

Linux
Arrakis/P

Arrakis/P [15us]
Linux/Caladan

Figure 6: Average Redis transaction throughput for GET and
SET operations. The Arrakis/P [15us] and Linux/Caladan
configurations apply only to SET operations.

Redis can be used in the same scenario as Memcached
and we follow an identical experiment setup, using Redis
version 2.8.5. We use the benchmarking tool distributed
with Redis and configure it to execute GET and SET
requests in two separate benchmarks to a range of 65,536
random keys with a value size of 1,024 bytes, persisting
each SET operation individually, with a total concurrency
of 1,600 connections from 16 benchmark clients executing
on the client machines. Redis is single-threaded, so we
investigate only single-core performance.

The Arrakis version of Redis uses Caladan. We changed
109 lines in the application to manage and exchange
records with the Caladan log instead of a file. We did not
eliminate Redis’ marshaling overhead (cf. Table 2). If we
did, we would save another 2.43 µs of write latency. Due
to the fast I/O stacks, Redis’ read performance mirrors that
of Memcached and write latency improves by 63%, while
write throughput improves vastly, by 9×.

To investigate what would happen if we had access
to state-of-the-art storage hardware, we simulate (via a
write-delaying RAM disk) a storage backend with 15 µs
write latency, such as the ioDrive2 [24]. Write throughput
improves by another 1.6×, nearing Linux read throughput.

Both network and disk virtualization is needed for good
Redis performance. We tested this by porting Caladan to
run on Linux, with the unmodified Linux network stack.
This improved write throughput by only 5× compared to
Linux, compared to 9× on Arrakis.

Together, the combination of data-plane network and
storage stacks can yield large benefits in latency and
throughput for both read and write-heavy workloads.
The tight integration of storage and data structure in
Caladan allows for a number of latency-saving techniques
that eliminate marshaling overhead, book-keeping of
journals for file system metadata, and can offset storage
allocation overhead. These benefits will increase further
with upcoming hardware improvements.

4.5 HTTP Load Balancer

To aid scalability of web services, HTTP load balancers
are often deployed to distribute client load over a number

11

12 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 6T
h

ro
u

g
h

p
u

t
[k

 t
ra

n
s
a

c
ti
o

n
s
 /
 s

]

Number of CPU cores

Linux
Linux (SEPOLL)

Arrakis/P

Figure 7: Average HTTP transaction throughput and scalability
of haproxy.

of web servers. A popular HTTP load balancer employed
by many web and cloud services, such as Amazon EC2 and
Twitter, is haproxy [3]. In these settings, many connections
are constantly opened and closed and the OS needs to
handle the creation and deletion of the associated socket
data structures.

To investigate how performance is impacted when many
connections need to be maintained, we configure five
web servers and one load balancer. To minimize overhead
at the web servers, we deploy a simple static web page
of 1,024 bytes, served out of main memory.These same
web server hosts also serve as workload generators, using
ApacheBench version 2.3 to conduct as many concurrent
requests for the web page as possible. Each request is
encapsulated in its own TCP connection. On the load bal-
ancer host, we deploy haproxy version 1.4.24, configured
to distribute incoming load in a round-robin fashion. We
run multiple copies of the haproxy process on the load
balancing node, each executing on their own port number.
We configure the ApacheBench instances to distribute
their load equally among the available haproxy instances.

Haproxy relies on cookies, which it inserts into the
HTTP stream to remember connection assignments to
backend web servers under possible client re-connects.
This requires it to interpret the HTTP stream for each
client request. Linux provides an optimization called TCP
splicing that allows applications to forward traffic between
two sockets without user-space involvement. This reduces
the overhead of kernel crossings when connections are
long-lived. We enable haproxy to use this feature on Linux
when beneficial.

Finally, haproxy contains a feature known as “spec-
ulative epoll” (SEPOLL), which uses knowledge about
typical socket operation flows within the Linux kernel to
avoid calls to the epoll interface and optimize performance.
Since the Extaris implementation differs from that of the
Linux kernel network stack, we were not able to use this
interface on Arrakis, but speculate that this feature could be
ported to Arrakis to yield similar performance benefits. To
show the effect of the SEPOLL feature, we repeat the Linux
benchmark both with and without it and show both results.

 0

 50

 100

 150

 200

 250

1 2 4T
h

ro
u

g
h

p
u

t
[k

 t
ra

n
s
a

c
ti
o

n
s
 /
 s

]

Number of CPU cores

Linux
Arrakis/P

Figure 8: Average HTTP transaction throughput and scalability
of the load balancing middlebox. Top y-axis value = 10Gb/s.

In Figure 7, we can see that Arrakis outperforms Linux in
both regular and SEPOLL configurations on a single core,
by a factor of 2.2 and 2, respectively. Both systems show
similar scalability curves. Note that Arrakis’s performance
on 6 CPUs is affected by background activity on Barrelfish.

To conclude, connection oriented workloads require
a higher number of system calls for setup (accept and
setsockopt) and teardown (close). In Arrakis, we
can use filters, which require only one control plane
interaction to specify which clients and servers may
communicate with the load balancer service. Further
socket operations are reduced to function calls in the
library OS, with lower overhead.

4.6 IP-layer Middlebox

IP-layer middleboxes are ubiquitous in today’s wide area
networks (WANs). Common middleboxes perform tasks,
such as firewalling, intrusion detection, network address
translation, and load balancing. Due to the complexity of
their tasks, middleboxes can benefit from the programming
and run-time convenience provided by an OS through its
abstractions for safety and resource management.

We implemented a simple user-level load balancing
middlebox using raw IP sockets [5]. Just like haproxy,
the middlebox balances an incoming TCP workload to
a set of back-end servers. Unlike haproxy, it is operating
completely transparently to the higher layer protocols.
It simply rewrites source and destination IP addresses
and TCP port numbers contained in the packet headers.
It monitors active TCP connections and uses a hash table
to remember existing connection assignments. Responses
by the back-end web servers are also intercepted and
forwarded back to the corresponding clients. This is
sufficient to provide the same load balancing capabilities
as in the haproxy experiment. We repeat the experiment
from §4.5, replacing haproxy with our middlebox.

The simpler nature of the middlebox is reflected in the
throughput results (see Figure 8). Both Linux and Arrakis
perform better. Because the middlebox performs less
application-level work than haproxy, performance factors
are largely due to OS-level network packet processing.
As a consequence, Arrakis’ benefits are more prominent,

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 13

 0

 200

 400

 600

 800

 1000

 1200

 1400

Arrakis/P Linux Arrakis/P LinuxT
h
ro

u
g
h
p
u
t
[k

 t
ra

n
s
a
c
ti
o
n
s
 /
 s

]

 No limit 100Mbit/s limit

Figure 9: Memcached transaction throughput over 5 instances
(colors), with and without rate limiting.

and its performance is 2.6× that of Linux. We also see
an interesting effect: the Linux implementation does not
scale at all in this configuration. The reason for this are
the raw IP sockets, which carry no connection information.
Without an indication of which connections to steer to
which sockets, each middlebox instance has to look at each
incoming packet to determine whether it should handle it.
This added overhead outweighs any performance gained
via parallelism. In Arrakis, we can configure the hardware
filters to steer packets based on packet header information
and thus scale until we quickly hit the NIC throughput
limit at two cores.

We conclude that Arrakis allows us to retain the safety,
abstraction, and management benefits of software develop-
ment at user-level, while vastly improving the performance
of low level packet operations. Filters provide a versatile
interface to steer packet workloads based on arbitrary
information stored in packet headers to effectively leverage
multi-core parallelism, regardless of protocol specifics.

4.7 Performance Isolation

We show that QoS limits can be enforced in Arrakis,
by simulating a simple multi-tenant scenario with 5
memcached instances pinned to distinct cores, to minimize
processor crosstalk. One tenant has an SLA that allows
it to send up to 100Mb/s. The other tenants are not limited.

We use rate specifiers in Arrakis to set the transmit rate
limit of the VNIC of the limited process. On Linux, we
use queuing disciplines [29] (specifically, HTB [20]) to
rate limit the source port of the equivalent process.

We repeat the experiment from §4.2, plotting the
throughput achieved by each memcached instance, shown
in Figure 9. The bottom-most process (barely visible) is
rate-limited to 100Mb/s in the experiment shown on the
right hand side of the figure. All runs remained within
the error bars shown in Figure 5. When rate-limiting, a
bit of the total throughput is lost for both OSes because
clients keep sending packets at the same high rate. These
consume network bandwidth, even when later dropped
due to the rate limit.

We conclude that it is possible to provide the same kind
of QoS enforcement—in this case, rate limiting—in Ar-

rakis, as in Linux. Thus, we are able to retain the protection
and policing benefits of user-level application execution,
while providing improved network performance.

5 Discussion
In this section, we discuss how we can extend the Arrakis
model to apply to virtualized guest environments, as well
as to interprocessor interrupts.

5.1 Arrakis as Virtualized Guest

Arrakis’ model can be extended to virtualized envi-
ronments. Making Arrakis a host in this environment
is straight-forward—this is what the technology was
originally designed for. The best way to support Arrakis as
a guest is by moving the control plane into the virtual ma-
chine monitor (VMM). Arrakis guest applications can then
allocate virtual interface cards directly from the VMM.
A simple way of accomplishing this is by pre-allocating a
number of virtual interface cards in the VMM to the guest
and let applications pick only from this pre-allocated set,
without requiring a special interface to the VMM.

The hardware limits apply to a virtualized environment
in the same way as they do in the regular Arrakis
environment. We believe the current limits on virtual
adapters (typically 64) to be balanced with the number of
available processing resources.

5.2 Virtualized Interprocessor Interrupts

To date, most parallel applications are designed assuming
that shared-memory is (relatively) efficient, while
interprocessor signaling is (relatively) inefficient. A cache
miss to data written by another core is handled in hardware,
while alerting a thread on another processor requires
kernel mediation on both the sending and receiving side.
The kernel is involved even when signaling an event
between two threads running inside the same application.

With kernel bypass, a remote cache miss and a remote
event delivery are similar in cost at a physical level.
Modern hardware already provides the operating system
the ability to control how device interrupts are routed. To
safely deliver an interrupt within an application, without
kernel mediation, requires that the hardware add access
control. With this, the kernel could configure the interrupt
routing hardware to permit signaling among cores running
the same application, trapping to the kernel only when
signaling between different applications.

6 Related Work
SPIN [14] and Exokernel [25] reduced shared kernel
components to allow each application to have customized
operating system management. Nemesis [15] reduces
shared components to provide more performance isolation
for multimedia applications. All three mediated I/O in
the kernel. Relative to these systems, Arrakis shows that

13

14 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

application customization is consistent with very high
performance.

Following U-Net, a sequence of hardware standards
such as VIA [19] and Infiniband [30] addressed the
challenge of minimizing, or eliminating entirely, operating
system involvement in sending and receiving network
packets in the common case. To a large extent, these
systems have focused on the needs of parallel applications
for high throughout, low overhead communication.
Arrakis supports a more general networking model
including client-server and peer-to-peer communication.

Our work was inspired in part by previous work on
Dune [11], which used nested paging to provide support
for user-level control over virtual memory, and Exitless
IPIs [26], which presented a technique to demultiplex
hardware interrupts between virtual machines without
mediation from the virtual machine monitor.

Netmap [49] implements high throughput network
I/O by doing DMAs directly from user space. Sends and
receives still require system calls, as the OS needs to do per-
mission checks on every operation. Throughput is achieved
at the expense of latency, by batching reads and writes.
Similarly, IX [12] implements a custom, per-application
network stack in a protected domain accessed with batched
system calls. Arrakis eliminates the need for batching by
handling operations at user level in the common case.

Concurrently with our work, mTCP uses Intel’s DPDK
interface to implement a scalable user-level TCP [36];
mTCP focuses on scalable network stack design, while
our focus is on the operating system API for general client-
server applications. We expect the performance of Extaris
and mTCP to be similar. OpenOnload [50] is a hybrid user-
and kernel-level network stack. It is completely binary-
compatible with existing Linux applications; to support
this, it has to keep a significant amount of socket state in the
kernel and supports only a traditional socket API. Arrakis,
in contrast, allows applications to access the network
hardware directly and does not impose API constraints.

Recent work has focused on reducing the overheads
imposed by traditional file systems and block device
drivers, given the availability of low latency persistent
memory. DFS [37] and PMFS [23] are file systems
designed for these devices. DFS relies on the flash storage
layer for functionality traditionally implemented in
the OS, such as block allocation. PMFS exploits the
byte-addressability of persistent memory, avoiding the
block layer. Both DFS and PMFS are implemented as
kernel-level file systems, exposing POSIX interfaces.
They focus on optimizing file system and device driver
design for specific technologies, while Arrakis investigates
how to allow applications fast, customized device access.

Moneta-D [16] is a hardware and software platform for
fast, user-level I/O to solid-state devices. The hardware and
operating system cooperate to track permissions on hard-

ware extents, while a user-space driver communicates with
the device through a virtual interface. Applications interact
with the system through a traditional file system. Moneta-
D is optimized for large files, since each open operation
requires communication with the OS to check permissions;
Arrakis does not have this issue, since applications have
complete control over their VSAs. Aerie [53] proposes
an architecture in which multiple processes communicate
with a trusted user-space file system service for file
metadata and lock operations, while directly accessing the
hardware for reads and data-only writes. Arrakis provides
more flexibility than Aerie, since storage solutions can be
integrated tightly with applications rather than provided
in a shared service, allowing for the development of
higher-level abstractions, such as persistent data structures.

7 Conclusion
In this paper, we described and evaluated Arrakis, a new
operating system designed to remove the kernel from the
I/O data path without compromising process isolation.
Unlike a traditional operating system, which mediates all
I/O operations to enforce process isolation and resource
limits, Arrakis uses device hardware to deliver I/O directly
to a customized user-level library. The Arrakis kernel
operates in the control plane, configuring the hardware
to limit application misbehavior.

To demonstrate the practicality of our approach, we have
implemented Arrakis on commercially available network
and storage hardware and used it to benchmark several typ-
ical server workloads. We are able to show that protection
and high performance are not contradictory: end-to-end
client read and write latency to the Redis persistent NoSQL
store is 2–5× faster and write throughput 9× higher on
Arrakis than on a well-tuned Linux implementation.

Acknowledgments
This work was supported by NetApp, Google, and the
National Science Foundation. We would like to thank the
anonymous reviewers and our shepherd, Emmett Witchel,
for their comments and feedback. We also thank Oleg
Godunok for implementing the IOMMU driver, Antoine
Kaufmann for implementing MSI-X support, and Taesoo
Kim for implementing interrupt support into Extaris.

References
[1] http://www.barrelfish.org/.

[2] http://www.libmemcached.org/.

[3] http://haproxy.1wt.eu.

[4] Scaling in the Linux networking stack. https://
www.kernel.org/doc/Documentation/
networking/scaling.txt.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 15

[5] Linux IPv4 raw sockets, May 2012. http:
//man7.org/linux/man-pages/man7/
raw.7.html.

[6] D. Abramson. Intel virtualization technology for di-
rected I/O. Intel Technology Journal, 10(3):179–192,
2006.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[8] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management
in server systems. In OSDI, 1999.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP, 2003.

[10] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In SOSP, 2009.

[11] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe user-level
access to privileged CPU features. In OSDI, 2012.

[12] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected
dataplane operating system for high throughput and
low latency. In OSDI, 2014.

[13] A. Bensoussan, C. Clingen, and R. Daley. The
Multics virtual memory: Concepts and design.
CACM, 15:308–318, 1972.

[14] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, safety and performance in
the SPIN operating system. In SOSP, 1995.

[15] R. Black, P. T. Barham, A. Donnelly, and N. Stratford.
Protocol implementation in a vertically structured
operating system. In LCN, 1997.

[16] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user
space access to fast, solid state disks. ASPLOS, 2012.

[17] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Optimistic crash
consistency. In SOSP, 2013.

[18] Citrusbyte. Redis. http://redis.io/.

[19] Compaq Computer Corp., Intel Corporation, and Mi-
crosoft Corporation. Virtual Interface Architecture
Specification, version 1.0 edition, December 1997.

[20] M. Devera. HTB Linux queuing discipline manual
– User Guide, May 2002. http://luxik.cdi.
cz/~devik/qos/htb/userg.pdf.

[21] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, 2014.

[22] P. Druschel, L. Peterson, and B. Davie. Experiences
with a high-speed network adaptor: A software
perspective. In SIGCOMM, 1994.

[23] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System
software for persistent memory. In EuroSys, 2014.

[24] Fusion-IO. ioDrive2 and ioDrive2 Duo Multi Level
Cell, 2014. Product Datasheet. http://www.
fusionio.com/load/-media-/2rezss/
docsLibrary/FIO_DS_ioDrive2.pdf.

[25] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceño, R. Hunt, and T. Pinckney. Fast and flexible
application-level networking on Exokernel systems.
TOCS, 20(1):49–83, Feb 2002.

[26] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. ELI:
bare-metal performance for I/O virtualization. In
ASPLOS, 2012.

[27] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: a new programming interface for scalable
network I/O. In OSDI, 2012.

[28] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. A file is not
a file: Understanding the I/O behavior of Apple
desktop applications. In SOSP, 2011.

[29] B. Hubert. Linux advanced routing & traffic
control HOWTO. http://www.lartc.org/
howto/.

[30] Infiniband Trade Organization. Introduction
to Infiniband for end users. https://cw.
infinibandta.org/document/dl/7268,
April 2010.

[31] Intel Corporation. Intel 82599 10 GbE Controller
Datasheet, December 2010. Revision 2.6. http:
//www.intel.com/content/dam/www/
public/us/en/documents/datasheets/
82599-10-gbe-controller-datasheet.
pdf.

[32] Intel Corporation. Intel Data Plane Development
Kit (Intel DPDK) Programmer’s Guide, Aug 2013.
Reference Number: 326003-003.

15

16 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[33] Intel Corporation. Intel RAID Controllers
RS3DC080 and RS3DC040, Aug 2013.
Product Brief. http://www.intel.
com/content/dam/www/public/us/
en/documents/product-briefs/
raid-controller-rs3dc-brief.pdf.

[34] Intel Corporation. Intel virtualization technology for
directed I/O architecture specification. Technical Re-
port Order Number: D51397-006, Intel Corporation,
Sep 2013.

[35] Intel Corporation. NVM Express, re-
vision 1.1a edition, Sep 2013. http:
//www.nvmexpress.org/wp-content/
uploads/NVM-Express-1_1a.pdf.

[36] E. Jeong, S. Woo, M. Jamshed, H. J. S. Ihm, D. Han,
and K. Park. mTCP: A Highly Scalable User-level
TCP Stack for Multicore Systems. In NSDI, 2014.

[37] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn.
DFS: A file system for virtualized flash storage.
Trans. Storage, 6(3):14:1–14:25, Sep 2010.

[38] P. Kutch. PCI-SIG SR-IOV primer: An introduction
to SR-IOV technology. Intel application note,
321211–002, Jan 2011.

[39] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating sys-
tem to support distributed multimedia applications.
IEEE J.Sel. A. Commun., 14(7):1280–1297, Sep
2006.

[40] LSI Corporation. LSISAS2308 PCI Ex-
press to 8-Port 6Gb/s SAS/SATA Con-
troller, Feb 2010. Product Brief. http:
//www.lsi.com/downloads/Public/
SAS%20ICs/LSI_PB_SAS2308.pdf.

[41] LSI Corporation. LSISAS3008 PCI Ex-
press to 8-Port 12Gb/s SAS/SATA Con-
troller, Feb 2014. Product Brief. http:
//www.lsi.com/downloads/Public/
SAS%20ICs/LSI_PB_SAS3008.pdf.

[42] lwIP. http://savannah.nongnu.org/
projects/lwip/.

[43] I. Marinos, R. N. M. Watson, and M. Handley.
Network stack specialization for performance. In
SIGCOMM, 2014.

[44] D. Mosberger and L. L. Peterson. Making paths ex-
plicit in the Scout operating system. In OSDI, 1996.

[45] V. S. Pai, P. Druschel, and W. Zwanepoel. IO-Lite: A
unified I/O buffering and caching system. In OSDI,
1999.

[46] A. Pesterev, J. Strauss, N. Zeldovich, and R. T.
Morris. Improving network connection locality on
multicore systems. In EuroSys, 2012.

[47] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kab-
bani, G. Porter, and A. Vahdat. SENIC: Scalable
NIC for end-host rate limiting. In NSDI, 2014.

[48] RDMA Consortium. Architectural speci-
fications for RDMA over TCP/IP. http:
//www.rdmaconsortium.org/.

[49] L. Rizzo. Netmap: A novel framework for fast
packet I/O. In USENIX ATC, 2012.

[50] SolarFlare Communications, Inc. OpenOnload.
http://www.openonload.org/.

[51] Solarflare Communications, Inc. Solarflare
SFN5122F Dual-Port 10GbE Enterprise Server
Adapter, 2010.

[52] A. Trivedi, P. Stuedi, B. Metzler, R. Pletka, B. G.
Fitch, and T. R. Gross. Unified high-performance
I/O: One stack to rule them all. In HotOS, 2013.

[53] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,
P. Saxena, and M. M. Swift. Aerie: Flexible
file-system interfaces to storage-class memory. In
EuroSys, 2014.

[54] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: A user-level network interface for parallel
and distributed computing. In SOSP, 1995.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 17

Decoupling Cores, Kernels, and Operating Systems

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract
We present Barrelfish/DC, an extension to the Bar-

relfish OS which decouples physical cores from a native
OS kernel, and furthermore the kernel itself from the rest
of the OS and application state. In Barrelfish/DC, native
kernel code on any core can be quickly replaced, kernel
state moved between cores, and cores added and removed
from the system transparently to applications and OS
processes, which continue to execute.

Barrelfish/DC is a multikernel with two novel ideas: the
use of boot drivers to abstract cores as regular devices, and
a partitioned capability system for memory management
which externalizes core-local kernel state.

We show by performance measurements of real appli-
cations and device drivers that the approach is practical
enough to be used for a number of purposes, such as
online kernel upgrades, and temporarily delivering hard
real-time performance by executing a process under a
specialized, single-application kernel.

1 Introduction

The hardware landscape is increasingly dynamic. Future
machines will contain large numbers of heterogeneous
cores which will be powered on and off individually in
response to workload changes. Cores themselves will
have porous boundaries: some may be dynamically fused
or split to provide more energy-efficient computation. Ex-
isting OS designs like Linux and Windows assume a static
number of homogeneous cores, with recent extensions to
allow core hotplugging.

We present Barrelfish/DC, an OS design based on the
principle that all cores are fully dynamic. Barrelfish/DC
is based on the Barrelfish research OS [5] and exploits
the “multikernel” architecture to separate the OS state
for each core. We show that Barrelfish/DC can handle
dynamic cores more flexibly and with far less overhead
than Linux, and also that the approach brings additional
benefits in functionality.

A key challenge with dynamic cores is safely dispos-
ing of per-core OS state when removing a core from the
system: this process takes time and can dominate the hard-
ware latency of powering the core down, reducing any
benefit in energy consumption. Barrelfish/DC addresses
this challenge by externalizing all the per-core OS and
application state of a system into objects called OSnodes,
which can be executed lazily on another core. While
this general idea has been proposed before (notably, it is
used in Chameleon [37] to clean up interrupt state), Bar-
relfish/DC takes the concept much further in completely
decoupling the OSnode from the kernel, and this in turn
from the physical core.

While transparent to applications, this new design
choice implies additional benefits not seen in prior sys-
tems: Barrelfish/DC can completely replace the OS kernel
code running on any single core or subset of cores in the
system at runtime, without disruption to any other OS
or application code, including that running on the core.
Kernels can be upgraded or bugs fixed without downtime,
or replaced temporarily, for example to enable detailed
instrumentation, to change a scheduling algorithm, or to
provide a different kind of service such as performance-
isolated, hard real-time processing for a bounded period.

Furthermore, per-core OS state can be moved between
slow, low-power cores and fast, energy-hungry cores.
Multiple cores’ state can be temporarily aggregated onto a
single core to further trade-off performance and power, or
to dedicate an entire package to running a single job for a
limited period. Parts of Barrelfish/DC can be moved onto
and off cores optimized for particular workloads. Cores
can be fused [26] transparently, and SMT threads [29, 34]
or cores sharing functional units [12] can be selectively
used for application threads or OS accelerators.

Barrelfish/DC relies on several innovations which form
the main contributions of this paper. Barrelfish/DC treats
a CPU core as being a special case of a peripheral device,
and introduces the concept of a boot driver, which can
start, stop, and restart a core while running elsewhere. We

1

18 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

use a partitioned capability system for memory manage-
ment which allows us to completely externalize all OS
state for a core. This in turn permits a kernel to be essen-
tially stateless, and easily replaced while Barrelfish/DC
continues to run. We factor the OS into per-core ker-
nels1 and OSnodes, and a Kernel Control Block provides
a kernel-readable handle on the total state of an OSnode.

In the next section, we lay out the recent trends in
hardware design and software requirements that motivate
the ideas in Barrelfish/DC. Following this, in Section 3
we discuss in more detail the background to our work,
and related systems and techniques. In Section 4 we
present the design of Barrelfish/DC, in particular the key
ideas mentioned above. In Section 5 we show by means
of microbenchmarks and real applications (a web server
and the PostgreSQL database) that the new functionality
of Barrelfish/DC incurs negligible overhead, as well as
demonstrating how Barrelfish/DC can provide worst-case
execution time guarantees for applications by temporarily
isolating cores. Finally, we discuss Barrelfish/DC lim-
itations and future work in Section 6, and conclude in
Section 7.

2 Motivation and Background

Barrelfish/DC fully decouples cores from kernels (super-
visory programs running in kernel mode), and moreover
both of them from the per-core state of the OS as a whole
and its associated applications (threads, address spaces,
communication channels, etc.). This goes considerably
beyond the core hotplug or dynamic core support in to-
day’s OSes. Figure 1 shows the range of primitive kernel
operations that Barrelfish/DC supports transparently to ap-
plications and without downtime as the system executes:

• A kernel on a core can be rebooted or replaced.
• The per-core OS state can be moved between cores.
• Multiple per-core OS components can be relocated

to temporarily “share” a core.

In this section we argue why such functionality will
become important in the future, based on recent trends in
hardware and software.

2.1 Hardware
It is by now commonplace to remark that core counts,
both on a single chip and in a complete system, are in-
creasing, with a corresponding increase in the complexity
of the memory system – non-uniform memory access and
multiple levels of cache sharing. Systems software, and

1Barrelfish uses the term CPU driver to refer to the kernel-mode
code running on a core. In this paper, we use the term “kernel” instead,
to avoid confusion with boot driver.

in particular the OS, must tackle the complex problem of
scheduling both OS tasks and those of applications across
a number of processors based on memory locality.

At the same time, cores themselves are becoming non-
uniform: Asymmetric multicore processors (AMP) [31]
mix cores of different microarchitectures (and therefore
performance and energy characteristics) on a single pro-
cessor. A key motivation for this is power reduction for
embedded systems like smartphones: under high CPU
load, complex, high-performance cores can complete
tasks more quickly, resulting in power reduction in other
areas of the system. Under light CPU load, however, it is
more efficient to run tasks on simple, low-power cores.

While migration between cores can be transparent to
the OS (as is possible with, e.g., ARM’s “big.LITTLE”
AMP architecture) a better solution is for the OS to man-
age a heterogeneous collection of cores itself, powering
individual cores on and off reactively.

Alternatively, Intel’s Turbo Boost feature, which in-
creases the frequency and voltage of a core when others
on the same die are sufficiently idle to keep the chip
within its thermal envelope, is arguably a dynamic form
of AMP [15].

At the same time, hotplug of processors, once the
province of specialized machines like the Tandem Non-
Stop systems [6], is becoming more mainstream. More
radical proposals for reconfiguring physical processors
include Core Fusion [26], whereby multiple independent
cores can be morphed into a larger CPU, pooling caches
and functional units to improve the performance of se-
quential programs.

Ultimately, the age of “dark silicon” [21] may well
lead to increased core counts, but with a hard limit on the
number that may be powered on at any given time. Per-
formance advances and energy savings subsequently will
have to derive from specialized hardware for particular
workloads or operations [47].

The implications for a future OS are that it must man-
age a dynamic set of physical cores, and be able to adjust
to changes in the number, configuration, and microarchi-
tecture of cores available at runtime, while maintaining a
stable execution environment for applications.

2.2 Software
Alongside hardware trends, there is increasing interest in
modifying, upgrading, patching, or replacing OS kernels
at runtime. Baumann et al. [9] implement dynamic ker-
nel updates in K42, leveraging the object-oriented design
of the OS, and later extend this to interface changes us-
ing object adapters and lazy update [7]. More recently,
Ksplice [3] allows binary patching of Linux kernels with-
out reboot, and works by comparing generated object code
and replacing entire functions. Dynamic instrumentation

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 19

core 1

OSnode α

core 2

kernel B1kernel A

core 0

kernel B2

k. B3

core 1

kernel B2

Time
update move park unpark

k. C

OSnode β

multiplexer

Figure 1: Shows the supported operations of a decoupled OS. Update: The entire kernel, dispatching OSnode α , is replaced
at runtime. Move: OSnode α containing all per-core state, entailing applications is migrated to another core and kernel. Park:
OSnode α is moved to a new core and kernel that temporarily dispatches two OSnodes. Unpark: OSnode α is transferred back to
its previous core.

systems like Dtrace [13] provide mechanisms that modify
the kernel at run-time to analyze program behavior.

All these systems show that the key challenges in up-
dating an OS online are to maintain critical invariants
across the update and to do so with minimal interruption
of service (the system should pause, if at all, for a mini-
mal period). This is particularly hard in a multiprocessor
kernel with shared state.

In this paper, we argue for addressing all these chal-
lenges in a single framework for core and kernel man-
agement in the OS, although the structure of Unix-like
operating systems presents a barrier to such a unified
framework. The rest of this paper describes the unified
approach we adopted in Barrelfish/DC.

3 Related work

Our work combines several directions in OS design and
implementation: core hotplugging, kernel update and
replacement, and multikernel architectures.

3.1 CPU Hotplug
Most modern OS designs today support some form of core
hotplug. Since the overriding motivation is reliability, un-
plugging or plugging a core is considered a rare event
and the OS optimizes the common case where the cores
are not being hotplugged. For example, Linux CPU hot-
plug uses the __stop_machine() kernel call, which halts
application execution on all online CPUs for typically

hundreds of milliseconds [23], overhead that increases
further when the system is under CPU load [25]. We show
further evidence of this cost in Section 5.1 where we com-
pare Linux’ CPU hotplug with Barrelfish/DC’ core update
operations.

Recognizing that processors will be configured much
more frequently in the future for reasons of energy usage
and performance optimization, Chameleon [37] identifies
several bottlenecks in the existing Linux implementation
due to global locks, and argues that current OSes are ill
equipped for processor sets that can be reconfigured at
runtime. Chameleon extends Linux to provide support for
changing the set of processors efficiently at runtime, and
a scheduling framework for exploiting this new function-
ality. Chameleon can perform processor reconfiguration
up to 100,000 times faster than Linux 2.6.

Barrelfish/DC is inspired in part by this work, but
adopts a very different approach. Where Chameleon tar-
gets a single, monolithic shared kernel, Barrelfish/DC
adopts a multikernel model and uses the ability to reboot
individual kernels one by one to support CPU reconfigu-
ration.

The abstractions provided are accordingly different:
Chameleon abstracts hardware processors behind proces-
sor proxies and execution objects, in part to handle the
problem of per-core state (primarily interrupt handlers)
on an offline or de-configured processor. In contrast, Bar-
relfish/DC abstracts the per-core state (typically much
larger in a shared-nothing multikernel than in a shared-
memory monolithic kernel) behind OSnode and kernel
control block abstractions.

3

20 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In a very different approach, Kozuch et al. [30] show
how commodity OS hibernation and hotplug facilities can
be used to migrate a complete OS between different ma-
chines (with different hardware configurations) without
virtualization.

Hypervisors are typically capable of simulating hot-
plugging of CPUs within a virtual machine. Barrelfish/DC
can be deployed as a guest OS to manage a variable set
of virtual CPUs allocated by the hypervisor. Indeed, Bar-
relfish/DC addresses a long-standing issue in virtualiza-
tion: it is hard to fully virtualize the microarchitecture of a
processor when VMs might migrate between asymmetric
cores or between physical machines with different proces-
sors. As a guest, Barrelfish/DC can natively handle such
heterogeneity and change without disrupting operation.

3.2 Kernel updates

The problem of patching system software without down-
time of critical services has been a research area for some
time. For example, K42 explored update of a running ker-
nel [7, 9], exploiting the system’s heavily object-oriented
design. Most modern mainstream OSes support dynamic
loading and unloading of kernel modules, which can be
used to update or specialize limited parts of the OS.

KSplice [3] patches running Linux kernels without
the need for reboot by replacing code in the kernel at
a granularity of complete functions. It uses the Linux
stop_machine() call to ensure that no CPU is currently
executing a function to be replaced, and places a branch
instruction at the start of the obsolete function to direct
execution of the replacement code. Systems like KSplice
replace individual functions across all cores at the same
time. In contrast, Barrelfish/DC replaces entire kernels,
but on a subset of cores at a time. KSplice makes sense for
an OS where all cores must execute in the same, shared-
memory kernel and the overhead incurred by quiescing
the entire machine is unavoidable.

Proteos [22] uses a similar approach to Barrelfish/DC
by replacing applications in their entirety instead of apply-
ing patches to existing code. In contrast to Ksplice, Pro-
teos automatically applies state updates while preserving
pointer integrity in many cases, which eases the burden on
programmers to write complicated state transformation
functions. In contrast to Barrelfish/DC, Proteos does not
upgrade kernel-mode code but focuses on updates for OS
processes running in user-space, in a micro-kernel envi-
ronment. Much of the OS functionality in Barrelfish/DC
resides in user-space as well, and Proteos would be appli-
cable here.

Otherworld [18] also enables kernel updates without
disrupting applications, with a focus on recovering system
crashes. Otherworld can microreboot the system kernel
after a critical error without clobbering running applica-

tions’ state, and then attempt to restore applications that
were running at the time of a crash by recreating applica-
tion memory spaces, open files and other resources.

Rather than relying on a single, system-wide kernel,
Barrelfish/DC exploits the multikernel environment to of-
fer both greater flexibility and better performance: kernels
and cores can be updated dynamically with (as we show
in Section 5) negligible disruption to the rest of the OS.

While their goals of security and availability dif-
fer somewhat from Barrelfish/DC, KeyKOS [24] and
EROS [42] use partitioned capabilities to provide an es-
sentially stateless kernel. Memory in KeyKOS is per-
sistent, and it allows updates of the OS while running,
achieving continuity by restoring from disk-based check-
points of the entire capability state. Barrelfish/DC by
contrast achieves continuity by distributing the capability
system, only restarting some of the kernels at a time, and
preserving each kernel’s portion of the capability system
across the restart.

3.3 Multikernels

Multikernels such as fos [48], Akaros [40], Tessella-
tion [33], Hive [14], and Barrelfish [8], are based on
the observation that modern hardware is a networked
system and so it is advantageous to model the OS as a
distributed system. For example, Barrelfish runs a small
kernel on each core in the system, and the OS is built as
a set of cooperating processes, each running on one of
these kernels, sharing no memory, and communicating via
message passing. Multikernels are motivated by both the
scalability advantages of sharing no cache lines between
cores, and the goal of supporting future hardware with
heterogeneous processors and little or no cache-coherent
or shared physical memory.

Barrelfish/DC exploits the multikernel design for a new
reason: dynamic and flexible management of the cores
and the kernels of the system. A multikernel can naturally
run different versions of kernels on different cores. These
versions can be tailored to the hardware, or specialized
for different workloads.

Furthermore, since (unlike in monolithic kernels) the
state on each core is relatively decoupled from the rest
of the system, multikernels are a good match for systems
where cores come and go, and intuitively should support
reconfiguration of part of the hardware without undue
disruption to software running elsewhere on the machine.
Finally, the shared-nothing multikernel architecture al-
lows us to wrap kernel state and move it between different
kernels without worrying about potentially harmful con-
current accesses.

We chose to base Barrelfish/DC on Barrelfish, as it is
readily available, is under active development, supports
multiple hardware platforms, and can run a variety of

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 21

common applications such as databases and web servers.
The features of Barrelfish/DC described in this paper will
be incorporated into a future Barrelfish release.

Recently, multikernels have been combined with tra-
ditional OS designs such as Linux [27, 36] so as to run
multiple Linux kernels on different cores of the same ma-
chine using different partitions of physical memory, in
order to provide performance isolation between applica-
tions. Popcorn Linux [38, 43] boots a modified Linux
kernel in this fashion, and supports kernel- and user-space
communication channels between kernels [41], and pro-
cess migration between kernels. In principle, Popcorn
extended with the ideas in Barrelfish/DC could be com-
bined with Chameleon in a two-level approach to dynamic
processor support.

4 Design

We now describe how Barrelfish/DC decouples cores, ker-
nels, and the rest of the OS. We focus entirely on mecha-
nism in this paper, and so do not address scheduling and
policies for kernel replacement, core power management,
or application migration. Note also that our main motiva-
tion in Barrelfish/DC is adapting the OS for performance
and flexibility, and so we do not consider fault tolerance
and isolation for now.

We first describe how Barrelfish/DC boots a new core,
and then present in stages the problem of per-core state
when removing a core, introducing the Barrelfish/DC ca-
pability system and kernel control block. We then discuss
the challenges of time and interrupts, and finish with a
discussion of the wider implications of the design.

4.1 Booting a new core
Current CPU hotplug approaches assume a single, shared
kernel and a homogeneous (albeit NUMA) machine, with
a variable number of active cores up to a fixed limit, and
so a static in-kernel table of cores (whether active or in-
active) suffices to represent the current hardware state.
Bringing a core online is a question of turning it on, up-
dating this table, and creating per-core state when needed.
Previous versions of Barrelfish also adopted this approach,
and booted all cores during system initialization, though
there has been experimental work on dynamic booting of
heterogeneous cores [35].

Barrelfish/DC targets a broader hardware landscape,
with complex machines comprising potentially hetero-
geneous cores. Furthermore, since Barrelfish/DC runs
a different kernel instance on each core, there is no rea-
son why the same kernel code should run everywhere –
indeed, we show one advantage of not doing this in Sec-
tion 5.3. We thus need an OS representation of a core
on the machine which abstracts the hardware-dependent

mechanisms for bringing that core up (with some kernel)
and down.

Therefore, Barrelfish/DC introduces the concept of a
boot driver, which is a piece of code running on a “home
core” which manages a “target core” and encapsulates
the hardware functionality to boot, suspend, resume, and
power-down the latter. Currently boot drivers run as pro-
cesses, but closely resemble device drivers and could
equally run as software objects within another process.

A new core is brought online as follows:

1. The new core is detected by some platform-specific
mechanism (e.g., ACPI) and its appearance regis-
tered with the device management subsystem.

2. Barrelfish/DC selects and starts an appropriate boot
driver for the new core.

3. Barrelfish/DC selects a kernel binary and arguments
for the new core, and directs the boot driver to boot
the kernel on the core.

4. The boot driver loads and relocates the kernel, and
executes the hardware protocol to start the new core.

5. The new kernel initializes and uses existing Bar-
relfish protocols for integrating into the running OS.

The boot driver abstraction treats CPU cores much like
peripheral devices, and allows us to reuse the OS’s exist-
ing device and hotplug management infrastructure [50]
to handle new cores and select drivers and kernels for
them. It also separates the hardware-specific mechanism
for booting a core from the policy question of what kernel
binary to boot the core with.

Boot drivers remove most of the core boot process from
the kernel: in Barrelfish/DC we have entirely replaced the
existing multiprocessor booting code for multiple archi-
tectures (which was spread throughout the system) with
boot drivers, resulting in a much simpler system structure,
and reduced code in the kernels themselves.

Booting a core (and, indeed, shutting it down) in Bar-
relfish/DC only involves two processes: the boot driver
on the home core, and the kernel on the target core. For
this reason, we require no global locks or other synchro-
nization in the system, and the performance of these oper-
ations is not impacted by load on other cores. We demon-
strate these benefits experimentally in Section 5.1.

Since a boot driver for a core requires (as with a device
driver) at least one existing core to execute, there is a
potential dependency problem as cores come and go. For
the PC platform we focus on here, this is straightforward
since any core can run a boot driver for any other core,
but we note that in general the problem is the same as that
of allocating device drivers to cores.

Boot drivers provide a convenient abstraction of hard-
ware and are also used to shutdown cores, but this is not
the main challenge in removing a core from the system.

5

22 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.2 Per-core state

Taking a core out of service in a modern OS is a more
involved process than booting it, since modern multicore
OSes include varying amounts of per-core kernel state. If
they did not, removing a core would be simply require
migrating any running thread somewhere else, updating
the scheduler, and halting the core.

The challenge is best understood by drawing a distinc-
tion between the global state in an OS kernel (i.e., the
state which is shared between all running cores in the
system) and the per-core state, which is only accessed by
a single core. The kernel state of any OS is composed of
these two categories.

In, for example, older versions of Unix, all kernel state
was global and protected by locks. In practice, however, a
modern OS keeps per-core state for scalability of schedul-
ing, memory allocation, virtual memory, etc. Per-core
data structures reduce write sharing of cache lines, which
in turn reduces interconnect traffic and cache miss rate
due to coherency misses.

For example, Linux and Windows use per-core schedul-
ing queues, and distributed memory allocators. Corey [10]
allowed configurable sharing of page tables between
cores, and many Linux scaling enhancements (e.g., [11])
have been of this form. K42 [2] adopted reduced sharing
as a central design principle, and introduced the abstrac-
tion of clustered objects, essentially global proxies for
pervasive per-core state.

Multikernels like Barrelfish [8] push this idea to its
logical conclusion, sharing no data (other than message
channels) between cores. Multikernels are an extreme
point in the design space, but are useful for precisely this
reason: they highlight the problem of consistent per-core
state in modern hardware. As core counts increase, we
can expect the percentage of OS state that is distributed
in more conventional OSes to increase.

Shutting down a core therefore entails disposing of this
state without losing information or violating system-wide
consistency invariants. This may impose significant over-
head. For example, Chameleon [37] devotes considerable
effort to ensuring that per-core interrupt handling state
is consistent across CPU reconfiguration. As more state
becomes distributed, this overhead will increase.

Worse, how to dispose of this state depends on what it
is: removing a per-core scheduling queue means migrat-
ing threads to other cores, whereas removing a per-core
memory allocator requires merging its memory pool with
another allocator elsewhere.

Rather than implementing a succession of piecemeal
solutions to this problem, in Barrelfish/DC we adopt a
radical approach of lifting all the per-core OS state out
of the kernel, so that it can be reclaimed lazily without
delaying the rest of the OS. This design provides the

§4.2)

§4.3)

CNode

...

Frame

Frame

Frame

Frame

PCB PCBKCB (§4.4)

Scheduler State

Cap Derivation Tree

Timer Offset (§4.7)

IRQ State (§4.8) CNode

...

Frame

Frame

Frame

CNode

...

Null

Frame

Frame

Frame

Figure 2: State in the Barrelfish/DC OSnode

means to completely decouple per-core state from both the
underlying kernel implementation and the core hardware.

We find it helpful to use the term OSnode to denote
the total state of an OS kernel local to a particular core.
In Linux the OSnode changes with different versions of
the kernel; Chameleon identifies this state by manual
annotation of the kernel source code. In Barrelfish, the
OSnode is all the state – there is no shared global data.

4.3 Capabilities in Barrelfish/DC

Barrelfish/DC captures the OSnode using its capability
system: all memory and other resources maintained by the
core (including interrupts and communication end-points)
are represented by capabilities, and thus the OSnode is
represented by the capability set of the core. The per-core
state of Barrelfish/DC is shown schematically in Figure 2.

Barrelfish/DC’s capability system, an extension of that
in Barrelfish [44], is derived from the partitioned capabil-
ity scheme used in seL4 [19, 20, 28].

In seL4 (and Barrelfish), all regions of memory are
referred to by capabilities, and capabilities are typed to re-
flect what the memory is used for. For example, a “frame”
capability refers to memory that the holder can map into
their address space, while a “c-node” capability refers to
memory that is used to store the bit representations of
capabilities themselves. The security of the system as
a whole derives from the fact that only a small, trusted
computing base (the kernel) holds both a frame capability
and a c-node capability to the same memory, and can
therefore fabricate capabilities.

A capability for a region can be split into two smaller
regions, and also retyped according to a set of system
rules that preserve integrity. Initially, memory regions
are of type “untyped”, and must be explicitly retyped to

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 23

“frame”, “c-node”, or some other type.
This approach has the useful property that a process can

allocate memory without being able to access its contents.
This is used in seL4 to remove any dynamic memory allo-
cation from the kernel, greatly simplifying both the formal
specification of the kernel and its subsequent proof [20].
All kernel objects (such as process control blocks, or page
tables) are allocated by user-level processes which can,
themselves, not access them directly.

A key insight of Barrelfish/DC is that this approach can
externalize the kernel state entirely, as follows.

4.4 Kernel Control Blocks
In developing Barrelfish/DC, we examined the Barrelfish
kernel to identify all the data structures which were not
direct (optimized) derivations of information already held
in the capability tree (and which could therefore be recon-
structed dynamically from the tree). We then eliminated
from this set any state that did not need to persist across a
kernel restart.

For example, the runnable state and other scheduling
parameters of a process2 are held in the process’ control
block, which is part of the capability system. However,
the scheduler queues themselves do not need to persist
across a change of kernel, since (a) any scheduler will
need to recalculate them based on the current time, and
(b) the new scheduler may have a completely different
policy and associated data structures anyway.

What remained was remarkably small: it consists of:

• The minimal scheduling state: the head of a linked
list of a list of process control blocks.

• Interrupt state. We discuss interrupts in Section 4.8.
• The root of the capability derivation tree, from which

all the per-core capabilities can be reached.
• The timer offset, discussed in Section 4.7.

In Barrelfish/DC, we introduce a new memory object,
the Kernel Control Block (KCB), and associated capability
type, holding this data in a standard format. The KCB is
small: for 64-bit x86 it is about 28 KiB in size, almost
all of which is used by communication endpoints for
interrupts.

4.5 Replacing a kernel
The KCB effectively decouples the per-core OS state from
the kernel. This allows Barrelfish/DC to shut down a ker-
nel on a core (under the control of the boot driver running
on another core) and replace it with a new one. The cur-
rently running kernel saves a small amount of persistent

2Technically, it is a Barrelfish “dispatcher”, the core-local repre-
sentation of a process. A process usually consists of a set of distinct
“dispatchers”, one in each OSnode.

state in the KCB, and halts the core. The boot driver
then loads a new kernel with an argument supplying the
address of the KCB. It then restarts the core (using an IPI
on x86 machines), causing the new kernel to boot. This
new kernel then initializes any internal data structures it
needs from the KCB and the OSnode capability database.

The described technique allows for arbitrary updates of
kernel-mode code. By design, the kernel does not access
state in the OSnode concurrently. Therefore, having a qui-
escent state in the OSnode before we shut-down a core is
always guaranteed. The simplest case for updates requires
no changes in any data structures reachable by the KCB
and can be performed as described by simply replacing
the kernel code. Updates that require a transformation
of the data structures may require a one-time adaption
function to execute during initialization, whose overhead
depends on the complexity of the function and the size of
the OSnode. The worst-case scenario is one that requires
additional memory, since the kernel by design delegates
dynamic memory allocation to userspace.

As we show in Section 5, replacing a kernel can be
done with little performance impact on processes running
on the core, even device drivers.

4.6 Kernel sharing and core shutdown

As we mentioned above, taking a core completely out
of service involves not simply shutting down the kernel,
but also disposing of or migrating all the per-core state
on the core, and this can take time. Like Chameleon,
Barrelfish/DC addresses this problem by deferring it: we
immediately take the core down, but keep the OSnode
running in order to be able to dismantle it lazily. To
facilitate this, we created a new kernel which is capable
of multiplexing several KCBs (using a simple extension
to the existing scheduler).

Performance of two active OSnodes sharing a core is
strictly best-effort, and is not intended to be used for any
case where application performance matters. Rather, it
provides a way for an OSnode to be taken out of service
in the background, after the core has been shut down.

Note that there is no need for all cores in Barrelfish/DC
to run this multiplexing kernel, or, indeed, for any cores
to run it when it is not being used – it can simply replace
an existing kernel on demand. In practice, we find that
there is no performance loss when running a single KCB
above a multiplexing kernel.

Decoupling kernel state allows attaching and detaching
KCBs from a running kernel. The entry point for kernel
code takes a KCB as an argument. When a new kernel is
started, a fresh KCB is provided to the kernel code. To
restart a kernel, the KCB is detached from the running ker-
nel code, the core is shut down, and the KCB is provided
to the newly booted kernel code.

7

24 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

We rely on shared physical memory when moving
OSnodes between cores. This goes against the original
multikernel premise that assumes no shared memory be-
tween cores. However, an OSnode is still always in use
by strictly one core at the time. Therefore, the benefits
of avoiding concurrent access in OSnode state remain.
We discuss support for distributed memory hardware in
Section 6.

The combination of state externalization via the KCB
and kernel sharing on a single core has a number of further
applications, which we describe in Section 4.10.

4.7 Dealing with time
One of the complicating factors in starting the OSnode
with a new kernel is the passage of time. Each ker-
nel maintains a per-core internal clock (based on a free-
running timer, such as the local APIC), and expects this
to increase monotonically. The clock is used for per-
core scheduling and other time-sensitive tasks, and is also
available to application threads running on the core via a
system call.

Unfortunately, the hardware timers used are rarely syn-
chronized between cores. Some hardware (for example,
modern PCs) define these timers to run at the same rate
on every core (regardless of power management), but they
may still be offset from each other. On other hardware
platforms, these clocks may simply run at different rates
between cores.

In Barrelfish/DC we address this problem with two
fields in the KCB. The first holds a constant offset from
the local hardware clock; the OS applies this offset when-
ever the current time value is read.

The second field is set to the current local time when
the kernel is shut down. When a new kernel starts with
an existing KCB, the offset field is reinitialized to the
difference between this old time value and the current
hardware clock, ensuring that local time for the OSnode
proceeds monotonically.

4.8 Dealing with interrupts
Interrupts pose an additional challenge when moving an
OSnode between cores. It is important that interrupts from
hardware devices are always routed to the correct kernel.
In Barrelfish interrupts are then mapped to messages de-
livered to processes running on the target core. Some
interrupts (such as those from network cards) should “fol-
low” the OSnode to its new core, whereas others should
not. We identify three categories of interrupt.

1. Interrupts which are used exclusively by the kernel,
for example a local timer interrupt used to imple-
ment preemptive scheduling. Handling these inter-
rupts is internal to the kernel, and their sources are

typically per-core hardware devices like APICs or
performance counters. In this case, there is no need
to take additional actions when reassigning KCBs
between cores.

2. Inter-processor interrupts (IPIs), typically used for
asynchronous communication between cores. Bar-
relfish/DC uses an indirection table that maps
OSnode identifiers to the physical core running the
corresponding kernel. When one kernel sends an
IPI to another, it uses this table to obtain the hard-
ware destination address for the interrupt. When
detaching a KCB from a core, its entry is updated
to indicate that its kernel is unavailable. Similarly,
attaching a KCB to a core, updates the location to
the new core identifier.

3. Device interrupts, which should be forwarded to a
specific core (e.g. via IOAPICs and PCIe bridges)
running the handler for the device’s driver.

When Barrelfish/DC device drivers start up they re-
quest forwarding of device interrupts by providing two
capability arguments to their local kernel: an opaque in-
terrupt descriptor (which conveys authorization to receive
the interrupt) and a message binding. The interrupt de-
scriptor contains all the architecture-specific information
about the interrupt source needed to route the interrupt to
the right core. The kernel associates the message binding
with the architectural interrupt and subsequently forwards
interrupts to the message channel.

For the device and the driver to continue normal op-
eration, the interrupt needs to be re-routed to the new
core, and a new mapping is set up for the (existing) driver
process. This could be done either transparently by the
kernel, or explicitly by the device driver.

We choose the latter approach to simplify the kernel.
When a Barrelfish/DC kernel shuts down, it disables all
interrupts. When a new kernel subsequently resumes an
OSnode, it sends a message (via a scheduler upcall) to
every process which had an interrupt registered. Each
driver process responds to this message by re-registering
its interrupt, and then checking with the device directly
to see if any events have been missed in the meantime
(ensuring any race condition is benign). In Section 5.2.1
we show the overhead of this process.

4.9 Application support
From the perspective of applications which are oblivi-
ous to the allocation of physical cores (and which deal
solely with threads), the additional functionality of Bar-
relfish/DC is completely transparent. However, many
applications such as language runtimes and database sys-
tems deal directly with physical cores, and tailor their
scheduling of user-level threads accordingly.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 25

For these applications, Barrelfish/DC can use the ex-
isting scheduler activation [1] mechanism for process
dispatch in Barrelfish to notify userspace of changes in
the number of online processors, much as it can already
convey the allocation of physical cores to applications.

4.10 Discussion
From a broad perspective, the combination of boot drivers
and replaceable kernels is a radically different view of
how an OS should manage processors on a machine. Mod-
ern general-purpose kernels such as Linux try to support
a broad set of requirements by implementing different
behaviors based on build-time and run-time configuration.
Barrelfish/DC offers an alternative: instead of building
complicated kernels that try to do many things, build sim-
ple kernels that do one thing well. While Linux selects
a single kernel at boot time for all cores, Barrelfish/DC
allows selecting not only per-core kernels, but changing
this selection on-the-fly.

There are many applications for specialized kernels,
including those tailored for running databases or language
run-times, debugging or profiling, or directly executing
verified user code as in Google’s native client [49].

To take one example, in this paper we demonstrate
support for hard real-time applications. Despite years
of development of real-time support features in Linux
and other general-purpose kernels [16], many users resort
to specialized real-time OSes, or modified versions of
general-purpose OSes [32].

Barrelfish/DC can offer hard real-time support by re-
booting a core with a specialized kernel, which, to elim-
inate OS jitter, has no scheduler (since it targets a sin-
gle application) and takes no interrupts. If a core is not
preallocated, it must be made available at run-time by
migrating the resident OSnode to another core that runs
a multi-KCB kernel, an operation we call parking. If
required, cache interference from other cores can also
be mitigated by migrating their OSnodes to other pack-
ages. Once the hard real-time application finishes, the
OSnodes can be moved back to the now-available cores.
We evaluate this approach in Section 5.3.

5 Evaluation

We present here a performance evaluation of Bar-
relfish/DC. First (Section 5.1), we measure the perfor-
mance of starting and stopping cores in Barrelfish/DC
and in Linux. Second (Section 5.2), we investigate the be-
havior of applications when we restart kernels, and when
we park OSnodes. Finally, (Section 5.3), we demonstrate
isolating performance via a specialized kernel. We per-
form experiments on the set of x86 machines shown in
Table 1. Hyperthreading, TurboBoost, and SpeedStep

technologies are disabled in machines that support them,
as they complicate cycle counter measurements. Turbo-
Boost and SpeedStep can change the processor frequency
in unpredictable ways, leading to high fluctuation for re-
peated experiments. The same is true for Hyperthreading
due to sharing of hardware logic between logical cores.
However, TurboBoost and Hyperthreading are both rele-
vant for this work as discussed in Section 6 and Section 1.

packages×cores/uarch CPU model

2×2 Santa-Rosa 2.8 GHz Opteron 2200
4×4 Shanghai 2.5 GHz Opteron 8380
2×10 SandyBridge 2.5 GHz Xeon E5-2670 v2
1×4 Haswell 3.4 GHz Xeon E3-1245 v3

Table 1: Systems we use in our evaluation. The first column
describes the topology of the machine (total number of packages
and cores per package) and the second the CPU model.

5.1 Core management operations
In this section, we evaluate the performance of managing
cores in Barrelfish/DC, and also in Linux using the CPU
Hotplug facility [4]. We consider two operations: shutting
down a core (down) and bringing it back up again (up).

Bringing up a core in Linux is different from bringing
up a core in Barrelfish/DC. In Barrelfish/DC, each core
executes a different kernel which needs to be loaded by
the boot driver, while in Linux all cores share the same
code. Furthermore, because cores share state in Linux,
core management operations require global synchroniza-
tion, resulting in stopping application execution in all
cores for an extended period of time [23]. Stopping cores
is also different between Linux and Barrelfish/DC. In
Linux, applications executed in the halting core need to
be migrated to other online cores before the shutdown can
proceed, while in Barrelfish/DC we typically would move
a complete OSnode after the shutdown and not individual
applications.

In Barrelfish/DC, the down time is the time it takes the
boot driver to send an appropriate IPI to the core to be
halted plus the propagation time of the IPI and the cost of
the IPI handler in the receiving core. For the up operation
we take two measurements: the boot driver cost to prepare
a new kernel up until (and including) the point where it
sends an IPI to the starting core (driver), and the cost in
the booted core from the point it wakes up until the kernel
is fully online (core).

In Linux, we measure the latency of starting or stopping
a core using the log entry of the smpboot module and a
sentinel line echoed to /dev/kmsg. For core shutdown,
smboot reports when the core becomes offline, and we
insert the sentinel right before the operation is initiated.

9

26 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Barrelfish/DC Linux
idle load idle load

down
up

down
up

driver core driver core down up down up
(µs) (ms) (ms) (µs) (ms) (ms) (ms) (ms) (ms) (ms)

2×2 Santa-Rosa 2.7 / —a 29 1.2 2.7 / — 34±17 1.2 131±25 20±1 5049±2052 26±5
4×4 Shanghai 2.3 / 2.6 24 1.0 2.3 / 2.7 46±76 1.0 104±50 18±3 3268± 980 18±3
2×10 SandyBridge 3.5 / 3.7 10 0.8 3.6 / 3.7 23±52 0.8 62±46 21±7 2265±1656 23±5
1×4 Haswell 0.8 / —a 7 0.5 0.8 / — 7±0.1 0.5 46±40 14±1 2543±1710 20±5

Results in cycles
×103 ×106 ×106 ×103 ×106 ×106 ×106 ×106 ×106 ×106

2×2 Santa-Rosa 8 / — 85 3.4 8 / — 97±49 3.5 367± 41 56±2.0 14139±5700 74±21
4×4 Shanghai 6 / 6 63 2.6 6 / 7 115±192 2.6 261±127 44±2.0 8170±2452 46± 8
2×10 SandyBridge 9 / 10 27 2.1 9 / 10 59±133 2.1 155±116 53±2.0 5663±4141 57±12
1×4 Haswell 3 / — 26 1.9 2.9 / — 26±0.40 2.0 156±137 50±0.5 8647±5816 69±16

Table 2: Performance of core management operations for Barrelfish/DC and Linux (3.13) when the system is idle and when the
system is under load. For the Barrelfish/DC down column, the value after the slash shows the cost of stopping a core on another
socket with regard to the boot driver. aWe do not include this number for Santa-Rosa because it lacks synchronized timestamp
counters, nor for Haswell because it only includes a single package.

For core boot, smpboot reports when the operation starts,
so we insert the sentinel line right after the operation.

For both Barrelfish/DC and Linux we consider two
cases: an idle system (idle), and a system with all cores
under load (load). In Linux, we use the stress tool [45]
to spawn a number of workers equal to the number of
cores that continuously execute the sync system call. In
Barrelfish/DC, since the file-system is implemented as a
user-space service, we spawn an application that contin-
uously performs memory management system calls on
each core of the system.

Table 2 summarizes our results. We show both time
(msecs and µsecs) and cycle counter units for convenience.
All results are obtained by repeating the experiment 20
times, and calculating the mean value. We include the
standard deviation where it is non-negligible.

Stopping cores: The cost of stopping cores in Bar-
relfish/DC ranges from 0.8 µs (Haswell) to 3.5 µs (Sandy-
Bridge). Barrelfish/DC does not share state across cores,
and as a result no synchronization between cores is needed
to shut one down. Furthermore, Barrelfish/DC’ shutdown
operation consists of sending an IPI, which will cause the
core to stop after a minimal operation in the KCB (saving
the timer offset). In fact, the cost of stopping a core in
Barrelfish/DC is small enough to observe the increased
cost of sending an IPI across sockets, leading to an in-
crease of 5% in stopping time on SandyBridge and 11%
on Shanghai. These numbers are shown in Table 2, in
the Barrelfish/DC down columns after the slash. As these
measurements rely on timestamp counters being synchro-
nized across packages, we are unable to present the cost

Figure 3: Breakdown of the cost of bringing up a core for the
Haswell machine.

increase of a cross-socket IPI on the Santa-Rosa machine
whose timestamp counters are only synchronized within
a single package.

In stark contrast, the cost of shutting down a core in
Linux ranges from 46 ms to 131 ms. More importantly,
the shutdown cost in Linux explodes when applying load,
while it generally remains the same for Barrelfish/DC. For
example, the average time to power down a core in Linux
on Haswell is increased by 55 times when we apply load.

Starting cores: For Barrelfish/DC, the setup cost in the
boot driver (driver) dominates the cost of starting a core
(core). Fig. 3 shows a breakdown of the costs for bringing
up a core on Haswell. Starting core corresponds to the

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 27

core Table 2 column, while the rest corresponds to oper-
ations performed by the boot driver: loading the image
from storage, allocating memory, ELF loading and relo-
cation, etc. Loading the kernel from the file system is the
most expensive operation. If multiple cores are booted
with the same kernel, this image can be cached, signifi-
cantly improving the time to start a core as shown in the
second bar in Fig. 3. We note that the same costs will
dominate the restart operation since shutting down a core
has negligible cost compared to bringing it up. Downtime
can be minimized by first doing the necessary prepara-
tions in the boot driver and then halting and starting the
core.

Even though Barrelfish/DC has to prepare the ker-
nel image, when idle, the cost of bringing up a core
for Barrelfish/DC is similar to the Linux cost (Bar-
relfish/DC is faster on our Intel machines, while the op-
posite is true for our AMD machines). Bringing a core
up can take from 7 ms (Barrelfish/DC/Haswell) to 29 ms
(Barrelfish/DC/Santa-Rosa). Load affects the cost of boot-
ing up a core to varying degrees. In Linux such an effect
is not observed in the Shanghai machine, while in the
Haswell machine load increases average start time by
33%. The effect of load when starting cores is generally
stronger in Barrelfish/DC (e.g., in SandyBridge the cost
is more than doubled) because the boot driver time-shares
its core with the load generator.

Overall, Barrelfish/DC has minimal overhead stopping
cores. For starting cores, results vary significantly across
different machines but the cost of bringing up cores in
Barrelfish/DC is comparable to the respective Linux cost.

5.2 Applications

In this section, we evaluate the behavior of real applica-
tions under two core management operations: restarting,
where we update the core kernel as the application runs,
and parking. In parking, we run the application in a core
with a normal kernel and then move its OSnode into a
multi-KCB kernel running on a different core. While the
application is parked it will share the core with another
OSnode. We use a naive multi-KCB kernel that runs each
KCB for 20 ms, which is two times the scheduler time
slice. Finally, we move the application back to its original
core. The application starts by running alone on its core.
We execute all experiments in the Haswell machine.

5.2.1 Ethernet driver

Our first application is a Barrelfish NIC driver for the
Intel 82574, which we modify for Barrelfish/DC to re-
register its interrupts when instructed by the kernel (see
Section 4.8). During the experiment we use ping from a
client machine to send ICMP echo requests to the NIC.

We run ping as root with the -A switch, where the inter-
packet intervals adapt to the round-trip time. The ping
manual states: “on networks with low rtt this mode is
essentially equivalent to flood mode.”

Fig. 4a shows the effect of the restart operation in the
round-trip time latency experienced by the client. Initially,
the ping latency is 0.042 ms on average with small varia-
tion. Restarting the kernel produces two outliers (packets
2307 and 2308 with an RTT of 11.1 ms and 1.07 ms, re-
spectively). Note that 6.9 ms is the measured latency to
bring up a core on this machine (Table 2).

We present latency results for the parking experiment in
a timeline (Fig. 4b), and in a cumulative distribution func-
tion (CDF) graph (Fig. 4c). Measurements taken when
the driver’s OSnode runs exclusively on a core are de-
noted Exclusive, while measurements where the OSnode
shares the core are denoted Shared. When parking be-
gins, we observe an initial latency spike (from 0.042 ms
to 73.4 ms). The spike is caused by the parking operation,
which involves sending a KCB capability reference from
the boot driver to the multi-KCB kernel as a message.3

After the initial coordination, outliers are only caused by
KCB time-sharing (maximum: 20 ms, mean: 5.57 ms).
After unparking the driver, latency returns to its initial lev-
els. Unparking does not cause the same spike as parking
because we do not use messages: we halt the multi-KCB
kernel and directly pass the KCB reference to a newly
booted kernel.

5.2.2 Web server

In this experiment we examine how a web server4 that
serves files over the network behaves when its core is
restarted and when its OSnode is parked. We initiate a
transfer on a client machine in the server’s LAN using
wget and plot the achieved bandwidth for each 50 KiB
chunk when fetching a 1 GiB file.

Fig. 4d shows the results for the kernel restart exper-
iment. The effect in this case is negligible on the client
side. We were unable to pinpoint the exact location of
the update taking place from the data measured on the
client and the actual download times during kernel up-
dates were indistinguishable from a normal download. As
expected, parking leads to a number of outliers caused by
KCB time-sharing (Figures 4e and 4f). The average band-
width before the parking is 113 MiB/s and the standard
deviation 9 MiB/s, whereas during parking the average
bandwidth is slightly lower at 111 MiB/s with a higher
standard deviation of 19 MiB/s.

3We follow the Barrelfish approach, where kernel messages are
handled by the monitor, a trusted OS component that runs in user-space.

4The Barrelfish native web server.

11

28 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Ethernet driver restart (b) Ethernet driver parking (c) Ethernet driver parking CDF

(d) Web server restart (e) Web server parking (f) Web server parking CDF

(g) PostgreSQL restart (h) PostgreSQL parking (i) PostgreSQL parking CDF

Figure 4: Application behavior when restarting kernels and parking OSnodes. For each application we include a timeline graph for
restarting, and a timeline and a CDF graph for parking.

5.2.3 PostgreSQL

Next, we run a PostgreSQL [39] database server in Bar-
relfish/DC, using TPC-H [46] data with a scaling factor
of 0.01, stored in an in-memory file-system. We measure
the latency of a repeated CPU-bound query (query 9 in
TPC-H) on a client over a LAN.

Fig. 4g shows how restart affects client latency. Before
rebooting, average query latency is 36 ms. When a restart
is performed, the first query has a latency of 51 ms. After
a few perturbed queries, latency returns to its initial value.

Figures 4h and 4i show the effect of parking the
OSnode that contains the PostgreSQL server. As before,
during normal operation the average latency is 36 ms.
When the kernel is parked we observe two sets of outliers:
one (with more points) with a latency of about 76 ms, and
one with latency close to 56 ms. This happens, because
depending on the latency, some queries wait for two KCB
time slices (20 ms each) of the co-hosted kernel, while

others wait only for one.
Overall, we argue that kernel restart incurs acceptable

overhead for online use. Parking, as expected, causes a
performance degradation, especially for latency-critical
applications. This is, however, inherent in any form of
resource time-sharing. Furthermore, with improved KCB-
scheduling algorithms the performance degradation can
be reduced or tuned (e.g., via KCB priorities).

5.3 Performance isolation
Finally, we illustrate the benefits of Barrelfish/DC’ sup-
port for restarting cores with specialized kernels using
the case of hard-real time applications where eliminat-
ing OS jitter is required. To ensure that the application
will run uninterrupted, we assign a core with a special-
ized kernel that does not implement scheduling and does
not handle interrupts (see Section 4.10). We evaluate
the performance isolation that can be achieved with our

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 29

(a) Histogram for all samples

(b) CDF for samples in the range of 6–7k cycles

Figure 5: Number of cycles measured for 103 iterations of a
synthetic benchmark for Barrelfish/DC, Barrelfish, and Linux
using real-time priorities.

specialized kernel compared to the isolation provided by:
(i) an unmodified Barrelfish kernel, and (ii) a Linux 3.13
kernel where we set the application to run with real-time
priority. We run our experiments on the Haswell machine,
ensuring that no other applications run on the same core.

To measure OS jitter we use a synthetic benchmark
that only performs memory stores to a single location.
Our benchmark is intentionally simple to minimize per-
formance variance caused by architectural effects. We
sample the timestamp counter every 103 iterations, for a
total of 106 samples. Fig. 5a shows a histogram of sam-
pled cycles, where for all systems, most of the values
fall into the 6-7 thousand range (i.e., 6-7 cycles latency
per iteration). Fig. 5b presents the CDF graph for the
6–7 kcycles range, showing that there are no significant
differences for the three systems in this range.

Contrarily to the Barrelfish/DC dedicated kernel where
all of the samples are in the 6-7k range, in Linux and Bar-
relfish we observe significant outliers that fall outside this
range. Since we run the experiment on the same hardware,

under the same configuration, we attribute the outliers to
OS jitter. In Barrelfish the outliers reach up to 68k cy-
cles (excluded from the graph). Linux performs better
than Barrelfish, but its outliers still reach 27–28 kcycles.
We ascribe the worse behavior of Barrelfish compared to
Linux to OS services running in user-space.

We conclude that Barrelfish/DC enables the online de-
ployment of a dedicated, simple to build, OS kernel that
eliminates OS jitter and provides hard real-time guaran-
tees.

6 Future directions

Our ongoing work on Barrelfish/DC includes both ex-
ploring the broader applications of the ideas, and also
removing some of the existing limitations of the system.

On current hardware, we plan to investigate the power-
management opportunities afforded by the ability to re-
place cores and migrate the running OS around the hard-
ware. One short-term opportunity is to fully exploit Intel’s
Turbo Boost feature to accelerate a serial task by temporar-
ily vacating (and thereby cooling) neighboring cores on
the same package.

We also intend to use core replacement as a means
to improve OS instrumentation and tracing facilities, by
dynamically instrumenting kernels running on particular
cores at runtime, removing all instrumentation overhead
in the common case. Ultimately, as kernel developers we
would like to minimize whole-system reboots as much as
possible by replacing single kernels on the fly.

Barrelfish/DC currently assumes cache-coherent cores,
where the OS state (i.e., the OSnode) can be easily mi-
grated between cores by passing physical addresses. The
lack of cache-coherency per se can be handled with suit-
able cache flushes, but on hardware platforms without
shared memory, or with different physical address spaces
on different cores, the OSnode might not require con-
siderable transformation to migrate between cores. The
Barrelfish/DC capability system does contain all the in-
formation necessary to correctly swizzle pointers when
copying the OSnode between nodes, but the copy is likely
to be expensive, and dealing with shared-memory appli-
cation state (which Barrelfish fully supports outside the
OS) is a significant challenge.

A somewhat simpler case to deal with is moving an
OSnode between a virtual and physical machine, allowing
the OS to switch from running natively to running in a
VM container.

Note that there is no requirement for the boot driver
to share memory with its target core, as long as it has a
mechanism for loading a kernel binary into the latter’s
address space and controlling the core itself.

When replacing kernels, Barrelfish/DC assumes that
the OSnode format (in particular, the capability system)

13

30 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

remains unchanged. If the in-memory format of the capa-
bility database changes, then the new kernel must perform
a one-time format conversion when it boots. It is unclear
how much of a limitation this is in practice, since the ca-
pability system of Barrelfish has changed relatively little
since its inception, but one way to mitigate the burden of
writing such a conversion function is to exploit the fact
that the format is already specified in a domain-specific
high-level language called Hamlet [17] to derive the con-
version function automatically.

While Barrelfish/DC decouples cores, kernels, and the
OS state, the topic of appropriate policies for using these
mechanisms without user intervention is an important
area for future work. We plan to investigate policies that,
based on system feedback, create new kernels to replace
others, and move OSnodes across cores.

Finally, while Barrelfish/DC applications are notified
when the core set they are running on changes (via the
scheduler activations mechanism), they are currently in-
sulated from knowledge about hardware core reconfigura-
tions. However, there is no reason why this must always
be the case. There may be applications (such as databases,
or language runtimes) which can benefit from being no-
tified about such changes to the running system, and we
see no reason to hide this information from applications
which can exploit it.

7 Conclusion

Barrelfish/DC presents a radically different vision of how
cores are exploited by an OS and the applications running
above it, and implements it in a viable software stack:
the notion that OS state, kernel code, and execution units
should be decoupled and freely interchangeable. Bar-
relfish/DC is an OS whose design assumes that all cores
are dynamic.

As hardware becomes more dynamic, and scalability
concerns increase the need to partition or replicate state
across cores, system software will have to change its
assumptions about the underlying platform, and adapt
to a new world with constantly shifting hardware. Bar-
relfish/DC offers one approach to meeting this challenge.

8 Acknowledgements

We would like to thank the anonymous reviews and our
shepherd, Geoff Voelker, for their encouragement and
helpful suggestions. We would also like to acknowledge
the work of the rest of the Barrelfish team at ETH Zurich
without which Barrelfish/DC would not be possible.

References
[1] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND

LEVY, H. M. Scheduler activations: Effective kernel support for
the user-level management of parallelism. ACM Transactions on
Computer Systems 10, 1 (1992), 53–79.

[2] APPAVOO, J., DA SILVA, D., KRIEGER, O., AUSLANDER, M.,
OSTROWSKI, M., ROSENBURG, B., WATERLAND, A., WIS-
NIEWSKI, R. W., XENIDIS, J., STUMM, M., AND SOARES, L.
Experience distributing objects in an SMMP OS. ACM Transac-
tions on Computer Systems 25, 3 (2007).

[3] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Automatic reboot-
less kernel updates. In Proceedings of the EuroSys Conference
(2009), pp. 187–198.

[4] ASHOK RAJ. CPU hotplug support in the Linux kernel. https://
www.kernel.org/doc/Documentation/cpu-hotplug.txt.

[5] The Barrelfish Operating System. http://www.barrelfish.
org/, 12.04.14.

[6] BARTLETT, J. F. A NonStop Kernel. In Proceedings of the
8th ACM Symposium on Operating Systems Principles (1981),
pp. 22–29.

[7] BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W., SILVA,
D. D., KRIEGER, O., AND HEISER, G. Reboots are for hardware:
Challenges and solutions to updating an operating system on the
fly. In Proceedings of the USENIX Annual Technical Conference
(2007), pp. 1–14.

[8] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the 22nd ACM
Symposium on Operating System Principles (2009), pp. 29–44.

[9] BAUMANN, A., HEISER, G., APPAVOO, J., DA SILVA, D.,
KRIEGER, O., WISNIEWSKI, R. W., AND KERR, J. Provid-
ing dynamic update in an operating system. In Proceedings of the
USENIX Annual Technical Conference (2005), pp. 279–291.

[10] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU,
M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An operating
system for many cores. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (2008), pp. 43–57.

[11] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV,
A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An
Analysis of Linux Scalability to Many Cores. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation (2010), pp. 1–8.

[12] BUTLER, M., BARNES, L., SARMA, D. D., AND GELINAS, B.
Bulldozer: An approach to multithreaded compute performance.
IEEE Micro 31, 2 (Mar. 2011), 6–15.

[13] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL, A. H.
Dynamic instrumentation of production systems. In Proceedings
of the USENIX Annual Technical Conference (2004), pp. 15–28.

[14] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. Hive: Fault containment for shared-
memory multiprocessors. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (1995), pp. 12–25.

[15] CHARLES, J., JASSI, P., S, A. N., SADAT, A., AND FEDOROVA,
A. Evaluation of the Intel Core i7 Turbo Boost feature. In Pro-
ceedings of the IEEE International Symposium on Workload Char-
acterization (2009).

[16] CORBET, J. Deadline scheduling for 3.14. http:
//www.linuxfoundation.org/news-media/blogs/
browse/2014/01/deadline-scheduling-314, 12.04.14.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 31

[17] DAGAND, P.-E., BAUMANN, A., AND ROSCOE, T. Filet-o-Fish:
practical and dependable domain-specific languages for OS de-
velopment. In Proceedings of the 5th Workshop on Programming
Languages and Operating Systems (2009).

[18] DEPOUTOVITCH, A., AND STUMM, M. Otherworld: Giving Ap-
plications a Chance to Survive OS Kernel Crashes. In Proceedings
of the EuroSys Conference (2010), pp. 181–194.

[19] DERRIN, P., ELKADUWE, D., AND ELPHINSTONE, K. seL4
Reference Manual. NICTA, 2006. http://www.ertos.nicta.
com.au/research/sel4/sel4-refman.pdf.

[20] ELKADUWE, D., DERRIN, P., AND ELPHINSTONE, K. Ker-
nel design for isolation and assurance of physical memory. In
Proceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems (2008), pp. 35–40.

[21] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., SANKAR-
ALINGAM, K., AND BURGER, D. Dark Silicon and the End of
Multicore Scaling. In Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture (2011), pp. 365–376.

[22] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S. Safe
and automatic live update for operating systems. In Proceedings
of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (2013), pp. 279–
292.

[23] GLEIXNER, T., MCKENNEY, P. E., AND GUITTOT, V. Cleaning
up Linux’s CPU hotplug for real time and energy management.
SIGBED Rev. 9, 4 (Nov. 2012), 49–52.

[24] HARDY, N. KeyKOS Architecture. SIGOPS Operating Systems
Review 19, 4 (1985), 8–25.

[25] CPU hotplug. https://wiki.linaro.org/WorkingGroups/
PowerManagement/Archives/Hotplug, 12.04.14.

[26] IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F.
Core Fusion: Accommodating Software Diversity in Chip Mul-
tiprocessors. In Proceedings of the 34th Annual International
Symposium on Computer Architecture (2007), pp. 186–197.

[27] JOSHI, A. Twin-Linux: Running independent Linux Kernels
simultaneously on separate cores of a multicore system. In Pro-
ceedings of the Linux Symposium (2010), pp. 101–108.

[28] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating System
Principles (2009).

[29] KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. Niagara:
a 32-way multithreaded sparc processor. IEEE Micro 25, 2 (2005),
21–29.

[30] KOZUCH, M. A., KAMINSKY, M., AND RYAN, M. P. Migration
without virtualization. In Proceedings of the 12th Workshop on
Hot Topics in Operating Systems (2009), pp. 10–15.

[31] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN,
P., AND TULLSEN, D. M. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction. In
Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (2003), pp. 81–92.

[32] Real-time Linux. https://rt.wiki.kernel.org/, 12.04.14.

[33] LIU, R., KLUES, K., BIRD, S., HOFMEYR, S., ASANOVIĆ, K.,
AND KUBIATOWICZ, J. Tessellation: Space-time partitioning in a
manycore client OS. In Proceedings of the 1st USENIX Workshop
on Hot Topics in Parallelism (2009).

[34] MARR, D. T., DESKTOP, F. B., HILL, D. L., HINTON, G.,
KOUFATY, D. A., MILLER, J. A., AND UPTON, M. Hyper-
Threading Technology Architecture and Microarchitecture. Intel
Technology Journal (Feb 2002).

[35] MENZI, D. Support for heterogeneous cores for Barrelfish. Mas-
ter’s thesis, Department of Computer Science, ETH Zurich, July
2011.

[36] NOMURA, Y., SENZAKI, R., NAKAHARA, D., USHIO, H.,
KATAOKA, T., AND TANIGUCHI, H. Mint: Booting multiple
Linux kernels on a multicore processor. In Proceedings of the
International Conference on Broadband and Wireless Computing,
Communication and Applications (2011), pp. 555–560.

[37] PANNEERSELVAM, S., AND SWIFT, M. M. Chameleon: Operat-
ing system support for dynamic processors. In Proceedings of the
17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2012), pp. 99–110.

[38] Popcorn Linux. http://popcornlinux.org/, 12.04.14.

[39] PostgreSQL. http://www.postgresql.org/, 12.04.14.

[40] RHODEN, B., KLUES, K., ZHU, D., AND BREWER, E. Improv-
ing per-node efficiency in the datacenter with new OS abstractions.
In Proceedings of the 2nd ACM Symposium on Cloud Computing
(2011), pp. 25:1–25:8.

[41] SADINI, M., BARBALACE, A., RAVINDRAN, B., AND QUAGLIA,
F. A Page Coherency Protocol for Popcorn Replicated-kernel
Operating System. In Proceedings of the ManyCore Architecture
Research Community Symposium (MARC) (Oct. 2013).

[42] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A
Fast Capability System. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (1999), pp. 170–185.

[43] SHELDON, B. H. Popcorn Linux: enabling efficient inter-core
communication in a Linux-based multikernel operating system.
Master’s thesis, Virginia Polytechnic Institute and State University,
May 2013.

[44] SINGHANIA, A., KUZ, I., AND NEVILL, M. Capability Manage-
ment in Barrelfish. Technical Note 013, Barrelfish Project, ETH
Zurich, December 2013.

[45] Stress Load Generator. http://people.seas.harvard.edu/
~apw/stress/, 12.04.14.

[46] TPC-H. http://www.tpc.org/tpch/, 12.04.14.

[47] VENKATESH, G., SAMPSON, J., GOULDING, N., GARCIA, S.,
BRYKSIN, V., LUGO-MARTINEZ, J., SWANSON, S., AND TAY-
LOR, M. B. Conservation Cores: Reducing the energy of mature
computations. In Proceedings of the 15th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (2010), pp. 205–218.

[48] WENTZLAFF, D., GRUENWALD III, C., BECKMANN, N.,
MODZELEWSKI, K., BELAY, A., YOUSEFF, L., MILLER, J.,
AND AGARWAL, A. An operating system for multicore and
clouds: Mechanisms and implementation. In ACM Symposium on
Cloud Computing (SOCC) (June 2010).

[49] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native client: A sandbox for portable, untrusted x86 native
code. In Proceedings of the 30th IEEE Symposium on Security
and Privacy (2009), pp. 79–93.

[50] ZELLWEGER, G., SCHUEPBACH, A., AND ROSCOE, T. Unifying
Synchronization and Events in a Multicore OS. In Proceedings of
the 3rd Asia-Pacific Workshop on Systems (2012).

15

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 33

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, Zachary Tatlock
MIT CSAIL and University of Washington

Abstract
Modern operating systems run multiple interpreters in the
kernel, which enable user-space applications to add new
functionality or specialize system policies. The correct-
ness of such interpreters is critical to the overall system
security: bugs in interpreters could allow adversaries to
compromise user-space applications and even the kernel.

Jitk is a new infrastructure for building in-kernel in-
terpreters that guarantee functional correctness as they
compile user-space policies down to native instructions
for execution in the kernel. To demonstrate Jitk, we im-
plement two interpreters in the Linux kernel, BPF and
INET-DIAG, which are used for network and system call
filtering and socket monitoring, respectively. To help ap-
plication developers write correct filters, we introduce
a high-level rule language, along with a proof that Jitk
correctly translates high-level rules all the way to native
machine code, and demonstrate that this language can be
integrated into OpenSSH with tens of lines of code. We
built a prototype of Jitk on top of the CompCert verified
compiler and integrated it into the Linux kernel. Ex-
perimental results show that Jitk is practical, fast, and
trustworthy.

1 Introduction
Many operating systems allow user-space applications to
customize and extend the kernel by downloading user-
specified code into the kernel [1, 24]. One well-known
example is the BSD Packet Filter (BPF) architecture [48].
With BPF, applications specify which packets they are
interested in by downloading a filter program into the
kernel that decides whether a packet should be dropped
or forwarded to the application. For portability and safety,
the kernel usually defines a simple, restricted language,
and uses an interpreter to execute code written in that
language (e.g., BPF), rather than directly downloading
and executing machine code. Other notable applications
of in-kernel interpreters include socket monitoring [40],
dynamic tracing [7], power management [32], and system
call filtering [20]. Interpreters are also used outside of
kernels, such as in Bitcoin’s transaction scripting [2].

As an example, consider the Seccomp subsystem [20]
in the Linux kernel, which adopts the BPF language to
specify what system calls a process can make. Seccomp’s
overall architecture is shown in Figure 1. At start-up, an
application such as OpenSSH submits a BPF filter into

BPF interpreter

Policy decision

User

Kernel

ApplicationBPF bytecode

Syscall

1

2

3

Figure 1: The architecture of the Seccomp system [20] in Linux. Appli-
cation developers specify their system call policy as a BPF filter (e.g.,
Figure 2), in bytecode form. At start-up, the user-space application
submits the filter to the kernel. The kernel invokes a BPF interpreter to
evaluate the program against each subsequent system call, and decides
whether to allow or reject it based on the result from the interpreter.

; load syscall number
ld [0]
; deny open() with errno = EACCES
jeq #SYS_open, L1, L2

L1: ret #RET_ERRNO|#EACCES
; allow getpid()

L2: jeq #SYS_getpid, L3, L4
L3: ret #RET_ALLOW

; allow gettimeofday()
L4: jeq #SYS_gettimeofday, L5, L6
L5: ret #RET_ALLOW
L6: ...

; default: kill current process
ret #RET_KILL

Figure 2: The system call filter used in OpenSSH, in the BSD Packet Fil-
ter (BPF) language [48]. It forces the open system call to fail with the er-
rno code EACCES, allows system calls such as getpid and gettimeofday,
and kills the current process if it invokes other system calls. The ld
instruction loads the current system call number into the accumulator
register; jeq n, lt , l f is a conditional jump instruction that branches to lt
if the accumulator register is n, and otherwise branches to l f ; and ret
terminates the filter with a return value.

the kernel. The kernel invokes the BPF interpreter to
run the filter code against every subsequent system call.
Based on the result from the interpreter, the kernel decides
whether to reject or allow a system call, or kill the process
altogether. Figure 2 shows the system call filter used by
OpenSSH, written in the BPF language [48]. Even if an
adversary later compromises the OpenSSH process, she
cannot perform damaging actions, such as modifying files,
as the kernel would fail the corresponding system calls,
which are disallowed by the installed filter. Many other
applications, such as QEMU, Chrome, Firefox, vsftpd,
and Tor, secure themselves in a similar fashion.

34 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

{ default_action = Kill;
rules = [
{ action = Errno EACCES; syscall = SYS_open };
{ action = Allow; syscall = SYS_getpid };
{ action = Allow; syscall = SYS_gettimeofday };
...

] }

Figure 3: OpenSSH’s system call filter from Figure 2, expressed in our
higher-level System Call Policy Language (SCPL).

The security of these systems critically relies on both
the interpreter and user-supplied code. Since the inter-
preter resides in kernel-space and has full privileges, bugs
in the interpreter can enable the adversary to take control
of the entire system [39]. Even if a kernel compromise
does not occur, bugs in the interpreter can cause it to pro-
duce the wrong result. In Seccomp, this means that the
kernel may fail to stop illegal system call invocations, and
thereby allow the security of the user-space application
to be compromised. Finally, if user-space applications
submit incorrect code to start with, such as a BPF filter
that lets unintended system calls slip through, the kernel
would be unable to enforce the correct policy.

Unfortunately, it is challenging to ensure that both the
in-kernel interpreter and the supplied user-specified code
are bug-free. First, the interpreter has a complex interface
to the external world, leaving a wide range of attack vec-
tors to adversaries who can control either user-specified
code (e.g., BPF filters) or input data to the code (e.g., sys-
tem call invocations), or even both. Second, the interpreter
needs to handle many corner cases, such as out-of-bounds
memory accesses, jumps to illegal kernel code, arithmetic
errors, and infinite loops, which have historically caused
problems in many systems (see §3). Third, many in-
kernel interpreters employ just-in-time (JIT) compilation
to convert code into native machine instructions for better
performance [15, 37]; this adds another level of com-
plexity. Fourth, there are few tools that can ensure the
correctness of user-specified code.

This paper presents Jitk, a new in-kernel interpreter
infrastructure that addresses these challenges through for-
mal verification. Jitk implements a JIT that translates
two languages used in the Linux kernel, BPF [48] and
INET-DIAG [40], into native code, including x86, ARM,
and PowerPC, and proves functional correctness of this
translation. Jitk guarantees that the resulting native code
for in-kernel execution preserves the semantics of the BPF
or INET-DIAG code submitted from user space, and that
the native code never performs damaging operations such
as division by zero or out-of-bounds memory access.

To extend the benefits of functional correctness to user-
space applications, Jitk introduces a new high-level speci-
fication language called SCPL (System Call Policy Lan-
guage). Application developers can use SCPL to specify
their desired system call policies using intuitive rules,

such as “allow the gettimeofday system call” or “reject
the open system call with EACCES.” As an example, Fig-
ure 3 shows the SCPL rules that capture the BPF filter
used by OpenSSH shown in Figure 2. The hope is that it is
less likely for developers to make mistakes in SCPL rules
than in manually written BPF filters. Jitk implements a
SCPL-to-BPF compiler and a functional correctness proof
from these high-level policies to native code.

The code and proof of Jitk were developed using
the Coq proof assistant on top of the CompCert frame-
work [42]. We integrated Jitk with the Linux kernel, as a
drop-in replacement of its existing Seccomp subsystem.
Applications like OpenSSH can run on our system with-
out modifications, with the guarantee of the absence of
interpreter bugs described in §3.

Overall, the contributions of this paper are as follows:

• The Jitk infrastructure and approach for building veri-
fied in-kernel JIT interpreters.

• A case study of real-world vulnerabilities found in
BPF interpreters in several operating systems.

• A formalization of correctness and safety goals for
executing user-specified policies in the kernel.

• The Jitk/BPF and Jitk/INET-DIAG verified JITs along
with the formal specifications of both languages.

• The SCPL high-level language for specifying system
call policy rules, along with a proof of correctness for
an SCPL-to-BPF compiler.

• An evaluation of how well Jitk’s formal verification
prevents the vulnerabilities that have been discovered
in bytecode interpreters in real-world kernels.

The rest of the paper is organized as follows. §2 dis-
cusses previous related work. §3 presents background
information on the kinds of bugs that arise in in-kernel
interpreters such as BPF. §4 provides an overview of
Jitk’s architecture and goals. §5 describes the design and
proof. §6 discusses the limitations of Jitk’s approach. §7
presents our prototype implementations of Jitk as applied
in Seccomp and INET-DIAG in the Linux kernel. §8
evaluates Jitk’s security and performance. §9 concludes.

2 Related work
Pioneering work such as seL4 [38, 54], CompCert [42],
MinVisor [49], VCC [41], and Myreen’s x86 JIT com-
piler [50] showed the promise of formal verification for
building trustworthy, critical software systems, including
OS kernels, compilers, and hypervisors. Jitk demonstrates
how to apply formal techniques to building systems that
download and execute untrusted code in a commodity
kernel. Jitk leverages CompCert’s compiler infrastructure
and machine code semantics; alternatively, Jitk could be
built on the Bedrock library [12, 13].

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 35

0 16 24 32 63

opcode jt jf k

Figure 4: A BPF instruction in bytecode format, with a fixed length of
8 bytes (64 bits). It consists of an opcode, true and false target offsets
for conditional jump instructions, and a general field k.

There is a rich literature of securing and isolating faulty
kernel extension through OS design, such as microker-
nels [18, 23, 31, 55] and exokernels [24, 34]; through the
use of type-safe languages, such as SPIN (Modula-3) [1],
Singularity (C#) [33], and Mirage (OCaml) [45]; through
software-based fault isolation [58], such as BGI [9],
LXFI [46], XFI [25], VINO [53], and SVA [17]; and
through proof-carrying code [52]. These techniques fo-
cus on memory safety and kernel integrity, by isolating
user-specified code from the rest of the kernel, but cannot
guarantee functional correctness of the downloaded code.

Testing tools such as EXE [5], KLEE [6], and the
Trinity syscall fuzzer [36] are useful for finding bugs
in kernel code, and have even been applied to BPF inter-
preters, but they cannot guarantee bug-free code.

§3 extends Chen et al.’s earlier survey [10] with a case
study of a wider range of in-kernel interpreter bugs, and
the rest of the paper presents the design and implementa-
tion of Jitk that guarantees the absence of these bugs.

Our experience with Jitk suggests that it is feasible to
build formally verified JITs in the kernel, on the basis
of CompCert. Using a verified compiler like CompCert
provides stronger assurance guarantees than some of the
alternative proposals, such as integrating the LLVM in-
frastructure into the kernel [11].

3 Case study
Enforcing a policy in Seccomp, such as the one shown in
Figure 2, involves several steps: programmers express the
policy to a user-space application, which submits the pol-
icy to the kernel, which in turn relays it to an interpreter,
which then either purely interprets it or compiles it to ma-
chine code for faster execution. This section summarizes
representative bugs at each of these steps, using BPF as
an example, and discusses the challenges of achieving
correctness in this chain. Note that these bugs are gen-
eral and not BPF-specific; they have appeared in other
interpreters as well [10].

3.1 Background: the BPF virtual machine
BPF is a general-purpose virtual machine, consisting of:

• a 32-bit accumulator A,

• a 32-bit index register X,

• a scratch memory M for temporary storage (e.g., 64
bytes in the Linux kernel),

• an input packet P (the data blob for inspection), and

• an implicit program counter pc.

Opcode Operands Description

ld [k] A← P[k, .., k + 3]
ja #k pc← pc + k
jeq #k, jt, jf pc← pc + (A = k) ? jt : jf
div #k A← A / k
ret #k return k

Figure 5: Examples of BPF instructions. See the original BPF paper
for a complete list [48].

0 32 63

system call number architecture

instruction pointer

1st system call argument
...

6th system call argument

Figure 6: Input to system call filters in the Linux kernel [20], a 64-
byte (512-bit) packet. It consists of the current system call number, the
architecture, the instruction pointer, and up to six system call arguments.

A BPF filter is a sequence of BPF instructions, each of
which has a fixed length of 8 bytes, as shown in Figure 4.
It can read the input packet P, transfer data among the two
registers (A and X) and the scratch memory M, perform
arithmetic operations, and terminate with a 32-bit integer
return value, which instructs the kernel to take further
actions. Figure 5 shows examples of BPF instructions
used in this paper; see the original BPF paper for a more
complete list [48].

The BPF virtual machine has been successfully applied
in different contexts. Its original purpose is to inspect
network packets, with the return value indicating the num-
ber of bytes to accept. Its applications have gone beyond
that [3, 16, 20]. For example, the Seccomp system in the
Linux kernel uses BPF for system call filtering: the kernel
prepares a 64-byte input packet storing the current system
call arguments, as shown in Figure 6, and the return value
indicates whether the kernel should fail this system call.

A well-defined BPF filter must end with a ret instruc-
tion; it can jump only forward; and it cannot perform
illegal operations such as division by zero, out-of-bounds
memory access, or jumping to non-existent instructions.
Bugs can arise if an interpreter fails to reject illegal BPF
filters, as we will show next.

3.2 Kernel-space bugs

The complex logic for executing BPF filters happens in
kernel-space, where bugs can be disastrous for security.
Figure 7 lists common errors that have appeared in ex-
isting BPF interpreters in Linux and BSD kernels, as
detailed next.

36 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Bug description Examples

Kernel: control-flow errors (§3.2.1)
jump target off by one CVE-2014-2889 [39]
jump offset integer overflow NetBSD PR #3366 [19], OpenBSD cvs bpf_filter.c:r1.13

Kernel: arithmetic errors (§3.2.2)
incorrect divison-by-zero check NetBSD PR #43185 [29], OpenBSD cvs bpf_filter.c:r1.21
incorrect reciprocal multiplication Linux git aee636c480 [21]

Kernel: memory errors (§3.2.3)
buffer overflow NetBSD PR #32198 [27], Linux git fe15f3f1, FreeBSD svn 182380
array index integer overflow NetBSD PR #45751 [51], Linux git 55820ee2, FreeBSD svn 41588

Kernel: information leak (§3.2.4)
uninitialized read (scratch memory) NetBSD PR #45142 [30], CVE-2010-4158 (Linux), CVE-2012-3729 (iOS)
uninitialized read (A & X registers) Linux git 83d5b7ef99 [56]

Kernel-user interface bugs (§3.3)
incorrect bytecode encoding/decoding Linux git 8c482cdc [4]

User-space bugs (§3.4)
incorrect translation tcpdump git 489f459b [35], libseccomp git cc063d8d
incorrect optimization tcpdump issue #38 [26], tcpdump issue #42

Figure 7: Representative bugs in BPF interpreters.

/* x86 code: jcc t_offset; jmp f_offset; ...
t_offset should be increased by
(a) 2 bytes (jmp rel8) or
(b) 5 bytes (jmp rel32) */

jcc = /* conditional jump opcode */
if (filter[i].jf) /* BUG: should be 2 : 5 */

t_offset += is_near(f_offset) ? 2 : 6;
EMIT_COND_JMP(jcc, t_offset);
if (filter[i].jf)

EMIT_JMP(f_offset);

Figure 8: Incorrect jump target (off by one) in the BPF x86 JIT of the
Linux kernel (CVE-2014-2889 [39]). The size of a jmp here is either 2
or 5 bytes, not 6.

if (BPF_OP(insn->code) == BPF_JA) {
/* BUG: miss overflow case pc + insn->k < pc */
if (pc + insn->k >= len)

return 0;
}

Figure 9: Insufficient validation of the jump offset k [19]: given a large
k, pc + k will wrap around to a smaller value and bypass the check.

3.2.1 Control-flow errors

JIT interpreters need to correctly translate the control flow
of a BPF filter to machine code, which is both delicate
and intricate; even a tiny typo can open a new door for
kernel exploits. As an example, Figure 8 shows an off-
by-one bug in the x86 JIT in the Linux kernel: for a BPF
conditional jump, the interpreter emits an x86 conditional
jump instruction (for the true case), followed by an uncon-
ditional jmp rel32 (for the false case), which is 5 bytes;
the interpreter mistakes it as 6 bytes, and increases the
offset of the conditional jump instruction by that wrong
value. Consequently, the conditional jump instruction will
go one byte past the target instruction, which can be an
arbitrary payload controlled by an adversary [39].

case BPF_DIV: /* reject A / k where k = 0 */
/* BUG: should be 0x08; 0x18 is a wrong mask */
if ((insn->code & 0x18) == BPF_K && insn->k == 0)

return 0;

Figure 10: Incorrect division-by-zero check [29]. The code uses the
wrong mask 0x18, and thus fails to reject BPF code that performs divi-
sion by zero, which may lead to a kernel crash.

/* A / k → reciprocal_divide(A, R)
precompute R = ((1LL << 32) + (k - 1)) / k */

u32 reciprocal_divide(u32 A, u32 R)
{

return (u32)(((u64)A * R) >> 32);
}

Figure 11: Incorrect reciprocal multiplication optimization [21]. With
this optimization A/1 always produces zero, rather than A. The Linux
kernel later disabled this optimization for BPF.

Figure 9 shows another example from BSD kernels:
the interpreter needs to limit the jump offset k within
the filter code, by checking if pc + k exceeds the total
length; otherwise an adversary can trick the kernel into
executing illegal instructions. However, the interpreter
misses the case where a large jump offset overflows pc+k
and bypasses the check.

3.2.2 Arithmetic errors

One infamous type of arithmetic errors is division by
zero, which can crash the kernel if the interpreter fails
to reject it. Figure 10 shows a bug where the interpreter
tries to avoid that case, but performs the wrong check.
Particularly, for BPF instructions A/k and A/X, one can
observe their encoding difference by masking the opcode
with 0x08; the interpreter uses the wrong mask and fails
to detect the case when k is zero.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 37

/* BUG: k + sizeof(int32_t) can overflow */
if (k + sizeof(int32_t) > buflen)

return 0;
A = EXTRACT_LONG(&p[k]);

Figure 12: Incorrect bounds check [51], which a large k can bypass
since it overflows k + sizeof(int32_t) to a smaller value. A correct
check is k > buflen || sizeof(int32_t) > buflen - k.

Optimizing arithmetic operations further complicates
the situation. Figure 11 shows a bug in Linux’s BPF JIT,
which tries to optimize a division by a constant into a
multiplication and a shift. This optimization, also used
in the slab memory allocator, works well with input in
that particular context (e.g., cache size as the divisor).
However, this optimization is incorrect in general; for
example, 65536/65537 should produce zero, but with the
optimization the result becomes one. The Linux kernel
has disabled this optimization for BPF [21].

3.2.3 Memory errors
An interpreter has access to two memory regions, the
input packet P and the scratch memory M. It needs to
correctly check the offsets of load and store instructions
for both regions and reject illegal ones, which would
otherwise trick the kernel into reading from or writing to
memory that is out of range. The interpreter can easily
miss such checks for some instructions [27], or more
subtly, perform insufficient checks. Figure 12 shows an
incorrect bounds check for ld [k], where an adversary
can use a large k to overflow and bypass the check, leading
to illegal access beyond the input packet P.

3.2.4 Information leak
Since each BPF filter returns a 32-bit integer to user space,
an interpreter needs to ensure that the return value is
derived only from the input packet. In other words, it
must not leak sensitive information from other processes
nor the kernel. Several interpreters, including those in
iOS (CVE-2012-3729) and Linux (CVE-2010-4158), al-
lowed BPF filters to access uninitialized scratch mem-
ory M [30] or registers A and X [56], which could hold
sensitive values from previous use. The interpreters fixed
this vulnerability either by filling M, A, and X with zeros
before execution, or by rejecting BPF filters that try to
read these values before writing to them.

3.3 Kernel-user interface bugs
The logic at the kernel-user interface is straightforward: a
user-space application encodes a BPF filter in bytecode
format, as shown in Figure 4, and submits it to the kernel;
the kernel decodes the bytecode and reconstructs the filter.
Interestingly, there is still a possibility for programming
mistakes such as copy-paste bugs [44]: for example, the
Linux kernel once confused BPF_W with BPF_B for BPF
bytecode encoding [4].

3.4 User-space bugs
It is tedious and error-prone to directly write BPF filters
like Figure 2; for example, it requires programmers to cor-
rectly specify relative jump offsets. Many programmers
instead express their policies through domain-specific
tools or libraries, which provide a high-level interface
for constructing filters. For example, invoking tcpdump
with “tcp dst port 80” produces a 128-byte network fil-
ter for finding TCP packets sent to port 80. Applications
like QEMU use the libseccomp library [22] to simplify
the task of generating system call filters. These tools
and libraries can submit incorrect filters to the kernel
due to bugs in translating domain-specific policies into
BPF filters [35], or when they try to optimize resulting
filters [26].

3.5 Summary
Running user-specified code in the kernel offers flexibility
and extensibility, at the price of a more vulnerable system.
Achieving correctness and safety in an in-kernel inter-
preter is challenging: programmers can easily miss vali-
dating input for certain corner cases, or generate wrong
code that is hard to notice. Many of these bugs have seri-
ous security impacts, as we have shown in Figure 7. In
the next section, we will describe how to apply formal
verification techniques to building Jitk, which is safe, fast,
and immune to these bugs.

4 Overview
This section provides an overview of Jitk and its goals of
correctly translating high-level, human-comprehensible
policies to low-level native code for safe in-kernel exe-
cution. We describe Jitk in the context of the Seccomp
system in Linux using the Jitk/BPF JIT, though the ap-
proach is general and not limited to BPF.

4.1 The architecture of Jitk/BPF
Figure 13 shows the architecture of Jitk/BPF. In contrast
with the current Seccomp subsystem shown in Figure 1,
there are three important differences.

System Call Policy Language (SCPL). Rather than manu-
ally writing BPF code, application developers can choose
to specify system call policies using a high-level SCPL,
which is more intuitive and helps programmers avoid mis-
takes in their policies. In steps 1 and 2, invoking the SCPL
compiler on a SCPL program produces a corresponding
BPF filter. As an example, Figure 3 shows the SCPL rules
that capture the BPF filter used by OpenSSH shown in
Figure 2, and our SCPL compiler will produce the latter
from the former. Note that these two steps are optional;
applications can still directly submit BPF bytecode to the
kernel.

38 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

SCPL rules

SCPL compiler

BPF JIT

Native code

Policy decision

User

Kernel

ApplicationBPF bytecode

Syscall

1

2

3

4

5

6

Figure 13: System overview of Jitk/BPF. Compared to the Seccomp
subsystem in Linux shown in Figure 1, shaded components are intro-
duced by Jitk. Steps are indicated with circled numbers.

JIT interpreter with a shared backend. In Jitk when the
kernel accepts BPF bytecode from user space, a JIT trans-
lates the BPF filter into native code (steps 3 and 4). This
native code is then executed for each system call to de-
cide whether to allow that system call (steps 5 and 6).
This JIT approach helps avoid the overhead of invoking
the interpreter on each system call invocation. Jitk in-
cludes a compiler backend reused from CompCert, which
is independent of BPF and can be shared among different
interpreters. Our prototype implementation runs part of
the JIT as a trusted user-space process (see §7).

Formal verification. The SCPL compiler and the BPF JIT
are formally proven to be correct, as detailed next.

4.2 Goals
Jitk has two overall goals for enforcing user-specified
policies in the kernel. First, well-behaved applications
should be able to properly execute their filters in the ker-
nel. That is, if an application developer writes down a set
of SCPL rules, those rules should be correctly enforced by
the kernel. We will call this the correctness goal. Second,
it should be impossible for an adversary to misuse Jitk to
“break” the kernel in any way. We will call this the safety
goal. Jitk formalizes these goals in the form of a set of
theorems and lemmas, as we will now discuss.

4.2.1 Correctness
The overall correctness goal required by an application
that uses system call filtering is captured by the following
end-to-end theorem:

Theorem 1 (End-to-end correctness). For any system call
policy p written in SCPL, if Jitk accepts it, the overall
system enforces the semantics of p.

To enforce a system call policy in the kernel, Jitk needs
to translate SCPL rules into BPF instructions, transmit
BPF instructions from user space to the kernel, and trans-
late BPF instructions into native code for execution in the
kernel. To achieve Theorem 1, Jitk proves three lemmas
that reflect this workflow.

First, the SCPL compiler must preserve the semantics
of SCPL rules when generating BPF instructions:

Lemma 2 (SCPL-to-BPF semantic preservation). Given
a system call policy p written in SCPL, if the SCPL com-
piler translates it into a BPF filter f , f preserves the
semantics of p:

∀p : SCPLc(p) = OK f =⇒ p≈ f .

Here OK means the translation is successful; ≈ denotes
semantic preservation.

Second, a filter must be transmitted correctly from user
space to the kernel. To cross the user-kernel boundary,
the filter is encoded from the in-memory representation
into a byte-level representation as shown in Figure 4,
submitted to the kernel through a system call (e.g., prctl
in Linux [20]), and then decoded back into the in-memory
representation by the kernel’s BPF JIT. The reconstructed
filter in the kernel must be the same as its user-space
counterpart:

Lemma 3 (User-kernel representation equivalence). If a
BPF filter f is encoded into bytes in user space and the
bytes are decoded back to a BPF filter in kernel space, f
is preserved.

∀ f : encode(f) = OK b =⇒ decode(b) = OK f .

Finally, when the JIT translates BPF instructions into
native code in the kernel, the native code must preserve
the semantics of the BPF instructions:

Lemma 4 (BPF-to-native semantic preservation). Given
a BPF filter f , if the JIT accepts it and generates native
code n, n preserves the semantics of f .

∀ f : jit(f) = OK n =⇒ f ≈ n.

Jitk achieves this by first translating BPF to Cminor, an
intermediate language in CompCert [42]. Jitk proves the
correctness of the BPF-to-Cminor translation, and reuses
Cminor-to-native from CompCert. See §5.1.2 for details.

Taken together, Lemmas 2 through 4 imply Theorem 1.

4.2.2 Safety
The safety concern is that an arbitrary user-space applica-
tion should not be able to misuse Jitk to monopolize CPU
time or to corrupt the kernel’s memory. Particularly, both

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 39

native code generated by the BPF JIT and the JIT itself
must be safe for in-kernel execution.

Although Theorem 1 (in particular Lemma 4) guaran-
tees the correctness of native code with respect to given
SCPL rules, it provides no guarantees that the generated
native code will not cause an infinite loop or a stack over-
flow. The safety goal is captured by the following two
theorems, which describe the temporal and spatial require-
ments of in-kernel execution, respectively.

Theorem 5 (Termination). Given any BPF filter f , if
the JIT accepts it and generates native code n, then n
terminates.

∀ f : jit(f) = OK n =⇒ terminate(n).

Theorem 5 says if the JIT accepts an input BPF filter,
the resulting native code must terminate, that is, the native
code must come to a halt within a finite number of steps.
We believe that termination is an appealing property for
safety: it guarantees a bounded CPU time (i.e., no infinite
loops), and no undefined behavior in the native code (e.g.,
no out-of-bounds memory access nor division by zero),
with which the execution will get stuck.

Let S be a predefined parameter of the JIT, which in-
dicates the maximum number of bytes that native code
generated by the JIT can safely allocate and consume
from the kernel stack.

Theorem 6 (Bounded stack usage). Given any BPF fil-
ter f , if the JIT accepts it and generates native code n, n
uses at most S bytes of stack.

∀ f : jit(f) = OK n =⇒
any run of n uses at most S bytes of stack space.

Theorem 6 says that if the JIT accepts an input BPF
filter, the resulting native code must never overflow the
kernel stack.

The safety of the BPF JIT itself is guaranteed by Coq.
The JIT is written in Coq (see §4.3); all Coq programs are
guaranteed to provide memory safety, and are guaranteed
to terminate, as it is impossible to write infinite loops in
Coq’s Gallina language [14: §7].

4.3 Development flow
To build a trustworthy in-kernel interpreter in Jitk, devel-
opers need to prove that an implementation satisfies the
correctness and safety goals as formalized in §4.2. The
development workflow is shown in Figure 14.

In particular, the JIT, the encoder-decoder from user
space to kernel, and the SCPL compiler are all written in
Coq. For each component, Jitk’s Coq source code consists
of three major parts: the specification, the implementa-
tion, and the proof that the implementation matches the
specification. This source code is used in two ways. First,

specification proof implementation

Coq
proof checker

Coq
code extractor

generated
OCaml source

OCaml
compiler

I/O stub

native
executable

Figure 14: Development flow of Jitk using the Coq proof assistant.
Shaded boxes indicate source code and proof written by developers.

the Coq proof checker verifies that the proof is correct.
Second, Coq transforms the implementation into OCaml.
The generated OCaml code is compiled, together with a
small I/O stub that performs I/O and invokes the generated
code, into a native executable.

5 Design
This section focuses on how the design and proofs help
Jitk achieve its correctness and safety goals.

Figure 15 shows Jitk’s detailed workflow and compo-
nents, including the in-kernel JIT (§5.1), the high-level
SCPL in user space (§5.2), the encoding-decoding across
the two spaces (§5.3), and the integration of Jitk with
Linux (§5.4). For each component, we will describe the
specification, the implementation, and the proof.

5.1 JIT
A correct BPF JIT implementation should satisfy BPF-
to-native semantic preservation (Lemma 4), termina-
tion (Theorem 5), and bounded stack usage (Theorem 6).
To achieve these goals, we will start with the formal se-
mantics of BPF (§5.1.1), and describe the design of the
three key components: the translator (§5.1.2), which is
responsible for transforming a BPF filter into native code,
the checker (§5.1.3), which is responsible for making
sure that all input filters are well-defined before being
sent to the translator, and the validator (§5.1.4), which is
responsible for ensuring bounded stack usage for output
assembly code.

5.1.1 The specification
The specification of BPF consists of the syntax of instruc-
tions, the states, and the semantics, which is a set of state
transitions among the states. The syntax mirrors the de-
scription in §3.1, which is omitted here. During execution,
a BPF filter is in one of the following three states:

• initial state: a pair of current filter f and input packet P,
denoted as (Initialstate f P);

40 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

translator

BPF instructions

SCPL rules

encoder

BPF bytecode

SCPL
compiler

BPF bytecode

BPF
JIT

Cminor instructions

native assembly

native binary code

Lemma 2:
refinement

Lemma 3:
decode is

the inverse
of encode

Lemma 7:
refinement

Lemma 8:
refinement
(borrowed

 from CompCert)

BPF instructions

Theorem 5:
termination

decoder

checker

translator

BPF instructions

CompCert

assembler

native assembly

validator Theorem 6:
bounded stack

Figure 15: A detailed view of Jitk’s SCPL compiler (in user space) and
the BPF JIT (in kernel space).

• running state: a 6-tuple of registers A and X, scratch
memory M, program counter pc, as well as f and P,
denoted as (State A X M pc f P); and
• final state: a return value v, denoted as (Finalstate v).

A well-defined filter starts from the initial state, transi-
tions through a set of running states, and halts in the final
state. The first state transition is:

(Initialstate f P)
→ (State 0 0 (list_repeat N 0) f f P) (5.1)

This says that at start-up, A and X are set to zero, M is
initialized as N zeros, and pc is set to the start of the
filter f .

The core part of the semantics is transitions between
two running states after executing an instruction other

than ret. For example, the BPF instruction “add k” in-
creases the value of register A by k, and the corresponding
transition is:

(State A X M (add k :: pc′) f P)
→ (State (Int.add A k) X M pc′ f P)

Here add k :: pc′ means that the current instruction to
be executed is add k and the next program counter is pc′;
Int.add is a 32-bit integer addition from CompCert. The
specification says that after executing add k, the program
transitions to a state with updated values of A and pc.

A more interesting example is a transition with a pre-
condition. Below is the transition for BPF’s unconditional
jump instruction ja k:

k < length pc′ =⇒
(State A X M (ja k :: pc′) f P)

→ (State A X M (skipn k pc′) f P)

Here length returns the number of instructions remain-
ing and skipn drops a given number of instructions. The
specification says if k is less than the number of instruc-
tions remaining, then ja skips k instructions. Note that
the specification says nothing about a too-large k with
which ja could jump past the end of the filter. Therefore,
such a filter is undefined, which a safe implementation
like Jitk must reject.

The last state transition is to enter the final state with
the return value k after executing ret k:

(State A X M (ret k :: pc′) f P)
→ (Finalstate k)

5.1.2 The translator and semantic preservation
The translator compiles a well-defined BPF filter (which
passed the checker, as we will describe in §5.1.3) into
native code. Our goal is to have an implementation with
its correctness proof, as stated in Lemma 4. The key
challenge of designing the translator is to choose an ap-
propriate target language, which strikes a balance between
the complexity of the implementation and the proof.

One approach is to directly produce low-level code
such as x86 instructions from BPF, just like the existing
JIT implementations in Linux and BSD kernels. The main
downside of this approach, which we initially adopted, is
that the big semantic gap between BPF and x86 makes
it difficult to reason about the correspondence and prove
properties about the target code. For example, consider
translating BPF’s unconditional jump ja k into x86’s
jmp n, where k and n are jump offsets in the corresponding
languages. It is tricky to compute n (see §3.2.1); mean-
while, it is difficult to prove why n is the correct value
that corresponds to k.

Jitk’s translator targets Cminor, one of CompCert’s
intermediate languages [42]. Cminor can be considered

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 41

as an architecture-independent, simple C variant: it has
only primitive types such as n-bit integers, and no pointer
or struct types. The main advantage of targeting Cminor
is that it retains high-level constructs, which simplifies
the proof. For example, Cminor has labels and variables,
with which one does not have to reason about low-level
details such as jump offsets or the stack pointer.

To prove correctness of the translator, we prove that it
satisfies the following property:

Lemma 7 (BPF-to-Cminor semantic preservation). If the
JIT translator generates Cminor code c from a BPF filter f ,
c preserves the semantics of f .

∀ f : jittranslator(f) = OK c =⇒ f ≈ c.

The main technique for proving Lemma 7 is by simu-
lation [43], as used throughout CompCert. Specifically,
it suffices to show that each state transition in the BPF
specification shown in §5.1.1 corresponds to some state
transitions in the Cminor specification during translation.
We omit the details.

A second advantage of targeting Cminor is that Jitk can
reuse CompCert to transform Cminor code into native
assembly. CompCert currently has support for x86, ARM,
and PowerPC, for which it comes with its own semantic
preservation theorem:

Lemma 8 (Cminor-to-native semantic preservation). If
CompCert generates native code n from a Cminor pro-
gram c, n preserves the semantics of c.

∀c : compcert(c) = OK n =⇒ c≈ n.

Together, Lemmas 7 and 8 imply our correctness goal,
Lemma 4.

Finally, in order to transform the assembly code into
native binary code, Jitk invokes a traditional assembler;
CompCert does not include a provably correct assembler.

5.1.3 The checker and termination
Recall that Lemma 4 guarantees BPF-to-native semantic
preservation: if an input filter terminates, the resulting
native code produced by the translator also terminates.
Therefore, to achieve the termination goal as stated in
Theorem 5, it suffices to implement a checker that rejects
all undefined input and ensures that any surviving filter
terminates.

For BPF, this amounts to the following requirements:
that all jump targets are forward (i.e., no loops), that all
jump targets are in-bounds (i.e., not pointing past the
end of the program), that all memory accesses are in-
bounds (i.e., not reading or writing past the end of the
input packet and the scratch memory), and that the input
ends in a ret instruction. The combination of these rules
ensures that every program that passes the checker will be

well-defined, and will terminate with some return value
according to BPF semantics.

We prove that the implementation of the checker satis-
fies the following property:

Lemma 9 (BPF termination). If the JIT checker accepts
a BPF filter f , then f terminates.

∀ f : jitchecker(f) = OK f =⇒ terminate(f).

Combining this with Lemma 4 gives our safety goal of
termination, Theorem 5. Note that it is impossible to miss
any undefined cases in the implementation of the checker,
otherwise the proof of Lemma 9 would not succeed.

5.1.4 The validator and bounded stack usage
CompCert does not provide facilities for reasoning about
stack bounds across transformations. In order to prove
Theorem 6, one option is to extend CompCert with pro-
posed support for tracking stack bounds [8], which would
allow Jitk to prove a theorem about it.

Jitk adopts a simpler approach using the validator. As
for BPF, there is only one function with a fixed number of
variables and a fixed-size object (scratch memory) on the
stack. The validator inspects the size in the stack frame
allocation instruction at function entry in the resulting
assembly code, and fails the JIT if the size is larger than a
predefined S . It is then easy to prove Theorem 6, as any
generated assembly code that passes the validator uses at
most S bytes from the stack space.

5.2 SCPL
The design of our SCPL is inspired by the libseccomp
API [22]; the key difference is that the SCPL compiler
is provably correct. As shown in Figure 3, developers
specify rules for matching different system calls (and
optionally system call arguments), along with actions
to take when those rules match (e.g., allow the system
call, or reject it with a particular errno value). There
is also a default action, if none of the rules match. The
formal specification of SCPL is similar to BPF described
in §5.1.1: the syntax, the states, and the state transitions.
The proof of SCPL-to-BPF correctness is also similar to
BPF-to-Cminor. We omit the details here.

5.3 Encoding and decoding
To ensure that BPF programs are faithfully encoded and
decoded when transmitted across the user-kernel space
boundary, Jitk implements an encoder and decoder, which
transforms an in-memory representation of a BPF pro-
gram into BPF bytecode, and back into an in-memory
representation.

One option for proving the correctness of the BPF en-
coder and decoder would be to define semantics for BPF
bytecode, as defined by byte-level sequences, and to prove
equivalence between the in-memory representation (under

42 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the semantics of in-memory BPF programs) and the byte-
level representation (under the semantics of byte-level
encodings). However, this approach is quite cumbersome,
owing to the complexity of defining the semantics of BPF
programs at the low level of byte encodings.

Instead, Jitk takes a pragmatic alternative: it proves
that the decoder is the inverse of the encoder (Lemma 3).
When used in combination with SCPL, this guarantees
that SCPL-generated BPF bytecode will necessarily be de-
coded correctly by the Jitk/BPF JIT in the kernel. It does
not guarantee that the encoder and decoder implemented
by Jitk are compatible with any other encoding (e.g., the
encoding produced by libseccomp). In practice, we be-
lieve this is not a significant problem, because the speci-
fication of the correct encoding and decoding would be
of similar complexity to our current Coq encoder/decoder
implementation, and our theorem (Lemma 3) provides
a strong sanity check on the internal consistency of our
encoder and decoder.

5.4 Linux kernel integration
The Linux kernel interacts with Jitk in two ways. The first
is when an application submits a BPF filter to Seccomp
through the prctl system call [20]: we modified the ker-
nel to invoke Jitk’s BPF JIT. The JIT translates the filter
into native code; if the translation fails, indicating that the
BPF filter code was not well-formed, the prctl system
call returns an error.

The second is when an application makes a subsequent
system call: we modified the kernel to check if there is al-
ready a JIT-compiled filter associated with the process; if
so, the kernel treats the filter as a function pointer, invok-
ing it with a single argument (the structure containing the
system call number and arguments, shown in Figure 6).1

The return value determines the resulting action for this
system call, much as with the existing Seccomp design.

6 Discussion
There are some mistakes that Jitk’s theorems cannot pre-
vent. First, if the specifications of BPF and SCPL are
buggy, then Jitk’s JIT implementations can have bugs.

Another example is an overly strict checker, such as
NetBSD #37663 [28], which rejected any BPF program
that used the multiply instruction. Such an implementa-
tion does not violate either correctness or safety goals,
since all of our theorems are conditional on our system
accepting a given program. It would be possible to prove
an additional theorem that required Jitk/BPF to accept
certain programs; one good candidate would be a require-
ment that Jitk/BPF accept all BPF programs generated by
the SCPL compiler.

1 Linux kernel 3.16 or later does not require this modification any-
more, as it has been changed to work in the same way.

Jitk’s theorems also cannot prevent the use of Jitk’s
JIT for JIT spraying [47], which can make it easier to
exploit memory corruption vulnerabilities in the rest of
the Linux kernel. Given a formal set of requirements for a
JIT to mitigate the effects of JIT spraying (e.g., ensuring
that a constant in the input bytecode does not appear in
the output code), it may be possible to prove that Jitk
correctly implements such mitigation techniques.

Jitk’s encoder/decoder can have self-consistent mis-
takes, in that the encoder and decoder are consistent with
each other (satisfying Lemma 3), but do not match the en-
coding used by others for the same bytecode. We believe
it is unlikely for the reasons discussed in §5.3.

Finally, Jitk assumes several additional parts are correct
without a formal proof. First, the Coq proof checker is as-
sumed to be correct. While bugs have been found in Coq,
we believe Coq provides a strong degree of assurance
that Jitk is trustworthy. The Coq extraction system and
the OCaml compiler and runtime are also assumed to be
correct. We believe this is reasonable because Coq itself
is written in OCaml. That said, bugs in Coq’s extraction
system have been found in the past [57, 59].

Jitk’s OCaml I/O stub has no proof of correctness. It is
about 70 lines of code, and performs simple operations:
taking input from stdin, passing it into the Coq-extracted
code, and printing the results to stdout.

The rest of the kernel code, including the wrapper that
invokes the Jitk JIT and that invokes the filter code pro-
duced by the JIT, is assumed to be correct. Particularly,
Jitk assumes that the kernel does not trample on the JIT
itself, that the kernel correctly interprets the results from
the JIT and the filter, and that the kernel synthesizes an
correct input packet to the filter, namely, a single pointer
argument pointing to a valid memory region whose size
matches the structure shown in Figure 6.

Jitk also assumes that the kernel invokes the JIT-
compiled code with an appropriate calling convention.
For example, on x86 the JIT-compiled code assumes that
the input argument is passed on the stack, as CompCert’s
x86 backend uses the cdecl calling convention; however,
the Linux kernel uses fastcall by default (e.g., with gcc’s
-mregparm=3), which passes the input argument in the EAX
register. We bridged the gap using a function wrapper.

Finally, Jitk assumes that CompCert generates correct
assembly code for the filter, which is a single-argument
function. One technical complication is that CompCert’s
semantics are defined only for complete programs that
take no arguments. This precludes even well-formed C
programs with a main function that takes two arguments,
argc and argv, for which theoretically CompCert pro-
vides no guarantees. We believe this is not a likely source
of bugs in practice.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 43

Component Lines of code

Specifications (SCPL, BPF) 420 lines of Coq
Implementation (SCPL, BPF) 520 lines of Coq
Proof (SCPL, BPF) 2,300 lines of Coq
Extraction to OCaml 50 lines of Coq
I/O stub 70 lines of OCaml
Linux kernel changes 150 lines of C

Total 3,510 lines of code

Figure 16: Lines of code for our Jitk/BPF prototype.

7 Implementation
We have implemented a fully functional prototype of Jitk
for Linux’s BPF-based Seccomp system. The breakdown
of our Jitk/BPF prototype (excluding the components
borrowed from CompCert) in terms of lines of code is
shown in Figure 16.

As mentioned in §4.3, the BPF JIT is written in Coq.
We extracted the Coq implementation into OCaml code,
and linked it into an executable, together with the I/O stub
and the OCaml runtime. In order to run this executable
for translating BPF bytecode into native binary code, we
chose to put it in user space and modified the kernel to
perform an upcall, using Linux’s call_usermodehelper
interface. Putting the executable with the OCaml runtime
into the kernel would be doable, as demonstrated by the
Mirage unikernel [45], but would unnecessarily compli-
cate our implementation. Trusting a user-mode process
running as root to produce native binary code for running
in the kernel seems reasonable, given that root processes
can also load arbitrary kernel modules.

Jitk supports generating x86, ARM, and PowerPC code,
as CompCert provides the corresponding backends. Jitk
does not support architectures that CompCert lacks, such
as x86-64.

Like CompCert, Jitk relies on a conventional (not
proven correct) assembler to convert textual assembly
code into a native binary. Jitk uses the GNU assembler as
for this purpose, and disables assembler-level optimiza-
tions (using the -n option) out of precaution.

8 Evaluation
In our evaluation, we aim to answer five questions:

• How much effort does it take to build Jitk? (§8.1)

• Does formal verification prevent the kinds of bugs that
arise in practice? (§8.2)

• Does Jitk’s JIT produce efficient filter code? (§8.3)

• How much effort is required to use SCPL? (§8.4)

• What is the end-to-end performance of Jitk? (§8.5)

8.1 Verification effort
The total effort to build Jitk for Seccomp was shown in
Figure 16. Much of the effort went into constructing
proofs. The 2,300 lines of Coq proof code consist of 650
lines of general helpers (the crush tactic from CPDT [14]
and miscellaneous lemmas about linked lists and arith-
metic), 950 lines of refinement proof (that the BPF JIT
preserves semantics), 350 lines of termination proof (that
programs that pass the checker are well-defined), 150
lines of encoding proof (that decoding is the inverse of
encoding), and 250 lines of proof for the SCPL compiler.

To determine if this approach can be applied to another
bytecode language, we implemented a JIT for the INET-
DIAG interpreter from the Linux kernel. INET-DIAG
has a simpler bytecode language, and the code and proof
sizes were correspondingly smaller, totaling 1,590 lines of
code. Overall, we believe this indicates Jitk is a practical
approach for building trustworthy in-kernel interpreters.

8.2 Bug case study
To evaluate whether Jitk’s formal verification does a good
job of preventing bugs that arise in practice, we perform
an analysis of the bugs that have been found in interpreters
so far (Figure 7), and manually determine whether such
a bug could have been present in an implementation that
provably satisfies Jitk’s theorems. Our results show that
Jitk is effective at preventing these bugs.

Control-flow errors. The control flow errors described
in §3.2.1, such as misaligned jump targets and overflow
in computing the jump offset, cannot occur in Jitk, since
Lemma 4 guarantees that all jumps in native code preserve
the semantics. It is also impossible to “run off the end”
of generated native code, since Theorem 5 guarantees
that every BPF program that passes the checker must
terminate. We found and fixed several off-by-one jump
errors in our implementation while proving Lemma 7.

Arithmetic errors. If the JIT forgets to check for division
by zero, the proof of Lemma 7 cannot succeed: in Cminor,
division by zero is undefined, and it would be impossible
to prove that the generated Cminor code refines the se-
mantics of the BPF program. Similarly, if the JIT has an
incorrect optimization, such as reciprocal_divide, the
proof of Lemma 7 cannot proceed, either. We initially
forgot to check for division by zero, and had to address it
in order to complete the proof.

Memory errors. If the memory index in a BPF instruc-
tion is in-bounds, the generated Cminor instruction must
access the same memory index; otherwise the proof of
Lemma 7 cannot proceed. This eliminates incorrect mem-
ory indices. On the other hand, if the memory index in a
BPF instruction is out-of-bounds, the BPF program is un-
defined, and the termination proof ensures that the checker

44 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

BPF
x86 ARM PowerPC

FreeBSD Jitk Linux Jitk Linux Jitk

OpenSSH 312 466 274 (58.8%) 384 396 (103.1%) 452 340 (75.2%)
vsftpd 576 1, 177 443 (37.6%) 616 624 (101.3%) 736 548 (74.5%)
Native Client 664 928 626 (67.5%) 828 844 (101.9%) 984 688 (69.9%)
QEMU 1, 680 2, 364 2, 037 (86.2%) 2, 048 2, 156 (105.3%) 2, 780 1, 840 (66.2%)
Firefox 1, 720 2, 314 1, 636 (70.7%) 2, 164 2, 196 (101.5%) 2, 564 1, 748 (68.2%)
Chrome 2, 144 4, 640 2, 122 (45.7%) 2, 380 2, 348 (98.7%) 3, 260 2, 308 (70.8%)
Tor 3, 032 6, 841 2, 691 (39.3%) 3, 400 4, 048 (119.1%) 4, 308 3, 304 (76.7%)

Figure 17: Comparison of sizes of native code generated by the BPF JIT of Jitk, the Linux kernel, and the FreeBSD kernel, measured in bytes. “BPF”
lists the size of BPF filters, also in bytes.

must reject all such programs. Thus, out-of-bounds mem-
ory accesses are avoided.

Information leak. The initial state transition (5.1) speci-
fies that the initial state of a BPF program contain zeroes
in all registers and scratch memory locations. The proof
of Lemma 4 guarantees that no generated native code can
produce results inconsistent with zeroed initial memory.
Note that the lemma leaves open the option of not ini-
tializing these memory locations, as long as they are not
actually read by the BPF program. In fact, the CompCert
compiler’s optimization passes will eliminate initializa-
tion of unused memory locations in a provably correct
way.

Encoding and decoding bugs. Lemma 3 guarantees that
the decoder is the inverse of the encoder. This lemma’s
proof cannot go through if one of the encoder or decoder
has a bug, as was the case in a recent Linux issue [4].

Bugs in BPF generation tools. If developers write SCPL
rules and invoke the SCPL compiler to generate BPF fil-
ters, Lemma 2 guarantees the absence of incorrect filters,
unlike with tcpdump or libseccomp.

8.3 Code quality
To understand the quality of native code generated by
Jitk, we collect BPF filters used by popular applications
shipped in Ubuntu 14.04. To extract these filters, we use
LD_PRELOAD to intercept the prctl system call, used to
submit system call filters to the kernel. We then compare
the sizes of resulting native code produced by Jitk/BPF
and by two widely used in-kernel BPF JITs, Linux and
FreeBSD, as shown in Figure 17 (though Linux does not
use the BPF JIT for Seccomp).

For ARM and PowerPC, we compare Jitk with Linux’s
BPF JIT (FreeBSD’s does not support the two architec-
tures). For x86, we compare Jitk with FreeBSD’s BPF
JIT (Linux’s does not support x86). Also, the current
Linux JIT (both ARM and PowerPC) failed on one spe-
cial BPF instruction used by Seccomp; we patched it for
this comparison. The results show that in addition to
the correctness and safety guarantees, the quality of the

native code produced by Jitk is comparable to that from
existing in-kernel JITs. Particularly, Jitk generates sub-
stantially smaller code than existing in-kernel JITs on x86
and PowerPC. After inspecting the resulting assembly
code, we believe the reason is that Jitk is built on top
of CompCert, which performs more comprehensive and
effective optimizations (e.g., common-code elimination).

8.4 SCPL
To evaluate the usability of SCPL, we translated the Sec-
comp policy used by OpenSSH from raw BPF operations
specified by the developer into an SCPL policy. The re-
sulting SCPL policy was 40 lines of code, parts of which
were shown in Figure 3. Integrating the SCPL policy
into OpenSSH required changing an additional 20 lines of
OpenSSH source code, to load the BPF filter produced by
the SCPL compiler, instead of using the manually written
BPF filter. Overall, we believe this suggests that SCPL is
easy to use in real applications.

8.5 Performance
To evaluate the performance of Seccomp with Jitk, we
measured the performance of OpenSSH running on an
i386 Linux system. We measured two OpenSSH configu-
rations: one with the hand-written BPF filter, and one with
the SCPL-generated filter (as described above). We also
considered two kernel configurations: one using the stock
Linux kernel, with its unverified BPF interpreter, and one
using our modified Linux kernel that uses Jitk’s BPF JIT.
Since the Seccomp policy in OpenSSH applies to the pro-
cess that performs user authentication, we measured the
time it takes to log in via SSH and then immediately dis-
connect, from the same machine (i.e., measuring the time
for ssh localhost exit), using RSA key authentication.

Figure 18 shows the results on a single-core 2.8 GHz
Intel Xeon CPU with 3 GB DRAM running a 32-bit Linux
3.15-rc1 kernel. As can be seen, SCPL-generated filters
perform just as well as the hand-written BPF filter in
OpenSSH. Jitk’s BPF JIT introduces about 20 msec of
additional latency; this is due to the overhead of invoking
a new process for the OCaml runtime and the assembler.
We measured the time taken just to install the OpenSSH

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 45

Stock OpenSSH SCPL-generated
BPF filter BPF filter

Stock Linux 124 msec 124 msec
Jitk BPF JIT 144 msec 144 msec

Figure 18: Time taken to login and disconnect from an OpenSSH server
in different configurations; using SCPL gives the same performance as
hand-written BPF filters.

BPF filter as a Seccomp policy in Linux, using the prctl
system call; the time with the stock Linux kernel was
1 msec, and the time with Jitk’s BPF JIT was 21 msec; the
time to just run the BPF JIT’s OCaml binary on that BPF
filter is 14 msec. We believe this can be reduced further
by using a persistent user-space helper process instead of
spawning a new process for every BPF filter.

One benefit of Jitk’s BPF JIT over a traditional inter-
preter is that once the BPF filter has been translated into
native code, subsequent system calls can execute with
lower overhead. To measure this, we used the BPF filter
from OpenSSH, and measured the time to both install the
BPF filter, and to perform 1,000,000 gettimeofday sys-
tem calls (we moved gettimeofday to be the last system
call allowed by the BPF filter). With the stock Linux BPF
interpreter, this took 771 msec; with Jitk’s BPF JIT, this
took 691 msec; without any filter, this took 460 msec.

9 Conclusion
Jitk is a new approach for building in-kernel JIT inter-
preters that guarantee functional correctness using for-
mal verification techniques. Jitk guarantees correctness
through high-level policy rules in user-space applica-
tions, to lower-level BPF, across the user-kernel space
boundary, and to native code in-kernel. It also guar-
antees termination and bounded stack usage for native
code executed in-kernel. An analysis of known inter-
preter vulnerabilities demonstrates that Jitk prevents all
classes of security vulnerabilities discovered in existing
kernel interpreters. An experimental evaluation shows
that Jitk’s SCPL rules are easy to integrate into exist-
ing applications, and that Jitk achieves good end-to-end
performance. We believe that this is a promising direc-
tion since it achieves flexibility, safety, and good perfor-
mance. All of Jitk’s source code is publicly available at
http://css.csail.mit.edu/jitk/.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Gernot Heiser, for their feedback. This research was
partially supported by the DARPA Clean-slate design
of Resilient, Adaptive, Secure Hosts (CRASH) program
under contract #N66001-10-2-4089, and by NSF award
CNS-1053143.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Cham-
bers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the
15th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 267–284, Copper Mountain,
CO, Dec. 1995.

[2] Bitcoin. Script, 2014. https://en.bitcoin.it/
wiki/Script.

[3] D. Borkmann. net: sched: cls_bpf: add BPF-based
classifier, Oct. 2013. http://patchwork.ozlabs.
org/patch/286589/.

[4] D. Borkmann. net: filter: seccomp: fix wrong decod-
ing of BPF_S_ANC_SECCOMP_LD_W, Apr. 2014. http:
//patchwork.ozlabs.org/patch/339039/.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: Automatically generating
inputs of death. In Proceedings of the 13th ACM
Conference on Computer and Communications Se-
curity (CCS), pages 322–335, Alexandria, VA, Oct.–
Nov. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings
of the 8th Symposium on Operating Systems Design
and Implementation (OSDI), pages 209–224, San
Diego, CA, Dec. 2008.

[7] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of the 2004 USENIX Annual Technical
Conference, pages 15–28, Boston, MA, June–July
2004.

[8] Q. Carbonneaux, J. Hoffmann, T. Ramananandro,
and Z. Shao. End-to-end verification of stack-space
bounds for C programs. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages
270–281, Edinburgh, UK, June 2014.

[9] M. Castro, M. Costa, J. P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In Pro-
ceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), pages 45–58, Big Sky,
MT, Oct. 2009.

[10] H. Chen, C. Cutler, T. Kim, Y. Mao, X. Wang,
N. Zeldovich, and M. F. Kaashoek. Security bugs
in embedded interpreters. In Proceedings of the 4th
Asia-Pacific Workshop on Systems, Singapore, July
2013.

[11] D. Chisnall. LLVM in the FreeBSD toolchain. In
Proceedings of AsiaBSDCon, pages 13–20, Tokyo,

46 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Japan, Mar. 2014.
[12] A. Chlipala. Mostly-automated verification of low-

level programs in computational separation logic. In
Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 234–245, San Jose, CA, June
2011.

[13] A. Chlipala. The Bedrock structured programming
system: Combining generative metaprogramming
and Hoare logic in an extensible program veri-
fier. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Program-
ming (ICFP), pages 391–402, Boston, MA, Sept.
2013.

[14] A. Chlipala. Certified Programming with Dependent
Types. MIT Press, Nov. 2013.

[15] J. Corbet. A JIT for packet filters, Apr. 2011. https:
//lwn.net/Articles/437981/.

[16] J. Corbet. BPF tracing filters, Dec. 2013. https:
//lwn.net/Articles/575531/.

[17] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure Virtual Architecture: A safe execution en-
vironment for commodity operating systems. In
Proceedings of the 21st ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 351–366,
Stevenson, WA, Oct. 2007.

[18] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. CuriOS: Improving reliability through
operating system structure. In Proceedings of the
8th Symposium on Operating Systems Design and
Implementation (OSDI), pages 59–72, San Diego,
CA, Dec. 2008.

[19] der Mouse. NetBSD PR #3366: bpf doesn’t
check its filter enough, Mar. 1997. http://gnats.
netbsd.org/3366.

[20] W. Drewry. SECure COMPuting with filters, Jan.
2012. http://lwn.net/Articles/498231/.

[21] E. Dumazet. bpf: do not use reciprocal divide, Jan.
2014. http://patchwork.ozlabs.org/patch/
311163/.

[22] J. Edge. A library for seccomp filters, Apr. 2012.
http://lwn.net/Articles/494252/.

[23] K. Elphinstone and G. Heiser. From L3 to seL4:
What have we learnt in 20 years of L4 microkernels?
In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP), pages 133–150,
Farmington, PA, Nov. 2013.

[24] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 251–266, Copper
Mountain, CO, Dec. 1995.

[25] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system
address spaces. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), pages 75–88, Seattle, WA, Nov. 2006.

[26] G. Harris. Issue #38: Another optimization
bug, Dec. 2003. https://github.com/the-
tcpdump-group/libpcap/issues/38.

[27] G. Harris. NetBSD PR #32198: bpf_validate()
needs to do more checks, Nov. 2005. http://
gnats.netbsd.org/32198.

[28] G. Harris. NetBSD PR #37663: bpf_validate re-
jects valid programs that use the multiply instruction,
Jan. 2008. http://gnats.netbsd.org/37663.

[29] G. Harris. NetBSD PR #43185: bpf_validate()
uses BPF_RVAL()when it should use BPF_SRC(), Apr.
2010. http://gnats.netbsd.org/43185.

[30] G. Harris. NetBSD PR #45412: bpf_filter() can
leak kernel stack contents, July 2011. http://
gnats.netbsd.org/45412.

[31] J. N. Herder, H. Bos, B. Gras, P. Homburg, and
A. Tanenbaum. Fault isolation for device drivers. In
Proceedings of the 2009 IEEE Dependable Systems
and Networks Conference, pages 33–42, Lisbon,
Portugal, June–July 2009.

[32] Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. Advanced configuration and power inter-
face specification, Dec. 2011. http://www.acpi.
info/DOWNLOADS/ACPIspec50.pdf.

[33] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fahndrich, C. Hawblitzel, O. Hod-
son, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi,
T. Wobber, and B. Zill. An overview of the Singu-
larity project. Technical Report MSR-TR-2005-135,
Microsoft, Redmond, WA, Oct. 2005.

[34] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Applica-
tion performance and flexibility on exokernel sys-
tems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP), pages 52–
65, Saint-Malo, France, Oct. 1997.

[35] B. Keats. TCPDUMP 3.9.4 under Fedora
Core 5 seems to generate the wrong BPF
for DLT_PRISM_HEADER, Aug. 2006. http://
seclists.org/tcpdump/2006/q3/37.

[36] M. Kerrisk. LCA: The Trinity fuzz tester, Feb. 2013.
https://lwn.net/Articles/536173/.

[37] J.-u. Kim. Add experimental BPF Just-In-
Time compiler for amd64 and i386, Dec.
2005. http://docs.freebsd.org/cgi/mid.
cgi?200512060258.jB62wCnk084452.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 47

[38] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 207–
220, Big Sky, MT, Oct. 2009.

[39] M. Koetter. Linux 3.0 bpf jit x86_64 exploit,
Dec. 2011. http://carnivore.it/2011/12/
27/linux_3.0_bpf_jit_x86_64_exploit.

[40] A. Kuznetosv. SS utility: Quick intro, Sept. 2001.
http://www.cyberciti.biz/files/ss.html.

[41] D. Leinenbach and T. Santen. Verifying the Mi-
crosoft Hyper-V hypervisor with VCC. In Proceed-
ings of 16th International Symposium on Formal
Methods, pages 806–809, Eindhoven, the Nether-
lands, Nov. 2009.

[42] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July
2009.

[43] X. Leroy. A formally verified compiler back-end.
Journal of Automated Reasoning, 43(4):363–446,
Dec. 2009.

[44] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
A tool for finding copy-paste and related bugs in
operating system code. In Proceedings of the 6th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 289–302, San Francisco,
CA, Dec. 2004.

[45] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), pages 461–472, Houston, TX, Mar. 2013.

[46] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich,
and M. F. Kaashoek. Software fault isolation with
API integrity and multi-principal modules. In Pro-
ceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), pages 115–128, Cascais,
Portugal, Oct. 2011.

[47] K. McAllister. Attacking hardened Linux
systems with kernel JIT spraying, Nov. 2012.
http://mainisusuallyafunction.blogspot.
com/2012/11/attacking-hardened-linux-
systems-with.html.

[48] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the Winter 1993 USENIX Technical
Conference, pages 259–270, San Diego, CA, Jan.
1993.

[49] M. McCoyd, R. Krug, D. Goel, M. Dahlin, and
W. Young. Building a hypervisor on a formally veri-
fied protection layer. In Proceedings of the Hawaii
International Conference on System Sciences, pages
5069–5078, Maui, HI, Jan. 2013.

[50] M. O. Myreen. Verified just-in-time compiler on
x86. In Proceedings of the 37th ACM Symposium
on Principles of Programming Languages (POPL),
pages 107–118, Madrid, Spain, Jan. 2011.

[51] A. Nasonov. NetBSD PR #45751: No overflow
check in BPF_LD|BPF_ABS, Dec. 2011. http://
gnats.netbsd.org/45751.

[52] G. C. Necula and P. Lee. Safe kernel extensions with-
out run-time checking. In Proceedings of the 2nd
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 229–243, Seattle, WA,
Oct. 1996.

[53] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved ker-
nel extensions. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), pages 213–227, Seattle, WA, Oct.
1996.

[54] T. Sewell, M. Myreen, and G. Klein. Translation
validation for a verified OS kernel. In Proceedings
of the 2013 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 471–482, Seattle, WA, June 2013.

[55] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS:
a fast capability system. In Proceedings of the
17th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 170–185, Kiawah Island, SC,
Dec. 1999.

[56] A. Starovoitov. net: filter: initialize A and X reg-
isters, Apr. 2014. http://patchwork.ozlabs.
org/patch/341693/.

[57] F. Tuong. Bug 2570 - in extraction optimiza-
tion, a eta-reduction leads to a not generalizable
’_a, July 2011. https://coq.inria.fr/bugs/
show_bug.cgi?id=2570.

[58] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. In
Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 203–216,
Asheville, NC, Dec. 1993.

[59] R. Zumkeller. Bug 843 - extraction breaks mod-
ule typing, Aug. 2004. https://coq.inria.fr/
bugs/show_bug.cgi?id=843.

48 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 49

IX: A Protected Dataplane Operating System for
High Throughput and Low Latency

Adam Belay1 George Prekas2 Ana Klimovic1 Samuel Grossman1

Christos Kozyrakis1

1Stanford University

Edouard Bugnion2

2EPFL

Abstract
The conventional wisdom is that aggressive networking
requirements, such as high packet rates for small mes-
sages and microsecond-scale tail latency, are best ad-
dressed outside the kernel, in a user-level networking
stack. We present IX, a dataplane operating system that
provides high I/O performance, while maintaining the key
advantage of strong protection offered by existing ker-
nels. IX uses hardware virtualization to separate man-
agement and scheduling functions of the kernel (control
plane) from network processing (dataplane). The data-
plane architecture builds upon a native, zero-copy API
and optimizes for both bandwidth and latency by dedi-
cating hardware threads and networking queues to data-
plane instances, processing bounded batches of packets
to completion, and by eliminating coherence traffic and
multi-core synchronization. We demonstrate that IX out-
performs Linux and state-of-the-art, user-space network
stacks significantly in both throughput and end-to-end la-
tency. Moreover, IX improves the throughput of a widely
deployed, key-value store by up to 3.6× and reduces tail
latency by more than 2×.

1 Introduction
Datacenter applications such as search, social network-
ing, and e-commerce platforms are redefining the require-
ments for systems software. A single application can con-
sist of hundreds of software services, deployed on thou-
sands of servers, creating a need for networking stacks
that provide more than high streaming performance. The
new requirements include high packet rates for short mes-
sages, microsecond-level responses to remote requests
with tight tail latency guarantees, and support for high
connection counts and churn [2, 14, 46]. It is also im-
portant to have a strong protection model and be elastic
in resource usage, allowing other applications to use any
idling resources in a shared cluster.

The conventional wisdom is that there is a basic mis-
match between these requirements and existing network-
ing stacks in commodity operating systems. Conse-
quently, some systems bypass the kernel and implement
the networking stack in user-space [29, 32, 40, 59, 61].
While kernel bypass eliminates context switch overheads,
on its own it does not eliminate the difficult tradeoffs be-
tween high packet rates and low latency (see §5.2). More-
over, user-level networking suffers from lack of protec-
tion. Application bugs and crashes can corrupt the net-
working stack and impact other workloads. Other sys-
tems go a step further by also replacing TCP/IP with
RDMA in order to offload network processing to special-
ized adapters [17, 31, 44, 47]. However, such adapters
must be present at both ends of the connection and can
only be used within the datacenter.

We propose IX, an operating system designed to break
the 4-way tradeoff between high throughput, low latency,
strong protection, and resource efficiency. Its architec-
ture builds upon the lessons from high performance mid-
dleboxes, such as firewalls, load-balancers, and software
routers [16, 34]. IX separates the control plane, which
is responsible for system configuration and coarse-grain
resource provisioning between applications, from the dat-
aplanes, which run the networking stack and application
logic. IX leverages Dune and virtualization hardware to
run the dataplane kernel and the application at distinct
protection levels and to isolate the control plane from the
dataplane [7]. In our implementation, the control plane
is the full Linux kernel and the dataplanes run as pro-
tected, library-based operating systems on dedicated hard-
ware threads.

The IX dataplane allows for networking stacks that op-
timize for both bandwidth and latency. It is designed
around a native, zero-copy API that supports processing
of bounded batches of packets to completion. Each dat-
aplane executes all network processing stages for a batch
of packets in the dataplane kernel, followed by the associ-

50 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ated application processing in user mode. This approach
amortizes API overheads and improves both instruction
and data locality. We set the batch size adaptively based
on load. The IX dataplane also optimizes for multi-core
scalability. The network adapters (NICs) perform flow-
consistent hashing of incoming traffic to distinct queues.
Each dataplane instance exclusively controls a set of these
queues and runs the networking stack and a single appli-
cation without the need for synchronization or coherence
traffic during common case operation. The IX API de-
parts from the POSIX API, and its design is guided by the
commutativity rule [12]. However, the libix user-level
library includes an event-based API similar to the popular
libevent library [51], providing compatibility with a
wide range of existing applications.

We compare IX with a TCP/IP dataplane against Linux
3.16.1 and mTCP, a state-of-the-art user-level TCP/IP
stack [29]. On a 10GbE experiment using short mes-
sages, IX outperforms Linux and mTCP by up to 10× and
1.9× respectively for throughput. IX further scales to a
4x10GbE configuration using a single multi-core socket.
The unloaded uni-directional latency for two IX servers
is 5.7µs, which is 4× better than between standard Linux
kernels and an order of magnitude better than mTCP, as
both trade-off latency for throughput. Our evaluation with
memcached, a widely deployed key-value store, shows
that IX improves upon Linux by up to 3.6× in terms of
throughput at a given 99th percentile latency bound, as it
can reduce kernel time, due essentially to network pro-
cessing, from ∼ 75% with Linux to < 10% with IX.

IX demonstrates that, by revisiting networking APIs
and taking advantage of modern NICs and multi-core
chips, we can design systems that achieve high through-
put and low latency and robust protection and resource
efficiency. It also shows that, by separating the small sub-
set of performance-critical I/O functions from the rest of
the kernel, we can architect radically different I/O sys-
tems and achieve large performance gains, while retain-
ing compatibility with the huge set of APIs and services
provided by a modern OS like Linux.

The rest of the paper is organized as follows. §2 mo-
tivates the need for a new OS architecture. §3 and §4
present the design principles and implementation of IX.
§5 presents the quantitative evaluation. §6 and §7 discuss
open issues and related work.

2 Background and Motivation
Our work focuses on improving operating systems for ap-
plications with aggressive networking requirements run-
ning on multi-core servers.

2.1 Challenges for Datacenter Applications

Large-scale, datacenter applications pose unique chal-
lenges to system software and their networking stacks:

Microsecond tail latency: To enable rich interactions be-
tween a large number of services without impacting the
overall latency experienced by the user, it is essential to
reduce the latency for some service requests to a few tens
of µs [3, 54]. Because each user request often involves
hundreds of servers, we must also consider the long tail of
the latency distributions of RPC requests across the data-
center [14]. Although tail-tolerance is actually an end-to-
end challenge, the system software stack plays a signifi-
cant role in exacerbating the problem [36]. Overall, each
service node must ideally provide tight bounds on the 99th
percentile request latency.

High packet rates: The requests and, often times, the
replies between the various services that comprise a
datacenter application are quite small. In Facebook’s
memcached service, for example, the vast majority of
requests uses keys shorter than 50 bytes and involves val-
ues shorter than 500 bytes [2], and each node can scale to
serve millions of requests per second [46].

The high packet rate must also be sustainable under
a large number of concurrent connections and high con-
nection churn [23]. If the system software cannot handle
large connection counts, there can be significant impli-
cations for applications. The large connection count be-
tween application and memcached servers at Facebook
made it impractical to use TCP sockets between these two
tiers, resulting in deployments that use UDP datagrams
for get operations and an aggregation proxy for put op-
erations [46].

Protection: Since multiple services commonly share
servers in both public and private datacenters [14, 25, 56],
there is need for isolation between applications. The use
of kernel-based or hypervisor-based networking stacks
largely addresses the problem. A trusted network stack
can firewall applications, enforce access control lists
(ACLs), and implement limiters and other policies based
on bandwidth metering.

Resource efficiency: The load of datacenter applications
varies significantly due to diurnal patterns and spikes in
user traffic. Ideally, each service node will use the fewest
resources (cores, memory, or IOPS) needed to satisfy
packet rate and tail latency requirements at any point. The
remaining server resources can be allocated to other ap-
plications [15, 25] or placed into low power mode for en-
ergy efficiency [4]. Existing operating systems can sup-
port such resource usage policies [36, 38].

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 51

2.2 The Hardware – OS Mismatch
The wealth of hardware resources in modern servers
should allow for low latency and high packet rates for dat-
acenter applications. A typical server includes one or two
processor sockets, each with eight or more multithreaded
cores and multiple, high-speed channels to DRAM and
PCIe devices. Solid-state drives and PCIe-based Flash
storage are also increasingly popular. For networking,
10 GbE NICs and switches are widely deployed in dat-
acenters, with 40 GbE and 100 GbE technologies right
around the corner. The combination of tens of hardware
threads and 10 GbE NICs should allow for rates of 15M
packets/sec with minimum sized packets. We should also
achieve 10–20µs round-trip latencies given 3µs latency
across a pair of 10 GbE NICs, one to five switch crossings
with cut-through latencies of a few hundred ns each, and
propagation delays of 500ns for 100 meters of distance
within a datacenter.

Unfortunately, commodity operating systems have
been designed under very different hardware assumptions.
Kernel schedulers, networking APIs, and network stacks
have been designed under the assumptions of multiple
applications sharing a single processing core and packet
inter-arrival times being many times higher than the la-
tency of interrupts and system calls. As a result, such
operating systems trade off both latency and throughput
in favor of fine-grain resource scheduling. Interrupt co-
alescing (used to reduce processing overheads), queuing
latency due to device driver processing intervals, the use
of intermediate buffering, and CPU scheduling delays fre-
quently add up to several hundred µs of latency to remote
requests. The overheads of buffering and synchronization
needed to support flexible, fine-grain scheduling of appli-
cations to cores increases CPU and memory system over-
heads, which limits throughput. As requests between ser-
vice tiers of datacenter applications often consist of small
packets, common NIC hardware optimizations, such as
TCP segmentation and receive side coalescing, have a
marginal impact on packet rate.

2.3 Alternative Approaches
Since the network stacks within commodity kernels can-
not take advantage of the abundance of hardware re-
sources, a number of alternative approaches have been
suggested. Each alternative addresses a subset, but not
all, of the requirements for datacenter applications.

User-space networking stacks: Systems such as
OpenOnload [59], mTCP [29], and Sandstorm [40] run
the entire networking stack in user-space in order to elim-
inate kernel crossing overheads and optimize packet pro-
cessing without incurring the complexity of kernel modifi-

cations. However, there are still tradeoffs between packet
rate and latency. For instance, mTCP uses dedicated
threads for the TCP stack, which communicate at rela-
tively coarse granularity with application threads. This
aggressive batching amortizes switching overheads at the
expense of higher latency (see §5). It also complicates
resource sharing as the network stack must use a large
number of hardware threads regardless of the actual load.
More importantly, security tradeoffs emerge when net-
working is lifted into the user-space and application bugs
can corrupt the networking stack. For example, an at-
tacker may be able to transmit raw packets (a capability
that normally requires root privileges) to exploit weak-
nesses in network protocols and impact other services [8].
It is difficult to enforce any security or metering policies
beyond what is directly supported by the NIC hardware.

Alternatives to TCP: In addition to kernel bypass, some
low-latency object stores rely on RDMA to offload pro-
tocol processing on dedicated Infiniband host channel
adapters [17, 31, 44, 47]. RDMA can reduce latency, but
requires that specialized adapters be present at both ends
of the connection. Using commodity Ethernet network-
ing, Facebook’s memcached deployment uses UDP to
avoid connection scalability limitations [46]. Even though
UDP is running in the kernel, reliable communication and
congestion management are entrusted to applications.

Alternatives to POSIX API: MegaPipe replaces the
POSIX API with lightweight sockets implemented with
in-memory command rings [24]. This reduces some soft-
ware overheads and increases packet rates, but retains all
other challenges of using an existing, kernel-based net-
working stack.

OS enhancements: Tuning kernel-based stacks provides
incremental benefits with superior ease of deployment.
Linux SO REUSEPORT allows multi-threaded applica-
tions to accept incoming connections in parallel. Affinity-
accept reduces overheads by ensuring all processing for a
network flow is affinitized to the same core [49]. Recent
Linux Kernels support a busy polling driver mode that
trades increased CPU utilization for reduced latency [27],
but it is not yet compatible with epoll. When microsec-
ond latencies are irrelevant, properly tuned stacks can
maintain millions of open connections [66].

3 IX Design Approach
The first two requirements in §2.1 — microsecond latency
and high packet rates — are not unique to datacenter ap-
plications. These requirements have been addressed in the
design of middleboxes such as firewalls, load-balancers,
and software routers [16, 34] by integrating the network-

52 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ing stack and the application into a single dataplane. The
two remaining requirements — protection and resource
efficiency — are not addressed in middleboxes because
they are single-purpose systems, not exposed directly to
users.

Many middlebox dataplanes adopt design principles
that differ from traditional OSes. First, they run each
packet to completion. All network protocol and applica-
tion processing for a packet is done before moving on to
the next packet, and application logic is typically inter-
mingled with the networking stack without any isolation.
By contrast, a commodity OS decouples protocol process-
ing from the application itself in order to provide schedul-
ing and flow control flexibility. For example, the kernel
relies on device and soft interrupts to context switch from
applications to protocol processing. Similarly, the ker-
nel’s network stack will generate TCP ACKs and slide
its receive window even when the application is not con-
suming data, up to an extent. Second, middlebox data-
planes optimize for synchronization-free operation in or-
der to scale well on many cores. Network flows are dis-
tributed into distinct queues via flow-consistent hashing
and common case packet processing requires no synchro-
nization or coherence traffic between cores. By contrast,
commodity OSes tend to rely heavily on coherence traffic
and are structured to make frequent use of locks and other
forms of synchronization.

IX extends the dataplane architecture to support un-
trusted, general-purpose applications and satisfy all re-
quirements in §2.1. Its design is based on the following
key principles:

Separation and protection of control and data plane:
IX separates the control function of the kernel, respon-
sible for resource configuration, provisioning, schedul-
ing, and monitoring, from the dataplane, which runs the
networking stack and application logic. Like a conven-
tional OS, the control plane multiplexes and schedules re-
sources among dataplanes, but in a coarse-grained man-
ner in space and time. Entire cores are dedicated to data-
planes, memory is allocated at large page granularity, and
NIC queues are assigned to dataplane cores. The control
plane is also responsible for elastically adjusting the allo-
cation of resources between dataplanes.

The separation of control and data plane also allows
us to consider radically different I/O APIs, while permit-
ting other OS functionality, such as file system support,
to be passed through to the control plane for compatibil-
ity. Similar to the Exokernel [19], each dataplane runs
a single application in a single address space. However,
we use modern virtualization hardware to provide three-
way isolation between the control plane, the dataplane,

and untrusted user code [7]. Dataplanes have capabilities
similar to guest OSes in virtualized systems. They man-
age their own address translations, on top of the address
space provided by the control plane, and can protect the
networking stack from untrusted application logic through
the use of privilege rings. Moreover, dataplanes are given
direct pass-through access to NIC queues through mem-
ory mapped I/O.

Run to completion with adaptive batching: IX data-
planes run to completion all stages needed to receive and
transmit a packet, interleaving protocol processing (kernel
mode) and application logic (user mode) at well-defined
transition points. Hence, there is no need for intermediate
buffering between protocol stages or between application
logic and the networking stack. Unlike previous work that
applied a similar approach to eliminate receive livelocks
during congestion periods [45], IX uses run to comple-
tion during all load conditions. Thus, we are able to use
polling and avoid interrupt overhead in the common case
by dedicating cores to the dataplane. We still rely on in-
terrupts as a mechanism to regain control, for example, if
application logic is slow to respond. Run to completion
improves both message throughput and latency because
successive stages tend to access many of the same data,
leading to better data cache locality.

The IX dataplane also makes extensive use of batch-
ing. Previous systems applied batching at the system call
boundary [24, 58] and at the network API and hardware
queue level [29]. We apply batching in every stage of the
network stack, including but not limited to system calls
and queues. Moreover, we use batching adaptively as fol-
lows: (i) we never wait to batch requests and batching
only occurs in the presence of congestion; (ii) we set an
upper bound on the number of batched packets. Using
batching only on congestion allows us to minimize the
impact on latency, while bounding the batch size prevents
the live set from exceeding cache capacities and avoids
transmit queue starvation. Batching improves packet rate
because it amortizes system call transition overheads and
improves instruction cache locality, prefetching effective-
ness, and branch prediction accuracy. When applied adap-
tively, batching also decreases latency because these same
efficiencies reduce head-of-line blocking.

The combination of bounded, adaptive batching and
run to completion means that queues for incoming packets
can build up only at the NIC edge, before packet process-
ing starts in the dataplane. The networking stack sends
acknowledgments to peers only as fast as the applica-
tion can process them. Any slowdown in the application-
processing rate quickly leads to shrinking windows in
peers. The dataplane can also monitor queue depths at

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 53

the NIC edge and signal the control plane to allocate addi-
tional resources for the dataplane (more hardware threads,
increased clock frequency), notify peers explicitly about
congestion (e.g., via ECN [52]), and make policy deci-
sions for congestion management (e.g., via RED [22]).

Native, zero-copy API with explicit flow control: We
do not expose or emulate the POSIX API for networking.
Instead, the dataplane kernel and the application commu-
nicate at coordinated transition points via messages stored
in memory. Our API is designed for true zero-copy op-
eration in both directions, improving both latency and
packet rate. The dataplane and application cooperatively
manage the message buffer pool. Incoming packets are
mapped read-only into the application, which may hold
onto message buffers and return them to the dataplane at
a later point. The application sends to the dataplane scat-
ter/gather lists of memory locations for transmission but,
since contents are not copied, the application must keep
the content immutable until the peer acknowledges recep-
tion. The dataplane enforces flow control correctness and
may trim transmission requests that exceed the available
size of the sliding window, but the application controls
transmit buffering.

Flow consistent, synchronization-free processing:
We use multi-queue NICs with receive-side scaling
(RSS [43]) to provide flow-consistent hashing of incom-
ing traffic to distinct hardware queues. Each hardware
thread (hyperthread) serves a single receive and trans-
mit queue per NIC, eliminating the need for synchro-
nization and coherence traffic between cores in the net-
working stack. The control plane establishes the map-
ping of RSS flow groups to queues to balance the traf-
fic among the hardware threads. Similarly, memory man-
agement is organized in distinct pools for each hardware
thread. The absence of a POSIX socket API eliminates
the issue of the shared file descriptor namespace in multi-
threaded applications [12]. Overall, the IX dataplane de-
sign scales well with the increasing number of cores in
modern servers, which improves both packet rate and la-
tency. This approach does not restrict the memory model
for applications, which can take advantage of coherent,
shared memory to exchange information and synchronize
between cores.

4 IX Implementation
4.1 Overview
Fig. 1a presents the IX architecture, focusing on the sep-
aration between the control plane and the multiple data-
planes. The hardware environment is a multi-core server
with one or more multi-queue NICs with RSS support.

The IX control plane consists of the full Linux kernel and
IXCP, a user-level program. The Linux kernel initializes
PCIe devices, such as the NICs, and provides the basic
mechanisms for resource allocation to the dataplanes, in-
cluding cores, memory, and network queues. Equally im-
portant, Linux provides system calls and services that are
necessary for compatibility with a wide range of applica-
tions, such as file system and signal support. IXCP mon-
itors resource usage and dataplane performance and im-
plements resource allocation policies. The development
of efficient allocation policies involves understanding dif-
ficult tradeoffs between dataplane performance, energy
proportionality, and resource sharing between co-located
applications as their load varies over time. We leave the
design of such policies to future work and focus primarily
on the IX dataplane architecture.

We run the Linux kernel in VMX root ring 0, the
mode typically used to run hypervisors in virtualized sys-
tems [62]. We use the Dune module within Linux to
enable dataplanes to run as application-specific OSes in
VMX non-root ring 0, the mode typically used to run
guest kernels in virtualized systems [7]. Applications run
in VMX non-root ring 3, as usual. This approach provides
dataplanes with direct access to hardware features, such
as page tables and exceptions, and pass-through access
to NICs. Moreover, it provides full, three-way protection
between the control plane, dataplanes, and untrusted ap-
plication code.

Each IX dataplane supports a single, multithreaded ap-
plication. For instance, Fig. 1a shows one dataplane for a
multi-threaded memcached server and another dataplane
for a multi-threaded httpd server. The control plane al-
locates resources to each dataplane in a coarse-grained
manner. Core allocation is controlled through real-time
priorities and cpusets; memory is allocated in large
pages; each NIC hardware queue is assigned to a single
dataplane. This approach avoids the overheads and unpre-
dictability of fine-grained time multiplexing of resources
between demanding applications [36].

Each IX dataplane operates as a single address-space
OS and supports two thread types within a shared, user-
level address space: (i) elastic threads which interact
with the IX dataplane to initiate and consume network
I/O and (ii) background threads. Both elastic and back-
ground threads can issue arbitrary POSIX system calls
that are intermediated and validated for security by the
dataplane before being forwarded to the Linux kernel.
Elastic threads are expected to not issue blocking calls
because of the adverse impact on network behavior result-
ing from delayed packet processing. Each elastic thread
makes exclusive use of a core or hardware thread allocated

54 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

...

IX

libix

sshd

IXCP

httpd

CC C C

rin
g

0
 v

m
x-

ro
ot

rin
g

0
 n

on
-r

oo
t

rin
g

3

C

Dune
Linux

IX

libix

memcached

(a) Protection and separation of control and data plane.

app
libix

tcp/ip tcp/ip

timer

adaptive batch

1

2
4

5

Event
Conditions

Batched
Syscalls

3

6

rin
g

0
 n

on
-r

oo
t

rin
g

3

(b) Interleaving of protocol processing and application execution.

Figure 1: The IX dataplane operating system.

to the dataplane in order to achieve high performance
with predictable latency. In contrast, multiple background
threads may timeshare an allocated hardware thread. For
example, if an application were allocated four hardware
threads, it could use all of them as elastic threads to serve
external requests or it could temporarily transition to three
elastic threads and use one background thread to execute
tasks such as garbage collection. When the control plane
revokes or allocates an additional hardware thread using
a protocol similar to the one in Exokernel [19], the data-
plane adjusts its number of elastic threads.

4.2 The IX Dataplane
We now discuss the IX dataplane in more detail. It differs
from a typical kernel in that it is specialized for high per-
formance network I/O and runs only a single application,
similar to a library OS but with memory isolation. How-
ever, our dataplane still provides many familiar kernel-
level services.

For memory management, we accept some internal
memory fragmentation in order to reduce complexity and
improve efficiency. All hot-path data objects are allocated
from per hardware thread memory pools. Each memory
pool is structured as arrays of identically sized objects,
provisioned in page-sized blocks. Free objects are tracked
with a simple free list, and allocation routines are inlined
directly into calling functions. Mbufs, the storage object
for network packets, are stored as contiguous chunks of
bookkeeping data and MTU-sized buffers, and are used
for both receiving and transmitting packets.

The dataplane also manages its own virtual address
translations, supported through nested paging. In con-

trast to contemporary OSes, it uses exclusively large pages
(2MB). We favor large pages due to their reduced address
translation overhead [5, 7] and the relative abundance of
physical memory resources in modern servers. The data-
plane maintains only a single address space; kernel pages
are protected with supervisor bits. We deliberately chose
not to support swappable memory in order to avoid adding
performance variability.

We provide a hierarchical timing wheel implementation
for managing network timeouts, such as TCP retransmis-
sions [63]. It is optimized for the common case where
most timers are canceled before they expire. We sup-
port extremely high-resolution timeouts, as low as 16 µs,
which has been shown to improve performance during
TCP incast congestion [64].

Our current IX dataplane implementation is based on
Dune and requires the VT-x virtualization features avail-
able on Intel x86-64 systems [62]. However, it could
be ported to any architecture with virtualization support,
such as ARM, SPARC, and Power. It also requires one
or more Intel 82599 chipset NICs, but it is designed to
easily support additional drivers. The IX dataplane cur-
rently consists of 39K SLOC [67] and leverages some ex-
isting codebases: 41% is derived from the DPDK variant
of the Intel NIC device driver [28], 26% from the lwIP
TCP/IP stack [18], and 15% from the Dune library. We
did not use the remainder of the DPDK framework, and
all three code bases are highly modified for IX. The rest
is approximately 7K SLOC of new code. We chose lwIP
as a starting point for TCP/IP processing because of its
modularity and its maturity as a RFC-compliant, feature-
rich networking stack. We implemented our own RFC-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 55

System Calls (batched)
Type Parameters Description
connect cookie, dst IP, dst port Opens a connection
accept handle, cookie Accepts a connection
sendv handle, scatter gather array Transmits a scatter-gather array of data
recv done handle, bytes acked Advances the receive window and frees memory buffers
close handle Closes or rejects a connection

Event Conditions
Type Parameters Description
knock handle, src IP, src port A remotely initiated connection was opened
connected cookie, outcome A locally initiated connection finished opening
recv cookie, mbuf ptr, mbuf len A message buffer was received
sent cookie, bytes sent, window size A send completed and/or the window size changed
dead cookie, reason A connection was terminated

Table 1: The IX dataplane system call and event condition API.

compliant support for UDP, ARP, and ICMP. Since lwIP
was optimized for memory efficiency in embedded en-
vironments, we had to radically change its internal data
structures for multi-core scalability and fine-grained timer
management. However, we did not yet optimize the lwIP
code for performance. Hence, the results of §5 have room
for improvement.

4.3 Dataplane API and Operation
The elastic threads of an application interact with the
IX dataplane through three asynchronous, non-blocking
mechanisms summarized in Table 1: they issue batched
systems calls to the dataplane; they consume event con-
ditions generated by the dataplane; and they have direct,
but safe, access to (mbuf s) containing incoming payloads.
The latter allows for zero-copy access to incoming net-
work traffic. The application can hold on to mbufs until
it asks the dataplane to release them via the recv done
batched system call.

Both batched system calls and event conditions are
passed through arrays of shared memory, managed by the
user and the kernel respectively. IX provides an unbatched
system call (run io) that yields control to the kernel and
initiates a new run to completion cycle. As part of the
cycle, the kernel overwrites the array of batched system
call requests with corresponding return codes and popu-
lates the array of event conditions. The handles defined
in Table 1 are kernel-level flow identifiers. Each handle is
associated with a cookie, an opaque value provided by the
user at connection establishment to enable efficient user-
level state lookup [24].

IX differs from POSIX sockets in that it directly ex-
poses flow control conditions to the application. The
sendv system call does not return the number of bytes
buffered. Instead, it returns the number of bytes that were
accepted and sent by the TCP stack, as constrained by

correct TCP sliding window operation. When the receiver
acknowledges the bytes, a sent event condition informs
the application that it is possible to send more data. Thus,
send window-sizing policy is determined entirely by the
application. By contrast, conventional OSes buffer send
data beyond raw TCP constraints and apply flow control
policy inside the kernel.

We built a user-level library, called libix, which ab-
stracts away the complexity of our low-level API. It pro-
vides a compatible programming model for legacy ap-
plications and significantly simplifies the development of
new applications. libix currently includes a very sim-
ilar interface to libevent and non-blocking POSIX
socket operations. It also includes new interfaces for zero-
copy read and write operations that are more efficient, at
the expense of requiring changes to existing applications.

libix automatically coalesces multiple write requests
into single sendv system calls during each batching
round. This improves locality, simplifies error handling,
and ensures correct behavior, as it preserves the data
stream order even if a transmit fails. Coalescing also facil-
itates transmit flow control because we can use the trans-
mit vector (the argument to sendv) to keep track of out-
going data buffers and, if necessary, reissue writes when
the transmit window has more available space, as notified
by the sent event condition. Our buffer sizing policy
is currently very basic; we enforce a maximum pending
send byte limit, but we plan to make this more dynamic in
the future [21].

Fig. 1b illustrates the run-to-completion operation for
an elastic thread in the IX dataplane. NIC receive buffers
are mapped in the server’s main memory and the NIC’s
receive descriptor ring is filled with a set of buffer descrip-
tors that allow it to transfer incoming packets using DMA.
The elastic thread (1) polls the receive descriptor ring and

56 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

potentially posts fresh buffer descriptors to the NIC for
use with future incoming packets. The elastic thread then
(2) processes a bounded number of packets through the
TCP/IP networking stack, thereby generating event condi-
tions. Next, the thread (3) switches to the user-space ap-
plication, which consumes all event conditions. Assum-
ing that the incoming packets include remote requests, the
application processes these requests and responds with a
batch of system calls. Upon return of control from user-
space, the thread (4) processes all batched system calls,
and in particular the ones that direct outgoing TCP/IP traf-
fic. The thread also (5) runs all kernel timers in order
to ensure compliant TCP behavior. Finally (6), it places
outgoing Ethernet frames in the NIC’s transmit descrip-
tor ring for transmission, and it notifies the NIC to initiate
a DMA transfer for these frames by updating the trans-
mit ring’s tail register. In a separate pass, it also frees
any buffers that have finished transmitting, based on the
transmit ring’s head position, potentially generating sent
event conditions. The process repeats in a loop until there
is no network activity. In this case, the thread enters a
quiescent state which involves either hyperthread-friendly
polling or optionally entering a power efficient C-state, at
the cost of some additional latency.

4.4 Multi-core Scalability
The IX dataplane is optimized for multi-core scalability,
as elastic threads operate in a synchronization and coher-
ence free manner in the common case. This is a stronger
requirement than lock-free synchronization, which re-
quires expensive atomic instructions even when a single
thread is the primary consumer of a particular data struc-
ture [13]. This is made possible through a set of conscious
design and implementation tradeoffs.

First, system call implementations can only be
synchronization-free if the API itself is commutative [12].
The IX API is commutative between elastic threads. Each
elastic thread has its own flow identifier namespace, and
an elastic thread cannot directly perform operations on
flows that it does not own.

Second, the API implementation is carefully optimized.
Each elastic thread manages its own memory pools, hard-
ware queues, event condition array, and batched system
call array. The implementation of event conditions and
batched system calls benefits directly from the explicit,
cooperative control transfers between IX and the appli-
cation. Since there is no concurrent execution by pro-
ducer and consumer, event conditions and batched system
calls are implemented without synchronization primitives
based on atomics.

Third, the use of flow-consistent hashing at the NICs
ensures that each elastic thread operates on a disjoint sub-

set of TCP flows. Hence, no synchronization or coherence
occurs during the processing of incoming requests for a
server application. For client applications with outbound
connections, we need to ensure that the reply is assigned
to the same elastic thread that made the request. Since
we cannot reverse the Toeplitz hash used by RSS [43], we
simply probe the ephemeral port range to find a port num-
ber that would lead to the desired behavior. Note that this
implies that two elastic threads in a client cannot share a
flow to a server.

IX does have a small number of shared structures, in-
cluding some that require synchronization on updates. For
example, the ARP table is shared by all elastic threads and
is protected by RCU locks [41]. Hence, the common case
reads are coherence-free but the rare updates are not. RCU
objects are garbage collected after a quiescent period that
spans the time it takes each elastic thread to finish a run to
completion cycle.

IX requires synchronization when the control plane re-
allocates resources between dataplanes. For instance,
when a core is revoked from a dataplane, the correspond-
ing network flows must be assigned to another elastic
thread. Such events are rare because resource allocation
happens in a coarse-grained manner. Finally, the appli-
cation code may include inter-thread communication and
synchronization. While using IX does not eliminate the
need to develop scalable application code, it ensures that
there are no scaling bottlenecks in the system and protocol
processing code.

4.5 Security Model
The IX API and implementation has a cooperative flow
control model between application code and the network-
processing stack. Unlike user-level stacks, where the ap-
plication is trusted for correct networking behavior, the IX
protection model makes few assumptions about the appli-
cation. A malicious or misbehaving application can only
hurt itself. It cannot corrupt the networking stack or af-
fect other applications. All application code in IX runs
in user-mode, while dataplane code runs in protected ring
0. Applications cannot access dataplane memory, except
for read-only message buffers. No sequence of batched
system calls or other user-level actions can be used to vi-
olate correct adherence to TCP and other network specifi-
cations. Furthermore, the dataplane can be used to enforce
network security policies, such as firewalling and access
control lists. The IX security model is as strong as con-
ventional kernel-based networking stacks, a feature that is
missing from all recently proposed user-level stacks.

The IX dataplane and the application collaboratively
manage memory. To enable zero-copy operation, a buffer
used for an incoming packet is passed read-only to the ap-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 57

plication, using virtual memory protection. Applications
are encouraged (but not required) to limit the time they
hold message buffers, both to improve locality and to re-
duce fragmentation because of the fixed size of message
buffers. In the transmit direction, zero-copy operation re-
quires that the application must not modify outgoing data
until reception is acknowledged by the peer, but if the ap-
plication violates this requirement, it will only result in
incorrect data payload.

Since elastic threads in IX execute both the network
stack and application code, a long running application
can block further network processing for a set of flows.
This behavior in no way affects other applications or data-
planes. We use a timeout interrupt to detect elastic threads
that spend excessive time in user mode (e.g., in excess of
10ms). We mark such applications as non-responsive and
notify the control plane.

The current IX prototype does not yet use an IOMMU.
As a result, the IX dataplane is trusted code that has ac-
cess to descriptor rings with host-physical addresses. This
limitation does not affect the security model provided to
applications.

5 Evaluation
We compared IX to a baseline running the most re-
cent Linux kernel and to mTCP [29]. Our evaluation
uses both networking microbenchmarks and a widely de-
ployed, event-based application. In all cases, we use TCP
as the networking protocol.

5.1 Experimental Methodology
Our experimental setup consists of a cluster of 24
clients and one server connected by a Quanta/Cumulus
48x10GbE switch with a Broadcom Trident+ ASIC. The
client machines are a mix of Xeon E5-2637 @ 3.5 Ghz
and Xeon E5-2650 @ 2.6 Ghz. The server is a Xeon
E5-2665 @ 2.4 Ghz with 256 GB of DRAM. Each client
and server socket has 8 cores and 16 hyperthreads. All
machines are configured with Intel x520 10GbE NICs
(82599EB chipset). We connect clients to the switch
through a single NIC port, while for the server it depends
on the experiment. For 10GbE experiments, we use a sin-
gle NIC port, and for 4x10GbE experiments, we use four
NIC ports bonded by the switch with a L3+L4 hash.

Our baseline configuration in each machine is an
Ubuntu LTS 14.0.4 distribution, updated to the 3.16.1
Linux kernel, the most recent at time of writing. We en-
able hyperthreading when it improves performance. Ex-
cept for §5.2, client machines always run Linux. All
power management features are disabled for all systems
in all experiments. Jumbo frames are never enabled. All

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

G
o
o
d
p
u
t

(G
b
p
s)

Message Size (KB)

mTCP-mTCP
Linux-Linux

IX-IX

Figure 2: NetPIPE performance for varying message sizes
and system software configurations.

Linux workloads are pinned to hardware threads to avoid
scheduling jitter, and background tasks are disabled.

The Linux client and server implementations of our
benchmarks use the libevent framework with the
epoll system call. We downloaded and installed mTCP
from the public-domain release [30], but had to write
the benchmarks ourselves using the mTCP API. We run
mTCP with the 2.6.36 Linux kernel, as this is the most
recent supported kernel version. We report only 10GbE
results for mTCP, as it does not support NIC bonding.
For IX, we bound the maximum batch size to B = 64
packets per iteration, which maximizes throughput on mi-
crobenchmarks (see §6).

5.2 Latency and Single-flow Bandwidth

We first evaluated the latency of IX using NetPIPE, a pop-
ular ping-pong benchmark, using our 10GbE setup. Net-
PIPE simply exchanges a fixed-size message between two
servers and helps calibrate the latency and bandwidth of a
single flow [57]. In all cases, we run the same system on
both ends (Linux, mTCP, or IX).

Fig. 2 shows the goodput achieved for different mes-
sage sizes. Two IX servers have a one-way latency of
5.7µs for 64B messages and achieve goodput of 5Gbps,
half of the maximum, with messages as small as 20KB.
In contrast, two Linux servers have a one-way latency of
24µs and require 385KB messages to achieve 5Gbps. The
differences in system architecture explain the disparity:
IX has a dataplane model that polls queues and processes
packets to completion whereas Linux has an interrupt
model, which wakes up the blocked process. mTCP uses
aggressive batching to offset the cost of context switch-
ing [29], which comes at the expense of higher latency
than both IX and Linux in this particular test.

58 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 1 2 3 4 5 6 7 8

M
es

sa
g
es

/s
ec

 (
x
 1

0
6
)

Number of CPU cores

(a) Multi-core scalability (n=1, s=64B)

 0

 2

 4

 6

 8

 10

 12

0 1 2 8 32 64 128 256 512 1K

M
es

sa
g
es

/s
ec

 (
x
 1

0
6
)

Number of Messages per Connection

(b) n round-trips per connection. (s=64B)

 0

 5

 10

 15

 20

 25

 30

 35

0 64 256 1024 4096 8192

G
o
o
d
p
u
t

(G
b
p
s)

Message Size

(c) Different message sizes s (n=1)

Linux 10Gbps
Linux 40Gbps

IX 10Gbps
IX 40Gbps

mTCP 10Gbps

Figure 3: Multi-core scalability and high connection
churn for 10GbE and 4x10GbE setups. In (a), half steps
indicate hyperthreads.

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000 100000

M
es

sa
g
es

/s
ec

 (
x
 1

0
6
)

Connection Count (log scale)

Linux-10Gbps
Linux-40Gbps

IX-10Gbps
IX-40Gbps

Figure 4: Connection scalability for the 10GbE and
4x10GbE configurations.

5.3 Throughput and Scalability
We evaluate IX’s throughput and multi-core scalability
with the same benchmark used to evaluate MegaPipe [24]
and mTCP [29]. 18 clients connect to a single server lis-
tening on a single port, send a remote request of size s
bytes, and wait for an echo of a message of the same
size. Similar to the NetPIPE benchmark, while receiving
the message, the server holds off its echo response until
the message has been entirely received. Each client per-
forms this synchronous remote procedure call n times be-
fore closing the connection. As in [29], clients close the
connection using a reset (TCP RST) to avoid exhausting
ephemeral ports.

Fig. 3 shows the message rate or goodput for both the
10GbE and the 40GbE configurations as we vary the num-
ber of cores used, the number of round-trip messages per
connection, and the message size respectively. For the
10GbE configuration, the results for Linux and mTCP are
consistent with those published in the mTCP paper [29].
For all three tests (core scaling, message count scaling,
message size scaling), IX scales more aggressively than
mTCP and Linux. Fig. 3a shows that IX needs only 3
cores to saturate the 10GbE link whereas mTCP requires
all 8 cores. On Fig. 3b for 1024 round-trips per connec-
tion, IX delivers 8.8 million messages per second, which
is 1.9× the throughput of mTCP and of and 8.8× that of
Linux. With this packet rate, IX achieves line rate and is
limited only by 10GbE bandwidth.

Fig. 3 also shows that IX scales well beyond 10GbE
to a 4x10GbE configuration. Fig. 3a shows that IX lin-
early scales to deliver 3.8 million TCP connections per
second on 4x10GbE. Fig. 3b shows a speedup of 2.3×
with n = 1 and of 1.3× with n = 1024 over 10GbE IX.
Finally, Fig. 3c shows IX can deliver 8KB messages with a
goodput of 34.5 Gbps, for a wire throughput of 37.9 Gbps,

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 59

 0

 250

 500

 750

0 250 500 750 1000 1250 1500 1750 2000

L
at

en
cy

 (
µ

s)

ETC: Throughput (RPS x 10
3
)

SLA

 0

 250

 500

 750

0 250 500 750 1000 1250 1500 1750 2000

L
at

en
cy

 (
µ

s)

USR: Throughput (RPS x 10
3
)

SLA

Linux (avg) Linux (99
th

 pct) IX (avg) IX (99
th

 pct)

Figure 5: Average and 99th percentile latency as a function of throughput for two memcached workloads.

out of a possible 39.7Gbps. Overall, IX makes it practi-
cal to scale protected TCP/IP processing beyond 10GbE,
even with a single socket multi-core server.

5.4 Connection Scalability
We also evaluate IX’s scalability when handling a large
number of concurrent connections on the 4x10GbE setup.
18 client machines runs n threads, with each thread re-
peatedly performing a 64B remote procedure call to the
server with a variable number of active connections. We
experimentally set n = 24 to maximize throughput. We
report the maximal throughput in messages per second for
a range of total established connections.

Fig. 4 shows up to 250,000 connections, which is the
upper bound we can reach with the available client ma-
chines. As expected, throughput increases with the de-
gree of connection concurrency, but then decreases for
very large connections counts due to the increasingly
high cost of multiplexing among open connections. At
the peak, IX performs 10× better than Linux, consistent
with the results from Fig. 3b. With 250,000 connections
and 4x10GbE, IX is able to deliver 47% of its own peak
throughput. We verified that the drop in throughput is not
due to an increase in the instruction count, but instead can
be attributed to the performance of the memory subsys-
tem. Intel’s Data Direct I/O technology, an evolution of
DCA [26], eliminates nearly all cache misses associated
with DMA transfers when given enough time between
polling intervals, resulting in as little as 1.4 L3 cache
misses per message for up to 10,000 concurrent connec-
tions, a scale where all of IX’s data structures fit easily
in the L3 cache. In contrast, the workload averages 25 L3
cache misses per message when handling 250,000 concur-
rent connections. At high connection counts, the working
set of this workload is dominated by the TCP connec-
tion state and does not fit into the processor’s L3 cache.

Nevertheless, we believe that further optimizations in the
size and access pattern of lwIP’s TCP/IP protocol control
block structures can substantially reduce this handicap.

5.5 Memcached Performance
Finally, we evaluated the performance benefits of IX with
memcached, a widely deployed, in-memory, key-value
store built on top of the libevent framework [42]. It is
frequently used as a high-throughput, low-latency caching
tier in front of persistent database servers. memcached
is a network-bound application, with threads spending
over 75% of execution time in kernel mode for network
processing [36]. It is a difficult application to scale be-
cause the common deployments involve high connection
counts for memcached servers and small-sized requests
and replies [2, 46].

We use the mutilate load-generator to place a se-
lected load on the server in terms of requests per second
(RPS) and measure response latency [35]. mutilate
coordinates a large number of client threads across mul-
tiple machines to generate the desired RPS load, while a
separate unloaded client measures latency by issuing one
request at the time. We configure mutilate to generate
load representative of two workloads from Facebook [2]:
the ETC workload that represents that highest capacity de-
ployment in Facebook, has 20B–70B keys, 1B–1KB val-
ues, and 75% GET requests; and the USR workload that
represents deployment with most GET requests in Face-
book, has short keys (<20B), 2B values, and 99% GET
requests. In USR, almost all traffic involves minimum-
sized TCP packets. Each request is issued separately (no
multiget operations). However, clients are permitted
to pipeline up to four requests per connection if needed to
keep up with their target request rate. We use 23 client
machines to generate load for a total of 1,476 connections
to the memcached server.

60 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To provide insights into the full range of system behav-
iors, we report average and 99th percentile latency as a
function of the achieved throughput. The 99th percentile
latency captures tail latency issues and is the most rele-
vant metric for datacenter applications [14]. Most com-
mercial memcached deployments provision each server
so that the 99th percentile latency does not exceed 200µs
to 500µs. We carefully tune the Linux baseline setup
according to the guidelines in [36]: we pin memcached
threads, configure interrupt-distribution based on thread-
affinity, and tune interrupt moderation thresholds. We
believe that our baseline Linux numbers are as tuned as
possible for this hardware using the open-source version
of memcached-1.4.18. We report the results for the
server configuration that provides the best performance: 8
cores with Linux, but only 6 with IX.

Porting memcached to IX primarily consisted of
adapting it to use our event library. In most cases, the port
was straightforward, replacing Linux and libevent
function calls with their equivalent versions in our API.
We did yet not attempt to tune the internal scalability of
memcached [20] or to support zero-copy I/O operations.

Fig. 5 shows the throughput-latency curves for the two
memcached workloads for Linux and IX, while Table 2
reports the unloaded, round-trip latencies and maximum
request rate that meets a service-level agreement, both
measured at the 99th percentile. IX noticeably reduces
the unloaded latencies to roughly half. Note that we use
Linux clients for these experiments; running IX on clients
should further reduce latency.

At high request rates, the distribution of CPU time
shifts from being ∼ 75% in the Linux kernel to < 10%
in the IX dataplane kernel. This allows IX to increase
throughput by 2.8× and 3.6× for ETC and USR respec-
tively at a 500µs tail latency SLA. The improvement for
ETC is lower due to the increased lock contention within
the application itself, in particular because it has a higher
write frequency. Lock contention within application code
is also the reason that IX cannot provide throughput im-
provements with more than 6 cores.

Configuration Minimum latency RPS for SLA:
@99th pct < 500µs @99th pct

ETC-Linux 94µs 550K
ETC-IX 45µs 1550K
USR-Linux 85µs 500K
USR-IX 32µs 1800K

Table 2: Unloaded latency and maximum RPS for a
given service-level agreement for the memcache work-
loads ETC and USR.

6 Discussion
What makes IX fast: The results in §5 show that a net-
working stack can be implemented in a protected OS ker-
nel and still deliver wire-rate performance for most bench-
marks. The tight coupling of the dataplane architecture,
using only a minimal amount of batching to amortize tran-
sition costs, causes application logic to be scheduled at the
right time, which is essential for latency-sensitive work-
loads. Therefore, the benefits of IX go beyond just mini-
mizing kernel overheads. The lack of intermediate buffers
allows for efficient, application-specific implementations
of I/O abstractions such the libix event library. The
zero-copy approach helps even when the user-level li-
braries add a level of copying, as it is the case for the
libevent compatible interfaces in libix. The extra
copy occurs much closer to the actual use, thereby in-
creasing cache locality. Finally, we carefully tuned IX
for multi-core scalability, eliminating constructs that in-
troduce synchronization or coherence traffic.

The IX dataplane optimizations — run to completion,
adaptive batching, and a zero-copy API — can also be
implemented in a user-level networking stack in order to
get similar benefits in terms of throughput and latency.
While a user-level implementation would eliminate pro-
tection domain crossings, it would not lead to significant
performance improvements over IX. Protection domain
crossings inside VMX non-root mode add only a small
amount of extra overhead, on the order of a single L3
cache miss [7]. Moreover, these overheads are quickly
amortized at higher packet rates.

Subtleties of adaptive batching: Batching is commonly
understood to trade off higher latency at low loads for bet-
ter throughput at high loads. IX uses adaptive, bounded
batching to actually improve on both metrics. Fig. 6 com-
pares the latency vs. throughput on the USR memcached
workload of Fig. 5 for different upper bounds B to the
batch size. At low load, B does not impact tail latency,
as adaptive batching does not delay processing of pend-
ing packets. At higher load, larger values of B improve
throughput, by 29% between B = 1 to B = 16. For this
workload, B ≥ 16 maximizes throughput.

While tuning IX performance, we ran into an unex-
pected hardware limitation that was triggered at high
packet rates with small average batch sizes (i.e. before
the dataplane was saturated): the high rate of PCIe writes
required to post fresh descriptors at every iteration led
to performance degradation as we scaled the number of
cores. To avoid this bottleneck, we simply coalesced PCIe
writes on the receive path so that we replenished at least
32 descriptor entries at a time. Luckily, we did not have to

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 61

 0

 250

 500

 750

0 250 500 750 1000 1250 1500 1750 2000

L
at

en
cy

 (
µ

s)

USR: Throughput (RPS x 10
3
)

SLA

B=1
B=2
B=8

B=64

Figure 6: 99th percentile latency as a function of through-
put for USR workload from Fig. 5, for different values of
the batch bound B.

coalesce PCIe writes on the transmit path, as that would
have impacted latency.

Limitations of current prototype: The current IX imple-
mentation does not yet exploit IOMMUs or VT-d. Instead,
it maps descriptor rings directly into IX memory, using the
Linux pagemap interface to determine physical addresses.
Although this choice puts some level of trust into the IX
dataplane, application code remains securely isolated. In
the future, we plan on using IOMMU support to further
isolate IX dataplanes. We anticipate overhead will be low
because of our use of large pages. Also, the IX prototype
currently does not take advantage of the NIC’s SR-IOV
capabilities, but instead allocates entire physical devices
to dataplanes.

We also plan to add support for interrupts to the IX dat-
aplanes. The IX execution model assumes some coop-
eration from application code running in elastic threads.
Specifically, applications should handle events in a quick,
non-blocking manner; operations with extended execution
times are expected to be delegated to background threads
rather than execute within the context of elastic threads.
The IX dataplane is designed around polling, with the pro-
vision that interrupts can be configured as a fallback opti-
mization to refresh receive descriptor rings when they are
nearly full and to refill transmit descriptor rings when they
are empty (steps (1) and (6) in Fig 1b). Occasional timer
interrupts are also required to ensure full TCP compliance
in the event an elastic thread blocks for an extended pe-
riod.

Future work: This paper focused primarily on the IX
dataplane architecture. IX is designed and implemented
to support the dynamic addition and removal of elastic
threads in order to achieve energy proportional and re-
source efficient computing. So far we have tested only

static configurations. In future work, we will explore con-
trol plane issues, including a dynamic runtime that rebal-
ances network flows between available elastic threads in
a manner that maintains both throughput and latency con-
straints.

We will also explore the synergies between IX and
networking protocols designed to support microsecond-
level latencies and the reduced buffering characteristics
of IX deployments, such as DCTCP [1] and ECN [52].
Note that the IX dataplane is not specific to TCP/IP.
The same design principles can benefit alternative, po-
tentially application specific, network protocols, as well
as high-performance protocols for non-volatile memory
access. Finally, we will investigate library support for
alternative APIs on top of our low-level interface, such
as MegaPipe [24], cooperative threading [65], and rule-
based models [60]. Such APIs and programming models
will make it easier for applications to benefit from the per-
formance and scalability advantages of IX.

7 Related Work
We organize the discussion topically, while avoiding re-
dundancy with the commentary in §2.3.

Hardware virtualization: Hardware support for virtu-
alization naturally separates control and execution func-
tions, e.g., to build type-2 hypervisors [10, 33], run virtual
appliances [55], or provide processes with access to priv-
ileged instructions [7]. Similar to IX, Arrakis uses hard-
ware virtualization to separate the I/O dataplane from the
control plane [50]. IX differs in that it uses a full Linux
kernel as the control plane; provides three-way isolation
between the control plane, networking stack, and applica-
tion; and proposes a dataplane architecture that optimizes
for both high throughput and low latency. On the other
hand, Arrakis uses Barrelfish as the control plane [6] and
includes support for IOMMUs and SR-IOV.

Library operating systems: Exokernels extend the end-
to-end principle to resource management by implement-
ing system abstractions via library operating systems
linked in with applications [19]. Library operating sys-
tems often run as virtual machines [9] used, for instance,
to deploy cloud services [39]. IX limits itself to the im-
plementation of the networking stack, allowing applica-
tions to implement their own resource management poli-
cies, e.g. via the libevent compatibility layer.

Asynchronous and zero-copy communication: Sys-
tems with asynchronous, batched, or exception-less sys-
tem calls substantially reduce the overheads associated
with frequent kernel transitions and context switches [24,
29, 53, 58]. IX’s use of adaptive batching shares similar

62 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

benefits but is also suitable for low-latency communica-
tion. Zero-copy reduces data movement overheads and
simplifies resource management [48]. POSIX OSes have
been modified to support zero-copy through page remap-
ping and copy-on-write [11]. By contrast, IX’s coop-
erative memory management enables zero-copy without
page remapping. Similar to IX, TinyOS passes pointers to
packet buffers between the network stack and the appli-
cation in a cooperative, zero-copy fashion [37]. However,
IX is optimized for datacenter workloads, while TinyOS
focuses on memory constrained, sensor environments.

8 Conclusion
We described IX, a dataplane operating system that lever-
ages hardware virtualization to separate and isolate the
Linux control plane, the IX dataplane instances that im-
plement in-kernel network processing, and the network-
bound applications running on top of them. The IX dat-
aplane provides a native, zero-copy API that explicitly
exposes flow control to applications. The dataplane ar-
chitecture optimizes for both bandwidth and latency by
processing bounded batches of packets to completion and
by eliminating synchronization on multi-core servers. On
microbenchmarks, IX noticeably outperforms both Linux
and mTCP in terms of both latency and throughput, scales
to hundreds of thousands of active concurrent connec-
tions, and can saturate 4x10GbE configurations using a
single processor socket. Finally, we show that porting
memcached to IX removes kernel bottlenecks and im-
proves throughput by up to 3.6×, while reducing tail la-
tency by more than 2×.

Acknowledgements
The authors would like to thank David Mazières for his
many insights into the system and his detailed feedback on
the paper. We also thank Katerina Argyraki, James Larus,
Jacob Leverich, Philip Levis, Willy Zwaenepoel, the
anonymous reviewers, and our shepherd Andrew Warfield
for their comments. This work was supported by a Google
research grant, the Stanford Experimental Datacenter Lab,
and the Microsoft-EPFL Joint Research Center. Adam
Belay is supported by a VMware Graduate Fellowship.

References
[1] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Pad-

hye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data Center TCP (DCTCP). In Pro-
ceedings of the ACM SIGCOMM 2010 Conference,
pages 63–74, 2010.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale
Key-Value Store. In Proceedings of the 2012 ACM
SIGMETRICS International conference on Mea-
surement and modeling of computer systems, pages
53–64, 2012.

[3] L. A. Barroso. Three things that must
be done to save the data center of the
future (ISSCC 2014 Keynote). http:
//www.theregister.co.uk/Print/
2014/02/11/google_research_three_
things_that_must_be_done_to_save_
the_data_center_of_the_future/, 2014.

[4] L. A. Barroso and U. Hölzle. The Case for
Energy-Proportional Computing. IEEE Computer,
40(12):33–37, 2007.

[5] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.
Swift. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th International
Symposium on Computer Architecture (ISCA ’13),
pages 237–248, 2013.

[6] A. Baumann, P. Barham, P.-É. Dagand, T. L. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A new OS architec-
ture for scalable multicore systems. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 29–44, 2009.

[7] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe User-
level Access to Privileged CPU Features. In Pro-
ceedings of the 10th Symposium on Operating Sys-
tem Design and Implementation (OSDI ’12), pages
335–348, 2012.

[8] S. M. Bellovin. A Look Back at ”Security Problems
in the TCP/IP Protocol Suite”. In Proceedings of the
20th Annual Computer Security Applications Con-
ference (ACSAC ’04), pages 229–249, 2004.

[9] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running Commodity Operating Sys-
tems on Scalable Multiprocessors. ACM Trans.
Comput. Syst., 15(4):412–447, 1997.

[10] E. Bugnion, S. Devine, M. Rosenblum, J. Suger-
man, and E. Y. Wang. Bringing Virtualization to the
x86 Architecture with the Original VMware Work-
station. ACM Trans. Comput. Syst., 30(4):12, 2012.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 63

[11] H.-K. J. Chu. Zero-Copy TCP in Solaris. In Pro-
ceedings of the 1996 USENIX Annual Technical
Conference, pages 253–264, 1996.

[12] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The Scalable Commutativ-
ity Rule: Designing Scalable Software for Multicore
Processors. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
pages 1–17, 2013.

[13] T. David, R. Guerraoui, and V. Trigonakis. Every-
thing You Always Wanted to Know About Synchro-
nization but Were Afraid to Ask. In Proceedings
of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pages 33–48, 2013.

[14] J. Dean and L. A. Barroso. The Tail at Scale. Com-
mun. ACM, 56(2):74–80, 2013.

[15] C. Delimitrou and C. Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’14), pages 127–
144, 2014.

[16] M. Dobrescu, N. Egi, K. J. Argyraki, B.-G. Chun,
K. R. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. RouteBricks: Exploiting Paral-
lelism to Scale Software Routers. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 15–28, 2009.

[17] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In Pro-
ceedings of the 11th Symposium on Networked Sys-
tems Design and Implementation (NSDI ’14), 2014.

[18] A. Dunkels. Design and Implementation of the lwIP
TCP/IP Stack. Swedish Institute of Computer Sci-
ence, 2:77, 2001.

[19] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Pro-
ceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95), pages 251–266,
1995.

[20] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In Proceedings of the
10th Symposium on Networked Systems Design and
Implementation (NSDI ’13), pages 371–384, 2013.

[21] M. Fisk and W. Feng. Dynamic Adjustment of TCP
Window Sizes. Technical report, Tech. Rep. Los
Alamos Unclassified Report (LAUR) 00-3221, Los
Alamos National Laboratory, 2000.

[22] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Trans. Netw., 1(4):397–413, 1993.

[23] R. Graham. The C10M Problem. http://c10m.
robertgraham.com, 2013.

[24] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scal-
able Network I/O. In Proceedings of the 10th Sym-
posium on Operating System Design and Implemen-
tation (OSDI ’12), pages 135–148, 2012.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A Platform for Fine-Grained Resource Shar-
ing in the Data Center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation (NSDI), pages 22–22, 2011.

[26] R. Huggahalli, R. R. Iyer, and S. Tetrick. Direct
Cache Access for High Bandwidth Network I/O.
In Proceedings of the 32st International Symposium
on Computer Architecture (ISCA ’05), pages 50–59,
2005.

[27] Intel Corp. Open Source Kernel En-
hancements for Low Latency Sockets us-
ing Busy Poll. http://www.intel.
com/content/dam/www/public/
us/en/documents/white-papers/
open-source-kernel-enhancements-paper.
pdf, 2013.

[28] Intel Corp. Intel DPDK: Data Plane Development
Kit. http://dpdk.org/, 2014.

[29] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI ’14),
2014.

[30] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. o. Park. mTCP source code re-
lease, v. of 2014-02-26. https://github.
com/eunyoung14/mtcp, 2014.

64 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[31] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. W. ur Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur, and D. K. Panda. Memcached Design on
High Performance RDMA Capable Interconnects.
In International Conference on Parallel Processing
(ICPP ’11), pages 743–752, 2011.

[32] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for
Data Center Applications. In ACM Symposium on
Cloud Computing (SOCC ’12), page 9, 2012.

[33] A. Kivity. KVM: The Linux Virtual Machine Mon-
itor. In Proceedings of the 2007 Ottawa Linux Sym-
posium (OLS), pages 225–230, July 2007.

[34] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, 2000.

[35] J. Leverich. Mutilate: High-Performance Mem-
cached Load Generator. https://github.
com/leverich/mutilate, 2014.

[36] J. Leverich and C. Kozyrakis. Reconciling High
Server Utilization and Sub-Millisecond Quality-of-
Service. In Proceedings of the 9th EuroSys Confer-
ence (Eurosys ’14), page 4, 2014.

[37] P. Levis, S. Madden, D. Gay, J. Polastre,
R. Szewczyk, A. Woo, E. A. Brewer, and D. E.
Culler. The Emergence of Networking Abstractions
and Techniques in TinyOS. In Proceedings of the
1st Symposium on Networked Systems Design and
Implementation (NSDI ’04), pages 1–14, 2004.

[38] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso,
and C. Kozyrakis. Towards Energy Proportional-
ity for Large-Scale Latency-Critical Workloads. In
Proceedings of the 41st International Symposium on
Computer Architecture (ISCA ’14), pages 301–312,
2014.

[39] A. Madhavapeddy, R. Mortier, C. Rotsos, D. J. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. In Proceedings of the 18th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS ’13), pages 461–472, 2013.

[40] I. Marinos, R. N. M. Watson, and M. Handley. Net-
work Stack Specialization for Performance. In Pro-
ceedings of the ACM SIGCOMM 2014 Conference,
pages 175–186, 2014.

[41] P. E. McKenney and J. D. Slingwine. Read-Copy
Update: Using Execution History to Solve Concur-
rency Problems. In Parallel and Distributed Com-
puting and Systems, pages 509–518, 1998.

[42] memcached – a distributed memory object caching
system. http://memcached.org, 2014.

[43] Microsoft Corp. Receive Side Scaling.
http://msdn.microsoft.com/library/
windows/hardware/ff556942.aspx, 2014.

[44] C. Mitchell, Y. Geng, and J. Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-
Value Store. In Proceedings of the 2013 USENIX
Annual Technical Conference, pages 103–114, 2013.

[45] J. C. Mogul and K. K. Ramakrishnan. Eliminat-
ing Receive Livelock in an Interrupt-Driven Kernel.
ACM Trans. Comput. Syst., 15(3):217–252, 1997.

[46] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. Scaling Memcache at Facebook. In Proceed-
ings of the 10th Symposium on Networked Systems
Design and Implementation (NSDI ’13), pages 385–
398, 2013.

[47] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ouster-
hout, and M. Rosenblum. Fast Crash Recovery
in RAMCloud. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP
’11), pages 29–41, 2011.

[48] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. ACM
Trans. Comput. Syst., 18(1):37–66, 2000.

[49] A. Pesterev, J. Strauss, N. Zeldovich, and R. T.
Morris. Improving Network Connection Locality
on Multicore Systems. In Proceedings of the 7th
EuroSys Conference (Eurosys ’12), pages 337–350,
2012.

[50] S. Peter, J. Li, I. Zhang, D. R. K. Ports, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The
Operating System is the Control Plane. In Proceed-
ings of the 11th Symposium on Operating System
Design and Implementation (OSDI ’14), 2014.

[51] N. Provos and N. Mathewson. libevent: an event
notification library. http://libevent.org,
2003.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 65

[52] K. Ramakrishnan, S. Floyd, D. Black, et al. The
Addition of Explicit Congestion Notification (ECN)
to IP. IETF RFC 3168, 2001.

[53] L. Rizzo. Revisiting Network I/O APIs: The netmap
Framework. Commun. ACM, 55(3):45–51, 2012.

[54] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosen-
blum, and J. K. Ousterhout. It’s Time for Low La-
tency. In Proceedings of the 13th Workshop on Hot
Topics in Operating Systems (HotOS-XIII), 2011.

[55] C. P. Sapuntzakis, D. Brumley, R. Chandra, N. Zel-
dovich, J. Chow, M. S. Lam, and M. Rosenblum.
Virtual Appliances for Deploying and Maintaining
Software. In Proceedings of the 17th Conference on
Systems Administration (LISA ’03), pages 181–194,
2003.

[56] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: Flexible, scalable schedulers
for large compute clusters. In Proceedings of the 8th
EuroSys Conference (EuroSys ’13), pages 351–364,
2013.

[57] Q. O. Snell, A. R. Mikler, and J. L. Gustafson. Net-
pipe: A Network Protocol Independent Performance
Evaluator. In IASTED International Conference on
Intelligent Information Management and Systems,
volume 6, 1996.

[58] L. Soares and M. Stumm. FlexSC: Flexible System
Call Scheduling with Exception-Less System Calls.
In Proceedings of the 9th Symposium on Operat-
ing System Design and Implementation (OSDI ’10),
pages 33–46, 2010.

[59] Solarflare Communications. Introduc-
tion to OpenOnload: Building Application
Transparency and Protocol Conformance
into Application Acceleration Middleware.
http://www.solarflare.com/content/
userfiles/documents/solarflare_
openonload_intropaper.pdf, 2011.

[60] R. Stutsman and J. K. Ousterhout. Toward Common
Patterns for Distributed, Concurrent, Fault-Tolerant
Code. In Proceedings of the 14th Workshop on Hot
Topics in Operating Systems (HotOS-XIV), 2013.

[61] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D.
Lazowska. Implementing Network Protocols at User
Level. In Proceedings of the ACM SIGCOMM 1993
Conference, pages 64–73, 1993.

[62] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni,
F. C. M. Martins, A. V. Anderson, S. M. Bennett,
A. Kägi, F. H. Leung, and L. Smith. Intel Virtual-
ization Technology. IEEE Computer, 38(5):48–56,
2005.

[63] G. Varghese and A. Lauck. Hashed and Hierarchi-
cal Timing Wheels: Data Structures for the Efficient
Implementation of a Timer Facility. In Proceedings
of the 11th ACM Symposium on Operating Systems
Principles (SOSP ’87), pages 25–38, 1987.

[64] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and
B. Mueller. Safe and Effective Fine-Grained TCP
Retransmissions for Datacenter Communication. In
Proceedings of the ACM SIGCOMM 2009 Confer-
ence, pages 303–314, 2009.

[65] J. R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. A. Brewer. Capriccio: Scalable Threads for
Internet Services. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’03), pages 268–281, 2003.

[66] WhatsApp, Inc. 1 million is so 2011.
https://blog.whatsapp.com/index.
php/2012/01/1-million-is-so-2011,
2012.

[67] D. A. Wheeler. SLOCCount, v2.26. http://
www.dwheeler.com/sloccount/, 2001.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 67

Willow: A User-Programmable SSD

Sudharsan Seshadri Mark Gahagan Sundaram Bhaskaran Trevor Bunker
Arup De Yanqin Jin Yang Liu Steven Swanson

Computer Science & Engineering, UC San Diego

Abstract
We explore the potential of making programmability a
central feature of the SSD interface. Our prototype sys-
tem, called Willow, allows programmers to augment and
extend the semantics of an SSD with application-specific
features without compromising file system protections.
The SSD Apps running on Willow give applications low-
latency, high-bandwidth access to the SSD’s contents
while reducing the load that IO processing places on the
host processor. The programming model for SSD Apps
provides great flexibility, supports the concurrent execu-
tion of multiple SSD Apps in Willow, and supports the
execution of trusted code in Willow.

We demonstrate the effectiveness and flexibility of
Willow by implementing six SSD Apps and measuring
their performance. We find that defining SSD semantics
in software is easy and beneficial, and that Willow makes
it feasible for a wide range of IO-intensive applications
to benefit from a customized SSD interface.

1 Introduction
For decades, computer systems have relied on the same
block-based interface to storage devices: reading and
writing data from and to fixed-sized sectors. It is no ac-
cident that this interface is a perfect fit for hard disks,
nor is it an accident that the interface has changed little
since its creation. As other system components have got-
ten faster and more flexible, their interfaces have evolved
to become more sophisticated and, in many cases, pro-
grammable. However, hard disk performance has re-
mained stubbornly poor, hampering efforts to improve
performance by rethinking the storage interface.

The emergence of fast, non-volatile, solid-state mem-
ories (such as NAND flash and phase-change memo-
ries) has signaled the beginning of the end for painfully
slow storage systems, and this demands a fundamen-
tal rethinking of the interface between storage software
and the storage device. These new memories behave
very differently than disks—flash requires out-of-place
updates while phase change memories (PCMs) provide
byte-addressability—and those differences beg for inter-
faces that go beyond simple block-based access.

The scope of possible new interfaces is enor-

mously broad and includes both general-purpose and
application-specific approaches. Recent work has illus-
trated some of the possibilities and their potential ben-
efits. For instance, an SSD can support complex atomic
operations [10, 32, 35], native caching operations [5, 38],
a large, sparse storage address space [16], delegating
storage allocation decisions to the SSD [47], and offload-
ing file system permission checks to hardware [8]. These
new interfaces allow applications to leverage SSDs’ low
latency, ample internal bandwidth, and on-board compu-
tational resources, and they can lead to huge improve-
ments in performance.

Although these features are useful, the current one-at-
a-time approach to implementing them suffers from sev-
eral limitations. First, adding features is complex and
requires access to SSD internals, so only the SSD manu-
facturer can add them. Second, the code must be trusted,
since it can access or destroy any of the data in the SSD.
Third, to be cost-effective for manufacturers to develop,
market, and maintain, the new features must be useful
to many users and/or across many applications. Select-
ing widely applicable interfaces for complex use cases is
very difficult. For example, editable atomic writes [10]
were designed to support ARIES-style write-ahead log-
ging, but not all databases take that approach.

To overcome these limitations, we propose to make
programmability a central feature of the SSD interface,
so ordinary programmers can safely extend their SSDs’
functionality. The resulting system, called Willow, will
allow application, file system, and operating system
programmers to install customized (and potentially un-
trusted) SSD Apps that can modify and extend the SSD’s
behavior.

Applications will be able to exploit this kind of pro-
grammability in (at least) four different ways.

• Data-dependent logic: Many storage applications
perform data-dependent read and write operations
to manipulate on-disk data structures. Each data-
dependent operation requires a round-trip between
a conventional SSD and the host across the system
bus (i.e., PCIe, SATA, or SAS) and through the op-
erating system, adding latency and increasing host-
side software costs.

68 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Host

Willow SSD

SPU
SPU

SPU

SPU
SPU

SPU

PCIe
Willow Driver

vSPUHRE

(a) (b)

Host

Read()/Write()
Block Driver

PCIe SSD

NVMe Interface

NV Memory

NVM
NVM

NVM

NVM
NVM

NVM

CPU

DMA

NVM

Network
interface

Local
Memory

NVMNVMPCM

(c)

control

CPU CPU CPU

CPU CPU CPU

Bridge

userspace
kernel

userspace
kernel

Figure 1: A conventional SSD vs. Willow. Although both a conventional SSD (a) and Willow (b) contain pro-
grammable components, Willow’s computation resources (c) are visible to the programmer and provide a flexible
programming model.

• Semantic extensions: Storage features like caching
and logging require changes to the semantics of
storage accesses. For instance, a write to a caching
device could include setting a dirty bit for the af-
fected blocks.

• Privileged execution: Executing privileged code in
the SSD will allow it to take over operating and file
system functions. Recent work [8] shows that issu-
ing a request to an SSD via an OS-bypass interface
is faster than a system call, so running some trusted
code in the SSD would improve performance.

• Data intensive computations: Moving data-
intensive computations to the storage system has
many applications, and previous work has explored
this direction in disks [37, 1, 19] and SSDs [17, 6,
43] with promising results.

Willow focuses on the first three of these use cases
and demonstrates that adding generic programmability
to the SSD interface can significantly reduce the cost
and complexity of adding new features. We describe a
prototype implementation of Willow based on emulated
PCM memory that supports a wide range of applications.
Then, we describe the motivation behind the design de-
cisions we made in building the prototype. We report
on our experience implementing a suite of example SSD
Apps. The results show that Willow allows programmers
to quickly add new features to an SSD and that applica-
tions can realize significant gains by offloading function-
ality to Willow.

This paper provides an overview of Willow, its pro-
gramming model, and our prototype in Sections 2 and 3.
Section 4 presents and evaluates six SSD Apps, Section 5
places our work in the context of other approaches to

integrating programmability into storage devices. Sec-
tion 6 describes some of the insights we gained from this
work, and Section 7 concludes.

2 System Design
Willow revisits the interface that the storage device ex-
poses to the rest of the system, and provides the hard-
ware necessary to support that interface efficiently. This
section describes the system from the programmer’s per-
spective, paying particular attention to the programming
model and hardware/software interface. Section 3 de-
scribes the prototype hardware in more detail.

2.1 Willow system components

Figure 1(a) depicts a conventional storage system with
a high-end, PCIe-attached SSD. A host system connects
to the SSD via NVM Express (NVMe) [30] over PCIe,
and the operating system sends commands and receives
responses over that communication channel. The com-
mands are all storage-specific (e.g., read or write a block)
and there is a point-to-point connection between the host
operating system and the storage device. Modern, high-
end SSDs contain several (often many) embedded, pro-
grammable processors, but that programmability is not
visible to the host system or to applications.

Figure 1(b) shows the corresponding picture of the
Willow SSD. Willow’s components resemble those in a
conventional SSD: it contains several storage processor
units (SPUs), each of which includes a microprocessor,
an interface to the inter-SPU interconnect, and access to
an array of non-volatile memory. Each SPU runs a very
small operating system called SPU-OS that manages and
enforces security (see Section 2.6 below).

The interface that Willow provides is very different
from the interface of a conventional SSD. On the host
side, the Willow driver creates and manages a set of ob-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 69

SPU-3

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-2

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-1

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-0

Perm. Table

SPU-OS

Application

Willow
Driver

HRE

File
System

GetPerm()

ReadRPC()
WriteRPC()

GrantPermRPC()

RevokePermRPC()

libDirectIO

vSPU alloc.

SSDApp Install

Open()

Close() DirectIO
SSDAppDirectIO

Driver

userspace
kernel

Figure 2: The Anatomy of an SSD App. The boldface elements depict three components of an SSD App: a userspace
library, the SPU code, and an optional kernel driver. In the typical use case, a conventional file system manages the
contents of Willow, and the Willow driver grants access to file extents based on file system permissions.

jects called Host RPC Endpoints (HREs) that allow the
OS and applications to communicate with SPUs. The
HRE is a data structure that the kernel creates and allo-
cates to a process. It provides a unique identifier called
the HRE ID for sending and receiving RPC requests
and lets the process send and receive those requests via
DMA transfers between userspace memory and the Wil-
low SSD. The SPUs and HREs communicate over a flex-
ible network using a simple, flexible RPC-based mecha-
nism. The RPC mechanism is generic and does not pro-
vide any storage-specific functionality. SPUs can send
RPCs to HREs and vice versa.

The final component of Willow is programmable func-
tionality in the form of SSD Apps. Each SSD App con-
sists of three elements: a set of RPC handlers that the
Willow kernel driver installs at each SPU on behalf of
the application, a library that an application uses to ac-
cess the SSD App, and a kernel module, if the SSD App
requires kernel support. Multiple SSD Apps can be ac-
tive at the same time.

Below, we describe the high-level system model, the
programming model, and the security model for both
SPUs and HREs.

2.2 The Willow Usage Model

Willow’s design can support many different usage mod-
els (e.g., a system could use it as a tightly-coupled net-
work of “wimpy” compute nodes with associated stor-
age). Here, however, we focus on using Willow as a con-
ventional storage device that also provides programma-
bility features. This model is particularly useful be-

cause it allows for incremental adoption of Willow’s fea-
tures and ensures that legacy applications can use Willow
without modification.

In this model, Willow runs an SSD App called
Base-IO that provides basic block device functional-
ity (i.e., reading and writing data from and to storage lo-
cations). Base-IO stripes data across the SPUs (and
their associated banks of non-volatile memory) in 8 kB
segments. Base-IO (and all the other SSD Apps we
present in this paper) runs identical code at each SPU.
We have found it useful to organize data and computa-
tion in this way, but Willow does not require it.

A conventional file system manages the space on Wil-
low and sets permissions that govern access to the data it
holds. The file system uses the Base-IO block device
interface to maintain metadata and provide data access to
applications that do not use Willow’s programmability.

To exploit Willow’s programmability, an applica-
tion needs to install and use an additional SSD App.
Figure 2 illustrates this process for an SSD App
called Direct-IO that provides an OS-bypass in-
terface that avoids system call and file system over-
heads for common-case reads and writes (similar to [8]).
The figure shows the software components that com-
prise Direct-IO in bold. To use Direct-IO, the
application uses the Direct-IO’s userspace library,
libDirectIO. The library asks the operating system
to install Direct-IO in Willow and requests an HRE
from the Willow driver to allow it to communicate with
the Willow SSD.
Direct-IO also includes a kernel module that

70 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

libDirectIO invokes when it needs to open a file on
behalf of the application. The Direct-IO kernel mod-
ule asks the Willow driver to grant the application per-
mission to access the file. The driver requests the nec-
essary permission information from the file system and
issues trusted RPCs to SPU-OS to install the permission
for the file extents the application needs to access in the
SPU-OS permission table. Modern file systems already
include the ability to query permissions from inside the
kernel, so no changes to the file system are necessary.
Base-IO and Direct-IO are “standard equip-

ment” on Willow, since they provide functions that are
useful for many other SSD Apps. In particular, other
SSD Apps can leverage Direct-IO’s functionality to
implement arbitrary, untrusted operations on file data.

2.3 Building an SSD App

SSD Apps comprise interacting components running
in multiple locations: in the client application (e.g.,
libDirectIO), in the host-side kernel (e.g., the
Direct-IO kernel module), and in the Willow SSD.
To minimize complexity, code in all three locations uses
a common set of interfaces to implement SSD App func-
tionality. In the host application and the kernel, the
HRE library implements these interfaces, while in Wil-
low, SPU-OS implements them. The interfaces provide
the following capabilities:
1. Send an RPC request: SPUs and HREs can issue

RPC requests to SPUs, and SPUs can issue RPCs
to HREs. RPC delivery is non-reliable (due to lim-
ited buffering at the receiver), and all-or-nothing (i.e.,
the recipient will not receive a partial message). The
sender is notified upon successful (or failed) delivery
of the message. Willow supports both synchronous
and asynchronous RPCs.

2. Receive an RPC request: RPC requests carry an
RPC ID that specifies which SSD App they target and
which handler they should invoke. When an RPC re-
quest arrives at an SPU or HRE, the runtime (i.e., the
HRE library or SPU-OS) invokes the correct handler
for the request.

3. Send an RPC response: RPC responses are short,
fixed-length messages that include a result code and
information about the request it responds to. RPC
response delivery is reliable.

4. Initiate a data transfer: An RPC handler can asyn-
chronously transfer data between the network inter-
face, local memory, and the local non-volatile mem-
ory (for SPUs only).

5. Allocate local memory: SSD Apps can declare
static variables to allocate space in the SPU’s local
data memory, but they cannot allocate SPU memory
dynamically. Code on the host can allocate data stat-
ically or on the heap.

6. General purpose computation: SSD Apps are writ-
ten in C, although the standard libraries are not avail-
able on the SPUs.

In addition to these interfaces, the host-side HRE li-
brary also provides facilities to request HREs from the
Willow driver and install SSD Apps.

This set of interfaces has proved sufficient to imple-
ment a wide range of different applications (see Sec-
tion 4), and we have found them flexible and easy to
use. However, as we gain more experience building
SSD Apps, we expect that opportunities for optimization,
new capabilities, and bug-preventing restrictions on SSD
Apps will become apparent.

2.4 The SPU Architecture

In modern SSDs (and in our prototype), the embedded
processor that runs the SSD’s firmware offers only mod-
est performance and limited local memory capacity com-
pared to the bandwidth that non-volatile memory and the
SSD’s internal interconnect can deliver.

In addition, concerns about power consumption
(which argue for lower clock speeds) and cost (which ar-
gue for simple processors) suggest this situation will per-
sist, especially as memory bandwidths continue to grow.
These constraints shape both the Willow hardware we
propose and the details of the RPC mechanism we pro-
vide.

The SPU has four hardware components we use to im-
plement the SSD App toolkit (Figure 1(c)):
1. SPU processor: The processor provides modest per-

formance (perhaps 100s of MIPS) and kilobytes of
per-SPU instruction and data memory.

2. Local non-volatile memory: The array of non-
volatile memory can read or write data at over
1 GB/s.

3. Network interface: The network provides
gigabytes-per-second of bandwidth to match
the bandwidth of the local non-volatile memory
array and the link bandwidth to the host system.

4. Programmable DMA controller: The DMA con-
troller routes data between non-volatile memory, the
network port, and the processor’s local data memory.
It can handle the full bandwidth of the network and
local non-volatile memory.

The DMA controller is central to the design of both
the SPU and the RPC mechanism, since it allows the
modestly powerful processor to handle high-bandwidth
streams of data. We describe the RPC interface in the
following section.

The SPU runs a simple operating system (SPU-OS)
that provides simple multi-threading, works with the
Willow host-side driver to manage SPU memory re-
sources, implements protection mechanisms that allow
multiple SSD Apps to be active at once, and enforces the

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 71

void Read_Handler (RPCHdr_t *request_hdr) { // RPCHdr_t part of the RPC interface
// Parse the incoming RPC
BaseIOCmd_t cmd;
RPCReceiveBytes(&cmd, sizeof(BaseIOCmd_t)); // DMA the IO command header
RPCResp_t response_hdr; // Allocate response
RPCCreateResponse(request_hdr, // populate the response

&response_hdr,
RPC_SUCCESS);

RPCSendResponse(response_hdr); // Send the response

// Send the read data back via a second RPC
CPUID_t dst = request_hdr->src;
RPCStartRequest(dst, // Destination PU

sizeof(IOCmd_t) + cmd.length, // Request body length
READ_COMPLETE_HANDLER); // Read completion RPC ID

RPCAppendRequest(LOCAL_MEMORY_PORT, // Source DMA port
sizeof(BaseIOCmd_t), // IO command header size
&cmd); // IO command header address

RPCAppendRequest(NV_MEMORY_PORT, // Source DMA Port
cmd.length, // Bytes to read
cmd.addr); // Read address

RPCFinishRequest(); // Complete the request
}

Figure 3: READ() implementation for Base-IO. Handling a READ() requires parsing the header on the RPC request
and then sending requested data from non-volatile memory back to host via another RPC.

file system’s protection policy for non-volatile storage.
Section 2.6 describes the protection facilities in more de-
tail.

2.5 The RPC Interface

The RPC mechanism’s design reflects the constraints of
the hardware described above. Given the modest perfor-
mance of the SPU processor and its limited local mem-
ory, buffering entire RPC messages at the SPU processor
is not practical. Instead, the RPC library parses and as-
sembles RPC requests in stages. The code in Figure 3
illustrates how this works for a simplified version of the
READ() RPC from Base-IO.

When an RPC arrives, SPU-OS copies the RPC
header into a local buffer using DMA and passes the
buffer to the appropriate handler (Read Handler).
That handler uses the DMA controller to transfer the
RPC parameters into the SPU processor’s local memory
(RPCReceiveBytes). The header contains generic in-
formation (e.g., the source of the RPC request and its
size), while the parameters include command-specific
values (e.g., the read or write address). The handler uses
one or more DMA requests to process the remainder of
the request. This can include moving part of the request
to the processor’s local memory for examination or per-
forming bulk transfers between the network port and the
non-volatile memory bank (e.g., to implement a write).
In the example, no additional DMA transfers are needed.

The handler sends a fixed-sized response to
the RPC request (RPCCreateResponse and
RPCSendResponse). Willow guarantees the re-

liable delivery of fixed-size responses (acks or nacks)
by guaranteeing space to receive them when the RPC
is sent. If the SSD App needs to send a response that
is longer than 32 bits (e.g., to return the data for a
read), it must issue an RPC to the sender. If there is
insufficient buffer space at the receiver, the inter-SPU
communication network can drop packets. In practice,
however, dropped packets are exceedingly rare.

The process of issuing an RPC to return the data fol-
lows a similar sequence of steps. The SPU gives the
network port the destination and length of the message
(RPCStartRequest). Then it prepares any headers in
local memory and uses the DMA controller to transfer
them to the network interface (RPCAppendRequest).
Further DMA requests can transfer data from non-
volatile memory or processor memory to the network in-
terface to complete the request. In this case, the SSD App
transfers the read data from the non-volatile memory. Fi-
nally, it makes a call to signal the end of the message
(RPCFinishRequest).

2.6 Protection and sharing in Willow

Willow has several features that make it easy for users to
build and deploy useful SSD Apps: Willow supports un-
trusted SSD Apps, protects against malicious SSD Apps
(assuming the host-side kernel is not compromised), al-
lows multiple SSD Apps to be active simultaneously, and
allows one SSD App to leverage functionality that an-
other provides. Together these four features allow a user
to build and use an SSD App without the permission of
a system administrator and to focus on the functionality

72 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

specific to his or her particular application.
Providing these features requires a suite of four pro-

tection mechanisms. First, it must be clear which host-
side process is responsible for the execution of code at
the SPU, so SPU-OS can enforce the correct set of pro-
tection policies. Second, the SPU must allow an SSD
App to access data stored in Willow only if the process
that initiated the current RPC has access rights to that
data. Third, the SPU must restrict an SSD App to ac-
cessing only its own memory and executing only its own
code. Finally, it must allow some control transfers be-
tween SSD Apps so the user can compose SSD Apps.
We address each of these below.

Tracking responsibility: The host system is responsi-
ble for setting protection policy for Willow, and it does
so by associating permissions with operating system pro-
cesses. To correctly enforce the operating system’s poli-
cies, SPU-OS must be able to determine which process is
responsible for the RPC handler that is currently running.

To facilitate this, Willow tracks the originating HRE
for each RPC. An HRE is the originating HRE for any
RPCs it makes and for any RPCs that an SPU makes
as a result of that RPC and any subsequent RPCs. The
PCIe interface hardware in the Willow SSD sets the orig-
inating HRE for the initial RPC, and SPU hardware and
SPU-OS propagate it within the SSD. As a result, the
originating HRE ID is unforgeable and serves as a capa-
bility [23].

To reduce cache coherence traffic, it is useful to give
each thread in a process its own HRE. The Willow driver
allocates HREs so that the high-order bits of the HRE ID
are the same for every HRE belonging to a single pro-
cess.

Non-volatile storage protection: To limit access to
data in the non-volatile memory banks, SPU-OS main-
tains a set of permissions for each process at each SPU.
Every time the SSD App uses the DMA controller to
move data to or from non-volatile memory, SPU-OS
checks that the permissions for the originating HRE (and
therefore the originating process) allow it. The worst-
case permission check latency is 2 µs.

The host-side kernel driver installs extent-based per-
mission entries on behalf of a process by issuing privi-
leged RPCs to SPU-OS. The SPU stores the permissions
for each process as a splay tree to minimize permission
check time. Since the SPU-OS permission table is fixed
size, it may evict permissions if space runs short. If a
request needs an evicted permission entry, a “permis-
sion miss” occurs, and the DMA transfer will fail. In
response, SPU-OS issues an RPC to the kernel. The ker-
nel forwards the request to the SSD App’s kernel mod-
ule (if it has one), and that kernel module is responsible
for resolving the miss. Most of our SSD Apps use the

Direct-IO kernel module to manage permissions, and
it will re-install the permission entry as needed.

Code and Data Protection: To limit access to the code
and data in the SPU processor’s local memory, the SPU
processor provides segment registers and disallows ac-
cess outside the current segment. Each SSD App has its
own data and instruction segments that define the base
address and length of the instruction and data memory
regions it may access. Accesses outside the SSD App’s
segment raise an exception and cause SPU-OS to notify
the kernel via an RPC, and the kernel, in turn, notifies
the applications that the SSD App is no longer available.
SPU-OS provides a trusted RPC dispatch mechanism for
incoming messages. This mechanism sets the segment
registers according to the SSD App that the RPC targets.

The host-side kernel is in charge of managing and stat-
ically allocating SPU instruction and data memory to the
active SSD Apps. Overlays could extend the effective
instruction and data memory size (and are common in
commercial SSD controller firmware), but we have not
implemented them in our prototype.

Limiting access to RPCs: A combination of hardware
and software restricts access to some RPCs. This allows
safe composition of SSD Apps and allows SSD Apps to
create RPCs that can be issued only from the host-side
kernel.

To support composition, SPU-OS provides a mecha-
nism for changing segments as part of a function call
from one SSD App to another. An SSD App-intercall
table in each SPU controls which SSD Apps are allowed
to invoke one another and which function calls are al-
lowed. A similar mechanism restricts which RPCs one
SSD App can issue to another.

To implement kernel-only RPCs, we use the conven-
tion that a zero in the high-order bit of the HRE ID means
the HRE belongs to the kernel. RPC implementations
can check the ID and return failure when a non-kernel
HRE invokes a protected RPC.

SSD Apps can use this mechanism to bootstrap more
complex protection schemes as needed. For example,
they could require the SSD App’s kernel module to grant
access to userspace HREs via a kernel-only RPC.

3 The Willow Prototype
We have constructed a prototype Willow SSD that imple-
ments all of the functionality described in the previous
section. This section provides details about the design.

The prototype has eight SPUs and a total storage ca-
pacity of 64 GB. It is implemented using a BEE3 FPGA-
based prototyping system [4]. The BEE3 connects to a
host system over a PCIe 1.1x8. The link provides 2 GB/s
of full-duplex bandwidth.

Each of the four FPGAs that make up a BEE3 hosts

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 73

Description Name LOC Devel. Time
(C) (Person-months)

Simple IO operations [7] Base-IO 1500 1
Virtualized SSD interface with OS bypass and permission check-
ing [8]

Direct-IO 1524 1.2

Atomic writes tailored for scalable database systems based
on [10]

Atomic-Write 901 1

Direct-access caching device with hardware support for dirty data
tracking [5]

Caching 728 1

SSD acceleration for MemcacheDB [9] Key-Value 834 1
Offload file appends to the SSD Append 1588 1

Table 1: SSD Apps. Implementing and testing each SSD App required no more than five weeks and less than 1600
lines of code.

two SPUs, each attached to an 8 GB bank of DDR2
DRAM. We use the DRAM combined with a customized
memory controller to emulate phase change memory
with a read latency of 48 ns and a write latency of
150 ns. The memory controller implements start-gap
wear-leveling [36].

The SPU processor is a 125 MHz RISC processor with
a MIPS-like instruction set. It executes nearly one in-
struction per cycle, on average. We use the MIPS version
of gcc to generate executable code for it. For debugging,
it provides a virtual serial port and a rich set of perfor-
mance counters and status registers to the host. The pro-
cessor has 32 kB of local data memory and 32 kB of local
instruction memory.

The kernel driver statically allocates space in the SPU
memory to SSD Apps, which constrains the number and
size of SSD Apps that can run at once. SPU-OS main-
tains a permission table in the local data memory that can
hold 768 entries and occupies 20 kB of data memory.

The ring in Willow uses round-robin, token-based ar-
bitration, so only one SPU may be sending a message at
any time. To send a message, the SPU’s network inter-
face waits for the token to arrive, takes possession of it,
and transmits its data. To receive a message, the inter-
face watches the header of messages on the ring to iden-
tify messages it should remove from the ring. The ring is
128 bits wide and runs at 250 MHz for a total of 3.7 GB/s
of bisection bandwidth.

For communication with the HREs on the host, a
bridge connects the ring to the PCIe link. The bridge
serves as a hardware proxy for the HREs. For each of the
HREs, the bridge maintains an upstream (host-bound)
and downstream (Willow-bound) queue. This queue-
based interface is similar to the scheme that NVMEx-
press [30] uses to issue and complete IO requests. The
bridge in our prototype Willow supports up to 1024
queue pairs, so it can support 1024 HREs on the host.

The bridge also helps enforce security in Willow. Mes-
sages from HREs to SPUs travel over the bridge, and the

bridge sets the originating HRE fields on those messages
depending on which HRE queue they came in on. Since
processes can send messages only via the queues for the
HREs they control, processes cannot send forged RPC
requests.

4 Case Studies

Willow makes it easy for storage system engineers to im-
prove performance by incorporating new capabilities into
a storage device. We have evaluated Willow’s effective-
ness in this regard by implementing six different SSD
Apps and comparing their performance to implementa-
tions that use a conventional storage interface.

The six applications are: basic IO, IO with OS bypass,
atomic-writes, caching, a key-value store, and append-
ing data to a file in the Ext4 filesystem. Table 1 briefly
describes all six apps and provides some statistics about
their implementations. We discuss each in detail below.

4.1 Basic IO

The first SSD App is Base-IO, the SSD App we de-
scribed briefly in Section 2 that provides basic SSD func-
tionality: READ(), WRITE(), and a few utility operations
(e.g., querying the size of the device) that the operating
system requires to recognize Willow as a block device.

A Willow SSD with Base-IO approximates a con-
ventional SSD, since the SSD’s firmware would imple-
ment the same functions that Base-IO provides. We
compare to Base-IO throughout this section to under-
stand the performance impact of Willow’s programma-
bility features.

Figure 4 plots the performance of Base-IO. We col-
lected the data by running XDD [46] on top of XFS.
Base-IO is able to utilize 78% and 73% of the PCIe
bandwidth for read and write, respectively, and can sus-
tain up to 388K read IOPs for small accesses. This level
of PCIe utilization is comparable to what we have seen
in commercial high-end PCIe SSDs.

74 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Read

Request Size (KB)

0.5 2 8 32 128

Ba
nd

w
id

th
 (G

B/
s)

0.0

0.5

1.0

1.5

2.0 Write

Request Size (KB)

0.5 2 8 32 128

Ba
nd

w
id

th
 (G

B/
s)

0.0

0.5

1.0

1.5

2.0

Base−IO
Direct−IO

Figure 4: Bandwidth comparison between Direct-IO and Base-IO. Bypassing the kernel with a virtualized
SSD interface and software permission checks improves the performance by up to 66% for reads, and 8× for writes,
relative to Base-IO.

4.2 Direct-IO

The second SSD App is Direct-IO, the OS-bypass
interface that allows applications to perform READ()
and WRITE() operations without operating system in-
tervention. We described Direct-IO in Section 2.
Direct-IO is similar to the work in [8] and, like that
work, Direct-IO relies on a userspace library to im-
plement a POSIX-compliant interface for applications.

Figure 4 compares the performance of Direct-IO
and Base-IO running under XFS. Direct-IO out-
performs Base-IO by up to 66% for small reads and
8× for small writes by avoiding system call and file sys-
tem overheads. The performance gain for writes is larger
than for reads because writes require one RPC round trip
while reads require two: an RPC from the host to the
SSD to send the request and an RPC from the SSD to the
host to return the data. Direct-IO reduces the cost of
the first RPC, but not the second.

Figure 5 breaks down the read latency for 4 kB ac-
cesses on three different configurations. All of them
share the same hardware (DMA and NVM access) and
host-side (command issue, memory copy and software)
latencies, but Direct-IO saves almost 35% of access
latency by avoiding the operating system. The final
bar (based on projections) shows that running the SPU at
1 GHz would almost eliminate the impact of SPU soft-
ware overheads on overall latency, although it would in-
crease power consumption. Such a processor would be
easy to implement in a custom silicon version of Willow.

4.3 Atomic Writes

Many storage applications (e.g., file systems and
databases) use write-ahead logging (WAL) to enforce
strict consistency guarantees on persistent data struc-
tures. WAL schemes range from relatively simple jour-
naling mechanisms for file system metadata to the com-
plex ARIES scheme for implementing scalable transac-
tions in databases [27]. Recently, researchers and in-

Base−IO
Direct−IO

Direct−IO_1GHz

Ti
m

e
(u

s)

0

2

4

6

8

10

12

14

16

18

20
HostIssueCMD
HWDMACMD

HWDMAData
HostMemcpy
HostSW
NVMLatency
SPUApp
PermCheck
OS(FS+SysCall)

Figure 5: Read Latency Breakdown. The bars give the
component latencies for Base-IO with a file system,
for Direct-IO on the current SPU processor, and for
Direct-IO on a hypothetical version of Willow with a
1 GHz processor.

dustry have developed several SSDs with built-in sup-
port for multi-part atomic writes [32, 35], including a
scheme called MARS [10] that aims to replace ARIES
in databases.

MARS relies on a WAL primitive called editable
atomic writes (EAW). EAW provides the application
with detailed control over where logging information re-
sides inside the SSD and allows it to edit log records prior
to committing the atomic operations.

We have implemented EAWs as an SSD App
called Atomic-Writes. Atomic-Writes imple-
ments four RPCs—LOGWRITE(), COMMIT(), LOG-
WRITECOMMIT(), and ABORT()—summarized in Ta-
ble 2. Atomic-Writesmakes use of the Direct-IO
functionality as well.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 75

RPC Description
LOGWRITE() Start a new atomic opera-

tion and/or add a write to
an existing atomic opera-
tion.

COMMIT() Commit an atomic opera-
tion.

LOGWRITECOMMIT() Create and commit an
atomic operation com-
prised of single write.

ABORT() Abort an atomic operation.

Table 2: RPCs for Atomic-Writes. The
Atomic-Write SSD App allows applications to com-
bine multiple writes into a single atomic operation and
commit or abort them.

The implementations of LOGWRITE() and COMMIT()
illustrate the flexible programmability of Willow’s RPC
interface. Each SPU maintains the redo-log as a complex
persistent data structure for each active transaction. An
array of log metadata entries resides in a reserved area
of non-volatile memory with each entry pointing to a log
record, the data to be written, and the location where it
should be written. LOGWRITE() appends an entry to this
array and initializes it to add the new entry to the log.

COMMIT() uses a two-phase commit protocol among
the SPUs to achieve atomicity. The host library tracks
which SPUs are participating in the transaction and se-
lects one of them as the coordinator. In Phase 1, the co-
ordinator broadcasts a “prepare” request to all the SPUs
participating in this transaction (including itself). Each
participant decides whether to commit or abort and re-
ports back to the coordinator. In Phase 2, if any partic-
ipant decides to abort, the coordinator instructs all par-
ticipants to abort. Otherwise the coordinator broadcasts
a “commit” request so that each participant plays its lo-
cal portion of the log and notifies the coordinator when it
finishes.

We have modified the Shore-MT [40] storage manager
to use MARS and EAW to implement transaction pro-
cessing. We also fine-tuned EAWs to match how Shore-
MT manages transactions, something that would not be
possible in the “black box,” one-size-fits-all implemen-
tation of EAWs that a non-programmable SSD might in-
clude. Figure 6 shows the performance difference be-
tween MARS and ARIES for TPC-B [44]. MARS scales
better than ARIES when increasing thread count and out-
performs ARIES by up to 1.5×. These gains are ulti-
mately due to the rich semantics that Atomic-Writes
provides.

4.4 Caching

SSDs are more expensive and less dense than disks. A
cost-effective option for integrating them into storage

threads

1 2 4 8 16

ki
lo

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

5

10

15

20

25

ARIES−BaseIO
ARIES−DirectIO
MARS

Figure 6: TPC-B Throughput. MARS using
Atomic-Writes yields up to 1.5× throughput gain
compared to ARIES using Base-IO and Direct-IO.

systems is to utilize high performance SSDs as caches
for larger conventional backing stores. Traditional SSD
caching systems such as FlashCache [41] and bcache [3]
implement cache look-up and management operations as
a software component in the operating system. Several
groups [5, 38] have proposed adding caching-specific in-
terfaces to SSDs in order to improve the performance of
the storage system.

We have implemented an SSD App called Caching
that turns Willow into a caching SSD. Caching tracks
which data in the cache are dirty, provides support for
recovery after failures, and tracks statistics about which
data is “hot” to guide replacement policies. It services
cache hits directly from user space using Direct-IO’s
OS-bypass interface. For misses, Caching invokes
a kernel-based cache manager. Its design is based on
Bankshot [5].
Caching transforms Willow into a specialized

caching SSD rather than providing application-specific
features on top of normal cache access. Instead of
using the file system’s extent-based protection policy,
Caching uses a specialized permission mechanism
based on large, fixed-size cache chunks (or groups of
blocks) that make more efficient use of the SPU’s lim-
ited local memory. Caching’s kernel module uses a
privileged kernel-only RPC to install the specialized per-
mission entries and to manage the cache’s contents.

To measure Caching’s performance we use the Flex-
ible IO Tester (Fio) [14]. We configure Fio to generate
Zipf-distributed [2] accesses such that 90% of accesses
are to 10% of the data. We vary the file size from 1 GB
to 128 GB. We use a 1 GB cache and report average la-
tency after the cache is warm. The backing store is a hard
disk.

Figure 7 shows the average read and write latency for
4 kB accesses to FlashCache and Caching. Because
it is a kernel module, FlashCache uses the Base-IO
rather than Direct-IO. Caching’s fully associative

76 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

File Size (GB)

1 4 16 64

La
te

nc
y

(u
s)

0

1000

2000

File Size (GB)

1 4 16 64
0

400

800

1200
FlashCache
Caching

(a) Read Latency (b) Write Latency
Figure 7: Latency vs. working set size. Caching offers improved average latency for 4 kB reads (a) and writes (b)
compared to FlashCache. As the file sizes grow beyond the cache size of 1 GB, latency approaches that of the backing
disk.

Get
Put

WL−Update

WL−Read

Th
ro

ug
hp

ut
 (i

n
M

illi
on

 o
ps

/s
)

0

0.2

0.4

0.6

0.8

1
BDB−BaseIO
BDB−DirectIO
Key−Value

Figure 8: MemcacheDB performance. Key-Value
improves performance of GET() and PUT() operations by
8% and 2× respectively, compared to Berkeley DB run-
ning on Direct-IO. It improves performance by the
same operation by 2× and 4.8× respectively compared
to Berkeley DB running on Base-IO.

allocation policy allows for more efficient use of cache
space, and its ability to allow direct user space access re-
duces software overheads. Caching reduces the miss
rate by 6%-23% and improves the cache hit latency for
write by 61.8% and read by 36.3%. Combined, these im-
prove read latency by between 1.7 and 2.8× and writes
by up to 1.8×.

4.5 Key-Value Store

Key-value stores have proved a very useful tool in imple-
menting a wide range of applications, from smart phone
apps to large scale cloud services. Persistent key-value
stores such as BerkeleyDB [31], Cassandra [21], and
MongoDB [34] rely on complex in-storage data struc-
tures (e.g., BTrees or hash tables) to store their data.
Traversing those data structures using conventional IO

operations results in multiple dependent accesses that
consume host CPU cycles and require multiple crossings
of the system interconnect (i.e., PCIe). Offloading those
dependent accesses to the SSD eliminates much of that
latency.

We implement support for key-value operations in an
SSD App called Key-Value. It provides three RPC
functions: PUT() to insert or update a key-value pair,
GET() to retrieve the value corresponding to a key, and
DELETE() to remove a key-value pair. Key-Value
stores pairs in a hash table using open chaining to avoid
collisions.
Key-Value computes the hash of the key on the host

and uses the hash value to distribute hash buckets across
the SPUs in Willow. For calls to GET() and DELETE(), it
passes the hash value and the key (so the SPU can detect
matches). For PUT(), it includes the value in addition
to the key. All three RPC calls operate on an array of
buckets, each containing a linked list of key-value pairs
with matching hashes. The SPU code traverses the linked
list with a sequence of short DMA requests.

We used MemcacheDB [9] to evaluate Key-Value.
MemcacheDB [9] combines memcached [26], the popu-
lar distributed key-value store, with BerkeleyDB [31], to
build a persistent key-value store. MemcacheDB has a
client-server architecture, and for this experiment we run
it on a single computer that acts both as client (using a
16 thread configuration) and server.

We compare three configurations of MemcacheDB.
The first two configurations use BerkeleyDB [31] run-
ning on top of Base-IO and Direct-IO separately to
store the key-value pairs. The third replaces BerkeleyDB
with a Key-Value-based implementation.

We evaluate the performance of GET() and PUT() op-
erations and then measure the overall performance for
both update-heavy (50% PUT() / 50% GET()) and read-
heavy (5% PUT() / 95% GET()) workloads. Both work-
loads use random 16-byte keys and 1024-byte values.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 77

Application

Coordinator
SPU

Writer
SPU

Writer
SPU

Ap
pe
nd
()

R
es
po
ns
e

Write()

Wri
te()

AppendDone()

AppendDone()

Figure 9: RPCs to implement APPEND(). The coor-
dinator SPU delegates writing the appended data to the
SPUs that host the affected memory banks. Those SPUs
notify the host on completion.

Threads

1 2 4 8 16

Ba
nd

w
id

th
 (K

O
ps

/s
ec

)

20

60

100

Append
Base−IO

Figure 10: File append in Willow. Append provides
better performance than relying on the operating system
to append data to a file.

Figure 8 shows the performance comparison between
different MemcacheDB implementations. For GET()
and PUT() operations Key-Value outperforms the
Direct-IO configuration by 8.2% and 100% respec-
tively, and improves over the Base-IO configuration by
2× and 4.8×. Results for the update- and read-heavy
workloads show a similar trend, with Key-Value im-
proving performance by between 17% and 70% over the
Direct-IO configuration and between 2.5× and 4×
over the Base-IO configuration.

4.6 File system offload

File systems present several opportunities for offloading
functionality to Willow to improve performance. We
have created an SSD App called Append that exploits
one of these opportunities, allowing Direct-IO to ap-
pend data to a file (and update the appropriate metadata)
from userspace.
Direct-IO reduces overheads for most read and

write operations by allowing them to bypass the operat-
ing system, but it cannot do the same for append opera-
tions, since appends require updates to file system meta-
data. We can extend the OS bypass interface to include
appends by building a trusted SSD App that can coor-
dinate with the file system to maintain the correct file
length.
Append builds upon Direct-IO (and

libDirectIO) and works with a modified ver-
sion of the Ext4 file system to manage file lengths. The
first time an application tries to append to a file, it asks
the file system to delegate control of the file’s length to
Append. In response, the file system uses a trusted RPC
to tell Append where the last extent in the file resides.
The file system also sets a flag in the inode to indicate

that Append has ownership of the file’s logical length.
Since the file system allocates space in 4 kB blocks and
may pre-allocate space for the file, the physical length of
the file is often much longer than the logical length. The
physical length remains under the file system’s control.

After that, the application can send APPEND() RPCs
directly to Willow. Figure 9 illustrates the sequence of
RPCs involved. The APPEND() RPCs include the file’s
inode number and the data to append. The application
sends the RPC to the SPU whose ID is the inode number
modulo the number of SPUs in Willow.

When the SPU receives an APPEND() RPC, it checks
to see whether the application has permissions to append
to the file and whether appended data will fit in the phys-
ical length of the file. If the permission exists and the
data will fit, Append issues a special WRITE() to the
SPUs that manage the memory that is the target of the
append (there may be more than one depending on the
size and alignment of the update). While the writes are
underway, APPEND() logs the updated length to persis-
tent storage (for crash recovery), and sends a response to
the application.

This response does not signal the completion of the
APPEND(). Instead, it contains the number of WRITE()s
that the coordinating SPU issued and the starting address
of the append operation. The WRITE()s for the append
notify the host-side application (rather than the coordi-
nating SPU) when they are complete via an APPEND-
DONE() RPC. When the application has received all of
the APPENDDONE() RPCs, it knows the APPEND() is
complete. If any of the writes fail, the application needs
to re-issue the write using Direct-IO.

If the append data will not fit in the physical length of

78 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the file, Append sends an “insufficient space” response
to the host-side application. The host-side application
then invokes the file system to allocate physical space
for the file and notify the SPU.

If the file system needs to access the file’s length, it
retrieves it from the SSD and updates its in-memory data
structures.

Figure 10 compares the performance of file appends
using Append and using Base-IO. For Base-IO we
open the file with O DSYNC, which provides the same
durability guarantees as Append. The appends are
1 kB. We modify Ext4 to pre-allocate 64 MB of phys-
ical extents. Append improves append latency by 2.5×
and bandwidth by between 4× and 5.7× with multiple
threads.

5 Related Work
Many projects (and some commercial products) have in-
tegrated compute capabilities into storage devices, but
most of them focus on offloading bulk computation to
an active hard drive or (more recently) an SSD.

In the 1970s and 1980s, many advocates of specialized
database machines pressed for custom hardware, includ-
ing processor-per-track or processor-per-head hard disks
to achieve processing at storage device. None of these
approaches turned out to be successful due to high de-
sign complexity and manufacturing cost.

Several systems, including CASSM [42], RAP [33],
and RARES [24] provided a processor for each disk
track. However, the extra logic required to enable pro-
cessing ability on each track limited storage density,
drove up costs and prevented processor-per-track from
finding wide use.

Processor-per-head techniques followed, with the goal
of reducing costs by associating processing logic with
each read/write head of a moving head hard disk.
The Ohio State Data Base Computer (DBC)[18] and
SURE [22] each took this approach. These systems
demonstrated good performance for simple search tasks,
but could not handle more complex computation such as
joins or aggregation.

Two different projects, each named Active Disks, con-
tinued the trend toward fewer processors, providing just
one CPU per disk. The first [37] focused on multime-
dia, database, and other scan-based operations, and their
analysis mainly addressed performance considerations.
The second [1] provided a more complete system ar-
chitecture but supported only stream-based computations
called disklets.

Several systems [39, 11] targeted (or have been ap-
plied to) databases with programmable in-storage pro-
cessing resources and some integrated FPGAs [28,
29]. IDisk [19] focused on decision support databases
and considered several different software organizations,

ranging from running a full-fledged database on each
disk to just executing data-intensive kernels (e.g., scans
and joins). Willow resembles the more general-purpose
programming models for IDisks.

Recently researchers have extended these ideas to
SSDs [13, 20], and several groups have proposed of-
floading bulk computation to SSDs. The work in [17]
implements Map-Reduce [12]-style computations in an
SSD, and two groups [6, 43] have proposed offloading
data analysis for HPC applications to the SSD’s proces-
sor. Samsung is shipping an SSD with a key-value inter-
face.

Projects that place general computation power into
other hardware components, such as programmable
NICs, have also been proposed [15, 45, 25]. These de-
vices allow for application-specific code to be placed
within the NIC in order to offload network-related com-
putation. This in turn reduces the load of the host OS and
CPU in a similar manner to Willow.

Most of these projects focus on bulk computation, and
we see that as a reasonable use case for Willow as well,
although it would require a faster processor. However,
Willow goes beyond bulk processing to include modi-
fying the semantics of the device and allowing program-
mers to implement complex, control-intensive operations
in the SSD itself. Some programmable NICs have taken
this approach. Many projects [10, 32, 35, 5, 38, 16, 47, 8,
9] have shown that moving these operations to the SSD is
valuable, and making the SSD programmable will open
up many new opportunities for performance improve-
ment for both application and operating system code.

6 Discussion
Willow’s goal is to expose programmability as a first-
class feature of the SSD interface and to make it easier
to add new, application-specific functionality to a stor-
age device. Our six example SSD Apps demonstrate
that Willow is flexible enough to implement a wide range
of SSD Apps, and our experience programming Willow
demonstrates that building, debugging, and refining SSD
Apps is relatively easy.
Atomic-Writes serves as a useful case study in

this regard. During its development we noticed that our
Willow-aware version of ShoreMT was issuing transac-
tions that comprised several small updates in quick suc-
cession. The overhead for sending these LOGWRITE()
RPCs was hurting performance. To reduce this overhead,
we implemented a new RPC, VECTORLOGWRITE(),
that sent multiple IO requests to Willow in a single RPC.
Adding this new operation to match ShoreMT’s needs
took only a couple of days.

Several aspects of Willow’s design proved especially
helpful. Providing a uniform, generic, and simple pro-
gramming interface for both HREs and SPUs made Wil-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 79

low easier to use and implement. The RPC mechanism
is generic and familiar enough to let us implement most
applications in an intuitive way. The simplicity meant
that SPU-OS could be both compact and efficient, crit-
ical advantages in the Willow SSD’s performance- and
memory-constrained environment.

SSD Apps’ composability was also useful. First,
reusing code allowed Willow to make more efficient use
of the the available instruction memory. Second, it made
developing SSD Apps easier. For instance, most of our
SSD App relied on Direct-IO to manage basic file
access and permissions. Even better, doing so frees the
developer from needing to write a custom kernel module
and convincing the system administrator to install it.

Willow has the flexibility to implement a wide range of
SSD Apps, and the architecture of the Willow SSD pro-
vides scalable capacity and supports a great deal of par-
allelism. However, some trade-offs made in the design
present challenges for SSD App developers. We discuss
several of these below.

First, striping memory across SPUs provides scalable
memory bandwidth, but it also makes it more difficult to
implement RPCs that need to make changes across multi-
ple memory banks. The Append would have been much
simpler if the coordinating SPU had been able to directly
access all the file’s data.

Second, the instruction memory available at each SPU
limits the complexity of SSD Apps, the number of SSD
Apps that can execute simultaneously, and the number
of permission entries that can reside in the Willow SSD
at once. While moving to a custom silicon-based (rather
than FPGA-based) controller would help, these resource
restrictions would likely remain stringent.

Third, the bandwidth of Willow SSD’s ring-based in-
terconnect is much lower than the aggregate bandwidth
of the memory banks at the SPUs. This is not a prob-
lem for applications that make large transfers mostly be-
tween the host and the SSD, since the ring bandwidth is
higher than the PCIe link bandwidth. However, it would
limit the performance of applications that require large,
simultaneous transfers between SPUs.

7 Conclusion

Solid state storage technologies offer dramatic increases
in flexibility compared to conventional disk-based stor-
age, and the interface that we use to communicate with
storage needs to be equally flexible. Willow offers pro-
grammers the ability to implement customized SSD fea-
tures to support particular applications. The program-
ming interface is simple and general enough to enable a
wide range of SSD Apps that can improve performance
on a wide range of applications.

Acknowledgements
We would like to thank the reviewers, and especially Ed
Nightingale, our shepherd, for their helpful suggestions.
We also owe a debt of gratitude to Isabella Furth for her
excellent copyediting skills. This work was supported in
part by C-FAR, one of the six SRC STARnet Centers,
sponsored by MARCO and DARPA. It was also sup-
ported in part by NSF award 1219125.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-

gramming model, algorithms and evaluation. In Proceed-
ings of the Eighth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS VIII, pages 81–91, New York, NY,
USA, 1998. ACM.

[2] L. A. Adamic and B. A. Huberman. Zipf’s law and the
Internet. Glottometrics, 3:143–150, 2002.

[3] Bcache. http://bcache.evilpiepirate.org/.
[4] http://www.beecube.com/platform.html.
[5] M. S. Bhaskaran, J. Xu, and S. Swanson. BankShot:

Caching slow storage in fast non-volatile memory. In
First Workshop on Interactions of NVM/Flash with Op-
erating Systems and Workloads, INFLOW ’13, 2013.

[6] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and
G. Shipman. Active flash: Out-of-core data analytics on
flash storage. In Mass Storage Systems and Technolo-
gies (MSST), 2012 IEEE 28th Symposium on, pages 1–12,
2012.

[7] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. In Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’43, pages 385–395, Washington,
DC, USA, 2010. IEEE Computer Society.

[8] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De, J. Coburn,
and S. Swanson. Providing safe, user space access to
fast, solid state disks. In Proceedings of the 17th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY,
USA, March 2012. ACM.

[9] S. Chu. Memcachedb. http://memcachedb.org/.
[10] J. Coburn, T. Bunker, M. Shwarz, R. K. Gupta, and

S. Swanson. From ARIES to MARS: Transaction support
for next-generation solid-state drives. In Proceedings of
the 24th International Symposium on Operating Systems
Principles (SOSP), 2013.

[11] G. P. Copeland, Jr., G. J. Lipovski, and S. Y. Su. The ar-
chitecture of CASSM: A cellular system for non-numeric
processing. In Proceedings of the First Annual Sympo-
sium on Computer Architecture, ISCA ’73, pages 121–
128, New York, NY, USA, 1973. ACM.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04: Proceedings of
the 6th Conference on Symposium on Operating Systems
Design and Implementation, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[13] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart SSDs: Opportunities
and challenges. In Proceedings of the 2013 ACM SIG-

80 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

MOD International Conference on Management of Data,
SIGMOD ’13, pages 1221–1230, New York, NY, USA,
2013. ACM.

[14] Flexible I/O Tester. http://freecode.com/projects/fio.
[15] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N.

Bershad. Spine: A safe programmable and integrated
network environment. In Proceedings of the 8th ACM
SIGOPS European Workshop on Support for Composing
Distributed Applications, EW 8, pages 7–12, New York,
NY, USA, 1998. ACM.

[16] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:
A file system for virtualized flash storage. Trans. Storage,
6(3):14:1–14:25, Sept. 2010.

[17] Y. Kang, Y. Kee, E. Miller, and C. Park. Enabling cost-
effective data processing with smart SSD. In Mass Stor-
age Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on, pages 1–12, 2013.

[18] K. Kannan. The design of a mass memory for a database
computer. In Proceedings of the 5th Annual Symposium
on Computer Architecture, ISCA ’78, pages 44–51, New
York, NY, USA, 1978. ACM.

[19] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case
for intelligent disks (IDISKs). SIGMOD Rec., 27(3):42–
52, Sept. 1998.

[20] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee. Fast,
energy efficient scan inside flash memory SSDs. In Pro-
ceedings of ADMS 2011, 2011.

[21] A. Lakshman and P. Malik. Cassandra: A decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[22] H.-O. Leilich, G. Stiege, and H. C. Zeidler. A search
processor for data base management systems. In Pro-
ceedings of the Fourth International Conference on Very
Large Data Bases - Volume 4, VLDB ’78, pages 280–287.
VLDB Endowment, 1978.

[23] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[24] C. S. Lin, D. C. P. Smith, and J. M. Smith. The design of
a rotating associative memory for relational database ap-
plications. ACM Trans. Database Syst., 1(1):53–65, Mar.
1976.

[25] A. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experience
in offloading protocol processing to a programmable NIC.
In Cluster Computing, 2002. Proceedings. 2002 IEEE In-
ternational Conference on, pages 67–74, 2002.

[26] http://memcached.org/.
[27] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[28] R. Mueller and J. Teubner. FPGA: What’s in it for a
database? In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’09, pages 999–1004, New York, NY, USA, 2009.
ACM.

[29] R. Mueller, J. Teubner, and G. Alonso. Data process-
ing on FPGAs. Proc. VLDB Endow., 2(1):910–921, Aug.
2009.

[30] NVMHCI Work Group. NVM Express.
http://nvmexpress.org.

[31] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.

[32] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda. Beyond block I/O: Rethinking traditional storage
primitives. In Proceedings of the 2011 IEEE 17th Inter-
national Symposium on High Performance Computer Ar-
chitecture, HPCA ’11, pages 301–311, Washington, DC,
USA, 2011. IEEE Computer Society.

[33] E. A. Ozkarahan, S. A. Schuster, and K. C. Sevcik. Per-
formance evaluation of a relational associative processor.
ACM Trans. Database Syst., 2(2):175–195, June 1977.

[34] E. Plugge, T. Hawkins, and P. Membrey. The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and
Desktop Computing. Apress, Berkeley, CA, USA, 1st edi-
tion, 2010.

[35] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transac-
tional flash. In Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’08, pages 147–160, Berkeley, CA, USA, 2008.
USENIX Association.

[36] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and secu-
rity of PCM-based main memory with start-gap wear lev-
eling. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 14–23, New York, NY, USA, 2009. ACM.

[37] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active disks for large-scale data processing. Computer,
34(6):68–74, June 2001.

[38] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A
lightweight, consistent and durable storage cache. In Pro-
ceedings of the 7th ACM European Conference on Com-
puter Systems, EuroSys ’12, pages 267–280, New York,
NY, USA, 2012. ACM.

[39] S. Schuster, H. B. Nguyen, E. Ozkarahan, and K. Smith.
RAP: An associative processor for databases and its appli-
cations. Computers, IEEE Transactions on, C-28(6):446–
458, 1979.

[40] Shore-MT. http://research.cs.wisc.edu/shore-mt/.
[41] M. Srinivasan. FlashCache: A Write Back Block Cache

for Linux. https://github.com/facebook/flashcache.
[42] S. Y. W. Su and G. J. Lipovski. CASSM: A cellular sys-

tem for very large data bases. In Proceedings of the 1st In-
ternational Conference on Very Large Data Bases, VLDB
’75, pages 456–472, New York, NY, USA, 1975. ACM.

[43] D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila,
and P. J. Desnoyers. Reducing data movement costs
using energy efficient, active computation on SSD. In
Proceedings of the 2012 USENIX conference on Power-
Aware Computing and Systems, HotPower ’12, pages 4–
4, Berkeley, CA, USA, 2012. USENIX Association.

[44] TPC-B. http://www.tpc.org/tpcb/.
[45] P. Willmann, H. Kim, S. Rixner, and V. Pai. An effi-

cient programmable 10 gigabit ethernet network interface
card. In High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on, pages 96–
107, Feb 2005.

[46] XDD version 6.5. http://www.ioperformance.com/.
[47] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. De-indirection for flash-based SSDs
with nameless writes. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST ’12,
pages 1–1, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 81

Physical Disentanglement in a Container-Based File System
Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences
University of Wisconsin, Madison

{ll, yupu, thanhdo, samera, dusseau, remzi}@cs.wisc.edu

Abstract
We introduce IceFS, a novel file system that separates
physical structures of the file system. A new abstrac-
tion, the cube, is provided to enable the grouping of files
and directories inside a physically isolated container. We
show three major benefits of cubes within IceFS: local-
ized reaction to faults, fast recovery, and concurrent file-
system updates. We demonstrate these benefits within
a VMware-based virtualized environment and within the
Hadoop distributed file system. Results show that our
prototype can significantly improve availability and per-
formance, sometimes by an order of magnitude.

1 Introduction
Isolation is central to increased reliability and improved
performance of modern computer systems. For example,
isolation via virtual address space ensures that one pro-
cess cannot easily change the memory state of another,
thus causing it to crash or produce incorrect results [10].

As a result, researchers and practitioners alike have de-
veloped a host of techniques to provide isolation in var-
ious computer subsystems: Verghese et al. show how
to isolate performance of CPU, memory, and disk band-
width in SGI’s IRIX operating system [58]; Gupta et
al. show how to isolate the CPU across different virtual
machines [26]; Wachs et al. invent techniques to share
storage cache and I/O bandwidth [60]. These are but
three examples; others have designed isolation schemes
for device drivers [15, 54, 61], CPU and memory re-
sources [2, 7, 13, 41], and security [25, 30, 31].

One aspect of current system design has remained de-
void of isolation: the physical on-disk structures of file
systems. As a simple example, consider a bitmap, used
in historical systems such as FFS [37] as well as many
modern file systems [19, 35, 56] to track whether inodes
or data blocks are in use or free. When blocks from dif-
ferent files are allocated from the same bitmap, aspects
of their reliability are now entangled, i.e., a failure in that
bitmap block can affect otherwise unrelated files. Sim-
ilar entanglements exist at all levels of current file sys-
tems; for example, Linux Ext3 includes all current up-
date activity into a single global transaction [44], lead-

ing to painful and well-documented performance prob-
lems [4, 5, 8].

The surprising entanglement found in these systems
arises from a central truth: logically-independent file sys-
tem entities are not physically independent. The result is
poor reliability, poor performance, or both.

In this paper, we first demonstrate the root problems
caused by physical entanglement in current file systems.
For example, we show how a single disk-block failure
can lead to global reliability problems, including system-
wide crashes and file system unavailability. We also mea-
sure how a lack of physical disentanglement slows file
system recovery times, which scale poorly with the size
of a disk volume. Finally, we analyze the performance of
unrelated activities and show they are linked via crash-
consistency mechanisms such as journaling.

Our remedy to this problem is realized in a new file
system we call IceFS. IceFS provides users with a new
basic abstraction in which to co-locate logically similar
information; we call these containers cubes. IceFS then
works to ensure that files and directories within cubes
are physically distinct from files and directories in other
cubes; thus data and I/O within each cube is disentangled
from data and I/O outside of it.

To realize disentanglement, IceFS is built upon three
core principles. First, there should be no shared physical
resources across cubes. Structures used within one cube
should be distinct from structures used within another.
Second, there should be no access dependencies. IceFS
separates key file system data structures to ensure that the
data of a cube remains accessible regardless of the status
of other cubes; one key to doing so is a novel directory
indirection technique that ensures cube availability in the
file system hierarchy despite loss or corruption of parent
directories. Third, there should be no bundled transac-
tions. IceFS includes novel transaction splitting machin-
ery to enable concurrent updates to file system state, thus
disentangling write traffic in different cubes.

One of the primary benefits of cube disentanglement
is localization: negative behaviors that normally affect
all file system clients can be localized within a cube. We
demonstrate three key benefits that arise directly from

1

82 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

such localization. First, we show how cubes enable lo-
calized micro-failures; panics, crashes, and read-only re-
mounts that normally affect the entire system are now
constrained to the faulted cube. Second, we show how
cubes permit localized micro-recovery; instead of an ex-
pensive file-system wide check and repair, the disentan-
glement found at the core of cubes enables IceFS to fully
(and quickly) repair a subset of the file system (and even
do so online), thus minimizing downtime and increasing
availability. Third, we illustrate how transaction splitting
allows the file system to commit transactions from dif-
ferent cubes in parallel, greatly increasing performance
(by a factor of 2x–5x) for some workloads.

Interestingly, the localization that is innate to cubes
also enables a new benefit: specialization [17]. Because
cubes are independent, it is natural for the file system
to tailor the behavior of each. We realize the benefits
of specialization by allowing users to choose different
journaling modes per cube; doing so creates a perfor-
mance/consistency knob that can be set as appropriate
for a particular workload, enabling higher performance.

Finally, we further show the utility of IceFS in two
important modern storage scenarios. In the first, we use
IceFS as a host file system in a virtualized VMware [59]
environment, and show how it enables fine-grained fault
isolation and fast recovery as compared to the state of
the art. In the second, we use IceFS beneath HDFS [49],
and demonstrate that IceFS provides failure isolation be-
tween clients. Overall, these two case studies demon-
strate the effectiveness of IceFS as a building block for
modern virtualized and distributed storage systems.

The rest of this paper is organized as follows. We first
show in Section 2 that the aforementioned problems exist
through experiments. Then we introduce the three princi-
ples for building a disentangled file system in Section 3,
describe our prototype IceFS and its benefits in Section
4, and evaluate IceFS in Section 5. Finally, we discuss
related work in Section 6 and conclude in Section 7.

2 Motivation
Logical entities, such as directories, provided by the file
system are an illusion; the underlying physical entan-
glement in file system data structures and transactional
mechanisms does not provide true isolation. We describe
three problems that this entanglement causes: global fail-
ure, slow recovery, and bundled performance. After dis-
cussing how current approaches fail to address them, we
describe the negative impact on modern systems.

2.1 Entanglement Problems
2.1.1 Global Failure
Ideally, in a robust system, a fault involving one file or
directory should not affect other files or directories, the

Global Failures Ext3 Ext4 Btrfs
Crash 129 341 703

Read-only 64 161 89

Table 1: Global Failures in File Systems. This table shows
the average number of crash and read-only failures in Ext3, Ext4, and
Btrfs source code across 14 versions of Linux (3.0 to 3.13).

Fault Type Ext3 Ext4
Metadata read failure 70 (66) 95 (90)

Metadata write failure 57 (55) 71 (69)
Metadata corruption 25 (11) 62 (28)

Pointer fault 76 (76) 123 (85)
Interface fault 8 (1) 63 (8)

Memory allocation 56 (56) 69 (68)
Synchronization fault 17 (14) 32 (27)

Logic fault 6 (0) 17 (0)
Unexpected states 42 (40) 127 (54)

Table 2: Failure Causes in File Systems. This table shows
the number of different failure causes for Ext3 and Ext4 in Linux 3.5,
including those caused by entangled data structures (in parentheses).
Note that a single failure instance may have multiple causes.

remainder of the OS, or other users. However, in current
file systems, a single fault often leads to a global failure.

A common approach for handling faults in current file
systems is to either crash the entire system (e.g., by call-
ing BUG ON, panic, or assert) or to mark the whole
file system read-only. Crashes and read-only behavior
are not constrained to only the faulty part of the file sys-
tem; instead, a global reaction is enforced for the whole
system. For example, Btrfs crashes the entire OS when
it finds an invariant is violated in its extent tree; Ext3
marks the whole file system as read-only when it de-
tects a corruption in a single inode bitmap. To illus-
trate the prevalence of these coarse reactions, we ana-
lyzed the source code and counted the average number
of such global failure instances in Ext3 with JBD, Ext4
with JBD2, and Btrfs from Linux 3.0 to 3.13. As shown
in Table 1, each file system has hundreds of invocations
to these poor global reactions.

Current file systems trigger global failures to react to
a wide range of system faults. Table 2 shows there are
many root causes: metadata failures and corruptions,
pointer faults, memory allocation faults, and invariant
faults. These types of faults exist in real systems [11,
12, 22, 33, 42, 51, 52], and they are used for fault injec-
tion experiments in many research projects [20, 45, 46,
53, 54, 61]. Responding to these various faults in a non-
global manner is non-trivial; the table shows that a high
percentage (89% in Ext3, 65% in Ext4) of these faults
are caused by entangled data structures (e.g., bitmaps and
transactions).

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 83

0

200

400

600

800

1000

Fs
ck

 T
im

e
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007Ext3

Figure 1: Scalability of E2fsck on Ext3. This figure shows
the fsck time on Ext3 with different file-system capacity. We create the
initial file-system image on partitions of different capacity (x-axis). We
make 20 directories in the root directory and write the same set of files
to every directory. As the capacity changes, we keep the file system at
50% utilization by varying the amount of data in the file set.

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

Alone

20
1.9

Together

SQLite Varmail

Figure 2: Bundled Performance on Ext3. This figure
shows the performance of running SQLite and Varmail on Ext3 in or-
dered mode. The SQLite workload, configured with write-ahead log-
ging, asynchronously writes 40KB values in sequential key order. The
Varmail workload involves 16 threads, each of which performs a series
of create-append-sync and read-append-sync operations.

2.1.2 Slow Recovery
After a failure occurs, file systems often rely on an offline
file-system checker to recover [39]. The checker scans
the whole file system to verify the consistency of meta-
data and repair any observed problems. Unfortunately,
current file system checkers are not scalable: with in-
creasing disk capacities and file system sizes, the time to
run the checker is unacceptably long, decreasing avail-
ability. For example, Figure 1 shows that the time to
run a checker [55] on an Ext3 file system grows linearly
with the size of the file system, requiring about 1000 sec-
onds to check an 800GB file system with 50% utilization.
Ext4 has better checking performance due to its layout
optimization [36], but the checking performance is simi-
lar to Ext3 after aging and fragmentation [34].

Despite efforts to make checking faster [14, 34, 43],
check time is still constrained by file system size and disk
bandwidth. The root problem is that current checkers are
pessimistic: even though there is only a small piece of
corrupt metadata, the entire file system is checked. The
main reason is that due to entangled data structures, it is
hard or even impossible to determine which part of the
file system needs checking.

2.1.3 Bundled Performance and Transactions
The previous two problems occur because file systems
fail to isolate metadata structures; additional problems
occur because the file system journal is a shared, global
data structure. For example, Ext3 uses a generic journal-
ing module, JBD, to manage updates to the file system.
To achieve better throughput, instead of creating a sepa-
rate transaction for every file system update, JBD groups
all updates within a short time interval (e.g., 5s) into a
single global transaction; this transaction is then commit-
ted periodically or when an application calls fsync().

Unfortunately, these bundled transactions cause the
performance of independent processes to be bundled.

Ideally, calling fsync() on a file should flush only the
dirty data belonging to that particular file to disk; unfor-
tunately, in the current implementation, calling fsync()

causes unrelated data to be flushed as well. Therefore,
the performance of write workloads may suffer when
multiple applications are writing at the same time.

Figure 2 illustrates this problem by running a database
application SQLite [9] and an email server work-
load Varmail [3] on Ext3. SQLite sequentially writes
large key/value pairs asynchronously, while Varmail fre-
quently calls fsync() after small random writes. As we
can see, when these two applications run together, both
applications’ performance degrades significantly com-
pared with running alone, especially for Varmail. The
main reason is that both applications share the same jour-
naling layer and each workload affects the other. The
fsync() calls issued by Varmail must wait for a large
amount of data written by SQLite to be flushed together
in the same transaction. Thus, the single shared journal
causes performance entanglement for independent appli-
cations in the same file system. Note that we use an SSD
to back the file system, so device performance is not a
bottleneck in this experiment.

2.2 Limitations of Current Solutions
One popular approach for providing isolation in file sys-
tems is through the namespace. A namespace defines
a subset of files and directories that are made visible to
an application. Namespace isolation is widely used for
better security in a shared environment to constrain dif-
ferent applications and users. Examples include virtual
machines [16, 24], Linux containers [2, 7], chroot, BSD
jail [31], and Solaris Zones [41].

However, these abstractions fail to address the prob-
lems mentioned above. Even though a namespace can
restrict application access to a subset of the file system,
files from different namespaces still share metadata, sys-

3

84 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tem states, and even transactional machinery. As a result,
a fault in any shared structure can lead to a global fail-
ure; a file-system checker still must scan the whole file
system; updates from different namespaces are bundled
together in a single transaction.

Another widely-used method for providing isolation
is through static disk partitions. Users can create multi-
ple file systems on separate partitions. Partitions are ef-
fective at isolating corrupted data or metadata such that
read-only failure can be limited to one partition, but a
single panic() or BUG ON() within one file system may
crash the whole OS, affecting all partitions. In addition,
partitions are not flexible in many ways and the num-
ber of partitions is usually limited. Furthermore, stor-
age space may not be effectively utilized and disk per-
formance may decrease due to the lack of a global block
allocation. Finally, it can be challenging to use and man-
age a large number of partitions across different file sys-
tems and applications.

2.3 Usage Scenarios
Entanglement in the local file system can cause signif-
icant problems to higher-level services like virtual ma-
chines and distributed file systems. We now demonstrate
these problems via two important cases: a virtualized
storage environment and a distributed file system.

2.3.1 Virtual Machines
Fault isolation within the local file system is of
paramount importance to server virtualization environ-
ments. In production deployments, to increase machine
utilization, reduce costs, centralize management, and
make migration efficient [23, 48, 57], tens of virtual ma-
chines (VMs) are often consolidated on a single host ma-
chine. The virtual disk image for each VM is usually
stored as a single or a few files within the host file sys-
tem. If a single fault triggered by one of the virtual disks
causes the host file system to become read-only (e.g.,
metadata corruption) or to crash (e.g., assertion failures),
then all the VMs suffer. Furthermore, recovering the file
system using fsck and redeploying all VMs require con-
siderable downtime.

Figure 3 shows how VMware Workstation 9 [59] run-
ning with an Ext3 host file system reacts to a read-only
failure caused by one virtual disk image. When a read-
only fault is triggered in Ext3, all three VMs receive an
error from the host file system and are immediately shut
down. There are 10 VMs in the shared file system; each
VM has a preallocated 20GB virtual disk image. Al-
though only one VM image has a fault, the entire host file
system is scanned by e2fsck, which takes more than eight
minutes. This experiment demonstrates that a single fault
can affect multiple unrelated VMs; isolation across dif-
ferent VMs is not preserved.

2.3.2 Distributed File Systems
Physical entanglement within the local file system also
negatively impacts distributed file systems, especially in
multi-tenant settings. Global failures in local file systems
manifest themselves as machine failures, which are han-
dled by crash recovery mechanisms. Although data is
not lost, fault isolation is still hard to achieve due to long
timeouts for crash detection and the layered architecture.
We demonstrate this challenge in HDFS [49], a popular
distributed file system used by many applications.

Although HDFS provides fault-tolerant machinery
such as replication and failover, it does not provide
fault isolation for applications. Thus, applications (e.g.,
HBase [1, 27]) can only rely on HDFS to prevent data
loss and must provide fault isolation themselves. For
instance, in HBase multi-tenant deployments, HBase
servers can manage tables owned by various clients. To
isolate different clients, each HBase server serves a cer-
tain number of tables [6]. However, this approach does
not provide complete isolation: although HBase servers
are grouped based on tables, their tables are stored in
HDFS nodes, which are not aware of the data they store.
Thus, an HDFS server failure will affect multiple HBase
servers and clients. Although indirection (e.g., HBase
on HDFS) simplifies system management, it makes iso-
lation in distributed systems challenging.

Figure 4 illustrates such a situation: four clients con-
currently read different files stored in HDFS when a ma-
chine crashes; the crashed machine stores data blocks for
all four clients. In this experiment, only the first client is
fortunate enough to not reference this crashed node and
thus finishes early. The other three lose throughput for
60 seconds before failing over to other nodes. Although
data loss does not occur as data is replicated on multiple
nodes in HDFS, this behavior may not be acceptable for
latency-sensitive applications.

3 File System Disentanglement
To avoid the problems described in the previous section,
file systems need to be redesigned to avoid artificial cou-
pling between logical entities and physical realization.
In this section, we discuss a key abstraction that enables
such disentanglement: the file system cube. We then dis-
cuss the key principles underlying a file system that re-
alizes disentanglement: no shared physical resources, no
access dependencies, and no bundled transactions.

3.1 The Cube Abstraction
We propose a new file system abstraction, the cube, that
enables applications to specify which files and directo-
ries are logically related. The file system can safely com-
bine the performance and reliability properties of groups
of files and their metadata that belong to the same cube;
each cube is physically isolated from others and is thus

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 85

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000

20

40

60

80

100

Time (Second)

Th
ro

ug
hp

ut
 (I

O
PS

)

fsck: 496s + bootup: 68s

VM1 VM2 VM3

Figure 3: Global Failure for Virtual Machines. This
figure shows how a fault in Ext3 affects all three virtual machines
(VMs). Each VM runs a workload that writes 4KB blocks randomly
to a 1GB file and calls fsync() after every 10 writes. We inject a
fault at 50s, run e2fsck after the failure, and reboot all three VMs.

0 10 20 30 40 50 60 70 80 90 1000
30
60
90

120
150
180
210
240

Time (Second)

Th
ro

ug
hp

ut
 (M

B/
s)

Client 1 Client 2 Client 3 Client 4

60s timeout for
crash detection

Figure 4: Impact of Machine Crashes in HDFS. This
figure shows the negative impact of physical entanglement within local
file systems on HDFS. A kernel panic caused by a local file system
leads to a machine failure, which negatively affects the throughput of
multiple clients.

completely independent at the file system level.
The cube abstraction is easy to use, with the following

operations:
Create a cube: A cube can be created on demand. A

default global cube is created when a new file system is
created with the mkfs utility.

Set cube attributes: Applications can specify cus-
tomized attributes for each cube. Supported attributes in-
clude: failure policy (e.g., read-only or crash), recovery
policy (e.g., online or offline checking) and journaling
mode (e.g., high or low consistency requirement).
Add files to a cube: Users can create or move files or

directories into a cube. By default, files and directories
inherit the cube of their parent directory.
Delete files from a cube: Files and directories can be

removed from the cube via unlink, rmdir, and rename.
Remove a cube: An application can delete a cube

completely along with all files within it. The released
disk space can then be used by other cubes.

The cube abstraction has a number of attractive prop-
erties. First, each cube is isolated from other cubes both
logically and physically; at the file system level, each
cube is independent for failure, recovery, and journal-
ing. Second, the use of cubes can be transparent to ap-
plications; once a cube is created, applications can in-
teract with the file system without modification. Third,
cubes are flexible; cubes can be created and destroyed
on demand, similar to working with directories. Fourth,
cubes are elastic in storage space usage; unlike parti-
tions, no storage over-provision or reservation is needed
for a cube. Fifth, cubes can be customized for diverse re-
quirements; for example, an important cube may be set
with high consistency and immediate recovery attributes.
Finally, cubes are lightweight; a cube does not require
extensive memory or disk resources.

3.2 Disentangled Data Structures
To support the cube abstraction, key data structures
within modern file systems must be disentangled. We
discuss three principles of disentangled data structures:
no shared physical resources, no access dependencies,
and no shared transactions.

3.2.1 No Shared Physical Resources
For cubes to have independent performance and reliabil-
ity, multiple cubes must not share the same physical re-
sources within the file system (e.g., blocks on disk or
pages in memory). Unfortunately, current file systems
freely co-locate metadata from multiple files and direc-
tories into the same unit of physical storage.

In classic Ext-style file systems, storage space is di-
vided into fixed-size block groups, in which each block
group has its own metadata (i.e., a group descriptor, an
inode bitmap, a block bitmap, and inode tables). Files
and directories are allocated to particular block groups
using heuristics to improve locality and to balance space.
Thus, even though the disk is partitioned into multiple
block groups, any block group and its corresponding
metadata blocks can be shared across any set of files. For
example, in Ext3, Ext4 and Btrfs, a single block is likely
to contain inodes for multiple unrelated files and direc-
tories; if I/O fails for one inode block, then all the files
with inodes in that block will not be accessible. As an-
other example, to save space, Ext3 and Ext4 store many
group descriptors in one disk block, even though these
group descriptors describe unrelated block groups.

This false sharing percolates from on-disk blocks up to
in-memory data structures at runtime. Shared resources
directly lead to global failures, since a single corruption
or I/O failure affects multiple logically-independent files.
Therefore, to isolate cubes, a disentangled file system
must partition its various data structures into smaller in-
dependent ones.

5

86 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3.2.2 No Access Dependency
To support independent cubes, a disentangled file sys-
tem must also ensure that one cube does not contain ref-
erences to or need to access other cubes. Current file
systems often contain a number of data structures that
violate this principle. Specifically, linked lists and trees
encode dependencies across entries by design. For exam-
ple, Ext3 and Ext4 maintain an orphan inode list in the
super block to record files to be deleted; Btrfs and XFS
use Btrees extensively for high performance. Unfortu-
nately, one failed entry in a list or tree affects all entries
following or below it.

The most egregious example of access dependencies
in file systems is commonly found in the implementation
of the hierarchical directory structure. In Ext-based sys-
tems, the path for reaching a particular file in the direc-
tory structure is implicitly encoded in the physical layout
of those files and directories on disk. Thus, to read a file,
all directories up to the root must be accessible. If a sin-
gle directory along this path is corrupted or unavailable,
a file will be inaccessible.

3.2.3 No Bundled Transactions
The final data structure and mechanism that must be dis-
entangled to provide isolation to cubes are transactions.
To guarantee the consistency of metadata and data, exist-
ing file systems typically use journaling (e.g., Ext3 and
Ext4) or copy-on-write (e.g., Btrfs and ZFS) with trans-
actions. A transaction contains temporal updates from
many files within a short period of time (e.g., 5s in Ext3
and Ext4). A shared transaction batches multiple updates
and is flushed to disk as a single atomic unit in which ei-
ther all or none of the updates are successful.

Unfortunately, transaction batching artificially tan-
gles together logically independent operations in several
ways. First, if the shared transaction fails, updates to all
of the files in this transaction will fail as well. Second, in
physical journaling file systems (e.g., Ext3), a fsync()

call on one file will force data from other files in the same
transaction to be flushed as well; this falsely couples per-
formance across independent files and workloads.

4 The Ice File System
We now present IceFS, a file system that provides cubes
as its basic new abstraction. We begin by discussing the
important internal mechanisms of IceFS, including novel
directory independence and transaction splitting mech-
anisms. Disentangling data structures and mechanisms
enables the file system to provide behaviors that are lo-
calized and specialized to each container. We describe
three major benefits of a disentangled file system (local-
ized reactions to failures, localized recovery, and special-
ized journaling performance) and how such benefits are
realized in IceFS.

Figure 5: Disk Layout of IceFS. This figure shows the disk
layout of IceFS. Each cube has a sub-super block, stored after the
global super block. Each cube also has its own separated block groups.
Si: sub-super block for cube i; bg: a block group.

4.1 IceFS
We implement a prototype of a disentangled file system,
IceFS, as a set of modifications to Ext3, a standard and
mature journaling file system in many Linux distribu-
tions. We disentangle Ext3 as a proof of concept; we
believe our general design can be applied to other file
systems as well.

4.1.1 Realizing the Cube Abstraction
The cube abstraction does not require radical changes to
the existing POSIX interface. In IceFS, a cube is imple-
mented as a special directory; all files and sub-directories
within the cube directory belong to the same cube.

To create a cube, users pass a cube flag when they
call mkdir(). IceFS creates the directory and records
that this directory is a cube. When creating a cube, cus-
tomized cube attributes are also supported, such as a spe-
cific journaling mode for different cubes. To delete a
cube, only rmdir() is needed.

IceFS provides a simple mechanism for filesystem iso-
lation so that users have the freedom to define their own
policies. For example, an NFS server can automatically
create a cube for the home directory of each user, while
a VM server can isolate each virtual machine in its own
cube. An application can use a cube as a data container,
which isolates its own data from other applications.

4.1.2 Physical Resource Isolation
A straightforward approach for supporting cubes is to
leverage the existing concept of a block group in many
existing file systems. To disentangle shared resources
and isolate different cubes, IceFS dictates that a block
group can be assigned to only one cube at any time, as
shown in Figure 5; in this way, all metadata associated
with a block group (e.g., bitmaps and inode tables) be-
longs to only one cube. A block group freed by one
cube can be allocated to any other cube. Compared with
partitions, the allocation unit of cubes is only one block
group, much smaller than the size of a typical multiple
GB partition.

When allocating a new data block or an inode for a
cube, the target block group is chosen to be either an
empty block group or a block group already belonging to
the cube. Enforcing the requirement that a block group

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 87

Figure 6: An Example of Cubes and Directory Indi-
rection. This figure shows how the cubes are organized in a direc-
tory tree, and how the directory indirection for a cube is achieved.

is devoted to a single cube requires changing the file and
directory allocation algorithms such that they are cube-
aware without losing locality.

To identify the cube of a block group, IceFS stores
a cube ID in the group descriptor. To get the cube ID
for a file, IceFS simply leverages the static mapping of
inode numbers to block groups as in the base Ext3 file
system; after mapping the inode of the file to the block
group, IceFS obtains the cube ID from the corresponding
group descriptor. Since all group descriptors are loaded
into memory during the mount process, no extra I/O is
required to determine the cube of a file.

IceFS trades disk and memory space for the indepen-
dence of cubes. To save memory and reduce disk I/O,
Ext3 typically places multiple contiguous group descrip-
tors into a single disk block. IceFS modifies this policy
so that only group descriptors from the same cube can be
placed in the same block. This approach is similar to the
meta-group of Ext4 for combining several block groups
into a larger block group [35].

4.1.3 Access Independence
To disentangle cubes, no cube can reference another
cube. Thus, IceFS partitions each global list that Ext3
maintains into per-cube lists. Specifically, Ext3 stores the
head of the global orphan inode list in the super block. To
isolate this shared list and the shared super block, IceFS
uses one sub-super block for each cube; these sub-super
blocks are stored on disk after the super block and each
references its own orphan inode list as shown in Fig-
ure 5. IceFS preallocates a fixed number of sub-super
blocks following the super block. The maximum number
of sub-super blocks is configurable at mkfs time. These
sub-super blocks can be replicated within the disk sim-
ilar to the super block to avoid catastrophic damage of
sub-super blocks.

In contrast to a traditional file system, if IceFS detects
a reference from one cube to a block in another cube,
then it knows that reference is incorrect. For example,
no data block should be located in a different cube than
the inode of the file to which it belongs.

To disentangle the file namespace from its physi-
cal representation on disk and to remove the naming

Figure 7: Transaction Split Architecture. This figure
shows the different transaction architectures in Ext3/4 and IceFS. In
IceFS, different colors represent different cubes’ transactions.

dependencies across cubes, IceFS uses directory in-
direction, as shown in Figure 6. With directory in-
direction, each cube records its top directory; when
the file system performs a pathname lookup, it first
finds a longest prefix match of the pathname among
the cubes’ top directory paths; if it does, then only
the remaining pathname within the cube is traversed
in the traditional manner. For example, if the user
wishes to access /home/bob/research/paper.tex

and /home/bob/research/ designates the top of a
cube, then IceFS will skip directly to parsing paper.tex
within the cube. As a result, any failure outside of this
cube, or to the home or bob directories, will not affect
accessing paper.tex.

In IceFS, the path lookup process performed by the
VFS layer is modified to provide directory indirection for
cubes. The inode number and the pathname of the top di-
rectory of a cube are stored in its sub-super block; when
the file system is mounted, IceFS pins in memory this in-
formation along with the cube’s dentry, inode, and path-
name. Later, when a pathname lookup is performed, VFS
passes the pathname to IceFS so that IceFS can check
whether the pathname is within any cube. If there is no
match, then VFS performs the lookup as usual; other-
wise, VFS uses the matched cube’s dentry as a shortcut
to resolve the remaining part of the pathname.

4.1.4 Transaction Splitting
To disentangle transactions belonging to different cubes,
we introduce transaction splitting, as shown in Figure 7.
With transaction splitting, each cube has its own run-
ning transaction to buffer writes. Transactions from dif-
ferent cubes are committed to disk in parallel without
any waiting or dependencies across cubes. With this ap-
proach, any failure along the transaction I/O path can be
attributed to the source cube, and the related recovery ac-
tion can be triggered only for the faulty cube, while other
healthy cubes still function normally.

IceFS leverages the existing generic journaling mod-

7

88 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ule of Ext3, JBD. To provide specialized journaling for
different cubes, each cube has a virtual journal managed
by JBD with a potentially customized journaling mode.
When IceFS starts an atomic operation for a file or di-
rectory, it passes the related cube ID to JBD. Since each
cube has a separate virtual journal, a commit of a running
transaction will only be triggered by its own fsync() or
timeout without any entanglement with other cubes.

Different virtual journals share the physical journal
space on disk. At the beginning of a commit, IceFS will
first reserve journal space for the transaction of the cube;
a separate committing thread will flush the transaction
to the journal. Since transactions from different cubes
write to different places on the journal, IceFS can per-
form multiple commits in parallel. Note that, the original
JBD uses a shared lock to synchronize various structures
in the journaling layer, while IceFS needs only a single
shared lock to allocate transaction space; the rest of the
transaction operations can now be performed indepen-
dently without limiting concurrency.

4.2 Localized Reactions to Failures
As shown in Section 2, current file systems handle seri-
ous errors by crashing the whole system or marking the
entire file system as read-only. Once a disentangled file
system is partitioned into multiple independent cubes,
the failure of one cube can be detected and controlled
with a more precise boundary. Therefore, failure isola-
tion can be achieved by transforming a global failure to
a local per-cube failure.

4.2.1 Fault Detection
Our goal is to provide a new fault-handling primitive,
which can localize global failure behaviors to an isolated
cube. This primitive is largely orthogonal to the issue of
detecting the original faults. We currently leverage exist-
ing detection mechanism within file systems to identify
various faults.

For example, file systems tend to detect metadata cor-
ruption at the I/O boundary by using their own semantics
to verify the correctness of file system structures; file sys-
tems check error conditions when interacting with other
subsystems (e.g., failed disk read/writes or memory allo-
cations); file systems also check assertions and invariants
that might fail due to concurrency problems.

IceFS modifies the existing detection techniques to
make them cube-aware. For example, Ext3 calls
ext3 error() to mark the file system as read-only on an
inode bitmap read I/O fault. IceFS instruments the fault-
handling and crash-triggering functions (e.g., BUG ON())
to include the ID of the responsible cube; pinpointing the
faulty cube is straightforward as all metadata is isolated.
Thus, IceFS has cube-aware fault detectors.

One can argue that the incentive for detecting prob-
lems in current file systems is relatively low because

many of the existing recovery techniques (e.g., calling
panic()) are highly pessimistic and intrusive, making
the entire system unusable. A disentangled file system
can contain faults within a single cube and thus provides
incentive to add more checks to file systems.

4.2.2 Localized Read-Only
As a recovery technique, IceFS enables a single cube
to be made read-only. In IceFS, only files within a
faulty cube are made read-only, and other cubes remain
available for both reads and writes, improving the over-
all availability of the file system. IceFS performs this
per-cube reaction by adapting the existing mechanisms
within Ext3 for making all files read-only.

To guarantee read-only for all files in Ext3, two steps
are needed. First, the transaction engine is immediately
shut down. Existing running transactions are aborted,
and attempting to create a new transaction or join an ex-
isting transaction results in an error code. Second, the
generic VFS super block is marked as read-only; as a
result, future writes are rejected.

To localize read-only failures, a disentangled file sys-
tem can execute two similar steps. First, with the transac-
tion split framework, IceFS individually aborts the trans-
action for a single cube; thus, no more transactions are al-
lowed for the faulty cube. Second, the faulty cube alone
is marked as read-only, instead of the whole file system.
When any operation is performed, IceFS now checks this
per-cube state whenever it would usually check the super
block read-only state. As a result, any write to a read-
only cube receives an error code, as desired.

4.2.3 Localized Crashes
Similarly, IceFS is able to localize a crash for a failed
cube, such that the crash does not impact the entire oper-
ating system or operations of other cubes. Again, IceFS
leverages the existing mechanisms in the Linux kernel
for dealing with crashes caused by panic(), BUG(), and
BUG ON(). IceFS performs the following steps:

• Fail the crash-triggering thread: When a thread
fires an assertion failure, IceFS identifies the cube
being accessed and marks that cube as crashed. The
failed thread is directed to the failure path, during
which the failed thread will free its allocated re-
sources (e.g., locks and memory). IceFS adds this
error path if it does not exist in the original code.

• Prevent new threads: A crashed cube should re-
ject any new file-system request. IceFS identifies
whether a request is related to a crashed cube as
early as possible and return appropriate error codes
to terminate the related system call. Preventing new
accesses consists of blocking the entry point func-
tions and the directory indirection functions. For
example, the state of a cube is checked at all the
callbacks provided by Ext3, such as super block

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 89

operations (e.g., ext3 write inode()), directory
operations (e.g., ext3 readdir()), and file oper-
ations (e.g., ext3 sync file()). One complica-
tion is that many system calls use either a pathname
or a file descriptor as an input; VFS usually trans-
lates the pathname or file descriptor into an inode.
However, directory indirection in IceFS can be used
to quickly prevent a new thread from entering the
crashed cube. When VFS conducts the directory in-
direction, IceFS will see that the pathname belongs
to a crashed cube and VFS will return an appropri-
ate error code to the application.

• Evacuate running threads: Besides the crash-
triggering thread, other threads may be accessing
the same cube when the crash happens. IceFS
waits for these threads to leave the crashed cube,
so they will free their kernel and file-system re-
sources. Since the cube is marked as crashed, these
running threads cannot read or write to the cube and
will exit with error codes. To track the presence
of on-going threads within a cube, IceFS maintains
a simple counter for each cube; the counter is in-
cremented when a system call is entered and decre-
mented when a system call returns, similar to the
system-call gate [38].

• Clean up the cube: Once all the running threads
are evacuated, IceFS cleans up the memory states
of the crashed cube similar to the unmount process.
Specifically, dirty file pages and metadata buffers
belonging to the crashed are dropped without being
flushed to disk; clean states, such as cached dentries
and inodes, are freed.

4.3 Localized Recovery
As shown in Section 2, current file system checkers do
not scale well to large file systems. With the cube ab-
straction, IceFS can solve this problem by enabling per-
cube checking. Since each cube represents an indepen-
dent fault domain with its own isolated metadata and no
references to other cubes, a cube can be viewed as a basic
checking unit instead of the whole file system.

4.3.1 Offline Checking
In a traditional file-system checker, the file system must
be offline to avoid conflicts with a running workload. For
simplicity, we first describe a per-cube offline checker.

Ext3 uses the utility e2fsck to check the file system in
five phases [39]. IceFS changes e2fsck to make it cube-
aware; we call the resulting checker ice-fsck. The main
idea is that IceFS supports partial checking of a file sys-
tem by examining only faulty cubes. In IceFS, when a
corruption is detected at run time, the error identifying
the faulty cube is recorded in fixed locations on disk.
Thus, when ice-fsck is run, erroneous cubes can be easily
identified, checked, and repaired, while ignoring the rest

of the file system. Of course, ice-fsck can still perform a
full file system check and repair, if desired.

Specifically, ice-fsck identifies faulty cubes and their
corresponding block groups by reading the error codes
recorded in the journal. Before loading the metadata
from a block group, each of the five phases of ice-fsck
first ensures that this block group belongs to a faulty
cube. Because the metadata of a cube is guaranteed to
be self-contained, metadata from other cubes not need to
be checked. For example, because an inode in one cube
cannot point to an indirect block stored in another cube
(or block group), ice-fsck can focus on a subset of the
block groups. Similarly, checking the directory hierar-
chy in ice-fsck is simplified; while e2fsck must verify
that every file can be connected back to the root direc-
tory, ice-fsck only needs to verify that each file in a cube
can be reached from the entry points of the cube.

4.3.2 Online Checking
Offline checking of a file system implies that the data
will be unavailable to important workloads, which is not
acceptable for many applications. A disentangled file
system enables on-line checking of faulty cubes while
other healthy cubes remain available to foreground traf-
fic, which can greatly improve the availability of the
whole service.

Online checking is challenging in existing file systems
because metadata is shared loosely by multiple files; if
a piece of metadata must be repaired, then all the re-
lated files should be frozen or repaired together. Coor-
dinating concurrent updates between the checker and the
file system is non-trivial. However, in a disentangled file
system, the fine-grained isolation of cubes makes online
checking feasible and efficient.

We note that online checking and repair is a power-
ful recovery mechanism compared to simply crashing or
marking a cube read-only. Now, when a fault or corrup-
tion is identified at runtime with existing detection tech-
niques, IceFS can unmount the cube so it is no longer
visible, and then launch ice-fsck on the corrupted cube
while the rest of the file system functions normally. In
our implementation, the on-line ice-fsck is a user-space
program that is woken up by IceFS informed of the ID of
the faulty cubes.

4.4 Specialized Journaling
As described previously, disentangling journal transac-
tions for different cubes enables write operations in dif-
ferent cubes to proceed without impacting others. Disen-
tangling journal transactions (in conjunction with disen-
tangling all other metadata) also enables different cubes
to have different consistency guarantees.

Journaling protects files in case of system crashes, pro-
viding certain consistency guarantees, such as metadata

9

90 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

or data consistency. Modern journaling file systems sup-
port different modes; for example, Ext3 and Ext4 sup-
port, from lowest to highest consistency: writeback, or-
dered, and data. However, the journaling mode is en-
forced for the entire file system, even though users and
applications may desire differentiated consistency guar-
antees for their data. Transaction splitting enables a spe-
cialized journaling protocol to be provided for each cube.

A disentangled file system is free to choose cus-
tomized consistency modes for each cube, since there are
no dependencies across them; even if the metadata of one
cube is updated inconsistently and a crash occurs, other
cubes will not be affected. IceFS supports five consis-
tency modes, from lowest to highest: no fsync, no jour-
nal, writeback journal, ordered journal and data journal.
In general, there is an incentive to choose modes with
lower consistency to achieve higher performance, and
an incentive to choose modes with higher consistency to
protect data in the presence of system crashes.

For example, a cube that stores important configura-
tion files for the system may use data journaling to en-
sure both data and metadata consistency. Another cube
with temporary files may be configured to use no journal
(i.e., behave similarly to Ext2) to achieve the highest per-
formance, given that applications can recreate the files if
a crash occurs. Going one step further, if users do not
care about the durability of data of a particular applica-
tion, the no fsync mode can be used to ignore fsync()

calls from applications. Thus, IceFS gives more control
to both applications and users, allowing them to adopt a
customized consistency mode for their data.

IceFS uses the existing implementations within JBD
to achieve the three journaling modes of writeback, or-
dered, and data. Specifically, when there is an update
for a cube, IceFS uses the specified journaling mode to
handle the update. For no journal, IceFS behaves like a
non-journaled file system, such as Ext2, and does not use
the JBD layer at all. Finally, for no fsync, IceFS ignores
fsync() system calls from applications and directly re-
turns without flushing any related data or metadata.

4.5 Implementation Complexity
We added and modified around 6500 LOC to Ext3/JBD
in Linux 3.5 for the data structures and journaling iso-
lation, 970 LOC to VFS for directory indirection and
crash localization, and 740 LOC to e2fsprogs 1.42.8 for
file system creation and checking. The most challenging
part of the implementation was to isolate various data
structures and transactions for cubes. Once we carefully
isolated each cube (both on disk and in memory), the
localized reactions to failures and recovery was straight-
forward to achieve.

Workload Ext3 IceFS Difference
(MB/s) (MB/s)

Sequential write 98.9 98.8 0%
Sequential read 107.5 107.8 +0.3%
Random write 2.1 2.1 0%
Random read 0.7 0.7 0%
Fileserver 73.9 69.8 -5.5%
Varmail 2.2 2.3 +4.5%
Webserver 151.0 150.4 -0.4%

Table 3: Micro and Macro Benchmarks on Ext3 and
IceFS. This table compares the throughput of several mi-
cro and macro benchmarks on Ext3 and IceFS. Sequential
write/read are writing/reading a 1GB file in 4KB requests. Ran-
dom write/read are writing/reading 128MB of a 1GB file in
4KB requests. Fileserver has 50 threads performing creates,
deletes, appends, whole-file writes, and whole-file reads. Var-
mail emulates a multi-threaded mail server. Webserver is a
multi-threaded read-intensive workload.

5 Evaluation of IceFS
We present evaluation results for IceFS. We first evaluate
the basic performance of IceFS through a series of mi-
cro and macro benchmarks. Then, we show that IceFS
is able to localize many failures that were previously
global. All the experiments are performed on machines
with an Intel(R) Core(TM) i5-2500K CPU (3.30 GHz),
16GB memory, and a 1TB Hitachi Deskstar 7K1000.B
hard drive, unless otherwise specified.

5.1 Overall Performance
We assess the performance of IceFS with micro and
macro benchmarks. First, we mount both file systems
in the default ordered journaling mode, and run several
micro benchmarks (sequential read/write and random
read/write) and three macro workloads from Filebench
(Fileserver, Varmail, and Webserver). For IceFS, each
workload uses one cube to store its data. Table 3 shows
the throughput of all the benchmarks on Ext3 and IceFS.
From the table, one can see that IceFS performs similarly
to Ext3, indicating that our disentanglement techniques
incur little overhead.

IceFS maintains extra structures for each cube on disk
and in memory. For each cube IceFS creates, one sub-
super block (4KB) is allocated on disk. Similar to the
original super block, sub-super blocks are also cached in
memory. In addition, each cube has its own journaling
structures (278 B) and cached running states (104 B) in
memory. In total, for each cube, its disk overhead is 4
KB and memory overhead is less than 4.5 KB.

5.2 Localize Failures
We show that IceFS converts many global failures into
local, per-cube failures. We inject faults into core file-
system structures where existing checks are capable of
detecting the problem. These faults are selected from

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 91

0

200

400

600

800

1000
Fs

ck
 T

im
e

(s
)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007

35 64 91 122

Ext3 IceFS

Figure 8: Performance of IceFS Offline Fsck. This
figure compares the running time of offline fsck on ext3 and on IceFS
with different file-system size.

Table 2 and they cover all different fault types, includ-
ing memory allocation failures, metadata corruption, I/O
failures, NULL pointers, and unexpected states. To com-
pare the behaviors, the faults are injected in the same
locations for both Ext3 and IceFS. Overall, we injected
nearly 200 faults. With Ext3, in every case, the faults led
to global failures of some kind (such as an OS panic or
crash). IceFS, in contrast, was able to localize the trig-
gered faults in every case.

However, we found that there are also a small number
of failures during the mount process, which are impossi-
ble to isolate. For example, if a memory allocation fail-
ure happens when initializing the super block during the
mount process, then the mount process will exit with an
error code. In such cases, both Ext3 and IceFS will not
be able to handle it because the fault happens before the
file system starts running.

5.3 Fast Recovery
With localized failure detection, IceFS is able to perform
offline fsck only on the faulted cube. To measure fsck
performance on IceFS, we first create file system images
in the same way as described in Figure 1, except that
we make 20 cubes instead of directories. We then fail
one cube randomly and measure the fsck time. Figure 8
compares the offline fsck time between IceFS and Ext3.
The fsck time of IceFS increases as the capacity of the
cube grows along with the file system size; in all cases,
fsck on IceFS takes much less time than Ext3 because it
only needs to check the consistency of one cube.

5.4 Specialized Journaling
We now demonstrate that a disentangled journal enables
different consistency modes to be used by different appli-
cations on a shared file system. For these experiments,
we use a Samsung 840 EVO SSD (500GB) as the un-
derlying storage device. Figure 9 shows the through-
put of running two applications, SQLite and Varmail, in
Ext3, two separated Ext3 on partitions (Ext3-Part) and

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

OR OR OR NJ OR

76.1

122.7 120.6

220.3

125.4

Ext3 Ext3-Part
OR OR OR OR NJ

1.9 9.2 9.8 5.6

103.4

IceFS

SQLite Varmail

Figure 9: Running Two Applications on IceFS with
Different Journaling Mode. This figure compares the perfor-
mance of simultaneously running SQLite and Varmail on Ext3, parti-
tions and IceFS. In Ext3, both applications run in ordered mode (OR).
In Ext3-Part, two separated Ext3 run in ordered mode (OR) on two par-
titions. In IceFS, two separate cubes with different journaling modes
are used: ordered mode (OR) and no-journal mode (NJ).

IceFS. When running with Ext3 and ordered journaling
(two leftmost bars), both applications achieve low perfor-
mance because they share the same journaling layer and
both workloads affect the other. When the applications
run with IceFS on two different cubes, their performance
increases significantly since fsync() calls to one cube
do not force out dirty data to the other cube. Compared
with Ext3-Part, we can find that IceFS achieves great iso-
lation for cubes at the file system level, similar to running
two different file systems on partitions.

We also demonstrate that different applications can
benefit from different journaling modes; in particular,
if an application can recover from inconsistent data af-
ter a crash, the no-journal mode can be used for much
higher performance while other applications can con-
tinue to safely use ordered mode. As shown in Figure 9,
when either SQLite or Varmail is run on a cube with no
journaling, that application receives significantly better
throughput than it did in ordered mode; at the same time,
the competing application using ordered mode continues
to perform better than with Ext3. We note that the or-
dered competing application may perform slightly worse
than it did when both applications used ordered mode
due to increased contention for resources outside of the
file system (i.e., the I/O queue in the block layer for
the SSD); this demonstrates that isolation must be pro-
vided at all layers of the system for a complete solution.
In summary, specialized journaling modes can provide
great flexibility for applications to make trade-offs be-
tween their performance and consistency requirements.

5.5 Limitations
Although IceFS has many advantages as shown in previ-
ous sections, it may perform worse than Ext3 in certain

11

92 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Device Ext3 Ext3-Part IceFS
(MB/s) (MB/s) (MB/s)

SSD 40.8 30.6 35.4
Disk 2.8 2.6 2.7

Table 4: Limitation of IceFS On Cache Flush. This
table compares the aggregated throughput of four Varmail in-
stances on Ext3 and IceFS. Each Varmail instance runs in a
directory of Ext3, an Ext3 partition (Ext3-Part), or a cube of
IceFS. We run the same experiment on both a SSD and hard
disk.

extreme cases. The main limitation of our implementa-
tion is that IceFS uses a separate journal commit thread
for every cube. The thread issues a device cache flush

command at the end of every transaction commit to make
sure the cached data is persistent on device; this cache
flush is usually expensive [21]. Therefore, if many ac-
tive cubes perform journal commits at the same time, the
performance of IceFS may be worse than Ext3 that only
uses one journal commit thread for all updates. The same
problem exists in separated file systems on partitions.

To show this effect, we choose Varmail as our test-
ing workload. Varmail utilizes multiple threads; each
of these threads repeatedly issues small writes and calls
fsync() after each write. We run multiple instances
of Varmail in different directories, partitions or cubes to
generate a large number of transaction commits, stress-
ing the file system.

Table 4 shows the performance of running four Var-
mail instances on our quad-core machine. When running
on an SSD, IceFS performs worse than Ext3, but a lit-
tle better than Ext3 partitions (Ext3-Part). When running
on a hard drive, all three setups perform similarly. The
reason is that the cache flush time accounts for a large
percentage of the total I/O time on an SSD, while the
seeking time dominates the total I/O time on a hard disk.
Since IceFS and Ext3-Part issue more cache flushes than
Ext3, the performance penalty is amplified on the SSD.

Note that this style of workload is an extreme case for
both IceFS and partitions. However, compared with sep-
arated file systems on partitions, IceFS is still a single
file system that can utilize all the related semantic infor-
mation of cubes for further optimization. For example,
IceFS can pass per-cube hints to the block layer, which
can optimize the cache flush cost and provide other per-
formance isolation for cubes.

5.6 Usage Scenarios
We demonstrate that IceFS improves overall system be-
havior in the two motivational scenarios initially intro-
duced in Section 2.3: virtualized environments and dis-
tributed file systems.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Th
ro

ug
hp

ut
 (I

O
PS

)

IceFS-Offline

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Time (Second)

IceFS-Online

fsck: 35s
+

bootup: 67s

fsck: 74s
+

bootup: 39s

VM1 VM2 VM3

Figure 10: Failure Handling for Virtual Machines.
This figure shows how IceFS handles failures in a shared file system
which supports multiple virtual machines.

5.6.1 Virtual Machines

To show that IceFS enables virtualized environments to
isolate failures within a particular VM, we configure
each VM to use a separate cube in IceFS. Each cube
stores a 20GB virtual disk image, and the file system
contains 10 such cubes for 10 VMs. Then, we inject a
fault to one VM image that causes the host file system to
be read-only after 50 seconds.

Figure 10 shows that IceFS greatly improves the avail-
ability of the VMs compared to that in Figure 3 using
Ext3. The top graph illustrates IceFS with offline re-
covery. Here, only one cube is read-only and crashes;
the other two VMs are shut down properly so the offline
cube-aware check can be performed. The offline check
of the single faulty cube requires only 35 seconds and
booting the three VMs takes about 67 seconds; thus, after
only 150 seconds, the three virtual machines are running
normally again.

The bottom graph illustrates IceFS with online recov-
ery. In this case, after the fault occurs in VM1 (at roughly
50 seconds) and VM1 crashes, VM2 and VM3 are able
to continue. At this point, the online fsck of IceFS starts
to recover the disk image file of VM1 in the host file
system. Since fsck competes for disk bandwidth with
the two running VMs, checking takes longer (about 74
seconds). Booting the single failed VM requires only
39 seconds, but the disk activity that arises as a result
of booting competes with the I/O requests of VM2 and
VM3, so the throughput of VM2 and VM3 drops for that
short time period. In summary, these two experiments
demonstrate that IceFS can isolate file system failures in
a virtualized environment and significantly reduce sys-
tem recovery time.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 93

0 5 10 15 20 25 30 350
30
60
90

120
150
180
210
240

Time (Second)

Th
ro

ug
hp

ut
 (M

B/
s)

Client 1 Client 2 Client 3 Client 4

Figure 11: Impact of Cube Failures in HDFS. This figure
shows the throughput of 4 different clients when a cube failure happens
at time 10 second. Impact of the failure to the clients’ throughput is
negligible.

12-minute timeout
for crash detection

0 100 200 300 400 500 600 700 800 900
0

50
100
150
200
250
300
350
400
450

Time (second)

#B
lo

ck
s

to
 re

co
ve

r

Cube Failure Machine Failure

Figure 12: Data Block Recovery in HDFS. The figure
shows the number of lost blocks to be regenerated over time in two
failure scenarios: cube and whole machine failure. Cube failure results
into less blocks to recover in less time.

5.6.2 Distributed File System
We illustrate the benefits of using IceFS to provide flex-
ible fault isolation in HDFS. Obtaining fault isolation in
HDFS is challenging, especially in multi-tenant settings,
primarily because HDFS servers are not aware of the data
they store, as shown in Section 2.3.2. IceFS provides a
natural solution for this problem. We use separate cubes
to store different applications’ data on HDFS servers.
Each cube isolates the data from one application to an-
other; thus, a cube failure will not affect multiple appli-
cations. In this manner, IceFS provides end-to-end iso-
lation for applications in HDFS. We added 161 lines to
storage node code to make HDFS IceFS-compatible and
aware of application data. We do not change any recov-
ery code of HDFS. Instead, IceFS turns global failures
(e.g., kernel panic) into partial failures (i.e., cube failure)
and leverages HDFS recovery code to handle them. This
facilitates and simplifies our implementation.

Figure 11 shows the benefits of IceFS-enabled
application-level fault isolation. Here, four clients con-
currently access different files stored in HDFS when a

cube that stores data for Client 2 fails and becomes inac-
cessible. Other clients are completely isolated from the
cube failure. Furthermore, the failure negligibly impacts
the throughput of the client as it does not manifest as ma-
chine failure. Instead, it results in a soft error to HDFS,
which then immediately isolates the faulty cube and re-
turns an error code the client. The client then quickly
fails over to other healthy copies. The overall throughput
is stable for the entire workload, as opposed to 60-second
period of losing throughput as in the case of whole ma-
chine failure described in Section 2.3.2.

In addition to end-to-end isolation, IceFS provides
scalable recovery as shown in Figure 12. In particular,
IceFS helps reduce network traffic required to regener-
ate lost blocks, a major bandwidth consumption factor
in large clusters [47]. When a cube fails, IceFS again re-
turns an error code to the host server, which then immedi-
ately triggers a block scan to find out data blocks that are
under-replicated and regenerates them. The number of
blocks to recover is proportional to the cube size. With-
out IceFS, a kernel panic in local file system manifests as
whole machine failure, causing a 12-minute timeout for
crash detection and making the number of blocks lost and
to be regenerated during recovery much larger. In sum-
mary, IceFS helps improve not only flexibility in fault
isolation but also efficiency in failure recovery.

6 Related Work
IceFS has derived inspiration from a number of projects
for improving file system recovery and repair, and for
tolerating system crashes.

Many existing systems have improved the reliability of
file systems with better recovery techniques. Fast check-
ing of the Solaris UFS [43] has been proposed by only
checking the working-set portion of the file system when
failure happens. Changing the I/O pattern of the file sys-
tem checker to reduce random requests has been sug-
gested [14, 34]. A background fsck in BSD [38] checks
a file system snapshot to avoid conflicts with the fore-
ground workload. WAFL [29] employs Wafliron [40],
an online file system checker, to perform online check-
ing on a volume but the volume being checked cannot
be accessed by users. Our recovery idea is based on the
cube abstraction which provides isolated failure, recov-
ery and journaling. Under this model, we only check the
faulty part of the file system without scanning the whole
file system. The above techniques can be utilized in one
cube to further speedup the recovery process.

Several repair-driven file systems also exist.
Chunkfs [28] does a partial check of Ext2 by parti-
tioning the file system into multiple chunks; however,
files and directory can still span multiple chunks, reduc-
ing the independence of chunks. Windows ReFS [50]
can automatically recover corrupted data from mirrored

13

94 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

storage devices when it detects checksum mismatch.
Our earlier work [32] proposes a high-level design
to isolate file system structures for fault and recovery
isolation. Here, we extend that work by addressing both
reliability and performance issues with a real prototype
and demonstrations for various applications.

Many ideas for tolerating system crashes have been
introduced at different levels. Microrebooting [18] par-
titions a large application into rebootable and stateless
components; to recover a failed component, the data state
of each component is persistent in a separate store out-
side of the application. Nooks [54] isolates failures of
device drivers from the rest of the kernel with separated
address spaces for each target driver. Membrane [53]
handles file system crashes transparently by tracking re-
source usage and the requests at runtime; after a crash,
the file system is restarted by releasing the in-use re-
sources and replaying the failed requests. The Rio file
cache [20] protects the memory state of the file system
across a system crash, and conducts a warm reboot to re-
cover lost updates. Inspired by these ideas, IceFS local-
izes a file system crash by microisolating the file system
structures and microrebooting a cube with a simple and
light-weight design. Address space isolation technique
could be used in cubes for better memory fault isolation.

7 Conclusion
Despite isolation of many components in existing sys-
tems, the file system still lacks physical isolation. We
have designed and implemented IceFS, a file system that
achieves physical disentanglement through a new ab-
straction called cubes. IceFS uses cubes to group logi-
cally related files and directories, and ensures that data
and metadata in each cube are isolated. There are no
shared physical resources, no access dependencies, and
no bundled transactions among cubes.

Through experiments, we demonstrate that IceFS is
able to localize failures that were previously global, and
recover quickly using localized online or offline fsck.
IceFS can also provide specialized journaling to meet di-
verse application requirements for performance and con-
sistency. Furthermore, we conduct two cases studies
where IceFS is used to host multiple virtual machines
and is deployed as the local file system for HDFS data
nodes. IceFS achieves fault isolation and fast recovery in
both scenarios, proving its usefulness in modern storage
environments.

Acknowledgments
We thank the anonymous reviewers and Nick Feamster
(our shepherd) for their tremendous feedback. We thank
the members of the ADSL research group for their sug-
gestions and comments on this work at various stages.

We thank Yinan Li for the hardware support, and Ao Ma
for discussing fsck in detail.

This material was supported by funding from NSF
grants CCF-1016924, CNS-1421033, CNS-1319405,
and CNS-1218405 as well as generous donations from
Amazon, Cisco, EMC, Facebook, Fusion-io, Google,
Huawei, IBM, Los Alamos National Laboratory, Mdot-
Labs, Microsoft, NetApp, Samsung, Sony, Symantec,
and VMware. Lanyue Lu is supported by the VMWare
Graduate Fellowship. Samer Al-Kiswany is supported
by the NSERC Postdoctoral Fellowship. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and may not re-
flect the views of NSF or other institutions.

References
[1] Apache HBase. https://hbase.apache.org/.
[2] Docker: The Linux Container Engine. https://www.

docker.io.
[3] Filebench. http://sourceforge.net/projects/

filebench.
[4] Firefox 3 Uses fsync Excessively. https://bugzilla.

mozilla.org/show_bug.cgi?id=421482.
[5] Fsyncers and Curveballs. http://shaver.off.net/

diary/2008/05/25/fsyncers-and-curveballs/.
[6] HBase User Mailing List. http://hbase.apache.

org/mail-lists.html.
[7] Linux Containers. https://linuxcontainers.org/.
[8] Solving the Ext3 Latency Problem. http://lwn.net/

Articles/328363/.
[9] SQLite. https://sqlite.org.

[10] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces. Arpaci-
Dusseau Books, 0.8 edition, 2014.

[11] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis of
Latent Sector Errors in Disk Drives. In Proceedings of
the 2007 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS
’07), San Diego, California, June 2007.

[12] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. An Analysis of Data Corruption in the
Storage Stack. In Proceedings of the 6th USENIX Sympo-
sium on File and Storage Technologies (FAST ’08), pages
223–238, San Jose, California, February 2008.

[13] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Re-
source containers: a new facility for resource manage-
ment in server systems. In Proceedings of the 3rd Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’99), New Orleans, Louisiana, February 1999.

[14] Eric J. Bina and Perry A. Emrath. A Faster fsck for BSD
Unix. In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’89), San Diego, California,
January 1989.

[15] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
Malicious Device Drivers in Linux. In Proceedings of
the USENIX Annual Technical Conference (USENIX ’10),
Boston, Massachusetts, June 2010.

[16] Edouard Bugnion, Scott Devine, and Mendel Rosenblum.
Disco: Running Commodity Operating Systems on Scal-
able Multiprocessors. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97),
pages 143–156, Saint-Malo, France, October 1997.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 95

[17] Calton Pu and Tito Autrey and Andrew Black and Charles
Consel and Crispin Cowan and Jon Inouye and Lakshmi
Kethana and Jonathan Walpole and Ke Zhang. Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP ’95),
Copper Mountain Resort, Colorado, December 1995.

[18] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, and Armando Fox. Microreboot – A Technique
for Cheap Recovery. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’04), pages 31–44, San Francisco, California, De-
cember 2004.

[19] Remy Card, Theodore Ts’o, and Stephen Tweedie. De-
sign and Implementation of the Second Extended Filesys-
tem. In First Dutch International Symposium on Linux,
Amsterdam, Netherlands, December 1994.

[20] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra,
Christopher Aycock, Gurushankar Rajamani, and David
Lowell. The rio file cache: Surviving operating sys-
tem crashes. In Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII), Cam-
bridge, Massachusetts, October 1996.

[21] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Nemacolin Woodlands Resort, Farm-
ington, Pennsylvania, October 2013.

[22] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating
System Errors. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), pages
73–88, Banff, Canada, October 2001.

[23] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and An-
drew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI ’05), Boston, Mas-
sachusetts, May 2005.

[24] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris,
Alex Ho, Ian Pratt, Andrew Warfield, Paul Barham, and
Rolf Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing, New
York, October 2003.

[25] Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A Secure Environment for Untrusted Helper Ap-
plications. In Proceedings of the 6th USENIX Security
Symposium (Sec ’96), San Jose, California, 1996.

[26] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner,
and Amin Vahdat. Enforcing Performance Isolation
Across Virtual Machines in Xen. In Proceedings of the
ACM/IFIP/USENIX 7th International Middleware Con-
ference (Middleware’2006), Melbourne, Australia, Nov
2006.

[27] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Analysis of HDFS Under
HBase: A Facebook Messages Case Study. In Proceed-
ings of the 12th USENIX Symposium on File and Storage
Technologies (FAST ’14), Santa Clara, California, Febru-
ary 2014.

[28] Val Henson, Arjan van de Ven, Amit Gud, and Zach
Brown. Chunkfs: Using divide-and-conquer to improve
file system reliability and repair. In IEEE 2nd Workshop
on Hot Topics in System Dependability (HotDep ’06),
Seattle, Washington, November 2006.

[29] Dave Hitz, James Lau, and Michael Malcolm. File Sys-
tem Design for an NFS File Server Appliance. In Pro-
ceedings of the USENIX Winter Technical Conference
(USENIX Winter ’94), San Francisco, California, January
1994.

[30] Shvetank Jain, Fareha Shafique, Vladan Djeric, and
Ashvin Goel. Application-Level Isolation and Recovery
with Solitude. In Proceedings of the EuroSys Conference
(EuroSys ’08), Glasgow, Scotland UK, March 2008.

[31] Poul-Henning Kamp and Robert N. M. Watson. Jails:
Confining the omnipotent root. In Second Interna-
tional System Administration and Networking Conference
(SANE ’00), May 2000.

[32] Lanyue Lu, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Fault Isolation And Quick Recovery in
Isolation File Systems. In 5th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage ’13), San
Jose, CA, June 2013.

[33] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A Study of Linux File
System Evolution. In Proceedings of the 11th USENIX
Symposium on File and Storage Technologies (FAST ’13),
San Jose, California, February 2013.

[34] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. ffsck: The Fast File System
Checker. In Proceedings of the 11th USENIX Symposium
on File and Storage Technologies (FAST ’13), San Jose,
California, February 2013.

[35] Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Alex Tomas Andreas Dilge and, and Laurent Vivier. The
New Ext4 filesystem: Current Status and Future Plans.
In Ottawa Linux Symposium (OLS ’07), Ottawa, Canada,
July 2007.

[36] Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Andreas Dilger, Alex Tomas, Laurent Vivier, and Bull
S.A.S. The New Ext4 Filesystem: Current Status and
Future Plans. In Ottawa Linux Symposium (OLS ’07), Ot-
tawa, Canada, July 2007.

[37] Marshall K. McKusick, William N. Joy, Sam J. Leffler,
and Robert S. Fabry. A Fast File System for UNIX. ACM
Transactions on Computer Systems, 2(3):181–197, Au-
gust 1984.

[38] Marshall Kirk McKusick. Running ’fsck’ in the Back-
ground. In Proceedings of BSDCon 2002 (BSDCon ’02),
San Fransisco, California, February 2002.

[39] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. Fsck - The UNIX File System
Check Program. Unix System Manager’s Manual - 4.3
BSD Virtual VAX-11 Version, April 1986.

[40] NetApp. Overview of WAFL check. http://uadmin.
nl/init/?p=900, Sep. 2011.

[41] Oracle Inc. Consolidating Applications with Or-
acle Solaris Containers. http://www.oracle.
com/technetwork/server-storage/solaris/
documentation/consolidating-apps-163572.
pdf, Jul 2011.

[42] Nicolas Palix, Gael Thomas, Suman Saha, Christophe
Calves, Julia Lawall, and Gilles Muller. Faults in Linux:
Ten Years Later. In Proceedings of the 15th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XV), New-
port Beach, California, March 2011.

[43] J. Kent Peacock, Ashvin Kamaraju, and Sanjay Agrawal.
Fast Consistency Checking for the Solaris File System. In
Proceedings of the USENIX Annual Technical Conference
(USENIX ’98), pages 77–89, New Orleans, Louisiana,
June 1998.

[44] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and Evolution of

15

96 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Journaling File Systems. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’05), pages 105–
120, Anaheim, California, April 2005.

[45] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Sys-
tems. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[46] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), Brighton, United King-
dom, October 2005.

[47] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran. A
solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the
facebook warehouse cluster. In 5th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage ’13),
San Jose, CA, June 2013.

[48] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff,
Jim Chow, Monica S. Lam, and Mendel Rosenblum. Op-
timizing the Migration of Virtual Computers. In Proceed-
ings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, Massachusetts,
December 2002.

[49] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th IEEE Symposium on Mass Stor-
age Systems and Technologies (MSST ’10), Incline Vil-
lage, Nevada, May 2010.

[50] Steven Sinofsky. Building the Next Generation File
System for Windows: ReFS. http://blogs.msdn.
com/b/b8/archive/2012/01/16/building-the-
next-generation-file-system-for-windows-
refs.aspx, Jan. 2012.

[51] Mark Sullivan and Ram Chillarege. Software defects and
their impact on system availability-a study of field failures
in operating systems. In Proceedings of the 21st Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
21), pages 2–9, Montreal, Canada, June 1991.

[52] Mark Sullivan and Ram Chillarege. A Comparison of
Software Defects in Database Management Systems and
Operating Systems. In Proceedings of the 22st Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
22), pages 475–484, Boston, USA, July 1992.

[53] Swaminathan Sundararaman, Sriram Subramanian, Ab-
hishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Michael M. Swift. Membrane: Op-
erating System Support for Restartable File Systems. In
Proceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, California,
February 2010.

[54] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the Reliability of Commodity Operating Sys-
tems. In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles (SOSP ’03), Bolton Landing,
New York, October 2003.

[55] Theodore Ts’o. http://e2fsprogs.sourceforge.
net, June 2001.

[56] Stephen C. Tweedie. Journaling the Linux ext2fs File
System. In The Fourth Annual Linux Expo, Durham,
North Carolina, May 1998.

[57] Satyam B. Vaghani. Virtual Machine File System. ACM
SIGOPS Operating Systems Review, 44(4):57–70, Dec
2010.

[58] Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Performance Isolation: Sharing and Isolation in Shared-

Memory Multiprocessors. In Proceedings of the 8th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
VIII), San Jose, California, October 1998.

[59] VMware Inc. VMware Workstation. http://www.
vmware.com/products/workstation, Apr 2014.

[60] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R. Ganger. Argon: Performance Insulation
for Shared Storage Servers. In Proceedings of the 5th
USENIX Symposium on File and Storage Technologies
(FAST ’07), San Jose, California, February 2007.

[61] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya
Bagrak, Rob Ennals, Matthew Harren, George Necula,
and Eric Brewer. SafeDrive: Safe and Recoverable Ex-
tensions Using Language-Based Techniques. In Proceed-
ings of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), Seattle, Washing-
ton, November 2006.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 97

Customizable and Extensible Deployment for Mobile/Cloud Applications
Irene Zhang Adriana Szekeres Dana Van Aken Isaac Ackerman

Steven D. Gribble∗ Arvind Krishnamurthy Henry M. Levy
University of Washington

Abstract
Modern applications face new challenges in manag-

ing today’s highly distributed and heterogeneous envi-
ronment. For example, they must stitch together code
that crosses smartphones, tablets, personal devices, and
cloud services, connected by variable wide-area net-
works, such as WiFi and 4G. This paper describes Sap-
phire, a distributed programming platform that simplifies
the programming of today’s mobile/cloud applications.
Sapphire’s key design feature is its distributed runtime
system, which supports a flexible and extensible deploy-
ment layer for solving complex distributed systems tasks,
such as fault-tolerance, code-offloading, and caching.
Rather than writing distributed systems code, program-
mers choose deployment managers that extend Sapphire’s
kernel to meet their applications’ deployment require-
ments. In this way, each application runs on an underlying
platform that is customized for its own distribution needs.

1 Introduction
In less than a decade, the computing landscape has
undergone two revolutionary changes: the development
of small, yet remarkably powerful, mobile devices and
the move to massive-scale cloud computing. These
changes have led to a shift away from traditional desktop
applications to modern mobile/cloud applications.

As a consequence, modern applications have be-
come inherently distributed, with data and code spread
across cloud backends and user devices such as phones
and tablets. Application programmers face new chal-
lenges that were visible only to designers of large-scale
distributed systems in the past. Among them are coordi-
nating shared data across multiple devices and servers,
offloading code from devices to the cloud, and integrating
heterogeneous components with vastly different software
stacks and hardware resources.

To address these challenges, programmers must make
numerous distributed deployment decisions, such as:

• Where data and computation should be located
• What data should be replicated or cached
• What data consistency level is needed

These decisions depend on application requirements –
such as scalability and fault tolerance – which force diffi-
cult performance vs. function trade-offs. The dependency

∗Currently at Google.

between application requirements and deployment de-
cisions leads programmers to mix deployment decisions
with complex application logic in the code, which makes
mobile/cloud applications difficult to implement, debug,
maintain, and evolve. Even worse, the rapid evolution of
devices, networks, systems, and applications means that
the trade-offs that impact these deployment decisions are
constantly in flux. For all of these reasons, programmers
need a flexible system that allows them to easily create
and modify distributed application deployments without
needing to rewrite major parts of their application.

This paper presents Sapphire, a general-purpose
distributed programming platform that greatly simplifies
the design and implementation of applications spanning
mobile devices and clouds. Sapphire removes much of
the complexity of managing a wide-area, multi-platform
environment, yet still provides developers with the fine-
grained control needed to meet critical application needs.
A key concept of Sapphire’s design is the separation of
application logic from deployment logic. That is, deploy-
ment code is factored out of application code, allowing the
programmer to focus on the application logic. At the same
time, the programmer has full control over deployment
decisions and the flexibility to customize them.

Sapphire’s architecture facilitates this separation with
a highly extensible distributed kernel/runtime system.
At the bottom layer, Sapphire’s Deployment Kernel
(DK) integrates heterogeneous mobile devices and cloud
servers through a set of common low-level mechanisms,
including best-efforts RPC communication, failure
detection, and location finding. Between the kernel and
the application is a deployment layer – a collection
of pluggable Deployment Manager (DM) modules
that extend the kernel to support application-specific
deployment needs, such as replication and caching. DMs
are written in a generic, application-transparent way,
using interposition to intercept important application
events, such as RPC calls. The DK provides a simple yet
powerful distributed execution environment and API for
DMs that makes them extremely easy to write and extend.
Conceptually, Sapphire’s DK/DM architecture creates a
seamless distributed runtime system that is customized
specifically for each application’s requirements.

We implemented a Sapphire prototype on Linux
servers and Android mobile phones and tablets. The
prototype includes a library of 26 Deployment Managers

1

98 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

supporting a wide range of distributed management tasks,
such as consistent client-side caching, durable transac-
tions, Paxos replication, and dynamic code offloading
between mobile devices and the cloud. We also built 10
Sapphire applications, including a fully featured Twitter
clone, a multi-player game, and a shared text editor.

Our experience and evaluation show that Sapphire’s
extensible three-layer architecture greatly simplifies
the construction of both mobile/cloud applications
and distributed deployment functions. For example, a
single-line application code change – switching from one
DM to another – is sufficient to transform a cloud-based
multi-player game into a P2P (device-to-device) version
that significantly improves the game’s performance. The
division of function between the DK and DM layers
makes deployments extremely easy to code; e.g., the
DM to support Paxos state machine replication is only
129 lines of code, an order of magnitude smaller than
a C++ implementation built atop an RPC library. We
also demonstrate that Sapphire’s structure provides
fine-grained control over performance trade-offs, deliv-
ering performance commensurate with today’s popular
communication mechanisms like REST.

The next section provides background on current
mobile/cloud applications and discusses related work.
Section 3 overviews Sapphire and its core distributed
runtime system. Section 4 presents the application
programming model. Section 5 details the design of
the Deployment Kernel, while Section 6 focuses on
Deployment Managers, which extend the DK with
custom distributed deployment mechanisms. Sapphire’s
prototype implementation is described in Section 7 and
evaluated in Section 8, and we conclude in Section 10.

2 Motivation and Background
Figure 1 shows the deployment of a typical mobile/cloud
application. Currently, programmers must deploy appli-
cations across a patchwork of user devices, cloud servers,
and backend services, while satisfying demanding
requirements such as responsiveness and availability. For
example, programmers may need to apply caching tech-
niques, perform application-specific code splitting across
clients and servers, and develop solutions for fast and
convenient data sharing, scalability, and fault tolerance.

Programmers use tools and systems when they match
the needs of their application. In some cases an exist-
ing system might support an application entirely; for
example, a simple application that only requires data
synchronization could use a backend storage service
like Dropbox [23], Parse [53] or S3 [58]. More complex
applications, though, must integrate multiple tools and
systems into a custom platform that meets their needs.
These systems include server-side storage like Redis [56]
or MySQL [49] for fault-tolerance, protocols such as

Mobile
Client
Devices

Durable Store

Cloud
Frontend
Servers

Shared
Backend
Services

Server-side
Application
Code

Client-side
Application
Code

Figure 1: Code for today’s applications spans cloud servers
and mobile devices. Client-side code runs on varied mobile
platforms, while server-side code runs in the cloud, typically
using shared backend services like distributed storage.

REST [25] and SOAP [62] or libraries like Java RMI and
Thrift [3] for distributed communication, load-balanced
servers for scalability, client-side caching for lower
wide-area latency, and systems for notification [1],
coordination [9, 33], and monitoring [18].

Sapphire provides a flexible environment whose
extension mechanism can subsume the functions of many
of these systems, or can integrate them into the platform
in a transparent way. Programmers can easily customize
the runtime system to meet the needs of their applications.
In addition, programmers can quickly switch deploy-
ment solutions to respond to environment or requirement
changes, or simply to test and compare alternatives during
development. Finally, Sapphire’s Deployment Manager
framework simplifies the development or extension of
distributed deployment code.

3 Sapphire Overview
Sapphire is a distributed programming platform designed
for flexibility and extensibility. In this section, we cover
our goals in designing Sapphire, the deployment model
that we assume, and Sapphire’s system architecture.

3.1 Design Goals

We designed Sapphire with three primary goals:
1. Create a distributed programming platform span-

ning devices and the cloud. A common platform in-
tegrates the heterogeneous distributed environment
and simplifies communications, code/data mobility,
and replication.

2. Separate application logic from deployment logic.
The application code is focused on servicing client
requests rather than distribution. This simplifies pro-
gramming, evolution, and optimization.

3. Facilitate system extension and customization. The
delegation of distribution management to an exten-
sible deployment layer gives programmers the flexi-
bility to easily make or change deployment options.

Sapphire is designed to deploy applications across mo-
bile devices and cloud servers. This environment causes

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 99

Sapphire
Object C

Sapphire
Object B

Sapphire
Object A

DM p DM q DM r

Deployment Kernel (DK)

Sapphire
Application

Deployment
Management
Layer

Figure 2: Sapphire runtime architecture. A Sapphire application
consists of a distributed collection of Sapphire Objects execut-
ing on a distributed Deployment Kernel (DK). A DK instance
runs on every device or cloud node. The Deployment Manage-
ment (DM) layer handles distribution management/deployment
tasks, such as replication, scalability, and performance.

significant complexity, as the programmer must stitch
together a distributed collection of highly heterogeneous
software and hardware components with a broad spec-
trum of capabilities, while still meeting application goals.

Sapphire is not designed for deploying backend
services like Spanner [16] or ZooKeeper [33]; its appli-
cations interact with such backend services using direct
calls, similar to current apps. A Sapphire Deployment
Manager can easily integrate a backend service trans-
parently to the application, e.g., using ZooKeeper for
coordination or Spanner for fault-tolerance. Sapphire is
also not designed for building user interfaces; we expect
applications to customize their user interfaces for the
devices they employ.

3.2 System Architecture

Figure 2 shows an application-level view of Sapphire’s
architecture. A Sapphire application, which encompasses
all of the client-side and server-side application logic,
consists of a collection of Sapphire Objects (SOs). Each
Sapphire Object functions as a single unit of distribution,
like a virtual node. Sapphire Objects in an application
share a logical address space that spans all cloud servers
and client-side devices. That is, a Sapphire application
is written so that all SOs can invoke each other directly
through simple location-independent procedure calls.

The bottom layer of Figure 2 is the Deployment Kernel
(DK), which is a flexible and extensible distributed run-
time system. It provides only the most basic distribution
functions, including SO addressing and location tracking,
best effort RPC-based communication, SO migration,
and basic resource management. It does not support more
complex tasks, such as fault tolerance, failure manage-
ment, reliability, and consistency. In this way, the DK
resembles IP-level network messaging – it is a basic ser-
vice that relies on higher levels of software to meet more
demanding program goals. The kernel is thus deployment

agnostic and does not favor (or limit the application to)
any specific approaches to deployment issues.

More complex management tasks are supported in
the deployment layer by extensions to the DK, called
Deployment Managers (DMs). Each Sapphire Object can
optionally have an attached DM – shown in the middle of
Figure 2 – which provides runtime distribution support in
addition to the minimal features of the DK. The program-
mer selects a DM to manage each SO; e.g., he may choose
a DM that handles failures to improve fault-tolerance,
or one to cache data locally on a mobile device for
performance. We have built a library of DMs supporting
common distribution tasks used by applications today.

The separation between the DK and DMs provides
significant flexibility and extensibility within the Sap-
phire distributed programming platform. As extensions
to the DK, Deployment Managers provide additional
distribution management features or guarantees for in-
dividual SOs. Often, these features involve performance
trade-offs; thus, not every application or every SO will
want or need a DM. Finally, by separating application
logic (in the application program) from deployment
logic (provided by DMs), we greatly reduce application
complexity and allow programmers to easily change
application deployment or performance behaviors.

4 Programming Model
The Sapphire application programming model is object
based and could be integrated with any object-oriented
language. Our implementation (Section 7) uses Java.

Sapphire Objects are the key programming abstraction
for managing application code and data locality. To
develop a Sapphire application, the programmer first
builds the application logic as a single object-oriented
program. He then breaks the application into distributed
components by declaring a set of application objects to
be Sapphire Objects. Sapphire Objects can still call each
other via normal method invocation, however, these calls
may now be remote invocations. Finally, the programmer
applies Deployment Managers (DMs) to SOs as desired
for additional distributed management features. In this
section, we will show that the Sapphire programming
model provides: (1) ease of programming in a distributed
environment, (2) flexibility in deployment, and (3)
programmer control over performance.

Defining Sapphire Objects. Programmers define
Sapphire Objects as classes using a sapphireclass

declaration, instead of the standard class declaration.
As an example, Figure 3 shows a code snippet from
our Twitter-clone, BlueBird. All instances of the User
class defined here are independent SOs. In this case, the
programmer has also specified a DM for the class, called
ConsistentCaching, to enhance the object’s performance.

SOs can encapsulate internal language-defined objects

3

100 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 p u b l i c sapphireclass User uses ConsistentCaching {
2
3 / / u s e r h a n d l e
4 String username;
5 / / p e o p l e who f o l l o w me
6 User[] followers;
7 / / p e o p l e who I f o l l o w
8 User[] friends;
9

10 p u b l i c String getUsername () {
11 r e t u r n username;
12 }
13 p u b l i c User[] getMyFollowers () {
14 r e t u r n followers;
15 }
16 p u b l i c User[] getPeopleIFollow () {
17 r e t u r n friends;
18 }
19 p u b l i c Tweet[] getMyTweets () {
20 r e t u r n myTweets.getTweets ();
21 }
22 }

Figure 3: Example Sapphire object from BlueBird.

(Java objects in our system), such as the User string and
arrays. These are shown as small solid circles in Figure 2;
the solid arrows in the figure are references between
internal objects within an SO. SO-internal objects cannot
move independently or be accessed directly from outside
the SO. The SO is therefore the granularity of distribution
and decomposition in Sapphire. Moving an SO always
moves all of its internal objects along with it; therefore,
the programmer knows that all SO-internal objects will
always be co-located with the SO.

A Sapphire Object encapsulates data and compu-
tation into a “virtual node” that: (1) ensures that each
data/computation unit (a Sapphire Object) will always
have its code and data on the same node, (2) lets the system
transparently relocate or offload that unit, (3) supports
easy replication of units, and (4) provides an easy-to-
understand unit of failure and recovery. These benefits
make Sapphire Objects a powerful abstraction; using
fine-grained programmer-defined Sapphire Objects,
instead of a coarse-grained client/server architecture,
increases both flexibility in distributed deployment and
programmer control over performance.

Calling Sapphire Objects. Sapphire Objects com-
municate using method invocation. The dashed lines
in Figure 2 show cross-SO references, which are used
to invoke the target SO’s public methods. Invocation
is location-independent and symmetric; it can occur
transparently from mobile device to server, from server
to device, from device to device, or between servers in
the cloud. An SO can be moved by its DM or by the DK
as a result of resource constraints on the executing node.
Therefore, between two consecutive invocations from SO
A to SO B, either or both objects can change location; the
DK hides this change from the communicating parties.
Invocations can fail, e.g., due to network or node failure;
DMs help to handle failure on behalf of SOs.

SOs are passed by reference. All other arguments and

return values from SO invocations are passed by value.
For example, the return value of getUsername() in
Figure 3 is a copy of the username object stored inside
the SO, while getMyFollowers() returns a copy of the
array containing references to User SOs. This preserves
the encapsulation and isolation properties of Sapphire
Objects, since it is impossible to export the address of
internal objects within them.

Our goal was to create a uniform programming model
integrating mobile devices and the cloud without hiding
performance costs and trade-offs from the programmer.
Therefore, the programmer makes explicit choices in
the decomposition of the application into SOs; once that
choice is made, the system provides location-independent
communication, which simplifies programming in the
distributed environment.

Choosing Deployment Managers. Programmers
employ the uses keyword to specify a DM when
defining a Sapphire Object. For example, in Figure 3,
the sapphireclass declaration (line 1) binds the
ConsistentCaching DM to the User class. In this case,
every instance of User created by the program will have
the ConsistentCaching DM attached to it. It is easy to
change the DM binding with a simple change to the
sapphireclass definition.

Supporting DMs on a class basis lets programmers
specify different features or properties for different
application components. While the binding between
an SO and its DM could be specified outside of the
language (e.g., through a configuration file), we felt
that this choice should be visible in the code because
deployment decisions about the SO are closely tied to the
requirements of an SO.

Sapphire provides a library of standard DMs, and most
programmers will be able to choose the behavior they
want from the standard library. Additionally, DMs are
extensible; we discuss the API for building them in the
next section. As programmers can build their own DMs
and DMs are designed to be reusable, we expect the
library to grow naturally over time.

An SO can have at most one DM, and each instance of
the SO must use the same DM. We chose these restrictions
for simplicity and predictability, both in the design of
applications and DMs. In particular, the behavior of
multiple DMs attached to an SO depends on the order in
which the functions of the multiple DMs are invoked, and
DMs could potentially interfere with each other. For this
reason, programmers achieve the same result by explicitly
composing DMs using inheritance. This allows the pro-
grammer to precisely control the actions of the composed
DM. Since instances of the same SO should have the
same deployment requirements, we chose not to allow
different DMs for different instances of the same SO.

DMs separate management code into generic, reusable

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 101

modules that: (1) automatically deploy the application
in complex ways, (2) give programmers per-application-
component control over deployment trade-offs, and
(3) allow programmers to easily change deployment
decisions. These advantages make DMs a powerful
mechanism for deploying distributed applications.

5 Deployment Kernel
Sapphire’s Deployment Kernel is a distributed runtime
system for Sapphire applications. At a high level, the goal
of the DK is to create an integrated execution platform
across mobile devices and servers. The key functions pro-
vided by the DK include: (1) management and location
tracking of Sapphire Objects, (2) location-transparent
inter-object communications (RPC), (3) low-level replica
support, and (4) services to simplify the writing and
execution of Deployment Managers.

A DK instance provides best-effort deployment of a
single Sapphire application. It consists of a set of servers
that run on every mobile and back-end computing device
used by the application, and a centralized Object Tracking
System (OTS) for tracking Sapphire Objects.

The Sapphire OTS is a distributed, fault-tolerant coor-
dination service, similar to Chubby [9], ZooKeeper [33]
and Tango [4]. The OTS is responsible for tracking
Sapphire Objects across DK servers. DK servers only
communicate occasionally with the OTS when creating
or moving SOs. DK servers do not have to contact the
OTS on every RPC because SO references contain a
cached copy of the SO’s last location,

Each DK server hosts a number of SOs by acting as an
event server for the SOs, receiving and dispatching RPCs.
The DK server also hosts and manages the DMs for those
SOs. DK servers instantiate SOs locally by initializing
the SO’s memory, creating its DM (which potentially
has components on multiple nodes), and registering the
SO with the OTS. Once created, the server can move the
SO at any time because SO location and movement are
invisible to the application.

The DK provides primitive SO scheduling and place-
ment. If a DK server becomes overloaded, it will contact
the OTS to find a new server to host the SO, move the
SO to the new server, and update the OTS with the
SO’s new location. The DK API, described in Section 6,
provides primitives that allow DMs to express more
complex placement and scheduling policies, such as
geo-replicated fault-tolerance, load balancing, etc.

To route an RPC to an SO, the calling DK server sends
the RPC request to the destination server cached in the
SO reference. If the destination no longer hosts the SO,
the caller contacts the OTS to obtain the new address. If
the destination server is unavailable, the calling server
returns an error, because RPC in the DK is always best
effort; DMs implement more advanced RPC handling,

like retrying RPCs, routing RPCs between replicas, etc.
DK servers are not fault-tolerant: when they fail,

they simply reboot. That is, on recovery, DK servers
do not recover the SOs that they hosted on failure; they
simply register with the OTS and begin hosting new SOs.
Failures are entirely handled by DMs. We assume there
is a failure detection system, such as FALCON [39], to
notify the OTS when servers fail, which will then notify
the DMs of the SOs that were hosted on the failed server.

We expect devices to be Internet connected most of
the time, since applications today frequently depend on
online access to cloud servers. When a device becomes
disconnected, its DK server continues to run, but the ap-
plication will be unable to make or receive remote RPCs.
Any SOs hosted on a disconnected device will thus be in-
accessible to outside devices and servers. The OTS keeps
a list of mobile device IP addresses to quickly re-register
SOs hosted on those devices when they reconnect. DMs
can provide more advanced offline access.

6 Deployment Managers
A key feature of the Sapphire kernel is its support for the
programming and execution of Deployment Managers,
which customize and control the behavior of individual
SOs in the distributed mobile/cloud environment. The
DK provides direct API support for DMs. That API is
available to DM developers, who we expect to be more
technically sophisticated than application developers,
although the DM framework can be used by anyone to
customize or build new DMs. As this section will show,
DMs can accomplish complex distributed deployment
tasks with surprisingly little code. This is due to the
careful factoring of function between the DMs and the
DK: the DK does the heavy lifting, while the DMs simply
tell the DK what to lift through the DK’s API.

6.1 DM Library

Sapphire provides programmers with a library of DMs
that encompass many management features, including
controls over placement and RPC semantics, fault-
tolerance, load balancing and scaling, code-offloading,
and peer-to-peer deployment. Table 1 lists the DMs that
we have built along with a description and the LoC count
(from SLOCCount [71]) for each one. We built these
DMs both to provide programmers with useful DMs
for their applications and to illustrate the flexibility and
programming ease of the DM programming framework.

6.2 DM Structure and API

We designed the DM API to provide as minimal an
interface as possible while still supporting a wide range
of extensions. A DM extends the functionality of the DK
to meet the deployment requirements of a specific SO by
interposing on DK events for the SO. For example, on an
RPC to the SO, the DK will make an upcall into the DM

5

102 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Table 1: Library of Deployment Managers

Category Extension Description LoC

Primitives Immutable Efficient distribution and access for immutable SOs 19
AtLeastOnceRPC Automatically retry RPCs for bounded amount of time 27
KeepInPlace Keep SO where it was created (e.g., to access device-specific APIs) 15
KeepInCloud Keep SO on cloud server (e.g., for availability) 15
KeepOnDevice Keep SO on accessing client device and dynamically move 45

Caching ExplicitCaching Caching w/ explicit push and pull calls from the application 41
LeaseCaching Caching w/ server granting leases, local reads and writes for lease-holder 133
WriteThroughCaching Caching w/ writes serialized on the server and stale, local reads 43
ConsistentCaching Caching w/ updates sent to every replica for strict consistency 98

Serializability SerializableRPC Serialize all RPCs to SO with server-side locking 10
LockingTransactions Multi-RPC transactions w/ locking, no concurrent transactions 81
OptimisticTransactions Transactions with optimistic concurrency control, abort on conflict 92

Checkpointing ExplicitCheckpoint App-controlled checkpointing to disk, revert last checkpoint on failure 51
PeriodicCheckpoint Checkpoint to disk every N RPCs, revert to last checkpoint on failure 65
DurableSerializableRPC Durable serializable RPCs, revert to last successful RPC on failure 29
DurableTransactions Durably committed transactions, revert to last commit on failure 112

Replication ConsensusRSM-Cluster Single cluster replicated SO w/ atomic RPCs across at least f+1 replicas 129
ConsensusRSM-Geo Geo-replicated SO w/ atomic RPCs across at least f+1 replicas 132
ConsensusRSM-P2P SO replicated across client devices w/ atomic RPCs over f+1 replicas 138

Mobility ExplicitMigration Dynamic placement of SO with explicit move call from application 20
DynamicMigration Adaptive, dynamic placement to minimize latency based on accesses 57
ExplicitCodeOffloading Dynamic code offloading with offload call from application 49
CodeOffloading Adaptive, dynamic code offloading based on measured latencies 95

Scalability LoadBalancedFrontEnd Simple load balancing w/ static number of replicas and no consistency 53
ScaleUpFrontEnd Load-balancing w/ dynamic allocation of replicas and no consistency 88
LoadBalancedMasterSlave Dynamic allocation of load-balanced M-S replicas w/ eventual consistency 177

for that SO. DMs are implemented as objects, therefore
each DM can execute code on each upcall and store state
between upcalls.

A DM consists of three component types: the Proxy, the
Instance Manager, and the Coordinator. A programmer
builds a DM by defining three object classes, one for each
type. Since DMs are intended to manage distribution, the
DK creates a distributed execution environment in which
they operate; i.e., a DM is itself distributed and its compo-
nents can operate on different nodes. When the DK instan-
tiates a Sapphire Object with an attached DM, it also in-
stantiates and distributes the DM’s components. The DK
provides transparent RPC between the DM components
of an SO instance for coordination between components.

Figure 4 shows an example deployment of the DM
components for a single Sapphire Object A. The DK
may instantiate many Proxies and Instance Managers
but at most one Coordinator, as shown in this figure. The
center box (marked “Instance A”) indicates that A has
two replicas, marked replica 1 and replica 2. Each replica
has its own copy of the Instance Manager. Were the DM
to request a third replica of A, the DK would also create
a new Instance Manager for that replica. A replica and its
Instance Manager are always located on the same node.

CentralizedInstance AReferences

Deployment Kernel (DK)

Sapphire Object A with Deployment Manager

Stub

Proxy
Stub

Proxy

Stub

Proxy

Instance Mgr

Instance Mgr

DK-FT

Coordinator

Stub

Proxy

replica 1

replica 2

Figure 4: Deployment Manager (DM) organization. The
components named Proxy, Instance Mgr, and Coordinator are
all part of the DM for one Sapphire Object instance (shown here
with two replicas). DK-FT is a set of fault-tolerant DK nodes,
which also host the OTS, that support reliable centralized tasks
for DMs and the DK.

Each component of the DM is responsible for a
particular set of distributed tasks. Proxies are responsible
for caller-side tasks, like routing method calls. Instance
Managers are responsible for callee-side tasks, like
keeping replicas of the SO synchronized. Note that, due

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 103

Table 2: Deployment Managers Upcall API.

Event Description

onCreate Creation of SO instance
onRPC Method invocation on SO
onFailure Replica failed
onDestroy Coordinator eliminated SO
onHighLatency Avg. RPC latency > limit
onLowMemory Node running out of memory
onMemberChange New replica added to group
onRefRequest Request for an SO reference

to the symmetric nature of SOs, the caller of the method
may be on a cloud server and the SO itself may be on
a client device. Lastly, the Coordinator is responsible
for centralized tasks such as failure handling. All three
components are optional; a DM can define one or more
of the components, and the DK will instantiate only those
components that are defined.

The DK completely manages DM components; they
run only when invoked, they reside only where the DK
places them and are limited to communicating with other
components in the same DM instance, which are attached
to a single SO. The DK invokes DM components using
upcalls, which are shown in Table 2. Each component
receives a different set of upcalls according to the
component’s responsibilities. By interposing on Sapphire
Object events such as method invocations, DMs can
implement a variety of distributed management features
transparently and generically.

In each upcall, the DM component can perform various
management tasks on the SO using a set of primitives sup-
ported by the DK. Table 3 lists these primitives. The DM
components of an SO instance can communicate directly
with each other through a transparent RPC mechanism
provided by the DK. Note that the DK supports only the
most basic replication functions, namely, creating a new
replica for an SO and reporting on replica locations. All
decisions about the number of replicas, when to create or
delete them, how to synchronize them, and how to handle
failures occur at the DM level.

The left-most box in Figure 4 shows four other SOs.
Each contains a reference to A, shown as an RPC stub in
the figure, to which the DK has attached an instance of
A’s DM Proxy component. Making an RPC to A through
the DK and its DM proceeds as follows. The DK reflects
the call via an onRPC() upcall to the attached Proxy.
The upcall to the Proxy lets A’s DM intercept an RPC on
the caller’s node where, for example, it can implement
client-local caching. If the Proxy wants to forward the call
to replica 1 of A, it simply invokes replica 1’s Instance
Manager which runs in the same DK server as replica
1. The Instance Manager will pass the RPC through to
replica 1 of A.

Because the Proxies and Instance Managers for A

Table 3: DK API for Deployment Managers

Operation Description

invoke(RPC) Invoke RPC on the local SO
invoke(SO,RPC) Invoke RPC on a specific SO
getNode() Get ID for local node
getNodes() Get list of all nodes
pin(node) Move SO to a node.
setHighLatency(ms) Set limit for RPC latency
durable put(SO) Save copy of the SO
durable get(key) Retrieve SO
replicate() Create a replica
destroyReplica(IM) Eliminate a replica
getReplicas() Get list of replicas for SO
getReplica() Get ref to SO instance
setReplica(SO) Set ref to SO instance
copy(SO) Create a copy of the SO instance
diff(SO,SO) Diff two SO instances
sync(SO) Synchronize two SO instances
getIM() Get ref to DM Instance Mgr
setIM(IM) Set reference to DM Instance Mgr
getCoordinator() Get ref to DM Coordinator
getReference(IM) Create DM Proxy for IM
registerMethod(m) Register a custom method for DM
getRegion() Get ID for local region
getNode() Get ID for local node
pin(region) Move SO to region
pin(node) Move SO to node
getRegions() Get list of server regions
getNodes() Get list of nodes in local region

are all part of the same Deployment Manager, they all
understand whether or not the SO (A, in this case) is
replicated, and, if so, how that replication is implemented.
The choice of which replica to call is made inside the
DM components, which are aware of each other and can
communicate with each other directly through RPCs.

Finally, the DK instantiates one Coordinator for each
DM instance, shown in the right-most box of Figure 4.
The OTS manages Coordinators, keeping them fault-
tolerant and centrally accessible. It is well known that
a centralized coordinator can simplify many distributed
algorithms (e.g., eliminating the need for leader election).
Since the DK needs the OTS to tracking Sapphire Objects,
it was easy to provide fault-tolerance for some DMs as
well. We do not expect every DM to have a Coordinator,
and even if there is a Coordinator, it is used sparingly for
management tasks that are easiest handled centrally, such
as instantiating new replicas in the event of failures. In
this sense, Coordinators are similar to other centralized
management systems, like Chubby [9] or ZooKeeper [33].

Programmers can easily extend or compose existing
DMs using inheritance. The new DM inherits all of the be-
havior of the super-DM’s Component object classes. The
programmer can then override or combine upcalls in each
component. While we considered automatic composition,

7

104 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 p u b l i c c l a s s LeasedCaching e x t e n d s DManager {
2 p u b l i c c l a s s LCProxy e x t e n d s Proxy {
3 Lease lease;
4 SapphireObject so;
5
6 p u b l i c Object onRPC(SapphireRPC rpc) {
7 i f (! lease.isValid () || lease.isExpired ()) {
8 lease = Sapphire.getReplica (). getLease ();
9 i f (!lease.isValid ()) {

10 throw new SONotAvailableException(
11 ‘‘Could not get lease.’’);
12 } e l s e {
13 so = lease.getSO ();
14 }
15 }
16
17 SapphireObject oldSO = Sapphire.copy(so);
18 Sapphire.invoke(so , rpc);
19 SOStream diff = Sapphire.diff(oldSO , so);
20 i f (diff) Sapphire.getReplica (). update(diff);
21 }
22 }
23
24 p u b l i c c l a s s LCReplica e x t e n d s InstanceManager {
25 p u b l i c s y n c h r o n i z e d Lease getLease ();
26 p u b l i c s y n c h r o n i z e d v o i d update(SOStream);
27 / / Code f o r I n s t a n c e Manager m e t h o d s
28 }
29 }

Figure 5: Example Deployment Manager with arguments.

we believe that the DM programmer should be involved to
ensure that the composed DM implements exactly the be-
havior that the programmer expects. Our experience with
composing DMs has shown that the use of inheritance for
DM composition is straightforward and intuitive.

6.3 DM Code Example

Figure 5 shows a simplified definition of the
LeasedCaching DM that we provide in the Sapphire
Library. We include code for the Proxy component and
the function declarations from the Instance Manager.
This DM does not have a Coordinator because it does not
need centralized management.

The LeasedCaching DM is not replicated, so DK will
only create one Instance Manager. The Instance Manager
hands out mutually exclusive leases to Proxies (which
reside with the remote reference to the SO) and uses time-
outs to deal with failed Proxies. The Proxy with a valid
lease can read or write to a local copy. Read-only opera-
tions do not incur communications, which saves latency
over a slow network, but updates are synchronously pro-
pogated to the Instance Manager in case of Proxy failure.

When the application invokes a method on an SO with
this DM attached, the caller’s Proxy: (1) verifies that it
holds a lease, (2) performs the method call on its local
copy, (3) checks whether the object has been modified
(using diff()), and (4) synchronizes the remote object
with its cached copy if the object changed, using an
update() call to the Instance Manager.

Each Proxy stores the lease in the Lease object (line
3) and a local copy of the Sapphire Object (line 4). If the
Proxy does not hold a valid lease, it must get one from

the Instance Manager (line 8) before invoking its local
SO copy. If the Proxy is not able to get the lease, the
DM throws a SONotAvailableException (line 10). The
application is prepared for any RPC to an SO to fail, so it
will catch the exception and deal with it. The application
also knows that the SO uses the LeasedCaching SOM, so
it understands the error string (line 11).

If the Proxy is able to get a lease from the Instance
Manager, the lease will contain an up-to-date copy of the
SO (line 13). The Proxy will make a clean copy of the SO
(line 17), invoke the method on its local copy (line 18)
and then diff the local copy with the clean copy to check
for updates (line 19). If the SO changed, the Proxy will
update the Instance Manager’s copy of the SO (line 20).
The copy and diff is necessary because the Proxy does not
know which SO methods might write to the SO, thus re-
quiring an update to the Instance Manager. If the DM had
more insight into the SO (i.e., the SO lets the DM know
which methods are read-only), we could skip this step.

The example illustrates a few interesting properties
of DMs. First, DM code is application agnostic and can
perform only a limited set of operations on the SO that it
manages. In particular, it can interpose only on method
calls to its SO, and it manipulates the managed SO as a
black box. For example, there are DMs that automatically
cache an SO, but no DMs that cache a part of an SO. This
ensures a clean separation of object management code
from application logic and allows the DM to be reused
across different applications and objects.

Second, a DM cannot span more than one Sapphire
Object: it performs operations only on the object that it
manages. We chose not to support cross-SO management
because it would require the DM to better understand
the application; as well, it might cause conflicts between
the DMs of different SOs. As a result, there are DMs
that provide multi-RPC transactions on a single SO, but
we do not support cross-SO transactions. However, the
programmer could combine multiple Sapphire Objects
into one SO or implement concurrency support at the
application level to achieve the same effect.

6.4 DM Design Examples

This section discusses the design and implementation of
several classes of DMs from the Sapphire Library, listed
in Table 1. Our goal is to show how the DM API can be
used to extend the DK for a wide range of distributed
management features.

Code-offloading. The code-offloading DMs are useful
for compute-intensive applications. The CodeOffloading
DM supports transparent object migration based on the
performance trade-off between locating an object on a
device or in the cloud, while the ExplicitCodeOffloading
DM allows the application to decide when to move
computation. The ExplicitCodeOffloading DM gives

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 105

the application more control than the automated
CodeOffloading DM, but is less transparent because the
SO must interact with the DM.

Once the DK creates the Sapphire Object on a mobile
device, the automated CodeOffloading DM replicates the
object in the cloud. The device-side DM Instance Man-
ager then runs several RPCs locally and asks the cloud-
side Instance Manager to do the same, calculating the cost
of running on each side. An adaptive algorithm, based on
Q-learning [70], gradually chooses the lowest-cost option
for each RPC. Periodically, the DM retests the alternatives
to dynamically adapt to changing behavior since the cost
of offloading depends on the type of computation and the
network connection, which can change over time.

Peer-to-peer. We built peer-to-peer DMs to support the
direct sharing of SOs across client mobile devices without
needing to go through the cloud. These DMs dynamically
place replicas on nodes that contain references to the SO.
We implemented the DM using a centralized Coordinator
that attempts to place replicas as close to the callers as
possible, without exceeding an application-specified
maximum number of replicas. We show the performance
impact of this P2P scheme in Section 8.

Replication. The Sapphire Library contains three
replication DMs that replicate a Sapphire Object across
several servers for fault tolerance. They offer guarantees
of serializability and exactly-once semantics, along with
fault-tolerance. They require that the SO is deterministic
and only makes idempotent calls to other SOs.

The Library’s replication DMs model the SO as a repli-
cated state machine (RSM) that executes operations on
a master replica. These DMs all inherit from a common
DM that implements the RSM, then extend the common
DM to implement different policies for replica placement
(e.g., Geo-replicated, P2P).

The RSM DM uses a Coordinator to instantiate the de-
sired number of replicas, designate a leader, and maintain
information regarding membership of the replica group.
The Coordinator associates an epoch number with this
information, which it updates when membership changes.

For each RPC, Instance Managers forward the request
to the Instance Manager of the master replica, which logs
the RPC and assigns it an ID. The master then sends the
ID and epoch number to the other Instance Managers,
which accept it if they do not have another RPC with
the same ID. If the master receives a response from at
least f other Instance Managers, it executes the RPC and
synchronizes the state of the SO on the other replicas. If
one of the replicas fails, the DK notifies the Coordinator,
which allocates a new replica, designates a leader, starts
a new epoch, and informs other replicas of the change.

Scalability. To scale Sapphire Objects that handle
a large number of requests, the Sapphire Library in-

cludes both stateless and stateful scalability DMs. The
LoadBalancedFrontEnd DM provides simple load

balancing among a set number of replicas. This DM
only supports Sapphire Objects that are stateless (i.e.,
do not require consistency between replicas); however,
the SO is free to access state in other Sapphire Objects
or on disk. The ScaleUpFrontEnd DM extends the
LoadBalancedFrontEnd DM with automatic scale-up,

The DM monitors the latency of requests and creates
new replicas when the load on the SO and the latency
increases. Finally, the LoadBalancedMasterSlave
provides scalability for read-heavy workloads by dy-
namically allocating a number of read-only replicas that
receive updates from the master replica. This DM uses
the Coordinator to organize replicas and select the master.
We show the utility of our scalability DMs in Section 8.

Discussion. The DM’s upcall API and its associated
DK API are relatively small (only 8 upcalls and 27 DK
calls), yet powerful enough to cover a wide range of
sophisticated deployment tasks. Most of our DMs are
under a hundred lines of code. There are three reasons for
this efficiency of expression. First is the division of labor
between the DMs and the DK. The DK supports funda-
mental mechanisms such as RPC, object creation and
mobility, and replica management. Therefore, the DK per-
forms the majority of the work in deployment operations,
while the DMs simply tell the DK what work to perform.

Second is the availability of a centralized, fault-tolerant
Coordinator in the DM environment. This reduces the
complexity of many distributed protocols; e.g., in the
ConsensusRSMDMs, the Coordinator simplifies consen-
sus by determining the leader and group membership. Our
three replication DMs share this code but make different
replica placement decisions, meeting different goals
and properties with the same mechanism. Inheritance
facilitates the composition of new DMs from existing
ones; e.g., the DurableTransactions DM builds upon
the OptimisticTransactions DM, adding fault-tolerance
with only 20 more lines of code.

Finally, the decomposition of applications into Sap-
phire Objects greatly simplifies DM implementation. We
implemented the code-offloading DM in only 95 LoC
because we do not have to determine the unit of code to of-
fload dynamically, and because the application provides a
hint that the SO is compute-intensive by choosing the DM.
In contrast, current code-offloading systems [19, 30, 14]
are much more complex because they lack information
on application behavior and because the applications are
not easily composed into locality units, such as objects.

7 Implementation
Our DK prototype was built using Java to accommodate
Android mobile devices. Altogether, the DK consists
of 12,735 lines of Java code, including 10,912 lines of

9

106 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Mobile Cloud

AndroidAndroidAndroid LinuxLinuxLinux

DM Layer

Application

JVMJVMJVMDalvikDalvikDalvik

An
dr

oi
d

SD
K

An
dr

oi
d

SD
K

Backend
Services
Backend
Services

Deployment Kernel (DK)

Figure 6: Sapphire application and runtime system.

Apache Harmony RMI code, which we had to port to
Dalvik. Dalvik was developed based on Apache Harmony,
but does not include an implementation for Java RMI.

Figure 6 shows the prototype’s architecture. We used
Sun’s Java 1.6.0 38 JVM to run Sapphire in the cluster,
while the tablets and phones ran Sapphire on the Android
4.2 Dalvik VM. We used Java RMI for low-level RPCs
between DK nodes. We used Voldemort [69] as the
storage back-end for our checkpointing DMs.

Java RMI provides only point-to-point communication
and only supports calls to Java objects that have a special
Java RMI-provided interface. Thus, we could only use
Java RMI for low-level communication between DK
servers and the OTS. To achieve transparent communi-
cation between SOs and between DM components, we
built a compiler (862 LoC) that creates stubs for SOs and
for DM Instance Managers and Coordinators. Having a
stub for each SO allows the DK server to route RPCs and
invoke DM components on the callee and caller side. DM
Instance Managers and Coordinators also require stubs
because the DK needs to be able to support transparent
RPC from Instance Managers and Proxies. The compiler
generates stubs as Java classes that extend the class of
the target object, replacing all method contents with
forwarding functions into the DK. A stub is therefore a
reference that can be used for transparent communication
with the remote object through the DK.

We also rely on Apache Harmony’s implementation
of RMI serialization – with Java reflection to marshall
and unmarshall objects – for sending, diffing and copying
objects. We did no optimization of Java RMI at all
in this prototype. We could have applied well-known
techniques [44, 54, 50] to improve RPC performance and
expect to do so in the future; however, as we show in our
evaluation, our performance is competitive with widely
used client-server mechanisms, such as REST. In order
to achieve this performance on mobile devices, we had to
fix several bugs that caused performance problems in the
Apache Harmony RMI code that we ported to Android.

Our prototype does not currently include secure
communication between DK servers. Java RMI supports

SSL/TLS, so our prototype could easily support en-
crypted communication between DK servers. We would
also require an authentication mechanism for registering
DK servers on mobile devices, like Google SSO [28].

In today’s applications, mechanisms such as access
control checks are typically provided by the application.
With a unified programming platform like Sapphire, it
becomes possible to move security mechanisms into
the platform itself. While this discussion is outside
the scope of the paper, we are currently exploring the
use of information flow control-based protection for
mobile/cloud applications in the context of Sapphire’s
object and DK/DM structure.

8 Experience and Evaluation
This section presents qualitative and quantitative eval-
uations of Sapphire. We first describe our experience
building new applications and porting applications to
Sapphire. Second, we provide low-level DK performance
measurements, and an evaluation of several DMs and
their performance characteristics. Our experience demon-
strates that: (1) Sapphire applications are easy to build,
(2) the separation of application code and deployment
code, along with the use of symmetric (i.e., non-client-
server) communication, maximizes flexibility and choice
of deployment for programmers, and (3) Deployment
Managers can be used effectively to improve performance
and scalability in a dynamic distributed environment.

8.1 Applications

We consider the design and implementation of several
Sapphire applications with respect to three objectives:

• Development Ease: It should be easy to develop
mobile/cloud applications either from scratch or by
porting non-distributed mobile device applications
to Sapphire. Furthermore, it should be possible to
write application code without explicitly addressing
distribution management.

• Deployment Flexibility: The programmer should
be able to choose from alternative distribution man-
agement schemes and change deployment decisions
without rewriting application code.

• Management Code Generality: It should be possi-
ble to build generic distribution management com-
ponents that can be used widely both within an ap-
plication and across different applications.

Table 4 lists several applications that we built or
ported, along with their LoC. We built three applications
from scratch: an online to-do list, a collaborative text
and table editor, and a multi-player game. We also built
a fully-featured Twitter clone, called BlueBird, and
paired it with the front-end UI from Twimight [68], an
open-source Android Twitter client. The table also lists
six non-distributed, compute-intensive applications that

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 107

Table 4: Sapphire applications. We divide each application into
front-end code (the UI) and back-end code (application logic).
The source column indicates whether we developed new native
Sapphire code or ported open-source code to Sapphire.

Back-end Front-end

Application Source LoC Source LoC

To Do List Native 48 Native 132
Text/Table Editor Native 409 Native 533
Multi-player Game Native 588 Native 1,186
BlueBird Native 783 Ported 13,009
Sudoku Solver Ported 76 - -
Regression Ported 348 - -
Image Recognition Ported 102 - -
Physics Engine Ported 108 - -
Calculus Ported 818 - -
Chess AI Ported 427 - -

we ported to Sapphire.

Development Ease. It took relatively little time and
programming experience to develop Sapphire applica-
tions. In particular, the existence of a DM library lets
programmers write application logic without needing
to manage distribution explicitly. Two applications –
the multi-player game and collaborative editor – were
written by undergraduates who had never built mobile
device or web applications and had little distributed
systems experience. In under a week, each student wrote
a working mobile/cloud application of between 1000
and 1500 lines of code consisting of five or six Sapphire
Objects spanning the UI and Sapphire back-end.

Porting existing applications to Sapphire was easy as
well. For the compute-intensive applications, a single
line change was sufficient to turn a Java object into a
distributed SO that could adaptively execute either on the
cloud or the mobile device. We did not have to handle
failures because the CodeOffload DM hides them by
transparently re-executing the computation locally when
the remote site is not available. An undergraduate ported
all six applications – and implemented the CodeOffload
DM as well – in less than a week.

Our largest application was BlueBird, a Twitter clone
that was organized as ten Sapphire Objects: Tweet, Tag,
TagManager, Timeline, UserTimeline, HomeTimeline,
MentionsTimeline, FavoritesTimeline, User and
UserManager. We implemented all Twitter functions
except for messaging and search in under 800 lines. In
comparison, BigBird [22], an open-source Twitter clone,
is 2563 lines of code, and Retwis-J [38], which relies
heavily on Redis search functionality, is 932 lines of code.

Distributed mobile/cloud applications must cope with
the challenges of running on resource-constrained mobile
devices, unreliable cloud servers, and high-latency,
wide-area links. Using Sapphire, these challenges are

handled by selecting DMs from the DM library, which
greatly simplifies the programmer’s task and makes it
easy to develop and test alternative deployments.

Deployment Flexibility. Changing an SO’s DM,
which changes its distribution properties, requires only
a one-line code change. We made use of this property
throughout the development of our applications as we
experimented with our initial distribution decisions and
tried to optimize them.

In BlueBird, for example, we initially chose not to
make Tweet and Tag into SOs; since these objects are
small and immutable, we thought they did not need to be
independent, globally shared objects. Later, we realized
that it would be useful to refer directly to Tweets and
Tags from Timeline objects rather than accessing them
through another SO. We therefore changed them to SOs –
a trivial change – and then employed ExplicitCaching for
both of them to reduce the network delay for reads of the
tweet or tag strings.

As another example, we encountered a deployment
decision in the development of our multi-player game.
TheGame object lasts only for the duration of a game and
can be accessed only from two devices used to play. Since
the object does not need high reliability or availability, it
can be deployed in any number of ways: on a server, on
one of the devices, or on both devices. We first deployed
the Game object on a cloud server and then decided
to experiment with peer-to-peer alternatives. Changing
from the cloud deployment to peer-to-peer using the
KeepOnDevice and ConsensusRSM-P2P managers in
our DM library required only a single line change, and
improved performance (see Section 8.4) and allowed
games to continue when the server is unavailable. In
contrast, changing an application for one of today’s sys-
tems from a cloud deployment to a peer-to-peer mobile
device deployment would require significant application
rewriting (and might even be impossible without an
intermediary cloud component due to the client-server
nature of existing systems).

Management Code Generality. We applied several
DMs to multiple SOs within individual applications
and across applications. For example, many of our
applications have an object that is shared among a small
number of users or devices (e.g., ToDoList, Document,
etc.). To make reads faster while ensuring that users see
immediate updates, we used the ConsistentCaching DM
for all of these applications. Without the DM structure,
the programmers would have to write the caching and
synchronization code explicitly for each case.

Even within BlueBird, which has 10 Sapphire Object
types, we could reuse several DMs. If the deployment
code for each BlueBird SO had to be implemented in
the application, the application would grow by at least

11

108 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

800 LoC, more than doubling in size! This number is
conservative: it assumes the availability of the DM API
and the DK for support. Without those mechanisms, even
more code would be required.

8.2 Experimental Setup

Our experiments were performed on a homogeneous
cluster of server machines and several types of devices
(tablets and phones). Each server contained 2 quad-core
Intel Xeon E5335 2.00GHz CPUs with 8GB of DRAM
running Ubuntu 12.04 with Linux kernel version 3.2.0-
26. The devices were Nexus 7 tablets, which run on a
1.3 GHz quad-core Cortex A9 with 1 GB of DRAM, and
Nexus S phones with a 1 GHz single-core Hummingbird
processor and 512MB of DRAM. The servers were all
connected to one top-of-rack switch. The devices were
located on the same local area network as the servers, and
communicated with the server either through a wireless
connection or T-mobile 3G links.

8.3 Microbenchmarks

We measured the DK for latency and throughput using
closed-loop RPCs. Latencies were measured at the
client. Before taking measurements, we first sent several
thousand requests to warm up the JVM to avoid the
effects of JIT and buffering optimizations.

RPC Latency Comparison. We compared the per-
formance of Sapphire RPC to Java RMI and to two
widely used communication models: Thrift and REST.
Apache Thrift [3] is an open-source RPC library used
by Facebook, Cloudera and Evernote. REST [25] is a
popular low-level communication protocol for the Web;
many sites have a public REST API, including Facebook
and Twitter. We measured REST using a Java client
running the standard HttpURLConnection class and a
PHP script running on Apache 2.2 for method dispatch.

Table 5 shows request/response latencies for intra-node
(local), server-to-server, tablet-to-server, server-to-tablet
and tablet-to-tablet communications on null requests for
all four systems. While Thrift was slightly faster in all
cases, Java RMI and Sapphire were comparable and were
both faster than the Java REST library.

Sapphire uses Java RMI for communication between
DK servers; however, we dispatch method calls to SOs
through the DK. This additional dispatch caused the
latency difference between Java RMI and Sapphire RPC.
The extra cost was primarily due to instantiating and
serializing Sapphire’s RPC data object (which is not
required for a null Java RMI RPC). We could reduce
this cost by using a more efficient RPC and serialization
infrastructure, such as Thrift.

Note that even without optimization, Sapphire was
faster than REST, which is probably the most widely used
communication framework today. Furthermore, we could

Table 5: Request latencies (ms) for local, server-to-server,
tablet-to-server, server-to-tablet and tablet-to-tablet. Note that
REST does not support communication to tablets.

RPC Protocol Local S→S T→S S→T T→T

Sapphire 0.08 0.16 5.9 3.4 12.0
Java RMI 0.05 0.12 4.6 2.0 7.2
Thrift 0.04 0.11 2.0 2.0 3.6
REST 0.49 0.64 7.9 - -

not show REST performance for server-to-tablet and
tablet-to-tablet because REST’s client-server architecture
cannot accept HTTP requests on the tablet. Thus, REST
can be used only for tablet-to-server communication, re-
quiring the application to explicitly manage communica-
tion forms such as server-to-client or client-to-client.

Throughput Comparison. We measured request
throughput for the Sapphire DK and Java RMI. The
results (Figure 7) showed similar throughput curves, with
Java RMI object throughput approximately 15% higher
than that for Sapphire Objects. This is because Sapphire
null RPCs are not truly empty: they carry a serialized
structure telling the DK how to direct the call. To break
the cost down further, we measured the throughput of a
Java RMI carrying a payload identical to that of the Sap-
phire null RPC. This reduced the throughput difference to
3.6%; this 3.6% is the additional cost of Sapphire’s RPC
dispatching in the DK, with the remainder due to the cost
of serialization for the dispatching structure. Again, there
are many ways to reduce the cost of this communication in
Sapphire, but we leave those optimization to future work.

0K

20K

40K

60K

80K

100K

120K

 0 20 40 60 80 100 120

R
eq

ue
st

s/
s

Clients

Java RMI null RPC
Sapphire null RPC

Figure 7: Throughput of a Sapphire Object versus an RMI
Object.

Sapphire DK Operation Cost. We measured the
latency of several DK services. DK call latency depends
on the size and complexity of the object, since we use
Java serialization. Table 6 shows latency results for
creating, replicating, and moving SOs on servers and
tablets. Operation latencies were low when executed on
cloud servers. Tablets were considerably slower than
cloud servers. However, we expect most management
operations such as these to be performed in the cloud (i.e.,
we do not expect tablets to create large numbers of SOs).

The SO instantiation process can be expensive because

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 109

Table 6: Sapphire DK API latencies (ms).
create replicate move (over WiFi)

Object S T S T S→S T→S S→T T→T

Table 1.1 28 0.5 15 1.9 42 16 66
Game 1.1 29 0.5 16 2.1 49 19 67
TableMgr 1.1 27 0.6 18 2.2 50 16 78

the DK must create several objects locally: the SO, the
SO stub, the DM Proxy and the DM Instance Manager.
The DK must also create the DM Coordinator remotely
on a DK-FT node and register the SO with the OTS.
Communication with the DK-FT node and the OTS
accounted for nearly half the instantiation latency.

8.4 Deployment Manager Performance

We measured the performance of five categories of
DMs: caching, replication, peer-to-peer, mobility, and
scalability. Our goal was to examine their effectiveness
as extensions to the DK and the costs and trade-offs of
employing different DMs.

Caching. We evaluated two caching DMs:
LeaseCaching and ConsistentCaching. As expected,
caching significantly improved the latency of reads in both
cases. For theTodoList SO, which uses the LeaseCaching
DM, caching reduced read latency from 6 ms to 0.5 ms,
while write latency increased from 6.1 ms to 7.5 ms. For
the Game SO, which uses the ConsistentCaching DM, all
read latencies decreased, from 7-13 ms to 2-3 ms. With
consistent caching, the write cost to keep the caches and
cloud synchronized was significant, increasing from 29
ms to 77 ms. Overhead introduced by the DM was due
to the use of serialization to determine read vs. write
operations. For writes, the whole object was sent to be
synchronized with the cloud, instead of a compact patch.

Code offloading. We measured our ported, compute-
intensive applications with the CodeOffloading DM
for the Nexus 7 tablet and the Galaxy S smartphone.
Figure 8 shows the latencies for running each application
locally on the device (shown as Base), offloaded to the
cloud over WiFi, and offloaded over 3G. The offloading
trade-offs varied widely across the two platforms due
to differences in CPU speed, wireless, and cellular
network card performance. For example, for the Calculus
application, cloud offloading was better for the phone
over both wireless and 3G; however, for the tablet it
was better only over wireless. For the Physics engine,
offloading was universally better, but it was particularly
significant for the mobile device, which was not able to
provide real-time simulation without code offloading.

These cross-platform differences in performance show
the importance of flexibility. An automated algorithm
cannot always predict when to offload and can be costly.
Therefore, it is important for the programmer to be able to
easily change deployment to adapt to new technologies.

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se
co
nd
s

Execution Network

RegressionCalculusSudoku OCRPhysics ChessAI

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se

co
nd

s

Phone
1190 ms

RegressionCalculusSudoku OCRPhysics ChessAI

Tablet

Figure 8: Code offloading performance.

0K

50K

100K

150K

200K

250K

300K

 0 20 40 60 80 100 120 140

R
eq

ue
st

s/
s

Clients

1 node
2 nodes
3 nodes

Figure 9: Effects of applying the LoadBalancedFrontEnd DM.

Scalability. We built the LoadBalancedFrontEnd DM
to scale a stateless SO under heavy load. The DM creates
a given number of non-consistent replicas of an SO and
assigns clients to the replicas in a round-robin fashion.
Figure 9 shows the throughput of the SO serving null
RPCs when the DM creates up to 3 replicas. Throughput
scaled linearly with the number of replicas until the
network saturated at 257,365 requests/second.

Peer-to-Peer Deployments. Sapphire lets program-
mers move objects easily between clients and servers,
enabling P2P deployments that would be difficult or
impossible in existing systems. We measured three
deployments for the Game SO from our multi-player
game: (1) without a DM, which caused Sapphire to
deploy the SO on the server where it is created; (2) with
the KeepOnDevice DM, which dynamically moved the
Game object to a device that accessed it; and (3) with the
ConsensusRSM-P2P DM, which created synchronized
replicas of the Game SO on the callers’ devices.

For each deployment, Figure 10 shows the latency of
the game’s read methods (getScrambleLetters(),
getPlayerTurn() and getLastRoundStats()) and
write methods (play() and pass()). With the Game
SO in the cloud, read and write latencies were high for
both players. With the KeepOnDevice DM, the read
and write latencies were extremely low for the device
hosting the SO, but somewhat higher for the other
player, compared to the cloud version. Finally, with the
ConsensusRSM-P2P DM, read latencies were much

13

110 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0

5

10

15

20

Host Guest Host Guest Host Guest

m
ilis

ec
on

ds

getPlayerTurn getScrambleLetters getLastRoundStats pass play

29 26

No DM KeepOnDevice DM

30 6228

ConsensusRSM-P2P DM

Figure 10: Multi-player Game: different deployment schemes.

lower for both devices, while write latencies were higher.
In our scenario, the two tablets and the server were on the
same network. In cases where the two players are close
on the network and far from the server, the peer-to-peer
DMs would provide a valuable deployment option.

With the DMs, no cloud servers were needed to support
the Game SO; this reduced server load, but Game SOs
were no longer available if the hosting device were
disconnected. This experiment shows the impact of
different deployment options and the benefit of being
able to flexibly choose alternative deployments to trade
off application performance, availability, and server load.

9 Related Work
Researchers have built many systems to help applications
cope with deployment issues. Code-offloading systems,
like COMET [30], MAUI [19], and CloneCloud [14],
automatically offload computationally intensive tasks
from mobile devices to cloud servers. Distributed storage
systems [21, 12, 16] are a popular solution for server-side
scalability, durability and fault-tolerance. Systems like
PADS [7], PRACTI [6] and WheelFS [65] explored
configurable deployment of application data but not
runtime management of the entire application. Systems
like Bayou [67], Cimbiosys [55] and Simba [2] offer
client-side caching and offline access for weakly con-
nected environments. Each of these systems only solves
a subset of the deployment challenges that mobile/cloud
applications face. Sapphire is the first distributed sys-
tem to provide a unified solution to deployment for
mobile/cloud applications.

When building Sapphire’s DM library, we drew inspira-
tion from existing mobile/cloud deployment systems, in-
cluding those providing: wide-area communication [34],
load-balancing [31, 72], geographic replication [43, 63],
consensus protocols [37, 52], and DHTs [64, 57, 45].

Similar to our goal with Sapphire, previous language
and compiler systems have tried to unify the distributed
environment. However, unlike Sapphire, these solutions
have no flexibility. They either make all deployment
decisions for the application – an approach that doesn’t
work for the wide range of mobile/cloud requirements
– or they leave all deployment up to the programmer.

Compilers like Coign [32], Links [15], Swift [13] and
Hop [60] automatically partition applications, but give
programmers no control over performance trade-offs.
Single language domains like Node.js [51] and Google
Web Toolkit [29] create a uniform programming language
across browsers and servers, but leave deployment up to
the application. For mobile devices, MobileHTML5 [47],
MobiRuby [48] and Corona [17] support a single cross-
platform language. Sapphire supports a more complete
cross-platform environment, but programmers can select
deployments from an extensive (and extensible) library.

The DK’s single address space and distributed object
model are related to early distributed programming sys-
tems such as Argus [41], Amoeba [66] and Emerald [35].
Modern systems like Orleans [10] and Tango [4] provide
cloud- or server-side services. Fabric [42] extends the
work in this space with language abstractions that provide
security guarantees. These systems were intended for
homogeneous, local-area networks, so do not have the
customizability and extensibility of the Sapphire DK.

Overall, existing or early distributed programming
systems are not general-purpose, flexible or extensible
enough to support mobile/cloud application require-
ments. Therefore, in designing Sapphire, we drew
inspiration from work that has explored customizability
and extensibility in other contexts: operating systems [24,
8, 26, 59, 40], distributed storage [7, 20, 65, 61, 27],
databases [11, 5], and routers and switches [36, 46].

10 Conclusion
This paper presented Sapphire, a system that simplifies
the development of mobile/cloud applications. Sapphire’s
Deployment Kernel creates an integrated environment
with location-independent communication across mobile
devices and clouds. Its novel deployment layer contains a
library of Deployment Managers that handle application-
specific distribution issues, such as load-scaling, replica-
tion, and caching. Our experience shows that Sapphire:
(1) greatly eases the programming of heterogeneous,
distributed cloud/mobile applications, (2) provides great
flexibility in choosing and changing deployment deci-
sions, and (3) gives programmers fine-grained control
over performance, availability, and scalability.

Acknowledgements
This work was supported by the National Science
Foundation (grants CNS-0963754, CNS-101647, CSR-
1217597), an NSF Graduate Fellowship, the ARCS
Foundation, an IBM PhD Scholarship, Google, and the
Wissner-Slivka Chair in Computer Science & Engineer-
ing. We thank our shepherd Doug Terry and the reviewers
for their helpful comments on the paper. Finally, we’d
like to thank the UW Systems lab for their support and
feedback throughout the project.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 111

References
[1] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi: A

client notification service for internet-scale applications.
In Proc. of SOSP, 2011.

[2] N. Agrawal, A. Aranya, and C. Ungureanu. Mobile data
sync in a blink. In Proc. of HotStorage, 2013.

[3] Apache. Apache Thrift, 2013. http://thrift.apache.org.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.
Tango: Distributed data structures over a shared log. In
Proc. of SOSP, 2013.

[5] D. Batoory, J. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,
B. Twichell, and T. Wise. Genesis: An extensible database
management system. IEEE Transactions on Software
Engineering, 1988.

[6] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
Practi replication. In Proc. of NSDI, 2006.

[7] N. M. Belaramani, J. Zheng, A. Nayate, R. Soulé,
M. Dahlin, and R. Grimm. PADS: A policy architecture
for distributed storage systems. In Proc. of NSDI, 2009.

[8] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the SPIN operating
system. In Proc. of SOSP, 1995.

[9] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proc. of OSDI, 2006.

[10] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and
J. Thelin. Orleans: cloud computing for everyone. In
Proc. of SOCC, 2011.

[11] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J.
Shekita. Object and file management in the EXO-
DUS extensible database system. Computer Sciences
Department, University of Wisconsin, 1986.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems, 2008.

[13] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic
partitioning. In Proc. of SOSP, 2007.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic execution between mobile device
and cloud. In Proc. of EuroSys, 2011.

[15] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In Proc. of FMCO, 2006.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In Proc. of OSDI, 2012.

[17] Corona SDK, 2013. http://www.coronalabs.com/.

[18] J. Cowling, D. R. Ports, B. Liskov, R. A. Popa, and
A. Gaikwad. Census: Location-aware membership
management for large-scale distributed systems. Proc. of
USENIX ATC, 2009.

[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: making
smartphones last longer with code offload. In Proc. of
MobiSys, 2010.

[20] M. Dahlin, L. Gao, A. Nayate, A. Venkataramana, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Proc. of
NSDI, 2006.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In Proc. of SOSP, 2007.

[22] D. Diephouse and P. Brown. Building a
highly scalable, open source Twitter clone,
2009. http://fr.slideshare.net/multifariousprb/
building-a-highly-scalable-open-source-twitter-clone.

[23] Dropbox, 2013. http://dropbox.com.

[24] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An op-
erating system architecture for application-level resource
management. In Proc. of SOSP, 1995.

[25] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[26] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel and
language research. In Proc. of SOSP, 1997.

[27] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy,
and H. M. Levy. Comet: An active distributed key-value
store. In Proc. of OSDI, 2010.

[28] 2013. https://developers.google.com/google-apps/
marketplace/sso.

[29] Google web toolkit. https://developers.google.com/
web-toolkit/, October 2012.

[30] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code offload by migrating execution
transparently. In Proc. of OSDI, 2012.

[31] HAProxy: A reliable, high-performance TCP/HTTP load
balancer, 2013. http://haproxy.1wt.eu/.

[32] G. C. Hunt and M. L. Scott. The coign automatic
distributed partitioning system. In Proc. of OSDI, 1999.

[33] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proc. of USENIX ATC, 2010.

[34] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: a toolkit for mobile
information access. In Proc. of SOSP, 1995.

[35] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. In Proc. of SOSP, 1987.

15

112 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. In Proc. of SOSP,
1999.

[37] L. Lamport. Paxos made simple. ACM Sigact News, 2001.

[38] C. Leau. Spring Data Redis - Retwis-J, 2013.
http://docs.spring.io/spring-data/data-keyvalue/
examples/retwisj/current/.

[39] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems with
the falcon spy network. In Proc. of SOSP, 2011.

[40] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in Hydra. In Proc. of SOSP,
1975.

[41] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler.
Implementation of Argus. In Proc. of SOSP, 1987.

[42] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers. Fabric: A platform for secure distributed
computation and storage. In Proc. of SOSP, 2009.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with COPS. In Proc. of SOSP, 2011.

[44] J. Maassen, R. Van Nieuwpoort, R. Veldema, H. Bal,
T. Kielmann, C. Jacobs, and R. Hofman. Efficient Java
RMI for parallel programming. ACM Transactions on
Programming Languages and Systems, 2001.

[45] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metric. In
Proc. of IPTPS, 2002.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: Enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 2008.

[47] Moblie HTML5, 2013. http://mobilehtml5.org.

[48] MobiRuby, 2013. http://mobiruby.org/.

[49] MySQL, 2013. http://www.mysql.com/.

[50] C. Nester, M. Philippsen, and B. Haumacher. A more
efficient RMI for Java. In Proc. of Java Grande, 1999.

[51] Node.js, 2013. http://nodejs.org/.

[52] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support highly-available
distributed systems. In Proc. of PODC, 1988.

[53] Parse, 2013. http://parse.com.

[54] M. Philippsen, B. Haumacher, and C. Nester. More
efficient serialization and RMI for Java. Concurrency:
Practice and Experience, 2000.

[55] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
M. Walraed-sullivan, T. Wobber, C. C. Marshall, and
A. Vahdat. Cimbiosys: A platform for content-based
partial replication. In Proc. of NSDI, 2009.

[56] Redis: Open source data structure server, 2013.
http://redis.io/.

[57] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. In Proc. of Middleware, 2001.

[58] Amazon S3, 2013. http://aws.amazon.com/s3/.

[59] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proc. of OSDI, 1996.

[60] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language
for programming the web 2.0. In OOPSLA Companion,
2006.

[61] A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible
distributed file system. In Proc. of the Workshop on the
Management of Replicated Data, 1990.

[62] Simple object access protocol. http://www.w3.org/TR/
soap/.

[63] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In Proc. of
SOSP, 2011.

[64] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of SIGCOMM,
2001.

[65] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.
Kaashoek, and R. Morris. Flexible, wide-area storage for
distributed systems with WheelFS. In Proc. of NSDI, 2009.

[66] A. S. Tanenbaum, R. Van Renesse, H. Van Staveren, G. J.
Sharp, and S. J. Mullender. Experiences with the Amoeba
distributed operating system. Commun. ACM, 1990.

[67] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in bayou, a weakly connected replicated storage
system. In Proc. of SOSP, 1995.

[68] Twimight open-source Twitter client for Android, 2013.
http://code.google.com/p/twimight/.

[69] Voldemort: A distributed database, 2013. http:
//www.project-voldemort.com/voldemort/.

[70] C. Watkins and P. Dayan. Q-learning. Machine Learning,
1992.

[71] D. A. Wheeler. SLOCCount, 2013. http:
//www.dwheeler.com/sloccount/.

[72] Zen load balancer, 2013. http://www.zenloadbalancer.
com/.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 113

Pebbles: Fine-Grained Data Management Abstractions for
Modern Operating Systems

Riley Spahn, Jonathan Bell, Michael Z. Lee∗, Sravan Bhamidipati,
Roxana Geambasu, and Gail Kaiser

Columbia University, ∗The University of Texas at Austin

Abstract
Support for fine-grained data management has all but

disappeared from modern operating systems such as An-
droid and iOS. Instead, we must rely on each individual
application to manage our data properly – e.g., to delete
our emails, documents, and photos in full upon request;
to not collect more data than required for its function;
and to back up our data to reliable backends. Yet, re-
search studies and media articles constantly remind us of
the poor data management practices applied by our appli-
cations. We have developed Pebbles, a fine-grained data
management system that enables management at a pow-
erful new level of abstraction: application-level data ob-
jects, such as emails, documents, notes, notebooks, bank
accounts, etc. The key contribution is Pebbles’s ability
to discover such high-level objects in arbitrary applica-
tions without requiring any input from or modifications
to these applications. Intuitively, it seems impossible
for an OS-level service to understand object structures
in unmodified applications, however we observe that
the high-level storage abstractions embedded in modern
OSes – relational databases and object-relational map-
pers – bear significant structural information that makes
object recognition possible and accurate.

1 Introduction
Despite recent high-profile failures in applications’

management of our data [2], in the absence of system-
level support for fine-grained data organization, we are
forced to entrust them with our data. When users perform
day-to-day data management activities – deleting indi-
vidual emails, identifying specific data that was viewed,
or sharing pictures – they are forced to rely on applica-
tions to behave properly. Yet, a 2010 study of 30 popu-
lar Android applications showed that 20 leaked sensitive
data, such as contacts or locations [11]. Our own study of
deletion practices within mobile apps, described later in
this paper, revealed that 18 of 50 popular Android appli-
cations left information behind instead of deleting it. No-
tably, we found that until 2011, Android’s default email
application left behind the attachments of deleted emails
while deleting the messages themselves.

Although a plethora of system-level data management
tools exist – including encrypted file systems [14, 16],
deniable file systems [42], auditing file systems [12], or
assured delete systems [28] – these tools operate at a
single level of abstraction: files. Without a one-to-one

mapping between user-relevant objects (for example, in-
dividual email messages in a mail client or documents in
a word processor) and files, such systems provide poor
granularity, preventing end-users from protecting indi-
vidual objects that matter to them.

Consider Android’s default email application: it stores
each email’s contents and to/from/subject fields as sev-
eral rows in a SQLite database (all emails are stored in
the same DB, which is itself stored as a single file), at-
tachments as files, and cached renderings of messages in
different files. Such complex object-to-file mappings are
typical in Android, as our large-scale measurement study
of Android storage patterns shows (§3). Moreover, oth-
ers have observed complex storage layouts in other OSes,
such as OSX, where researchers have concluded that “a
file is not a file” but a complex structure with complex
access patterns [18].

Given the complexity of these object-to-file mappings,
we ask: is it possible for system-level tools to support
management and protection at the granularity of user-
relevant objects? Intuitively, this would require devel-
opers to specify the structure of their applications’ per-
sisted data to the operating system. Nevertheless, we ob-
serve that the high level storage abstractions included and
predominant in today’s operating systems – the SQLite
relational database in Android and the CoreData object-
relational mapper in iOS – bear sufficient structural infor-
mation to recover these user-relevant data objects from
unmodified applications.

We call these objects logical data objects (LDO), ex-
amples of which include an email (including its to, from,
subject, body, attachments and any other related infor-
mation); a mailbox including all emails in it; a bank ac-
count in a personal finance application; etc. We present
Pebbles, a system that exposes LDOs to protection tools,
without introducing any new programming models or in-
terfaces, which can be prone to programmer error, slow
adoption, or incompatibility with legacy applications.

We implemented Pebbles and several new protection
tools based on it on the Android platform. Each of these
tools provides protection at the LDO level, leveraging
Pebbles to greatly simplify their development. Using
Pebbles tools, users can mark objects from their exist-
ing applications to verify their proper deletion, protect
their access from other applications, and back them up to
the clouds they trust.

114 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In a study of 50 popular Android applications, we
found Pebbles to be highly effective in automatically
identifying LDOs. Across these apps, object recogni-
tion recall was 91% and precision was 97%. In other
words, in 91% of the cases, there was no leakage of data
from user-visible objects to LDOs, and in 97% of the
cases, there was no over-inclusion of extra data beyond
user expectation in LDOs. Pebbles relies on several key
assumptions based on common practices. Many of the
cases in which Pebbles had poor accuracy, it could have
been addressed had the developers followed these com-
mon practices.

Overall, this work makes the following contributions:
1. A study of over 470,000 Android apps, analyzing,

for the first time at scale, the storage abstractions in
common use today (§3). Our results suggest major
differences compared to traditional storage abstrac-
tions, which render file-level data management in-
effective while creating untapped opportunities for
object-level data management.

2. The first design and implementation of a persistent
data object recognition system that requires no
app changes (§4 and §6). Our design taps into
the opportunities observed from our large-scale
Android app study. We make our code available
from https://systems.cs.columbia.
edu/projects/os-abstractions.

3. Four protection tools implemented atop Pebbles,
demonstrating the power and value of application-
level objects to protection tools (§5).

4. An evaluation of LDO construction accuracy with
Pebbles over 50 popular applications from Google
Play, showing it to be effective in practice (§7) and
underscoring its well-defined failure modes (§8).

2 Motivation and Goals
We begin by presenting a set of example scenarios that

highlight the need for fine-grained data management sup-
port within modern OSes.
2.1 Example Scenarios
Scenario 1: Object Deletion: Ann, an investigative
journalist, has received an extremely sensitive email on
her phone with an attachment that identifies her sources.
To protect her sources, Ann does her due diligence by
deleting the email immediately after reading its con-
tents and restarting her phone to clean up any traces left
in memory. Her phone is already configured with an
assured-delete file system [28] that deletes data promptly
upon request. Worried that the application might have
created a copy of her data without her knowledge or con-
trol, she wonders: Is there any remnant of that email left
anywhere on the phone? She is disappointed to realize
that she has zero visibility into the data stored on her
device. Weeks later, she learns that her fears were well-

founded: the email app she is using contains a bug that
leaves attachments intact when an email is deleted.

Scenario 2: Object Access Auditing: Bob, a financial
auditor, uses his phone for all interactions with client
data while on field engagements. Recently, Bob’s device
was stolen. Fearing that his fingerprint unlock might
not withstand motivated attackers [41], Bob asked his
IT admin a natural question: Has any of my clients’
data been exposed? The admin’s answer was mixed.
Although activity on Bob’s phone was tracked by a re-
mote auditing file system [12], the logs show that a file,
/data/data/com.android.email/cache/7dcee8,
was accessed immediately before the phone’s wipe-out.
The file stores the HTML rendering of an email, but no
one knows which email. Bob is left wondering what he
should disclose to clients about the potential exposure of
their data, and to which clients, since neither he nor the
IT staff can map that file to a specific client or email.

Scenario 3: Object Access Restriction: Carla, a lo-
cal politician, uses her phone to take photos for profes-
sional purposes, but she has several personal photos on
it as well. She uses a cloud-based photo editor to en-
hance her promotional photos before posting them. Due
to the coarse-grained permissions model of her Android
device, she must provide this photo editor with access to
all of her photos in order to use it. Carla is concerned that
the photo editor may be secretly collecting all the photos
from her device, including several potentially sensitive
photos that could be politically compromising.

2.2 Goals and Assumptions
The above hypothetical users, along with millions of

real-life users of mobile technology, have a mental model
of application-level objects that is not matched by cur-
rent protection tools. Ann wants to ensure that a par-
ticularly sensitive email is deleted in full, including at-
tachments, to, from, any related caches, and other fields;
Bob wants to know the sender or contents of a compro-
mised email instead of a meaningless file name; Carla
wants to protect a few of her most sensitive photos from
prying applications. Traditional protection tools, such as
file-based encryption, auditing, or secure deletion cannot
fulfill these needs because the mapping between objects
and files is application-specific and complex. The alter-
native, whole-disk encryption [1, 38], does not provide
the flexibility that these users need.

To support such object-level data management needs,
we developed Pebbles, a system that automatically re-
constructs application-level logical data objects (LDOs)
from unmodified applications. Pebbles exposes these
LDOs to any system-wide protection tool that could ben-
efit from understanding application-level objects. An en-
cryption system could use LDOs to support meaningful
fine-grained protection as an extra layer on top of whole-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 115

disk encryption. An auditing system could use LDOs to
provide meaningful information about an accessed com-
ponent. An object manager could reveal to users which
parts of an object are left after deletion. And a backup
system could let users choose their most sensitive objects
for backup onto a trusted, self-managed server, letting
the rest be backed up into the cloud.
Goals. The Pebbles design was guided by three goals:

G1: Accurate and Precise Object Recognition: Pebbles
objects (LDOs) must closely match application-
level persisted objects. This includes: (a) avoiding
data leaks (if an item belongs to an LDO it must be
included), and (b) avoiding data over-inclusions (if
an item does not belong to an LDO it should not be
included).

G2: Meaningful Granularity: Pebbles must recognize
LDOs that are meaningful to users, such as individ-
ual emails.

G3: No New Application APIs: Pebbles must not require
app developers to use new APIs; it can recommend
developers to follow existing common practices but
must work well even if they do not precisely follow.

Our first goal is accurate and precise object recogni-
tion (G1). We aim to achieve (1) good object recognition
recall by avoiding leaks and (2) good object recognition
precision by avoiding over-inclusions. We acknowledge
that perfect recall or precision cannot be guaranteed in ei-
ther an unsupervised approach or in a supervised API ap-
proach with imperfect developers, since a poorly written
app could convolute data structure in a way that Pebbles
cannot recover. However, we wish to formulate clearly
all potential sources of leakage, to design mechanisms to
address the leakages for most applications (§4.2), and to
remind developers how they could avoid such leakages
by following existing common practices (§8).

Related to G1, our second goal (G2) is to recognize
relevant and meaningful LDOs. For example, in an
email app, Pebbles should be able to recognize individual
emails, not just coarse accounts with many emails. We
note here that Pebbles identifies application-level objects
that are persisted in stable storage, and we assume that
those have a direct mapping onto the objects that users
interact with and wish to protect.

G3 stems from our skepticism that developers will
convert applications to use new security-related APIs or
correctly use such APIs. However, we do expect that
most developers will follow certain common practices
(as evaluated in §3). Pebbles addresses this by leveraging
application-level semantics already available within stor-
age abstractions such as database schemas, XML struc-
tures, and the file system hierarchy. Pebbles also pro-
vides recommendations for developers which are rooted
in already popular development practices (§8).

Traditional Linux OS Modern Android OS
(thinner OS, taller apps) (taller OS, thinner apps)

FS
Standard Libs

Kernel

App

custom
store

App

SQLite

App

My
SQL

FS

Standard Libs

Kernel

App AppPebbles
protection

Traditional
protection

App

Android Framework

SQLite
K-V
Store Files

Fig. 1: OS Storage Abstraction Evolution. Modern OSes pro-
vide higher-level abstractions for data management, yet protec-
tion is often at the traditional file level. Pebbles, our aligns data
protection with modern abstractions.

Threat Models and Assumptions. Pebbles is designed
to support fine-grained data management – such as en-
cryption, auditing, and deletion of individual emails,
photos, or documents – within modern OSes. The spe-
cific threat model for a given protection tool depends on
that tool’s goal; however, Pebbles’s mechanisms should
bolster the guarantees applications can provide. In gen-
eral, we assume that protection tools are trusted system-
wide services. This is similar to assumptions made by
encrypted file systems, assured-delete file systems, and
other current fine-grained data management tools.

We also assume that mobile applications that create or
have access to a particular object, or part thereof, will not
obfuscate their data’s structure or act maliciously against
Pebbles. For example, they will not create their own
data formats and will not willfully interfere with analysis
mechanisms involved in object discovery. An application
that has not yet been given access to data of a particular
object, however, need not be trusted.

The scope of Pebbles is confined to those application-
level objects that are persisted into a device’s stable stor-
age. We explicitly ignore attackers with access to either
RAM or the underlying OS or hardware. If volatile mem-
ory protection is important, we recommend combining
Pebbles with secure memory deallocation [6, 7, 15], OS
buffer cleaning [10], and idle in-RAM data eviction [39]
mechanisms. We also assume that secure disk scrub-
bing [29, 40] is deployed. In addition, while many mod-
ern applications include a cloud component, which stores
or backs up data, Pebbles currently ignores that compo-
nent. In the future, we plan to extend Pebbles LDOs to
transcend the local and cloud environments.

While some may believe that users are incapable of
dealing with fine-grained controls, we believe that there
are many circumstances in which users want and are ca-
pable of handling some level of control, particularly for
their most sensitive data. Evidence that users are capa-
ble of handling, and require, some level of control when
they feel it is important for them to do so is available in
prior studies [5, 20]. Such evidence can also be gauged

116 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Storage
Abstraction	

# Apps	

(of 98)	
 Example Apps	

No storage	
 5	
 Cardio Trainer	

DB only	
 43	

CWMoney, Amazon, BestBuy,
Browser, Calendar, Contacts,
ColorNotes, EverNote	

FS only	
 3	
 Exchange Rates	

KV only	
 5	
 Google Talk, Biorythms	

DB+FS	
 24	
 OINote, Angry Birds, DropBox,
Gallery	

DB+KV	
 1	
 Twitter	

FS+KV	
 2	
 Adobe Reader, Temple Run	

DB+FS+KV	
 15	
 Email, Antivirus, Amazon Kindle,
Astro File Manager, Box, EBay	

App	
 Object	
 DB/FS Use	

Email	

(DB+FS+KV)	

Email	
 to/from/date in one DB table; contents
in another table; attachments in FS	

Mailbox	
 name/server/account in one DB table;
includes emails; backup in kv	

Account	
 address/meta data in one DB table;
includes mailboxes, emails	

OINote	

(DB+FS)	
 Note	
 title/note/tags/ in one DB table; notes

exported as files in /sdcard FS	

CWMoney	

(DB only)	

Expense	
 name/amount in one DB table	

Category	
 category name in one DB table;
includes expenses	

Account	
 name/balance in one DB table;
includes categories, expenses	

Storage
Library	

# of Apps	

(of 476,375)	

ORMLite	
 6,846	

(1.4%)	

SQLCipher	
 168	

(0.3%)	

DB4o	
 116	

(0.2%)	

H2	
 16	

(0.0%)	

Other 4 libs
combined	

38	

(0.0%)	

(a) Use of SQLite (DB), FS, and key/value (KV) store	
 (b) Third-party
library use	

(c) Example object structures	

Fig. 2: Storage API Usage in 98 Android Applications. (a) Number of apps that use the various storage abstractions in Android.
Most apps use DB, but many also use FS and KV together with DB. (b) Use of eight other storage libraries among 476K free apps
from Google Play. Third-party storage libraries are largely irrelevant. (c) Structure of sample objects in a few popular apps. Object
structure is complex and spans multiple abstractions.

from the immense popularity of data hiding apps, such
as Vault-Hide [25] and KeepSafe Vault [19], which have
garnered over 10 million downloads each and let users
hide data, such as photos, contacts, and SMSes.

3 Study: Android Storage Abstractions
The Pebbles design is motivated and informed by our

high-level observation that storage abstractions within
modern OSes are evolving in major yet unquantified
ways. Fig.1 shows this evolution. Specifically, we hy-
pothesize that the inclusion of high-level storage abstrac-
tions, such as the SQLite database in Android or the
CoreData abstraction in iOS, has created a new “narrow
waist” for storage abstractions that largely hides the tra-
ditional hierarchical file system abstraction. These new
storage abstractions should bear sufficient structure to let
us reverse engineer application-level data objects from
the OS’s vantage point.

In this section, we perform a simple measurement
study to gauge the use of these abstractions and extract
useful insights to inform our design of Pebbles. We
specifically ask the following questions:

Q1 What storage abstractions do Android apps use?
Q2 How do individual apps organize their data?
Q3 How are these abstractions used?

Background. Android provides three storage abstrac-
tions [13] relevant to this paper: 1. SQLite Database:
Stores structured data. 2. XML-based Key/Value Store:
Stores primitive data in key/value pairs (also known as
the SharedPreferences API). 3. Files: Stores unstruc-
tured data on the device’s flash memory.
Methodology. We ran both static and dynamic ex-
periments. Static experiments can be run at large
scale but lack precision, while dynamic experiments

provide precise answers but can only be run at small
scale. For static experiments, we decompiled An-
droid applications and searched their source code for
imports of the storage abstractions’ packages (e.g.,
android.database.sqlite). We ran large-scale,
static experiments on 476,375 apps downloaded through
a February 2013 crawl of Google Play [44], the main
Android app market. For the dynamic experiments (over
98 apps), we installed Android apps on a Nexus S phone,
manually interacted with them, and logged their accesses
to the various APIs. These were some of the most popu-
lar apps, cutting across categories such as email clients,
editors, banking, shopping, social, and gaming.

Results. Q1 Answer: Apps primarily use SQLite, but
use other abstractions as well. Fig. 2(a) classifies apps
according to the Android-embedded storage abstractions
they use during execution. It shows that the usage of
Android-provided abstractions – SQLite (denoted DB)
and the key/value store (denoted KV) – eclipses the tradi-
tional file abstractions (denoted FS). Very few apps rely
on the FS as their only storage abstraction (4/98). Al-
most half of the apps rely solely on SQLite for all of their
storage needs (43/98), while almost all apps that have
some local storage use SQLite (81/92). Even apps that
one would consider to be primarily file-oriented (e.g.,
Astro File Manager, DropBox) use SQLite. A signifi-
cant fraction of the apps (41/98) rely on more than one
abstraction, and a notable fraction (15/98) rely on all
three abstractions. This last result suggests a complex
disk layout, a topic discussed further below. Overall, the
most popular formations are: DB-only (43/98), DB+FS
(23/98), and DB+FS+KV (15/98).

A related question is whether mobile apps use storage
abstractions other than those provided by Android. An-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 117

gry Birds, for example, stores game data and high scores
in opaque binary files. We also searched the Internet for
recommended Android storage options beyond those in-
cluded in the OS, finding eight third-party libraries. We
searched our 476K-app corpus for use of those libraries,
and present the results in Fig. 2(b). None of these li-
braries are popular: only 2% of the apps use even one
of them. Our dynamic experiments found that none of
these libraries are used and provided no indication of ad-
ditional libraries that we might have overlooked.

Q2 Answer: Data objects span multiple storage ab-
stractions. Fig. 2(c) shows the structures of several
logical data objects, representative of what users think
and care about in various applications. It shows that ob-
jects often have complex structures that involve multi-
ple storage abstractions. For example, Android’s default
email client, an example of the DB+FS+KV formation,
stores various fields of the email object in two DB ta-
bles, attachments in the FS, and account recovery infor-
mation in the KV. Object structure is fairly complex even
for DB-only apps, such as CWMoney, a personal finance
app, where a category includes metadata in one table and
all expenses in another table. It thus spans multiple ta-
bles that are not linked together through explicit foreign
keys. This suggests that protecting each storage abstrac-
tion separately will not work: any data protection ab-
straction at the end-user object level must span multiple
storage abstractions.

Q3 Answer: SQLite is the hub for data management.
Given this complexity, a natural question concerns how
one can even begin to build some meaningful protection
abstraction. Using a modified TaintDroid (a popular data
flow taint tracking system for Android [11]) version, we
tracked the flow of data between storage abstractions,
confirming that at least 70/81 apps that use the DB use
it as a central hub for managing their data. By cen-
tral hub, we mean that data flows mostly from the DB
into the FS/KV (when they are used) or is accessed us-
ing pointers from the DB; an observation that was true
for 27 of the 38 apps that use FS or KV in addition to
the DB. For example, many apps, including Email, use
files to store caches of rendered versions of data stored
in SQLite (such as the body of an email) or blobs of data
that are indexed and managed through SQLite (such as
the contents of pictures, videos, or email attachments).

Thus, SQLite is not just frequently used; it is the
central abstraction in Android that originates or in-
dexes much of the data stored in the other abstractions.
This result is encouraging because, intuitively, relational
databases bear more explicit structure.
Implications for the Pebbles Design. Overall, our re-
sults suggest that while the storage abstraction landscape
is fairly complex in Android, there is sufficient unifor-
mity to warrant constructing of a broadly applicable ob-

Pe
bb

le
s-

A
nd

ro
id

(m

od
ifi

ed
)

Unmodified Application

Li
nu

x
(u

nm
od

ifi
ed

)

Modified Java Runtime (Tracks
data flow with TaintDroid)

Modified
SQLite

Modified
XML store

Modified
FS API

Pebbles Relationship Registration

DB
Fil
es

DB
Fil
es

<>…<><>…<><xml>
<>…<>
</xml>

DB Files XML Files

<>…<><>…<>011
0101010
1010101

Opaque Files

Protection Tool

Pebbles API
Pebbles

Object Manager
LDOs

Fig. 3: The Pebbles Architecture. Consists of a modified An-
droid framework and a device-wide Pebbles Object Manager.
The modified framework identifies relationships between per-
sisted data items, such as rows, XML elements, or files. The
Pebbles Object Manager uses those relationships to construct
an object graph; nodes map to persisted data items and edges
map to relationships.

ject system. Such a system must detect relationships be-
tween objects stored in different abstractions. The re-
sults suggest that SQLite, a relational database that bears
significant inherent structure, is the predominant storage
abstraction in Android. Raw files, which lack such struc-
ture, are just used for overflow storage of bulk data, such
as images, videos, and attachments. Based on these in-
sights, we construct Pebbles, the first system to recog-
nize application-level objects within modern operating
systems without application modifications.

4 The Pebbles Architecture
Pebbles aims to reconstruct application-level LDOs –

emails and mailboxes in an email app, saved high scores
in a game, etc. – from the bits and pieces stored across
the various data storage abstractions without requiring
application modifications.
4.1 Overview

Fig. 3 shows the Pebbles architecture, which consists
of two core components: (1) Pebbles Android, a mod-
ified Android framework that interposes on the various
storage APIs, and (2) the Pebbles Object Manager, a sep-
arate device-wide entity for building object graphs and
interacting with protection tools.

At the most basic level, the Pebbles Android frame-
work understands units of storage (e.g., rows in DB, ele-
ments in XML, and files in FS) which become nodes in
our object graph. The Pebbles Android framework then
retrieves explicit relationships between these nodes and
derives implicit relationships by tracking data flows be-
tween these units. The Pebbles Android framework reg-
isters these relationships with the Pebbles Object Man-
ager using an internal registration API. The Pebbles Ob-
ject Manager then stores these relationships, compiles a
device-wide object graph, derives LDOs from the graph,
and exports the LDOs to protection tools via the Pebbles

118 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Attachment
file

Account

Mailbox

Message

Body
Attachment

fk

fk

fk

fk

Cache
file

<XML>

SQLite DB

access

data

data

SharedPreference

Fig. 4: Android Email App Object Structure. A simplified
object graph for one account with one mailbox, message, and
attachment. Each node represents an individual file, row, or
XML element, and each edge represents a relationship. While
objects can be spread across the DB, FS, and Shared Prefer-
ences, the DB remains the hub for all data.

API. LDOs are defined as follows: given a node in the
graph (e.g., corresponding to a row in the Email table)
an LDO is the transitive closure of the nodes connected
to it. §7 evaluates Pebbles performance in terms of pre-
cision and recall. In the context of the graph, a failing
of recall is missing nodes which should be included in
a transitive closure (“leakage”); a failing of precision is
including nodes which should not be included in a tran-
sitive closure (“over inclusion”).

To provide a concrete example of the challenges faced
by Pebbles, consider Fig. 4, a simplified view of how data
is stored by the default Android Email application. As
described previously in §3, this app stores its data across
all three storage abstractions: SQLite database, Shared-
Preference and individual files. Although a SharedPref-
erence is used for account recovery, and several files are
used to store an attachment and a cached rendering of it,
the majority of the data is stored in SQLite.

4.2 Building the Object Graph
The object graph is the center of innovation in Peb-

bles: it directly represents Pebbles’s understanding of
the structure of an app’s data and lets it construct LDOs.
Each file, row, and XML element is assigned a 32 bit
device-wide globally-unique ID (GUID) that is stored
with the data item, which are hidden from and unmod-
ifiable by applications. For database rows, the GUID is
stored as an extra column in the row’s table; for XML, it
is stored as an attribute of each element; and for files, it is
stored in an extended attribute. When a row, element, or
file is read, the data coming from it is “tainted” with its
GUID and tracked in memory using a modified version
of the TaintDroid taint tracking system [11].

Pebbles builds the object graph incrementally by
adding new files/rows/XML elements as nodes into the
graph as they are created. It also adds directed edges
(called relationships) between nodes in the graph as they
are discovered. For example, when data tainted with one
GUID is written into a file/row/XML element with an-
other GUID, a relationship is registered. All nodes and
edges of the graph are registered by the modified Android
framework with the Pebbles Object Manager, where they

are persisted in a database. We next describe the mecha-
nisms used to build this graph, formalized in Fig. 5.

Data flow propagation relationships: It is easy to see
a strawman approach to detecting relationships between
objects: when Pebbles detects that data tainted with node
A’s GUID is written into node B, it adds A ↔ B to the
object graph. This approach can capture all data flow
relationships that occur within an application, regardless
of the storage abstraction used. However, without pre-
cise information about the relationship between the two
nodes, Pebbles is forced to assume the “worst case” sce-
nario: that both nodes are part of the same LDO. Left
unchecked, this so called taint explosion could eventu-
ally lead to all of an app’s objects being included in the
same LDO. Such behavior contradicts our primary goal
of accurate and precise object recognition (G1). As we
will see in §7.1, this naı̈ve approach leads to unaccept-
ably low precision (70%).

Utilizing explicit relationship information: Our next
relationship detection mechanism relies on explicit re-
lationships that directly communicate the programmer’s
view of his data structure to improve the precision. In
a relational database, explicit relationships are defined in
the form of foreign keys (FKs), which encode the precise
relationship between two tables, based on primary keys
(PKs). Interestingly, we can also extract a notion of for-
eign keys when relating DB rows to files: in some apps,
the name of the file corresponds to the PK of the row
to which it refers. Foreign keys encode the directional-
ity of relationships, specifying for instance the difference
between a “has-a” relationship and an “is-part-of” rela-
tionship. If node A has an FK to node B, then Pebbles
adds the edge A → B (overriding any pre-existing bi-
directional edge detected from data flow propagation).
In this way, foreign keys are precise but limited in cov-
erage because they require programmers to specify them
explicitly.

Increasing recall: Pebbles relies on one final relation-
ship detection mechanism, access relationships. Access
relationships can be seen as similar to data relationships,
but while data relationships identify relationships as they
are written to storage, access relationships identify rela-
tionships as they are read. Consider the case where an
application has some data in memory that has not been
synced to stable storage (and therefore is not yet tainted
with any node’s GUID). The app uses the data to gener-
ate the index for key-value object A and also writes that
data into database row B. In the absence of explicit rela-
tionship information, we would hope that data propaga-
tion would detect the relation; however, it cannot because
there is no data flow relationship when the data is writ-
ten. We call this situation a parallel write, and resolve
it by detecting data flow relationships when data is read

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 119

Property 4.1. Apps define explicit relationships through
FKs in DBs, XML hierarchies, or FS hierarchies

Property 4.2. The SQLite database is the hub of all per-
sisted data storage and access

Object Graph Construction Algorithm:

1. Data propagation: If data from A is written to B, then
A ↔ B

2. If possible, refine A ↔ B to A → B using Prop 4.1
3. Access propagation: If data from A is used to read B,

then A ↔ B

4. If possible, refine A ↔ B to A → B, again using Prop
4.1

5. Utilize Prop 4.2, eliminating access based data propa-
gation relationships that do not include any DB nodes.

Fig. 5: Object Graph Construction Rules.

in from storage: if data tainted with node A’s GUID is
used to access (read) node B, Pebbles adds A ↔ B to the
object graph. Again, this process is agnostic to the stor-
age abstraction that the data is stored in, and relies only
on data flow within the app. Access relationships can
become an even greater source of imprecision than data
relationships. For example, one could use data from one
row, such as a timestamp, to select all the rows with that
timestamp. Does that imply that all those rows should be
considered as one object? Probably not.

Graph Generation Algorithm: Fig. 5 defines the algo-
rithm used to construct the object graph, based on the
observation that the DB is the hub of all persisted data.
Step (1) leverages data flow propagation to construct a
base graph, while (2) refines that graph by applying ex-
plicit relationship information. Step (3) applies access
based data flow propagation to increase recall, and (4)
again refines that graph with explicit relationship infor-
mation. §7.1 evaluates LDO construction accuracy and
precision in detail.

4.3 LDO Construction and Semantics
After constructing the object graph using the above se-

mantics, Pebbles extracts the LDOs. Within the graph,
an LDO is defined as the set of reachable nodes starting
with a given node (the root of the object). Consider the
email graph (Fig. 4), one can define a number of LDOs:
an Account LDO, rooted in one Account-table row and
containing multiple instances of five other row types, two
files, and one XML entry; an Email LDO, rooted in one
Message-table row and containing another row and one
file, and so on. Although one LDO of each type is de-
fined in the figure, in reality, there would be as many
LDOs as there are instances of that type.

It is possible and correct for a single node to be part of
multiple otherwise separate LDOs, in which case we say
that the LDOs overlap. Consider, for instance, stateful
accumulators (e.g. counts or sums over objects, stored in

Interface Returned Objects

getLDOContent(GUID,

relevantOnly)

LDO rooted at GUID

getParentLDOs(GUID,

relevantOnly)

LDOs that contain GUID

Table 1: The Pebbles API for Accessing LDOs.

other objects), common resources (e.g. cache files that
contain information about multiple objects), or log files.

Pebbles exposes LDOs to protection tools via the Peb-
bles API, which consists of two functions (Table 1).
getLDOContent returns the LDO rooted at the given
GUID and getParentLDOs returns the LDOs contain-
ing the given GUID. Protection tools may specify with
each call if only LDOs that may be relevant to the end-
user should be returned.
4.4 From User-Level Objects to LDOs

Both of these API methods require an “object of in-
terest” as a parameter. Pebbles provides a framework for
protection tools to allow users to directly select an object
of interest (from the user interface), and then use that ob-
ject for future API calls. In this approach, a user enables
a “marking mode” from a device-wide menu item, and
then touches the item that they are interested in. Through
taint tracking, we can determine the internal GUID for
the object that was selected, and return that GUID back
to the protection tool. This feature makes designing user-
centric protection tools very easy: the tool need not con-
cern itself with determining which objects to protect.

The mechanisms described thus far are useful for
building a graph of all of an application’s objects, but
does not yet include a way to identify those objects that
are relevant to users. For instance, in our email appli-
cation there is another table, “sync state,” that stores
how recently an account was synchronized with the
server. Sync state should clearly not be considered its
own LDO, as its existence is essentially hidden from the
end-user – the user will likely consider whatever data is
stored here as, logically, part of the account. Pebbles
leverages its system-wide taint tracking to identify which
nodes in the object graph are directly displayed on the
screen, Pebbles marks those objects (and other LDOs of
the same type) as relevant. If an object is not relevant,
then Pebbles will not allow it to be the root node of an
LDO, instead including it as a member of the nearest par-
ent node displayed on the screen.

5 Pebbles-based Tools
To showcase the value of Pebbles, we built four differ-

ent applications that leverage its object graph.
5.1 Breadcrumbs: Auditing Object Deletion

Motivated by Scenario 1 in §2.1, Breadcrumbs lets
users audit the deletion of their objects – such as emails

120 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Algorithm 1 Breadcrumbs Pseudocode
function WASFULLYDELETED(LDO l) B →

for all getLDOContent(l) as x do
if x exists still then Add x → B
end if

end for
for all B as x do

Display x and getParentLDOs(x) to the user
end for

end function

or documents – by their applications. It uses Pebbles’s
primitives to track objects as they are being deleted and
identify any breadcrumbs left behind by the application.

Fig. 6: Breadcrumbs.

Users mark objects to au-
dit for deletion (using Peb-
bles’s object marking func-
tionality), and then delete the
object through their unmodi-
fied applications. They then
open the Breadcrumbs appli-
cation, which shows any per-
sisted data related to recently
tracked objects. In this way,
users are not inundated with notifications about deletions
and instead are only being presented with auditing infor-
mation upon request. Fig. 6 shows a screenshot of Bread-
crumbs’s output when the user deletes an email in the
Android email application. It shows the attachment file
left behind and provides meaningful information about
the leakage. A brief predefined interval after the user
deletes a tracked object, Breadcrumbs destroys all rele-
vant auditing information to protect the confidentiality of
the partially deleted object.

Algorithm 1 shows how Breadcrumbs uses Pebbles’s
APIs to obtain all information necessary to identify and
provide meaningful information about data left behind.
Given a selected UI object, Pebbles identifies the GUID
of the LDO represented by that LDO (as described
in the previous section), and then Breadcrumbs calls
getLDOContent to get all of its parts. For any part
that still exists in persistent storage – the attachment file
in this case – it displays meaningful metadata about that
node. For example, instead of just showing the file’s
path, which can be nondescript, Breadcrumbs uses Peb-
bles’s getParentLDOs function to retrieve the parent
node, presumably a row. It displays the row’s table name
(“Attachment” in Fig.6), providing more context for in-
formation left behind. While the specific user interface
we chose for Breadcrumbs can be improved, this ex-
ample underscores the great value protection tools like
Breadcrumbs can draw from understanding application-
level object structures.

Our evaluation of Breadcrumbs on 50 apps (§7.3), re-
veals that incomplete deletions are surprisingly common:

Fig. 7: Alert Screenshots. (L): TaintDroid, (R): PebbleNotify.

18/50 apps leave breadcrumbs or refuse to delete objects
from the local device.

Breadcrumbs could also be a useful tool for devel-
opers. A developer could proactively use Breadcrumbs
to ensure that they are responsibly handling their user’s
data.
5.2 PebbleNotify: Tracking Object Exfiltration

Inspired by TaintDroid’s data exfiltration tool [11], we
built PebbleNotify, a tool that tracks exfiltration at a more
meaningful object level. TaintDroid reveals data exfiltra-
tion at a coarse granularity: it can only tell a user that
some data from some provider was exfiltrated from the
device, but not the specific data that was leaked. For
instance, consider a cloud-based photo editing applica-
tion. A user might expect this application to upload the
photo being edited to a server for processing; however,
he may be interested in checking that no other photos
are exfiltrated. Shown in the left hand side of Fig.7,
TaintDroid would warn the user that data related to some
photo was uploaded, but not which photo or how many
photos. PebbleNotify is a 500 line of code application
built atop Pebbles that interposes on the same taint sinks
as TaintDroid, but provides object-level warnings. §6 de-
scribes in somewhat greater detail the modifications that
we made to TaintDroid to track individual objects with
high precision. Shown in the right hand side of Fig.7,
it leverages application-level data structures exposed by
Pebbles to give users meaningful, fine-grained informa-
tion about their leaked objects.
5.3 PebbleDIFC: Object Level Access Control

As a logical extension to PebbleNotify, consider the
case where rather than monitor the exfiltration of sensi-
tive data, users want to prevent specific apps from having
access to it. For example, in our previous example of a
user using a cloud-based photo editing application, per-
haps the user would rather simply prevent that photo edit-
ing app from having any access whatsoever to sensitive
photos. PebbleDIFC supports this use-case by interpos-
ing on Android content providers, the mechanism used
to share data between apps.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 121

PebbleDIFC allows users to select individual objects
that are sensitive, and then prevent them from being
shared with other applications (in this case, photos). As
with the rest of our protection tools, PebbleDIFC’s im-
plementation is straightforward. Before returning an ob-
ject from a content provider, PebbleDIFC checks a table
that maps apps to hidden objects, and prevents access to
hidden objects.

5.4 HideIt: Object Level Hiding
Whereas PebbleDIFC allows objects to be perma-

nently hidden from specific apps, HideIt supports a
slightly different use case: allowing objects to be selec-
tively hidden from all apps on the device, and then re-
displayed at some later point, and perhaps hidden again
later on. When objects are hidden (again, using Pebbles’s
marking mode), they are encrypted, and any record of
their existence is filtered, by interposing on storage APIs.
When objects are un-hidden, they are decrypted, and no
longer filtered from API results. HideIt is intended for
use-cases where small amounts of data need to be infre-
quently hidden from prying eyes, for instance, a parent
lending their phone to their child.

5.5 Other Pebbles-based Tools
Although we designed and implemented Pebbles for

Android, we believe that its object recognition mech-
anisms are applicable to other environments where a
database is used as the hub of storage. In particular,
we can imagine applying Pebbles as a software engi-
neering tool to help developers understand either current
or legacy applications where the database is the storage
hub. A developer could use Pebbles to explore undocu-
mented systems that do not make use of modern abstrac-
tions such as object relational mappers that would make
the system easy to understand or to determine whether an
application conforms to best practices and alert the de-
veloper if not. Understanding data structure from below
the application could also enable testing tools and policy
compliance auditing tools for cloud services [36]. We
leave investigation of such applications for future work.

6 Implementation
We implemented Pebbles and each of the four

above protection tools on Android 2.3.4 and TaintDroid
2.3.4. For Pebbles, we modify the SQLite, XML
key/value store (a.k.a. SharedPreferences), and Java
file system API to extract explicit structure, to inter-
cept read/write/delete operations, and to register rela-
tionships. We also make several key changes to the
TaintDroid tracking system, which we release as open
source (https://systems.cs.columbia.edu/
projects/os-abstractions). We next review
our TaintDroid changes, after which we describe some
implementation-level details of object graph creation.

TaintDroid Changes. To support Pebbles, we made
three modifications to TaintDroid: (1) we increase the
number of supported taints from 32 to several million, (2)
we implement multi-tainting to allow objects to have an
arbitrary number of taints simultaneously, and (3) we im-
plement fine-grained tainting. The first two TaintDroid
changes are necessary to track every row, file, and XML
element with a separate taint and are implemented with
a technique recently proposed in the context of another
taint tracking system [26]. We omit the details here for
space reasons.

The third TaintDroid change is motivated by mas-
sive taint explosion that we observed due to TaintDroid’s
coarse-grained tracking. Specifically, TaintDroid stores
a single taint tag per String and Array [11]. Deemed
a performance benefit in the paper, this coarse-grained
tracking is unusable in Pebbles: we observed extremely
imprecise object recognition and application-wide LDOs
due to this poor granularity. As one example, CWMoney,
a personal finance application, has an internal array that
holds selection arguments used in database queries. This
causes all nodes selected by that query to be related, de-
feating any hopes of object precision.

To address this problem, we modify TaintDroid to add
fine-grained tainting of individual Array and String el-
ements. To implement fine-grained tainting we add a
shadow buffer to the Dalvik ArrayObject that contains
the taint of each element in the array. If implemented
naively, the shadow arrays would likely double the mem-
ory required for each array. To minimize the memory
overhead from the shadow arrays we allocate the shadow
array only when a tainted element is inserted into the ar-
ray. This same optimization is implemented in [8]. In-
tuitively, only a small fraction of arrays in an device’s
memory should contain tainted elements (3-5% accord-
ing to our evaluation). §7.2 shows that this lazy shadow
array allocation significantly reduces the memory over-
head of precise fine-grained tainting. We release our
changes open source as a patch for TaintDroid.
Object Graph Implementation. The Pebbles graph
is populated incrementally during application execution
and persisted in a central database on the data partition
so the graph does not need to be regenerated on each re-
boot. Applications interact with the Pebbles API through
the Pebbles Object Manager that runs as part of the cen-
tral system server process. Graph edges are generated
on read and write operations to SQLite, shared prefer-
ences, and the file system. On read and write opera-
tions that generate new edges, requests for edge registra-
tion are placed on a queue within the application’s mem-
ory space. This lets Pebbles perform bulk asynchronous
registrations off of the main application thread improv-
ing application interactivity even during periods of heavy
edge creation. In its current implementation the registra-

122 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tion queue is not persisted to stable storage so it will be
lost on application crashes or restarts. This is a potential
attack vector that does not fall under the threat model for
non-malicious applications.

7 Evaluation
We evaluate Pebbles over 50 popular applications

downloaded from Google’s Android market on a Nexus
S running our modified version of Android 2.3.4. We
seek answers three key questions:
Q1 How accurate and precise is object identification in

Pebbles?
Q2 What performance overhead does it introduce?
Q3 How useful are Pebbles and the tools running atop?

Application Workloads. We chose 50 test applica-
tions from the top free apps within 10 different Google
Play Store categories, including Books and Reference,
Finance, and Productivity. We looked at the top 30
most popular applications within each category (by num-
ber of installs) and selected those that used stable stor-
age. We also added a few open-source applications
(e.g., OINote). The resulting list included: Email (An-
droid’s default email app), OINote (open-source note
app), Browser (Android’s default), CWMoney (personal
finance app), Bloomberg (stocks app), and PodcastAd-
dict (podcast app). For each application, our workload
involved exercising it in natural ways according to man-
ual scripts. For example, in Wunderlist, a todo list app,
we created multiple lists, added items to each list, and
browsed through its functions.
7.1 Pebbles Precision and Recall (Q1)

We measure the precision and recall of our object
recognition by identifying how closely LDOs match real,
application-level objects as users perceive them. We
manually identified 68 potentially interesting LDO types
across 50 popular applications (e.g., individual emails,
folders, and accounts in the default email app; individ-
ual expenses, expense categories, and accounts in the
CWMoney financial app). We evaluated whether Peb-
bles correctly identifies those objects (no leakage or over-
inclusions). Recall measures the percentage of LDOs
recognized without leakage; precision measures the per-
centage of LDOs recognized without over-inclusion.

To establish ground truth about LDO structure, we first
populated the application with data and took a snapshot
of the phone’s disk, S1, prior to creating the target object.
Then, we created the object and took a second snapshot
of the disk, S2. The ground truth is the diff between S2

and S1 after manually excluding differences that are un-
related to the objects (e.g., timestamps in log files that
differ between the two executions). We then exercised
the application as thoroughly as possible so as to cap-
ture any edges that Pebbles might detect. To measure
accuracy, we compare Pebbles-recognized LDOs to the

Pebbles File Tainting Only

Application LDO Detected Precise Detected Precise

Email
Account Y Y Y N
Mailbox Y Y Y N

Email Y Y Y N
OINote Note Y Y Y N

Browser
History Item Y Y Y N
Bookmark Y Y Y N

CWMoney
Account Y Y Y N
Category Y Y Y N
Expense Y Y Y N

Bloomberg
Stock N Y Y N
Chart Y Y Y N

Podcast
Podcast Y Y Y N
Episode N Y Y N

50 Total 68 Total
62/68
(91%)

66/68
(97%)

68/68
(100%)

0/68
(0%)

Table 2: LDO Precision and Recall. Sample applications and
objects tested for object recognition precision and recall. “Y”
indicates that an LDO was identified without leakage (column
“Detected”) or without over inclusion (column “Precise”). If
an LDO has “Y” in both columns, its recognition is deemed
correct. As expected, Pebbles performs far better than a straw
man approach of treating entire files as a single LDO.

ground truth; if identical, we declare accurate recogni-
tion for that application and object.

Table 2 shows whether Pebbles correctly and precisely
detects these LDOs. For comparison, we also evaluated
the precision and recall of a basic approach, which rep-
resents perhaps the current state of the art: detecting
relationships between files using just taint tracking and
not using additional file structure to refine the granular-
ity of objects. Pebbles correctly identifies 60 of the 68
objects across these 50 apps, without requiring any pro-
gram modifications. Of the eight incorrectly identified
objects, six were not correctly detected and two were not
precise.

In each case that Pebbles failed to properly detect all
components of the object (i.e., where it failed in recall),
the leakage was due to a non-standard database specifi-
cation. For instance, in the case of the app “ColorfulBud-
get”, users can group expenses into categories, but Peb-
bles did not always properly detect the relationship be-
tween an expense and its category. Best practices would
dictate that in such a case, all categories would be listed
in a single table with a primary key (PK), and then each
expense would contain a foreign key (FK) to reference
the category’s PK [4]. Traditionally this PK is an integer,
to significantly increase lookup speed and decrease the
amount of space needed to store any references to it [4].
However, in its current implementation, this app uses the
actual name of the category as a key into the category ta-
ble, without declaring such a dependency. Therefore, if a
new category is created simultaneously with the creation
of a new expense, we will experience a parallel write:

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 123

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

Sieve
Loop

Logic
String

Float
Method

Overall

C
af

fe
in

eM
ar

k
Sc

or
e Android

TaintDroid

Pebbles

Fig. 8: Java Microbenchmarks. Overheads of the modified
TaintDroid on the Java runtime with CaffeineMark, a standard
Java benchmark. Higher values are better. Overheads on top of
TaintDroid are 28-35%.

there will be no data dependence when the category is
inserted and when the expense is inserted, since the cat-
egory did not yet exist in storage. Moreover, since the
relationship is not declared in the app schema as an FK,
explicit relationship mechanism will not detect it.

While our access-based technique will largely elimi-
nate this problem, there is still a gap when data is written
but never read back. In these scenarios, such relation-
ships could never be detected. Had these apps explicitly
declared their DB relationships (e.g., in the above case
by referencing each category by its PK), Pebbles would
accurately recognized the objects.

As an example of Pebbles failing in precision (i.e., in-
cluding additional objects as part of an LDO), consider
the “Evernote” note taking app. Each time a notebook is
updated, text in a SharedPreferences node is updated to
reflect the newest notebook, creating a data dependency
between the SharedPreference and the notebook. In this
way, each notebook can become related to each other be-
cause Pebbles currently does not break data dependen-
cies when text is updated. The only way that relations
are broken in Pebbles is if an explicit relationship exists
and is removed.

Without requiring any modifications to applications,
Pebbles is able to achieve up to 91% recall or 97% pre-
cision. The straw man approach of utilizing only taint
tracking (without knowledge of file structure) showed
perfect recall (100%), and a complete failure in precision
(0%). In other words, there were no cases of a single log-
ical object stored in a single file. Overall, our results con-
firm that an unsupervised approach to application-level
object recognition from within the OS works well, espe-
cially if schemas are relatively well-defined.
7.2 Performance Evaluation (Q2)

To evaluate Pebbles performance overheads, we ran
two types of benchmarks: (1) microbenchmarks, which
let us stress various components of our system, such
as the computation and SQLite plugins; and (2) mac-
robenchmarks, which let us quantify our system’s perfor-
mance impact on user-visible application latency. Peb-
bles is built atop the taint tracking system TaintDroid

 1

 10

 100

 1000

Insertion Update Query

Q
ue

rie
s /

 S
ec

 (l
og

sc
al

e) Android

TaintDroid

Pebbles (no registration)

Pebbles (with registration)

Fig. 9: SQLite Microbenchmarks. Overheads for various
queries without and with relationship registrations.

[11], with several modifications made to increase taint
precision (as discussed in §6). Therefore, we evaluate
the performance overhead of Pebbles in comparison to
both TaintDroid and to a stock Android device.

Microbenchmarks. Our first experiments evaluate the
overhead of Pebbles with the Java benchmark Caffeine-
Mark 3.0 [27] and are shown in Fig. 8. We ran the
six computational benchmarks and find that Pebbles de-
creases the score by 32% compared to TaintDroid, which
itself decreases the score by 16% compared to Android.
The majority of this overhead comes from modifications
to support more than 32 taints in Pebbles: TaintDroid
combines tags by bitwise OR’ing, but Pebbles supports
232 distinct taint markings, which are maintained in a
lookup table. Pebbles also stores taint tags per individual
array element, whereas TaintDroid stores only one taint
tag per array, creating an additional overhead for Pebbles
array-heavy benchmarks.

Pebbles also incorporates modifications to SQLite to
detect and register relationships between rows with the
Pebbles service. To evaluate the overhead, we compared
the latency of simple, constant-size SELECT, INSERT,
and UPDATE queries on an Pebbles-enabled Android ver-
sus Android. Fig. 9 shows query overheads when the
query involves a relationship registration (59-168%) and
when it does not (158-553%). No-registration queries –
the cheapest to Pebbles – will likely be the common case
for read-mostly workloads. For example, a document
may be read many times, but relationship registration oc-
curs only once. Moreover, batching and asynchronous-
registration optimizations will likely help alleviate the
overheads. The XML-based key/value store exhibits
similar behavior, although we suppress concrete results.

Application-Level Performance. The above workloads
are micro-benchmarks that stress the various components
but do not necessarily relate to user-perceived perfor-
mance impacts. To measure the impact of Pebbles on
user-perceived interactivity, we evaluated the runtimes
for various operations with three popular applications:
Email, Browser and OINote. For Email, we look at app
launch times and email reads; for Browser, we load the
simple IANA homepage and the rich CNN and Google
News pages over a local network; and for OINote we

124 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

App Activity Base TDroid Pebbles Overhead

Email
Launch 196.8 202.1 260.0 63.2 ±1.11
Load Email 211.6 253.6 463.6 252.0 ±1.64

OINote
Launch 182.6 229.4 219.7 37.2 ±1.58
Load Note 59.5 70.2 84.9 25.4 ±0.14

Browser

Launch 96.5 124.0 148.1 51.6 ±1.63
Load (iana) 154.0 209.3 395.3 241.4 ±2.26
Load (CNN) 778.9 862.7 1443.1 664.2 ±17.56
Load (GNews) 951.3 1023.5 1311.2 359.9 ±10.75

Table 3: Application Performance. Operation runtimes and
overheads in milliseconds. 95% confidence interval shown for
overhead. Base is the Android baseline, TDroid is TaintDroid.

read a note. All network access occurred over USB teth-
ering to a host running a caching proxy; timing informa-
tion excludes cache warmup. Table 3 shows the results
in milliseconds. In almost all of the cases, overhead was
less than 250ms. We saw more overhead and variation
when rendering multimedia heavy web pages.
Memory Overheads. The modifications to TaintDroid
to add fine grained tainting adds a memory overhead to
the running system. We measure system wide mem-
ory usage while exercising three applications (Email,
OINote, and Browser) with a similar workload as above.
Without lazy memory allocation of array taint vectors
(see §6), Pebbles’s system-wide memory overheads are
high: 188MB, 70MB, and 119MB, respectively, com-
pared to TaintDroid. With lazy memory allocation,
Pebbles exhibits much lower system-wide overheads:
34MB, 16MB, and 29MB, respectively. Although still
higher than TaintDroid’s own overhead of around 7MB
for these applications, we believe Pebbles overheads are
acceptable given devices’ increased memory trends.
7.3 Case Study Evaluation (Q3)
Breadcrumbs. Using our Breadcrumbs prototype we
evaluated deletion practices of 68 types of LDOs across
50 applications. Of the 50 applications, 18 of them ex-
hibited some type of deletion malpractice.

Table 4 shows sample deletion malpractice. There
were several cases where data from one LDO was writ-
ten into another another and not cleaned up later. There
were also several applications that did not delete items
at the users’ request, instead simply removing them from
the user interface. We observed this in applications that
heavily rely on cloud storage such as Wunderlist, a pop-
ular cloud-backed todo list application.
PebbleNotify. To evaluate PebbleNotify, we compared
its output to that of TaintDroid Notify. When TaintDroid
Notify detects that data tainted with a value from one
of the selected sources is exfiltrated, it notifies the user
with the application that is responsible for the network
connection, the destination, the data source, the times-
tamp, and the first 100 bytes of the packet. This is useful
metadata but it won’t help a user learn specific informa-

Application Object Deletion Leakage

Email Attachments remain after email/account deletion
ExpenseManager Expenses remain after associated category deleted
Evernote Notes/notebooks remain in database after deletion
On Track Measurements remain after deleting category

14 other apps 21 LDO types unsafely deleted

Table 4: Breadcrumbs Findings. Shows samples of unsafe
deletion in various applications.

tion about the data being exfiltrated such as which picture
or specific contact is leaving the device. We found that
PebbleNotify was more informative because it shows a
summary of the data being exfiltrated, and not just the
metadata presented by TaintDroid Notify. PebbleNotify
was particularly useful in the case of image exfiltration
because it displays a thumbnail of the image being sent.

PebbleDIFC. We integrated PebbleDIFC with the An-
droid Media Provider and evaluated it by using it to mark
several photographs on our device as sensitive (i.e., to
prevent them from being shared). We then verified that
those photos were not visible to applications other than
the default Gallery application. We found that for this
use case, PebbleDIFC has perfect accuracy: every photo
that was marked was hidden, and no additional photos
were hidden.

HideIt. We evaluated HideIt against many applications
and largely found it to be effective. In our evaluation, we
interacted with the application, populated it with data,
and then marked a subset of the data as private so the
application no longer had access. Interestingly, in most
cases apps behaved as hoped when individual data ob-
jects were hidden and then again returned. There were
however several cases where apps crashed when they ex-
pected some data to still exist, but was removed. We are
interested in performing further investigations of the ap-
plicability of HideIt.

7.4 Anecdotal User Experience
To gain experience with Pebbles, the primary author

carried it on his Nexus S phone for about a week. He
primarily used the Email, Browser, Gallery, Camera, and
PodcastAddict apps. We report two anecdotal observa-
tions from this experience. First, applications exhibit no-
ticeable overhead during periods of intense I/O, such as
on initial launch or when applications populate or refresh
local stores. During regular operation we observed over-
heads that are anecdotally similar to ones exhibited by
running Android 4.1 (a 2012 OS) on our Nexus S (a 2010
device). Second, to check if object recognition remains
accurate over time, we examined at the end of the week
the structures of a sample of the objects in our applica-
tions (e.g., emails, folders, photos, browser histories, and
podcasts). We saw no evidence that object recognition
degraded over time due to taint explosions or other po-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 125

tential sources of imprecision for Pebbles. Objects grew
naturally; email folders grew in size to include relevant
new email objects and they remained accurate.
7.5 Summary

Overall, our results show that: Pebbles is quite ac-
curate in constructing LDOs in an unsupervised man-
ner (Q1), performance remains reasonable when doing
so (Q2), and data management tools can benefit from
Pebbles to provide useful, consumer-grade functions to
the users (Q3). In our experience, Pebbles either con-
sistently identifies objects of a particular type (e.g., all
emails, all documents, etc.), or it does not. Whether it
works depends largely upon the application’s own adher-
ence to some common practices (described in the next
section). When Pebbles works for all object types of an
application, Pebbles can provide the desired guarantees
under our threat model. And even when Pebbles is in-
complete, it can still support transparency applications,
improving visibility into data (mis)management of appli-
cations. Our accuracy results show that Pebbles discov-
ers all object types in 42 out of 50 applications correctly
(no over-inclusions/leakages). We leave development of
tools to identify whether an application matches the Peb-
bles assumptions for future work.

8 Discussion
Pebbles leverages the structure inherently present in

the storage abstractions commonly used on Android to
identify LDOs. More formally, Pebbles assumes the us-
age of the following best practices:

R1: Declare database schemas in full: Given that the
database is becoming the central point of all stor-
age in modern OSes, having a well-defined database
schema is important and natural. 42/50 apps we
have evaluated in §7.1 meet such requirements suf-
ficiently for Pebbles to work perfectly for them.

R2: Use the database to index data within other stor-
age systems: A common programming pattern is
to create a parent object (e.g., a message) in the
database, obtain an auto-generated primary key, and
then write any children objects (such as message
body, attachment files) using the PK as a link. 47/50
apps use this pattern. We strongly recommend it to
any programmers who need to store data outside the
DB.

R3: Use standard storage libraries or implement Peb-
bles storage API: To avoid precision lapses, we
recommend that apps use standard storage abstrac-
tions. As §3 shows, most apps already adhere to this
practice: most apps use exclusively OS-embedded
abstractions.

Relative to our evaluation of 50 apps, 39/50 adhere
with all three recommendations, and 50/50 adhere with

at least one of them. Pebbles’ performance could suffer
for apps that do not follow any of these recommenda-
tions. However, we believe that each recommendation is
sufficiently intuitive and rooted in best practices to not
impose undue burden.

9 Related Work
Taint Tracking for Protection and Auditing. Taint
tracking systems (such as [3, 6, 17, 24, 31, 46, 49]) im-
plement a dynamic data flow analysis that has been ap-
plied to many different context such as privacy audit-
ing [6, 11, 48], malware analysis [24], and more [3, 49].
TaintDroid [11] provides taint tracking of unmodified
Android applications through a modified Dalvik VM, a
system that Pebbles builds upon for its object graph con-
struction. To our knowledge, Pebbles is the first system
to use taint tracking to discover data semantics of objects
and provide a higher level abstraction with which to rea-
son about and enforce such security properties.

Several systems utilize taint tracking to provide fine
grained data protection and auditing. In each of these
cases, however, a burden lies on the application devel-
opers to add hooks to identify relevant data structures
to protection tool developers – a burden that could be
lifted by Pebbles. For instance, CleanOS aims to mini-
mize data exposure on a mobile device by automatically
encrypting its “sensitive data objects” (SDOs) when not
under active use [39]. The LDO abstraction is perhaps
to some extent inspired by the SDO; however, SDOs
must be manually specified by application developers,
whereas LDOs are automatically identified and regis-
tered by Pebbles. Pebbles could be used to automatically
identify SDOs, without requiring developer interaction.

Distributed information flow control (DIFC) systems
such as Laminar [31], Asbestos [43], and Resin [46]
let developers associate data with labels, and then allow
either developers or end-users to specify security poli-
cies that apply to different labels. Taint tracking is per-
formed during application execution to ensure that labels
are propagated to derived data. Pebbles could be used to
eliminate the need to statically annotate data with labels
in code, instead automatically applying labels to LDOs
as users request them. PebbleDIFC demonstrates the fea-
sibility and power of such a system.

Related to taint tracking, data provenance [22, 23, 35]
is close in spirit to logical data objects. It tracks the lin-
eage of data (e.g., the user or process that created it). It
has been proposed to identify the original authors of on-
line information, to facilitate reproduction of scientific
experiments [35], detect and avoid faulty data propaga-
tion in clouds [23], and others. It has to our knowledge
never been used as an OS protection abstraction.
Fine-Grained Protection in Operating Systems. Many
systems have been proposed in the past to support fine-

126 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

grained, flexible protection in operating systems. Some
of the earliest OSes, such as Hydra [45] and Multics [32],
provided immense protection flexibility to applications
and users. Over time, OSes removed more and more flex-
ibility, being considered too difficult for programmers.
Our goal is to eliminate the programmer from the loop
by having the OS identifying objects.

More recently, OS security extension systems, such as
SELinux [34] and its Android version, SEAndroid [33],
extend Linux’s access control with flexible policies that
determine which users and processes can access which
resources, such as files, network interfaces, etc. Our
work is complementary to these, being concerned with
external attacks, such as thieves, shoulder surfing, or spy-
ing by a user with whom the device has been willfully
shared. Our abstractions, might, however, apply to SE-
Android to replace its antiquated file abstraction.

Securing and Hiding Data. Many encryption systems
exist, operating largely at one of two levels of abstrac-
tion: block level [1, 21, 42] and file level [14, 16]. A
drawback to such encrypted file systems is that it forces
users to consider data as individual files, while logically
there may be multiple objects that the user is interested
in in a single file. Pebbles allows protection tool devel-
opers to provide a far finer level of control (at the object
level) than these existing systems (at the file level).

Some protection tools are already operating at a higher
level of data abstraction. These applications, such as
Vault-Hide [25] and KeepSafe Vault [19], allow users to
hide specific types of data, including photos, contacts,
and SMSes. However, they only plug into a handful of
supported apps and cannot provide generic protection for
all apps. Pebbles aims to effect a similar level of control,
but without requiring specialized work by protection tool
developers to support specific applications.

Inferring Structure in Semistructured Data. Discov-
ering data relationships is a key aspect of our work.
Other have worked on inferring data relationships in vari-
ous context: foreign key relationships in databases to im-
prove querying [30, 47] and file relationships in OSes to
enhance file search [37]. However, Pebbles can also infer
relations among files, as well as other higher-level stor-
age abstractions within modern operating systems. To
perform such broad relationship detection, Pebbles dif-
fers significantly from other relationship detection sys-
tems in that it also leverages taint tracking.

Cozzie et al. developed the Laika system [9] which
uses Bayesian analysis to infer data structures from
memory images. Pebbles differs from Laika in that it
does not attempt to recover programmer defined data
structures but to discover application-level data relation-
ships from stable storage that would be recognizable and
useful to an end user or developer.

10 Conclusions
We have described logical data objects (LDOs), a

new fine-grained protection abstraction for persistent
data designed specifically to enable the development of
protection tools at a new granularity. We described
our implementation of LDOs for Android with Peb-
bles, a system that automatically reverse engineers LDOs
from application-level persisted data resources – such as
emails, documents, or bank accounts. Pebbles leverages
the structural semantics available in modern persistent
storage systems, together with a number of mechanisms
rooted in taint tracking, to construct and maintain an ob-
ject graph that tracks these LDOs without introducing
any new programming models or APIs.

We have evaluated Pebbles and four novel protection
tools that use it, showing it to be accurate, and suffi-
ciently efficient to be used in practice to identify and
manage LDOs. We can envision many other useful ap-
plications of Pebbles, such as data scrubbing or malware
analysis, and hope that LDOs will enable the develop-
ment of these and other granular data protection systems.

11 Acknowledgements
We thank our shepherd, Landon Cox and the anony-

mous reviewers for their valuable feedback, and Em-
mett Witchel for his support and advice. This work
was supported by DARPA Contract FA8650-11-C-
7190; NSF grants CNS-1351089, CCF-1302269, CCF-
1161079, CNS-0905246, and CNS-1228843; NIH U54
CA121852; R01 LM011028-01; and Google and Mi-
crosoft gifts.

References
[1] dm-crypt: Linux kernel device-mapper crypto

target. https://code.google.com/p/
cryptsetup/wiki/DMCrypt, 2013.

[2] Anand Basu. Facebook Apps Leak User In-
formation. http://www.reuters.com/
article/2010/10/18/us-facebook-
idUSTRE69H0QS20101018, 2010.

[3] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the Net-
work and Distributed System Security Symposium
(NDSS), 2010.

[4] Michael Brackett. Data Resource Design: Reality
Beyond Illusion. IT Pro. Technics Publications Llc,
2012.

[5] Monica Chew. Writing for the 98%, blog
post. http://monica-at-mozilla.
blogspot.com/2013/02/writing-for-
98.html, 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 127

[6] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christo-
pher, and Mendel Rosenblum. Understanding data
lifetime via whole system simulation. In Pro-
ceedings of the USENIX Security Symposium (Sec),
2004.

[7] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel
Rosenblum. Shredding your garbage: Reducing
data lifetime through secure deallocation. In Pro-
ceedings of the USENIX Security Symposium (Sec),
2005.

[8] Landon P. Cox, Peter Gilbert, Geoffrey Lawler,
Valentin Pistol, Ali Razeen, Bi Wu, and Sai
Cheemalapati. Spandex: Secure password tracking
for android. In Proceedings of the USENIX Security
Symposium (Sec), 2014.

[9] Anthony Cozzie, Frank Stratton, Hui Xue, and
Samuel T. King. Digging for data structures. In
Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2008.

[10] Alan M. Dunn, Michael Z. Lee, Suman Jana, Sang-
man Kim, Mark Silberstein, Yuanzhong Xu, Vitaly
Shmatikov, and Emmett Witchel. Eternal sunshine
of the spotless machine: Protecting privacy with
ephemeral channels. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2012.

[11] William Enck, Peter Gilbert, Byung-gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N. Sheth. TaintDroid: An information-
flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2010.

[12] Roxana Geambasu, John P. John, Steven D. Grib-
ble, Tadayoshi Kohno, and Henry M. Levy. Key-
pad: An auditing file system for theft-prone de-
vices. In Proceedings of the ACM European Con-
ference on Computer Systems (EuroSys), 2011.

[13] Google. Storage options — android devel-
opers. http://developer.android.
com/guide/topics/data/data-
storage.html.

[14] Valient Gough. encfs. www.arg0.net/encfs,
2010.

[15] GRSecurity. Homepage of pax. http://pax.
grsecurity.net/.

[16] Michael Austin Halcrow. eCryptfs: An enterprise-
class encrypted filesystem for linux. In Proceedings
of the Linux Symposium, 2005.

[17] Vivek Haldar, Deepak Chandra, and Michael Franz.
Dynamic taint propagation for java. In Proceedings
of the Annual Computer Security Applications Con-
ference (ACSAC), 2005.

[18] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: Understanding the
I/O behavior of Apple desktop applications. In Pro-
ceedings of the ACM SIGOPS Symposium on Oper-
ating Systems Principles (SOSP), 2011.

[19] KeepSafe. Hide pictures - KeepSafe Vault.
https://play.google.com/store/
apps/details?id=com.kii.safe.

[20] Mary Madden and Aaron Smith. Reputation man-
agement and social media: How people monitor
their identity and search for others online. http:
//www.pewinternet.org/˜/media/
Files/Reports/2010/PIP_Reputation_
Management_with_topline.pdf, 2010.

[21] Microsoft Corporation. Windows 7 Bit-
Locker executive overview. http:
//technet.microsoft.com/en-
us/library/dd548341(WS.10).aspx,
2009.

[22] Kiran-Kumar Muniswamy-Reddy, David A. Hol-
land, Uri Braun, and Margo Seltzer. Provenance-
aware storage systems. In Proceedings of the
USENIX Annual Technical Conference (ATC),
2006.

[23] Kiran-Kumar Muniswamy-Reddy, Peter Macko,
and Margo Seltzer. Provenance for the cloud. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2010.

[24] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity soft-
ware. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[25] NQ Mobile Security. Vault-Hide SMS, Pics
& Videos. https://play.google.com/
store/apps/details?id=com.netqin.
ps.

[26] Vasilis Pappas, Vasileios P. Kemerlis, Angeliki
Zavou, Michalis Polychronakis, and Angelos D.
Keromytis. CloudFence: Data flow tracking as a

128 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

cloud service. In Proceedings of the Symposium
on Research in Attacks, Intrusions and Defenses,
2013.

[27] Pendragon Software Corporation. Caffeine-
mark 3.0. http://www.benchmarkhq.ru/
cm30/.

[28] Radia Perlman. File system design with assured
delete. In Proceedings of the IEEE International
Security in Storage Workshop (SISW), 2005.

[29] Joel Reardon, Srdjan Capkun, and David Basin.
Data node encrypted file system: Efficient secure
deletion for flash memory. In Proceedings of the
USENIX Security Symposium (Sec), 2012.

[30] Alexandra Rostin, Oliver Albrecht, Jana Bauck-
mann, Felix Naumann, and Ulf Leser. A machine
learning approach to foreign key discovery. In Pro-
ceedings of the International Workshop on the Web
and Databases (WebDB), 2009.

[31] Indrajit Roy, Donald E. Porter, Michael D. Bond,
Kathryn S. McKinley, and Emmett Witchel. Lam-
inar: practical fine-grained decentralized informa-
tion flow control. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2009.

[32] Jerome H. Saltzer. Protection and the control of
information sharing in Multics. Communications
of the ACM (CACM), 1974.

[33] SEAndroid. SEforAndroid. http://
selinuxproject.org/page/SEAndroid.

[34] SELinux. Selinux project wiki. http://
selinuxproject.org/page/Main_Page.

[35] Margo Seltzer. Pass: Provenance-aware stor-
age systems. http://www.eecs.harvard.
edu/syrah/pass/.

[36] Shayak Sen, Saikat Guha, Anupam Datta, Sri-
ram K. Rajamani, Janice Tsai, and Jeannette M.
Wing. Bootstrapping privacy compliance in big
data systems. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[37] Craig A.N. Soules and Gregory R. Ganger. Con-
nections: using context to enhance file search. In
Proceedings of the ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), 2005.

[38] Symantec Corporation. PGP whole disk encryp-
tion. http://www.symantec.com/whole-
disk-encryption, 2012.

[39] Yang Tang, Phillip Ames, Sravan Bhamidipati,
Ashish Bijlani, Roxana Geambasu, and Nikhil
Sarda. CleanOS: Mobile OS abstractions for man-
aging sensitive data. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2012.

[40] Yang Tang, Patrick P.C. Lee, John C.S. Lui, and Ra-
dia Perlman. FADE: Secure overlay cloud storage
with file assured deletion. In Proceedings of the In-
ternational ICST Conference on Security and Pri-
vacy in Communication Networks (SecureComm),
2010.

[41] The Chaos Computing Club (CCC). CCC breaks
Apple TouchID. http://www.ccc.de/en/
updates/2013/ccc-breaks-apple-
touchid, 2013.

[42] TrueCrypt Foundation. Truecrypt – free open-
source on-the-fly encryption. http://www.
truecrypt.org/, 2007.

[43] Steve Vandebogart, Petros Efstathopoulos, Ed-
die Kohler, Maxwell Krohn, Cliff Frey, David
Ziegler, Frans Kaashoek, Robert Morris, and David
Mazières. Labels and event processes in the As-
bestos operating system. ACM Transactions on
Computer Systems (TOCS), 2007.

[44] Nicolas Viennot, Edward Garcia, and Jason Nieh.
A measurement study of google play. In Pro-
ceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems,
2014.

[45] William A. Wulf, Ellis S. Cohen, William M. Cor-
win, Anita K. Jones, Roy Levin, C. Pierson, and
Fred J. Pollack. Hydra: The kernel of a multipro-
cessor operating system. Communications of the
ACM (CACM), 1974.

[46] Alexander Yip, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. Improving application secu-
rity with data flow assertions. In Proceedings of
the ACM SIGOPS Symposium on Operating Sys-
tems Principles (SOSP), 2009.

[47] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin
Ooi, Cecilia M. Procopiuc, and Divesh Srivastava.
On multi-column foreign key discovery. Proceed-
ings of the VLDB Endowment, 2010.

[48] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin
Yang, Guofei Gu, Peng Ning, X. Wang, and Binyu
Zang. Vetting undesirable behaviors in android
apps with permission use analysis. In Proceedings

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 129

of the ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

[49] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Ta-
dayoshi Kohno, and David Wetherall. TaintEraser:

protecting sensitive data leaks using application-
level taint tracking. ACM SIGOPS Operating Sys-
tems Review, 2011.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 131

Protecting Users by Confining JavaScript with COWL
Deian Stefan∗

Stanford
Edward Z. Yang

Stanford
Petr Marchenko

Google
Alejandro Russo†

Chalmers
Dave Herman

Mozilla

Brad Karp
UCL

David Mazières
Stanford

ABSTRACT
Modern web applications are conglomerations of
JavaScript written by multiple authors: application devel-
opers routinely incorporate code from third-party libraries,
and mashup applications synthesize data and code hosted
at different sites. In current browsers, a web application’s
developer and user must trust third-party code in libraries
not to leak the user’s sensitive information from within
applications. Even worse, in the status quo, the only way
to implement some mashups is for the user to give her lo-
gin credentials for one site to the operator of another site.
Fundamentally, today’s browser security model trades pri-
vacy for flexibility because it lacks a sufficient mechanism
for confining untrusted code. We present COWL, a robust
JavaScript confinement system for modern web browsers.
COWL introduces label-based mandatory access control
to browsing contexts in a way that is fully backward-
compatible with legacy web content. We use a series of
case-study applications to motivate COWL’s design and
demonstrate how COWL allows both the inclusion of un-
trusted scripts in applications and the building of mashups
that combine sensitive information from multiple mutu-
ally distrusting origins, all while protecting users’ privacy.
Measurements of two COWL implementations, one in
Firefox and one in Chromium, demonstrate a virtually
imperceptible increase in page-load latency.

1 INTRODUCTION
Web applications have proliferated because it is so easy
for developers to reuse components of existing ones. Such
reuse is ubiquitous. jQuery, a widely used JavaScript li-
brary, is included in and used by over 77% of the Quant-
cast top-10,000 web sites, and 59% of the Quantcast top-
million web sites [3]. While component reuse in the ven-
erable desktop software model typically involves libraries,
the reusable components in web applications are not lim-
ited to just JavaScript library code—they further include
network-accessible content and services.

The resulting model is one in which web developers
cobble together multiple JavaScript libraries, web-based
content, and web-based services written and operated by
various parties (who in turn may integrate more of these re-
sources) and build the required application-specific func-
tionality atop them. Unfortunately, some of the many

∗Work partly conducted while at Mozilla.
†Work partly conducted while at Stanford.

contributors to the tangle of JavaScript comprising an
application may not have the user’s best interest at heart.
The wealth of sensitive data processed in today’s web
applications (e.g., email, bank statements, health records,
passwords, etc.) is an attractive target. Miscreants may
stealthily craft malicious JavaScript that, when incorpo-
rated into an application by an unwitting developer, vio-
lates the user’s privacy by leaking sensitive information.

Two goals for web applications emerge from the prior
discussion: flexibility for the application developer (i.e.,
enabling the building of applications with rich functional-
ity, composable from potentially disparate pieces hosted
by different sites); and privacy for the user (i.e., to en-
sure that the user’s sensitive data cannot be leaked from
applications to unauthorized parties). These two goals
are hardly new: Wang et al. articulated similar ones, and
proposed new browser primitives to improve isolation
within mashups, including discretionary access control
(DAC) for inter-frame communication [41]. Indeed, to-
day’s browsers incorporate similar mechanisms in the
guises of HTML5’s iframe sandbox and postMessage
API [47]. And the Same-Origin Policy (SOP, reviewed in
Section 2.1) prevents JavaScript hosted by one principal
from reading content hosted by another.

Unfortunately, in the status-quo web browser security
architecture, one must often sacrifice privacy to achieve
flexibility, and vice-versa. The central reason that flex-
ibility and privacy are at odds in the status quo is that
the mechanisms today’s browsers rely on for providing
privacy—the SOP, Content Security Policy (CSP) [42],
and Cross-Origin Resource Sharing (CORS) [45]—are
all forms of discretionary access control. DAC has the
brittle character of either denying or granting untrusted
code (e.g., a library written by a third party) access to
data. In the former case, the untrusted JavaScript might
need the sensitive data to implement the desired appli-
cation functionality—hence, denying access prioritizes
privacy over flexibility. In the latter, DAC exercises no
control over what the untrusted code does with the sen-
sitive data—and thus prioritizes flexibility over privacy.
DAC is an essential tool in the privacy arsenal, but does
not fit cases where one runs untrusted code on sensitive
input, which are the norm for web applications, given
their multi-contributor nature.

In practice, web developers turn their backs on privacy
in favor of flexibility because the browser doesn’t offer

1

132 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

primitives that let them opt for both. For example, a de-
veloper may want to include untrusted JavaScript from
another origin in his application. All-or-nothing DAC
leads the developer to include the untrusted library with
a script tag, which effectively bypasses the SOP, in-
terpolating untrusted code into the enclosing page and
granting it unfettered access to the enclosing page’s ori-
gin’s content.1 And when a developer of a mashup that
integrates content from other origins finds that the SOP
forbids his application from retrieving data from them, he
designs his mashup to require that the user provide the
mashup her login credentials for the sites at the two other
origins [2]—the epitome of “functionality over privacy.”

In this paper, we present COWL (Confinement with
Origin Web Labels), a mandatory access control (MAC)
system that confines untrusted JavaScript in web browsers.
COWL allows untrusted code to compute over sensitive
data and display results to the user, but prohibits the un-
trusted code from exfiltrating sensitive data (e.g., by send-
ing it to an untrusted remote origin). It thus allows web
developers to opt for both flexibility and privacy.

We consider four motivating example web applica-
tions—a password strength-checker, an application that
imports the (untrusted) jQuery library, an encrypted cloud-
based document editor, and a third-party mashup, none
of which can be implemented in a way that preserves
the user’s privacy in the status-quo web security archi-
tecture. These examples drive the design requirements
for COWL, particularly MAC with symmetric and hierar-
chical confinement that supports delegation. Symmetric
confinement allows mutually distrusting principals each
to pass sensitive data to the other, and confine the other’s
use of the passed sensitive data. Hierarchical confinement
allows any developer to confine code she does not trust,
and confinement to be nested to arbitrary depths. And
delegation allows a developer explicitly to confer the priv-
ileges of one execution context on a separate execution
context. No prior browser security architecture offers this
combination of properties.

We demonstrate COWL’s applicability by implement-
ing secure versions of the four motivating applications
with it. Our contributions include:
� We characterize the shared needs of four case-study

web applications (Section 2.2) for which today’s
browser security architecture cannot provide privacy.

� We describe the design of the COWL label-based
MAC system for web browsers (Section 3), which
meets the requirements of the four case-study web
applications.

� We describe designs of the four case-study web appli-
cations atop COWL (Section 4).

� We describe implementations of COWL (Section 5)
for the Firefox and Chromium open-source browsers;

1Indeed, jQuery requires such access to the enclosing page’s content!

DOM$ a.com$

DOMAPI

a.com$
XHR$

DOM$
b.com$

DOMAPI

b.com$
XHR$

postMessage$
JavaScript$ JavaScript$

Figure 1: Simplified browser architecture.

our evaluation (Section 6) illustrates that COWL incurs
minimal performance overhead over the respective
baseline browsers.

2 BACKGROUND, EXAMPLES, & GOALS
A single top-level web page often incorporates multiple
scripts written by different authors.2 Ideally, the browser
should protect the user’s sensitive data from unauthorized
disclosure, yet afford page developers the greatest pos-
sible flexibility to construct featureful applications that
reuse functionality implemented in scripts provided by
(potentially untrusted) third parties. To make concrete the
diversity of potential trust relationships between scripts’
authors and the many ways page developers structure
amalgamations of scripts, we describe several example
web applications, none of which can be implemented with
strong privacy for the user in today’s web browsers. These
examples illustrate key requirements for the design of a
flexible browser confinement mechanism. Before describ-
ing these examples, however, we offer a brief refresher on
status-quo browser privacy polices.

2.1 Browser Privacy Policies
Browsing contexts Figure 1 depicts the basic building
blocks of the current web security architecture. A brows-
ing context (e.g., a page or frame) encapsulates pre-
sentable content and a JavaScript execution environment
(heap and code) that interacts with content through the
Document Object Model (DOM) [47]. Browsing contexts
may be nested (e.g., by using iframes). They also may
read and write persistent storage (e.g., cookies), issue
network requests (either implicitly in page content that
references a URL retrieved over the network, or explicitly
in JavaScript, using the XMLHttpRequest (XHR) con-
structor), and communicate with other contexts (IPC-style
via postMessage, or, in certain cases, by sharing DOM
objects). Some contexts such as Web Workers [44] run
JavaScript but do not instantiate a DOM. We use the terms
context and compartment interchangeably to refer to both
browsing contexts and workers, except when the more
precise meaning is relevant.
Origins and the Same-Origin Policy Since different au-
thors may contribute components within a page, today’s

2Throughout we use “web page” and “web application” interchange-
ably, and “JavaScript code” and “script” interchangeably.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 133

status quo browsers impose a security policy on interac-
tions among components. Policies are expressed in terms
of origins. An origin is a source of authority encoded by
the protocol (e.g., https), domain name (e.g., fb.com),
and port (e.g., 443) of a resource URL. For brevity, we
elide the protocol and port from URLs throughout.

The same-origin policy specifies that an origin’s re-
sources should be readable only by content from the same
origin [7, 38, 52]. Browsers ensure that code executing in
an a.com context can only inspect the DOM and cook-
ies of another context if they share the same origin, i.e.,
a.com. Similarly, such code can only inspect the response
to a network request (performed with XHR) if the remote
host’s origin is a.com.

The SOP does not, however, prevent code from disclos-
ing data to foreign origins. For example, code executing
in an a.com context can trivially disclose data to b.com

by using XHR to perform a network request; the SOP
prevents the code from inspecting responses to such cross-
origin XHR requests, but does not impose any restrictions
on sending such requests. Similarly, code can exfiltrate
data by encoding it in the path of a URL whose origin is
b.com, and setting the src property of an img element
to this URL.
Content Security Policy (CSP) Modern browsers allow
the developer to protect a user’s privacy by specifying a
CSP that limits the communication of a page—i.e., that
disallows certain communication ordinarily permitted by
the SOP. Developers may set individual CSP directives to
restrict the origins to which a context may issue requests
of specific types (for images or scripts, XHR destinations,
etc.) [42]. However, CSP policies suffer from two limita-
tions. They are static: they cannot change during a page’s
lifetime (e.g., a page may not drop the privilege to com-
municate with untrusted origins before reading potentially
sensitive data). And they are inaccessible: JavaScript code
cannot inspect the CSP of its enclosing context or some
other context, e.g., when determining whether to share
sensitive data with that other context.
postMessage and Cross-Origin Resource Sharing
(CORS) As illustrated in Figure 1, the HTML5
postMessage API [43] enables cross-origin communi-
cation in IPC-like fashion within the browser. To prevent
unintended leaks [8], a sender always specifies the origin
of the intended recipient; only a context with that origin
may read the message.

CORS [45] goes a step further and allows controlled
cross-origin communication between a browsing context
of one origin and a remote server with a different origin.
Under CORS, a server may include a header on returned
content that explicitly whitelists other origin(s) allowed
to read the response.

Note that both postMessage’s target origin and CORS
are purely discretionary in nature: they allow static selec-

tion of which cross-origin communication is allowed and
which denied, but enforce no confinement on a receiving
compartment of differing origin. Thus, in the status-quo
web security architecture, a privacy-conscious developer
should only send sensitive data to a compartment of dif-
fering origin if she completely trusts that origin.

2.2 Motivating Examples
Having reviewed the building blocks of security policies
in status-quo web browsers, we now turn to examples of
web applications for which strong privacy is not achiev-
able today. These examples illuminate key design require-
ments for the COWL confinement system.
Password Strength Checker Given users’ propensity
for choosing poor (i.e., easily guessable) passwords, many
web sites today incorporate functionality to check the
strength of a password selected by a user and offer the
user feedback (e.g., “too weak; choose another,” “strong,”
etc.). Suppose a developer at Facebook (origin fb.com)
wishes to re-use password-checking functionality pro-
vided in a JavaScript library by a third party, say, from
origin sketchy.ru. If the developer at fb.com simply
includes the third party’s code in a script tag referenc-
ing a resource at sketchy.ru, then the referenced script
will have unfettered access to both the user’s password
(provided by the Facebook page, which the library must
see to do its job) and to write to the network via XHR.
This simple state of affairs is emblematic of the ease with
which naı̈ve web developers can introduce leaks of sensi-
tive data in applications.

A more skilled web developer could today host the
checker script on her own server and have that server
specify a CSP policy for the page. Unfortunately, a CSP
policy that disallows scripts within the page from ini-
tiating XHRs to any other origins is too inflexible, in
that it precludes useful operations by the checker script,
e.g., retrieving an updated set of regular expressions de-
scribing weak passwords from a remote server (essen-
tially, “updating” the checker’s functionality). Doing so
requires communicating with a remote origin. Yet a CSP
policy that permits such communication, even with the
top-level page’s same origin, is too permissive: a mali-
cious script could potentially carry out a self-exfiltration
attack and write the password to a public part of the
trusted server [11, 50].

This trade-off between flexibility and privacy, while in-
herent to CSP, need not be fundamental to the web model.
The key insight is that it is entirely safe and useful for an
untrusted script to communicate with remote origins be-
fore it reads sensitive data. We note, then, the requirement
of a confinement mechanism that allows code in a com-
partment to communicate with the network until it has
been exposed to sensitive data. MAC-based confinement
meets this requirement.

3

134 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

sketchy.ru$

public$ $$$@.com$

[“password”]$@.com$

[“weak”]$@.com$

2$2$

2$1$

2$3$

2$4$
checker$

public$

DOM$

@.com $

Figure 2: Third-party password checker architecture under
COWL.

Figure 2 shows how such a design might look. In this
and subsequent examples, rectangular frames denote com-
partments, arrows denote communication (either between
a compartment and the network, or IPC-style between
compartments), and events during execution are num-
bered sequentially in time. As we have proposed previ-
ously [49], compartments may be labeled (Section 3.1)
with the origins to whose sensitive data they have been
exposed. A compartment that has not yet observed sen-
sitive data is denoted public; however, when it wishes
to incorporate sensitive data, the compartment raises its
label (at the cost of being more restricted in where it can
write). We illustrate the raising of a label with a “flash”
connoting the sensitivity of data being integrated. A com-
partment’s privilege (Section 3.3), which specifies the
origins for which a script executing in that compartment
is trusted, is indicated by a crown. Here, a top-level page
at fb.com encapsulates a password-checker script from a
third-party origin in a new compartment. The label of the
new compartment is initially public. First, in step (1),
the checker script is free to download updated regular ex-
pressions from an arbitrary remote origin. In step (2), the
top-level page sends the user’s password to the checker
script’s worker using postMessage; the password is la-
beled fb.com to indicate that the data is sensitive to this
origin (Section 3.2). In step (3) the checker raises its la-
bel to reflect that the context is about to be exposed to
sensitive data from fb.com and inspects the password.
When the label is raised, COWL atomically denies the
context further access to the network in step (3).3 How-
ever, the checker script is free to compute the result, which
it then returns via postMessage to the top-level page in
step (4); the result carries the label fb.com to reflect that
the sender may be sending data derived from sensitive
data owned by fb.com. Since the top-level page has the
fb.com privilege, it can simply read the data (without
raising its label).

3 For clarity, we use fb.com as the label on the data. This label still
allows the checker to send XHR requests to fb.com; to ensure that the
checker cannot communicate with any origin, COWL provides fresh
origins (see Section 3.3).

Encrypted Document Editor Today’s web applications,
such as in-browser document editors backed by cloud-
based storage (e.g., Google Docs), typically require
the user to trust the app developer/cloud-based storage
provider (often the same principal under the SOP) with
the data in her documents. That is, the provider’s server
observes the user’s data in cleartext. Suppose an organi-
zation wished to use an in-browser document editor but
did not want to reveal its users’ document data to the
editor provider’s server. How might the provider offer a
privacy-preserving editor app that would satisfy the needs
of such a privacy-conscious organization? One promising
approach might be for the “customer” privacy-sensitive
organization to implement a trusted document encryption
service hosted at its own origin, distinct from that which
hosts the editor app. The editor app could allow the user
to specify a JavaScript “plugin” library she trusts to per-
form cryptography correctly. In this design, one origin
serves the JavaScript code for the editor app (say, gdocs
.com) and a different origin serves the JavaScript code for
the cryptography library (say, eff.org). Note that these
two origins may be mutually distrusting. gdocs.com’s
script must pass the document’s cleartext to a script from
eff.org for encryption, but would like to confine the
execution of the encryption script so that it cannot exfil-
trate the document to any origin other than gdocs.com.
Similarly, eff.org’s cryptography library may not trust
gdocs.com with the cleartext document—it would like
to confine gdocs.com’s editor to prevent exfiltration of
the cleartext document to gdocs.com (or to any other
origin). This simple use case highlights the need for sym-
metric confinement: when two mutually distrusting scripts
from different origins communicate, each must be able to
confine the other’s further use of data it provides.

Third-Party Mashup Some of the most useful web ap-
plications are mashups; these applications integrate and
compute over data hosted by multiple origins. For exam-
ple, consider an application that reconciles a user’s Ama-
zon purchases (the data for which are hosted by amazon

.com) against a user’s bank statement (the data for which
are hosted by chase.com). The user may well deem both
these categories of data sensitive and will furthermore
not want data from Amazon to be exposed to her bank
or vice-versa, nor to any other remote party. Today, if
one of the two providers implements the mashup, its ap-
plication code must bypass the SOP to allow sharing of
data across origin boundaries, e.g., by communicating be-
tween iframes with postMessage or setting a permissive
CORS policy. This approach forfeits privacy: one origin
sends sensitive data to the other, after which the receiving
origin may exfiltrate that sensitive data at will. Alterna-
tively, a third-party developer may wish to implement
and offer this mashup application. Users of such a third-
party mashup give up their privacy, usually by simply

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 135

handing off credentials, as again today’s browser enforces
no policy that confines the sensitive data the mashup’s
code observes within the browser. To enable third-party
mashups that do not sacrifice the user’s privacy, we note
again the need for an untrusted script to be able to issue
requests to multiple remote origins (e.g., amazon.com
and chase.com), but to lose the privilege to commu-
nicate over the network once it has read the responses
from those origins. Here, too, MAC-based confinement
addresses the shortcomings of DAC.
Untrusted Third-Party Library Web application devel-
opers today make extensive use of third-party libraries like
jQuery. Simply importing a library into a page provides
no isolation whatsoever between the untrusted third-party
code and any sensitive data within the page. Developers
of applications that process sensitive data want the conve-
nience of reusing popular libraries. But such reuse risks
exfiltration of sensitive data by these untrusted libraries.
Note that because jQuery requires access to the content
of the entire page that uses it, we cannot isolate jQuery
in a separate compartment from the parent’s, as we did
for the password-checker example. Instead, we observe
that jQuery demands a design that is a mirror image of
that for confining the password checker: we place the
trusted code for a page in a separate compartment and
deem the rest of the page (including the untrusted jQuery
code) as untrusted. The trusted code can then communi-
cate with remote origins and inject sensitive data into the
untrusted page, but the untrusted page (including jQuery)
cannot communicate with remote origins (and thus can-
not exfiltrate sensitive data within the untrusted page).
This refactoring highlights the need for a confinement
system that supports delegation and dropping privilege:
a page should be able to create a compartment, confer
its privileges to communicate with remote origins on that
compartment, and then give these privileges up.

We note further that any library author may wish to
reuse functionality from another untrusted library. Accord-
ingly, to allow the broadest reuse of code, the browser
should support hierarchical confinement—the primitives
for confining untrusted code should allow not only a sin-
gle level of confinement (one trusted context confining
one untrusted context), but arbitrarily many levels of con-
finement (one trusted context confining an untrusted one,
that in turn confines a further untrusted one, etc.).

2.3 Design Goals
We have briefly introduced four motivating web applica-
tions that achieve rich functionality by combining code
from one or more untrusted parties. The privacy chal-
lenges that arise in such applications are unfortunately
unaddressed by status-quo browser security policies, such
as the SOP. These applications clearly illustrate the need
for robust yet flexible confinement for untrusted code in

browsers. To summarize, these applications would appear
to be well served by a system that:
� Applies mandatory access control (MAC);
� Is symmetric, i.e., it permits two principals to mutually

distrust one another, and each prevent the other from
exfiltrating its data;

� Is hierarchical, i.e., it permits principal A to confine
code from principal B that processes A’s data, while
principal B can independently confine code from prin-
cipal C that processes B’s data, etc.

� Supports delegation and dropping privilege, i.e., it
permits a script running in a compartment with the
privilege to communicate with some set of origins to
confer those privileges on another compartment, then
relinquish those privileges itself.

In the next section, we describe COWL, a new confine-
ment system that satisfies these design goals.

3 THE COWL CONFINEMENT SYSTEM
The COWL confinement system extends the browser se-
curity model while leaving the browser fully compatible
with today’s “legacy” web applications.4 Under COWL,
the browser treats a page exactly like a legacy browser
does unless the page executes a COWL API operation,
at which point the browser records that page as running
in confinement mode, and all further operations by that
page are subject to confinement by COWL. COWL aug-
ments today’s web browser with three primitives, all of
which appear in the simple password-checker application
example in Figure 2.

Labeled browsing contexts enforce MAC-based con-
finement of JavaScript at the granularity of a context (e.g.,
a worker or iframe). The rectangular frames in Figure 2
are labeled contexts. As contexts may be nested, labeled
browsing contexts allow hierarchical confinement, whose
importance for supporting nesting of untrusted libraries
we discussed in Section 2.2.

When one browsing context sends sensitive informa-
tion to another, a sending context can use labeled commu-
nication to confine the potentially untrusted code receiv-
ing the information. This enables symmetric confinement,
whose importance in building applications that compose
mutually distrusting scripts we articulated in Section 2.2.
In Figure 2, the arrows between compartments indicate
labeled communication, where a subscript on the commu-
nicated data denotes the data’s label.

COWL may grant a labeled browsing context one or
more privileges, each with respect to an origin, and each
of which reflects trust that the scripts executing within

4In prior work, we described how confinement can subsume today’s
browser security primitives, and advocated replacing them entirely with
a clean-slate, confinement-based model [49]. In this paper, we instead
prioritize incremental deployability, which requires coexistence along-
side the status quo model.

5

136 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

that context will not violate the secrecy and integrity of
that origin’s data, e.g., because the browser retrieved
them from that origin. A privilege authorizes scripts
within a context to execute certain operations, such as
declassification and delegation, whose abuse would per-
mit the release of sensitive information to unauthorized
parties. In COWL, we express privilege in terms of ori-
gins. The crown icon in the left compartment in Figure 2
denotes that this compartment may execute privileged op-
erations on data labeled with the origin fb.com—more
succinctly, that the compartment holds the privilege for
fb.com. The compartment uses that privilege to remain
unconfined by declassifying the checker response labeled
fb.com.

We now describe these three constructs in greater detail.

3.1 Labeled Browsing Contexts
A COWL application consists of multiple labeled contexts.
Labeled contexts extend today’s browser contexts, used to
isolate iframes, pages, etc., with MAC labels. A context’s
label specifies the security policy for all data within the
context, which COWL enforces by restricting the flow of
information to and from other contexts and servers.

As we have proposed previously [33, 49], a label is a
pair of boolean formulas over origins: a secrecy formula
specifying which origins may read a context’s data, and
an integrity formula specifying which origins may write
it. For example, only Amazon or Chase may read data la-
beled 〈amazon.com ∨ chase.com, amazon.com〉, and
only Amazon may modify it.5 Amazon could assign
this label to its order history page to allow a Chase-
hosted mashup to read the user’s purchases. On the other
hand, after a third-party mashup hosted by mint.com

(as described in Section 2.2) reads both the user’s Chase
bank statement data and Amazon purchase data, the la-
bel on data produced by the third-party mashup will be
〈amazon.com ∧ chase.com, mint.com〉. This secrecy
label component specifies that the data may be sensitive
to both parties, and without both their consent (see Sec-
tion 3.3), it should only be read by the user; the integrity
label component, on the other hand, permits only code
hosted by Mint to modify the resulting data.

COWL enforces label policies in a MAC fashion by
only allowing a context to communicate with other con-
texts or servers whose labels are at least as restricting.
(A server’s “label” is simply its origin.) Intuitively, when
a context wishes to send a message, the target must not
allow additional origins to read the data (preserving se-
crecy). Dually, the source context must not be writable
by origins not otherwise trusted by the target. That is, the
source must be at least as trustworthy as the target. We say
that such a target label “subsumes” the source label. For

5∨ and ∧ denote disjunction and conjunction. A comma separates
the secrecy and integrity formulas.

example, a context labeled 〈amazon.com, mint.com〉
can send messages to one labeled 〈amazon.com ∧
chase.com, mint.com〉, since the latter is trusted to
preserve the privacy of amazon.com (and chase.com).
However, communication in the reverse direction is not
possible since it may violate the privacy of chase.com.
In the rest of this paper, we limit our discussion to secrecy
and only comment on integrity where relevant; we refer
the interested reader to [33] for a full description of the
label model.

A context can freely raise its label, i.e., change its label
to any label that is more restricting, in order to receive a
message from an otherwise prohibited context. Of course,
in raising its label to read more sensitive data from an-
other context, the context also becomes more restricted
in where it can write. For example, a Mint context la-
beled 〈amazon.com〉 can raise its label to 〈amazon.com
∧ chase.com〉 to read bank statements, but only at the
cost of giving up its ability to communicate with Ama-
zon (or, for that matter, any other) servers. When creating
a new context, code can impose an upper bound on the
context’s label to ensure that untrusted code cannot raise
its label and read data above this clearance. This notion
of clearance is well established [14, 17, 34, 35, 51]; we
discuss its relevance to covert channels in Section 7.

As noted, COWL allows a labeled context to create ad-
ditional labeled contexts, much as today’s browsing con-
texts can create sub-compartments in the form of iframes,
workers, etc. This functionality is crucial for compart-
mentalizing a system hierarchically, where the developer
places code of different degrees of trustworthiness in sep-
arate contexts. For example, in the password checker ex-
ample in Section 2.2, we create a child context in which
we execute the untrusted checker script. Importantly, how-
ever, code should not be able to leak information by laun-
dering data through a newly created context. Hence, a
newly created context implicitly inherits the current label
of its parent. Alternatively, when creating a child, the par-
ent may specify an initial current label for the child that
is more restrictive than the parent’s, to confine the child
further. Top-level contexts (i.e., pages) are assigned a de-
fault label of public, to ensure compatibility with pages
written for the legacy SOP. Such browsing contexts can
be restricted by setting a COWL-label HTTP response
header, which dictates the minimal document label the
browser must enforce on the associated content.

COWL applications can create two types of context.
First, an application can create standard (but labeled) con-
texts in the form of pages, iframes, workers, etc. Indeed, it
may do so because a COWL application is merely a regu-
lar web application that additionally uses the COWL API.
It thus is confined by MAC, in addition to today’s web
security policies. Note that to enforce MAC, COWL must
mediate all pre-existing communication channels—even

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 137

subtle and implicit channels, such as content loading—
according to contexts’ labels. We describe how COWL
does so in Section 5.

Second, a COWL application can create labeled con-
texts in the form of lightweight labeled workers (LWork-
ers). Like normal workers [44], the API exposed to
LWorkers is minimal; it consists only of constructs for
communicating with the parent, the XHR constructor, and
the COWL API. Unlike normal workers, which execute in
separate threads, an LWorker executes in the same thread
as its parent, sharing its event loop. This sharing has the
added benefit of allowing the parent to give the child (la-
beled) access to its DOM, any access to which is treated as
both a read and a write, i.e., bidirectional communication.
Our third-party library example uses such a DOM worker
to isolate the trusted application code, which requires ac-
cess to the DOM, from the untrusted jQuery library. In
general, LWorkers—especially when given DOM access—
simplify the isolation and confinement of scripts (e.g., the
password strength checker) that would otherwise run in a
shared context, as when loaded with script tags.

3.2 Labeled Communication
Since COWL enforces a label check whenever a context
sends a message, the design described thus far is already
symmetric: a source context can confine a target con-
text by raising its label (or a child context’s label) and
thereafter send the desired message. To read this mes-
sage, the target context must confine itself by raising its
label accordingly. These semantics can make interactions
between contexts cumbersome, however. For example,
a sending context may wish to communicate with mul-
tiple contexts, and need to confine those target contexts
with different labels, or even confine the same target con-
text with different labels for different messages. And a
receiving context may need unfettered communication
with one or more origins for a time before confining itself
by raising its label to receive a message. In the password-
checker example application, the untrusted checker script
at the right of Figure 2 exhibits exactly this latter behav-
ior: it needs to communicate with untrusted remote ori-
gin sketchy.ru before reading the password labeled
fb.com.
Labeled Blob Messages (Intra-Browser) To simplify
communication with confinement, we introduce the la-
beled Blob, which binds together the payload of an in-
dividual inter-context message with the label protecting
it. The payload takes the form of a serialized immutable
object of type Blob [47]. Encapsulating the label with the
message avoids the cumbersome label raises heretofore
necessary in both sending and receiving contexts before
a message may even be sent or received. Instead, COWL
allows the developer sending a message from a context
to specify the label to be attached to a labeled Blob; any

label as or more restrictive than the sending context’s cur-
rent label may be specified (modulo its clearance). While
the receiving context may receive a labeled Blob with no
immediate effect on the origins with which it can com-
municate, it may only inspect the label, not the payload.6

Only after raising its label as needed may the receiving
context read the payload.

Labeled Blobs simplify building applications that in-
corporate distrust among contexts. Not only can a sender
impose confinement on a receiver simply by labeling a
message; a receiver can delay inspecting a sensitive mes-
sage until it has completed communication with untrusted
origins (as does the checker script in Figure 2). They also
ease the implementation of integrity in applications, as
they allow a context that is not trusted to modify content
in some other context to serve as a passive conduit for a
message from a third context that is so trusted.
Labeled XHR Messages (Browser–Server) Thus far
we have focused on confinement as it arises when two
browser contexts communicate. Confinement is of use
in browser-server communication, too. As noted in Sec-
tion 3.1, COWL only allows a context to communicate
with a server (whether with XHR, retrieving an image,
or otherwise) when the server’s origin subsumes the con-
text’s label. Upon receiving a request, a COWL-aware
web server may also wish to know the current label of the
context that initiated it. For this reason, COWL attaches
the current label to every request the browser sends to a
server.7 As also noted in Section 3.1, a COWL-aware web
server may elect to label a response it sends the client
by including a COWL-label header on it. In such cases,
the COWL-aware browser will only allow the receiving
context to read the XHR response if its current label sub-
sumes that on the response.

Here, again, a context that receives labeled data—in
this case from a server—may wish to defer raising its
label until it has completed communication with other
remote origins. To give a context this freedom, COWL
supports labeled XHR communication. When a script in-
vokes COWL’s labeled XHR constructor, COWL delivers
the response to the initiating script as a labeled Blob.
Just as with labeled Blob intra-browser IPC, the script
is then free to delay raising its label to read the payload
of the response—and delay being confined—until after
it has completed its other remote communication. For
example, in the third-party mashup example, Mint only
confines itself once it has received all necessary (labeled)
responses from both Amazon and Chase. At this point
it processes the data and displays results to the user, but
it can no longer send requests since doing so may leak

6The label itself cannot leak information—COWL still ensures that
the target context’s label is at least as restricting as that of the source.

7COWL also attaches the current privilege; see Section 3.3.

7

138 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

information.8

3.3 Privileges
While confinement handily enforces secrecy, there are
occasions when an application must eschew confinement
in order to achieve its goals, and yet can uphold secrecy
while doing so. For example, a context may be confined
with respect to some origin (say, a.com) as a result of
having received data from that origin, but may need to
send an encrypted version of that data to a third-party ori-
gin. Doing so does not disclose sensitive data, but COWL
would normally prohibit such an operation. In such sit-
uations, how can a context declassify data, and thus be
permitted to send to an arbitrary recipient, or avoid the
recipient’s being confined?

COWL’s privilege primitive enables safe declassifica-
tion. A context may hold one or more privileges, each
with respect to some origin. Possession of a privilege for
an origin by a context denotes trust that the scripts that
execute within that context will not compromise the se-
crecy of data from that origin. Where might such trust
come from (and hence how are privileges granted)? Under
the SOP, when a browser retrieves a page from a.com,
any script within the context for the page is trusted not
to violate the secrecy of a.com’s data, as these scripts
are deemed to be executing on behalf of a.com. COWL
makes the analogous assumption by granting the privilege
for a.com to the context that retrieves a page from a.com:
scripts executing in that context are similarly deemed to
be executing on behalf of a.com, and thus are trusted
not to leak a.com’s data to unauthorized parties—even
though they can declassify data. Only the COWL run-
time can create a new privilege for a valid remote origin
upon retrieval of a page from that origin; a script cannot
synthesize a privilege for a valid remote origin.

To illustrate the role of privileges in declassification,
consider the encrypted Google Docs example application.
In the implementation of this application atop COWL,
code executing on behalf of eff.org (i.e., in a compart-
ment holding the eff.org privilege) with a current label
〈eff.org ∧ gdoc.com〉 is permitted to send messages
to a context labeled 〈gdoc.com〉. Without the eff.org
privilege, this flow would not be allowed, as it may leak
the EFF’s information to Google.

Similarly, code can declassify information when unla-
beling messages. Consider now the password checker ex-
ample application. The left context in Figure 2 leverages
its fb.com privilege to declassify the password strength
result, which is labeled with its origin, to avoid (uneces-
sarily) raising its label to fb.com.

COWL generally exercises privileges implicitly: if a
8To continuously process data in “streaming” fashion, one may

partition the application into contexts that poll Amazon and Chase’s
servers for new data and pass labeled responses to the confined context
that processes the payloads of the responses.

context holds a privilege, code executing in that context
will, with the exception of sending a message, always
attempt to use it.9 COWL, however, lets code control the
use of privileges by allowing code to get and set the under-
lying context’s privileges. Code can drop privileges by set-
ting its context’s privileges to null. Dropping privileges
is of practical use in confining closely coupled untrusted
libraries like jQuery. Setting privileges, on the other hand,
increases the trust placed in a context by authorizing it
act on behalf of origins. This is especially useful since
COWL allows one context to delegate its privileges (or
a subset of them) to another; this functionality is also
instrumental in confining untrusted libraries like jQuery.
Finally, COWL also allows a context to create privileges
for fresh origins, i.e., unique origins that do not have a
real protocol (and thus do not map to real servers). These
fresh origins are primarily used to completely confine a
context: the sender can label messages with such an ori-
gin, which upon inspection will raise the receiver’s label
to this “fake” origin, thereby ensuring that it cannot com-
municate except with the parent (which holds the fresh
origin’s privilege).

4 APPLICATIONS
In Section 2.2, we characterized four applications and
explained why the status-quo web architecture cannot
accommodate them satisfactorily. We then described the
COWL system’s new browser primitives. We now close
the loop by demonstrating how to build the aforemen-
tioned applications with the COWL primitives.
Encrypted Document Editor The key feature needed
by an encrypted document editor is symmetric confine-
ment, where two mutually distrusting scripts can each
confine the other’s use of data they send one another.
Asymmetrically conferring COWL privileges on the dis-
trusting components is the key to realizing this applica-
tion.

Figure 3 depicts the architecture for an encrypted docu-
ment editor. The editor has three components: a compo-
nent which has the user’s Google Docs credentials and
communicates with the server (gdoc.com), the editor
proper (also gdoc.com), and the component that per-
forms encryption (eff.org). COWL provides privacy as
follows: if eff.org is honest, then COWL ensures that
the cleartext of the user’s document is not leaked to any
origin. If only gdoc.com is honest, then gdoc.com may
be able to recover cleartext (e.g., the encryptor may have
used the null “cipher”), but the encryptor should not be
able to exfiltrate the cleartext to anyone else.

How does execution of the encrypted document edi-
tor proceed? Initially, gdoc.com downloads (1) the en-

9 While the alternative approach of explicit exercise of privileges
(e.g., when registering an onmessage handler) may be safer [23, 34,
51], we find it a poor fit with existing asynchronous web APIs.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 139

eff.org$

public$ gdoc.com$

[EKEY(doc)]$gdoc.com$
2$3$

2$2$

2$4$

gdoc.com$

2$1$ EKEY(doc)$

KEY$

gdoc.com$ eff.org$

[doc]$gdoc.com eff.org$ 2$5$

editor$

public$

DOM$ DOM$

DOM$

gdoc.com $ eff.org $

gdoc.com $

crypto$

Figure 3: Encrypted document editor architecture.

2$3$

2$2$

amazon.com$
2$1$

chase.com$

amazon.com$

2$1$

public$

DOM$

mint.com $
chase.com$

Figure 4: Third-party mashup under COWL.

crypted document from Google’s servers. As the docu-
ment is encrypted, it opens an iframe to eff.org, with
initial label public so it can communicate with the
eff.org server and download the private key (2) which
will be used to decrypt the document. Next, it sends
the encrypted document as a labeled Blob, with the la-
bel 〈gdoc.com〉 (3); the iframe unlabels the Blob and
raises its label (4) so it can decrypt the document. Finally,
the iframe passes the decrypted document (labeled as
〈gdoc.com ∧ eff.org〉) to the iframe (5) implementing
the editor proper.

To save the document, these steps proceed in reverse:
the editor sends a decrypted document to the encryptor (5),
which encrypts it with the private key. Next, the critical
step occurs: the encryptor exercises its privileges to send
a labeled blob of the encrypted document which is only
labeled 〈gdoc.com〉 (3). Since the encryptor is the only
compartment with the eff.org privilege, all documents
must pass through it for encryption before being sent
elsewhere; conversely, it itself cannot exfiltrate any data,
as it is confined by gdoc.com in its label.

We have implemented a password manager atop COWL
that lets users safely store passwords on third-party web-
accessible storage. We elide its detailed design in the
interest of brevity, and note only that it operates similarly
to the encrypted document editor.
Third-Party Mashup Labeled XHR as composed with
CORS is central to COWL’s support for third-party
mashups. Today’s CORS policies are DAC-only, such
that a server must either allow another origin to read its

jquery.com$

2$1$

2$3$

2$4$
DOM$

public$

app#TCB#

public$

a.com $
unq0 $

a.com $
unq0 $

unq0$

2$2$

Figure 5: Privilege separation and library confinement.

data and fully trust that origin not to disclose the data, or
deny the other origin access to the data altogether. Under
COWL, however, a server could CORS-whitelist a foreign
origin to permit that origin to read its data, and by set-
ting a label on its response, be safe in the knowledge that
COWL would appropriately confine the foreign origin’s
scripts in the browser.

Figure 4 depicts an application that reconciles a user’s
Amazon purchases and bank statement. Here, Chase and
Amazon respectively expose authenticated read-only APIs
for bank statements and purchase histories that whitelist
known applications’ origins, such as mint.com, but set
MAC labels on responses.10 As discussed in Section 7,
with MAC in place, COWL allows users to otherwise
augment CORS by whitelisting foreign origins on a per-
origin basis. The mashup makes requests to both web
sites using labeled XHR (1) to receive the bank statement
and purchase history as labeled Blobs. Once all of the in-
formation is received, the mashup unlabels the responses
and raises its context’s label accordingly (2–3); doing so
restricts communication to the web at large.

Note that in contrast to when solely using CORS, by
setting MAC labels on responses, Chase and Amazon
need not trust Mint to write bug-free code—COWL con-
fines the Mint code to ensure that it cannot arbitrarily
leak sensitive data. As we discuss in Section 7, however,
a malicious Mint application could potentially leak data
through covert channels. We emphasize that COWL nev-
ertheless offers a significant improvement over the status
quo, in which, e.g., users give their login credentials to
Mint, and thus not only trust Mint to keep their bank
statements confidential, but also not to steal their funds!
Untrusted Third-Party Library COWL can confine
tightly coupled untrusted third-party libraries like jQuery
by delegating privileges to a trusted context and subse-
quently dropping them from the main page. In doing so,
COWL completely confines the main page, and ensures
that it can only communicate with the trusted and uncon-
fined context. Here, the main page may start out with
sensitive data in context, or alternatively, receive it from
the trusted compartment.

10On authentication: note that when the browser sends any XHR
(labeled or not) from a foreign origin to origin chase.com, it still
includes any cookies cached for chase.com in the request.

9

140 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

interface Label :
Label Label(String)
Label and(String or Label)
Label or(String or Label)
bool subsumes(Label [,Privilege])

interface Privilege :
Privilege FreshPrivilege()
Privilege combine(Privilege)
readonly attribute Label asLabel

(a) Labels and privileges.

interface LabeledBlob :
readonly attribute Label label
readonly attribute Blob blob

(b) Labeled Blobs.

interface COWL :
static void enable()
static attribute Label label
static attribute Label clearance
static attribute Privilege privilege

interface LWorker :
LWorker LWorker(String, Label

[, Privilege, object])
postMessage(object)
attribute EventHandler onmessage

(c) Labeled compartments.
Figure 6: COWL programming interface in simplified WebIDL.

Figure 5 shows how to use COWL to confine the un-
trusted jQuery library referenced by a web page. The goal
is to establish a separate DOM worker with the a.com

privilege, while the main browsing context runs jQuery in
confined fashion—without privileges or the ability to talk
to the network. Initially the main browsing context holds
the a.com privilege. The page generates a fresh origin
unq0 and spawns a DOM worker (1), delegating it both
privileges. The main context then drops its privileges and
raises its label to 〈unq0〉 (2). Finally, the trusted worker
downloads jQuery (3) and injects the script content into
the main context’s DOM (4). When the library is loaded,
the main context becomes untrusted, but also fully con-
fined. As the trusted DOM worker holds both privileges,
it can freely modify the DOM of the main context, as well
as communicate with the wider web. One may view this
DOM worker as a firewall between the page proper (with
the untrusted library) and the rest of the world.

5 IMPLEMENTATION

We implemented COWL in Firefox 31.0a1 and Chromium
31.0.1612.0. Because COWL operates at a context granu-
larity, it admits an implementation as a new DOM-level
API for the Gecko and Blink layout engines, without any
changes to the browsers’ JavaScript engines. Figure 6
shows the core parts of this API. We focus on the Fire-

Channel Mechanism

postMessage Cross-compartment wrappers11

DOM window properties Cross-compartment wrappers
Content loading CSP
XHR CSP + DOM interposition
Browser storage SOP + CSP (sandbox)
Other (e.g., iframe height) DOM interposition

Table 1: Confining code from exfiltrating data using existing
browser mechanisms.

fox implementation and only describe the Chromium one
where the two diverge non-trivially.

5.1 Labeled Browsing Contexts
Gecko’s existing isolation model relies on JavaScript com-
partments, i.e., disjoint JavaScript heaps, both for effi-
cient garbage collection and security isolation [40]. To
achieve isolation, Gecko performs all cross-compartment
communication (e.g., postMessage between iframes)
through wrappers that implement the object-capability
membrane pattern [21, 22]; membranes enable sound rea-
soning about “border crossing” between compartments.
Wrappers ensure that an object in one compartment can
never directly reference another object in a different com-
partment. Wrappers also include a security policy, which
enforces all inter-compartment access control checks spec-
ified by the SOP. Security decisions are made with respect
to a compartment’s security principal, which contains the
origin and CSP of the compartment.

Since COWL’s security model is very similar to this
existing model, we can leverage these wrappers to intro-
duce COWL’s new security policies. We associate a label,
clearance, and privilege with each compartment along-
side the security principal. Wrappers consider all of these
properties together when making security decisions.
Intra-Browser Confinement As shown in Table 1, we
rely on wrappers to confine cross-compartment communi-
cation. Once confinement mode is enabled, we “recom-
pute” all cross-compartment wrappers to use our MAC
wrapper policy and thereby ensure that all subsequent
cross-compartment access is mediated not only by the
SOP, but also by confinement. For postMessage, our
policy ensures that the receiver’s label subsumes that of
the sender (taking the receiver’s privileges into consider-
ation); otherwise the message is silently dropped. For a
cross-compartment DOM property access, we addition-
ally check that the sender’s label subsumes that of the
receiver—i.e., that the labels of the compartments are
equivalent after considering the sender’s privileges (in
addition to the same-origin check performed by the SOP).

Blink’s execution contexts (the dual to Gecko’s com-
partments) do not rely on wrappers to enforce cross-
context access control. Instead, Blink implements the

11 Since the Chromium architecture does not have cross-compartment
wrappers, we modify the DOM binding code to insert label checks.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 141

SOP security checks in the DOM binding code for a lim-
ited subset of DOM elements that may allow cross-origin
access. Since COWL policies are more fine-grained, we
modified the binding code to extend the security checks to
all DOM objects and also perform label checks when con-
finement mode is enabled. Unfortunately, without wrap-
pers, shared references cannot efficiently be revoked (i.e.,
without walking the heap). Hence, before enabling con-
finement mode, a page can create a same-origin iframe
with which it shares references, and the iframe can there-
after leak any data from the parent even if the latter’s
label is raised. To prevent this eventuality, our current
Chromium API allows senders to disallow unlabeling
Blobs if the target created any children before entering
confinement mode.

Our implementations of LWorkers, whose API appears
in Figure 6c, reuse labeled contexts straightforwardly.
In fact, the LWorker constructor simply creates a new
compartment with a fresh origin that contains a fresh
JavaScript global object to which we attach the XHR con-
structor, COWL API, and primitives for communicating
with the parent (e.g., postMessage). Since LWorkers
may have access to their parents’ DOM, however, our
wrappers distinguish them from other contexts to bypass
SOP checks and only restrict DOM access according to
MAC. This implementation is very similar to the content
scripts used by Chrome and Firefox extensions [10, 26].
Browser-Server Confinement As shown in Table 1, we
confine external communication (including XHR, content
loading, and navigation) using CSP. While CSP alone is
insufficient for providing flexible confinement,12 it suf-
ficiently addresses our external communication concern
by precisely controlling from where a page loads content,
performs XHR requests to, etc. To this end, we set a cus-
tom CSP policy whenever the compartment label changes,
e.g., with COWL.label. For instance, if the effective com-
partment label is Label("https://bank.ch").and

("https://amazon.com"), all the underlying CSP di-
rectives are set to ’none’ (e.g., default-src ’none’),
disallowing all network communication. We also disable
navigation with the ’sandbox’ directive [46–48].
Browser Storage Confinement As shown in Table 1,
we use the sandbox directive to restrict access to storage
(e.g., cookies and HTML5 local storage [47]), as have
other systems [5]. We leave the implementation of labeled
storage as future work.

6 EVALUATION
Performance largely determines acceptance of new
browser features in practice. We evaluate the performance

12 There are two primary reasons. First, JavaScript code cannot
(yet) modify a page’s CSP. And, second, CSP does not (yet) pro-
vide a directive for restricting in-browser communication, e.g., with
postMessage.

Firefox Chromium

va
ni

lla

un
la

be
le

d

la
be

le
d

va
ni

lla

un
la

be
le

d

la
be

le
d

New iframe 14.4 14.5 14.4 50.6 48.7 51.8
New worker 15.9 15.4 0.9† 18.9 18.9 3.3†

Iframe comm. 0.11 0.11 0.12 0.04 0.04 0.04
XHR comm 3.5 3.6 3.7 7.0 7.4 7.2
Worker comm. 0.20 0.24 0.03‡ 0.07 0.07 0.03‡

Table 2: Micro-benchmarks, in milliseconds.

of COWL by measuring the cost of our new primitives
as well as their impact on legacy web sites that do not
use COWL’s features. Our experiments consist of micro-
benchmarks of API functions and end-to-end benchmarks
of our example applications. We conducted all measure-
ments on a 4-core i7-2620M machine with 16GB of RAM
running GNU/Linux 3.13. The browser retrieved appli-
cations from the Node.js web server over the loopback
interface. We note that these measurements are harsh for
COWL, in that they omit network latency and the com-
plex intra-context computation and DOM rendering of
real-world applications, all of which would mask COWL’s
overhead further. Our key findings include:
� COWL’s latency impact on legacy sites is negligible.
� Confining code with LWorkers is inexpensive, espe-

cially when compared to iframes/Workers. Indeed,
the performance of our end-to-end confined password
checker is only 5 ms slower than that of an inlined
script version.

� COWL’s incurs low overhead when enforcing confine-
ment on mashups. The greatest overhead observed is
16% (for the encrypted document editor). Again, the
absolute slowdown of 16 ms is imperceptible by users.

6.1 Micro-Benchmarks
Context Creation Table 2 shows micro-benchmarks for
the stock browsers (vanilla), the COWL browsers with
confinement mode turned off (unlabeled), and with con-
finement mode enabled (labeled). COWL adds negligi-
ble latency to compartment creation; indeed, except for
LWorkers (†), the differences in creation times are of the
order of measurement variability. We omit measurements
of labeled “normal” Workers since they do not differ from
those of unlabeled Workers. We attribute COWL’s iframe-
creation speedup in Chromium to measurement variability.
We note that the cost of creating LWorkers is considerably
less than that for “normal” Workers, which run in separate
OS threads (†).
Communication The iframe, worker, and XHR com-
munication measurements evaluate the round-trip laten-
cies across iframes, workers, and the network. For the
XHR benchmark, we report the cost of using the labeled
XHR constructor averaged over 10,000 requests. Our

11

142 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Chromium implementation uses an LWorker to wrap the
unmodified XHR constructor, so the cost of labeled XHR
incorporates an additional cross-context call. As with cre-
ation, communicating with LWorkers (‡) is considerably
faster than with “normal” Workers. This speedup arises
because a lightweight LWorker shares an OS thread and
event loop with their parent.
Labels We measured the cost of setting/getting the cur-
rent label and the average cost of a label check in Firefox.
For a randomly generated label with a handful of origins,
these operations take on the order of one microsecond.
The primary cost is recomputing cross-compartment wrap-
pers and the underlying CSP policy, which ends up costing
up to 13ms (e.g., when the label is raised from public to a
third-party origin). For many real applications, we expect
raising the current label to be a rare occurrence. Moreover,
there is much room for optimization (e.g., porting COWL
to the newest CSP implementation, which sets policies
15× faster [19]).
DOM We also executed the Dromaeo benchmark
suite [29], which evaluates the performance of core func-
tionality such as querying, traversing, and manipulating
the DOM, in Firefox and Chromium. We found the per-
formance of the vanilla and unlabeled browsers to be on
par: the greatest slowdown was under 4%.

6.2 End-to-End Benchmarks
To focus on measuring COWL’s overhead, we compare
our apps against similarly compartmentalized but non-
secure apps—i.e., apps that perform no security checks.
Password-Strength Checker We measure the average
duration of creating a new LWorker, fetching an 8 KB
checker script based on [24], and checking a password
sixteen characters in length. The checker takes an average
of 18 ms (averaged over ten runs) on Firefox (labeled), 4
ms less than using a Worker on vanilla Firefox. Similarly,
the checker running on labeled Chromium is 5 ms faster
than the vanilla counterpart (measured at 54 ms). In both
cases COWL achieves a speedup because its LWorkers
are cheaper than normal Workers. However, these mea-
surements are roughly 5 ms slower than simply loading
the checker using an unsafe script tag.
Encrypted Document Editor We measure the end-to-
end time taken to load the application and encrypt a 4
KB document using the SJCL AES-128 library [32]. The
total run time includes the time taken to load the docu-
ment editor page, which in turn loads the encryption-layer
iframe, which further loads the editor proper. On Firefox
(labeled) the workload completes in 116 ms; on vanilla
Firefox, a simplified and unconfined version completes
in 100ms. On Chromium, the performance measurements
were comparable; the completion time was within 1ms
of 244ms. The most expensive operation in the COWL-
enabled Firefox app is raising the current label, since it

requires changing the underlying document origin and
recomputing the cross-compartment wrappers and CSP.
Third-Party Mashup We implemented a very simple
third-party mashup application that makes a labeled XHR
request to two unaffiliated origins, each of which pro-
duces a response containing a 27-byte JSON object with
a numerical property, and sums the responses together.
The corresponding vanilla app is identical, but uses the
normal XHR object. In both cases we use CORS to per-
mit cross-origin access. The Firefox (labeled) workload
completes in 41 ms, which is 6 ms slower than the vanilla
version. As in the document editor the slowdown derives
from raising the current label, though in this case only
for a single iframe. On Chromium (labeled) the workload
completes in 55 ms, 2 ms slower than the vanilla one;
the main slowdown here derives from our implementing
labeled XHR with a wrapping LWorker.
Untrusted Third-Party Library We measured the load
time of a banking application that incorporates jQuery and
a library that traverses the DOM to replace phone num-
bers with links. The latter library uses XHR in attempt to
leak the page’s content. We compartmentalize the main
page into a public outer component and a sensitive iframe
containing the bank statement. In both compartments, we
place the bank’s trusted code (which loads the libraries) in
a trusted labeled DOM worker with access to the page’s
DOM. We treat the rest of the code as untrusted. As our
current Chromium implementation does not yet support
DOM access for LWorkers, we only report measurements
for Firefox. The measured latency on Firefox (labeled) is
165 ms, a 5 ms slowdown when compared to the uncon-
fined version running on vanilla Firefox. Again, COWL
prevents sensitive content from being exfiltrated and in-
curs negligible slowdown.

7 DISCUSSION AND LIMITATIONS
We now discuss the implications of certain facets of
COWL’s design, and limitations of the system.
User-Configured Confinement Recall that in the status-
quo web security architecture, to allow cross-origin shar-
ing, a server must grant individual foreign origins access
to its data with CORS in an all-or-nothing, DAC fash-
ion. COWL improves this state of affairs by allowing a
COWL-aware server to more finely restrict how its shared
data is disseminated—i.e., when the server grants a for-
eign origin access to its data, it can confine the foreign
origin’s script(s) by setting a label on responses it sends
the client.

Unfortunately, absent a permissive CORS header that
whitelists the origins of applications that a user wishes
to use, the SOP prohibits foreign origins from reading
responses from the server, even in a COWL-enabled
browser. Since a server’s operator may not be aware of
all applications its users may wish to use, the result is

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 143

usually the same status-quo unpalatable choice between
functionality and privacy—e.g., give one’s bank login
credentials to Mint, or one cannot use the Mint appli-
cation. For this reason, our COWL implementation lets
browser users augment CORS by configuring for an origin
(e.g., chase.com) any foreign origins (e.g., mint.com,
benjamins.biz) they wish to additionally whitelist. In
turn, COWL will confine these client-whitelisted origins
(e.g., mint.com) by labeling every response from the
configured origin (chase.com). COWL obeys the server-
supplied label when available and server whitelisting is
not provided. Otherwise, COWL conservatively labels the
response with a fresh origin (as described in Section 3.3).
The latter ensures that once the response has been in-
spected, the code cannot communicate with any server,
including at the same origin, since such requests carry
the risks of self-exfiltration [11] and cross-site request
forgery [39].
Covert Channels In an ideal confinement system, it
would always be safe to let untrusted code compute on
sensitive data. Unfortunately, real-world systems such
as browsers typically exhibit covert channels that mali-
cious code may exploit to exfiltrate sensitive data. Since
COWL extends existing browsers, we do not protect
against covert channel attacks. Indeed, malicious code
can leverage covert channels already present in today’s
browsers to leak sensitive information. For instance, a
malicious script within a confined context may be able to
modulate sensitive data by varying rendering durations. A
less confined context may then in turn exfiltrate the data
to a remote host [20]. It is important to note, however,
that COWL does not introduce new covert channels—
our implementations re-purpose existing (software-based)
browser isolation mechanisms (V8 contexts and Spider-
Monkey compartments) to enforce MAC policies. More-
over, these MAC policies are generally more restricting
than existing browser policies: they prevent unauthorized
data exfiltration through overt channels and, in effect,
force malicious code to resort to using covert channels.

The only fashion in which COWL relaxes status-quo
browser policies is by allowing users to override CORS to
permit cross-origin (labeled) sharing. Does this function-
ality introduce new risks? Whitelisting is user controlled
(e.g., the user must explicitly allow mint.com to read
amazon.com and chase.com data), and code reading
cross-origin data is subject to MAC (e.g., mint.com can-
not arbitrarily exfiltrate the amazon.com or chase.com
data after reading it). In contrast, today’s mashups like
mint.com ask users for their passwords. COWL is
strictly an improvement: under COWL, when a user de-
cides to trust a mashup integrator such as mint.com, she
only trusts the app to not leak her data through covert chan-
nels. Nevertheless, users can make poor security choices.
Whitelisting malicious origins would be no exception;

we recognize this as a limitation of COWL that must be
communicated to the end-user.

A trustworthy developer can leverage COWL’s support
for clearance when compartmentalizing his application to
ensure that only code that actually relies on cross-origin
data has access to it. Clearance is a label that serves as an
upper bound on a context’s current label. Since COWL en-
sures that the current label is adjusted according to the sen-
sitivity of the data being read, code cannot read (and thus
leak) data labeled above the clearance. Thus, Mint can
assign a “low” clearance to untrusted third-party libraries,
e.g., to keep chase.com’s data confidential. These li-
braries will then not be able to leak such data through
covert channels, even if they are malicious.
Expressivity of Label Model COWL uses DC la-
bels [33] to enforce confinement according to an infor-
mation flow control discipline. Although this approach
captures a wide set of confinement policies, it is not ex-
pressive enough to handle policies with a circular flow of
information [6] or some policies expressible in more pow-
erful logics (e.g., first order logic, as used by Nexus [30]).
DC labels are, however, as expressive as other popular
label models [25], including Myers and Liskov’s Decen-
tralized Label Model [27]. Our experience implementing
security policies with them thus far suggests they are
expressive enough to support featureful web applications.

We adopted DC labels largely because their fit with
web origins pays practical dividends. First, as developers
already typically express policies by whitelisting origins,
we believe they will find DC labels intuitive to use. Sec-
ond, because both DC labels and today’s web policies
are defined in terms of origins, the implementation of
COWL can straightforwardly reuse the implementation
of existing security mechanisms, such as CSP.

8 RELATED WORK
Existing browser confinement systems based on informa-
tion flow control can be classified either as fine-grained or
coarse-grained. The former associate IFC policies with
individual objects, while the latter associate policies with
entire browsing contexts. We compare COWL to previ-
ously proposed systems in both categories, then contrast
the two categories’ overall characteristics.
Coarse-grained IFC COWL shares many features with
existing coarse-grained systems. BFlow [50], for example,
allows web sites to enforce confinement policies stricter
than the SOP via protection zones—groups of iframes
sharing a common label. However, BFlow cannot me-
diate between mutually distrustful principals—e.g., the
encrypted document editor is not directly implementable
with BFlow. This is because only asymmetric confinement
is supported—a sub-frame cannot impose any restrictions
on its parent. For the same reasons, BFlow cannot support
applications that require security policies more flexible

13

144 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

than the SOP, such as our third-party mashup example.
These differences reflect different goals for the two sys-
tems. BFlow’s authors set out to confine untrusted third-
party scripts, while we also seek to support applications
that incorporate code from mutually distrusting parties.

More recently, Akhawe et al. propose the data-confined
sandbox (DCS) system [5], which allows pages to inter-
cept and monitor the network, storage, and cross-origin
channels of data:URI iframes. The limitation to data:
URI iframes means DCS cannot confine the common case
of a service provided in an iframe [31]. Like BFlow, DCS
does not offer symmetric confinement, and does not incor-
porate functionality to let developers build applications
like third-party mashups.
Fine-grained IFC Per-object-granularity IFC makes it
easier to confine untrusted libraries that are closely cou-
pled with trusted code on a page (e.g., jQuery) and avoid
the problem of over-tainting, where a single context accu-
mulates taint as it inspects more data.

JSFlow [15] is one such fine-grained JavaScript IFC
system, which enforces policies by executing JavaScript
in an interpreter written in JavaScript. This approach in-
curs a two order of magnitude slowdown. JSFlow’s au-
thors suggest that this cost makes JSFlow a better fit for
use as a development tool than as an “always-on” privacy
system for users’ browsers. Additionally, JSFlow does not
support applications that rely on policies more flexible
than the SOP, such as our third-party mashup example.

The FlowFox fine-grained IFC system [12] enforces
policies with secure-multi execution (SME) [13]. SME
ensures that no leaks from a sensitive context can leak into
a less sensitive context by executing a program multiple
times. Unlike JSFlow and COWL, SME is not amenable
to scenarios where declassification plays a key role (e.g.,
the encrypted editor or the password manager). FlowFox’s
labeling of user interactions and metadata (history, screen
size, etc.) do allow it to mitigate history sniffing and
behavior tracking; COWL does not address these attacks.

While fine-grained IFC systems may be more con-
venient for developers, they impose new language se-
mantics for developers to learn, require invasive modi-
fications to the JavaScript engine, and incur greater per-
formance overhead. In contrast, because COWL repur-
poses familiar isolation constructs and does not require
JavaScript engine modifications, it is relatively straight-
forward to add to legacy browsers. It also only adds over-
head to cross-compartment operations, rather than to all
JavaScript execution. The typically short lifetime of a
browsing context helps avoid excessive accumulation of
taint. We conjecture that coarse-grained and fine-grained
IFC are equally expressive, provided one may use arbi-
trarily many compartments—a cost in programmer con-
venience. Finally, coarse- and fine-grained mechanisms
are not mutually exclusive. For instance, to confine legacy

(non-compartmentalized) JavaScript code, one could de-
ploy JSFlow within a COWL context.

Sandboxing The literature on sandboxing and secure
subsets of JavaScript is rich, and includes Caja [1],
BrowserShield [28], WebJail [37], TreeHouse [18],
JSand [4], SafeScript [36], Defensive JavaScript [9], and
Embassies [16]). While our design has been inspired by
some of these systems (e.g., TreeHouse), the usual goals
of these systems are to mediate security-critical opera-
tions, restrict access to the DOM, and restrict communica-
tion APIs. In contrast to the mandatory nature of confine-
ment, however, these systems impose most restrictions in
discretionary fashion, and are thus not suitable for build-
ing some of the applications we consider (in particular,
the encrypted editor). Nevertheless, we believe that access
control and language subsets are crucial complements to
confinement for building robustly secure applications.

9 CONCLUSION

Web applications routinely pull together JavaScript con-
tributed by parties untrusted by the user, as well as by
mutually distrusting parties. The lack of confinement for
untrusted code in the status-quo browser security archi-
tecture puts users’ privacy at risk. In this paper, we have
presented COWL, a label-based MAC system for web
browsers that preserves users’ privacy in the common
case where untrusted code computes over sensitive data.
COWL affords developers flexibility in synthesizing web
applications out of untrusted code and services while pre-
serving users’ privacy. Our positive experience building
four web applications atop COWL for which privacy had
previously been unattainable in status-quo web browsers
suggests that COWL holds promise as a practical plat-
form for preserving privacy in today’s pastiche-like web
applications. And our measurements of COWL’s perfor-
mance overhead in the Firefox and Chromium browsers
suggest that COWL’s privacy benefits come at negligible
end-to-end cost in performance.

ACKNOWLEDGEMENTS

We thank Bobby Holley, Blake Kaplan, Ian Melven, Gar-
ret Robinson, Brian Smith, and Boris Zbarsky for helpful
discussions of the design and implementation of COWL.
We thank Stefan Heule and John Mitchell for useful com-
ments on formal aspects of the design. And we thank
our shepherd Mihai Budiu and the anonymous review-
ers for their helpful comments. This work was funded
by DARPA CRASH under contract #N66001-10-2-4088,
by the EPSRC under grant EP/K032542/1, the Swedish
research agencies VR and STINT, the Barbro Osher Pro
Suecia foundation, and by multiple gifts from Google (to
Stanford and UCL). Deian Stefan and Edward Z. Yang
are supported through the NDSEG Fellowship Program.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 145

REFERENCES
[1] Google Caja. A source-to-source translator for secur-

ing JavaScript-based web content. http://code.
google.com/p/google-caja/, 2013.

[2] Mint. http://www.mint.com/, 2013.

[3] jQuery Usage Statistics: Websites using
jQuery. http://trends.builtwith.
com/javascript/jQuery, 2014.

[4] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens. JSand: complete client-
side sandboxing of third-party JavaScript without
browser modifications. In ACSAC, 2012.

[5] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song.
Data-confined HTML5 applications. In ESORICS,
2013.

[6] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat. Practical domain and
type enforcement for UNIX. In Security and Pri-
vacy, 1995.

[7] A. Barth. The web origin concept. Technical re-
port, IETF, 2011. URL https://tools.ietf.
org/html/rfc6454.

[8] A. Barth, C. Jackson, and J. Mitchell. Securing
frame communication in browsers. Communications
of the ACM, 52(6):83–91, 2009.

[9] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
Language-based defenses against untrusted browser
origins. In USENIX Security, 2013.

[10] N. Carlini, A. P. Felt, and D. Wagner. An evaluation
of the Google Chrome extension security architec-
ture. In USENIX Security, 2012.

[11] E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson.
Self-exfiltration: The dangers of browser-enforced
information flow control. In Web 2.0 Security and
Privacy, 2012.

[12] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: a web browser with flexi-
ble and precise information flow control. In CCS,
2012.

[13] D. Devriese and F. Piessens. Noninterference
through Secure Multi-Execution. In Security and
Privacy, 2010.

[14] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event pro-
cesses in the Asbestos operating system. In OSDI,
2005.

[15] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld.
JSFlow: tracking information flow in JavaScript and
its APIs. In SAC, 2014.

[16] J. Howell, B. Parno, and J. R. Douceur. Embassies:
Radically refactoring the Web. In NSDI, 2013.

[17] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your ifcexception are belong to us.
In Security and Privacy, 2013.

[18] L. Ingram and M. Walfish. Treehouse: JavaScript
sandboxes to help web developers help themselves.
In USENIX ATC, 2012.

[19] C. Kerschbaumer. Faster Content Security Policy
(CSP). https://blog.mozilla.org/
security/2014/09/10/faster-csp/,
2014.

[20] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson. Cross-
origin pixel stealing: timing attacks using CSS filters.
In CCS, 2013.

[21] M. S. Miller. Robust composition: towards a unified
approach to access control and concurrency control.
PhD thesis, Johns Hopkins University, 2006.

[22] M. S. Miller and J. S. Shapiro. Paradigm regained:
Abstraction mechanisms for access control. In
ASIAN, 2003.

[23] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability
myths demolished. Technical Report SRL2003-02,
Johns Hopkins University Systems Research Labo-
ratory, 2003. http://zesty.ca/capmyths/
usenix.pdf.

[24] S. Moitozo. http://www.geekwisdom.com/
js/passwordmeter.js, 2006.

[25] B. Montagu, B. C. Pierce, and R. Pollack. A theory
of information-flow labels. In CSF, June 2013.

[26] Mozilla. Add-on builder and SDK.
https://addons.mozilla.org/en-US/
developers/docs/sdk/, 2013.

[27] A. C. Myers and B. Liskov. Protecting privacy using
the decentralized label model. TOSEM, 9(4), 2000.

[28] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. Browsershield: Vulnerability-driven fil-
tering of dynamic HTML. TWEB, 1(3), Sept. 2007.

[29] J. Reisg. Dromaeo: JavaScript performance testing.
http://dromaeo.com/, 2014.

15

146 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[30] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, and F. B. Schneider. Logical
attestation: an authorization architecture for trust-
worthy computing. In SOSP, 2011.

[31] S. Son and V. Shmatikov. The postman always
rings twice: Attacking and defending postMessage
in HTML5 websites. In NDSS, 2013.

[32] E. Stark, M. Hamburg, and D. Boneh. Symmetric
cryptography in JavaScript. In ACSAC, 2009.

[33] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell.
Disjunction category labels. In NordSec, 2011.

[34] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières.
Flexible dynamic information flow control in
Haskell. In Haskell Symposium, 2011.

[35] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C.
Mitchell, and D. Mazières. Addressing covert termi-
nation and timing channels in concurrent informa-
tion flow systems. In ICFP, 2012.

[36] M. Ter Louw, P. H. Phung, R. Krishnamurti, and
V. N. Venkatakrishnan. SafeScript: JavaScript trans-
formation for policy enforcement. In Secure IT
Systems, 2013.

[37] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens,
and W. Joosen. WebJail: least-privilege integration
of third-party components in web mashups. In AC-
SAC, 2011.

[38] A. Van Kesteren. Cross-Origin Resource Sharing.
http://www.w3.org/TR/cors/, 2012.

[39] B. Vibber. CSRF token-stealing attack (user.tokens).
https://bugzilla.wikimedia.org/
show_bug.cgi?id=34907, 2014.

[40] G. Wagner, A. Gal, C. Wimmer, B. Eich, and
M. Franz. Compartmental memory management
in a modern web browser. SIGPLAN Notices, 46
(11), 2011.

[41] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Pro-
tection and communication abstractions for web
browsers in MashupOS. ACM SIGOPS Operating
Systems Review, 41(6), 2007.

[42] WC3. Content Security Policy 1.0. http://www.
w3.org/TR/CSP/, 2012.

[43] WC3. HTML5 web messaging. http://www.
w3.org/TR/webmessaging/, 2012.

[44] WC3. Web Workers. http://www.w3.org/
TR/workers/, 2012.

[45] WC3. Cross-Origin Resource Sharing. http://
www.w3.org/TR/cors/, 2013.

[46] WC3. Content Security Policy
1.1. https://dvcs.w3.org/hg/
content-security-policy/raw-file/
tip/csp-specification.dev.html,
2013.

[47] WC3. HTML5. http://www.w3.org/TR/
html5/, 2013.

[48] WHATWG. HTML living standard. http://
developers.whatwg.org/, 2013.

[49] E. Yang, D. Stefan, J. Mitchell, D. Mazières,
P. Marchenko, and B. Karp. Toward principled
browser security. In HotOS, 2013.

[50] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-
preserving browser-side scripting with BFlow. In
EuroSys, 2009.

[51] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI, 2006.

[52] M. Zelwski. Browser security handbook,
part 2. HTtp://code.google.com/p/
browsersec/wiki/Part2, 2011.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 147

Code-Pointer Integrity

Volodymyr Kuznetsov∗, László Szekeres‡, Mathias Payer†,§

George Candea∗, R. Sekar‡, Dawn Song†

∗École Polytechnique Fédérale de Lausanne (EPFL),
†UC Berkeley, ‡Stony Brook University, §Purdue University

Abstract
Systems code is often written in low-level languages

like C/C++, which offer many benefits but also dele-
gate memory management to programmers. This invites
memory safety bugs that attackers can exploit to divert
control flow and compromise the system. Deployed de-
fense mechanisms (e.g., ASLR, DEP) are incomplete,
and stronger defense mechanisms (e.g., CFI) often have
high overhead and limited guarantees [19, 15, 9].

We introduce code-pointer integrity (CPI), a new de-
sign point that guarantees the integrity of all code point-
ers in a program (e.g., function pointers, saved return ad-
dresses) and thereby prevents all control-flow hijack at-
tacks, including return-oriented programming. We also
introduce code-pointer separation (CPS), a relaxation of
CPI with better performance properties. CPI and CPS
offer substantially better security-to-overhead ratios than
the state of the art, they are practical (we protect a
complete FreeBSD system and over 100 packages like
apache and postgresql), effective (prevent all attacks in
the RIPE benchmark), and efficient: on SPEC CPU2006,
CPS averages 1.2% overhead for C and 1.9% for C/C++,
while CPI’s overhead is 2.9% for C and 8.4% for C/C++.

A prototype implementation of CPI and CPS can be
obtained from http://levee.epfl.ch.

1 Introduction
Systems code is often written in memory-unsafe lan-
guages; this makes it prone to memory errors that are
the primary attack vector to subvert systems. Attackers
exploit bugs, such as buffer overflows and use after free
errors, to cause memory corruption that enables them to
steal sensitive data or execute code that gives them con-
trol over a remote system [44, 37, 12, 8].

Our goal is to secure systems code against all control-
flow hijack attacks, which is how attackers gain remote
control of victim systems. Low-level languages like
C/C++ offer many benefits to system programmers, and
we want to make these languages safe to use while pre-
serving their benefits, not the least of which is perfor-
mance. Before expecting any security guarantees from
systems we must first secure their building blocks.

There exist a few protection mechanism that can re-
duce the risk of control-flow hijack attacks without im-
posing undue overheads. Data Execution Prevention
(DEP) [48] uses memory page protection to prevent the
introduction of new executable code into a running appli-
cation. Unfortunately, DEP is defeated by code reuse at-
tacks, such as return-to-libc [37] and return oriented pro-
gramming (ROP) [44, 8], which can construct arbitrary
Turing-complete computations by chaining together ex-
isting code fragments of the original application. Ad-
dress Space Layout Randomization (ASLR) [40] places
code and data segments at random addresses, making it
harder for attackers to reuse existing code for execution.
Alas, ASLR is defeated by pointer leaks, side channels
attacks [22], and just-in-time code reuse attacks [45]. Fi-
nally, stack cookies [14] protect return addresses on the
stack, but only against continuous buffer overflows.

Many defenses can improve upon these shortcomings
but have not seen wide adoption because of the overheads
they impose. According to a recent survey [46], these so-
lutions are incomplete and bypassable via sophisticated
attacks and/or require source code modifications and/or
incur high performance overhead. These approaches typ-
ically employ language modifications [25, 36], compiler
modifications [13, 3, 17, 34, 43], or rewrite machine code
binaries [38, 54, 53]. Control-flow integrity protection
(CFI) [1, 29, 53, 54, 39], a widely studied technique for
practical protection against control-flow hijack attacks,
was recently demonstrated to be ineffective [19, 15, 9].

Existing techniques cannot both guarantee protection
against control-flow hijacks and impose low overhead
and no changes to how the programmer writes code. For
example, memory-safe languages guarantee that a mem-
ory object can only be accessed using pointers prop-
erly based on that specific object, which in turn makes
control-flow hijacks impossible, but this approach re-
quires runtime checks to verify the temporal and spatial
correctness of pointer computations, which inevitably
induces undue overhead, especially when retrofitted to
memory-unsafe languages. For example, state-of-the-art
memory safety implementations for C/C+ incur ≥ 2×

1

148 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

overhead [35]. We observe that, in order to render
control-flow hijacks impossible, it is sufficient to guaran-
tee the integrity of code pointers, i.e., those that are used
to determine the targets of indirect control-flow transfers
(indirect calls, indirect jumps, or returns).

This paper introduces code-pointer integrity (CPI), a
way to enforce precise, deterministic memory safety for
all code pointers in a program. The key idea is to split
process memory into a safe region and a regular region.
CPI uses static analysis to identify the set of memory ob-
jects that must be protected in order to guarantee memory
safety for code pointers. This set includes all memory
objects that contain code pointers and all data pointers
used to access code pointers indirectly. All objects in the
set are then stored in the safe region, and the region is
isolated from the rest of the address space (e.g., via hard-
ware protection). The safe region can only be accessed
via memory operations that are proven at compile time
to be safe or that are safety-checked at runtime. The reg-
ular region is just like normal process memory: it can be
accessed without runtime checks and, thus, with no over-
head. In typical programs, the accesses to the safe region
represent only a small fraction of all memory accesses
(6.5% of all pointer operations in SPEC CPU2006 need
protection). Existing memory safety techniques cannot
efficiently protect only a subset of memory objects in a
program, rather they require instrumenting all potentially
dangerous pointer operations.

CPI fully protects the program against all control-flow
hijack attacks that exploit program memory bugs. CPI
requires no changes to how programmers write code,
since it automatically instruments pointer accesses at
compile time. CPI achieves low overhead by selectively
instrumenting only those pointer accesses that are neces-
sary and sufficient to formally guarantee the integrity of
all code pointers. The CPI approach can also be used for
data, e.g., to selectively protect sensitive information like
the process UIDs in a kernel.

We also introduce code-pointer separation (CPS), a re-
laxed variant of CPI that is better suited for code with
abundant virtual function pointers. In CPS, all code
pointers are placed in the safe region, but pointers used to
access code pointers indirectly are left in the regular re-
gion (such as pointers to C++ objects that contain virtual
functions). Unlike CPI, CPS may allow certain control-
flow hijack attacks, but it still offers stronger guarantees
than CFI and incurs negligible overhead.

Our experimental evaluation shows that our proposed
approach imposes sufficiently low overhead to be de-
ployable in production. For example, CPS incurs an
average overhead of 1.2% on the C programs in SPEC
CPU2006 and 1.9% for all C/C++ programs. CPI incurs
on average 2.9% overhead for the C programs and 8.4%
across all C/C++ SPEC CPU2006 programs. CPI and

CPS are effective: they prevent 100% of the attacks in the
RIPE benchmark and the recent attacks [19, 15, 9] that
bypass CFI, ASLR, DEP, and all other Microsoft Win-
dows protections. We compile and run with CPI/CPS a
complete FreeBSD distribution along with ≥ 100 widely
used packages, demonstrating that the approach is prac-
tical. This paper makes the following contributions:

1. Definition of two new program properties that of-
fer a security-benefit to enforcement-cost ratio su-
perior to the state of the art: code-pointer in-
tegrity (CPI) guarantees control flow cannot be hi-
jacked via memory bugs, and code-pointer sepa-
ration (CPS) provides stronger security guarantees
than control-flow integrity but at negligible cost.

2. An efficient compiler-based implementation of CPI
and CPS for unmodified C/C++ code.

3. The first practical and complete OS distribution
(based on FreeBSD) with full protection built-in
against control-flow hijack attacks.

In the rest of the paper we introduce our threat
model (§2), describe CPI and CPS (§3), present our im-
plementation (§4), evaluate our approach (§5), discuss
related work (§6), and conclude (§7). We formalize the
CPI enforcement mechanism and provide a sketch of its
correctness proof in Appendix A.

2 Threat Model

This paper is concerned solely with control-flow hijack
attacks, namely ones that give the attacker control of the
instruction pointer. The purpose of this type of attack is
to divert control flow to a location that would not oth-
erwise be reachable in that same context, had the pro-
gram not been compromised. Examples of such attacks
include forcing a program to jump (i) to a location where
the attacker injected shell code, (ii) to the start of a chain
of return-oriented program fragments (“gadgets”), or (iii)
to a function that performs an undesirable action in the
given context, such as calling system() with attacker-
supplied arguments. Data-only attacks, i.e., that modify
or leak unprotected non-control data, are out of scope.

We assume powerful yet realistic attacker capabilities:
full control over process memory, but no ability to mod-
ify the code segment. Attackers can carry out arbitrary
memory reads and writes by exploiting input-controlled
memory corruption errors in the program. They can-
not modify the code segment, because the corresponding
pages are marked read-executable and not writable, and
they cannot control the program loading process. These
assumptions ensure the integrity of the original program
code instrumented at compile time, and enable the pro-
gram loader to safely set up the isolation between the
safe and regular memory regions. Our assumptions are
consistent with prior work in this area.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 149

3 Design
We now present the terminology used to describe our
design, then define the code-pointer integrity prop-
erty (§3.1), describe the corresponding enforcement
mechanism (§3.2), and define a relaxed version that
trades some security guarantees for performance (§3.3).
We further formalize the CPI enforcement mechanism
and sketch its correctness proof in Appendix A.

We say a pointer dereference is safe iff the memory it
accesses lies within the target object on which the deref-
erenced pointer is based. A target object can either be a
memory object or a control flow destination. By pointer
dereference we mean accessing the memory targeted by
the pointer, either to read/write it (for data pointers) or
to transfer control flow to its location (for code pointers).
A memory object is a language-specific unit of memory
allocation, such as a global or local variable, a dynami-
cally allocated memory block, or a sub-object of a larger
memory object (e.g., a field in a struct). Memory objects
can also be program-specific, e.g., when using custom
memory allocators. A control flow destination is a loca-
tion in the code, such as the start of a function or a return
location. A target object always has a well defined life-
time; for example, freeing an array and allocating a new
one with the same address creates a different object.

We say a pointer is based on a target object X iff the
pointer is obtained at runtime by (i) allocating X on the
heap, (ii) explicitly taking the address of X , if X is allo-
cated statically, such as a local or global variable, or is a
control flow target (including return locations, whose ad-
dresses are implicitly taken and stored on the stack when
calling a function), (iii) taking the address of a sub-object
y of X (e.g., a field in the X struct), or (iv) computing
a pointer expression (e.g., pointer arithmetic, array in-
dexing, or simply copying a pointer) involving operands
that are either themselves based on object X or are not
pointers. This is slightly stricter version of C99’s “based
on” definition: we ensure that each pointer is based on at
most one object.

The execution of a program is memory-safe iff all
pointer dereferences in the execution are safe. A pro-
gram is memory-safe iff all its possible executions (for
all inputs) are memory-safe. This definition is consis-
tent with the state of the art for C/C++, such as Soft-
Bounds+CETS [34, 35]. Precise memory safety enforce-
ment [34, 36, 25] tracks the based-on information for
each pointer in a program, to check the safety of each
pointer dereference according to the definition above; the
detection of an unsafe dereference aborts the program.

3.1 The Code-Pointer Integrity (CPI) Property

A program execution satisfies the code-pointer integrity
property iff all its dereferences that either dereference or
access sensitive pointers are safe. Sensitive pointers are

Figure 1: CPI protects code pointers 3 and 4 and pointers 1 and
2 (which may access pointers 3 and 4 indirectly). Pointer 2 of
type void* may point to different objects at different times. The
int* pointer 5 and non-pointer data locations are not protected.

code pointers and pointers that may later be used to ac-
cess sensitive pointers. Note that the sensitive pointer
definition is recursive, as illustrated in Fig. 1. According
to case (iv) of the based-on definition above, dereferenc-
ing a pointer to a pointer will correspondingly propagate
the based-on information; e.g., an expression *p = &q
copies the result of &q, which is a pointer based on q,
to a location pointed to by p, and associates the based-
on metadata with that location. Hence, the integrity of
the based-on metadata associated with sensitive pointers
requires that pointers used to update sensitive pointers
be sensitive as well (we discuss implications of relaxing
this definition in §3.3). The notion of a sensitive pointer
is dynamic. For example, a void* pointer 2 in Fig. 1 is
sensitive when it points at another sensitive pointer at run
time, but it is not sensitive when it points to an integer.

A memory-safe program execution trivially satisfies
the CPI property, but memory-safety instrumentation
typically has high runtime overhead, e.g., ≥ 2× in state-
of-the-art implementations [35]. Our observation is
that only a small subset of all pointers are responsible
for making control-flow transfers, and so, by enforc-
ing memory safety only for control-sensitive data (and
thus incurring no overhead for all other data), we ob-
tain important security guarantees while keeping the cost
of enforcement low. This is analogous to the control-
plane/data-plane separation in network routers and mod-
ern servers [5], with CPI ensuring the safety of data that
influences, directly or indirectly, the control plane.

Determining precisely the set of pointers that are
sensitive can only be done at run time. However,
the CPI property can still be enforced using any over-
approximation of this set, and such over-approximations
can be obtained at compile time, using static analysis.

3.2 The CPI Enforcement Mechanism

We now describe a way to retrofit the CPI property into
a program P using a combination of static instrumenta-
tion and runtime support. Our approach consists of a
static analysis pass that identifies all sensitive pointers in
P and all instructions that operate on them (§3.2.1), an
instrumentation pass that rewrites P to “protect” all sen-
sitive pointers, i.e., store them in a separate, safe memory
region and associate, propagate, and check their based-

3

150 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

on metadata (§3.2.2), and an instruction-level isolation
mechanism that prevents non-protected memory opera-
tions from accessing the safe region (§3.2.3). For perfor-
mance reasons, we handle return addresses stored on the
stack separately from the rest of the code pointers using
a safe stack mechanism (§3.2.4).

3.2.1 CPI Static Analysis

We determine the set of sensitive pointers using type-
based static analysis: a pointer is sensitive if its type
is sensitive. Sensitive types are: pointers to functions,
pointers to sensitive types, pointers to composite types
(such as struct or array) that contains one or more mem-
bers of sensitive types, or universal pointers (i.e., void*,
char* and opaque pointers to forward-declared structs
or classes). A programmer could additionally indicate,
if desired, other types to be considered sensitive, such
as struct ucred used in the FreeBSD kernel to store pro-
cess UIDs and jail information. All code pointers that a
compiler or runtime creates implicitly (such as return ad-
dresses, C++ virtual table pointers, and setjmp buffers)
are sensitive as well.

Once the set of sensitive pointers is determined, we
use static analysis to find all program instructions that
manipulate these pointers. These instructions include
pointer dereferences, pointer arithmetic, and memory
(de-)allocation operations that calls to either (i) corre-
sponding standard library functions, (ii) C++ new/delete
operators, or (iii) manually annotated custom allocators.

The derived set of sensitive pointers is over-
approximate: it may include universal pointers that never
end up pointing to sensitive values at runtime. For in-
stance, the C/C++ standard allows char* pointers to point
to objects of any type, but such pointers are also used for
C strings. As a heuristic, we assume that char* pointers
that are passed to the standard libc string manipulation
functions or that are assigned to point to string constants
are not universal. Neither the over-approximation nor the
char* heuristic affect the security guarantees provided by
CPI: over-approximation merely introduces extra over-
head, while heuristic errors may result in false violation
reports (though we never observed any in practice).

Memory manipulation functions from libc, such as
memset or memcpy, could introduce a lot of overhead in
CPI: they take void* arguments, so a libc compiled with
CPI would instrument all accesses inside the functions,
regardless of whether they are operating on sensitive data
or not. CPI’s static analysis instead detects such cases by
analyzing the real types of the arguments prior to being
cast to void*, and the subsequent instrumentation pass
handles them separately using type-specific versions of
the corresponding memory manipulation functions.

We augmented type-based static analysis with a data-
flow analysis that handles most practical cases of unsafe

pointer casts and casts between pointers and integers. If
a value v is ever cast to a sensitive pointer type within
the function being analyzed, or is passed as an argument
or returned to another function where it is cast to a sen-
sitive pointer, the analysis considers v to be sensitive as
well. This analysis may fail when the data flow between
v and its cast to a sensitive pointer type cannot be fully re-
covered statically, which might cause false violation re-
ports (we have not observed any during our evaluation).
Such casts are a common problem for all pointer-based
memory safety mechanisms for C/C++ that do not re-
quire source code modifications [34].

A key benefit of CPI is its selectivity: the number of
pointer operations deemed to be sensitive is a small frac-
tion of all pointer operations in a program. As we show
in §5, for SPEC CPU2006, the CPI type-based analy-
sis identifies for instrumentation 6.5% of all pointer ac-
cesses; this translates into a reduction of performance
overhead of 16 – 44× relative to full memory safety.

Nevertheless, we still think CPI can benefit from more
sophisticated analyses. CPI can leverage any kind of
points-to static analysis, as long as it provides an over-
approximate set of sensitive pointers. For instance, when
extending CPI to also protect select non-code-pointer
data, we think DSA [27, 28] could prove more effective.

3.2.2 CPI Instrumentation

CPI instruments a program in order to (i) ensure that all
sensitive pointers are stored in a safe region, (ii) create
and propagate metadata for such pointers at runtime, and
(iii) check the metadata on dereferences of such pointers.

In terms of memory layout, CPI introduces a safe re-
gion in addition to the regular memory region (Fig. 2).
Storage space for sensitive pointers is allocated in both
the safe region (the safe pointer store) and the regular
region (as usual); one of the two copies always remains
unused. This is necessary for universal pointers (e.g.,
void*), which could be stored in either region depend-
ing on whether they are sensitive at run time or not, and
also helps to avoid some compatibility issues that arise
from the change in memory layout. The address in regu-
lar memory is used as an offset to to look up the value of
a sensitive pointer in the safe pointer store.

The safe pointer store maps the address &p of sensi-
tive pointer p, as allocated in the regular region, to the
value of p and associated metadata. The metadata for p
describes the target object on which p is based: lower
and upper address bounds of the object, and a temporal
id (see Fig. 2). The layout of the safe pointer store is
similar to metadata storage in SoftBounds+CETS [35],
except that CPI also stores the value of p in the safe
pointer store. Combined with the isolation of the safe re-
gion (§3.2.3), this allows CPI to guarantee full memory
safety of all sensitive pointers without having to instru-

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 151

Code (RX) Heap (RW)

T1'

Unsafe Stacks (RW)

Safe Region
Safe Stacks (RW)Safe Pointer Store (RW)

value | upper | lower | id

Regular Region

T2' T3' T1 T2 T3
struct A

Figure 2: CPI memory layout: The safe region contains the
safe pointer store and the safe stacks. The location of a sensitive
pointer on the left (shaded) remains unused, while the value of
this pointer and its metadata are stored in the safe pointer store.
The safe stacks T1,T2,T3 have corresponding stacks T ′

1,T
′

2,T
′

3
in regular memory to allocate unsafe stack objects.

ment all pointer operations.
The instrumentation step changes instructions that op-

erate on sensitive pointers, as found by CPI’s static anal-
ysis, to create and propagate the metadata directly fol-
lowing the based-on definition in §3.1. Instructions that
explicitly take addresses of a statically allocated memory
object or a function, allocate a new object on the heap, or
take an address of a sub-object are instrumented to create
metadata that describe the corresponding object. Instruc-
tions that compute pointer expressions are instrumented
to propagate the metadata accordingly. Instructions that
load or store sensitive pointers to memory are replaced
with CPI intrinsic instructions (§3.2.3) that load or store
both the pointer values and their metadata from/to the
safe pointer store. In principle, call and return instruc-
tions also store and load code pointers, and so would
need to be instrumented, but we instead protect return
addresses using a safe stack (§3.2.4).

Every dereference of a sensitive pointer is instru-
mented to check at runtime whether it is safe, using the
metadata associated with the pointer being dereferenced.
Together with the restricted access to the safe region, this
results in precise memory safety for all sensitive pointers.

Universal pointers (void* and char*) are stored in ei-
ther the safe pointer store or the regular region, de-
pending on whether they are sensitive at runtime or not.
CPI instruments instructions that cast from non-sensitive
to universal pointer types to assign special “invalid”
metadata (e.g., with lower bound greater than the upper
bound) for the resulting universal pointers. These point-
ers, as a result, would never be allowed to access the safe
region. CPI intrinsics for universal pointers would only
store a pointer in the safe pointer store if it had valid
metadata, and only load it from the safe pointer store if it
contained valid metadata for that pointer; otherwise, they
would store/load from the regular region.

CPI can be configured to simultaneously store pro-
tected pointers in both the safe pointer store and regu-
lar regions, and check whether they match when loading
them. In this debug mode, CPI detects all attempts to hi-
jack control flow using non-protected pointer errors; in
the default mode, such attempts are silently prevented.
This debug mode also provides better compatibility with
non-instrumented code that may read protected pointers

(for example, callback addresses) but not write them.
Modern compilers contain powerful static analysis

passes that can often prove statically that certain memory
accesses are always safe. The CPI instrumentation pass
precedes compiler optimizations, thus allowing them to
potentially optimize away some of the inserted checks
while preserving the security guarantees.

3.2.3 Isolating the Safe Region

The safe region can only be accessed via CPI intrinsic
instructions, and they properly handle pointer metadata
and the safe stack (§3.2.4). The mechanism for achieving
this isolation is architecture-dependent.

On x86-32, we rely on hardware segment protection.
We make the safe region accessible through a dedicated
segment register, which is otherwise unused, and con-
figure limits for all other segment registers to make the
region inaccessible through them. The CPI intrinsics are
then turned into code that uses the dedicated register and
ensures that no other instructions in the program use that
register. The segment registers are configured by the pro-
gram loader, whose integrity we assume in our threat
model; we also prevent the program from reconfiguring
the segment registers via system calls. None of the pro-
grams we evaluated use the segment registers.

On x86-64, CPI relies on the fact that no addresses
pointing into the safe region are ever stored in the regular
region. This architecture no longer enforces the segment
limits, however it still provides two segment registers
with configurable base addresses. Similarly to x86-32,
we use one of these registers to point to the safe region,
however, we choose the base address of the safe region
at random and rely on preventing access to it through
information hiding. Unlike classic ASLR though, our
hiding is leak-proof: since the objects in the safe region
are indexed by addresses allocated for them in the regu-
lar region, no addresses pointing into the safe region are
ever stored in regular memory at any time during execu-
tion. The 48-bit address space of modern x86-64 CPUs
makes guessing the safe region address impractical, be-
cause most failed guessing attempts would crash the pro-
gram, and such frequent crashes can easily be detected
by other means.

Other architectures could use randomization-based
protection as well, or rely on precise software fault isola-
tion (SFI) [11]. SFI requires that all memory operations
in a program are instrumented, but the instrumentation is
lightweight: it could be as small as a single and opera-
tion if the safe region occupies the entire upper half of
the address space of a process. In our experiments, the
additional overhead introduced by SFI was less than 5%.

Since sensitive pointers form a small fraction of all
data stored in memory, the safe pointer store is highly
sparse. To save memory, it can be organized as a hash ta-

5

152 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ble, a multi-level lookup table, or as a simple array rely-
ing on the sparse address space support of the underlying
OS. We implemented and evaluated all three versions,
and we discuss the fastest choice in §4.

In the future, we plan to leverage Intel MPX [24] for
implementing the safe region, as described in §4.

3.2.4 The Safe Stack

CPI treats the stack specially, in order to reduce perfor-
mance overhead and complexity. This is primarily be-
cause the stack hosts values that are accessed frequently,
such as return addresses that are code pointers accessed
on every function call, as well as spilled registers (tempo-
rary values that do not fit in registers and compilers store
on the stack). Furthermore, tracking which of these val-
ues will end up at run time in memory (and thus need to
be protected) vs. in registers is difficult, as the compiler
decides which registers to spill only during late stages of
code generation, long after CPI’s instrumentation pass.

A key observation is that the safety of most accesses
to stack objects can be checked statically during com-
pilation, hence such accesses require no runtime checks
or metadata. Most stack frames contain only memory
objects that are accessed exclusively within the corre-
sponding function and only through the stack pointer
register with a constant offset. We therefore place all
such proven-safe objects onto a safe stack located in the
safe region. The safe stack can be accessed without any
checks. For functions that have memory objects on their
stack that do require checks (e.g., arrays or objects whose
address is passed to other functions), we allocate separate
stack frames in the regular memory region. In our expe-
rience, less than 25% of functions need such additional
stack frames (see Table 2). Furthermore, this fraction is
much smaller among short functions, for which the over-
head of setting up the extra stack frame is non-negligible.

The safe stack mechanism consists of a static analysis
pass, an instrumentation pass, and runtime support. The
analysis pass identifies, for every function, which objects
in its stack frame are guaranteed to be accessed safely
and can thus be placed on the safe stack; return addresses
and spilled registers always satisfy this criterion. For the
objects that do not satisfy this criterion, the instrumen-
tation pass inserts code that allocates a stack frame for
these objects on the regular stack. The runtime support
allocates regular stacks for each thread and can be imple-
mented either as part of the threading library, as we did
on FreeBSD, or by intercepting thread create/destroy, as
we did on Linux. CPI stores the regular stack pointer in-
side the thread control block, which is pointed to by one
of the segment registers and can thus be accessed with a
single memory read or write.

Our safe stack layout is similar to double stack ap-
proaches in ASR [6] and XFI [18], which maintain a

separate stack for arrays and variables whose addresses
are taken. However, we use the safe stack to enforce
the CPI property instead of implementing software fault
isolation. The safe stack is also comparable to language-
based approaches like Cyclone [25] or CCured [36] that
simply allocate these objects on the heap, but our ap-
proach has significantly lower performance overhead.

Compared to a shadow stack like in CFI [1], which
duplicates return instruction pointers outside of the at-
tacker’s access, the CPI safe stack presents several ad-
vantages: (i) all return instruction pointers and most local
variables are protected, whereas a shadow stack only pro-
tects return instruction pointers; (ii) the safe stack is com-
patible with uninstrumented code that uses just the regu-
lar stack, and it directly supports exceptions, tail calls,
and signal handlers; (iii) the safe stack has near-zero
performance overhead (§5.2), because only a handful
of functions require extra stack frames, while a shadow
stack allocates a shadow frame for every function call.

The safe stack can be employed independently from
CPI, and we believe it can replace stack cookies [14]
in modern compilers. By providing precise protection
of all return addresses (which are the target of ROP at-
tacks today), spilled registers, and some local variables,
the safe stack provides substantially stronger security
than stack cookies, while incurring equal or lower per-
formance overhead and deployment complexity.

3.3 Code-Pointer Separation (CPS)

The code-pointer separation property trades some of
CPI’s security guarantees for reduced runtime overhead.
This is particularly relevant to C++ programs with many
virtual functions, where the fraction of sensitive point-
ers instrumented by CPI can become high, since every
pointer to an object that contains virtual functions is sen-
sitive. We found that, on average, CPS reduces overhead
by 4.3× (from 8.4% for CPI down to 1.9% for CPS), and
in some cases by as much as an order of magnitude.

CPS further restricts the set of protected pointers to
code pointers only, leaving pointers that point to code
pointers uninstrumented. We additionally restrict the
definition of based-on by requiring that a code pointer be
based only on a control flow destination. This restriction
prevents attackers from “forging” a code pointer from a
value of another type, but still allows them to trick the
program into reading or updating wrong code pointers.

CPS is enforced similarly to CPI, except (i) for the
criteria used to identify sensitive pointers during static
analysis, and (ii) that CPS does not need any metadata.
Control-flow destinations (pointed to by code pointers)
do not have bounds, because the pointer value must al-
ways match the destination exactly, hence no need for
bounds metadata. Furthermore, they are typically static,
hence do not need temporal metadata either (there are

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 153

a few rare exceptions, like unloading a shared library,
which are handled separately). This reduces the size
of the safe region and the number of memory accesses
when loading or storing code pointers. If the safe region
is organized as a simple array, a CPS-instrumented pro-
gram performs essentially the same number of memory
accesses when loading or storing code pointers as a non-
instrumented one; the only difference is that the pointers
are being loaded or stored from the safe pointer store in-
stead of their original location (universal pointer load or
store instructions still introduce one extra memory access
per such instruction). As a result, CPS can be enforced
with low performance overhead.

CPS guarantees that (i) code pointers can only be
stored to or modified in memory by code pointer store
instructions, and (ii) code pointers can only be loaded by
code pointer load instructions from memory locations to
which previously a code pointer store instruction stored
a value. Combined with the safe stack, CPS precisely
protects return addresses. CPS is stronger than most CFI
implementations [1, 54, 53], which allow any vulnerable
instruction in a program to modify any code pointer; they
only check that the value of a code pointer (when used in
an indirect control transfer) points to a function defined
in a program (for function pointers) or directly follows
a call instruction (for return addresses). CPS guarantee
(i) above restricts the attack surface, while guarantee (ii)
restricts the attacker’s flexibility by limiting the set of lo-
cations to which the control can be redirected—the set
includes only entry points of functions whose addresses
were explicitly taken by the program.

To illustrate this difference, consider the case of the
Perl interpreter, which implements its opcode dispatch
by representing internally a Perl program as a sequence
of function pointers to opcode handlers and then calling
in its main execution loop these function pointers one
by one. CFI statically approximates the set of legitimate
control-flow targets, which in this case would include all
possible Perl opcodes. CPS however permits only calls
through function pointers that are actually assigned. This
means that a memory bug in a CFI-protected Perl in-
terpreter may permit an attacker to divert control flow
and execute any Perl opcode, whereas in a CPS-protected
Perl interpreter the attacker could at most execute an op-
code that exists in the running Perl program.

CPS provides strong control-flow integrity guarantees
and incurs low overhead (§5). We found that it prevents
all recent attacks designed to bypass CFI [19, 15, 9]. We
consider CPS to be a solid alternative to CPI in those
cases when CPI’s (already low) overhead seems too high.

4 Implementation
We implemented a CPI/CPS enforcement tool for
C/C++, called Levee, on top of the LLVM 3.3 com-

piler infrastructure [30], with modifications to LLVM li-
braries, the clang compiler, and the compiler-rt runtime.
To use Levee, one just needs to pass additional flags to
the compiler to enable CPI (-fcpi), CPS (-fcps), or safe-
stack protection (-fstack-protector-safe). Levee works
on unmodified programs and supports Linux, FreeBSD,
and Mac OS X in both 32-bit and 64-bit modes.

Levee can be downloaded from the project home-
page http://levee.epfl.ch, and we plan to push our
changes to the upstream LLVM.
Analysis and instrumentation passes: We imple-
mented the static analysis and instrumentation for CPI
as two LLVM passes, directly following the design
from §3.2.1 and §3.2.2. The LLVM passes operate on the
LLVM intermediate representation (IR), which is a low-
level strongly-typed language-independent program rep-
resentation tailored for static analyses and optimization
purposes. The LLVM IR is generated from the C/C++
source code by clang, which preserves most of the type
information that is required by our analysis, with a few
corner cases. For example, in certain cases, clang does
not preserve the original types of pointers that are cast
to void* when passing them as an argument to memset
or similar functions, which is required for the memset-
related optimizations discussed in §3.2.2. The IR also
does not distinguish between void* and char* (represents
both as i8*), but this information is required for our string
pointers detection heuristic. We augmented clang to al-
ways preserve such type information as LLVM metadata.
Safe stack instrumentation pass: The safe stack instru-
mentation targets functions that contain on-stack mem-
ory objects that cannot be put on the safe stack. For such
functions, it allocates a stack frame on the unsafe stack
and relocates corresponding variables to that frame.

Given that most of the functions do not need an un-
safe stack, Levee uses the usual stack pointer (rsp reg-
ister on x86-64) as the safe stack pointer, and stores the
unsafe stack pointer in the thread control block, which is
accessible directly through one of the segment registers.
When needed, the unsafe stack pointer is loaded into an
IR local value, and Levee relies on the LLVM register
allocator to pick the register for the unsafe stack pointer.
Levee explicitly encodes unsafe stack operations as IR
instructions that manipulate an unsafe stack pointer; it
leaves all operations that use a safe stack intact, letting
the LLVM code generator manage them. Levee performs
these changes as a last step before code generation (di-
rectly replacing LLVM’s stack-cookie protection pass),
thus ensuring that it operates on the final stack layout.

Certain low-level functions modify the stack pointer
directly. These functions include setjmp/longjmp and
exception handling functions (which store/load the stack
pointer), and thread create/destroy functions, which al-
locate/free stacks for threads. On FreeBSD we provide

7

154 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

full-system CPI, so we directly modified these functions
to support the dual stacks. On Linux, our instrumentation
pass finds setjmp/longjmp and exception handling func-
tions in the program and inserts required instrumentation
at their call sites, while thread create/destroy functions
are intercepted and handled by the Levee runtime.

Runtime support library: Most of the instrumentation
by the above passes are added as intrinsic function calls,
such as cpi ptr store() or cpi memcpy(), which are im-
plemented by Levee’s runtime support library (a part
of compiler-rt). This design cleanly separates the safe
pointer store implementation from the instrumentation
pass. In order to avoid the overhead associated with ex-
tra function calls, we ensure that some of the runtime
support functions are always inlined. We compile these
functions into LLVM bitcode and instruct clang to link
this bitcode into every object file it compiles. Functions
that are called rarely (e.g., cpi abort(), called when a CPI
violation is detected) are never inlined, in order to reduce
the instruction cache footprint of the instrumentation.

We implemented and benchmarked several versions of
the safe pointer store map in our runtime support library:
a simple array, a two-level lookup table, and a hashtable.
The array implementation relies on the sparse address
space support of the underlying OS. Initially we found it
to perform poorly on Linux, due to many page faults (es-
pecially at startup) and additional TLB pressure. Switch-
ing to superpages (2 MB on Linux) made this simple ta-
ble the fastest implementation of the three.

Binary level functionality: Some code pointers in bina-
ries are generated by the compiler and/or linker, and can-
not be protected on the IR level. Such pointers include
the ones in jump tables, exception handler tables, and the
global offset table. Bounds checks for the jump tables
and the exception handler tables are already generated
by LLVM anyway, and the tables themselves are placed
in read-only memory, hence cannot be overwritten. We
rely on the standard loader’s support for read-only global
offset tables, using the existing RTLD NOW flag.

Limitations: The CPI design described in §3 includes
both spatial and temporal memory safety enforcement
for sensitive pointers, however our current prototype im-
plements spatial memory safety only. It can be easily
extended to enforce temporal safety by directly applying
the technique described in [35] for sensitive pointers.

Levee currently supports Linux, FreeBSD and Mac
OS user-space applications. We believe Levee can be
ported to protect OS kernels as well. Related technical
challenges include integration with the kernel memory
management subsystem and handling of inline assembly.

CPI and CPS require instrumenting all code that ma-
nipulates sensitive pointers; non-instrumented code can
cause unnecessary aborts. Non-instrumented code could

come from external libraries compiled without Levee, in-
line assembly, or dynamically generated code. Levee can
be configured to simultaneously store sensitive pointers
in both the safe and the regular regions, in which case
non-instrumented code works fine as long as it only reads
sensitive pointers but doesn’t write them.

Inline assembly and dynamically generated code can
still update sensitive pointers if instrumented with appro-
priate calls to the Levee runtime, either manually by a
programmer or directly by the code generator.

Dynamically generated code (e.g., for JIT compila-
tion) poses an additional problem: running the generated
code requires making writable pages executable, which
violates our threat model (this is a common problem for
most control-flow integrity mechanisms). One solution
is to use hardware or software isolation mechanisms to
isolate the code generator from the code it generates.
Sensitive data protection: Even though the main focus
of CPI is control-flow hijack protection, the same tech-
nique can be applied to protect other types of sensitive
data. Levee can treat programmer-annotated data types
as sensitive and protect them just like code pointers. CPI
could also selectively protect individual program vari-
ables (as opposed to types), however it would require re-
placing the type-based static analysis described in §3.2.1
with data-based points-to analysis such as DSA [27, 28].
Future MPX-based implementation: Intel announced
a hardware extension, Intel MPX, to be used for
hardware-enforced memory safety [23]. It is proposed as
a testing tool, probably due to the associated overhead;
no overhead numbers are available at the time of writing.

We believe MPX (or similar) hardware can be re-
purposed to enforce CPI with lower performance over-
head than our existing software-only implementation.
MPX provides special registers to store bounds along
with instructions to check them, and a hardware-based
implementation of a pointer metadata store (analogous to
the safe pointer store in our design), organized as a two-
level lookup table. Our implementation can be adapted
to use these facilities once MPX-enabled hardware be-
comes available. We believe that a hardware-based CPI
implementation can reduce the overhead of a software-
only CPI in much the same way as HardBound [16] or
Watchdog [33] reduced the overhead of SoftBound.

Adopting MPX for CPI might require implementing
metadata loading logic in software. Like CPI, MPX also
stores the pointer value together with the metadata. How-
ever, being a testing tool, MPX chooses compatibility
with non-instrumented code over security guarantees: it
uses the stored pointer value to check whether the origi-
nal pointer was modified by non-instrumented code and,
if yes, resets the bounds to [0,∞]. In contrast, CPI’s guar-
antees depend on preventing any non-instrumented code
from ever modifying sensitive pointer values.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 155

5 Evaluation
In this section we evaluate Levee’s effectiveness, effi-
ciency, and practicality. We experimentally show that
both CPI and CPS are 100% effective on RIPE, the most
recent attack benchmark we are aware of (§5.1). We eval-
uate the efficiency of CPI, CPS, and the safe stack on
SPEC CPU2006, and find average overheads of 8.4%,
1.9%, and 0% respectively (§5.2). To demonstrate prac-
ticality, we recompile with CPI/CPS/ safe stack the base
FreeBSD plus over 100 packages and report results on
several benchmarks (§5.3).

We ran our experiments on an Intel Xeon E5-2697
with 24 cores @ 2.7GHz in 64-bit mode with 512GB
RAM. The SPEC benchmarks ran on an Ubuntu Precise
Pangolin (12.04 LTS), and the FreeBSD benchmarks in
a KVM-based VM on this same system.

5.1 Effectiveness on the RIPE Benchmark

We described in §3 the security guarantees provided by
CPI, CPS, and the safe stack based on their design; to
experimentally evaluate their effectiveness, we use the
RIPE [49] benchmark. This is a program with many dif-
ferent security vulnerabilities and a set of 850 exploits
that attempt to perform control-flow hijack attacks on the
program using various techniques.

Levee deterministically prevents all attacks, both in
CPS and CPI mode; when using only the safe stack, it
prevents all stack-based attacks. On vanilla Ubuntu 6.06,
which has no built-in defense mechanisms, 833–848 ex-
ploits succeed when Levee is not used (some succeed
probabilistically, hence the range). On newer systems,
fewer exploits succeed, due to built-in protection mech-
anisms, changes in the run-time layout, and compatibil-
ity issues with the RIPE benchmark. On vanilla Ubuntu
13.10, with all protections (DEP, ASLR, stack cookies)
disabled, 197–205 exploits succeed. With all protections
enabled, 43–49 succeed. With CPS or CPI, none do.

The RIPE benchmark only evaluates the effectiveness
of preventing existing attacks; as we argued in §3 and
according to the proof outlined in Appendix A, CPI ren-
ders all (known and unknown) memory corruption-based
control-flow hijack attacks impossible.

5.2 Efficiency on SPEC CPU2006 Benchmarks

In this section we evaluate the runtime overhead of CPI,
CPS, and the safe stack. We report numbers on all SPEC
CPU2006 benchmarks written in C and C++ (our pro-
totype does not handle Fortran). The results are sum-
marized in Table 1 and presented in detail in Fig. 3.
We also compare Levee to two related approaches, Soft-
Bound [34] and control-flow integrity [1, 54, 53].

CPI performs well for most C benchmarks, however it
can incur higher overhead for programs written in C++.
This overhead is caused by abundant use of pointers to

Figure 3: Levee performance for SPEC CPU2006, under three
configurations: full CPI, CPS only, and safe stack only.

Safe Stack CPS CPI
Average (C/C++) 0.0% 1.9% 8.4%
Median (C/C++) 0.0% 0.4% 0.4%
Maximum (C/C++) 4.1% 17.2% 44.2%
Average (C only) -0.4% 1.2% 2.9%
Median (C only) -0.3% 0.5% 0.7%
Maximum (C only) 4.1% 13.3% 16.3%

Table 1: Summary of SPEC CPU2006 performance overheads.

C++ objects that contain virtual function tables—such
pointers are sensitive for CPI, and so all operations on
them are instrumented. Same reason holds for gcc: it
embeds function pointers in some of its data structures
and then uses pointers to these structures frequently.

The next-most important source of overhead are libc
memory manipulation functions, like memset and mem-
cpy. When our static analysis cannot prove that a call
to such a function uses as arguments only pointers to
non-sensitive data, Levee replaces the call with one to a
custom version of an equivalent function that checks the
safe pointer store for each updated/copied word, which
introduces overhead. We expect to remove some of this
overhead using improved static analysis and heuristics.

CPS averages 1.2–1.8% overhead, and exceeds 5% on
only two benchmarks, omnetpp and perlbench. The for-
mer is due to the large number of virtual function calls
occurring at run time, while the latter is caused by a
specific way in which perl implements its opcode dis-
patch: it internally represents a program as a sequence of
function pointers to opcode handlers, and its main execu-
tion loop calls these function pointers one after the other.
Most other interpreters use a switch for opcode dispatch.

Safe stack provided a surprise: in 9 cases (out of

9

156 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

19), it improves performance instead of hurting it; in
one case (namd), the improvement is as high as 4.2%,
more than the overhead incurred by CPI and CPS. This
is because objects that end up being moved to the regular
(unsafe) stack are usually large arrays or variables that
are used through multiple stack frames. Moving such
objects away from the safe stack increases the locality
of frequently accessed values on the stack, such as CPU
register values temporarily stored on the stack, return ad-
dresses, and small local variables.

The safe stack overhead exceeds 1% in only three
cases, perlbench, xalanbmk, and povray. We studied
the disassembly of the most frequently executed func-
tions that use unsafe stack frames in these programs and
found that some of the overhead is caused by inefficient
handling of the unsafe stack pointer by LLVM’s register
allocator. Instead of keeping this pointer in a single regis-
ter and using it as a base for all unsafe stack accesses, the
program keeps moving the unsafe stack pointer between
different registers and often spills it to the (safe) stack.
We believe this can be resolved by making the register
allocator algorithm aware of the unsafe stack pointer.

In contrast to the safe stack, stack cookies deployed
today have an overhead of up to 5%, and offer strictly
weaker protection than our safe stack implementation.

The data structures used for the safe stack and the safe
memory region result in memory overhead compared to
a program without protection. We measure the memory
overhead when using either a simple array or a hash ta-
ble. For SPEC CPU2006 the median memory overhead
for the safe stack is 0.1%; for CPS the overhead is 2.1%
for the hash table and 5.6% for the array; and for CPI the
overhead is 13.9% for the hash table and 105% for the
array. We did not optimize the memory overhead yet and
believe it can be improved in future prototypes.

In Table 2 we show compilation statistics for Levee.
The first column shows that only a small fraction of all
functions require an unsafe stack frame, confirming our
hypothesis from §3.2.4. The other two columns con-
firm the key premises behind our approach, namely that
CPI requires much less instrumentation than full memory
safety, and CPS needs much less instrumentation than
CPI. The numbers also correlate with Fig. 3.

Comparison to SoftBound: We compare with Soft-
Bound [34] on the SPEC benchmarks. We cannot fairly
reuse the numbers from [34], because they are based on
an older version of SPEC. In Table 3 we report numbers
for the four C/C++ SPEC benchmarks that can compile
with the current version of SoftBound. This comparison
confirms our hypothesis that CPI requires significantly
lower overhead compared to full memory safety.

Theoretically, CPI suffers from the same compatibil-
ity issues (e.g., handling unsafe pointer casts) as pointer-
based memory safety. In practice, such issues arise

Benchmark FNUStack MOCPS MOCPI
400 perlbench 15.0% 1.0% 13.8%
401 bzip2 27.2% 1.3% 1.9%
403 gcc 19.9% 0.3% 6.0%
429 mcf 50.0% 0.5% 0.7%
433 milc 50.9% 0.1% 0.7%
444 namd 75.8% 0.6% 1.1%
445 gobmk 10.3% 0.1% 0.4%
447 dealII 12.3% 6.6% 13.3%
450 soplex 9.5% 4.0% 2.5%
453 povray 26.8% 0.8% 4.7%
456 hmmer 13.6% 0.2% 2.0%
458 sjeng 50.0% 0.1% 0.1%
462 libquantum 28.5% 0.4% 2.3%
464 h264ref 20.5% 1.5% 2.8%
470 lbm 16.6% 0.6% 1.5%
471 omnetpp 6.9% 10.5% 36.6%
473 astar 9.0% 0.1% 3.2%
482 sphinx3 19.7% 0.1% 4.6%
483 xalancbmk 17.5% 17.5% 27.1%

Table 2: Compilation statistics for Levee: FNUStack lists what
fraction of functions need an unsafe stack frame; MOCPS and
MOCPI show the fraction of memory operations instrumented
for CPS and CPI, respectively.

Benchmark Safe Stack CPS CPI SoftBound
401 bzip2 0.3% 1.2% 2.8% 90.2%
447 dealII 0.8% -0.2% 3.7% 60.2%
458 sjeng 0.3% 1.8% 2.6% 79.0%
464 h264ref 0.9% 5.5% 5.8% 249.4%

Table 3: Overhead of Levee and SoftBound on SPEC programs
that compile and run errors-free with SoftBound.

much less frequently for CPI, because CPI instruments
much fewer pointers. Many of the SPEC benchmarks
either don’t compile or terminate with an error when in-
strumeted by SoftBound, which illustrates the practical
impact of this difference.

Comparison to control-flow integrity (CFI): The av-
erage overhead for compiler-enforced CFI is 21% for
a subset of the SPEC CPU2000 benchmarks [1] and 5-
6% for MCFI [39] (without stack pointer integrity). CC-
FIR [53] reports an overhead of 3.6%, and binCFI [54]
reports 8.54% for SPEC CPU2006 to enforce a weak
CFI property with globally merged target sets. WIT [3],
a source-based mechanism that enforces both CFI and
write integrity protection, has 10% overhead1.

At less than 2%, CPS has the lowest overhead among
all existing CFI solutions, while providing stronger pro-
tection guarantees. Also, CPI’s overhead is bested only
by CCFIR. However, unlike any CFI mechanism, CPI
guarantees the impossibility of any control-flow hijack
attack based on memory corruptions. In contrast, there

1We were unable to find open-source implementations of compiler-
based CFI, so we can only compare to published overhead numbers.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 157

Figure 4: Performance overheads on FreeBSD (Phoronix).

exist successful attacks against CFI [19, 15, 9]. While
neither of these attacks are possible against CPI by con-
struction, we found that, in practice, neither of them
would work against CPS either. We further discuss con-
ceptual differences between CFI and CPI in §6.

5.3 Case Study: A Safe FreeBSD Distribution

Having shown that Levee is both effective and efficient,
we now evaluate the feasibility of using Levee to protect
an entire operating system distribution, namely FreeBSD
10. We rebuilt the base system—base libraries, devel-
opment tools, and services like bind and openssh—plus
more than 100 packages (including apache, postgresql,
php, python) in four configurations: CPI, CPS, Safe
Stack, and vanilla. FreeBSD 10 uses LLVM/clang as its
default compiler, while some core components of Linux
(e.g., glibc) cannot be built with clang yet. We integrated
the CPI runtime directly into the C library and the thread-
ing library. We have not yet ported the runtime to kernel
space, so the OS kernel remained uninstrumented.

We evaluated the performance of the system using the
Phoronix test suite [41], a widely used comprehensive
benchmarking platform for operating systems. We chose
the “server” setting and excluded benchmarks marked
as unsupported or that do not compile or run on recent
FreeBSD versions. All benchmarks that compiled and
worked on vanilla FreeBSD also compiled and worked
in the CPI, CPS and Safe Stack versions.

Fig. 4 shows the overhead of CPI, CPS and the safe-
stack versions compared to the vanilla version. The
results are consistent with the SPEC results presented
in §5.2. The Phoronix benchmarks exercise large parts of
the system and some of them are multi-threaded, which
introduces significant variance in the results, especially
when run on modern hardware. As Fig. 4 shows, for
many benchmarks the overheads of CPS and the safe
stack are within the measurement error.

Benchmark Safe Stack CPS CPI
Static page 1.7% 8.9% 16.9%
Wsgi test page 1.0% 4.0% 15.3%
Dynamic page 1.4% 15.9% 138.8%

Table 4: Throughput benchmark for web server stack
(FreeBSD + Apache + SQLite + mod wsgi + Python +Django).

We also evaluated a realistic usage model of the
FreeBSD system as a web server. We installed Mezza-
nine, a content management system based on Django,
which uses Python, SQLite, Apache, and mod wsgi. We
used the Apache ab tool to benchmark the throughput of
the web server. The results are summarized in Table 4.

The CPI overhead for a dynamic page generated by
Python code is much larger then we expected, but con-
sistent with suspiciously high overhead of the pybench
benchmark in Fig. 4. We think it might be caused by the
use of some C constructs in the Python interpreter that
are not yet handled well by our optimization heuristics,
e.g., emulating C++ inheritance in C. We believe the per-
formance might be improved in this case by extending
the heuristics to recognize such C constructs.

6 Related Work
A variety of defense mechanisms have been proposed to-
date to answer the increasing challenge of control-flow
hijack attacks. Fig. 5 compares the design of the different
protection approaches to our approach.

Enforcing memory safety ensures that no dangling or
out-of-bounds pointers can be read or written by the ap-
plication, thus preventing the attack in its first step. Cy-
clone [25] and CCured [36] extend C with a safe type
system to enforce memory safety features. These ap-
proaches face the problem that there is a large (unported)
legacy code base. In contrast, CPI and CPS both work
for unmodified C/C++ code. SoftBound [34] with its
CETS [35] extension enforces complete memory safety
at the cost of 2× – 4× slowdown. Tools with less over-
head, like BBC [4], only approximate memory safety.
LBC [20] and Address Sanitizer [43] detect continu-
ous buffer overflows and (probabilistically) indexing er-
rors, but can be bypassed by an attacker who avoids the
red zones placed around objects. Write integrity testing
(WIT) [3] provides spatial memory safety by restricting
pointer writes according to points-to sets obtained by an
over-approximate static analysis (and is therefore limited
by the static analysis). Other techniques [17, 2] enforce
type-safe memory reuse to mitigate attacks that exploit
temporal errors (use after frees).

CPI by design enforces spatial and temporal memory
safety for a subset of data (code pointers) in Step 2 of
Fig. 5. Our Levee prototype currently enforces spatial
memory safety and may be extended to enforce temporal
memory safety as well (e.g., how CETS extends Soft-

11

158 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Attack step Property Mechanism Stops all control-flow hijacks?

①

Memory Safety SoftBound+CETS [34, 35]
BBC [4],
LBC [20], ASAN [43],
WIT [3]

Yes
No: sub-objects, reads not protected
No: protects red zones only
No: over-approximate valid sets

116%
110%
23%

7%

②
Code-Pointer
Integrity
(this work)

CPI
CPS
Safe Stack

Yes
No: valid code ptrs. interchangeable
No: precise return protection only

8.4%
1.9%
~0%

③

Randomization ASLR [40], ASLP [26]
PointGuard [13]
DSR [6]
NOP insertion [21]

No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks

~10%
10%
20%

2%

④

Control-Flow
Integrity

Stack cookies
CFI [1]
WIT (CFI part) [3]
DFI [10]

No: probabilistic return protection only
No: over-approximate valid sets
No: over-approximate valid sets
No: over-approximate valid sets

~2%
20%

7%
104%

⑤
Non-Executable
Data

HW (NX bit)
SW (Exec Shield, PaX)

No: code reuse attacks
No: code reuse attacks

0%
few %

⑥

High-level
policies

Sandboxing (SFI)
ACLs
Capabilities

Isolation only
Isolation only
Isolation only

varies
varies
varies

Corrupt data

pointer

Modify a

code pointer …

… to address of

gadget/shellcode

Execute injected

shellcode

Exec. available

gadgets/func.-s

Control-flow

hijack

Use pointer by

indirect call/jump

Use pointer by

return instruction

Avg. overhead

Figure 5: Summary of control-flow hijack defense mechanisms aligned with individual steps that are necessary for a successful
attack. The figure on the left is a simplified version of the complete memory corruption diagram in [46].

Bound). We believe CPI is the first to stop all control-
flow hijack attacks at this step.

Randomization techniques, like ASLR [40] and
ASLP [26], mitigate attacks by restricting the attacker’s
knowledge of the memory layout of the application in
Step 3. PointGuard [13] and DSR [7] (which is similar to
probabilistic WIT) randomize the data representation by
encrypting pointer values, but face compatibility prob-
lems. Software diversity [21] allows fine-grained, per-
instance code randomization. Randomization techniques
are defeated by information leaks through, e.g., memory
corruption bugs [45] or side channel attacks [22].

Control-flow integrity [1] ensures that the targets of
all indirect control-flow transfers point to valid code lo-
cations in Step 4. All CFI solutions rely on statically
pre-computed context-insensitive sets of valid control-
flow target locations. Many practical CFI solutions sim-
ply include every function in a program in the set of
valid targets [53, 54, 29, 47]. Even if precise static
analysis was be feasible, CFI could not guarantee pro-
tection against all control-flow hijack attacks, but rather
merely restrict the sets of potential hijack targets. In-
deed, recent results [19, 15, 9] show that many exist-
ing CFI solutions can be bypassed in a principled way.
CFI+SFI [52], Strato [51] and MIPS [38] enforce an even
more relaxed, statically defined CFI property in order to
enforce software-based fault isolation (SFI). CCFI [31]
encrypts code pointers in memory and provides secu-
rity guarantees close to CPS. Data-flow based techniques
like data-flow integrity (DFI) [10] or dynamic taint anal-
ysis (DTA) [42] can enforce that the used code pointer
was not set by an unrelated instruction or to untrusted
data, respectively. These techniques may miss some at-
tacks or cause false positives, and have higher perfor-
mance costs than CPI and CPS. Stack cookies, CFI, DFI,
and DTA protect control-transfer instructions by detect-

ing illegal modification of the code pointer whenever it
is used, while CPI protects the load and store of a code
pointer, thus preventing the corruption in the first place.
CPI provides precise and provable security guarantees.

In Step 5, the execution of injected code is prevented
by enforcing the non-executable (NX) data policy, but
code-reuse attacks remain possible.

High level policies, e.g., restricting the allowed sys-
tem calls of an application, limit the power of the at-
tacker even in the presence of a successful control-flow
hijack attack in Step 6. Software fault isolation (SFI)
techniques [32, 18, 11, 50, 52] restrict indirect control-
flow transfers and memory accesses to part of the ad-
dress space, enforcing a sandbox that contains the attack.
SFI prevents an attack from escaping the sandbox and al-
lows the enforcement of a high-level policy, while CPI
enforces the control-flow inside the application.

7 Conclusion
This paper describes code-pointer integrity (CPI), a way
to protect systems against all control-flow hijacks that
exploit memory bugs, and code-pointer separation, a re-
laxed form of CPI that still provides strong guarantees.
The key idea is to selectively provide full memory safety
for just a subset of a program’s pointers, namely code
pointers. We implemented our approach and showed that
it is effective, efficient, and practical. Given its advan-
tageous security-to-overhead ratio, we believe our ap-
proach marks a step toward deterministically secure sys-
tems that are fully immune to control-flow hijack attacks.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Junfeng Yang for their valuable input. We are grate-
ful to Martin Abadi, Herbert Bos, Miguel Castro, Vijay
D’Silva, Ulfar Erlingsson, Johannes Kinder, Per Larsen,
Jim Larus, Santosh Nagarakatte, and Jonas Wagner for

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 159

Atomic Types a ::= int | p∗
Pointer Types p ::= a | s | f | void
Struct Types s ::= struct{ . . . ;ai : idi; . . .}

LHS Expressions lhs ::= x | ∗lhs | lhs.id | lhs−>id

RHS Expressions rhs ::= i | & f | rhs+ rhs | lhs | &lhs

| (a) rhs | sizeof(p) | malloc(rhs)

Commands c ::= c;c | lhs = rhs | f () | (∗lhs)()

Figure 6: The subset of C used in Appendix A; x denotes local
statically typed variables, id – structure fields, i – integers, and
f – functions from a pre-defined set.

their valuable feedback and discussions on earlier ver-
sions of the paper. This work was supported by ERC
Starting Grant No. 278656, a Microsoft Research PhD
fellowship, a gift from Google, DARPA award HR0011-
12-2-005, NSF grants CNS-0831298 and CNS-1319137,
and AFOSR FA9550-09-1-0539.

A Formal Model of CPI
This section presents a formal model and operational se-
mantics of the CPI property and a sketch of its correct-
ness proof. Due to the size and complexity of C/C++
specifications, we focus on a small subset of C that illus-
trates the most important features of CPI. Due to space
limitations we focus on spatial memory safety. We build
upon the formalization of spatial memory safety in Soft-
Bound [34], reuse the same notation, and extend it to
support applying spatial memory safety to a subset of
memory locations. The formalism can be easily extended
to provide temporal memory safety, directly applying the
CETS [35] mechanism to the safe memory region of the
model. Fig. 6 gives the syntax rules of the C subset we
consider in this section. All valid programs must also
pass type checking as specified by the C standard.

We define the runtime environment E of a program
as a triple (S,Mu,Ms), where S maps variable identifiers
to their respective atomic types and addresses, a regu-
lar memory Mu maps addresses to values (denoted as v
and called regular values), and a safe memory Ms maps
addresses to values with bounds information (denoted as
v(b,e) and called safe values) or a special marker none.
The bounds information specifies the lowest (b) and the
highest (e) address of the corresponding memory object.
Mu and Ms use the same addressing, but might contain
distinct values for the same address. Some locations
(e.g., of void∗ type) can store either safe or regular value
and are resolved to either Ms or Mu at runtime.

The runtime provides the usual set of memory oper-
ations for Mu and Ms, as summarized in Table 5. Mu
models standard memory, whereas Ms stores values with
bounds and has a special marker for “absent” locations,
similarly to the memory in SoftBound’s [34] formaliza-
tion. We assume the memory operations follow the stan-
dard behavior of read/write/malloc operations in all other

Operation Semantics
readu Mu l return Mu[l]
writeu Mu l v set Mu[l] = v
reads Ms l return Ms[l], if l is allocated; return none otherwise
writes Ms l v(b,e) set Ms[l] = v(b,e), if l is allocated;

do nothing otherwise
writes Ms l none set Ms[l] = none, if l is allocated;

do nothing otherwise
malloc E i allocate a memory object of size i in both E.Mu and

E.Ms (at the same address); fail when out of memory

Table 5: Memory Operations in CPI

sensitive int ::= false

sensitive void ::= true

sensitive f ::= true

sensitive p∗ ::= sensitive p

sensitive s ::=
∨

i∈fields of s

sensitive ai

Figure 7: The decision criterion for protecting types in CPI

respects, e.g., read returns the value previously written to
the same location, malloc allocates a region of memory
that is disjoint with any other allocated region, etc..

Enforcing the CPI property with low performance
overhead requires placing most variables in Mu, while
still ensuring that all pointers that require protection at
runtime according to the CPI property are placed in
Ms. In this formalization, we rely on type-based static
analysis as defined by the sensitive criterion, shown
on Fig. 7. We say a type p is sensitive iff sensitive p=
true. Setting sensitive to true for all types would make
the CPI operational semantics equivalent to the one pro-
vided by SoftBound and would ensure full spatial mem-
ory safety of all memory operations in a program.

The classification provided by the sensitive crite-
rion is static and only determines which operations in a
program to instrument. Expressions of sensitive types
could evaluate to both safe or regular values at runtime,
whereas expressions of regular types always evaluate to
regular values. In particular, according to Fig. 7, void∗
is sensitive and, hence, in agreement with the C specifi-
cation, values of that type can hold any pointer value at
runtime, either safe or regular.

We extend the SoftBound definition of the result of an
operation to differentiate between safe and regular values
and left-hand-side locations:

Results r ::= v(b,e) | v | ls | lu | OK | OutOfMem | Abort

where v(b,e) and v are the safe (with bounds informa-
tion) and, respectively, regular values that result from a
right hand side expression, lu and ls are locations that re-
sult from a safe and regular left-hand-side expression, OK
is a result of a successful command, and OutOfMem and
Abort are error codes. We assume that all operational se-
mantics rules of the language propagate these error codes
up to the end of the program unchanged.

Using the above definitions, we now formalize the op-

13

160 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

erational semantics of CPI through three classes of rules.
The (E, lhs) ⇒l ls : a and (E, lhs) ⇒l lu : a rules spec-
ify how left hand side expressions are evaluated to a
safe or regular locations, respectively. The (E,rhs) ⇒r
(v(b,e),E ′) and (E,rhs)⇒r (v,E ′) rules specify how right
hand side expressions are evaluated to safe values with
bounds or regular values, respectively, possibly modify-
ing the environment through memory allocation (turning
it from E to E ′). Finally, the (E,c)⇒c (r,E ′) rules spec-
ify how commands are executed, possibly modifying the
environment, where r can be either OK or an error code.
We only present the rules that are most important for the
CPI semantics, omitting rules that simply represent the
standard semantics of the C language.

Bounds information is initially assigned when allocat-
ing a memory object or when taking a function’s address
(both operations always return safe values):

address(f) = l

(E,& f)⇒r (l(l,l))

(E,rhs) = i
malloc E i = (l,E ′)

(E,malloc(i))⇒r (l(l,l+i),E
′)

Taking the address of a variable from S if its type is
sensitive is analogous. Structure field access operations
either narrow bounds information accordingly, or strip it
if the type of the accessed field is regular.

Type casting results in a safe value iff a safe value is
cast to a sensitive type:

sensitive a′

(E,rhs)⇒l v(b,e) : a

(E,(a′)rhs)⇒r (v(b,e),E)

¬sensitive a′

(E,rhs)⇒l v(b,e) : a

(E,(a′)rhs)⇒r (v,E)

(E,rhs)⇒l v : a

(E,(a′)rhs)⇒r (v,E)

The next set of rules describes memory operations
(pointer dereference and assignment) on sensitive types
and safe values:

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)ls = some l′(b,e)
l′ ∈ [b,e−sizeof(a)]

(E,∗lhs)⇒l l′s : a

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)ls = some l′(b,e)
l′ �∈ [b,e−sizeof(a)]

(E,∗lhs)⇒l Abort

sensitive a
(E, lhs)⇒l ls : a
(E,rhs)⇒r v(b,e) : a
E ′.Ms = writes(E.Ms)ls v(b,e)

(E, lhs = rhs)⇒c (OK,E ′)

These rules are identical to the corresponding rules of
SoftBound [34] and ensure full spatial memory safety of
all memory objects in the safe memory. Only operations
matching those rules are allowed to access safe memory

Ms. In particular, any attempts to access values of sensi-
tive types through regular lvalues cause aborts:

sensitive a
(E, lhs)⇒l lu : a∗

(E,∗lhs)⇒l Abort

sensitive a
(E, lhs)⇒l lu : a

(E, lhs = rhs)⇒c (Abort,E)

Note that these rules can only be invoked if the value of
the sensitive type was obtained by casting from a regu-
lar type using a corresponding type casting rule. Levee
relaxes the casting rules to allow propagation of bounds
information through certain right-hand-side expressions
of regular types. This relaxation handles most common
cases of unsafe type casting; it affects performance (in-
ducing more instrumentation) but not correctness.

Some sensitive types (only void∗ in our simplified
version of C), can hold regular values at runtime. For ex-
ample, a variable of void∗ type can first be used to store
a function pointer and subsequently re-used to store an
int∗ value. The following rules handle such cases:

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)l = none

readu(E.Mu)l = l′

(E,∗lhs)⇒l l′u : a

sensitive a
(E, lhs)⇒l ls : a
(E,rhs)⇒r v : a
E ′.Mu = writeu(E.Mu) l v
E ′.Ms = writes(E.Ms) l none

(E, lhs = rhs)⇒c (OK,E ′)

Memory operations on regular types always access
regular memory, without any additional runtime checks,
following the unsafe memory semantics of C.

¬sensitive a
(E, lhs)⇒l l : a∗
readu(E.Mu)l = l′

(E,∗lhs)⇒l l′u : a

¬sensitive a
(E, lhs)⇒l l : a
(E,rhs)⇒r v : a
E ′.Mu = writeu(E.Mu) l v

(E, lhs = rhs)⇒c (OK,E ′)

These accesses to regular memory can go out of bounds
but, given that readu and writeu operations can only
modify regular memory Mu, it does not violate memory
safety of the safe memory.

Finally, indirect calls abort if the function pointer be-
ing called is not safe:

(E, lhs)⇒r ls : f∗

(E,(∗lhs)())⇒c (OK,E ′)

(E, lhs)⇒r lu : f∗

(E,(∗lhs)())⇒c (Abort,E)

Note that the operational rules for values that are safe
at runtime are fully equivalent to the corresponding Soft-
Bound rules [34] and, therefore, satisfy the SoftBound
safety invariant which, as proven in [34], ensures mem-
ory safety for these values. According to the sensitive
criterion and the safe location dereference and indirect
function call rules above, all dereferences of pointers that
require protection according to the CPI property are al-
ways safe at runtime, or the program aborts. Therefore,
the operational semantics defined above indeed ensure
the CPI property as defined in §3.1.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 161

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In ACM Conf. on Computer
and Communication Security, 2005.

[2] P. Akritidis. Cling: A memory allocator to mitigate
dangling pointers. In USENIX Security Symposium,
2010.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In IEEE Symp. on Security and Privacy, May
2008.

[4] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy Bounds Checking: An Efficient and
Backwards-compatible Defense Against Out-of-
bounds Errors. In USENIX Security Symposium,
2009.

[5] G. Altekar and I. Stoica. Focus replay debugging
effort on the control plane. USENIX Workshop on
Hot Topics in Dependability, 2010.

[6] S. Bhatkar, E. Bhatkar, R. Sekar, and D. C. Duvar-
ney. Efficient techniques for comprehensive pro-
tection from memory error exploits. In USENIX
Security Symposium, 2005.

[7] S. Bhatkar and R. Sekar. Data Space Randomiza-
tion. In Intl. Conf. on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of code-
reuse attack. In ACM Symp. on Information, Com-
puter and Communications Security, 2011.

[9] N. Carlini and D. Wagner. Rop is still dangerous:
Breaking modern defenses. In USENIX Security
Symposium, 2014.

[10] M. Castro, M. Costa, and T. Harris. Securing soft-
ware by enforcing data-flow integrity. In Symp.
on Operating Systems Design and Implementation,
2006.

[11] M. Castro, M. Costa, J.-P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In
ACM Symp. on Operating Systems Principles,
2009.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R.
Sadeghi, H. Shacham, and M. Winandy. Return-
oriented programming without returns. In ACM
Conf. on Computer and Communication Security,
2010.

[13] C. Cowan, S. Beattie, J. Johansen, and P. Wa-
gle. PointguardTM: protecting pointers from buffer
overflow vulnerabilities. In USENIX Security Sym-
posium, 2003.

[14] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
USENIX Security Symposium, 1998.

[15] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Mon-
rose. Stitching the gadgets: On the ineffectiveness
of coarse-grained control-flow integrity protection.
In USENIX Security Symposium, 2014.

[16] J. Devietti, C. Blundell, M. M. K. Martin, and
S. Zdancewic. Hardbound: Architectural support
for spatial safety of the c programming language. In
Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 2008.

[17] D. Dhurjati, S. Kowshik, and V. Adve. SAFE-
Code: enforcing alias analysis for weakly typed
languages. SIGPLAN Notices, 41(6):144–157, June
2006.

[18] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system ad-
dress spaces. In Symp. on Operating Systems De-
sign and Implementation, 2006.

[19] E. Göktaş, E. Athanasopoulosy, H. Bos, and G. Por-
tokalidis. Out of control: Overcoming control-flow
integrity. In IEEE Symp. on Security and Privacy,
2014.

[20] N. Hasabnis, A. Misra, and R. Sekar. Light-weight
bounds checking. In IEEE/ACM Symp. on Code
Generation and Optimization, 2012.

[21] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler,
and M. Franz. Profile-guided automated software
diversity. In IEEE/ACM Symp. on Code Generation
and Optimization, 2013.

[22] R. Hund, C. Willems, and T. Holz. Practical timing
side channel attacks against kernel space aslr. In
IEEE Symp. on Security and Privacy, 2013.

[23] Intel Architecture Instruction Set Exten-
sions Programming Reference. http:

//download-software.intel.com/sites/

default/files/319433-015.pdf, 2013.

[24] Intel. Introduction to Intel memory protec-
tion extensions. https://software.intel.com/en-
us/articles/introduction-to-intel-memory-
protection-extensions, July 2013.

15

162 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of
C. In USENIX Annual Technical Conf., 2002.

[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Ad-
dress space layout permutation (ASLP): Towards
fine-grained randomization of commodity softwar.
In Annual Computer Security Applications Conf.,
2006.

[27] C. Lattner and V. Adve. Automatic Pool Alloca-
tion: Improving Performance by Controlling Data
Structure Layout in the Heap. In ACM Conf. on
Programming Language Design and Implementa-
tion, 2005.

[28] C. Lattner, A. Lenharth, and V. Adve. Mak-
ing Context-Sensitive Points-to Analysis with Heap
Cloning Practical For The Real World. In ACM
Conf. on Programming Language Design and Im-
plementation, 2007.

[29] J. Li, Z. Wang, T. K. Bletsch, D. Srinivasan, M. C.
Grace, and X. Jiang. Comprehensive and ef-
ficient protection of kernel control data. IEEE
Transactions on Information Forensics and Secu-
rity, 6(4):1404–1417, Dec. 2011.

[30] The LLVM compiler infrastructure. http://

llvm.org/.

[31] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and
D. Boneh. Cryptographically enforced control
flow integrity. http://arxiv.org/abs/1408.1451, Aug.
2014.

[32] S. McCamant and G. Morrisett. Evaluating sfi for a
cisc architecture. In USENIX Security Symposium,
2006.

[33] S. Nagarakatte, M. M. K. Martin, and
S. Zdancewic. Watchdog: Hardware for safe
and secure manual memory management and
full memory safety. In Intl. Symp. on Computer
Architecture, 2012.

[34] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. SoftBound: Highly Compatible and
Complete Spatial Safety for C. In ACM Conf. on
Programming Language Design and Implementa-
tion, 2009.

[35] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. CETS: Compiler Enforced Tempo-
ral Safety for C. In Intl. Symp. on Memory Man-
agement, 2010.

[36] G. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of
legacy software. ACM Trans. on Programming
Languages and Systems, 27(3):477–526, 2005.

[37] Nergal. The advanced return-into-lib(c) ex-
ploits. Phrack, 11(58):http://phrack.com/
issues.html?issue=67&id=8, Nov. 2007.

[38] B. Niu and G. Tan. Monitor integrity protection
with space efficiency and separate compilation. In
ACM Conf. on Computer and Communication Se-
curity, 2013.

[39] B. Niu and G. Tan. Modular control-flow integrity.
In ACM Conf. on Programming Language Design
and Implementation, 2014.

[40] PaX-Team. PaX ASLR (Address Space Lay-
out Randomization). http://pax.grsecurity.

net/docs/aslr.txt, 2003.

[41] Phoronix. Phoronix test suite. http://www.

phoronix-test-suite.com/.

[42] E. J. Schwartz, T. Avgerinos, and D. Brumley. All
you ever wanted to know about dynamic taint anal-
ysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Symp. on Security
and Privacy, 2010.

[43] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address San-
ity Checker. In USENIX Annual Technical Conf.,
2012.

[44] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on
the x86). In ACM Conf. on Computer and Commu-
nication Security, 2007.

[45] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In IEEE Symp. on Se-
curity and Privacy, pages 574–588, 2013.

[46] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal war in memory. IEEE Symp. on Security
and Privacy, 2013.

[47] C. Tice, T. Roeder, P. Collingbourne, S. Check-
oway, Ú. Erlingsson, L. Lozano, and G. Pike. En-
forcing forward-edge control-flow integrity in gcc
& llvm. In USENIX Security Symposium, 2014.

[48] A. van de Ven and I. Molnar. Exec Shield.
https://www.redhat.com/f/pdf/rhel/

WHP0006US_Execshield.pdf, 2004.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 163

[49] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar,
and W. Joosen. RIPE: Runtime intrusion prevention
evaluator. In Annual Computer Security Applica-
tions Conf., 2011.

[50] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In IEEE Symp. on Security
and Privacy, 2009.

[51] B. Zeng, G. Tan, and Ú. Erlingsson. Strato: A retar-
getable framework for low-level inlined-reference
monitors. In USENIX Security Symposium, 2013.

[52] B. Zeng, G. Tan, and G. Morrisett. Combining
control-flow integrity and static analysis for effi-
cient and validated data sandboxing. In ACM Conf.
on Computer and Communication Security, 2011.

[53] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Con-
trol Flow Integrity & Randomization for Binary Ex-
ecutables. In IEEE Symp. on Security and Privacy,
2013.

[54] M. Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX Security Symposium,
2013.

17

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 165

Ironclad Apps: End-to-End Security via Automated Full-System Verification

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan†, Bryan Parno, Danfeng Zhang�, Brian Zill
Microsoft Research † University of Pennsylvania � Cornell University

Abstract
An Ironclad App lets a user securely transmit her data to
a remote machine with the guarantee that every instruc-
tion executed on that machine adheres to a formal abstract
specification of the app’s behavior. This does more than
eliminate implementation vulnerabilities such as buffer
overflows, parsing errors, or data leaks; it tells the user
exactly how the app will behave at all times. We provide
these guarantees via complete, low-level software verifi-
cation. We then use cryptography and secure hardware
to enable secure channels from the verified software to
remote users. To achieve such complete verification, we
developed a set of new and modified tools, a collection
of techniques and engineering disciplines, and a method-
ology focused on rapid development of verified systems
software. We describe our methodology, formal results,
and lessons we learned from building a full stack of ver-
ified software. That software includes a verified kernel;
verified drivers; verified system and crypto libraries in-
cluding SHA, HMAC, and RSA; and four Ironclad Apps.

1 Introduction
Today, when Alice submits her personal data to a remote
service, she has little assurance that her data will remain
secure. At best, she has vague legal guarantees provided
by the service’s privacy policy and the hope that the owner
will follow industry best practices. Even then, a vulnera-
ble OS, library, or application may undermine the service
provider’s best intentions [51].

In theory, complete formal verification of the service’s
code would replace this tenuous position with the strong
mathematical guarantee that the service precisely matches
Alice’s formally specified security expectations. Unfortu-
nately, while software verification provides strong guar-
antees [4, 6, 8, 17, 39], the cost is often high [25, 35, 36];
e.g., seL4 took over 22 person-years of effort to verify a
microkernel. Some strong guarantees have been obtained
in much less time, but those guarantees depend on unveri-
fied lower-level code. For example, past work produced
a verified TLS implementation [9] and a proof of cor-
rectness for RSA-OAEP [7]. In both cases, though, they
assumed the crypto libraries, their runtimes (e.g., .NET),
and the OS were correct.

In contrast, we aim to create Ironclad Apps that are ver-
ifiably end-to-end secure, meaning that: (1) The verifica-
tion covers all code that executes on the server, not just
the app but also the OS, libraries, and drivers. Thus, it

does not assume that any piece of server software is cor-
rect. (2) The proof covers the assembly code that gets
executed, not the high-level language in which the app is
written. Thus, it assumes that the hardware is correct, but
assumes nothing about the correctness of the compiler or
runtime. (3) The verification demonstrates remote equiv-
alence: that to a remote party the app’s implementation is
indistinguishable from the app’s high-level abstract state
machine.

Verifiable remote equivalence dictates the behavior of
the entire system in every possible situation. Thus, this
approach provides stronger guarantees than type checkers
or tools that look for classes of bugs such as buffer over-
flows or bounds errors. Our proof of remote equivalence
involves proving properties of both functional correctness
and information flow; we do the latter by proving nonin-
terference, a relationship between two runs of the same
code with different inputs.

We then show how remote equivalence can be strength-
ened to secure remote equivalence via Trusted Comput-
ing [3, 53]. Specifically, the app verifiably uses secure
hardware, including a TPM [63], to convince a remote
client that its public key corresponds to a private key
known only to the app. The client uses the public key
to establish a secure channel, thereby achieving security
equivalent to direct communication with the abstractly
specified app [30].

Another goal of our work is to make it feasible to build
Ironclad Apps with modest developer effort. Previous ef-
forts, such as seL4 [35] or VCC [13], took tens of person-
years to verify one software layer, so verifying an entire
stack using these techniques may be prohibitive. To re-
duce developer effort, we use state-of-the-art tools for au-
tomated software verification, such as Dafny [39], Boo-
gie [4], and Z3 [17]. These tools need much less guidance
from developers than interactive proof assistants used in
previous work [35, 52].

However, many in the verification community worry
that automated verification cannot scale to large software
and that the tools’ heuristics inevitably lead to unstable
verification results. Indeed, we encountered these chal-
lenges, and dealt with them in multiple ways: via two
new tools (§3.4); via modifications to existing verification
tools to support incremental verification, opaque func-
tions, and automatic requirement propagation; via soft-
ware engineering disciplines like premium functions and
idiomatic specification; via a nonlinear math library that

166 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

lets us suppress instability-inducing arithmetic heuristics;
and via provably correct libraries for performing crypto
operations and manipulating arrays of bits, bytes, and
words. All these contributions support stable, automated,
large-scale, end-to-end verification of systems software.

To demonstrate the feasibility of our approach, we built
four Ironclad Apps, each useful as a standalone service
but nevertheless compactly specifiable. For instance, our
Notary app securely assigns logical timestamps to docu-
ments so they can be conclusively ordered. Our other
three apps are a password hasher, a multi-user trusted
counter [40], and a differentially-private database [19].

We wrote nearly all of the code from scratch, includ-
ing the apps, libraries, and drivers. For the OS, we used
the Verve microkernel [65], modified to support secure
hardware and the Dafny language. For our four apps col-
lectively we wrote about 6K lines of implementation and
30K lines of proof annotations. Simple benchmarks expe-
rience negligible slowdown, but unoptimized asymmetric
crypto workloads slow down up to two orders of magni-
tude.

Since we prove that our apps conform to their specifi-
cations, we want these specs to be small. Currently, the
total spec size for all our apps is 3,546 lines, satisfying
our goal of a small trusted computing base (TCB).

2 Goals and Assumptions
Here we summarize Ironclad’s goals, non-goals, and
threat model. As a running example, we use our No-
tary app, which implements an abstract Notary state ma-
chine. This machine’s state is an asymmetric key pair
and a monotonic counter, and it signs statements assigning
counter values to hashes. The crypto lets a user securely
communicate with it even over an untrusted network.

2.1 Goals

Remote equivalence. Any remote party, communicat-
ing with the Ironclad App over an untrusted network,
should receive the same sequence of messages as she
would have received if she were communicating with
the app’s abstract state machine over an untrusted net-
work. For example, the Notary app will never roll back its
counter, leak its private key, sign anything other than no-
tarizations, compute signatures incorrectly, or be suscep-
tible to buffer overflows, integer overflows, or any other
implementation-level vulnerabilities.
Secure channel. A remote user can establish a secure
channel to the app. Since this protects the user’s commu-
nication from the untrusted network, the remote equiva-
lence guarantee leads to security commensurate with ac-
tual equivalence. For example, the Notary’s spec says it
computes its key pair using secure randomness, then ob-
tains an attestation binding the public key and the app’s
code to a secure platform. This attestation convinces a re-

mote user that a notarization signed with the correspond-
ing private key was generated by the Notary’s code, which
is equivalent to the abstract Notary state machine. Note
that not all messages need to use the secure channel; e.g.,
hashes sent to the Notary are not confidential, so the app
does not expect them to be encrypted.
Completeness. Every software component must be ei-
ther verified secure or run in a verified-secure sandbox;
our current system always uses the former option. The
assurance should cover the entire system as a coherent
whole, so security cannot be undermined by incorrect as-
sumptions about how components interact. Such gaps
introduced bugs in previous verification efforts [65].
Low-level verification. Since complex tools like com-
pilers may introduce bugs (a recent study found 325 de-
fects in 11 C compilers [66]), we aim to verify the actual
instructions that will execute rather than high-level code.
Verifying assembly also has a potential performance ben-
efit: We can hand-tune our assembly code without fear of
introducing bugs that violate our guarantees.
Rapid development by systems programmers. To push
verification towards commercial practicality, we need to
improve the scale and functionality of verification tools
to support large, real-world programs. This means that
non-expert developers should be able to rapidly write and
efficiently maintain verified code.

2.2 Non-goals

Compatibility. Ideally, we would verify existing code
written in standard languages. However given the chal-
lenges previous efforts have faced [13], we choose to fo-
cus on fresh code written in a language designed to sup-
port verification. If we cannot achieve the goals above in
such a setting, then we certainly cannot achieve it in the
challenging legacy setting.
Performance. Our primary goal is to demonstrate the fea-
sibility of verifying an entire software stack. Hence, we
focus on single-core machines, poll for network packets
rather than using interrupts, and choose algorithms that
facilitate proofs of correctness rather than performance.

However, verification gives us a strong safety net with
which to perform arbitrarily aggressive optimizations,
since we can count on our tools to catch any errors that
might be introduced. We exploited this repeatedly.

2.3 Threat model and assumptions

Ironclad provides security against software-based attack-
ers, who may run arbitrary software on the machine before
the Ironclad App executes and after it terminates. The ad-
versary may compromise the platform’s firmware, BIOS,
and peripheral devices, such as the network card. We as-
sume the CPU, memory, and chipset are correct, and the
attacker does not mount physical attacks, such as electri-
cally probing the memory bus.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 167

high-
level
spec

implementation in
high-level language

(Dafny)

spec
translator compiler

assembler and linker

implementation in
machine code

verifier

judgment

low-
level
spec

implementation in
verifiable assembly language

(BoogieX86)

Figure 1: Methodology Overview. Rounded rectangles repre-
sent tools; regular rectangles represent artifacts. Trusted com-
ponents are shaded.

We focus on privacy and integrity; we do not prove live-
ness, so attacks or bugs may result in denial of service.
Our hardware model is currently inadequate to prove the
absence of side channels due to cache or timing effects.

We assume the platform has secure hardware support,
specifically a Trusted Platform Module (TPM). Deployed
on over 500 million computers [64], the TPM provides a
hardware-based root of trust [3, 53, 63]. That is, it records
information about all software executed on the platform
during a boot cycle in a way that can be securely reported,
via an attestation protocol, to a remote party. The TPM
maintains records about the current boot cycle in the form
of hash chains maintained in volatile Platform Configura-
tion Registers (PCRs). Software can add information to
the PCRs via an extend operation. This operation updates
a PCR to the hash of its previous value concatenated with
the new information. The TPM also has a private RSA
key that never leaves the device and can be used to attest
to the platform’s current state by signing the PCR values.
The TPM’s manufacturer certifies that the corresponding
public key is held by a real hardware TPM, preventing
impersonation by software. Finally, the TPM provides ac-
cess to a stream of secure random bytes.

3 The Ironclad Methodology
This section describes our methodology for verifying
Ironclad Apps are secure and for efficiently building them.

3.1 Overview

Previous verification efforts required >20 person-years of
effort to develop relatively small verified software. Since
we aim to perform low-level, full-system verification with
modest effort, our methodology (Fig. 1) differs from pre-
vious efforts in significant ways.

With Ironclad, we use a verification stack based on
Floyd-Hoare reasoning (§3.2) to prove the functional cor-
rectness of our code. We write both our specifications
(§3.3) and code (§3.4) in Dafny [39], a remarkably us-
able high-level language designed to facilitate verifica-
tion. Unlike tools used in previous efforts, Dafny supports
automated verification via the Z3 [17] SMT solver, so the
tool often automatically fills in low-level proof details.

Given correct Dafny code, we built automated tools to
translate our code to BoogieX86 [65], a verifiable assem-
bly language (§3.4). The entire system is verified at the
assembly level using the Boogie verifier [4], so any bugs
in Dafny or in the compiler will be caught at this stage.

At every stage, we use and extend existing tools and
build new ones to support rapid development of verified
code (§3.5), using techniques like real-time feedback in
developer UIs and multi-level verification result caching.

Finally, since many security properties cannot be ex-
pressed via functional correctness, we develop techniques
for verifying relational properties of our code (§3.6).

If all verification checks pass, a simple trusted as-
sembler and linker produces the machine code that actu-
ally runs. We run that code using the platform’s secure
late-launch feature (§6.1), which puts the platform into a
known-good state, records a hash of the code in the TPM
(§2.3), then starts executing verified code. These steps al-
low remote parties to verify that Ironclad code was indeed
properly loaded, and they prevent any code that runs be-
fore Ironclad, including the boot loader, from interfering
with its execution.

3.2 Background: Floyd-Hoare verification

We verify Ironclad Apps using Floyd-Hoare reason-
ing [21, 31]. In this approach, programs are annotated
with assertions about program state, and the verification
process proves that the assertions will be valid when the
program is run, for all possible inputs. As a simple exam-
ple, the following program is annotated with an assertion
about the program state at the end of a method (a “post-
condition”), saying that the method output O must be an
even number:
method Main(S, I) returns(O)

ensures even(O);
{ O := (S + S) + (I + I); }

A tool like Dafny or Boogie can easily and automatically
verify that the postcondition above holds for all possible
inputs S and I.

For a long-running program with multiple outputs, we
can specify a restriction on all of the program’s outputs
by annotating its output method with a precondition. For
instance, writing:
method WriteOutput(O) // Trusted output

requires even(O); // method

ensures that the verifier will reject code unless, like the
following, it can be proven to only output even numbers:

3

168 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

method Main() {
var count := 0;
while(true) invariant even(count) {
count := count + 2;
WriteOutput(count);

} }

Boogie and Dafny are sound, i.e., they will never ap-
prove an incorrect program, so they cannot be complete,
i.e., they will sometimes fail to automatically recognize
valid programs as correct. Thus, they typically require
many preconditions, postconditions, and loop invariants
inside the program to help them complete the verifica-
tion, in addition to the preconditions and postconditions
used to write the trusted specifications. The loop invari-
ant invariant even(count) in the example above
illustrates this: it is not part of the trusted specification,
but instead serves as a hint to the verification tool.

By itself, Floyd-Hoare reasoning proves safety proper-
ties but not liveness properties. For example, a postcondi-
tion establishes a property of the state upon method exit,
but the method may fail to terminate. We have not proven
liveness for Ironclad Apps.

3.3 Writing trustworthy specifications

To build Ironclad Apps, we write two main types of spec-
ifications: hardware and apps. For hardware specs, since
we aim for low-level verification, we write a specification
for each of the ∼56 assembly instructions our implemen-
tation will use. An instruction’s spec describes its precon-
ditions and its effects on the system. For example, Add
ensures that the sum of the input registers is written to the
destination register, and requires that the input values not
cause the sum to overflow.

For app specs, we write abstract descriptions of desired
app behavior. These are written modularly in terms of
lower-level library specs. For example, the spec for the
Notary describes how the app’s state machine advances
and the outputs permitted in each state; one possible out-
put is a signed message which is defined in terms of our
spec for RSA signing.

The verification process removes all implementation
code from the TCB by proving that it meets its high-
level spec given the low-level machine spec. However, the
specs themselves are part of the TCB, so it is crucial that
they be worthy of users’ trust. To this end, we use spec-
first design, idiomatic specification, and spec reviews.
Spec-first design. To encourage spec quality, we write
each specification before starting on its implementation.
This order makes the spec likely to express desired proper-
ties rather than a particular mechanism. Writing the spec
afterwards might port implementation bugs to the spec.
Idiomatic specification. To ensure trustworthy specs, we
aim to keep them small and simple, making bugs less
likely and easier to spot. We accomplish this by speci-
fying only the feature subset that our system needs, and

by ensuring that the implementation cannot trigger other
features; e.g., our verifier will not permit any assembly
instructions not in the hardware spec. This is crucial for
devices; e.g., the TPM’s documentation runs to hundreds
of pages, but we need only a fraction of its functionality.
Hence, our TPM spec is only 296 source lines of code
(SLOC).
Spec reviews. We had two or more team members de-
velop each spec, and another review their work indepen-
dently. This caught several bugs before writing any code.

Despite our techniques, specs may still contain bugs.
However, we expect them to contain significantly fewer
bugs than implementations. First, our specs are smaller
(§8.1). Second, our specs are written in a more abstract,
declarative fashion than implementation code, making
spec bugs both less likely to occur and easier to find when
they do occur. For example, one line in our Notary spec
(§5.1) says that a number representing a counter is incre-
mented. The code implementing that addition, in contrast,
involves hundreds of lines of code: it implements the
unbounded-precision number using an array of machine
words, so addition must handle carries and overflow.

Overall, our experience (§7) suggests specs are indeed
more trustworthy than code.

3.4 Producing verifiable assembly language

To enable rapid, large-scale software development while
still verifying code at a low level, we take a two-layer ver-
ification approach (Figure 1): we write our specs and im-
plementation in the high-level Dafny language, but we re-
verify the code after compiling to assembly language.

We replaced the existing Dafny compiler targeting
.NET and Windows with two new components, a trusted
spec translator and a new untrusted compiler called
DafnyCC. The trusted spec translator converts a tiny sub-
set of Dafny into BoogieX86. This subset includes just
those features useful in writing specs: e.g., functions, type
definitions, and sequences, but not arrays.

Our untrusted DafnyCC compiler, in contrast, con-
sumes a large subset of the Dafny language. It translates
both the code and the proofs written in Dafny into Boo-
gieX86 assembly that Boogie can automatically verify. It
also automatically inserts low-level proofs that the stack
is used safely (§6.3), that OS invariants are maintained
(§6.4), etc. Because all of the code emitted by DafnyCC
is verified by Boogie, none of its complexity is trusted.
Thus, we can add arbitrarily complex features and opti-
mizations without hurting security. Indeed, Boogie caught
several bugs made during compilation (§7.7).

3.5 Rapid verification

A key goal of Ironclad is to reduce the verification bur-
den for developers, so we use the following techniques to
support rapid verification.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 169

Preliminary verification. Although ultimately we must
verify code at the assembly level, it is useful to perform a
fast, preliminary verification at the Dafny level. This lets
the developer quickly discover bugs and missing proof an-
notations. The verification is particularly rapid because
Dafny includes a plugin for the Visual Studio interactive
development environment that verifies code incrementally
as the developer types, emitting error messages and mark-
ing the offending code with squiggly underlines.
Modular verification. We added support to Dafny for
modular verification, allowing one file to import another
file’s interfaces without reverifying that code.
Shared verification. Our IronBuild tool shares verifica-
tion results among developers via a cloud store. Since
each developer verifies code before checking it in, when-
ever another developer checks out code, verification will
succeed immediately based on cached results. IronBuild
precisely tracks dependencies by hash to ensure fidelity.

3.6 Verifying relational properties

For Ironclad Apps, we prove properties beyond functional
correctness, e.g., that the apps do not leak secrets such
as keys. Although standard Floyd-Hoare tools like Boo-
gie and Dafny focus on functional correctness, we ob-
served that we could repurpose a Boogie-based experi-
mental tool, SymDiff [37], to prove noninterference prop-
erties. We combine these proofs with our functional cor-
rectness proofs to reason about the system’s security (§4).

Suppose that variable S represents a secret inside the
program and I represents a public input to the program.
The statement O := (S+S)+(I+I) satisfies a functional
correctness specification even(O). However, in doing
so, it leaks information about the secret S .

The statement O := (S−S)+(I+I), by contrast, sat-
isfies even(O) yet leaks no information about S. Intu-
itively, the value stored in O depends on I but is inde-
pendent of S. The concept of noninterference [24, 57, 61]
formalizes this intuition by reasoning about multiple ex-
ecutions of a program, and comparing the outputs to see
which values they depend on. Suppose that we pass the
same public input I to all the executions, but vary the se-
cret S between the executions. If all the executions pro-
duce the same output O regardless of S, then O is indepen-
dent of S, and the program leaks nothing about S.

Mathematically, noninterference means that for all pos-
sible pairs of executions, if the public inputs I are equal
but the secrets S may be different, then the outputs O are
equal. (Some definitions also require that termination is
independent of secrets [57], while others do not [61]; for
simplicity, we use the latter.) More formally, if we call the
two executions in each pair L and R, for left and right, then
noninterference means ∀SL,SR . IL = IR =⇒ OL = OR.
For instance, O := (S−S)+ (I+I) satisfies this condi-
tion, but O := (S+S)+(I+I) does not.

To allow the SymDiff tool to check noninterference, we
annotate some of our code with explicit relational annota-
tions [5], writing xL as left(x) and xR as right(x):
method Test(S, I) returns(O)

requires left(I) == right(I);
ensures left(O) == right(O);
ensures even(O);

{ O := (S - S) + (I + I); }

The relational precondition left(I) == right(I)
means SymDiff must check that IL = IR wher-
ever Test is called, and the relational postcondition
left(O) == right(O) means SymDiff must check
that this method ensures IL = IR =⇒ OL = OR.

However, for most of our code, SymDiff leverages our
existing functional correctness annotations and does not
need relational annotations. For example, SymDiff needs
only the functional postcondition in this code:
method ComputeIpChecksum(I) returns(O)

ensures O == IpChecksum(I);

to infer that if IL = IR, then IpChecksum(IL) =
IpChecksum(IR), so OL = OR.

4 Proving Ironclad Security Properties
This section describes how we combine the previous sec-
tion’s ideas of functional correctness, like even(O), and
noninterference, like IL = IR =⇒ OL = OR, to prove the
security of our Ironclad Apps. It describes the architec-
ture, theorems, and proofs at a high level. In §5, we show
how they are instantiated for each app, and in §6 we give
details about the key lemmas we prove about our system
to support these high-level results.

4.1 Declassification and the Ironclad architecture

Pure noninterference establishes that a program’s output
values are completely independent of the program’s se-
crets, but this requirement is too strong for most real-
world systems. In practice, programs deliberately allow
limited influence of the secrets on the output, such as us-
ing a secret key to sign an output. A security policy for
such programs explicitly declassifies certain values, like a
signature, so they can be output despite being dependent
on secrets.

Figure 2 shows the overall structure of the Ironclad sys-
tem, including an abstract declassifier that authorizes the
release of selected outputs derived from secrets. We ex-
press each app’s declassification policy as a state machine,
thereby binding the release of secret-derived data to the
high-level behavior of the abstract app specification. We
assume that the client communicates with the Ironclad
App across a network that may drop, delay, duplicate, or
mangle data. The network, however, does not have ac-
cess to the app’s secrets. The app receives some possibly-
mangled inputs I and responds by sending some outputs O
to the network, which may mangle O before passing them
to the client. While computing the outputs O, the app may

5

170 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

client network app Declassify
ReadInput

S, i, d

o

I

O
WriteOutput

method ReadInput() returns(I);
ensures left(I) == right(I);

method Declassify(S, i, d) returns(o);
requires d == StateMachineOutput(S, i);
requires left(i) == right(i);
ensures left(o) == right(o);

method WriteOutput(O);
requires left(O) == right(O);

Figure 2: Abstract system structure and trusted in-
put/output/declassify specification.

appeal to the declassification policy as many times as it
wishes. Each time, it passes its secrets S, some inputs i,
and the desired declassified outputs d to the declassifier.
For verification to succeed, the desired outputs must equal
the outputs according to the abstract state machine’s pol-
icy: d = StateMachineOutput(S,i). If static verification
proves that the declassification policy is satisfied, the de-
classifier produces declassified outputs o that the app can
use as part of its outputs O.

In the real implementation, o simply equals d, so that
the declassifier is a no-op at run-time. Nevertheless,
we hide this from the verifier, because we want to re-
veal oL = oR without revealing dL = dR; in some cases
where the secrets S are in principle computable by brute-
force search on d (e.g., by factoring an RSA public key),
dL = dR might imply SL = SR, which we do not want.

4.2 Ironclad security theorems

Given the execution model described above, for each of
our apps, we first prove functional correctness as a pre-
condition for declassification:

Theorem 1 FUNCTIONAL CORRECTNESS. At each
declassification Declassify(S,i,d), the desired outputs
d satisfy the app’s functional correctness policy, ac-
cording to the app’s abstract state machine: d =
StateMachineOutput(S,i).

In other words, we only declassify values that the ab-
stract state machine would have output; the state machine
clearly considers these values safe to output.

Second, we split noninterference into two parts and
prove both: noninterference along the path from the in-
puts I to the declassifier, and noninterference along the
path from the declassifier to the outputs O:

Theorem 2 INPUT NONINTERFERENCE. At each de-
classification Declassify(S,i,d), IL = IR =⇒ iL = iR.

In other words, the declassifier’s public inputs i may de-
pend on inputs from the network I, but not on secrets S.

Theorem 3 OUTPUT NONINTERFERENCE. Each time
the program outputs O, IL = IR ∧oL = oR =⇒ OL = OR.
In other words, the outputs O may depend on inputs from
the network I and on any declassified values o, but not on
secrets S.

As discussed in more detail in later sections, we carried
out formal, mechanized proofs of these three theorems us-
ing the Boogie and SymDiff tools for each Ironclad App.

These theorems imply remote equivalence:
Corollary 1 REMOTE EQUIVALENCE. To a remote
party, the outputs received directly from the Ironclad App
are equal to the outputs generated by the specified ab-
stract state machine over some untrusted network, where
the state machine has access to the trusted platform’s
secrets, but the untrusted network does not. (Specifi-
cally, if the Ironclad App generates some outputs OL and
the untrusted network generates some outputs OR, then
OL = OR.)
Proof Sketch: We prove this by constructing an alterna-
tive, abstract counterpart to the Ironclad App. Label the
real Ironclad App L and the counterpart R. The counter-
part R consists of two components: the specified abstract
state machine, which can read the trusted platform’s se-
crets S, and an untrusted network, which cannot. We
construct R by using the actual Ironclad App code as the
untrusted network, with two changes. First, in the un-
trusted network, we replace the real secrets S with an
arbitrary value S’, modeling the network’s lack of ac-
cess to the real secrets S. Second, we replace R’s ordi-
nary declassifier with the abstract state machine produc-
ing oR = StateMachineOutput(S,iR), modeling the ab-
stract state machine’s access to the real secrets S. We pass
the same input to both the real Ironclad App L and to R,
so that IL = IR. By INPUT NONINTERFERENCE, the in-
puts to the declassifier are the same: iL = iR. The real
declassifier simply returns oL = dL, and by FUNCTIONAL
CORRECTNESS, the real Ironclad App produces the out-
puts dL = StateMachineOutput(S,iL). Since iL = iR
and we pass the same secrets S to both L and R, we
conclude that oL = dL = StateMachineOutput(S,iL) =
StateMachineOutput(S,iR) = oR. Then by OUTPUT
NONINTERFERENCE, both L and R generate the same out-
puts: OL = OR.

This shows that the Ironclad App’s output is the same
as that of the abstract state machine and an untrusted net-
work. Thus, the output a remote party sees, which is pro-
duced by the Ironclad App and an actual untrusted net-
work, is the same as that of the abstract state machine and
an untrusted network composed of the actual and chosen
untrusted networks.

4.3 Limitations of this model

Since we have not formally proven liveness properties like
termination, an observer could in principle learn informa-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 171

datatype NotaryState = NotaryState_c(
keys:RSAKeyPair, cntr:nat);

predicate NotarizeOpCorrect(
in_st:NotaryState, out_st:NotaryState,
in_msg:seq<int>, out_stmt:seq<int>,
out_sig:seq<int>)

{
ByteSeq(in_msg)
&& out_st.keys == in_st.keys
&& out_st.cntr == in_st.cntr + 1
&& out_stmt==[OP_COUNTER_ADV]

+ rfc4251_encode(out_st.cntr) + in_msg
&& out_sig==RSASign(in_st.keys, out_stmt)
}

Figure 3: Part of the Notary Spec. Simplified for brevity and
clarity, this is a predicate the implementation must satisfy before
being allowed to declassify out sig, which otherwise cannot
be output because it depends on secret data.

tion about the secrets from whether an output was gener-
ated for a given input. Also, we have not formally proved
timing properties, so an observer could also learn informa-
tion from a timing channel. To eliminate the possibility of
such timing-based information leakages, in the future we
would like to prove that the time of the outputs is inde-
pendent of secrets. The literature contains many possible
approaches [10, 15, 26]; for example, we might prove an
upper bound on the time taken to produce an output, and
delay each output until the upper bound is reached.

5 Ironclad Applications
To make the guarantees of remote equivalence concrete,
we describe the four apps we built. The proof for each
app, in turn, builds on lemmas about lower-level libraries,
drivers, and OS, which we discuss in §6.

Each app compiles to a standalone system image that
communicates with other machines via UDP. Neverthe-
less, each is a useful complete application that would
merit at least one dedicated machine in a data center. In
the future, hardware support for fine-grained secure exe-
cution environments [42] may offer a simple path towards
multiplexing Ironclad Apps.

5.1 Notary

Our Notary app securely assigns logical timestamps to
documents so they can be conclusively ordered. This is
useful, e.g., for establishing patent priority [28] or con-
ducting online auctions [62]. Typically, users of such a
service must trust that some machine is executing correct
software, or that at least k of n machines are [12]. Our
Ironclad Notary app requires no such assumption.

Lemma 1 NOTARY REMOTE EQUIVALENCE. The No-
tary app is remotely equivalent to a state machine with
the following state:
• 〈PublicKey,PrivateKey〉, computed using the RSA

key generation algorithm from the first consecutive
sequence of random bytes read from the TPM;

• a TPM, whose PCR 19 has been extended with the
public part of that key pair; and

• a Counter, initialized to 0;
and the following transitions:
• Given input 〈connect,Nonce〉, it changes the TPM

state by obtaining a quote Quote over PCRs 17–
19 and external nonce Nonce. It then outputs
〈PublicKey,Quote〉.

• Given input 〈notarize,Hash〉, it increments
Counter and returns SigPrivateKey(OP-CTR-ADV ‖
RFC4251Encode(Counter) ‖ Hash).

Figure 3 shows part of the corresponding Dafny spec.
Proving this lemma required proofs of the following.

(1) Input non-interference: the nonce and message the app
passes the declassifier are based solely on public data. (2)
Functional correctness of connect: the app derives the
key from randomness correctly, and the TPM quote the
app obtains comes from the TPM when its PCRs are in the
required state. (3) Functional correctness of notarize:
the app increments the counter and computes the signature
correctly. (4) Output non-interference: Writes to unpro-
tected memory depend only on public data and the com-
puted state machine outputs.

Proving remote-equivalence lemmas for the other apps,
which we describe next, required a similar approach.

5.2 TrInc

Our trusted incrementer app, based on TrInc [40], gener-
alizes Notary. It maintains per-user counters, so each user
can ensure there are no gaps between consecutive values.
It is a versatile tool in distributed systems, useful e.g. for
tamper-resistant audit logs, Byzantine-fault-tolerant repli-
cated state machines, and verifying that an untrusted file
server behaves correctly.

Lemma 2 TRINC REMOTE EQUIVALENCE. The TrInc
app is remotely equivalent to a state machine like No-
tary’s except that it has multiple counters, each a tuple
〈Ki,vi〉, and a meta-counter initially set to 0. In place of
the notarize transition it has:
• Given input 〈create,K〉, it sets i := meta counter,

increments meta counter, and sets 〈Ki,vi〉= 〈K,0〉.
• Given input 〈advance, i,vnew,Msg,UserSig〉,

let vold = vi in counter tuple i. If vold ≤ vnew
and VerifySigKi

(vnew ‖ Msg,UserSig) suc-
ceeds, it sets vi := vnew and outputs
SigPrivateKey(OP-CTR-ADV ‖ encode(i) ‖
encode(vold) ‖ encode(vnew) ‖Msg).

5.3 Password hasher

Our next app is a password-hashing appliance that renders
harmless the loss of a password database. Today, attackers
frequently steal such databases and mount offline attacks.

7

172 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Even when a database is properly hashed and salted, low-
entropy passwords make it vulnerable: one study recov-
ered 47–79% of passwords from low-value services, and
44% of passwords from a high-value service [41].

Lemma 3 PASSHASH REMOTE EQUIVALENCE. The
PassHash app is remotely equivalent to the following
state machine. Its state consists of a byte string Secret,
initialized to the first 32 random bytes read from the
TPM. Given input 〈hash,Salt,Password〉, it outputs
SHA256(Secret ‖ Salt ‖ Password).

Meeting this spec ensures the hashes are useless to an
offline attacker: Without the secret, a brute-force guessing
attack on even the low-entropy passwords is infeasible.

5.4 Differential-privacy service

As an example of a larger app with a more abstract spec,
we built an app that collects sensitive data from contribu-
tors and allows analysts to study the aggregate database.
It guarantees each contributor differential privacy [19]:
the answers provided to the analyst are virtually indistin-
guishable from those that would have been provided if the
contributor’s data were omitted. Machine-checked proofs
are especially valuable here; prior work [46] showed that
implementations are prone to devastating flaws.

Our app satisfies Dwork’s formal definition: An algo-
rithm A is differentially private with privacy ε if, for any
set of answers S and any pair of databases D1 and D2 that
differ by a single row, P[A(D1) ∈ S]≤ λ ·P[A(D2) ∈ S],
where we use the privacy parameter λ = eε [23].
Privacy budget. Multiple queries with small privacy pa-
rameters are equivalent to a single query with the product
of the parameters. Hence we use a privacy budget [20].
Beginning with the budget b = λ guaranteed to contribu-
tors, each query Q with parameter λQ divides the budget
b′ := b/λQ; a query with λQ > b is rejected.
Noise computation. We follow the model of Dwork et
al. [20]. We first calculate ∆, the sensitivity of the query,
as the most the query result can change if a single database
row changes. The analyst receives the sum of the true an-
swer and a random noise value drawn from a distribution
parameterized by ∆.

Dwork et al.’s original algorithm uses noise from a
Laplace distribution [20]. Computing this distribution in-
volves computing a natural logarithm, so it cannot be done
precisely on real hardware. Thus, practical implementa-
tions simulate this real-valued distribution with approxi-
mate floating point values. Unfortunately, Mironov [46]
devised a devastating attack that exploits information re-
vealed by error in low-order bits to reveal the entire
database, and showed that all five of the main differential-
privacy implementations were vulnerable.

To avoid this gap between proof and implementation,
we instead use a noise distribution that only involves ra-
tional numbers, and thus can be sampled precisely using

predicate DBsSimilar(d1:seq<Row>,d2:seq<Row>)
|d1| == |d2| &&
exists diff_row ::

forall i :: 0 <= i < |d1| && i != diff_row
==> d1[i] == d2[i]

predicate SensitivitySatisfied(prog:seq<Op>,
min:int, max:int, delta:int)

forall d1:seq<Row>, d2:seq<Row> ::
Valid(d1)&&Valid(d2)&&DBsSimilar(d1, d2)==>
-delta <= MapperSum(d1, prog, min, max) -

MapperSum(d2, prog, min, max)
<= delta

Figure 4: Summing Reducer Sensitivity. Our differential-
privacy app is verified to satisfy a predicate like this, relating
reducer output sensitivity to the ∆ used in noise generation.

the x86 instruction set. In our specification, we model
these rational numbers with real-valued variables, making
the spec clearer and more compact. We then prove that
our 32-bit-integer-based implementation meets this spec.

Lemma 4 DIFFPRIV REMOTE EQUIVALENCE. The
DiffPriv app is remotely equivalent to a state machine
with the following state:
• key pair and TPM initialized as in Notary;
• remaining budget b, a real number; and
• a sequence of rows, each consisting of a duplicate-

detection nonce and a list of integer column values;
and with transitions that connect to the app, initialize the
database, add a row, and perform a query.

We also prove a higher-level property about this app:
Lemma 5 SENSITIVITY. The value ∆ used as the sensi-
tivity parameter in the spec’s noise computation formula
is the actual sensitivity of the query result. That is, if we
define A(D) as the answer the app computes when the
database is D, then for any two databases D1 and D2,
|A(D1)−A(D2)| ≤ ∆.

To make this verifiable, we use Airavat-style
queries [56]. That is, each query is a mapper, which
transforms a row into a single value, and a reducer,
which aggregates the resulting set; only the latter affects
sensitivity. The analyst can provide an arbitrary mapper;
we provide, and prove sensitivity properties for, the
single reducer sum. It takes RowMin and RowMax
parameters, clipping each mapper output value to this
range. Figure 4 shows the property we verified: that the
sensitivity of sum is ∆ = RowMax−RowMin regardless
of its mapper-provided inputs.

6 Full-System Verification
We have mechanically verified the high-level theorems
described in §4. Although the mechanical verification
uses automated theorem proving, the code must contain
manual annotations, such as loop invariants, precondi-
tions, and postconditions (§3.2). One can think of these

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 173

OS: late launch, IOMMU, segmentation, page tables, GC

Core MathTPM DriverNetwork Driver

UDP/IP Datatypes RSA

Ethernet BigNumSHA-1,256

Std. Lib App Common

App (PassHash, Notary, TrInc, or DiffPriv)

Figure 5: System Overview.

annotations, spread throughout the code, as lemmas that
build to the final high-level theorems.

To convey the work necessary to complete the verifi-
cation, this section gives a sampling of the key lemmas
we proved along the way. For clarity and conciseness, we
state each lemma as brief English text; the real mechan-
ical “lemmas” are the annotations in the code itself. The
lemmas described in this section are not, on their own,
sufficient for the proof, since they are only a sampling.
Nevertheless, a failure in any of the lemmas below would
cause the high-level theorems to fail; we would not be able
to establish the overall correctness of an Ironclad App if,
for example, the cryptographic library or the garbage col-
lector were incorrect.

6.1 Memory, devices, and information flow

Lemma 6 IOMMU CONFIGURATION. The Ironclad
Apps configure the IOMMU to divide memory into device-
accessible and app-private memory; non-device opera-
tions access only app-private memory.

Our assembly language instruction specifications check
that non-device memory operations only access app-
private memory that has been protected by the hardware’s
device exclusion vector, a simple IOMMU.

Commodity CPUs from AMD [1] and Intel [32] pro-
vide a dynamic root-of-trust for measurement (DRTM)
feature, a.k.a. late launch [53]. It resets the CPU to
a known state, stores a measurement (hash) of the in-
memory code pointed to by the instruction’s argument,
and jumps to that code. After a late launch, the hardware
provides the program control of the CPU and 64 KiB of
protected memory. To use more than 64 KiB, it must first
extend the IOMMU’s protections, using our specification
for IOMMU configuration. Only then can the program
satisfy the preconditions for assembly language instruc-
tions accessing memory outside the 64-KiB region.

Lemma 7 DEVICES SEE NO SECRETS. Only non-secret
data is passed to devices.

Our assembly language instruction specifications re-
quire that stores to device-accessible memory, i.e., mem-

ory that the IOMMU allows devices to see, can only
store non-secret data O. In §3.6’s terminology, non-secret
means that OL = OR. More specifically, we require that
the left and right executions generate the same sequence
of device stores: the same values to the same addresses,
modulo timing and liveness.

To prove OL = OR, we annotate our implementation’s
input and output paths with relational annotations. These
input and output paths include the application event loops
and the networking stack. For example, the Ethernet, IP,
and UDP layers maintain relational properties on packets.

Lemma 8 KEY IN TPM. Apps correctly extend a public
key into the TPM’s PCR 19. The private key is generated
using TPM randomness and never leaves the platform.

Lemma 9 ATTESTATION. Apps generate a correct TPM
attestation after extending their public key into a PCR.

Corollary 2 SECURE CHANNEL. If a remote client re-
ceives a public key and an attestation, and the attested
PCR code values (PCRs 17, 18) match those of an Iron-
clad App, and the attested PCR data values (PCR 19)
match the public key, and a certificate shows the attes-
tation is from a legitimate hardware TPM manufacturer,
then the client can use the public key to establish a secure
channel directly to the Ironclad App.

6.2 Cryptographic libraries

Lemma 10 HASHING. Our SHA-{1,256} conforms to
FIPS 180-4 [50], and our HMAC to FIPS 198-1 [49].

Lemma 11 RSA OPERATIONS. RSA keys are gener-
ated using consecutive randomness from the TPM (not se-
lectively sampled), and pass the Miller-Rabin primeness
test [45, 54]. Our implementations of RSA encrypt, de-
crypt, sign, and verify, including padding, produce byte
arrays that conform to PKCS 1.5 and RSA standards [33].

For basic cryptographic primitives such as hash func-
tions, functional correctness is the best we can hope to
verify. For instance, there is no known way to prove that
SHA-256 is collision-resistant.

The RSA spec, derived from RFC 2313 [33], defines
encryption and signature operations as modular exponen-
tiation on keys made of Dafny’s ideal integers. The key-
generation spec requires that the key be made from two
random primes.

To implement these crypto primitives, we built a
BigNum library. It implements arbitrary-precision inte-
gers using arrays of 32-bit words, providing operations
like division and modulo needed for RSA. BigRat extends
it to rationals, needed for differential privacy.

Lemma 12 BIGNUM/BIGRAT CORRECTNESS. Each
BigNum/BigRat operation produces a value representing
the correct infinite-precision integer or real number.

9

174 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

6.3 DafnyCC-generated code

Since the DafnyCC compiler sits outside our TCB, we
have to verify the assembly language code it generates.
This verification rests on several invariants maintained by
all DafnyCC-generated code:

Lemma 13 TYPE SAFETY. The contents of every value
and heap object faithfully represent the expected contents
according to Dafny’s type system, so that operations on
these values never cause run-time type errors.

Lemma 14 ARRAY BOUNDS SAFETY. All array opera-
tions use an index within the bounds of the array.

Lemma 15 TRANSITIVE STACK SAFETY. When calling
a method, enough stack space remains for all stack oper-
ations in that method and those it in turn calls.

Dafny is a type-safe language, but we cannot simply as-
sume that DafnyCC preserves Dafny’s type safety. Thus,
we must prove type safety at the assembly language level
by establishing typing invariants on all data structures that
represent Dafny values. For example, all pointers in data
structures point only to values of the expected type, and
arbitrary integers cannot be used as pointers. These typing
invariants are maintained throughout the Ironclad assem-
bly language code (they appear in nearly all loop invari-
ants, preconditions, and postconditions). In contrast to the
original Verve OS [65], Ironclad does not rely on an exter-
nal typed assembly language checker to check compiled
code; this gives Ironclad the advantage of using a single
verification process for both hand-written assembly lan-
guage code and compiled code, ensuring that there are no
mismatches in the verification process.

Lemma 16 HIGH-LEVEL PROPERTY PRESERVATION.
Every method proves that output stack state and registers
satisfy the high-level Dafny postconditions given the high-
level Dafny preconditions.

DafnyCC maintains all Dafny-level annotations, in-
cluding preconditions, postconditions, and loop invari-
ants. Furthermore, it connects these high-level annota-
tions to low-level stack and register values, so that the op-
erations on stack and register values ultimately satisfy the
Dafny program’s high-level correctness theorems.

6.4 Maintaining OS internal invariants

Although Ironclad builds on the original Verve OS [65],
we made many modifications to the Verve code to ac-
commodate DafnyCC, the late launch process and the
IOMMU (§6.1), the TPM (§2.3), segmentation, and other
aspects of Ironclad. Thus, we had to prove that these mod-
ifications did not introduce any bugs into the Verve code.

Lemma 17 OPERATING SYSTEM INVARIANTS. All op-
erating system data structure invariants are maintained.

Lemma 18 GARBAGE COLLECTION CORRECTNESS.
The memory manager’s representation of Dafny objects
correctly represents the high-level Dafny semantics.

We modified the original Verve copying garbage col-
lector’s object representation to accommodate DafnyCC-
generated code. This involved reproving the GC correct-
ness lemma: that the GC always maintains correct object
data, and never leaves dangling pointers, even as it moves
objects around in memory. Our modification initially con-
tained a design flaw in the object header word: we acci-
dentally used the same bit pattern to represent two dif-
ferent object states, which would have caused severe and
difficult-to-debug memory corruption. Verification found
the error in seconds, before we ran the new GC code.

7 Experiences and Lessons Learned
In this section, we describe our experiences using modern
verification tools in a large-scale systems project, and the
solutions we devised to the problems we encountered.

7.1 Verification automation varies by theory

Automated theorem provers like Z3 support a variety of
theories: arithmetic, functions, arrays, etc. We found
that Z3 was generally fast, reliable, and completely au-
tomated at reasoning about addition, subtraction, mul-
tiplication/division/mod by small constants, comparison,
function declarations, non-recursive function definitions,
sequence/array subscripting, and sequence/array updates.
Z3 sometimes needed hints to verify sequence concatena-
tion, forall/exists, and recursive function definitions, and
to maintain array state across method invocations.

Unfortunately, we found Z3’s theory of nonlinear arith-
metic to be slow and unstable; small code changes often
caused unpredictable verification failures (§7.2).

7.2 Verification needs some manual control

As discussed in §1, verification projects often avoid auto-
mated tools for fear that such tools will be unstable and/or
too slow to scale to large, complex systems. Indeed, we
encountered verification instability for large formulas and
nonlinear arithmetic. Nevertheless, we were able to ad-
dress these issues by using modular verification (§3.5),
which reduced the size of components to be verified, and
two additional solutions:
Opaque functions. Z3 may unwrap function definitions
too aggressively, each time obtaining a new fact, often
leading to timeouts for large code. To alleviate this, we
modified Dafny so a programmer can designate a function
as opaque. This tells the verifier to ignore the body, except
in places where the programmer explicitly indicates.
Nonlinear math library. Statements about nonlinear in-
teger arithmetic, such as ∀x,y,z : x(y+ z) = xy+ xz, are
not, in general, decidable [17]. So, Z3 includes heuristics
for reasoning about them. Unfortunately, if a complicated

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 175

method includes a nonlinear expression, Z3 has many op-
tions for applicable heuristics, leading to instability.

Thus, we disable Z3’s nonlinear heuristics, except on
a few files where we prove simple, fundamental lem-
mas, such as (x > 0∧ y > 0) ⇒ xy > 0. We used those
fundamental lemmas to prove a library of math lem-
mas, including commutativity, associativity, distributivity,
GCDs, rounding, exponentiation, and powers of two.

7.3 Existing tools make simple specs difficult

To enhance the security of Ironclad Apps, we aim to min-
imize our TCB, particularly the specifications.

Unfortunately, Dafny’s verifier insists on proving that,
whenever one function invokes another, the caller meets
the callee’s pre-conditions. So, the natural spec for SHA,
function SHA(bits:seq<int>):seq<int>

requires |bits|<power2(64);
{ }
function SHA_B(bytes:seq<int>):seq<int>
{ SHA(Bytes2Bits(bytes)) }

has a problem: the call from SHA B to SHA may pass a bit
sequence whose length is ≥ 264.

We could fix this by adding
requires |bytes|<power2(61);

to SHA_B, but this is insufficient because the verifier
needs help to deduce that 261 bytes is 264 bits. So we
would also have to embed a mathematical proof of this in
the body of SHA_B, leading to a bloated spec.
Automatic requirements. Our solution is to add auto-
matic requirement propagation to Dafny: A spec writer
can designate a function as autoReq, telling Dafny to
automatically add pre-conditions allowing it to satisfy the
requirements of its callees. For instance, if we do this to
SHA_B, Dafny gives it the additional pre-condition:
requires |Bytes2Bits(bytes)|<power2(64);

This makes the spec verifiable despite its brevity.
Premium functions. Our emphasis on spec simplicity
can make the implementor’s job difficult. First, using
autoReq means that the implementor must satisfy a pile
of ugly, implicit, machine-generated pre-conditions ev-
erywhere a spec function is mentioned. Second, the spec
typically contains few useful post-conditions because they
would bloat the spec. For instance, SHA does not state that
its output is a sequence of eight 32-bit words.

We thus introduce a new discipline of using premium
functions in the implementation. A premium function is
a variant of a spec function optimized for implementation
rather than readability. More concretely, it has simpler-to-
satisfy pre-conditions and/or more useful post-conditions.
For instance, instead of the automatically-generated pre-
conditions, we use the tidy pre-conditions we wanted to
write in the spec but didn’t because we didn’t want to
prove them sufficient. For instance, we could use

requires |bits|<power2(61);
ensures IsWordSeqOfLen(hash, 8);

as the signature for the premium version of SHA_B.

7.4 Systems often use bounded integer types

Dafny only supports integer types int and nat, both
representing unbounded-size values. However, nearly all
of our code concerns bounded-size integers such as bits,
bytes, and 32-bit words. This led to many more annota-
tions and proofs than we would have liked. We have pro-
vided this feedback to Dafny’s author, who consequently
plans to add refinement types.

7.5 Libraries should start with generality

Conventional software development wisdom is to start
with simple, specific code and generalize only as needed,
to avoid writing code paths which are not exercised or
tested. We found this advice invalid in the context of ver-
ification: instead, it is often easier to write, prove, and
use a more-general statement than the specific subset we
actually need. For example, rather than reason about the
behavior of shifting a 32-bit integer by k bits, it is better
to reason about shifting n-bit integers k bits. Actual code
may be limited to n = 32, but the predicates and lemmas
are easier to prove in general terms.

7.6 Spec reviews are productive

Independent spec reviews (§3.3) caught multiple human
mistakes; for instance, we caught three bugs in the seg-
mentation spec that would have prevented our code from
working the first time. Similarly, we found two bugs in
the SHA-1 spec; these were easily detected, since the spec
was written to closely match the text of the FIPS spec [50].

To our knowledge, only three mistakes survived the re-
view process, and all three were liveness, not security,
bugs in the TPM spec: Code written against the original
spec would, under certain conditions, wait forever for an
extra reply byte which the TPM would never send.

Also, our experience was consistent with prior obser-
vations that the act of formal specification, even before
verification, clarifies thinking [38]. This discipline shone
especially in specifying hardware interfaces, such as x86
segmentation behavior. Rather than probing the hard-
ware’s behavior with a code-test-debug cycle, specifica-
tion required that we carefully extract and codify the rel-
evant bits of Intel’s Byzantine documentation. This led
to a gratifying development experience in which our code
worked correctly the first time we ran it.

7.7 High-level tools have bugs

One of our central tenets is that verification should be per-
formed on the low-level code that will actually run, not the
high-level code it is compiled from. This is meant to re-
duce bugs by removing the compiler from the TCB. We

11

176 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

found that this is not just a theoretical concern; we dis-
covered actual bugs that this approach eliminates.

For example, when testing our code, we found a bug in
the Dafny-to-C# compiler that suppressed calls to meth-
ods with only ghost return values, even if those methods
had side effects. Also, we encountered a complex bug in
the translation of while loops that caused the high-level
Dafny verifier to report incorrect code as correct. Finally,
verifying at the assembly level caught multiple bugs in
DafnyCC, from errors in its variable analysis and register
allocator to its handling of calculational proofs.

8 Evaluation
We claim that it is feasible to engineer apps fully verified
to adhere to a security-sensitive specification. We evalu-
ate this claim by measuring the artifacts we built and the
engineering effort of building them.

8.1 System size

Table 1 breaks down the components of the system. It
shows the size of the various specs, high-level implemen-
tation code, and proof statements needed to convince the
verifier that the code meets the specs. It also shows the
amount of verifiable assembly code, most generated by
DafnyCC but some written by hand. Overall, Ironclad
consists of 3,546 lines of spec, plus 7K lines of implemen-
tation that compile to 42K assembly instructions. Veri-
fying the system takes 3 hours for functional-correctness
properties and an additional 21 hours for relational prop-
erties.

Most importantly, our specs are small, making manual
spec review feasible. Altogether, all four apps have 3,546
SLOC of spec. The biggest spec components are hard-
ware and crypto. Both these components are of general
use, so we expect spec size to grow slowly as we add ad-
ditional apps.

Our ratio of implementation to spec is 2:1, lower than
we expected. One cause for this low ratio is that much of
the spec is for hardware, where the measured implemen-
tation code is just drivers and the main implementation
work was done by the hardware manufacturers. Another
cause is that we have done little performance optimiza-
tion, which typically increases this ratio.

Our ratio of proof annotation to implementation, 4.8:1,
compares favorably to seL4’s ∼20:1. We attribute this to
our use of automated verification to reduce the burden on
developers. Note also that the ratio varies across compo-
nents. For instance, the core system and math libraries re-
quired many proofs to establish basic facts (§7.2); thanks
to this work, higher-level components obtained lower ra-
tios. Since these libraries are reusable, we expect the ratio
to go down further as more apps reuse them.

Figure 6 shows line counts for our tools. The ones in
our TCB have 15,302 SLOC. This is much less than the

Spec Impl Proof Asm Boogie SymDiff
Component (SLOC) (LOC) time (s) time (s)
Specific apps:
PassHash 32 81 193 447 158 6434
TrInc 78 232 653 1292 438 9938
Notary 38 140 307 663 365 14717
DiffPriv 444 586 1613 3523 891 21822
Ironclad core:
App common 43 64 119 289 210 0
SHA-1,-256 420 574 3089 6049 698 0
RSA 492 726 4139 3377 1405 9861
BigNum 0 1606 8746 7664 2164 0
UDP/IP stack 0 135 158 968 227 4618
Seqs and ints 177 312 4669 1873 791 888
Datatypes 0 0 0 5865 1827 0
Core math 72 206 3026 476 571 0
Network card 0 336 429 2126 199 3547
TPM 296 310 531 2281 417 0
Other HW 90 324 671 2569 153 3248
Modified Verve:
CPU/memory 900 643 2131 260 67 0
I/O 464 410 1126 1432 53 1533
GC 0 286 1603 412 92 0

Total 3546 6971 33203 41566 10726 76606

Table 1: System Line Counts and Verification Times. Asm
LOC includes both compiled Dafny and hand-written assembly.

8402
2182

4718
4292

32419

0 10000 20000 30000 40000

SymDiff
BoogieX86
DafnySpec

DafnyCC
Dafny

in TCB

Figure 6: Tool Line Counts.

32,419 SLOC in the original Dafny-to-C# compiler, let
alone the code for the C# compiler. Our DafnyCC tool is
4,292 SLOC and depends on Dafny as well, but as dis-
cussed earlier (§3.4), it is not in the TCB.

8.2 Developer effort

Previous work based on interactive proof assistants
showed that the costs can be quite high [48]. In con-
trast, our experience suggests that automated provers re-
duce the burden to a potentially tolerable level. Despite
learning and creating new tools, as well as several major
code refactorings, we constructed the entire Ironclad sys-
tem with under three person-years of effort.

8.3 Performance

Finally, although performance was not one of our goals,
we evaluate the performance of our apps to demonstrate
how much more work lies ahead in optimization. For
these experiments, we use as our server an HP Compaq
6005 Pro PC with a 3-GHz AMD Phenom II X3 CPU,
4 GB of RAM, and a Broadcom NetXtreme Gigabit Eth-

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 177

Operation Dominant step Ironclad Unverified Slowdown
Notary notarize Compute RSA signature 934 ms ±0 ms 8.88 ms ±0.68 ms 105
TrInc create Compute reciprocal of RSA modulus 4.96 ms ±0.03 ms 866 µs ±507 µs 5.72
TrInc advance Compute RSA signature 1.01 s ±0.00 s 12.1 ms ±0.2 ms 83.6
PassHash hash Compute SHA-256 hash 276 µs ±10 µs 159 µs ±3 µs 1.73
DiffPriv initialize db None, just network overhead 168 µs ±2 µs 155 µs ±3 µs 1.08
DiffPriv add row Decrypt RSA-encrypted row 944 ms ±17 ms 8.85 ms ±0.06 ms 107
DiffPriv query Compute noise with BigInts 126 ms ±19 ms 668 µs ±36 µs 189

Table 3: App benchmarks. Latency of different request types, as seen by a client on the same network switch, for Ironclad Apps
and unverified variants written in C#. Ranges shown are 95% confidence intervals for the mean.

Op Param Ironclad OpenSSL C#/.NET
TPM GetRandom 256b 39 µs/B ∗– ∗–
RSA KeyGen 1024b 39.0 s ∗12 ms ∗181 ms
RSA Public 1024b 35.7 ms 204 µs 65 µs
RSA Private 1024b 858 ms 4.03 ms 1.40 ms
SHA-256 256B 26 ns/B 13 ns/B 24 ns/B
SHA-256 8192B 13 ns/B 10 ns/B 7.6 ns/B

Table 2: Crypto microbenchmarks. ∗Only Ironclad uses the
TPM for KeyGen.

ernet NIC. As our client, we use a Dell Precision T7610,
with a 6-core 2.6-GHz Xeon E5-2630 CPU, 32 GB of
RAM, and an Intel 82579LM Gigabit Ethernet NIC. The
two are connected to the same gigabit switch.

Table 2 shows the latency and bandwidth of various
low-level crypto and TPM operations; these operations
constitute the dominant cost of app initialization and/or
app operations. Table 2 also shows the corresponding
times for C#/.NET code on Windows 7 and OpenSSL on
Ubuntu. The results show that our RSA library is about
two orders of magnitude slower than unverified variants,
and our SHA-256 code approaches within 30%.

This poor performance is not fundamental to our ap-
proach. Indeed, verification provides a safety net for
aggressive optimizations. For example, we extended
DafnyCC to support directed inlining, applied this to the
code for SHA-256, then performed limited manual opti-
mization on the resulting verifiable assembly. This more
than doubled our code’s performance, bringing us within
30% of OpenSSL. Along the way, we had no fear of
violating correctness; indeed, the verifier caught several
bugs, e.g., clobbering a live register. We used the same
technique to manually create a verified assembly-level un-
rolled add function for BigIntegers. Similarly, verification
helped to correctly move our multi-precision integer li-
brary from immutable sequences to mutable arrays, mak-
ing it 1000× faster than the first version. Many optimiza-
tion opportunities remain, such as unrolled loops, inlined
procedures, and arithmetic using the Chinese remainder
theorem and Montgomery form.

Next, we show the performance of high-level opera-
tions. To compare Ironclad’s performance to unverified

servers, we wrote unverified variants of our apps in C#
using the .NET Framework. We run those apps on the
server on Windows 7.

Table 3 shows the results. We measure various opera-
tions from the client’s perspective, counting the time be-
tween sending a request and receiving the app’s reply. For
each operation, we discard the first five results and report
the mean of the remaining 100 results; we also report the
95% confidence interval for this mean. We use 1,024-bit
RSA keys, 32-byte hashes for notarize and advance,
12-byte passwords and 16-byte salts for hash, 20-byte
nonces and four-column rows for add row, and a 19-
instruction mapper for query.

The results are generally consistent with the mi-
crobenchmark results. Slowdowns are significant for op-
erations whose dominant component involves an RSA key
operation (notarize, advance, add row), and lower
but still substantial for those involving SHA-256 (hash)
and big-integer operations (create and query). The
initialize db operation, which involves no crypto-
graphic operations and essentially just involves network
communication, incurs little slowdown.

9 Limitations and Future Work
As with any verified system, our guarantees only hold if
our specs, both of hardware and apps, are correct. While
we strive to keep the specs minimal and take additional
steps to add assurance (§3.3), this is the most likely route
for errors to enter the system.

We also rely on the correctness of our verification tools,
namely our Dafny spec translator, SymDiff, Boogie, and
Z3. Unfortunately, these tools do not currently provide
proof objects that can be checked by a small verifier, so
they all reside in our TCB. Fortunately, our spec transla-
tor is tiny, and Boogie and Z3 are extensively tested and
used by dozens of projects, including in production sys-
tems. In practice, we did not encounter any soundness
bugs in these tools, unlike the untrusted, higher-level tools
we employed (§7.7).

At present, we do not model the hardware in enough
detail to prove the absence of covert or side channels
that may exist due to timing or cache effects, but prior
work [48] suggests that such verification is feasible.

13

178 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Currently, we prove the functional correctness and non-
interference of our system, but our proofs could be ex-
tended in two directions that constitute ongoing work:
proving liveness, and connecting our guarantees to even
higher-level cryptographic protocol correctness proofs.
For example, we want to explicitly reason about proba-
bility distributions to show that our use of cryptographic
primitives creates a secure channel [6, 9].

With Ironclad, we chose to directly verify all of our
code rather than employing verified sandboxing. How-
ever, our implementation supports provably correct page
table usage and can safely run .NET code, so future work
could use unverified code as a subroutine, checking its
outputs for desired properties. Indeed, type safety allows
code to safely run in kernel mode, to reduce kernel-user
mode crossings.

10 Related Work
Trusted Computing. As discussed in §1, Trusted Com-
puting has produced considerable research showing how
to identify code executing on a remote machine [53].
However, with a few exceptions, it provides little guid-
ance as to how to assess the security of that code.
Property-based attestation [58] shifts the problem of de-
ciding if the code is trustworthy from the client to a trusted
third party, while semantic attestation attests to a large
software stack—a traditional OS and managed runtime—
to show that an app is type safe [29]. The Nexus OS [60]
attests to an unverified kernel, which then provides higher-
level attestations about the apps it runs. In general, veri-
fication efforts in the Trusted Computing space have fo-
cused primarily on the TPM’s protocols [11, 16, 27, 44]
rather than on the code the TPM attests to.
Early security kernels. Issued in 1983, the DoD’s “Or-
ange Book” [18] explicitly acknowledged the limitations
of contemporary verification tools. The highest rating
(A1) required a formal specification of the system but
only an informal argument relating the code to the spec-
ification. Early efforts to attain an A1 rating met with
mixed success; the KVM/370 project [25] aimed for A1,
but, due in part to inadequacies of the languages and tools
available, settled for C2. The VAX VMM [34] did attain
an A1 rating but could not verify that their implementa-
tion satisfied the spec. Similar caution applies to other A1
OSes [22, 59].
Recent verified kernels. The seL4 project [35, 36, 48]
successfully verified a realistic microkernel for strong cor-
rectness properties. Doing so required roughly 200,000
lines of manual proof script to verify 8,700 lines of C
code using interactive theorem proving (and 22 person-
years); Ironclad’s use of automated theorem proving re-
duces this manual annotation overhead, which helped to
reduce the effort required (3 person-years). seL4 has fo-
cused mainly on kernel verification; Ironclad contains the

small Verve verified OS, but focuses more on library (e.g.
BigNum/RSA), driver (e.g. TPM), and application ver-
ification in order to provide whole-system verification.
seL4’s kernel is verified, but can still run unverified code
outside kernel mode. Ironclad currently consists entirely
of verified code, but it can also run unverified code (§9).
Both seL4 and Ironclad verify information flow.

Recent work by Dam et al. [14] verifies information-
flow security in a simple ARM separation kernel, but the
focus is on providing a strict separation of kernel usages
among different security domains. This leaves other use-
ful security properties, including functional correctness of
the OS and applications, unverified.

While seL4 and Ironclad Apps run on commodity hard-
ware, the Verisoft project [2] aimed for greater integra-
tion between hardware and software verification, building
on a custom processor. Like seL4, Verisoft required >20
person-years of effort to develop verified software.
Differential privacy. Many systems implement differen-
tial privacy, but none provide end-to-end guarantees about
their implementations’ correctness. For instance, Barthe
et al. describe Certipriv [8], a framework for mechanically
proving algorithms differentially private, but do not pro-
vide an executable implementation of these algorithms.
As a consequence, implementations have vulnerabilities;
e.g., Mironov [46] demonstrated an attack that affected
PINQ [43], Airavat [56], Fuzz [55], and GUPT [47].

11 Conclusion
By using automated tools, we have verified full-system,
low-level, end-to-end security guarantees about Ironclad
Apps. These security guarantees include non-trivial prop-
erties like differential privacy, which is notoriously dif-
ficult to get right. By writing a compiler from Dafny
to verified assembly language, we verified a large suite
of libraries and applications while keeping our tool and
specification TCB small. The resulting system, with
∼6500 lines of runnable implementation code, took ∼3
person-years to verify. Beyond small, security-critical
apps like Ironclad, verification remains challenging: as-
suming ∼2000 verified LOC per person-year, a fully ver-
ified million-LOC project would still require ∼100s of
person-years. Fortunately, the tools will only get better,
so we expect to see full-system verification scale to larger
systems and higher-level properties in the years to come.

Acknowledgments
We thank Jeremy Elson, Cedric Fournet, Shuvendu
Lahiri, Rustan Leino, Nikhil Swamy, Valentin Wuestholz,
Santiago Zanella Beguelin, and the anonymous reviewers
for their generous help, guidance, and feedback. We are
especially grateful to our shepherd Gernot Heiser, whose
insightful feedback improved the paper.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 179

References
[1] Advanced Micro Devices. AMD64 Architecture

Programmer’s Manual. AMD Publication no. 24593
rev. 3.22, 2012.

[2] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach,
N. W. Schirmer, A. Starostin, and A. Tsyban. Bal-
ancing the load: Leveraging semantics stack for
systems verification. Automated Reasoning, 42(2–
4):389–454, 2009.

[3] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and
G. Proudler. Trusted Computing Platforms – TCPA
Technology in Context. Prentice Hall, 2003.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,
and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. Proceedings
of Formal Methods for Components and Objects
(FMCO), 2006.

[5] G. Barthe, C. Fournet, B. Gregoire, P.-Y. Strub,
N. Swamy, and S. Z. Beguelin. Probabilistic re-
lational verification for cryptographic implementa-
tions. In Proceedings of the ACM Conference on
Principles of Programming Languages (POPL), Jan.
2014.

[6] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-
Béguelin. Computer-aided security proofs for the
working cryptographer. In Proceedings of IACR
CRYPTO, 2011.

[7] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella-
Béguelin. Beyond provable security. Verifiable IND-
CCA security of OAEP. In Proceedings of CT-RSA,
2011.

[8] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-
Béguelin. Probabilistic relational reasoning for dif-
ferential privacy. In Proceedings of the ACM Con-
ference on Principles of Programming Languages
(POPL), 2012.

[9] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti,
and P. Strub. Implementing TLS with verified cryp-
tographic security. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 2013.

[10] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roy-
choudhury, and G. Heiser. Timing analysis of a pro-
tected operating system kernel. In Proceedings of
the IEEE Real-Time Systems Symposium, 2011.

[11] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga.
Replay attack in TCG specification and solution. In
Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC), 2005.

[12] C. Cachin. Distributing trust on the Internet. In Pro-
ceedings of the IEEE/IFIP Conference on Depend-
able Systems and Networks (DSN), 2001.

[13] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinen-
bach, M. Moskal, T. Santen, W. Schulte, and S. To-
bies. VCC: A practical system for verifying concur-
rent C. In Proceedings of the Conference on Theo-
rem Proving in Higher Order Logics, 2009.

[14] M. Dam, R. Guanciale, N. Khakpour, H. Nemati,
and O. Schwarz. Formal verification of informa-
tion flow security for a simple ARM-based separa-
tion kernel. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS),
2013.

[15] N. A. Danielsson. Lightweight semiformal time
complexity analysis for purely functional data struc-
tures. In Proceedings of the ACM Conference
on Principles of Programming Languages (POPL),
2008.

[16] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A
logic of secure systems and its application to trusted
computing. In Proceedings of the IEEE Symposium
on Security and Privacy, 2009.

[17] L. M. de Moura and N. Bjørner. Z3: An efficient
SMT solver. In Proceedings of the Conference on
Tools and Algorithms for the Construction and Anal-
ysis of Systems, 2008.

[18] Department of Defense. Trusted Computer System
Evaluation Criteria. National Computer Security
Center, 1983.

[19] C. Dwork. Differential privacy. In Proceedings
of the International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2006.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analy-
sis. In Proceedings of the IACR Theory of Cryptog-
raphy Conference (TCC). 2006.

[21] R. W. Floyd. Assigning meanings to programs. In
Symposium on Applied Mathematics, 1967.

[22] L. J. Fraim. SCOMP: A solution to the multilevel
security problem. Computer, 16:26–34, July 1983.

[23] A. Ghosh, T. Roughgarden, and M. Sundarara-
jan. Universally utility-maximizing privacy mech-
anisms. In Proceedings of the ACM Symposium on
the Theory of Computing (STOC), 2009.

15

180 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[24] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 1982.

[25] B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370
in retrospect. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 1984.

[26] S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED:
Precise and efficient static estimation of program
computational complexity. In Proceedings of the
ACM Conference on Principles of Programming
Languages (POPL), 2009.

[27] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts,
and R. Plaga. Security evaluation of scenarios based
on the TCG’s TPM specification. In Proceedings of
the European Symposium on Research in Computer
Security (ESORICS), 2007.

[28] S. Haber and W. S. Stornetta. How to time-stamp a
digital document. Journal of Cryptology, 3, 1991.

[29] V. Haldar, D. Chandra, and M. Franz. Semantic
remote attestation: a virtual machine directed ap-
proach to trusted computing. In Proceedings of the
Conference on Virtual Machine Research, 2004.

[30] G. Heiser, L. Ryzhyk, M. von Tessin, and
A. Budzynowski. What if you could actually trust
your kernel? In Hot Topics in Operating Systems
(HotOS), 2011.

[31] C. A. R. Hoare. An axiomatic basis for com-
puter programming. Communications of the ACM,
12(10):576–580, 1969.

[32] Intel Corporation. Intel Trusted Execution Technol-
ogy – Measured Launched Environment Developer’s
Guide. Document number 315168-005, June 2008.

[33] B. Kaliski. PKCS #1: RSA cryptography specifica-
tions version 1.5. RFC 2313, Mar. 1998.

[34] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Ma-
son, and C. E. Kahn. A retrospective on the VAX
VMM security kernel. IEEE Transactions on Soft-
ware Engineering, 17(11):1147–1165, Nov. 1991.

[35] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehen-
sive formal verification of an OS microkernel. ACM
Transactions on Computer Systems, 32(1), 2014.

[36] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS

kernel. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[37] S. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Re-
belo. SymDiff: A language-agnostic semantic diff
tool for imperative programs. In Proceedings of
Computer Aided Verification (CAV), July 2012.

[38] L. Lamport. Specifying Systems: The TLA+ Lan-
guange and Tools for Hardware and Software Engi-
neers. Addison-Wesley, 2002.

[39] K. R. M. Leino. Dafny: An automatic program veri-
fier for functional correctness. In Proceedings of the
Conference on Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR), 2010.

[40] D. Levin, J. R. Douceur, J. R. Lorch, and T. Mosci-
broda. TrInc: Small trusted hardware for large dis-
tributed systems. In Proceedings of the USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI), 2009.

[41] M. Mazurek, S. Komanduri, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, P. Kelley, R. Shay, and
B. Ur. Measuring password guessability for an entire
university. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS),
2013.

[42] F. Mckeen, I. Alexandrovich, A. Berenzon,
C. Rozas, H. Shafi, V. Shanbhogue, and U. Sava-
gaonkar. Innovative instructions and software model
for isolated execution. In Proceedings of the Work-
shop on Hardware and Architectural Support for Se-
curity and Privacy, 2013.

[43] F. McSherry. Privacy integrated queries: An extensi-
ble platform for privacy-preserving data analysis. In
Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2009.

[44] J. Millen, J. Guttman, J. Ramsdell, J. Sheehy, and
B. Sniffen. Analysis of a measured launch. Techni-
cal Report 07-0843, The MITRE Corporation, June
2007.

[45] G. L. Miller. Riemann’s hypothesis and tests for pri-
mality. Journal of Computer and System Sciences,
13(3), 1976.

[46] I. Mironov. On significance of the least signifi-
cant bits for differential privacy. In Proceedings of
the ACM Conference on Computer and Communica-
tions Security (CCS), 2012.

[47] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E.
Culler. GUPT: Privacy preserving data analysis

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 181

made easy. In ACM International Conference on
Management of Data (SIGMOD), 2012.

[48] T. Murray, D. Matichuk, M. Brassil, P. Gammie,
T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. seL4: From general purpose to a proof
of information flow enforcement. In Proceedings of
the IEEE Symposium on Security and Privacy, 2013.

[49] National Institute of Standards and Technology. The
keyed-hash message authentication code (HMAC),
2012. FIPS PUB 198-1.

[50] National Institute of Standards and Technology. Se-
cure hash standard (SHS), 2012. FIPS PUB 180-4.

[51] National Vulnerability Database. Heartbleed
bug. CVE-2014-0160 http://web.nvd.
nist.gov/view/vuln/detail?vulnId=
CVE-2014-0160, Apr. 2014.

[52] T. Nipkow, L. Paulson, and M. Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, 2002.

[53] B. Parno, J. M. McCune, and A. Perrig. Bootstrap-
ping Trust in Modern Computers. Springer, 2011.

[54] M. O. Rabin. Probabilistic algorithm for testing pri-
mality. Journal of Number Theory, 12(1), 1980.

[55] J. Reed and B. C. Pierce. Distance makes the types
grow stronger: A calculus for differential privacy. In
Proceedings of the ACM International Conference
on Functional Programming, 2010.

[56] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov,
and E. Witchel. Airavat: Security and privacy for
MapReduce. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), 2010.

[57] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), 2003.

[58] A.-R. Sadeghi and C. Stueble. Property-based attes-
tation for computing platforms: Caring about prop-
erties, not mechanisms. In Proceedings of the Work-
shop on New Security Paradigms (NSPW), 2004.

[59] W. Shockley, T. Tao, and M. Thompson. An
overview of the GEMSOS class A1 technology and
application experience. In Proceedings of the Na-
tional Computer Security Conference, Oct. 1988.

[60] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, and F. B. Schneider. Logical

attestation: An authorization architecture for trust-
worthy computing. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP),
2011.

[61] G. Smith. Principles of secure information flow
analysis. Malware Detection, pages 297–307, 2007.

[62] S. G. Stubblebine and P. F. Syverson. Fair on-line
auctions without special trusted parties. In Proceed-
ings of Financial Cryptography, 1999.

[63] Trusted Computing Group. Trusted Platform Mod-
ule Main Specification. Version 1.2, Revision 116,
2011.

[64] Wave Systems Corp. Trusted Computing:
An already deployed, cost effective, ISO
standard, highly secure solution for improv-
ing Cybersecurity. http://www.nist.
gov/itl/upload/Wave-Systems_
Cybersecurity-NOI-Comments_
9-13-10.pdf, 2010.

[65] J. Yang and C. Hawblitzel. Safe to the last instruc-
tion: Automated verification of a type-safe operat-
ing system. In Proceedings of the ACM Conference
on Programming Language Design and Implemen-
tation (PLDI), 2010.

[66] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In Proceed-
ings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2011.

17

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 183

SHILL: A Secure Shell Scripting Language

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong
Harvard School of Engineering and Applied Sciences

Abstract
The Principle of Least Privilege suggests that software
should be executed with no more authority than it re-
quires to accomplish its task. Current security tools make
it difficult to apply this principle: they either require sig-
nificant modifications to applications or do not facilitate
reasoning about combining untrustworthy components.

We propose SHILL, a secure shell scripting language.
SHILL scripts enable compositional reasoning about se-
curity through contracts that limit the effects of script
execution, including the effects of programs invoked by
the script. SHILL contracts are declarative security poli-
cies that act as documentation for consumers of SHILL
scripts, and are enforced through a combination of lan-
guage design and sandboxing.

We have implemented a prototype of SHILL for
FreeBSD and used it for several case studies including
a grading script and a script to download, compile, and
install software. Our experience indicates that SHILL is a
practical and useful system security tool, and can provide
fine-grained security guarantees.

1 Introduction

Users of commodity operating systems often need to ex-
ecute untrustworthy software. In fact, this is the common
case: due to errors or malicious intent, software regularly
does not behave as expected. The Principle of Least Priv-
ilege (POLP) [31] requires that software should be given
only the authority it needs to accomplish its functionality.
If adhered to, this principle (also known as the Principle
of Least Authority) can help protect systems from erro-
neous or malicious software.

However, commodity systems and their secure tools
fail to adequately support POLP. First, it is difficult for
the user of a commodity system to determine what au-
thority a given piece of software requires to execute cor-
rectly. Second, current mechanisms for limiting author-
ity are difficult to use: they are either coarse-grained or

require significant changes to existing software, and are
often not available to all users [16]. For both of these rea-
sons, users tend to execute software with more authority
than is necessary.

For example, consider scripts to grade homework sub-
missions in a computer science course. Students submit
source code, and a script grade.sh is run on each sub-
mission to compile it and run it against a test suite. The
submission server must execute grade.sh with suffi-
cient authority to accomplish its task, but should also
restrict its authority to protect the server from student-
submitted code and ensure the integrity of grading. At a
coarse grain, the server should allow grade.sh to ac-
cess files and directories necessary to compile, run, and
record the scores of homework submissions, and deny
access to other files or resources. This ensures, for ex-
ample, that a careless student’s code won’t corrupt the
server and a cheating student’s code won’t modify or leak
the test suite. At a fine grain, each call to grade.sh to
grade a single submission should be isolated from the
grading of other submissions. This ensures, for example,
that a cheating student cannot copy solutions from an-
other submission.

Securing a script such as grade.sh is difficult, as
it requires balancing functional and security require-
ments. To begin with, it is a priori unclear what au-
thority grade.sh needs to execute correctly. While the
author of the script may know, the user must exam-
ine the code to try to determine what authority it re-
quires. If the user can identify the required resources,
she can use existing tools for sandboxing program exe-
cution (e.g., [20, 3, 15, 14]) to achieve the coarse-grained
security requirements. However, it is difficult to use the
same tools to enforce the fine-grained security require-
ments described above. This is because achieving these
requirements requires that each invocation of grade.sh
is given different privileges, i.e., it must be executed in a
differently configured sandbox. Configuring all of these
sandboxes correctly is error prone, so users often forgo

184 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

provide grade :
{submission : is file && readonly,
tests : is dir && readonly,
working : dir(+create dir with full priv),
grade log : is file && writeable,
wallet : ocaml wallet} → void;

Figure 1: SHILL contract for a grading script

fine-grained security and violate POLP.

To address these issues, we introduce the SHILL pro-
gramming language. SHILL is a secure shell scripting lan-
guage with features that help apply POLP in commod-
ity operating systems.1 At the core of SHILL are declara-
tive security policies that describe and limit the effects of
script execution, including effects of arbitrary programs
invoked by the script.

These declarative security policies can be used by pro-
ducers of software to provide fine-grained descriptions of
the authority the software needs to execute. This, in turn,
allows consumers of software to inspect the software’s
required authority, and make an informed decision to ex-
ecute the software, reject the software, or apply a more
restrictive policy on the software. The SHILL runtime sys-
tem ensures that script execution adheres to the declared
security policy, providing a simple mechanism to restrict
the authority of software.

Two key features enable SHILL’s declarative secu-
rity policies: language-level capabilities and contracts.
SHILL scripts access system resources only through ca-
pabilities: unforgeable tokens that confer privileges on
resources. SHILL scripts receive capabilities only from
the script invoker; SHILL scripts cannot store or arbitrar-
ily create capabilities. Moreover, SHILL uses capability-
based sandboxes to control the execution of arbitrary
software. Thus, the capabilities that a user passes to a
SHILL script limit the script’s authority, including any
programs it invokes. SHILL’s contracts specify what ca-
pabilities a script requires and how it intends to use them.
SHILL’s runtime and sandboxes enforce these contracts,
hence they serve as fine-grained, expressive, declarative
security policies that bound the effects of a script.

For example, Figure 1 shows a SHILL contract for a
script to grade a single student submission (correspond-
ing to the grade.sh script described above). It is a
declarative security specification for the function grade,
which takes 5 arguments: a read-only file submission
(i.e., the student’s source code), a read-only directory
tests (containing the test suite), a “working directory”

1SHILL is not an interactive shell, but rather a language that presents
operating system abstractions to the programmer and is used primarily
to launch programs. Other languages currently used for this purpose
include Perl, Python, and the scripting portion of Bash.

in which the script may create subdirectories with full
privileges, a writeable file grade log for recording the
student’s grade, and a “wallet” that provides sufficient
capabilities to invoke the OCaml compiler. This con-
tract serves two purposes: it clearly describes what grade
needs to execute correctly and it also provides guarantees
about what grade may do when invoked. Given this con-
tract, a user can be confident that grade satisfies the se-
curity requirements described above, even though grade
will compile and execute student-submitted code. Specif-
ically: grade will not read any other student’s submis-
sion; grade will not communicate over the network (as
it has no capability for network access); grade will not
corrupt the test suite nor write any files other than the
grade log and subdirectories it creates within the work-
ing directory. The implementation of grade (not shown)
focuses solely on the functionality for grading, and is not
concerned with enforcing security requirements.

SHILL offers language abstractions for reasoning about
the authority of pieces of software and their composition.
Specifically, SHILL (1) introduces a capability-based
scripting language with language abstractions (such as
contracts and wallets) to use capabilities effectively,
and (2) implements, on a commodity operating system,
capability-based sandboxes that extend the guarantees of
the scripting language to binary executables and legacy
applications. These language abstractions, and the en-
forcement of these abstractions, make it possible to man-
age authority and follow POLP, even when using and
combining untrusted programs.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the design of SHILL. Our implementa-
tion of SHILL in FreeBSD 9.2 is described in Section 3.
We evaluate SHILL by using it to implement several case
studies, and measure the overhead of SHILL’s security
mechanisms. We present the evaluation results in Sec-
tion 4. Section 5 describes related work.

2 Design and security of SHILL

SHILL aims to meet the following five goals:
1. Script users can control the authority of a script, i.e.,

what system resources it can access or modify.
2. Script users can understand what authority a script

needs in order to accomplish its functionality.
3. Security guarantees of scripts apply transitively to

other programs the script may invoke, including ar-
bitrary executables.

4. SHILL separates the security aspects of scripts from
functional aspects, reducing the impact of security
concerns on the effort required to write scripts.

5. SHILL is compatible with commodity operating sys-
tem abstractions.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 185

foo.txt

Cap-safe script

foo.txt
Binary
executable

Sandbox

contract
file(+read)

MAC: foo.txt: +read

SHILL

Operating System

Ambient script

+read

vnode for file foo.txt

Figure 2: SHILL in a nutshell

To meet these goals, SHILL uses a combination of lan-
guage design and mandatory access control-based sand-
boxing.

In most scripting languages, scripts can access a re-
source (such as a file) using the resource’s well-known
global name. Access control is based on the user on
whose behalf the script executes. Thus, a script’s author-
ity is ambient (i.e., it derives from the script’s execution
context) [25], and a script may access any and all re-
sources that the invoking user may access. SHILL’s secu-
rity is based on capabilities instead of ambient authority.

There are two kinds of SHILL scripts: capability-safe
SHILL scripts, and ambient SHILL scripts. Capability-
safe SHILL scripts play the same role as regular shell
scripts, but do not have ambient authority and must be
given capabilities to access resources. Ambient SHILL
scripts are used to create the initial set of capabilities
to give to capability-safe scripts. They do have ambi-
ent authority, but are very restricted: ambient scripts can
only create capabilities for system resources and invoke
capability-safe SHILL scripts.

Each capability-safe SHILL script comes with a con-
tract that is enforced by the language runtime. A
capability-safe SHILL script can use the capabilities it
possesses to access resources using SHILL’s built-in func-
tions, if allowed by the contract. SHILL scripts can also
invoke arbitrary executables in capability-based sand-
boxes. A capability-based sandbox is created with a set
of capabilities, and enforces a mandatory access control
policy that restricts the executable’s behavior based on
those capabilities and their contracts.

Figure 2 depicts the life cycle of a capability for a file
named foo.txt. First, an ambient script acquires a capa-
bility for the file from the operating system using the
user’s ambient authority. This capability is then passed
to a capability-safe script via a contract, which restricts
the privileges on the capability to +read (i.e., the capa-
bility can be used only to read foo.txt, not to write to it,
etc.). The capability-safe script then runs an executable
in a sandbox, granting it the capability to read the file.

Threat model In SHILL’s threat model, some
capability-safe scripts (and the executables they invoke)

are not trusted. However, their behavior is restricted
by their contracts and the capabilities they are given: a
capability-safe script (and any executables it invokes)
can access resources only as permitted by its contract
and the capabilities it possesses. Of course, the contract
that accompanies a script may also be untrustworthy:
a user should inspect the contract and understand its
security implications before passing capabilities to the
script. The benefit of SHILL’s approach is that it is much
easier to inspect and understand the declarative contract
than to examine the script itself.

SHILL’s trusted computing base includes the operating
system kernel and SHILL runtime. SHILL does not explic-
itly defend against malicious scripts or executables that
exploit security flaws in the kernel or SHILL itself.

The rest of this section describes how SHILL’s design
and features contribute towards these goals, and provides
an introduction to SHILL via several small examples.

2.1 Controlling script authority
Ambient authority makes writing scripts easy: if a script
needs to access a resource, it can simply use the re-
source’s name to access it. However, ambient authority
makes it difficult to understand and control the potential
effect of executing a script. First, the authority of a script
is not easily deducible from its code, a problem that is
exacerbated when the script invokes other scripts or ex-
ecutables. Second, commodity operating systems do not
provide easy mechanisms to limit authority of an execu-
tion context, for example, by allowing a user to temporar-
ily restrict permissions in a fine-grained way.

Authority in SHILL is controlled by capabilities. In or-
der to access a resource, a SHILL script must have a capa-
bility for that resource. SHILL scripts can only acquire ca-
pabilities as arguments provided by the user, or by deriv-
ing them from other capabilities (e.g., using a directory
capability to acquire a capability for a file in the direc-
tory). These restrictions, known as capability safety, lie
at the heart of the security of SHILL scripts. Capability
safety makes it possible for users to control the authority
of SHILL scripts they invoke (Goal 1).

Figure 3 presents a snippet of SHILL code that demon-
strates how SHILL scripts use capabilities. It defines a
function find jpg for recursively finding all the files with
extension .jpg within a given directory. Argument cur is
a capability for either a file or a directory. In contrast
with standard scripting languages, cur is not a string that
names a file, but is a capability that denotes it, much like
a file descriptor. If cur is a file capability and the name
of the file ends with .jpg, then the script uses the built-in
function path to get the string for the path to the file,2 and

2The library function has ext also uses path.

186 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 find jpg = fun(cur,out) {
2 # if cur is a file with extension jpg,
3 # output its path to out.
4 if is file(cur) && has ext(cur, ''jpg'') then
5 append(out, path(cur));
6

7 # if cur is a directory, recur on its contents
8 if is dir(cur) then
9 for name in contents(cur) {

10 child = lookup(cur, name);
11 if !is syserror(child) then
12 find jpg(child, out);
13 }
14 }

Figure 3: SHILL script snippet to find .jpg files

appends it to the pipe or file capability out (lines 4–5).
If cur is a directory capability, then the built-in func-

tion contents is used to get the list of names of children
of cur. For each child, the script calls lookup(cur, name)
to obtain a capability for the child (line 10), which is then
used in a recursive call to find jpg (line 12).

Conceptually, SHILL capabilities correspond to oper-
ating system representations of resources, such as file
descriptors, and built-in functions such as append and
lookup are wrappers for the corresponding system calls.

SHILL enforces capability safety by restricting the ex-
pressiveness of the scripting language. While SHILL of-
fers full-fledged language features and rich libraries,
comparable to other scripting languages, the built-in
functions for using resources require capabilities as ar-
guments. In addition, SHILL does not have mutable vari-
ables and capabilities are not serializable. This means
that SHILL scripts cannot store or share capabilities
through memory, the filesystem, or the network. For con-
trolled sharing of capabilities, SHILL provides wallets,
capabilities for packaging and managing collections of
capabilities. We discuss wallets further in Section 2.4.1.

SHILL scripts provide the same protection from con-
fused deputy attacks [12] as traditional capability sys-
tems. Furthermore, filesystem operations that produce
new capabilities (such as lookup) do not allow scripts to
arbitrarily traverse the filesystem. For instance, a script
cannot use the capability for the current directory cur and
lookup(cur,”..”) to obtain the parent directory of cur.

2.2 Contracts
Capability safety makes it possible to limit the author-
ity granted to a SHILL script by carefully selecting what
capabilities to pass as arguments. Unfortunately, needing
to pass capabilities explicitly makes it harder for script
users to deduce how to use scripts and compose them to

complete more complicated tasks. At its core, this is a
problem of defining the script’s interface: how does the
script communicate what resources it requires and how it
will use those resources?3

SHILL addresses these issues by providing expressive,
fine-grained and enforceable interfaces for scripts (Goal
2) following the Design by Contract paradigm [23, 24].
Every function that a SHILL script exports (i.e., makes
available to users of the script) is accompanied by a con-
tract that describes the arguments the function expects
and the result it returns. For example, the following snip-
pet is a contract for the find jpg function from Figure 3:

provide find jpg :
{cur : is dir ∨ is file, out : is file} → void;

The provide keyword indicates that the function
find jpg is exported. The contract for the function is
{cur : is dir ∨ is file, out : is file} → void. Each function
contract has two parts: the precondition and the post-
condition. The precondition of our example states that
find jpg takes two arguments: a capability cur that is ei-
ther a directory or a file capability, and a file capability
out. Following Unix convention, file capabilities include
capabilities for files, pipes, and devices. The postcondi-
tion void means that no value is returned.

The precondition of the contract above describes what
kind of capabilities find jpg needs, but does not indicate
how the function intends to use these capabilities. SHILL
allows us to give a more precise contract for find jpg:

provide find jpg :
{cur : dir(+contents, +lookup, +path) ∨ file(+path),

out : file(+append)} → void;

This version specifies not only what kind of capabili-
ties the function consumes but also what privileges it re-
quires on these capabilities. Each privilege, such as +path
or +contents, corresponds to an operation on a capabil-
ity. A capability contract with a set of privileges restricts
what operations that capability can be used for.

Some operations on capabilities, such as lookup,
produce more capabilities. Capability contracts
can specify the privileges a script should have on
these derived capabilities. For example, privilege
+lookup with { +path, +stat } indicates that any capabili-
ties derived using the lookup operation should only have
the +path and +stat privileges. When a privilege confers
the right to derive new capabilities but does not come
with a modifier (such as the +lookup privilege in the
contract for find jpg), the derived capability has the same
privileges as its parent capability.

Each contract establishes an agreement between two

3Traditional shell scripting languages such as Bash or Python also
suffer from these issues, but the use of ambient authority masks them:
scripts typically receive much more authority than needed.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 187

parties: the provider of the value with the contract and
the value’s consumer. As part of the agreement, each
party promises to live up to its contractual obligations. In
this way, a contract both describes a guarantee one party
provides and a requirement the other party demands. For
function contracts, the consumer’s obligations are to sup-
ply function arguments that satisfy the precondition, and
the provider must produce a result that satisfies the post-
condition. For capability contracts, the provider agrees to
provide a capability of the appropriate kind with at least
the specified privileges while the consumer promises to
use the capability as if it has at most the specified priv-
ileges. For example, according to the find jpg contract,
users of find jpg must supply a file capability that per-
mits the append operation for the out argument, while
find jpg itself promises not to call other operations on the
capability, such as read.

The SHILL runtime checks whether parties live up to
their obligations by monitoring execution and checking
that values are used in accordance with their contracts.
For example, when find jpg is called with a capability
for a directory and a capability for the output file, the
body of find jpg does not receive the capabilities them-
selves. Instead, each contract wraps the underlying capa-
bility with a proxy. These proxies enforces the contracts
for cur and out by intercepting calls to operations on the
capabilities and allow them only if permitted by the con-
tract. If the body of find jpg attempts to perform an oper-
ation that isn’t permitted—such as reading the contents
of out or unlinking cur—the proxy will indicate that a
contract violation has occurred. If a contract is violated,
the SHILL runtime aborts execution and, to help with au-
diting and debugging, indicates which part of the script
failed to meet its obligations.

2.3 Securing arbitrary executables

SHILL security guarantees must be completely enforced:
even if a script calls other scripts or runs arbitrary exe-
cutables, its authority should be restricted to its capabili-
ties, and it should meet its contract obligations (Goal 3).
When SHILL scripts invoke only other SHILL scripts, we
achieve SHILL’s security guarantees easily because of the
language’s semantics. However, scripts also invoke exe-
cutable programs.

To ensure that these programs cannot violate SHILL’s
security guarantees, SHILL scripts may only invoke ex-
ecutables inside a capability-based sandbox. When a
sandbox is created, it is given a set of capabilities. The
SHILL sandbox limits the authority of the sandboxed exe-
cutable to the authority implied by the set of capabilities.

Scripts can invoke an executable in a sandbox by call-
ing the built-in function exec. For example, the following
snippet executes the file jpeginfo in a sandbox with the

arguments -i and a given file:

exec(jpeginfo, [''jpeginfo'',''-i'',file], stdout = out,
extras = [libc,libjpeg])

The exec function has two required arguments. The
first is a file capability with the +exec privilege. The sec-
ond is a list of string arguments to provide to the exe-
cutable. SHILL programmers can also provide as argu-
ments to executables capabilities for files or directories
instead of string representations of their paths. In this
case, the path to the given file is passed to the executable
as an argument. The exec function also takes some op-
tional arguments, including capabilities to use for stan-
dard input, output, or error (stdout = out), and extra ca-
pabilities needed by the program (extras = [libc,libjpeg]).
This set of extra capabilities is often quite large. In Sec-
tion 2.4.1, we describe abstractions to help manage ca-
pabilities for sandboxes.

SHILL sandboxes enforce a capability-based manda-
tory access control (MAC) policy on the sandboxed exe-
cution. For example, the sandbox for jpeginfo allows ac-
cess only to resources indicated by capabilities passed
as arguments to exec (which, for the jpeginfo example
above, are the jpeginfo, file, out, libc, and libjpeg files and
directories). Moreover, if any of these capabilities comes
with a contract, the MAC policy further limits access to
the resource according to the capability’s contract.

This capability-based MAC policy is enforced in ad-
dition to the operating system’s discretionary access con-
trol (DAC) policies: an operation on a resource by a sand-
boxed execution is permitted only if it passes the checks
performed by the operating system based on the user’s
ambient authority and is also permitted by the capabili-
ties possessed by the sandbox. Note that sandboxed ex-
ecutables never possess capabilities that allow them to
circumvent the MAC policy. For example, no sandboxed
executable has a capability to unload kernel modules, in-
cluding the module that enforces the MAC policy. Sec-
tion 3.2 describes how we implement capability-based
sandboxes using the TrustedBSD MAC framework.

2.4 Writing SHILL scripts
SHILL’s security benefits come at the cost of extra effort
to write scripts. Nonetheless, we strive to make it easy
to write SHILL scripts while obtaining stronger security
guarantees than traditional shell scripting languages. To
make it easier to write scripts, SHILL offers security ab-
stractions such as capability wallets and pushes security
concerns to the interfaces between scripts.

2.4.1 Security abstractions

SHILL requires that any access of a protected resource
requires an appropriate capability. However, even sim-

188 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 provide jpeginfo :
2 {wallet : native wallet, out : file(+write,+append),
3 arg : file(+read,+path)} → void;
4

5 jpeginfo = fun (wallet,out,arg) {
6 jpeg wrapper = pkg native(''jpeginfo'',wallet);
7 jpeg wrapper([''-i'',arg],stdout = out);
8 }

Figure 4: Executing jpeginfo in a sandbox using wallets

ple executable programs require access to a surprising
number of files. For example, executing cat in a sand-
box requires providing eight capabilities to libraries and
configuration files in addition to capabilities for the exe-
cutable itself and the input and output.

Consider a SHILL script that executes cat in a sand-
box. One can imagine a contract that requires a separate
argument for each of the eight capabilities that cat re-
quires. While precise, such a contract imposes a signifi-
cant burden on both the script writer (since the need for
these capabilities will be exposed in the interface for the
script) and the script user (who will need to supply these
capabilities individually).

Another possibility is a contract that takes important
capabilities separately (e.g., for the executable and the
input and output) and takes all other capabilities in a list.
Although succinct, this contract burdens the script’s user,
who has no idea what capabilities should be in this list.

We introduce capability wallets as a mechanism to au-
tomate and simplify the discovery, packaging, and man-
agement of capabilities that sandboxes need to run exe-
cutables. Conceptually, a capability wallet is a map from
strings to lists of capabilities. To reduce the burden on
script writers, SHILL provides wallet contracts, which de-
scribe contracts for the capabilities associated with indi-
vidual keys or groups of keys. To reduce the burden on
script users, SHILL provides library functions to automate
the collection and packaging of capabilities into wallets.

Figure 4 shows a script that uses a capability wal-
let to create a sandbox for the program jpeginfo. The
first argument to the jpeginfo function has the contract
native wallet (line 2). A native wallet is a particular kind
of capability wallet that can be built using functions from
SHILL’s standard library. It collects together the capa-
bilities needed to invoke executables and can be used
with other functions from the SHILL standard library that
present a familiar path-based interface for identifying
and running executables. The capabilities in a wallet are
derived from capabilities the user explicitly grants to the
script. Thus despite its path-based interface, a native wal-
let is still capability safe.

This script uses one of the standard library functions,

pkg native, to create a wrapper containing all of the ca-
pabilities needed to run the jpeginfo executable in a
sandbox (line 6). The script then calls the wrapper, sup-
plying the executable arguments and input and output ca-
pabilities (line 7).

SHILL’s standard library comes with a rich collection
of functions that construct and manipulate wallets, wal-
let contracts and wallet-derived sandboxes. Section 3.1.4
presents these utilities in further detail.

2.4.2 Pushing security to interfaces

SHILL’s contracts allow the programmer to separate the
security specification of a script from the implementa-
tion of its functionality (Goal 4). The SHILL runtime en-
sures that contracts are enforced, removing the need for
defensive code that checks and protects the use of capa-
bilities. Consider the find jpg function from Figure 3: the
implementation is simple, and the security guarantee is
provided by its contract. This separation makes it possi-
ble to strengthen or relax a script’s security guarantees
by modifying its contract. Indeed, in Section 2.2 we saw
two different contracts for the find jpg function, one of
which provides a more precise security guarantee.

SHILL’s contract system is rich and expressive, allow-
ing precise specifications of security guarantees. For ex-
ample, users can define their own contracts by creating
contract combinators and user-defined predicates written
in SHILL itself.

SHILL’s contracts can also be used to write security
specifications that provide different guarantees to differ-
ent script users. Consider the script in Figure 5. This
script recursively finds files and performs an action on
these files. (It is more general than the find jpg script of
Figure 3.) The function find takes three arguments: a file
or directory capability cur, a function filter that is used
to select files, and a function cmd to apply to all se-
lected files. Lines 5–16 implement find’s functionality.
Note that this code is straightforward, and does not di-
rectly address security concerns.

Lines 1–3 define the contract for find, using a
bounded parametric-polymorphic contract. The poly-
morphic contract declares that for any contract X, the
function find can be called with arguments cur, filter, and
cmd such that cur satisfies contract X, filter satisfies con-
tract X → is bool (i.e., filter is a function that expects a
value that satisfies X and returns a boolean), and cmd
satisfies contract X → void (i.e., cmd is a function that
expects a value that satisfies X and returns no value).

The polymorphic contract is bounded because the con-
tract X on capability cur that the caller provides must
have at least the privileges +lookup and +contents. More-
over, the contract requires that find can use only the
+lookup and +contents privileges of the cur argument or

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 189

1 provide find :
2 forall X with {+lookup,+contents} .
3 {cur : X, filter : X → is bool, cmd : X → void} → void;
4

5 find = fun(cur, filter, cmd) {
6 if is file(cur) && filter(cur) then
7 cmd(cur);
8

9 # if cur is a directory, recur on its contents
10 if is dir(cur) then
11 for name in contents(cur) {
12 child = lookup(cur, name);
13 if !is syserror(child) then
14 find(child, filter, cmd);
15 }
16 }

Figure 5: A find script with a polymorphic contract

derived capabilities, even though contract X may specify
more privileges. Importantly, the contracts for arguments
filter and cmd allow these functions to use all of the priv-
ileges that X specifies. In essence, the contract of find dy-
namically seals [28] the argument cur as it flows into the
body of the function through contract X, and unseals it as
it flows out to the functions filter and cmd.

The contract on find allows clients to use find in dif-
ferent ways. For example, one client may use it with a
filter that examines file creation times (which requires the
+stat privilege). Another client may use find with a filter
that inspects a file’s name (which requires +path, but not
+stat). For both clients, the contract guarantees that the
implementation of find itself cannot use either the +stat
or +path privileges, even though it invokes the functions
filter and cmd.

2.5 Interaction with ambient authority
Figures 3, 4, and 5 show SHILL scripts that consume and
use capabilities. But where do capabilities come from?
SHILL is intended for use with commodity operating sys-
tems, and so we must provide a mechanism to transi-
tion from the ambient world of the operating system to
SHILL’s capability-safe world (Goal 5).

To that end, in addition to the capability-safe scripts
we have described so far, users of SHILL scripts write
ambient scripts which inherit the authority of the in-
voking user and are not capability safe. Ambient scripts
are used to create capabilities and pass them to func-
tions that capability-safe scripts provide. Consequently,
the language of ambient scripts is extremely restricted:
ambient scripts contain straight line code that can im-
port capability-safe scripts, create capabilities for re-
sources using file paths and other global names, and call

1 #lang shill/ambient
2

3 require shill/native;
4 require ''jpeginfo.cap'';
5

6 root = open-dir(''/'');
7 wallet = create wallet();
8 populate native wallet(wallet,root,
9 ''~/Downloads/jpeginfo'',

10 ''/lib:/usr/local/lib'',
11 pipe factory);
12

13 dog = open-file(''~/Documents/dog.jpg'');
14 jpeginfo(wallet,stdout,dog);

Figure 6: Ambient script to call jpeginfo

functions exported by capability-safe scripts. Ambient
scripts are brief and delegate all interesting tasks to the
capability-safe scripts they import. Also, capability-safe
scripts cannot import ambient scripts, which ensures that
capability-safe scripts cannot use ambient scripts to ob-
tain additional capabilities. Ambient scripts must reason
carefully about their interaction with untrusted scripts.
Contracts and capabilities help with this.

Figure 6 shows an ambient script that creates ap-
propriate capabilities and then invokes the jpeginfo
function from the script in Figure 4. The annotation
#lang shill/ambient on line 1 indicates that this is an
ambient script.4 Line 3 loads a SHILL library script
that helps create capability wallets. Line 4 loads the
capability-safe script from Figure 4.

Lines 8–11 create an appropriate capability wallet to
run jpeginfo by calling the trusted standard library
function populate native wallet. Line 13 creates a capa-
bility for ~/Documents/dog.jpg. The capability has all
privileges that the invoking user is allowed for this file;
when the capability passes through a capability contract,
it loses all privileges except those stated in the contract.
Line 14 invokes jpeginfo with the capability wallet, a ca-
pability to standard out, and the capability to dog.jpg.

3 Implementation

We have implemented a prototype of SHILL as a ker-
nel module and set of userspace tools for FreeBSD 9.2.
The userspace tools include the SHILL compiler, runtime,
and standard library. The kernel module implements
capability-based sandboxes and provides capability-safe
versions of several POSIX system calls.

4Capability-safe scripts have the annotation #lang shill/cap on the
first line; we omitted this annotation in Figures 3, 4, and 5.

190 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3.1 Language
We implement the SHILL language as an extension to
Racket [9] using Racket’s macro system and tools for
building languages [39]. Prototyping SHILL in this way
allows us to use Racket functionality where it meets our
security requirements. In particular, we used Racket’s
contract mechanism to implement SHILL contracts.

A distinguishing feature of SHILL is capability safety:
access to resources occurs only through capabilities, and
creation of capabilities is limited. To achieve capability
safety at the language level, we (1) provide language-
level capabilities and capability contracts; (2) restrict
the expressiveness of the language; and (3) provide a
capability-based language runtime for SHILL.

3.1.1 Capabilities and their Contracts

Capabilities in the SHILL language are object-like val-
ues that encapsulate low-level capabilities such as file
descriptors or sockets. Each operation on a capability is
implemented by calling the corresponding operation on
the low-level capability. Different kinds of capabilities
support different operations. For example, supported op-
erations on files and pipes include reading, writing, and
changing modes. Directories also have capabilities for
listing, adding, or removing directory entries. Each oper-
ation has a corresponding privilege that can be present or
absent on a given capability. In total, SHILL has twenty-
four different privileges for filesystem capabilities and
seven different privileges for sockets. Socket privileges
are further refined by connection type.

We chose privileges and operations to align closely
with the operations that our capability-based sandbox
can interpose on, so that we can ensure that giving a ca-
pability to a sandbox conveys the same authority as giv-
ing that capability to a SHILL script. There are two kinds
of SHILL capabilities that do not encapsulate a system re-
source directly: the pipe factory and socket factory capa-
bilities. These capabilities encapsulate, respectively, the
right to create new pipes or sockets. The pipe factory ca-
pability has a create operation that returns a pair of pipe
ends. Each pipe end is a file capability. In our prototype
implementation, SHILL scripts cannot create or manipu-
late sockets directly (which can be addressed by adding
built-in functions for socket operations to the language).
We do restrict a sandbox’s permitted socket operations:
a sandbox must possess a socket factory capability to be
allowed to create and use sockets.

We implement SHILL contracts using Racket contract
combinators [8, 7] that create proxies [38] for capabil-
ities, allowing us to interpose on operations and check
privileges before allowing an operation. These proxies
also store information about the privilege restrictions
each contract imposes.

Resource Language Sandbox
Directories, files, links Capabilities Capabilities
Pipes Capabilities Capabilities
Character Devices Capabilities Capabilities†

Sockets (IP,Unix) Capabilities Capabilities
Sockets (other) Denied Denied
Processes ulimit‡ Confinement
Sysctl Denied Read-only
Kernel environment Denied Denied
Kernel modules Denied Denied
POSIX IPC Denied Denied
System V IPC Denied Denied

Figure 7: System resources and how each is protected in
the SHILL language and capability-based sandboxes.
†: In our prototype, character devices are only partially controlled by
capabilities, see Section 3.2.3.
‡: SHILL allows calls to the exec function to specify ulimit parameters
for the child process.

3.1.2 Restricting the SHILL language

To achieve capability safety in SHILL, we carefully
choose which language features and libraries of Racket
are available in SHILL. We allow access to certain Racket
libraries, such as the regular expression library, but pre-
vent access to all others, including Racket’s system li-
brary and Racket’s macro system. SHILL scripts are al-
lowed to import only SHILL capability-safe scripts.

The ambient SHILL language (see Section 2.5) has fur-
ther restrictions: it may not do anything other than import
capability-safe SHILL scripts, create strings and other
base values, define (immutable) variables, and invoke
functions. However, unlike the capability-safe SHILL lan-
guage, it may create capabilities using ambient authority.

3.1.3 Capability-based runtime

We implemented a capability-based language runtime for
SHILL that provides operations to access files and other
resources through file descriptors. (The Racket libraries
for accessing files and other resources rely on ambient
authority, and are thus not suitable for our use.) File de-
scriptors provide unforgeable tokens that can serve as
low-level capabilities for directories, files, links, pipes,
sockets, and devices. Our capability-based runtime pro-
vides wrappers for the *at family of system calls which
provide a file-descriptor based interface to common op-
erations like opening, reading, and writing files. Our
runtime further restricts these system calls by requir-
ing that arguments that specify sub-paths contain only a
single component. For example, the pathname argument
to openat may be alice but not alice/dog.jpg or
../bob. Our runtime also provides wrappers for stan-
dard system calls which can be used by SHILL’s ambient
language to create capabilities for system resources.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 191

Most but not all FreeBSD system calls that manipu-
late the filesystem have a version that consumes file de-
scriptors rather than paths. The linkat, unlinkat, and
renameat system calls use file descriptors to designate
target directories, but rely on paths to designate files.
Thus, a call to linkat can not be guaranteed to link to
the correct file without risking a time-of-check-to-time-
of-use vulnerability. Our kernel module adds three sys-
tem calls to address these deficiencies: flinkat, which
installs a link to a file in a directory given file descriptors
for both the file and the directory; funlinkat, which
takes a name and file descriptors for a file and a direc-
tory and removes the link at the given name if it refers to
the file; and frenameat, which is similar to funlinkat
but also installs a link to the file in a target directory. The
module also provides a version of mkdirat that returns
a file descriptor for the newly created directory.

We also add a new path system call that attempts to
retrieve an accessible path for a file descriptor from the
filesystem’s lookup cache. SHILL uses this system call to
provide a relatively robust mechanism to translate SHILL
capabilities into paths to provide as arguments to sand-
boxed executables. If the path system call fails, SHILL
uses the last known path at which the file was accessible.

Our prototype implementation of SHILL does not pro-
vide support for all system resources. Interaction with re-
sources that do not correspond to capabilities is either re-
stricted or denied entirely. Figure 7 lists system resources
and how SHILL controls access to these resources in the
language and in capability-based sandboxes. There is no
fundamental obstacle to providing capability support for
all resources, though doing so would require additional
modifications to the system call interface. For example,
we would need to provide a low-level capability for pro-
cesses, similar to Capsicum’s process descriptors [43].

3.1.4 Standard Library

SHILL’s standard library provides a number of capability-
safe scripts that help programmers write SHILL scripts.
The filesys script provides capability-based functions
that emulate common tasks such as resolving paths and
symlinks. The io script provides printf-like wrappers
around write and append for formatted output. The
contracts script provides abbreviated definitions of com-
mon contracts. For example, a programmer can specify
the contract readonly rather than the more verbose

dir(+read-symlink,+contents,+lookup,
+stat,+read,+path) ∨ file(+stat,+read,+path).

Capability wallets Recall that capability wallets are
maps from strings to lists of capabilities that help auto-
mate and simplify the discovery, packaging, and use of

capabilities to invoke executables in sandboxes. SHILL
provides functions for creating and using capability
wallets. For example, the native script in the standard
library provides two functions for using native wal-
lets to invoke executables (as in Figures 4 and 6):
populate native wallet and pkg native.

Function populate native wallet helps create a native
wallet. Its arguments include path specifications for
where to search for executables and libraries (i.e., colon-
separated strings, analogous to environment variables
$PATH and $LD_LIBRARY_PATH), and a directory ca-
pability to use as a root for the path specifications. In
addition, it takes a map (of strings to lists of strings)
from known libraries to the file resources those libraries
depend on. Function populate native wallet uses the di-
rectory capability to resolve the path specifications (i.e.,
converts the lists of strings to lists of capabilities),
and places these capabilities in a native wallet. It also
resolves the known dependencies (i.e., the map from
known libraries to the file resource path names) into a
map from strings to lists of capabilities, and places the
resolved map into the native wallet.

Function pkg native takes a native wallet and a file
name (of an executable file) and searches the path ca-
pabilities in the native wallet for a capability for the exe-
cutable. The function then invokes ldd to obtain a list of
libraries that the executable depends on, and searches the
library-path capabilities for capabilities for the required
libraries. Once these capabilities are gathered, pkg native
uses the map of known dependencies to gather addi-
tional capabilities needed to run the executable. Function
pkg native then returns a function that encapsulates a call
to exec with all capabilities needed to run the executable.
Figure 4 shows an example script that uses pkg native.

3.2 Capability-based sandbox

The SHILL sandbox is implemented as a policy module
for the TrustedBSD MAC Framework [41] (hereafter,
“the MAC framework”). The MAC framework allows
FreeBSD’s access control mechanisms to be extended
with third-party mandatory access control policies by
mediating access to sensitive kernel objects and invok-
ing access control checks specified by third-party policy
modules. The framework also provides a policy-agnostic
mechanism for attaching security labels to kernel objects.
Mechanisms with similar functionality are available on
Linux and Apple’s OS X.

3.2.1 Session lifecycle

Each process executing in a SHILL sandbox is associated
with a session. Processes in the same session share the
same set of capabilities and can communicate via sig-

192 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

nals. Processes spawned by a process in a session are
by default placed in the same session. However, sessions
are hierarchical: a sandboxed process inside session S1
can spawn a process inside a new session S2, which has
fewer capabilities that S1. This allows SHILL-aware exe-
cutables to further attenuate their privileges.

New sessions are created by invoking the system call
shill_init, which creates a session and associates it
with the current process. A new session initially has no
capabilities of its own. Capabilities possessed by the par-
ent session can be granted to the new session until the
process invokes the shill_enter system call. Once
shill_enter is called, the session allows only opera-
tions permitted by capabilities it was granted explicitly.

3.2.2 From capabilities to MAC labels

Each system resource protected by a SHILL capability
corresponds to an underlying kernel object: a filesystem
vnode, pipe, device, or socket. Using the MAC frame-
work’s ability to attach labels to kernel objects, SHILL
labels these kernel objects with a privilege map: a map
from sessions to sets of privileges. A privilege map
records the privileges that each session has for the given
kernel object. Privileges in the privilege map correspond
directly to privileges of SHILL capabilities.

When a SHILL script calls exec, the SHILL runtime sets
up a sandbox by forking a new process, creating a new
session, and granting the session the capabilities passed
to exec. It then calls shill_enter before transferring
control to the executable.

When a sandboxed process invokes a system call rele-
vant to a resource protected by SHILL, we use the privi-
lege map for that resource to check whether the process’s
session has sufficient privileges for the operation. If there
are insufficient privileges, the system call aborts with an
error but the process is otherwise allowed to continue.

Derived capabilities In the SHILL language, some op-
erations on SHILL capabilities yield derived capabilities.
For example, using a directory capability, a script might
obtain capabilities for children of the directory, or might
obtain a capability for a new file created in that directory.
In the sandbox, we track these derived capabilities by up-
dating privilege maps in response to operations on kernel
objects. To enable this, we extended the MAC framework
with two additional hooks: mac_vnode_post_lookup
and mac_vnode_post_create. These entry points
are invoked after a lookup or create operation com-
pletes successfully, and allow the SHILL policy mod-
ule to update the privilege map on the resulting vnode.
For example, if session S has privilege +lookup with
{+stat,+path} on a vnode for a directory d, and a pro-
cess in that session successfully invokes system call

openat(d, "child", flags), then the SHILL policy
module updates the privilege map for the vnode for file
child to add privileges +stat and +path for session S.

Path traversal To achieve fine-grained confinement in
the filesystem, SHILL scripts are not permitted to follow
the “..” entry of a file or directory capability. However,
simply disallowing use of “..” in SHILL’s capability-
based sandboxes would break many existing programs.
Instead, the sandbox allows any lookup operation on a di-
rectory if the session has the +lookup privilege, but only
propagates privileges when the lookup would have been
permitted in the SHILL language, that is, when the direc-
tory entry requested is not “..”.5

Example Consider a sandboxed process attempting to
call open("../alice/dog.jpg", O_RDONLY) from
the current working directory /home/bob. This system
call invokes a series of low-level lookup operations on
filesystem objects to resolve the path and create a file de-
scriptor for the designated resource.

Figure 8 depicts the process of completing these oper-
ations in a SHILL sandbox. Shaded boxes around nodes
in the file system denote privileges held by the current
session. The current working directory is indicated with
a solid arrow. Dashed arrows represent low-level lookup
operations, and a dashed box around a node represents
privileges propagated in response to a lookup operation.

In the left diagram, the current session has a capability
to the vnode corresponding to /home/alice and a capa-
bility to the current working directory. The first operation
(lookup “..” in /home/bob) is permitted because the
process has the +lookup privilege, but privileges are not
propagated to the vnode for /home. Thus, the second op-
eration (lookup alice in /home) fails because the ses-
sion does not have the necessary privileges. The open

system call returns EACCES to indicate that the process
had insufficient privileges.

The right diagram considers the same scenario, but
where the session also has a +lookup privilege to
the directory /home. In this case, the session is per-
mitted to look up alice in /home. The final oper-
ation (lookup dog.jpg in /home/alice) also suc-
ceeds. These two lookups propagate privileges from
the parent nodes to the results of the lookup. Look-
ing up dog.jpg in /home/alice grants the session
the privilege +read on the vnode representing dog.jpg,
since the session had privilege +lookup with {+read}
on the vnode for /home/alice. Thus, the call
open("../alice/dog.jpg", O_RDONLY) succeeds.

5We also do not propagate privileges when the directory entry is
“.”, since this can lead to privilege amplification. For example, if ses-
sion S has only the privilege +lookup with +stat on directory d, then call-
ing openat(d, ".", flags) would give S the +stat privilege on d.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 193

...

/ (root directory)

usr ...

+lookup with {+read}

home

+lookupbobalice

dog.jpg

cwd

+read...

...

/ (root directory)

usr

...

...

+lookup+lookup with {+read} bobalice

dog.jpg

cwd

...

+lookup home

...

Figure 8: Resolving system call open("../alice/dog.jpg", O_RDONLY) in a capability-based sandbox. Left: the
session has privileges for /home/alice and /home/bob, but not /home, so the operation fails. Right: the session also
has a lookup privilege for /home, so the operation succeeds and the lookup privilege on /home/alice is propagated
to /home/alice/dog.jpg.

Note that unlike SHILL scripts, sandboxed executables
are vulnerable to confused deputy attacks if they allow
clients to specify resources with paths rather than, e.g.,
file descriptors. However, the authority of the sandboxed
execution is still limited by the capabilities it is granted.

Avoiding privilege amplification In the SHILL lan-
guage, capabilities both designate resources and confer
privileges. As a consequence, it is possible to have two
separate capabilities to the same resource with different
privileges. These separate capabilities may confer less
privilege than a single capability with the combined priv-
ileges. For example, consider a pair of capabilities to cre-
ate a network socket, one with sufficient privileges to
send but not receive messages at a particular port, and
one with sufficient privileges to receive but not send mes-
sages on the same port. Because only a single socket
can be bound to a port, a program with these capabili-
ties must choose to either send or receive messages.

Since in the SHILL language, scripts cannot combine
capabilities, possessing multiple capabilities for the same
resource does not lead to privilege amplification. In the
capability-based sandbox, however, to avoid privilege
amplification the sandbox must prevent two separate ca-
pabilities to the same object from being combined to al-
low additional operations.

For file system operations that create new objects (e.g.,
creating new files or directories), SHILL requires that
a session is never granted conflicting privileges to the
same object. For example, if session S currently has priv-
ilege +create-file with {+read,+stat,+path} for a directory
d, (i.e., the privilege to create read-only files), and due to
a lookup from the parent directory we want to propagate
privilege +create-file with {+write}, we would not merge
these privileges, i.e., we would not give S the privilege
+create-file with {+write,+read,+stat,+path}. While more
sophisticated techniques to track privileges are possible,
we have found that this conservative approach to prevent

privilege amplification works well in practice, and does
not break functionality of any of our case studies.

Process interaction The SHILL language provides lim-
ited support for operations on processes: SHILL does not
have capabilities to control the creation of processes, pro-
cess synchronization, interprocess communication, etc.

Within capability-based sandboxes, we enforce a sim-
ple security policy for operations related to processes:
processes in a session can only interact with processes
in the same session or a descendent session. A process
in a sandbox cannot debug, send signals to, or wait for a
process outside of its session.

Debugging SHILL provides several tools for debugging
processes running in SHILL sandboxes. First, there is a
command-line tool for running a single shell command
with capabilities specified in a policy file. Second, for all
SHILL sandboxes, logging can be enabled and viewed by
privileged users. The log records all of the capabilities
and privileges granted during a session in addition to all
operations that were denied because of insufficient priv-
ileges. Using the command-line tool, a session can be
created in debugging mode, which automatically grants
the necessary privileges if an operation would fail. We
found that running programs in a debugging sandbox
and then viewing the logs was a useful starting point for
identifying necessary capabilities to provide to a SHILL
script. However, as we developed additional standard li-
brary support to run common executables, this became
less necessary. In most cases, the utilities in the standard
library automate the retrieval and collection of capabili-
ties needed to run an executable.

3.2.3 Limitations

SHILL’s capability-based sandboxes rely on the MAC
framework to implement access control checks based on

194 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

capabilities. Thus, the granularity of the MAC frame-
work’s mechanism determines the granularity at which
our sandboxes protect resources. For example, the MAC
framework exposes a single entry point for operations
that write to filesystem objects, so we cannot distinguish
write and append operations. Conservatively, we enforce
that to write (or append) to a file, a session must have
both the +write and +append privileges for the file. (Note
that in SHILL scripts, privileges can be enforced at fine
granularity, since capability safety in scripts relies on
language abstractions, not on the MAC framework.)

The MAC framework does not interpose on read or
write operations on character devices. Thus, while the
SHILL language exposes stdin, stdout, and stderr

as file capabilities and enforces restrictions on how they
can be used, sandboxed processes can bypass these re-
strictions if one of these capabilities abstracts a pseudo-
terminal or other device. This limitation is not funda-
mental and can be resolved by adding entry points to the
MAC framework around unprotected operations. It can
be mitigated by not granting capabilities to such devices
to sandboxes.

4 Evaluation

We evaluate the expressiveness of SHILL through four
case studies: a grading script for a programming assign-
ment, a package management script for the GNU Emacs
editor, sandboxing the Apache web server, and a find and
execute task similar to the example in Section 2. We mea-
sure the performance of SHILL via case studies and mi-
crobenchmarks. Our evaluation indicates that (1) SHILL
is a practical security tool for typical system tasks, (2)
SHILL can provide fine-grained security guarantees when
scripts are used to compose untrusted software and, (3)
its performance cost is pay-as-you-go, i.e., weak security
guarantees incur little overhead.

4.1 Case studies
Grading submissions We used SHILL to securely
grade student submissions written in OCaml for an un-
dergraduate programming languages course. As a base-
line, we wrote a 61-line Bash script that compiles the
OCaml source code of each submission and runs the
compiled program against a test suite. Results of ex-
ecuting student submissions against the test suite are
recorded in a grading directory, one file per student.

With minimal effort, we secured this Bash script in a
SHILL sandbox. The capability-safe script that executes
the Bash script in a sandbox is 22 lines, of which 14 are
the contract for the script. The ambient script that invokes
capability-safe script is also 22 lines. The contract guar-
antees that the grading script can at most: read files in

directories containing student submissions and tests; cre-
ate, modify, and delete new files in a working directory
and the output directory; and access the system resources
needed to run the compiler and compiled programs.

To demonstrate the finer-grained guarantees of SHILL,
we also wrote a version of the grading script exclu-
sively in SHILL. The capability-safe grading script is 78
lines of code, of which six are the script’s contract. The
ambient script that invokes it is 16 lines. The SHILL
script provides all the security guarantees of the sand-
boxed Bash script, and also ensures that while grading
a student’s submission, no other student’s submission,
working-directory files, or results file can be accessed.

The capability-safe SHILL script was developed by
manually translating and modifying the original Bash
script. String-based references to files were replaced
with appropriate capabilities. Calls to programs like
gmake, diff, and ocamlrun were replaced with calls
to the SHILL standard library to package and execute
those programs. To enable this, the ambient script cre-
ates a native wallet initialized with a standard PATH and
LD_LIBRARY_PATH. Contracts for the capability-safe
SHILL script ensure that each student’s grading file is
isolated from other students and that students’ programs
can’t directly modify their grade file. These fine-grained
guarantees—which the Bash script does not provide—
are achieved by ensuring that the contract on the grading
directory allows only the creation of new append-only
files, and the functions that compile and execute a stu-
dent’s submission are given no capabilities to other stu-
dents’ grading files.

In developing this script, we debugged several cases
where the script had too few privileges to run success-
fully. In one case, we wrote too restrictive a contract for
the submissions directory, forgetting the +lookup privi-
lege. The resulting contract failure indicated which ar-
gument had insufficient privileges. After verifying that
this privilege was necessary and did not compromise the
security guarantees, we fixed the script. We encountered
two issues with sandboxed executables. First, the wal-
let used to launch executables was missing some neces-
sary capabilities: when trying to compile students’ sub-
missions, ocamlc reported that it was unable to read a
file in /usr/local/lib/ocaml. Investigating, we re-
alized that OCaml searches for libraries in this directory.
Adding the directory to the wallet as a dependency for
OCaml executables fixed the issue but revealed another:
ocamlyacc could not write to /tmp. After adding a ca-
pability to /tmp when invoking gmake, the script ran
successfully. To ensure isolation between different invo-
cations of gmake, we used a contract on the /tmp capa-
bility to specify that sandboxed processes can only read,
modify, or delete files or directories they create.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 195

Package Management We used SHILL to write an in-
stallation script for GNU Emacs (similar to what may be
found in a package manager). The script provides func-
tions to download, compile, install, and uninstall Emacs.
Unlike a typical package manager, the script has a de-
tailed security interface for each function. For example,
only the function for downloading the source code can
access the network, and only the install function can
write to the intended installation directory. In addition,
the install function is restricted from reading, altering,
or removing any existing files in the installation direc-
tory, and the uninstall function’s contract gives a list of
files that it is permitted to remove. The package man-
ager comprises 114 lines of ambient code, and 91 lines
of capability-safe code, of which 45 specify contracts.

Apache web server To showcase how SHILL handles
networking applications, we used SHILL to develop a
sandbox for the Apache webserver, version 2.2. We
tested the performance of the web server by using the
Apache Benchmark tool to download a 50MB file served
by Apache five thousand times using up to 100 concur-
rent connections. In addition to its required libraries, the
script’s contract gives the webserver read-only access to
configuration files and web content directories, the abil-
ity to create and use sockets, and write-only access to log
files. The ambient script is 27 lines, and the capability-
safe script is 30 lines, of which 20 lines are contracts.

Find As another example of how programmers can use
SHILL to gradually strengthen the guarantees of scripts,
we developed two versions of a SHILL script for a find
and execute task. Our scripts find all files with extension
.c in the BSD source tree that contain the string “mac_”,
the prefix on entry points for the MAC framework. Com-
pleting this task requires visiting 57,817 files and invok-
ing grep on the 15,376 files with extension .c.

The simpler version is a SHILL script
that launches a sandbox for the command

find /usr/src -name "*.c" \
-exec grep -H mac_ {} \;

The ambient script is 11 lines and calls a 27-line
capability-safe script, of which 5 lines are contracts. The
contract ensures that the sandbox has access only to
/usr/src and files necessary to run find and grep.

The second version uses the find function (Figure 5)
to find files with the extension .c and invokes grep in a
sandbox for each matching file. In addition to the guar-
antees of the previous version, this script provides the
fine-grained guarantee that the files that grep operates
on are exactly the files selected by the find function. Note
that our first script does not provide this guarantee: paths
passed to grep may resolve to different files. The ambi-

ent script is 9 lines, and the capability-safe script is 60
lines, of which 11 are contracts.

4.2 Performance Analysis
Our prototype implementation focuses on providing fine-
grained security guarantees, and we have not yet opti-
mized performance. However, to verify that the perfor-
mance costs of SHILL are commensurate with the se-
curity guarantees, we use the case studies as bench-
marks. We also develop benchmarks for sub-tasks of
the Emacs installation script (download, untar, config-
ure, make, make install, make uninstall). For each bench-
mark, we derive a command line invocation to achieve
the same task as the case study outside of SHILL (if such
a command was not already part of the case study).

We measured the performance of each benchmark in
three different configurations. The “Baseline” configu-
ration executes the command on FreeBSD without the
SHILL kernel module installed. The “SHILL installed”
configuration executes the command with the kernel
module installed (but not active). The “Sandboxed” con-
figuration uses a SHILL script to create a sandbox for the
command. Where applicable, we also executed a “SHILL
version” of the case study that replaces the command.

We ran each configuration of each benchmark 50 times
and computed the mean time to completion along with
a 95% confidence interval. The performance measure-
ments were conducted on a six core, 3.33GHz Xeon
server with 6GB of RAM running FreeBSD 9.2. Fig-
ure 9 presents the results. We compare performance with
“Baseline” using a two-sided t-test on the difference in
mean run time. Statistical significance was determined at
the 0.05 level after a Bonferroni correction for multiple
hypothesis testing within each benchmark.

First, observe that the overhead of our system for pro-
grams that are not secured by SHILL scripts is negligi-
ble. Second, the slowdown for “Sandboxed” and “SHILL
version” configurations ranges from negligible to 1.21×,
except for a few extreme cases: the “Sandboxed” con-
figurations of the Download and Uninstall benchmarks
and the “SHILL version” of the Find benchmark. These
tasks are 1.73×, 6.61×, and 6.01× slower than the base-
line, respectively. We explore these high overheads be-
low. Third, the SHILL version of the package manage-
ment benchmark has no significant overhead and the
SHILL version of the grading script is only 1.13× slower,
despite the finer-grained guarantees these scripts provide.

Profiling To better understand the performance of
SHILL, we profiled the “SHILL version” configurations
of the Grading and Find benchmarks, and the “Sand-
boxed” configurations of Download and Uninstall. We
inserted instrumentation to measure the total execution

196 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Grading Emacs Download Untar Configure Make Install Uninstall Apache Find

0
25
50
75

100
125

Ti
m

e
(s

)

Figure 9: Performance of SHILL for a variety of tasks. Running time is given for the “Baseline” (�), “SHILL installed”
(�), “Sandboxed” (�), and “SHILL version” (©) configurations. 95% confidence intervals are indicated by vertical
bars. Bars may be hidden by plotting symbols when confidence intervals are small. Configurations that differ signifi-
cantly from “Baseline” are filled (e.g., �).

time, Racket startup (which includes script compilation,
and starting the runtime), setup of sandboxes, and sand-
boxed execution for each benchmark. Figure 10 shows
the results. Remaining time (i.e., time not spent on
Racket startup, sandbox setup, or sandboxed execution)
is time spent executing SHILL scripts, including contract
checking. We used a Racket profiler [36] to estimate how
SHILL’s features affect the running time. Most time spent
executing SHILL scripts is in capability-safe scripts (more
than 99% for both Find and Grading) and in particular
checking contracts (86% for Find and 87% for Grading).
The contract on the result of pkg-native accounts for al-
most all contract checking time (92% and 93% of con-
tract checking time for Find and Grading respectively)
because it is checked once per sandbox. (The remaining
time for the Download and Uninstall benchmarks was in-
sufficient for the profiler to produce meaningful data.)

For these benchmarks, most time outside of sand-
boxed execution is spent enforcing security guarantees:
checking contracts and setting up sandboxes. The Grad-
ing benchmark creates 5,371 sandboxes, Find creates
15,292, Uninstall creates one, and Download creates two
(one for pkg-native and one for the executable, curl).
Grading and Find create many sandboxes, each of which
takes a relatively small amount of time to set up and
a relatively small amount of time to check the contract
from pkg-native. Racket startup cost is responsible for
the high overhead of Download and Uninstall. The high
overhead of Find is due to contract checking and sand-
box setup, but also due to high sandboxed execution
time. A small portion of the latter cost is due to over-
head on system call interposition for privilege checking
(see microbenchmarks below). We conjecture that the re-
maining cost stems from the high number of short-lived
sandboxes that Find creates, which causes contention be-
tween threads using privilege maps and the kernel’s asyn-
chronous cleanup of expired SHILL sandbox sessions.

Microbenchmarks To understand the overhead added
to system calls due to privilege checking during sand-
boxed execution (see Section 3.2.2), we evaluated mi-

Uninstall Download Grading Find
Total time 0.82 s 1.66 s 116.38 s 61.20 s
Racket startup 0.65 s 0.63 s 0.92 s 0.65 s
Sandbox

setup 0.01 s 0.01 s 6.98 s 18.04 s
execution 0.14 s 0.96 s 104.09 s 27.61 s

Remaining time 0.03 s 0.07 s 4.39 s 14.90 s

Figure 10: Performance breakdown of four benchmarks.

Operation SHILL Installed Sandboxed Difference
pread-1B 516 ± 80 ns 560 ± 64 ns 44 ± 102 ns
pread-1MB 199 ± 4 ms 202 ± 6 ms 3 ± 7 ms
create-unlink 13 ± 3 ms 14 ± 4 ms 1 ± 4 ms
open-read-close

1 lookup 3.7 ± 0.4 ms 4.0 ± 0.4 ms 0.3 ± .6 ms
5 lookups 5.3 ± 0.3 ms 6.4 ± 0.5 ms 1.1 ± 0.6 ms

Figure 11: Overhead of SHILL for microbenchmarks.

crobenchmarks for several representative system calls
under both the “SHILL installed” and “Sandboxed”
configurations. The pread-1B microbenchmark reads
one byte from an opened file; pread-1MB reads 1
megabyte. The create-unlink microbenchmark cre-
ates a new file, closes, and unlinks it. The open-read-
close benchmarks open a file, reads one byte, and closes
it. In one version of this benchmark, the path argument
to open has length one, and in the other it has length five
(i.e., the file is nested in 4 subdirectories).

We timed one million iterations of each microbench-
mark, except for pread-1MB, which was executed one
thousand times. Figure 11 shows the mean execution
time and 95% confidence intervals. All differences were
statistically significant. The overhead of executing sys-
tem calls in a SHILL sandbox ranges between 18%
(open-read-close, 5 lookups) and 1% (pread-1MB).
For the open-read-close benchmarks, further exper-
iments (not shown) indicate that overhead increases lin-
early in the length of the path (i.e., linearly with the num-
ber of lookup system calls required).

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 197

5 Related work

Much research is devoted to controlling the authority of
untrusted software and applying the Principle of Least
Privilege (POLP), spanning operating system design,
systems security, and programming languages.

Operating Systems Capabilities are a well-known
and effective mechanism to support POLP. Capability-
based operating systems [6] such as KeyKOS [11, 5],
EROS [34], Coyotos [33] and PSOS [29] use operating
system and hardware capabilities to limit the authority of
users and processes. Numerous microkernels inspired by
the L4 family [19] employ capabilities as an access con-
trol mechanism [4, 13, 18]. HiStar [44] and Asbestos [44]
track information flow to enforce fine-grained security
policies. SHILL is not an operating system and is built on
a commodity operating system. However, it shares simi-
lar goals and draws inspiration from these novel systems.
For instance, the source of certain kinds of capabilities in
KeyKOS is the command system: the only program in the
system with ambient access to a user’s directory. SHILL’s
ambient scripts serve the same purpose.

Capsicum [43] extends the FreeBSD operating system
with capabilities but requires programs to be rewritten
to use the capability-based interfaces in order to make
use of capability mode. By contrast, SHILL’s capability-
based sandbox does not require executables to be aware
of capabilities. In addition, SHILL capabilities are more
expressive than Capsicum capabilities; for example, a
SHILL capability can express the permission to create
files in a directory and delete only files that were created
with the capability.

Systems security Laminar [30] integrates operating
system and programming language abstractions to en-
force decentralized information flow control (DIFC). Its
high-level architecture resembles that of SHILL. How-
ever, Laminar provides fine-grained security only for
programs that use Laminar’s security abstractions, and
does not provide declarative security specifications.
Hails [10] uses declarative information-flow control poli-
cies as a mechanism for composing mutually distrusting
web applications. Unlike SHILL, it provides limited sup-
port for securing legacy applications. Flume [17] uses a
user-space reference monitor for DIFC at the granular-
ity of operating system abstractions. While both SHILL
and Flume can enforce security restrictions on untrusted
applications, SHILL uses capabilities and contracts rather
than DIFC labels.

A plethora of sandboxing tools have been de-
veloped for commodity operating systems, including
SELinux [20], Seatbelt [42], AppArmor [1], GrSecu-
rity [35], LXC [3], and Docker [2]. Unlike SHILL,

these sandboxes deny or grant access based on a profile
rather than a programmable capability-based interface.
Mbox [15] and TxBOX [14] create sandboxes with trans-
actional semantics that can reverse the effects of misbe-
having processes, but enforce strong isolation between
sandboxed processes and the rest of the system. Notably,
programs running in a SHILL sandbox are not isolated
from the rest of the system. For example, in our Apache
case study, concurrently executing programs can dynam-
ically add new web content or view logs as they are gen-
erated. Many of these sandboxes require root privileges,
but some are available to all users [15]. PLASH [32]
is a capability-based interactive shell for creating sand-
boxes in which to execute shell commands, similar to
SHILL’s exec. All of these tools lack the reasoning prin-
ciples SHILL provides for composing multiple sandboxes
together.

Programming languages The use of language-level
capabilities to support POLP has a long history [28].
The E programming language [26] is a seminal object
capability language, where capabilities are object refer-
ences. CapDesk [40, 37] is a desktop shell for launch-
ing applications written in E. Applications are granted
limited authority initially and can gain more capabilities
through powerboxes, which mediate requests for author-
ity from the application to the user. In contrast to SHILL,
CapDesk does not have a scripting interface and appli-
cations launched by CapDesk must be capability-aware
and designed to work with the CapDesk framework.

Joe-E [22] restricts Java to an object-capability-
safe subset. Similarly, Caja [27] introduces an object-
capability-safe subset of JavaScript. Maffeis et al. [21]
prove that these subsets are indeed capability safe. Un-
like other capability-safe languages, SHILL targets a par-
ticular domain (shell scripting) instead of general pro-
gramming and that it uses contracts to manage capabili-
ties instead of capability-based design patterns [26].

Acknowledgments

We thank Dan Bradley for his contributions to an early
version of this work, and Jennifer Kirk for her help with
statistical analysis. We are grateful to Leif Andersen,
Vincent St-Amour, and Matthias Felleisen for their help
profiling SHILL code. We thank Eddie Kohler, the Pro-
gramming Languages Group at Harvard, and the review-
ers for their helpful comments. Many thanks to Frans
Kaashoek for his thoughtful shepherding. This research
is supported by the Air Force Research Laboratory.

198 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

References

[1] Apparmor. https://wiki.ubuntu.com/AppArmor.

[2] Docker. https://www.docker.io.

[3] LXC. https://linuxcontainers.org.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schüpbach, and A. Singhania. The Multiker-
nel: A new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

[5] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy,
N. Hardy, C. R. Landau, and J. S. Shapiro. The KeyKOS nanok-
ernel architecture. In Proceedings of the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures. USENIX Associ-
ation, 1992.

[6] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Communications of the ACM, 9
(3):143–155, 1966.

[7] R. B. Findler and M. Blume. Contracts as pairs of projections. In
Proceedings of the 8th International Symposium on Functional
and Logic Programming, pages 226–241, 2006.

[8] R. B. Findler and M. Felleisen. Contracts for higher-order func-
tions. In Proceedings of the International Conference on Pro-
gramming, pages 48–59, 2002.

[9] M. Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Inc., 2010. http://racket-lang.org/
tr1/.

[10] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo. Hails: Protecting data privacy in un-
trusted web applications. In 10th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 47–60. USENIX,
2012.

[11] N. Hardy. KeyKOS architecture. Operating Systems Review, 19
(4):8–25, 1985.

[12] N. Hardy. The confused deputy: (or why capabilities might have
been invented). SIGOPS Operating Systems Review, 22(4):36–
38, 1988.

[13] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters.
Towards trustworthy computing systems: Taking microkernels to
the next level. SIGOPS Operating Systems Review, 41(4):3–11,
2007.

[14] S. Jana, D. E. Porter, and V. Shmatikov. TxBox: Building Secure,
Efficient Sandboxes with System Transactions. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy, May 2011.

[15] T. Kim and N. Zeldovich. Practical and effective sandboxing for
non-root users. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference, pages 139–144, Berkeley, CA,
USA, 2013. USENIX Association.

[16] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make least privilege a right (not a privilege). In Pro-
ceedings of the 10th Conference on Hot Topics in Operating Sys-
tems, page 21, Berkeley, CA, USA, 2005. USENIX Association.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard os
abstractions. In Proceedings of Twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles, pages 321–334, 2007.

[18] A. Lackorzynski and A. Warg. Taming subsystems: Capabilities
as universal resource access control in L4. In Proceedings of
the Second Workshop on Isolation and Integration in Embedded
Systems, pages 25–30, 2009.

[19] J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles,
pages 237–250, 1995.

[20] P. Loscocco and S. Smalley. Integrating flexible support for se-
curity policies into the Linux operating system. In Proceedings
of the FREENIX Track: 2001 USENIX Annual Technical Confer-
ence, 2001.

[21] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE Symposium on
Security and Privacy, pages 125–140, May 2010.

[22] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-oriented
subset of Java. In Proceedings of the Network and Distributed
System Security Symposium. The Internet Society, 2010.

[23] B. Meyer. Design by contract. In Advances in Object-Oriented
Software Engineering, pages 1–50. Prentice Hall, 1991.

[24] B. Meyer. Applying “Design by Contract”. Computer, 25(10):
40–51, 1992.

[25] M. Miller, K.-P. Yee, and J. Shapiro. Capability myths demol-
ished. Technical Report SRL2003-02, Johns Hopkins University,
2003.

[26] M. S. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, Baltimore, Maryland, USA, May 2006.

[27] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized JavaScript. Google white paper.
http://google-caja.googlecode.com, 2008.

[28] J. H. Morris, Jr. Protection in programming languages. Commu-
nications of the ACM, 16(1):15–21, January 1973.

[29] P. G. Neumann and R. J. Feiertag. PSOS revisited. In Proceedings
of the 19th Annual Computer Security Applications Conference,
pages 208–216, Dec 2003.

[30] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
Laminar: Practical fine-grained decentralized information flow
control. In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 63–74, 2009.

[31] J. H. Saltzer. Protection and the control of information sharing
in Multics. Communications of the ACM, 17(7):388–402, July
1974. ISSN 0001-0782.

[32] M. Seaborn. PLASH: the principle of least authority shell, 2007.
http://www.cs.jhu.edu/˜seaborn/plash/html/.

[33] J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M. Miller.
Towards a verified, general-purpose operating system kernel. In
Proceedings of the NICTA Invitational Workshop on Operating
System Verification, pages 1–19. USENIX, 2004.

[34] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capabil-
ity system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, pages 170–185, 1999.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 199

[35] B. Spengler. Grsecurity ACL docmentation v1.5, 2003.
http://grsecurity.net/gracldoc.htm.

[36] V. St-Amour and M. Felleisen. Feature-specific profiling. Techni-
cal Report NU-CCIS-8-28-14-1, Northeastern University, August
2014.

[37] M. Stiegler and M. Miller. A capability based client: The
DarpaBrowser. Technical Report BAA-00-06-SNK, COMBEX
Inc., June 2002.

[38] T. S. Strickland, S. Tobin-Hochstadt, R. Findler, and M. Flatt.
Chaperones and impersonators. In Proceedings of the ACM SIG-
PLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 943–962, 2012.

[39] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proceedings of the Con-
ference on Programming Language Design and Implementation,
pages 132–141, 2011.

[40] D. Wagner and D. Tribble. A security analysis of
the Combex DarpaBrowser architecture. Online at:
http://www.combex.com/papers/darpa-review/, Mar. 2002.

[41] R. Watson and C. Vance. The TrustedBSD MAC framework:
Extensible kernel access control for FreeBSD 5.0. In In USENIX
Annual Technical Conference, pages 285–296, 2003.

[42] R. N. M. Watson. A decade of OS access-control extensibility.
Communications of the ACM, 56(2):52–63, 2013.

[43] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Cap-
sicum: Practical capabilities for UNIX. In USENIX Security Sym-
posium, pages 29–46. USENIX Association, 2010.

[44] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 19–19, 2006.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 201

GPUnet: Networking Abstractions for GPU Programs
Sangman Kim Seonggu Huh Yige Hu

Xinya Zhang Emmett Witchel
The University of Texas at Austin

Amir Wated Mark Silberstein1

Technion – Israel Institute of Technology

Abstract
Despite the popularity of GPUs in high-performance

and scientific computing, and despite increasingly general-
purpose hardware capabilities, the use of GPUs in net-
work servers or distributed systems poses significant
challenges.
GPUnet is a native GPU networking layer that provides
a socket abstraction and high-level networking APIs for
GPU programs. We use GPUnet to streamline the de-
velopment of high-performance, distributed applications
like in-GPU-memory MapReduce and a new class of
low-latency, high-throughput GPU-native network ser-
vices such as a face verification server.

1. Introduction
GPUs have become the platform of choice for many

types of parallel general-purpose applications from ma-
chine learning to molecular dynamics simulations [3].
However, harnessing impressive GPU computing capa-
bilities in complex software systems like network servers
remains challenging: GPUs lack software abstractions to
direct the flow of data within a system, leaving the devel-
oper with only low-level control over I/O. Therefore, cer-
tain classes of applications that could benefit from GPU’s
computational density require unacceptable development
costs to realize their full performance potential.

While GPU hardware architecture has matured to sup-
port general-purpose parallel workloads, the GPU soft-
ware stack has hardly evolved beyond bare-metal inter-
faces (e.g., memory transfer via direct memory access
(DMA)). Without core I/O abstractions like sockets avail-
able to GPU code, GPU programs that access the network
must coordinate low-level details among a CPU, GPU
and a NIC, for example, managing buffers in weakly con-
sistent GPU memory, or optimizing NIC-to-GPU trans-
fers via peer-to-peer DMAs.

This paper introduces GPUnet, a native GPU net-
working layer that provides a socket abstraction and
high-level networking APIs to GPU programs. GPUnet
enables individual threads in one GPU to communicate
with threads in other GPUs or CPUs via standard and fa-
miliar socket interfaces, regardless of whether they are in
the same or different machines. Native GPU networking
cuts the CPU out of GPU-NIC interactions, simplifying
code and increasing performance. It also unifies appli-
cation compute and I/O logic within the GPU program,
providing a simpler programing model. GPUnet uses ad-

1 Corresponding author: mark@ee.technion.ac.il

vanced NIC and GPU hardware capabilities and applies
sophisticated code optimizations that yield high appli-
cation performance equal to or exceeding hand-tuned
traditional implementations.

GPUnet is designed to foster GPU adoption in two
broad classes of high-throughput data center applica-
tions: network servers for back end data processing, e.g.,
media filtering or face recognition, and scale-out dis-
tributed computing systems like MapReduce. While dis-
crete GPUs are broadly used in supercomputing systems,
their deployment in data centers has been limited. We
blame the added design and implementation complexity
of integrating GPUs into complex software systems; con-
sequently, GPUnet’s goal is to facilitate such integration.

Three essential characteristics make developing effi-
cient network abstractions for discrete GPUs challeng-
ing – massive parallelism, slow access to CPU mem-
ory, and low single-thread performance. GPUnet accom-
modates parallelism at the API level by providing coa-
lesced calls invoked by multiple GPU threads at the same
point in data-parallel code. For instance, a GPU program
computing a vector sum may receive input arrays from
the network by calling recv() in thousands of GPU
threads. These calls will be coalesced into a single re-
ceive request to reduce the processing overhead of the
networking stack. GPUnet uses recent hardware support
for network transmission directly into/from GPU mem-
ory to minimize slow accesses from the GPU to system
memory. It provides a reliable stream abstraction with
GPU-managed flow control. Finally, GPUnet minimizes
control-intensive sequential execution on performance-
critical paths by offloading message dispatching to the
NIC via remote direct memory access (RDMA) hardware
support. The GPUnet prototype supports sockets for net-
work communications over InfiniBand RDMA and sup-
ports inter-process communication on a local machine
(often called UNIX-domain sockets).

We build a face verification server using the GPUnet
prototype that matches images and interacts with
memcached directly from GPU code, processing 53K
client requests/second on a single NVIDIA K20Xm
GPU, exceeding the throughput of a 6-core Intel CPU
and a CUDA-based server by 1.5× and 2.3× respec-
tively, while maintaining 3× lower latency than the CPU
and requiring half as much code than other versions. We
also implement a distributed in-GPU-memory MapRe-
duce framework, where GPUs fully control all of the I/O:
they read and write files (via GPUfs [35]), and commu-
nicate over Infiniband with other GPUs. This architec-

202 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ture demonstrates the ability of GPUnet to support com-
plex communication patterns across GPUs, and for word
count and K-means workloads it scales to four GPUs
providing speedups of 2.9–3.5× over one GPU.

This paper begins with the motivation for building
GPUnet (§2), a review of the GPU and network hard-
ware architecture (§3), and high-level design considera-
tions(§4). It then makes the following contributions:
• It presents for the first time a socket abstraction, API,

and semantics suitable for use with general purpose
GPU programs (§5).

• It presents several novel optimizations for enabling
discrete GPUs to control network traffic (§6).

• It develops three substantial GPU-native network ap-
plications: a matrix product server, in-GPU-memory
MapReduce, and a face verification server (§7).

• It evaluates GPUnet primitives and entire applications
including multiple workloads for each of the three
application types (§8).

2. Motivation
GPUs are widely used for accelerating parallel tasks in

high-performance computing, and their architecture has
been evolving to enable efficient execution of complex,
general-purpose workloads. However the use of GPUs
in network servers or distributed systems poses signifi-
cant challenges. The list of 200 popular general-purpose
GPU applications recently published by NVIDIA [3] has
no mention of GPU-accelerated network services. Using
GPUs in software routers and SSL protocols [16, 19, 37],
as well as in distributed applications [12] resulted in sig-
nificant speedups but required heroic development ef-
forts. Recent work shows that GPUs can boost power effi-
ciency and performance for web servers [5], but the GPU
prototype lacked an actual network implementation be-
cause GPU-native networking support does not yet exist.
We believe that enabling GPUs to access network hard-
ware and the networking software stack directly, via fa-
miliar network abstractions like sockets, will hasten GPU
integration in modern network systems.

GPUs currently require application developers to
build complicated CPU-side code to manage access to
the host’s network. If an input to a GPU task is trans-
ferred over the network, for example, the CPU-side code
handles system-level I/O issues, such as how to over-
lap data access with GPU execution and how to opti-
mize the size of memory transfers. The GPU application
programmer has to deal with bare-metal hardware is-
sues like setting up peer-to-peer (P2P) DMA over the
PCIe bus. P2P DMA lets the NIC directly transfer data
to and from high-bandwidth graphics double data rate
(GDDR) GPU local memory. Direct transfers between
the NIC and GPU eliminate redundant PCIe transfers
and data copies to system memory, improving data trans-
fer throughput and reducing latency (§8.1). Enjoying the

benefits of P2P DMA, however, requires intimate knowl-
edge of hardware-specific APIs and characteristics, such
as the underlying PCIe topology.

These issues dramatically complicate the design and
implementation of GPU-accelerated networking applica-
tions, turning their development into a low-level system
programming task. Modern CPU operating systems pro-
vide high-level I/O abstractions like sockets, which elim-
inate or hide this type of programming complexity from
ordinary application developers. GPUnet is intended to
do the same for GPU programmers.

Consider an internal data center network service for
on-demand face-in-a-crowd photo labeling. The algo-
rithm detects faces in the input image, creates face de-
scriptors, fetches the name label for each descriptor from
a remote database, and returns the location and the name
of each face in the image. This task is a perfect candidate
for GPU acceleration because some face recognition al-
gorithms are an order of magnitude faster on GPUs than
on a single CPU core [4] and by connecting multiple
GPUs, server compute density can be increased even
further. Designing such a GPU-based service presents
several system-level challenges.

No GPU network control. A GPU cannot initiate net-
work I/O from within a GPU kernel. Using P2P DMA,
the NIC can place network packets directly in local GPU
memory, but only CPU applications control the NIC and
perform send and receive. In the traditional GPU-as-
coprocessor programming model, a CPU cannot retrieve
partial results from GPU memory while a kernel produc-
ing them is still running. Therefore, a programmer needs
to wait until all GPU threads terminate in order to request
a CPU to invoke network I/O calls. This awkward model
effectively forces I/O to occur only on GPU kernel in-
vocation boundaries. In our face recognition example, a
CPU program would query the database soon after de-
tecting even a single face, in order to pipeline continued
facial processing with database queries. Current GPU
programming models make it difficult to achieve this
kind of pipelining because GPU kernels must complete
before they perform I/O. Thus, all the database queries
will be delayed until after the GPU face detection kernel
terminates, leading to increased response time.

Complex multi-stage pipelining. Unlike in CPUs,
where operating systems use threads and device inter-
rupts to overlap data processing and I/O, GPU code tra-
ditionally requires all input to be transferred in full to
local GPU memory before processing starts. To over-
lap data transfers and computations, optimized GPU de-
signs use pipelining: they split inputs and outputs into
smaller chunks, and asynchronously invoke the kernel on
one chunk, while simultaneously transferring the next in-
put chunk to the GPU, and the prior output chunk from
the GPU. While effective for GPU-CPU interaction, the
pipeline grows into a complex multi-stage data flow in-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 203

volving GPU-CPU data transfers, GPU invocations and
processing of network events. In addition to the associ-
ated implementation complexity, achieving high perfor-
mance requires tedious tuning of buffer sizes which de-
pend on a particular generation of hardware.

Complex network buffer management. If P2P DMA
functionality is available, CPU code must set up the
GPU-NIC DMA channel by pre-allocating dedicated
GPU memory buffers and registering them with the NIC.
Unfortunately, these GPU buffers are hard to manage
since the network transfers are controlled by a CPU. For
example, if the image data exceeds the allocated buffer
size, the CPU must allocate and register another GPU
buffer (which is slow and may exhaust NIC or GPU hard-
ware resources), or the buffer must be freed by copying
the old contents to another GPU memory area. GPU code
must be modified to cope with input stored in multiple
buffers. While on a CPU, the networking API hides sys-
tem buffer management details and lets the application
determine the buffer size according to its internal logic
rather than GPU and NIC hardware constraints.

GPUnet aims to address these challenges. It exposes
a single networking abstraction across all system pro-
cessors and allows using it via a standard, familiar API,
thereby simplifying GPU development and facilitating
integration of GPUs into complex software systems.

3. Hardware architecture overview
We provide an overview of the GPU software/hard-

ware model, RDMA networking and peer-to-peer (P2P)
DMA concepts. We use NVIDIA CUDA terminology
because we implement GPUnet on NVIDIA GPUs,
but most other GPUs that support the cross-platform
OpenCL standard [15] share the same concepts.
3.1 GPU software/hardware model

GPUs are parallel processors that expose program-
mers to hierarchically structured hardware parallelism
(for full details see [23]). They comprise several big
cores, Streaming Multiprocessors (SMs), each having
multiple hardware contexts and several Single Instruc-
tion, Multiple Data (SIMD) units. All the SMs access
global GPU memory and share an address space.

The programming model associates a GPU thread
with a single element of a SIMD unit. Threads are
grouped into threadblocks and all the threads in a thread-
block are executed on the same SM. The threads within
a threadblock may communicate and share state via on-
die shared memory and synchronize efficiently. Synchro-
nization across threadblocks is possible but it is much
slower and limited to atomic operations. Therefore, most
GPU workloads comprise multiple loosely-coupled tasks
each running in a single threadblock, and each par-
allelized for tightly-coupled parallel execution by the
threadblock threads. Once a threadblock has been dis-

Figure 1: Receiving network messages into a GPU. Without P2P DMA,
the CPU must use a GPU DMA engine to transfer data from the CPU
bounce buffer.

patched to an SM, it cannot be preempted and occupies
that SM until all of the threadblock’s threads terminate.

The primary focus of this work is on discrete GPUs,
which are peripheral devices connected to the host sys-
tem via a standard PCI Express (PCIe) bus. Discrete
GPUs feature their own physical memory on the device,
with a separate address space that cannot be referenced
directly by CPU programs. Moving the data in and out of
GPU memory efficiently requires DMA.2 CPU prepares
the data in GPU memory, invokes a GPU kernel, and re-
trieves the results after the kernel terminates.
Interaction with I/O devices. P2P DMA refers to the
ability of peripheral devices to exchange data on a bus
without sending data to a CPU or system memory. Mod-
ern discrete GPUs support P2P DMA between GPUs
themselves, and between GPUs and other peripheral de-
vices on a PCIe bus, e.g., NICs. For example, the Mel-
lanox Connect-IB network card (HCA) is capable of
transferring data directly to/from the GPU memory of
NVIDIA K20 GPUs (see Figure 1). P2P DMA improves
the throughput and latency of GPU interaction with other
peripherals because it eliminates an extra copy to/from
bounce buffers in CPU memory, and reduces load on
system memory [27, 28].
RDMA and Infiniband. Remote Direct Memory Access
(RDMA) allows remote peers to read from and write di-
rectly into application buffers over the network. Multiple
RDMA-capable transports exist, such as Internet Wide
Area RDMA Protocol (iWARP), Infiniband and RDMA
over Converged Ethernet (RoCE). As network data trans-
fer rates grow, RDMA-capable technologies have been
increasingly adopted for in-data center networks, en-
abling high throughput and low latency networking,
surpassing legacy Ethernet performance and cost effi-
ciency [8]. For example, the state-of-the-art fourteen data
rate (FDR) Infiniband provides 56Gbps throughput and
sub-microsecond latency, with the 40Gbps quad data rate
(QDR) technology widely deployed since 2009. Infini-
band is broadly used in supercomputing systems and en-
terprise data centers, and analysts anticipate significant
growth in the coming years.

An Infiniband NIC is called a Host Channel Adapter
(HCA) and like other RDMA networking hardware, it

2 NVIDIA CUDA 6.0 provides CPU-GPU software shared memory for
automatic data management, but the data transfer costs remain.

204 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

performs full network packet processing in hardware, en-
ables zero-copy network transmission to/from applica-
tion buffers, and bypasses the OS kernel for network API
calls.

The HCA efficiently dispatches thousands [18] of
network buffers, registered by multiple applications.
In combination with P2P DMA, the HCA may access
buffers in GPU memory. The low-level VERB interface
to RDMA is not easy to use. Instead, system software
uses VERBs to implement higher-level data transfer ab-
stractions. For example, the rsockets [32] library pro-
vides a familiar socket API in user-space for RDMA
transport. Rsockets are a drop-in replacement for sockets
(via LD PRELOAD), providing a simple way to perform
streaming over RDMA.

4. Design considerations
There are many alternative designs for GPU network-

ing; this section discuses important high-level tradeoffs.
4.1 Sockets and alternatives

The GPUnet interface uses sockets because we believe
they offer the best blend of properties, being generic, fa-
miliar, convenient to use, and versatile (e.g., inter-process
communication over UNIX domain sockets). Alterna-
tives like remote direct memory access (RDMA) via a
VERBs API are too difficult to program [39]. Existing
message passing frameworks (e.g., MPI) [2] allow zero-
copy transfers into GPU memory, but they keep all net-
work I/O control on the CPU, and suffer from the con-
ceptual limitations of the GPU-as-slave model that we
address in this work.
4.2 Discrete GPUs

We develop GPUnet for discrete GPUs, even though
hybrid CPU-GPU processors and system-on-chip options
like AMD Kaveri and Qualcomm Snapdragon are gain-
ing market share. We believe discrete and hybrid GPUs
will continue to co-exist for years to come. They embody
different tradeoffs between power consumption, produc-
tion costs and system performance, and thus serve dif-
ferent application domains. The aggressive, throughput-
optimized hardware designs of discrete GPUs rely heav-
ily on a multi-billion transistor budget, tight integration
with specialized high-throughput memory, and increased
thermal design power (TDP). Therefore, discrete GPUs
outperform hybrid GPUs by an order of magnitude in
compute capacity and memory bandwidth, making them
attractive for the data center, and therefore a reasonable
choice for prototyping GPU networking support.
4.3 Network server organization

Figure 2 depicts different organizations for a multi-
threaded network server. In a CPU server (left), a dae-
mon thread accepts connections and transfers the socket
to worker threads. In a traditional GPU-accelerated net-
work server (middle) the worker threads invoke compu-

Figure 2: The architecture of a network server on a CPU, using a GPU
as a co-processor, and with GPUnet (daemon architecture).

tations on a GPU. GPUs are treated as bulk-synchronous
high-performance accelerators, so all of the inputs are
read on the CPU first and transferred to the GPU across
a PCIe bus. This design requires large batches of work
to amortize CPU-GPU communications and invocation
overheads, which otherwise dominate the execution time.
For example, SSLShader [19] needs 1,024 independent
network flows on a GTX580 GPU to surpass the perfor-
mance of 128-bit AES-CBC encryption of a single AES-
NI enabled CPU. Batching complicates the implemen-
tation, and leads to increased response latency, because
GPU code does not communicate with clients directly.

GPUnet makes it possible for GPU servers to handle
multiple independent requests without having to batch
them first (far right in Figure 2), much like multitasking
in multi-core CPUs. We call this the daemon architec-
ture. It is also possible to have a GPUnet server where
each threadblock acts as an independent server, accept-
ing, computing, and responding to requests. We call this
the independent architecture. We measure both in §8.

This organization changes the tradeoffs a designer
must consider for a networked service because it removes
the need to batch work so heavily, thereby greatly simpli-
fying the programming model. We hope this model will
make the computational power of GPUs more easily ac-
cessible to networked services, but it will require the de-
velopment of native GPU programs.
4.4 In-GPU networking performance benefits

A native GPU networking layer can provide sig-
nificant performance benefits for building low-latency
servers on modern GPUs, because it eliminates the over-
heads associated with using GPUs as accelerators.

Figure 3 illustrates the flow of a server request on a
traditional GPU-accelerated server (top), and compares
it to the flow on a server using GPU-native networking
support. In-GPU networking eliminates the overheads of
CPU-GPU data transfer and kernel invocation, which pe-
nalize short requests. For example, computing the matrix
product of two 64x64 matrices on a TESLA K20c GPU
requires about 14µsec of computation. In comparison, we
measure GPU kernel invocation requiring an average of
25µsec and CPU-GPU-CPU data transfers for this size
input average 160µsecs.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 205

Figure 3: The logical stages for a task processed on a GPU-accelerated
CPU server (top) and GPU-native network server(bottom). Highlighted
stages are eliminated by the GPU networking support.

In-GPU networking may eliminate the kernel invoca-
tion entirely, and provides a convenient interface to net-
work buffers in GPU memory. One potential caveat, how-
ever, is that I/O activity on a GPU reduces the GPU’s
computing capacity, because GPU I/O calls do not relin-
quish the GPU’s resources, as discussed in Section 8.

5. GPUnet Design
Figure 4 shows the high level architecture of GPUnet.

GPU programs can access the network via standard
socket abstractions provided by the GPUnet library,
linked into the application’s GPU code. CPU applica-
tions may use standard sockets to connect to remote GPU
sockets. GPUnet stores network buffers in GPU memory,
keeps track of active connections, and manages control
flow for their associated network streams. The GPUnet
library works with the host OS on the CPU via a GPUnet
I/O proxy to coordinate GPU access to the NIC and to
the system’s network port namespace.

Our goals for GPUnet include the following:
1. Simplicity. Enable common network programming

practices and provide a standard socket API and an in-
order reliable stream abstraction to simplify program-
ming and leverage existing programmer expertise.

2. Compatibility with GPU programming. Support
common GPU programming idioms like threadblock-
based task parallelism and using on-chip scratchpad
memory for application buffers.

3. Compatibility with CPU endpoints. A GPUnet net-
work endpoint has identical capabilities as a CPU net-
work endpoint, ensuring compatibility between net-
worked services on CPUs and GPUs.

4. NIC sharing. Enable all GPUs and CPUs in a host to
share the NIC hardware, allowing concurrent use of a
NIC by both CPU and GPU programs.

5. Namespace sharing. Share a single network names-
pace (ports, IP addresses, UNIX domain socket names)
among CPUs and GPUs in the same machine to en-
sure backward compatibility and interoperability of
CPU- and GPU-based networking code.

5.1 GPU networking API
Socket abstraction. GPUnet sockets are similar to CPU
sockets. As in a CPU, a GPU thread may open and use
multiple sockets concurrently. GPU sockets are shared
across all GPU threads, but cannot be migrated to pro-
cesses running on other GPUs or CPUs in the same host.

Figure 4: GPUnet high-level design.

GPUnet supports the main calls in the standard net-
work API, including connect, bind, listen,
accept, send, recv, shutdown, and close and
their non-blocking versions. In the paper and in the actual
implementation we add a “g” prefix to emphasize that
the code executes on a GPU. These calls work mostly as
expected, though we introduce coalesced multithreaded
API calls as we now explain.
Coalesced API calls. A traditional CPU network API is
single-threaded, i.e., each thread can make independent
API calls and receive independent results. GPU threads,
however, behave differently from CPU threads. They are
orders of magnitude slower, and the hardware is opti-
mized to run groups of threads (e.g. 32 in an NVIDIA
warp or 64 in an AMD wavefront) in lock-step, per-
forming poorly if these threads execute divergent control
paths. GPU hardware facilitates collaborative processing
inside a threadblock by providing efficient sharing and
synchronization primitives for the threads in the same
threadblock. GPU programs, therefore, are designed with
this hierarchical parallelism in mind: they exploit coarse-
grain task parallelism across multiple threadblocks, and
process a single task using all the threads in a threadblock
jointly, rather than in each thread separately. Performing
data-parallel API calls in such code is more natural than
the traditional per-thread API used in CPU programs.
Furthermore, networking primitives tend to be control-
flow heavy and often involve large copies between sys-
tem and user buffers (e.g., recv and send), making per-
threadblock calls superior to per-thread granularity.

GPUnet requires applications to invoke its API at
the granularity of a single threadblock. All threads in a
threadblock must invoke the same GPUnet call together
in a coalesced manner: with the same arguments, at the
same point in application code (similar to vectorized I/O
calls [42]). These collaborative calls together comprise
one logical GPUnet operation. This idea was inspired by
a similar design for the GPU file system API [34].

We illustrate coalesced calls in Figure 5. It shows a
simple GPU server which increments each received char-
acter by one and sends the results back. All GPU threads
invoke the same code, but each threadblock executes
it independently from others. The threads in a thread-
block collaboratively invoke the GPUnet functions to re-
ceive/send the data to/from a shared buffer, but perform
computations independently in a data-parallel manner.
The GPUnet functions are logically executed in lockstep.

206 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: A GPU network client using GPUnet (TB – threadblock).

5.2 GPU-NIC interaction
Building a high-performance GPU network stack re-

quires offloading non-trivial packet processing to NIC
hardware.

The majority of existing GPU networking projects
(with the notable exception of the GASPP packet pro-
cessing framework [40]) employ the CPU OS network
stack with network buffers in CPU memory, and explicit
application data movement to and from the GPU. Specif-
ically, accelerated network applications, like SSL proto-
col offloading [19], cannot operate on raw packets and
first require transport-level processing by a CPU. How-
ever CPU-GPU memory transfers associated with CPU-
side network processing are detrimental to performance
as we show in the evaluation.

P2P DMA allows network buffers to reside in GPU
memory. However, forwarding all network traffic to a
GPU would render the NIC unusable for processes run-
ning on a CPU and on other GPUs in the system. Further,
since a GPU would receive raw network packets, achiev-
ing the goal of providing a reliable in-order socket ab-
straction would require porting major parts of the CPU
network stack to the GPU – a daunting task, which to
be efficient requires thousands of packets to be batched
in order to hide the overheads of the control-heavy and
memory intensive processing involved [40].

To bypass CPU memory, eliminate packet processing,
and enable NIC sharing across different processors in the
system, we leverage RDMA-capable high-performance
NICs. The NIC performs all low-level packet manage-
ment tasks, assembles application-level messages and
stores them directly in application memory, ready to be
delivered to an application without additional processing.
The NIC can concurrently dispatch messages to multiple
buffers and multiple applications, while placing source
and destination buffers in both CPU and GPU memory.
As a result, multiple CPU and GPU applications can
share the NIC without coordinating their access to the
hardware for every data transfer.

GPUnet uses both a CPU and a GPU to interact with
the NIC. It stores network buffers for GPU applications
in GPU memory, and leaves the buffer memory manage-
ment to the GPU socket layer. The per-connection receive
and send queues are also managed by the GPU. On the

other hand, the CPU controls the NIC via a standard host
driver, keeping the NIC available to all system proces-
sors. In particular, GPUnet uses the standard CPU inter-
face to initialize the GPU network buffers and register the
GPU memory with the NIC’s DMA hardware.
5.3 Socket layer

The GPU socket layer implements a reliable in-order
stream abstraction over low-level network buffers and
reliable RDMA message delivery. We adopt an RDMA
term channel to refer to the RDMA connection. The
CPU processes all channel creation related requests (e.g.,
bind), allowing GPU network applications to share the
OS network name space with CPU applications. Once
the channel has been established, however, the CPU steps
out of the way, allowing the GPU socket to manage the
network buffers as it sees fit.
Mapping streams to channels. GPUnet maps streams
one-to-one onto RDMA channels. A channel is a low-
level RDMA connection that does not have flow control,3
so GPUnet must provide flow control using a ring buffer
described in Section 6.1. By associating each socket with
a channel and its private, fixed-sized send and receive
buffers, there is no sharing between streams and hence
no costly synchronization. Per-stream channels allows
GPUnet to offload message dispatch to the highly scal-
able NIC hardware. The NIC is capable of maintaining
a large number of channels associated with one or more
memory buffers.4

We considered multiplexing several streams over a
single channel, similar to SST [14], which could improve
network buffer utilization and increase PCIe throughput
due to the increased granularity of memory transfers. We
dismissed this design because handling multiple streams
over the same channel would require synchronization of
concurrent accesses to the same network buffer, which is
slow and complicates the implementation.
Naming and address resolution. GPUnet relies on the
CPU standard name resolution mechanisms for RDMA
transports (CMA) which provide IP-based addressing for
RDMA services to initiate the connection.
Wire protocol and congestion control. GPUnet uses re-
liable RDMA transport services provided by the NIC
hardware and therefore relies on the underlying transport
packet management and congestion control.

6. Implementation
We implement GPUnet for NVIDIA GPUs and use

Mellanox Infiniband Host Channel Adaptors (HCA) for
inter-GPU networking [1].

3 While the Infiniband transport layer does have its own flow control, it
is message-oriented and we do not use it for streaming.
4 Millions for Mellanox Connect-IB, according to Mellanox So-
lution Brief http://www.mellanox.com/related-docs/
applications/SB_Connect-IB.pdf

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 207

Figure 6: GPUnet network stack.

GPUnet follows a layered design shown in Figure 6.
The lowest layer exposes a reliable channel abstraction to
upper layers and its implementation depends on the un-
derlying transport. We currently support RDMA, UNIX
domain sockets and TCP/IP. The middle socket layer im-
plements a reliable in-order connection-based stream ab-
straction on top of each channel. It manages flow control
for the network buffers associated with each connection
stream. Finally, the top layer implements the blocking
and non-blocking versions of standard socket API for the
GPU.
6.1 Socket layer

GPUnet’s socket interface is compatible with and
builds upon the open-source rsockets [32] library for
socket-compatible data streams over RDMA for CPUs.
Rsockets is a drop-in replacement for sockets
(via LD PRELOAD) which provides a simple way to use
RDMA over Infiniband. GPUnet extends the library to
use network buffers in GPU memory and integrates it
with the GPU flow control mechanisms.

GPUnet maintains a private socket table in GPU. Each
active socket is associated with a single reliable channel,
and holds the flow control metadata for its receive and
send buffers. The primary task of the socket layer is to
implement the reliable stream abstraction, which requires
flow control management as we describe next.
Flow control. The flow control mechanism allows the
sender to block if the receiver’s network buffer is full.
Therefore, an implementation requires the receiver to
update the sender upon buffer consumption.

Unfortunately, our original design to handle flow con-
trol entirely on the GPU is not yet practical on current
hardware. NVIDIA GPUs cannot yet control an HCA di-
rectly, without additional help from a CPU. They cannot
access the HCA’s “door-bell” registers in order to trigger
a send operation, because accessing the door-bell regis-
ters is done through memory mapped I/O, and GPUs can-
not currently map that memory. Further, the HCA driver
does not yet allow placement of completion queue struc-
tures in GPU memory. The HCA uses completion queues
to deliver completion notifications, e.g., when new data
arrives. Therefore, a CPU is necessary to assist every
GPU send and receive operation.

Using a CPU for handling completion notifications in-
troduces an interesting challenge for the flow control im-
plementation. The flow control counters must be shared
between a CPU and a GPU, since they are updated by

Figure 7: Ring buffer updates for GPU flow control mechanism in
grecv() call.

a CPU as a part of the completion notification handler,
and by a GPU for every gsend/grecv call. To guaran-
tee consistent concurrent updates, these writes have to be
performed atomically, but the updates are performed via
a PCIe bus which does not support atomic operations.
The solution is to treat the updates as two independent
instances of producer-consumer coordination: between a
GPU and an HCA (which produces the received data in
the GPU network buffer), and between a GPU and a re-
mote host (which consumes the sent data from the GPU
network buffer). In both cases, a CPU serves as a medi-
ator for updating the counters in GPU-accessible mem-
ory on behalf of the HCA or remote host. Assuming only
one consumer and producer, each instance of a producer-
consumer coordination can be implemented using a ring-
buffer data structure shared between a CPU and a GPU.

Figure 7 shows the ring buffer processing a receive
call. The GPU receives the data into the local buffer via
direct RDMA memory copy from the remote host (1).
The CPU gets notified by the HCA that the data was
received (2) and updates the ring buffer as a producer
on behalf of the remote host (3). Later, the GPU calls
grecv() (4), reads the data and updates the ring buffer
that the data has been consumed (5). This update triggers
the CPU (6) to send a notification (7) to the remote host
(8).

This design decouples the GPU API calls and the CPU
I/O transfer operations, allowing the CPU to handle GPU
I/O request asynchronously. As a result, the GPU I/O call
returns faster, without waiting for the GPU I/O request to
propagate through the high-latency PCIe bus, and data
transfers and GPU computations are overlapped. This
feature is essential to achieve high performance for bulk
transfers.
6.2 Channel layer

The channel layer mediates the GPU’s access to the
underlying network transport and runs on both CPU and
GPU. On the GPU side it manages the network buffers
in GPU memory, while the CPU side logic ensures that
the buffers are delivered to and from the transport mech-
anism underneath, as we describe shortly.
Memory management. GPUnet allocates a large con-
tiguous region of GPU memory which it uses for network
buffers. To enable RDMA hardware transport, the CPU
code registers the GPU memory into the Infiniband HCA
with the help of CUDA’s GPUDirectRDMA mechanism.
The maximum total amount of HCA registered memory

208 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

is limited to 220MB in NVIDIA TESLA K20c GPUs due
to the Base Address Register (BAR) size constraints of
the current hardware. We allocate the memory statically
during GPUnet initialization because the memory regis-
tration is expensive, and also because we were unable to
register it while the GPU kernel is running. GPUnet uses
this RDMA-registered memory as a memory pool for al-
locating a receive and send buffer for each channel.
Bounce buffers and support for non-RDMA transports.
If P2P DMA functionality is not available, the underly-
ing transport mechanism has no direct access to GPU net-
work buffers. Therefore, network data must be explicitly
staged to and from bounce buffers in CPU memory.

Using bounce buffers has higher latency and requires
larger system buffer than native RDMA, as we measure in
Section 8.1. However, this functionality serves to bridge
current hardware constraints, which often make the use
of RDMA impossible or inefficient. P2P DMA for GPUs
and other peripherals has been made available only since
early 2013, and its hardware and software support is still
immature. For example, on some modern server chipsets
we encountered 15× bandwidth degradation when stor-
ing send buffers in GPU memory, and as a result had to
use bounce buffers. Similarly, P2P DMA is only possible
in a certain PCIe topology, so for our dual socket configu-
ration only one of the three PCIe attached GPUs can per-
form P2P DMA with the Infiniband HCA. Until the soft-
ware and hardware support stabilizes, bounce buffers are
an interim solution that hides the implementation com-
plexity of CPU-GPU-NIC coordination mechanisms.

6.3 Performance optimizations.
Single threadblock I/O. While developing GPUnet ap-
plications we found that it is convenient to dedicate some
threadblocks to performing network operations, while us-
ing others only for computation, like the receiving thread-
block in MapReduce (§7.1), or a daemon threadblock
in the matrix product server (§7). In such a design, the
performance-limiting factor for send operations is the la-
tency of two steps performed in the send() call: mem-
ory copy between the system and user buffers in GPU,
and the update of the flow control ring buffer metadata.

Unfortunately, a single threadblock is allocated only
a small fraction of the total GPU compute and mem-
ory bandwidth resources, e.g. up to 7% of the total GPU
memory bandwidth according to our measurements. Im-
proving the memory throughput of a single threadblock
requires issuing many memory requests per thread in or-
der to enable memory-level parallelism [41]. We resorted
to PTX, NVIDIA GPU low-level assembly, in order to
implement 128-bit/thread vector accesses to global mem-
ory which also bypass the L2 and L1 caches. This by-
passing is required to ensure a consistent buffer state
when RDMA operations access GPU memory. This opti-
mization improves memory copy throughput almost 3×,

from 2.5GB/s to 6.9GB/s for a threadblock with only 256
threads.
Ring buffer updates. Ring buffer updates were slow ini-
tially because the metadata is shared between the CPU
and GPU, and we placed it in “zero-copy” memory,
which physically resides on a CPU. Therefore, reading
this memory from the GPU incurs a significant penalty
of about 1-2µsec. Updating the ring buffer requires mul-
tiple reads, and the latency accumulates to tens of µsec.

We improved the performance of ring buffer updates
by converting reads from remote memory into remote
writes into local memory. For example, the head loca-
tion of a ring buffer, which is updated by a producer,
should reside in the consumer’s memory in order to en-
able the consumer to read the head quickly. To implement
this optimization, however, we must map GPU mem-
ory into the CPU’s address space, which is not sup-
ported by CUDA. We implement our own mapping using
NVIDIA’s GPUDirect from a Linux kernel module. This
optimization reduces the latency of ring buffer updates to
2.5µsec.
6.4 Limitations

GPUnet does not provide a mechanism for socket
migration between a GPU and a CPU, which might be
convenient for load balancing.

More significantly, the prototype relies on the ability
of a GPU to provide the means to guarantee consistent
reads to its memory when it is concurrently accessed by
a running kernel and the NIC RDMA hardware. NVIDIA
GPUs do not currently provide such consistency guaran-
tees. In practice, however, we do not observe consistency
violations in GPUnet. Specifically, to validate our current
implementation, we implement a GPU CRC32C library
and instrument the applications to check the data integrity
of all network messages with 4KB granularity. We detect
no data integrity violations for experiments reported in
the paper (though this experiment surfaced a small bug
in GPUnet itself).

We hope, perhaps encouraged by GPUnet itself, that
GPU vendors will provide such consistency guarantees
in the near future. In fact, the necessary CPU-GPU mem-
ory consistency will be supported in the future releases
of OpenCL 2.0-compliant GPU platforms, thereby sup-
porting our expectation that it will become the standard
guarantee in future systems.

7. Applications
Matrix product server. The matrix product server is im-
plemented entirely on the GPU, using both the daemon
and independent architectures (§4.3). In the daemon ar-
chitecture the daemon threadblock (one or more) accepts
a client connection, reads the input matrices, and en-
queues a multiplication kernel. The multiplication kernel
gets pointers to the input matrices and the socket for writ-
ing the results. The number of threads – a critical param-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 209

eter defining how many GPU computational resources a
kernel should use – is derived from the matrix dimen-
sions as in the standard GPU implementation. When the
execution completes, the threadblock which finalizes the
computation sends the data back to the client and closes
the connection.

In the independent architecture each threadblock re-
ceives the input, runs the computations, and sends the re-
sults back.
Implementation details. The daemon server cannot in-
voke the multiplication kernel using dynamic parallelism
(which is the ability to execute a GPU kernel from
within an executing kernel, present since NVIDIA Kepler
GPUs). Current dynamic parallelism support in NVIDIA
GPUs lacks a parent-child concurrency guarantee, and
in practice the parent threadblock blocks to ensure the
child starts its execution. Our daemon threadblock must
remain active to accept new connections and handle in-
coming data, so we do not use NVIDIA’s dynamic paral-
lelism and instead invoke new GPU kernels via CPU by
a custom mechanism. See Section 8.2 for performance
measurements.
7.1 MapReduce design

We design an in-GPU-memory distributed MapRe-
duce framework that keeps intermediate results of map
operation in GPU memory, while input and output are
read from disk using GPUfs [34]. We call the system
GimMR for GPU in memory Map Reduce. GimMR is
a native GPU application without CPU code. The num-
ber of GPUs in our system is small, so all of them are
used to execute both mappers and reducers. Shuffling
(i.e., the exchange of intermediate data produced by map-
pers between different hosts) is done by mappers, and re-
ducers only start once all mappers and data transfer has
completed. Our mappers push data, while in traditional
MapReduce, the reducers pull [13]. Each GPU runs mul-
tiple mappers and reducers, each of which are executed
by multiple GPU threads.

At the start of the Map phase a mapper reads its part of
the input via GPUfs. The input is split across all thread-
blocks, so they can execute in parallel. A GPU may run
tens of mappers, each with hundreds of threads. Map-
pers generate intermediate <key,value> pairs that they
assign to buckets using consistent hashing or a prede-
fined key range. Buckets contain pointers to data chunks.
A mapper accumulates intermediate keys and data into
local chunks. When a chunk size exceeds a threshold,
the mapper sends the chunk to the GPU which will run
the reducer for the keys in that bucket, thereby overlap-
ping mapper execution with the shuffle phase, similar to
ThemisMR [29].

Each Map function is invoked in one threadblock
and is executed by all the threadblock threads. On each
GPU, there are many mapper threadblocks and consumer
threadblocks, with the consumer threadblocks receiving

buckets from remote GPUs. Each consumer threadblock
is assigned a fixed number of connections from a remote
GPU. The receivers get data by making non-blocking
calls to grecv() on the mappers’ sockets in round-
robin order (using poll() on the GPU is left as future
work).

The network connections are set up at the beginning
of the Map phase, between each pair of consumer thread-
block and remote threadblock. For example, a GPU node
in a GimMR system with five GPUs, each with 12 map-
per and 12 consumer threadblocks, will have a total of 48
incoming connections, one per mapper from every other
GPU. And each of its 12 consumers will handle 4 in-
coming connections. Local mappers update local buckets
without sending them through the network.

GPU mappers coordinate with a CPU-side centralized
mapper master, accessed over the network. The master
assigns jobs, balancing load across the mappers. The
master tells each mapper the offset and size of the data
it should read from its input file.

Similar to the Map, each Reduce function is also in-
voked in one threadblock. Each reducer identifies the set
of buckets it must process, (optionally) performs parallel
sort of all the key-value pairs in each bucket separately,
and finally invokes the user-provided Reduce function.
As a result, the GPU exploits the standard coarse-grain
data parallelism of independent input keys, but also en-
ables the finer-grained parallelism of a function process-
ing values from the same key, e.g., by parallel sorting or
reduction. Enabling each reducer to sort the key/values
independently of other reducers is important to avoid a
GPU-wide synchronization phase at the end of sorting.

GimMR takes advantage of the dynamic communi-
cation capabilities of GPUnet for ease and efficiency in
implementation. Without GPUnet, enabling overlapped
communications and computations would require signif-
icant development effort involving fine-tuned pipelining
among CPU sends, CPU-GPU data transfers, and GPU
kernel invocations.
GimMR workloads. We implement word count and K-
means. In word count, the mapper parses free-form input
text and generates <word, 1> pairs, which are reduced
by summing up their values. CUDA does not provide text
processing functions, so we implement our own parser.
We pre-sample the input text and determine the range of
keys being reduced by each reducer.

The mappers in K-means calculate the distance of
each point to the cluster centroids, and then re-cluster the
point to its nearest centroid. Intermediate data is pairs of
<centroid number, point>. The reducer sums the coordi-
nates of all points in a centroid. K-means is an iterative
algorithm, and our framework supports iterative MapRe-
duce. A CPU process receives the results of the reducers,
and calculates the new centroids for the next round.We
preprocess the input file to piecewise transpose the input

210 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

points, thereby coalescing memory accesses for threads
in a threadblock.
7.2 Face verification

A client sends a photo of a face, along with a text
label identifying the face, to a verification service. The
server responds positively if the label matches the photo
(i.e., the server has the same face in its database with
the proffered label), and negatively otherwise. The server
uses a well-known local binary patterns (LBP) algorithm
for face verification [6]. LBP represents images by a his-
togram of their visual features. The server stores all LBP
histograms in a memcached database. In our testbed, we
have three machines, one for clients, one for the verifica-
tion server and one for the memcached database.

We believe our organization is a reasonable choice, as
opposed to alternatives such as having the client perform
the LBP and send a histogram to the server. Face veri-
fication algorithms are constantly evolving, and placing
them on the server makes upgrading the algorithm possi-
ble. Also, sending actual pictures to the server provides a
useful human-checkable log of activity.
Client. The client uses multiple threads, each running on
its own CPU, and maintaining multiple persistent non-
blocking connections with the server. Clients use rsockets
for network communications with the server. For each
connection, the client performs the following steps and
repeats them forever:
1. Read a (random) 136x136 grayscale image from a

(cached) file.
2. Choose a (random) face label.
3. Send verification request to server.
4. Receive response from server – 0 (mismatch) or 1

(match).
Server. We implement three versions of the server: a
CPU version, a CUDA version, and a GPUnet version.
Each server performs the following steps repeatedly (in
different ways).
1. Receive request from client.
2. Fetch LBP histogram for client-provided name from

the remote memcached database.
3. Calculate LBP histogram of the image in the request.
4. Calculate Euclidean distance between the histograms.
5. Report a match if the distance is below a threshold.
6. Send integer response.

The CPU server consists of multiple independent
threads, one per CPU core. Each thread manages multi-
ple, persistent, non-blocking connections with the client.

The CUDA server is the same as the CPU server, but
the face verification algorithm executes on the GPU by
launching a kernel. (see Figure 2, middle picture).

The GPUnet server is a native GPU-only application
using GPUnet for network operations. It uses the in-
dependent architecture (§4.3), and consists of multiple
threadblocks running forever, with each acting as an in-
dependent server. Each threadblock manages persistent

N
od

e Chipset
Intel CPU Intel GPU

NVIDIA D
M

A

Software

A
B Z87 E3-1220V3

Haswell K20c N RHEL 6.5, gcc 4.4.7,
GPU driver 331.38

C C602 E5-2620
Sandy Bridge C2075 Y RHEL 6.3, gcc 4.4.6,

GPU driver 319.37

D 5520 2× L5630
Westmere

2×
C2075 Y RHEL 6.3, gcc 4.4.6,

GPU driver 319.37
Table 1: Hardware and software configuration. The DMA column
indicates the presence of a DMA performance asymmetry (§6.2).

connections with the client and memcached server. This
design is appropriate since the processing time per image
is low and there is enough parallelism per request.
Implementation details. We use a standard benchmark-
ing face recognition dataset5, resized to 136x136 and re-
formatted as raw grayscale images. We implement a GPU
memcached client library. memcached uses Infiniband
RDMA transport provided by the rsockets library. We
modified a single line of memcached to work with rsock-
ets by disabling the use of accept4, which is not sup-
ported by rsockets.

8. Evaluation
Hardware. We run our experiments on a cluster with
four nodes (Table 1) connected by a QDR 40Gbps In-
finiband interconnect, using Mellanox HCA cards with
MT4099 and MT26428 chipsets.

All machines use CUDA 5.5. ECC on GPUs, hyper-
threading, SpeedStep, and Turbo mode of all the ma-
chines are disabled for reproducible performance. Nodes
A and B feature a newer chipset with a PLX 8747 PCIe
switch which enables full bandwidth P2P DMA between
the HCA and the GPU. Nodes C and D provide full band-
width for DMA writes from HCA to GPU (grecv()),
but perform poorly with only 10% of the bandwidth for
DMA reads from GPU (gsend()). We are not the first to
observe such asymmetry [28].

GPUnet delegates connection establishment and tear-
down to a CPU. Our benchmarks exclude connection es-
tablishment from the performance measurement to mea-
sure the steady-state behavior of persistent connections.
Using persistent connections is a common optimization
technique for data center applications [11].
8.1 Microbenchmarks

We run microbenchmarks with two complementary
goals: to understand the performance consequences of
GPUnet design decisions, and to separate the essential
bottlenecks from the ephemeral issues due to current
hardware. We run them between nodes A and B with 256
threads per threadblock. All results are the average of 10
iterations, with the standard deviation within 1.1% of the
mean.

5 http://www.itl.nist.gov/iad/humanid/feret/
feret_master.htm

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 211

C-C C-G
RDMA

C-G
BB

G-G
RDMA

G-G
BB

RTT 64 byte(µsec) 2.86 26.9 60.3 50.0 117
Bandwidth (GB/s) 3.44 3.44 3.48 3.38 3.46

Table 2: Single stream latency (round trip time) and bandwidth for
GPUnet, CPU uses rsockets. C–CPU, G-GPU, BB–bounce buffer.

Steps Latency
(µsec)

T1 GPU ring buffer 1.4
T2 GPU copies buffer 15.7
T3 GPU requests to CPU 3.8
T4 CPU reads GPU request 2.5
T5 CPU RDMA write time to completion 22.2
Total one-way latency 45.6

Table 3: Latency breakdown for a GPU gsend() request with a 64KB
message with peer-to-peer RDMA.

Single stream performance. We run a simple single-
threadblock GPU echo server and client using a single
GPUnet socket. We implement the CPU version of the
benchmark using the unmodified rsockets library. Ta-
ble 2 shows the round trip time (RTT) for 64 byte mes-
sages and bandwidth for 64KB messages and 256KB
(512KB for bounce buffer) system buffers. The GPU
reaches about 98% of the peak performance of CPU-
based rsockets. Bounce buffers (entries marked BB in
the table) increase latency two-fold versus RDMA trans-
fers, but its throughput is close to RDMA thanks to twice
larger system buffers for better latency hiding.

The latency of GPU transfers is significantly higher
than the baseline CPU-to-CPU latency. To understand the
reasons, Table 3 provides the breakdown for the latency
of individual steps of gsend() sending 64KB.

We measured T1, T2, T3 on the GPU by instrumenting
the GPU code using clock64(), the GPU intrinsic that
reads the hardware cycle counter. T5 is effectively the la-
tency of the send() call performed from the CPU, but
transferring data between memories of two GPUs. For
this data size, the overhead of GPU-related processing is
about 50%. The user-to-system buffer copy, T2, is the pri-
mary bottleneck. Accessing CPU-GPU shared data struc-
tures (T1, T3) and the latency of the update propagation
through the PCIe bus (T4) account for 20% of the total
latency, but these are constant factors.

We believe that T2 and T4 will improve in future hard-
ware generations. Specifically, T4 can be reduced by en-
abling a GPU to access the HCA doorbell registers di-
rectly, without CPU mediation. We believe that T2 can be
optimized by exposing the already existing GPU DMA
engine for performing internal GPU DMAs, similar to
the Intel I/OAT DMA engine. Alternatively, a zero-copy
API may help eliminate T2 in software.
Duplex performance. The CPU rsocket library achieves
6.65 GB/s of the aggregate duplex bandwidth for two
concurrent data streams in opposite directions – twice the
bandwidth of a single stream. With GPUnet, we found
that gsend and grecv interfere when invoked concur-
rently on two sockets, but the reasons for this interference

is still unclear. Specifically, when using a CPU end-point,
the throughput of grecv and gsend is 3.31 GB/s and
2.63 GB/s respectively. As a result, in a GPU-GPU ex-
periment with two opposite streams, the one-directional
bandwidth is constrained by the gsend performance on
both sides, hence the aggregate bandwidth is 5.26 GB/s.
Multistream bandwidth. We measured the aggregate
bandwidth of sending over multiple sockets from one
GPU. We run 26 threadblocks (2 threadblocks per GPU
SM core) each having multiple non-blocking sockets.
Each send is 32KB. We test up to 416 active connec-
tions – the maximum number of sockets that GPUnet
may concurrently maintain given 256KB send buffers,
which provide the highest single-stream performance.
As we explained in § 6, the maximum number of sockets
is constrained by the total amount of RDMA-registered
memory available for network buffers, which is currently
limited to 220MB.

We run the experiment between two GPUs. Starting
from 2 connections, GPUnet achieves a throughput of
3.4GB/s, and gradually falls to 3.2GB/s at 416 connec-
tions, primarily due to the increased load on the CPU-
side proxy having to handle more requests. Using bounce
buffers shows slightly better throughput, 3.5GB/s with
two connections, and 3.3GB/s with 208 connections.
8.2 Matrix product server

We implement three versions of the matrix product
server to examine the performance of different GPU
server organizations.

The CUDA server runs the I/O logic on the CPU and
offloads matrix product computations to the GPU using
standard CUDA. It executes a single CPU thread and
invokes one GPU kernel per request (matrixMul), the
matrix product kernel distributed with the NVIDIA SDK.

The daemon server uses GPUnet and follows the dae-
mon architecture (§4.3). The GPU resources are par-
titioned between daemon threadblocks and computing
threadblocks. The number of daemon threadblocks is an
important server configuration parameter as we discuss
below. Both the CUDA server and the daemon server in-
voke the matrix product kernel via the CPU, however the
latter receives/sends data directly to/from GPU memory.

The independent server also employs GPUnet, but
the GPU is not statically partitioned between daemon
and compute threadblocks. Instead, all the threadblocks
handle I/O and perform computations, and no additional
GPU kernels are launched.

The CUDA, daemon and independent server versions
are 894, 391 and 220 LOC for their core functionality.
Resource allocation in the daemon server. The perfor-
mance of the daemon server is particularly sensitive to
the way GPU resources are partitioned between I/O and
compute tasks performed by the server. The GPU non-
preemptive scheduling model implies that GPU resources
allocated to I/O tasks cannot execute computations even

212 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Workload
Configuration Light Medium Heavy
Light 92% 81% 74%
Medium 44% 99% 88%
Heavy 12% 44% 100%

Table 4: The cost of misconfiguration: the throughput in a given config-
uration relative to the maximum throughput using the best configuration
for that workload.

while I/O tasks are idle waiting for the input data. There-
fore, if the server is configured to run too many daemon
threadblocks, the compute kernels will get fewer GPU
resources and computations will execute slowly. On the
other hand, too few daemon threadblocks may fail to feed
the execution units with data fast enough, thereby de-
creasing the server throughput 6. In our current imple-
mentation the number of daemon threadblocks is config-
ured at server invocation time and does not change during
execution.

The best server configuration depends on the work-
load. Intuitively, the more computation that is performed
per byte of I/O, the fewer GPU resources should be allo-
cated for I/O threadblocks and, consequently, more re-
sources allocated for computation. The optimal server
configuration depends on the compute-to-I/O ratio of its
tasks.

Balancing the allocation of threadblocks between
computation and I/O is a high-stakes game. Table 4
shows how we separate three matrix multiplication work-
loads by their compute-to-I/O ratio: light (64x64 and
128x128), medium (256x256) and heavy (512x512 and
1024x1024).

We exhaustively search the configuration space for
each workload (with varying number of clients) to find
the configuration of compute and I/O threadblocks that
maximizes throughput. Then we run all workloads on all
configurations and measure the penalty for using the best
configuration for each class of workload. Splitting work-
loads into three classes allows us to find configurations
that perform very well for all instances of that class (the
diagonal is all above 90% of optimal). However, dedi-
cating too many or too few threadblocks to I/O can be
terrible for performance, with the worst misconfiguration
reducing throughput to 12% of optimal. Future work in-
cludes a generic method of finding the best server config-
uration and dynamically adjusting it to suit the workload.

Performance comparison of different server designs.
We compare the throughput of different server designs
while changing the number of concurrent clients. We use
the 256 × 256 matrices for input, and configure the dae-
mon server to have the number of daemon threadblocks

6 In practice, the number of threads per a daemon threadblock also
affects the server performance, but we omit these technical details for
simplicity.

Figure 8: Throughput comparison for different matrix product servers.

Server Light Medium Heavy
design workload workload workload
Daemon (GFLOPS) 11 137 201
Independent (GFLOPS) 37 (3.4×) 151 (1.1×) 207 (1.01×)

Table 5: The throughput of GPUnet-based matrix product servers under
different workload types.

which maximizes its throughput for this workload. The
results are shown in Figure 8.

Both GPUnet-based implementations consistently out-
perform the traditional CUDA server across all the work-
loads and are competitive with each other.

As expected, the performance of the independent de-
sign is sensitive to the number of clients. Our imple-
mentation assigns one connection per threadblock, so the
number of clients equals the number of server thread-
blocks. Configurations where the number of clients are
divisible by the number of GPU SMs (13 in our case)
have the best performance. Other cases suffer from load
imbalance. The performance of the independent design
is particularly low for one client because the server runs
with a single threadblock using a single SM, leading to
severe underutilization of GPU resources.

The performance of the independent design is 8× to
20× higher than a single-threaded CPU-only server that
uses the highly-optimized BLAS library (not shown in
the figure).

Table 5 shows the throughput of the GPUnet servers
serving different workload types. We fixed the number of
active connections to 26 to allow the independent server
to reach its full performance potential.

The independent server achieves higher throughput
for all of the workload types, but its advantages are most
profound for light tasks (with low compute-to-I/O ratios).
The independent server does not incur the overhead of
GPU kernel invocations, which dominate the execution
time for shorter tasks in the daemon server. This perfor-
mance advantage makes the independent design particu-
larly suitable for our face verification server which also
runs tasks with low compute-to-I/O ratio as we describe
below (§ 8.4).
8.3 Map reduce

We evaluate the standard word count and K-means
tasks on our GimMR MapReduce. Table 6 compares the
performance of the single-GPU GimMR with the single-
node Hadoop and Phoenix++ [38] on a 8-core CPU. We

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 213

Workload 8-core
Phoenix++

1-Node
Hadoop

1-GPU
GimMR

K-means 12.2 sec 71.0 sec 5.6 sec
Wordcount 6.23 sec 211.0 sec 29.6 sec

Table 6: Single-node GimMR vs. other MapReduce systems.

use RAM disk and IP over IB when evaluating K-Means
on Hadoop. For both wordcount and kmeans on Hadoop,
we run 8 map jobs and 16 reduce jobs per node.
Word count. The word count serves as a feasibility proof
for distributed GPU-only MapReduce, but the workload
characteristics make it inefficient on GPUs.

The benchmark counts words in a 600MB corpus
of English-language Wikipedia in XML format. A sin-
gle GPU GimMR outperforms the single-node 8-core
Hadoop by a factor of 7.1×, but is 4.7× slower than
Phoenix++ [38] running on 8 CPU cores. GimMR word
count spends a lot of time sorting strings, which is expen-
sive on GPUs because comparing variable length strings
create divergent, irregular computations. In the future
we will adopt the optimization done by ThemisMR [29]
which uses the hash of the strings as the intermediate
keys, in order to sort quickly.
Scalability. When invoked on the same input on four
network-connected GPUs, GimMR performance increases
by 2.9×. The scalability is affected by three factors: (1)
the amount of computation is too low to fully hide the
intermediate data transfer overheads, (2) reducers experi-
ence imbalance due to the input data skew, (3) Only two
machines enable GPU-NIC RDMA, the other two use
bounce buffers.
K-means. We chose K-means to evaluate GimMR under
a computationally-intensive workload. We compute 500
clusters on a randomly generated 500MB input with 64K
vectors each with hundreds of floating point elements.

Table 6 compares the performance of GimMR with
single-node Hadoop and Phoenix++ using 200 dimen-
sion vectors. GimMR on a single GPU outperforms
Phoenix++ on 8 CPU cores by up to 2.2×, and Hadoop
by 12.7×.
Scalability. When invoked on the same input on four
network-connected GPUs, GimMR performance increases
by 2.9×. With 100 dimension vectors, the 4-GPU GimMR
achieves up to 3.5× speedup over a single GPU.
8.4 Face verification

We evaluate the face verification server on a different
cluster with three nodes, each with Mellanox Connect-
IB HCA, 2× Intel E5-2620 6-core CPU, and connected
via a Mellanox Switch-X bridge. The server executes on
NVIDIA K20Xm GPUs. The application’s client, server
and memcached server run on their own dedicated ma-
chines. We verified that both the CPU and GPU algo-
rithm implementations produce the same results, and also
manually inspected the output using the standard FERET

Figure 9: Face verification latency CDF for different servers.

dataset and hand-modified images. All the reported re-
sults have variance below 0.1% of their mean.
Lower latency, higher throughput. Figure 9 shows the
CDF of the request latency for different server imple-
mentations and some of their combinations. The legend
for each server specifies the effective server throughput
observed during the latency measurements. GPUnet and
CUDA are invoked with 28 threadblocks, 1024 threads
per threadblock, which we found to provide the best
tradeoff between latency and throughput. Other config-
urations result in higher throughput but sacrifice latency,
or slightly lower latency but much lower throughput.

The GPUnet server has the lowest average response
time of 524±41µsec per request while handling 53 KRe-
quests/sec, which is about 3× faster per request, and 50%
more requests than the CPU server running on a single 6-
core CPU. The native CUDA version and GPUnet with
bounce buffers suffer from 2× and 3× higher response
time, and 2.3× and 3× lower throughput respectively.
They both perform extra memory copies, and the CUDA
server is further penalized for invoking a kernel per re-
quest. Dynamic kernel invocation accounts for the greater
variability in the response time of the CUDA server. The
combination of CPU and GPUnet achieves the highest
throughput, and improves the server response time for all
requests, not only for those served on a GPU.
Maximum throughput and multi-GPU scalability. The
throughput-optimized configuration for the GPUnet server
differs from its latency-optimized version, with 4× more
threadblocks, each with 4× fewer threads (112 thread-
blocks, each with 256 threads). While the total number
of threads remains the same, this configuration serves
4× more concurrent requests. With 4× fewer threads
processing each request, the processing time grows only
by about 3×. Therefore this configuration achieves about
30% higher throughput as shown in Table 7, which is
within 3% of the performance of two 2×6-core CPUs.

Adding another GPU to the system almost doubles
the server throughput. Achieving linear scalability, how-
ever, requires adding a second Infiniband card. The PCIe
topology on the server allows only one of the two GPUs
to use P2P DMA with the same HCA, and the second
GPU has to fall back to using bounce buffers, which has
inferior performance in this case. To work around the

214 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Server
type C

PU

2×
C

PU

C
U

D
A

G
PU

ne
t

B
B

G
PU

ne
t

2×
G

PU
ne

t

2×
G

PU
ne

t
+

C
PU

Thpt
(Req/s) 35K 69K 23K 17K 67K 136K 188K

Table 7: Face verification throughput for different servers.

problem, we added a second HCA to enable P2P DMA
for the second GPU.

Finally, invoking both the CPU and GPUnet servers
together results in the highest throughput. Because each
GPU in GPUnet requires one CPU core to run, the CPU
server gets two fewer cores than the standalone CPU
version, and the final throughput is lower than the sum
of the individual throughputs. The total server throughput
is about 172% higher than the throughput of a 6x2-core
CPU-only server.

The GPUnet-based server I/O rate with a single GPU
reaches nearly 1.1GB/s. I/O activity accounts for about
40% of the server runtime. GPUnet enables high perfor-
mance with a relatively modest development complex-
ity compared to other servers. The CUDA server has 596
LOC, CPU - 506, and GPUnet– only 245 lines of code.

9. Related work
GPUnet is the first system to provide native network-

ing abstractions for GPUs. This work emerges from a
broader trend to integrate GPUs more cleanly with op-
erating system services, as exemplified by recent work
on a file system layer for GPUs (GPUfs) [34] and virtual
memory management (RSVM [20]).
OS services for GPU applications. GPU applications
operate outside of the resource management scope of the
operating system, often to the detriment of system per-
formance. PTask [30] proposes a data flow programming
model for GPUs that enables the OS to provide fairness
and performance isolation. TimeGraph [22] allows a de-
vice driver to schedule GPU processors to support real-
time workloads.
OSes for heterogeneous architecture. Barrelfish [9]
proposes multikernels for heterogeneous systems based
on memory decoupled message passing. K2 [25] shows
the effectiveness of tailoring a mature OS to the details of
a heterogeneous architecture. GPUnet demonstrates how
to bring system services into a heterogeneous system.
GPUs for network acceleration. There have been sev-
eral projects targeting acceleration of network applica-
tions on GPUs. For example, PacketShader [16] and
Snap [37] use GPUs to accelerate packet routing at wire
speed, while SSLShader [19] offloads SSL computations.
Numerous high-performance computing applications
(e.g., Deep Neural Network learning [12]) use GPUs to
achieve high per-node performance in distributed appli-
cations. These works use GPUs as co-processors, and do
not provide networking support for GPUs. GASPP [40]

accelerates stateful packet processing on GPUs, but it is
not suitable for building client/server applications.
Peer-to-peer DMA. P2P DMA is an emerging technol-
ogy, and published results comport with the performance
problems GPUnet has on all but the very latest hardware.
Potluri et. al. [27, 28] use P2P DMA for NVIDIA GPUs
and Intel MICs in an MPI library, and report much less
bandwidth with P2P DMA than communication through
CPU. Kato et. al [21] and APEnet+ [7] also propose low-
latency networking systems with GPUDirect RDMA, but
report hardware limitations to their achieved bandwidth.
Trivedi et al. [39] point out the limitation of RDMA with
its complicated interaction with various hardware com-
ponents and the effect of architectural limits on RDMA.
Network stack on accelerators. Intel Xeon Phi is a co-
processor akin to a GPU, but featuring x86 compatible
cores and running embedded Linux. Xeon Phi enables
direct access to the HCA from the co-processor and runs
a complete network stack [45]. GPUnet provides a simi-
lar functionality for GPUs, and naturally shares some de-
sign concepts, like the CPU-side proxy service. However,
GPUs and Xeon Phi have fundamental differences, e.g.
fine-grain data parallel programming model, and the lack
of hardware support for operating system, which warrant
different approaches to key design components such as
the coalesced API and the CPU-GPU coordination.
Scalability on heterogeneous architecture. Dandelion [31]
is a language and system support for data-parallel ap-
plications on heterogeneous architectures. It provides a
familiar language interface to programmers, insulating
them from the heterogeneity.

GPMR [36] is a distributed MapReduce system for
GPUs, which uses MPI over Infiniband for networking.
However, it uses both CPUs and GPUs depending on the
characteristics of the steps of the MapReduce.
Network server design. Scalable network server design
has been heavily researched as processor and networking
architecture advance [10, 17, 24, 33, 43, 44], but most of
this work is specific to CPUs.

Rhythm [5] is one of the few GPU-based server ar-
chitectures that use GPUs to run PHP web services. It
promises throughput and energy efficiency that can ex-
ceed CPU-based servers, but its current prototype lacks
the in-GPU networking that GPUnet provides.
Low-latency networking. More networked applications
are demanding low-latency networking. RAMCloud [26]
notes the high latency of conventional Ethernet as a major
source of latency for a RAM-based server, and discusses
RDMA as an alternative that is difficult to use directly.

10. Acknowledgments
Mark Silberstein was supported by the Israel Science

Foundation (grant No. 1138/14) and the Israeli Ministry
of Science. We also gratefully acknowledge funding from
NSF grants CNS-1017785 and CCF-1333594.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 215

References
[1] GPUnet project web page. https://sites.

google.com/site/silbersteinmark/GPUnet.
[2] MVAPICH2: High performance MPI over InfiniBand,

iWARP and RoCE. http://mvapich.cse.ohio-
state.edu.

[3] Popular GPU-accelerated applications. http://www.
nvidia.com/object/gpu-applications.
html.

[4] Efficient Object Detection on GPUs using MB-LBP fea-
tures and Random Forests. GPU Technology Conference,
2013. http://on-demand.gputechconf.
com/gtc/2013/presentations/S3297-
Efficient-Object-Detection-GPU-\MB-
LBP-Forest.pdf.

[5] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and
A. R. Lebeck. Rhythm: Harnessing data parallel hardware
for server workloads. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2014.

[6] T. Ahonen, A. Hadid, and M. Pietikainen. Face descrip-
tion with local binary patterns: Application to face recog-
nition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(12):2037–2041, 2006.

[7] R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero,
A. Lonardo, P. Paolucci, D. Rossetti, F. Simula, L. Toso-
ratto, and P. Vicini. APEnet+: a 3D Torus network op-
timized for GPU-based HPC Systems. In Journal of
Physics: Conference Series, volume 396. IOP Publishing,
2012.

[8] T. G. T. analysts. InfiniBand data center march, 2012.
https://cw.infinibandta.org/document/
dl/7269.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Sing-
hania. The multikernel: a new OS architecture for scal-
able multicore systems. In Proceedings of the ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 29–44. ACM, 2009.

[10] N. Z. Beckmann, C. Gruenwald III, C. R. Johnson, H. Kas-
ture, F. Sironi, A. Agarwal, M. F. Kaashoek, and N. Zel-
dovich. PIKA: A network service for multikernel operat-
ing systems. Technical Report MIT-CSAIL-TR-2014-002,
MIT, January 2014.

[11] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In Proceed-
ings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 267–280. ACM, 2010.

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep learning with COTS HPC systems.
In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 1337–1345, 2013.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[14] B. Ford. Structured streams: A new transport abstraction.
In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communications, pages 361–372, New York,
NY, USA, 2007. ACM.

[15] K. Group. OpenCL - the open standard for parallel pro-
gramming of heterogeneous systems. http://www.
khronos.org/opencl.

[16] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
a GPU-accelerated software router. SIGCOMM Comput.
Commun. Rev., 40:195–206, August 2010.

[17] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A new programming interface for scalable net-
work I/O. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2012.

[18] InfiniBand Trade Association. InfiniBand Architecture
Specification, Volume 1 - General Specification, Release
1.2.1, 2007.

[19] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: cheap SSL acceleration with commodity pro-
cessors. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
Berkeley, CA, USA, 2011. USENIX Association.

[20] F. Ji, H. Lin, and X. Ma. RSVM: a region-based software
virtual memory for GPU. In Proceedings of 22nd Interna-
tional Confreence on Parallel Architectures and Compila-
tion Techniques (PACT), pages 269–278. IEEE, 2013.

[21] S. Kato, J. Aumiller, and S. Brandt. Zero-copy I/O pro-
cessing for low-latency GPU computing. In Proceedings
of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems, ICCPS ’13, pages 170–178, New York,
NY, USA, 2013. ACM.

[22] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
Timegraph: GPU scheduling for real-time multi-tasking
environments. In Proceedings of the USENIX An-
nual Technical Conference, Berkeley, CA, USA, 2011.
USENIX Association.

[23] D. B. Kirk and W. H. Wen-mei. Programming massively
parallel processors: a hands-on approach. Morgan Kauf-
mann, 2010.

[24] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can
make sense. In Proceedings of the USENIX Annual Tech-
nical Conference, Berkeley, CA, USA, 2007. USENIX
Association.

[25] F. X. Lin, Z. Wang, and L. Zhong. K2: A mobile operat-
ing system for heterogeneous coherence domains. In Pro-
ceedings of the ACM International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). ACM, 2014.

[26] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, et al. The case for RAM-
Clouds: scalable high-performance storage entirely in
DRAM. ACM Operating Systems Review, 43(4):92–105,
2010.

216 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[27] S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh,
K. Kandalla, H. Subramoni, and D. K. Panda. MVAPICH-
PRISM: A proxy-based communication framework using
infiniband and SCIF for Intel MIC clusters. In Proceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), New
York, NY, USA, 2013. ACM.

[28] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy,
and D. K. Panda. Efficient inter-node MPI communica-
tion using GPUDirect RDMA for InfiniBand Clusters with
NVIDIA GPUs. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 80–89. IEEE, 2013.

[29] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam,
G. Porter, and A. Vahdat. Themis: An I/O Efficient
MapReduce. In Proceedings of the ACM Symposium on
Cloud Computing, 2012.

[30] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: operating system abstractions to man-
age GPUs as compute devices. In Proceedings of the
ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 233–248, 2011.

[31] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fet-
terly. Dandelion: A compiler and runtime for heteroge-
neous systems. In Proceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP), pages
49–68, New York, NY, USA, 2013. ACM.

[32] Sean Hefty. Rsockets. OpenFabrics International
Workshop, 2012. https://www.openfabrics.
org/index.php/resources/document-
downloads/public-documents/doc_
download/495-rsockets.html.

[33] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: Highly efficient network processing on dedicated
cores. In Proceedings of the USENIX Annual Technical
Conference, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[34] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
integrating file systems with GPUs. In Proceedings of the
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS). ACM, 2013.

[35] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
integrating file systems with GPUs. ACM Transactions on
Computer Systems (TOCS), 2014.

[36] J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on
GPU clusters. In Parallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE International, pages 1068–
1079. IEEE, 2011.

[37] W. Sun and R. Ricci. Fast and Flexible: Parallel packet
processing with GPUs and Click. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems, pages 25–36, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[38] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: mod-
ular mapreduce for shared-memory systems. In Proceed-
ings of the second international workshop on MapReduce
and its applications, pages 9–16. ACM, 2011.

[39] A. Trivedi, B. Metzler, P. Stuedi, and T. R. Gross. On
limitations of network acceleration. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT), pages 121–126, New
York, NY, USA, 2013. ACM.

[40] G. Vasiliadis, L. Koromilas, M. Polychronakis, and
S. Ioannidis. Gaspp: A gpu-accelerated stateful packet
processing framework. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 321–332, Philadel-
phia, PA, June 2014. USENIX Association.

[41] Vasily Volkov. Better performance at lower occupancy.
GPU Technology Conference, 2010. http://www.cs.
berkeley.edu/˜volkov/volkov10-GTC.pdf.

[42] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using
vector interfaces to deliver millions of IOPS from a net-
worked key-value storage server. In Proceedings of the
ACM Symposium on Cloud Computing, New York, NY,
USA, 2012. ACM.

[43] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet ser-
vices. In ACM Operating Systems Review, volume 37,
pages 268–281. ACM, 2003.

[44] M. Welsh, D. Culler, and E. Brewer. SEDA: an architec-
ture for well-conditioned, scalable internet services. In
ACM Operating Systems Review, volume 35, pages 230–
243. ACM, 2001.

[45] B. Woodruf. OFS software for the Intel Xeon Phi. Open-
Fabrics Alliance International Developer Workshop, 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 217

The Mystery Machine: End-to-end performance analysis
of large-scale Internet services

Michael Chow∗, David Meisner†, Jason Flinn∗, Daniel Peek†, Thomas F. Wenisch∗

University of Michigan∗ Facebook, Inc.†

Abstract
Current debugging and optimization methods scale

poorly to deal with the complexity of modern Internet
services, in which a single request triggers parallel exe-
cution of numerous heterogeneous software components
over a distributed set of computers. The Achilles’ heel
of current methods is the need for a complete and accu-
rate model of the system under observation: producing
such a model is challenging because it requires either as-
similating the collective knowledge of hundreds of pro-
grammers responsible for the individual components or
restricting the ways in which components interact.

Fortunately, the scale of modern Internet services of-
fers a compensating benefit: the sheer volume of re-
quests serviced means that, even at low sampling rates,
one can gather a tremendous amount of empirical perfor-
mance observations and apply “big data” techniques to
analyze those observations. In this paper, we show how
one can automatically construct a model of request exe-
cution from pre-existing component logs by generating a
large number of potential hypotheses about program be-
havior and rejecting hypotheses contradicted by the em-
pirical observations. We also show how one can validate
potential performance improvements without costly im-
plementation effort by leveraging the variation in compo-
nent behavior that arises naturally over large numbers of
requests to measure the impact of optimizing individual
components or changing scheduling behavior.

We validate our methodology by analyzing perfor-
mance traces of over 1.3 million requests to Facebook
servers. We present a detailed study of the factors that af-
fect the end-to-end latency of such requests. We also use
our methodology to suggest and validate a scheduling
optimization for improving Facebook request latency.

1 Introduction
There is a rich history of systems that understand,

optimize, and troubleshoot software performance, both
in practice and in the research literature. Yet, most of
these prior systems deal poorly with the complexities
that arise from modern Internet service infrastructure.
Complexity comes partially from scale; a single Web
request may trigger the execution of hundreds of exe-
cutable components running in parallel on many differ-
ent computers. Complexity also arises from heterogene-

ity; executable components are often written in differ-
ent languages, communicate through a wide variety of
channels, and run in execution environments that range
from third-party browsers to open-source middleware to
in-house, custom platforms.

In this paper, we develop performance analysis tools
for measuring and uncovering performance insights
about complex, heterogeneous distributed systems. We
apply these tools to the Facebook Web pipeline. Specif-
ically, we measure end-to-end performance from the
point when a user initiates a page load in a client Web
browser, through server-side processing, network trans-
mission, and JavaScript execution, to the point when the
client Web browser finishes rendering the page.

Fundamentally, analyzing the performance of concur-
rent systems requires a model of application behavior
that includes the causal relationships between compo-
nents; e.g., happens-before ordering and mutual exclu-
sion. While the techniques for performing such analy-
sis (e.g., critical path analysis) are well-understood, prior
systems make assumptions about the ease of generating
the causal model that simply do not hold in many large-
scale, heterogeneous distributed systems such as the one
we study in this paper.

Many prior systems assume that one can generate
such a model by comprehensively instrumenting all mid-
dleware for communication, scheduling, and/or synchro-
nization to record component interactions [1, 3, 13, 18,
22, 24, 28]. This is a reasonable assumption if the soft-
ware architecture is homogeneous; for instance, Dap-
per [28] instruments a small set of middleware compo-
nents that are widely used within Google.

However, many systems are like the Facebook sys-
tems we study; they grow organically over time in a
culture that favors innovation over standardization (e.g.,
“move fast and break things” is a well-known Facebook
slogan). There is broad diversity in programming lan-
guages, communication middleware, execution environ-
ments, and scheduling mechanisms. Adding instrumen-
tation retroactively to such an infrastructure is a Her-
culean task. Further, the end-to-end pipeline includes
client software such as Web browsers, and adding de-
tailed instrumentation to all such software is not feasible.

Other prior systems rely on a user-supplied schema
that expresses the causal model of application behav-

218 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ior [6, 31]. This approach runs afoul of the scale of mod-
ern Internet services. To obtain a detailed model of end-
to-end request processing, one must assemble the col-
lective knowledge of hundreds of programmers respon-
sible for the individual components that are involved in
request processing. Further, any such model soon grows
stale due to the constant evolution of the system under
observation, and so constant updating is required.

Consequently, we develop a technique that generates a
causal model of system behavior without the need to add
substantial new instrumentation or manually generate a
schema of application behavior. Instead, we generate the
model via large-scale reasoning over individual software
component logs. Our key observation is that the sheer
volume of requests handled by modern services allows us
to gather observations of the order in which messages are
logged over a tremendous number of requests. We can
then hypothesize and confirm relationships among those
messages. We demonstrate the efficacy of this technique
with an implementation that analyzes over 1.3 million
Facebook requests to generate a comprehensive model
of end-to-end request processing.

Logging is an almost-universally deployed tool for
analysis of production software. Indeed, although there
was no comprehensive tracing infrastructure at Facebook
prior to our work, almost all software components had
some individual tracing mechanism. By relying on only a
minimum common content for component log messages
(a request identifier, a host identifier, a host-local times-
tamp, and a unique event label), we unified the output
from diverse component logs into a unified tracing sys-
tem called ÜberTrace.

ÜberTrace’s objective is to monitor end-to-end re-
quest latency, which we define to be the time that elapses
from the moment the user initiates a Facebook Web re-
quest to the moment when the resulting page finishes ren-
dering. ÜberTrace monitors a diverse set of activities
that occur on the client, in the network and proxy layers,
and on servers in Facebook data centers. These activities
exhibit a high degree of concurrency.

To understand concurrent component interactions, we
construct a causality model from a large corpus of
ÜberTrace traces. We generate a cross-product of pos-
sible hypotheses for relationships among the individual
component events according to standard patterns (cur-
rently, happens-before, mutual exclusive, and first-in-
first-out relationships). We assume that a relationship
holds until we observe an explicit contradiction. Our re-
sults show that this process requires traces of hundreds
of thousands of requests to converge on a model. How-
ever, for a service such as Facebook, it is trivial to gather
traces at this scale even at extremely low sampling fre-
quencies. Further, the analysis scales well and runs as a
parallel Hadoop job.

Thus, our analysis framework, The Mystery Machine
derives its causal model solely from empirical observa-
tions that utilize only the existing heterogeneous compo-
nent logs. The Mystery Machine uses this model to per-
form standard analyses, such as identifying critical paths,
slack analysis, and outlier detection.

In this paper, we also present a detailed case study
of performance optimization based on results from The
Mystery Machine. First, we note that whereas the aver-
age request workload shows a balance between client,
server, and network time on the critical path, there is
wide variance in this balance across individual requests.
In particular, we demonstrate that Facebook servers have
considerable slack when processing some requests, but
they have almost no slack for other requests. This ob-
servation suggests that end-to-end latency would be im-
proved by having servers produce elements of the re-
sponse as they are needed, rather than trying to pro-
duce all elements as fast as possible. We conjecture that
this just-in-time approach to response generation will im-
prove the end-to-end latency of requests with no slack
while not substantially degrading the latency of requests
that currently have considerable slack.

Implementing such an optimization is a formidable
task, requiring substantial programming effort. To help
justify this cost by partially validating our conjecture, we
use The Mystery Machine to perform a “what-if” analy-
sis. We use the inherent variation in server processing
time that arises naturally over a large number of requests
to show that increasing server latency has little effect
on end-to-end latency when slack is high. Yet, increas-
ing server latency has an almost linear effect on end-to-
end latency when slack is low. Further, we show that
slack can be predicted with reasonable accuracy. Thus,
the case study demonstrates two separate benefits of The
Mystery Machine: (1) it can identify opportunities for
performance improvement, and (2) it can provide pre-
liminary evidence about the efficacy of hypothesized im-
provements prior to costly implementation.

2 Background
In the early days of the Web, a request could often be

modeled as a single logical thread of control in which a
client executed an RPC to a single Web server. Those
halcyon days are over.

At Facebook, the end-to-end path from button click to
final render spans a diverse set of systems. Many com-
ponents of the request are under Facebook’s control, but
several components are not (e.g., the external network
and the client’s Web browser). Yet, users care little about
who is responsible for each component; they simply de-
sire that their content loads with acceptable delay.

A request begins on a client with a user action to re-
trieve some piece of content (e.g., a news feed). After

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 219

DNS resolution, the request is routed to an Edge Load
Balancer (ELB) [16]. ELBs are geo-distributed so as to
allow TCP sessions to be established closer to the user
and avoid excessive latency during TCP handshake and
SSL termination. ELBs also provide a point of indirec-
tion for better load balancing, acting as a proxy between
the user and data center.

Once a request is routed to a particular data center, a
Software Load Balancer routes it to one of many possi-
ble Web servers, each of which runs the HipHop Virtual
Machine runtime [35]. Request execution on the Web
server triggers many RPCs to caching layers that include
Memcache [20] and TAO [7]. Requests also occasionally
access databases.

RPC responses pass through the load-balancing lay-
ers on their way back to the client. On the client, the
exact order and manner of rendering a Web page are
dependent on the implementation details of the user’s
browser. However, in general, there will be a Cascad-
ing Style Sheet (CSS) download stage and a Document
Object Model rendering stage, followed by a JavaScript
execution stage.

As with all modern Internet services, to achieve la-
tency objectives, the handling of an individual request
exhibits a high degree of concurrency. Tens to hun-
dreds of individual components execute in parallel over
a distributed set of computers, including both server and
client machines. Such concurrency makes performance
analysis and debugging complex. Fortunately, standard
techniques such as critical path analysis and slack analy-
sis can tame this complexity. However, all such analyses
need a model of the causal dependencies in the system
being analyzed. Our work fills this need.

3 ÜberTrace: End-to-end Request Tracing
As discussed in the prior section, request execution

at Facebook involves many software components. Prior
to our work, almost all of these components had logging
mechanisms used for debugging and optimizing the indi-
vidual components. In fact, our results show that individ-
ual components are almost always well-optimized when
considered in isolation.

Yet, there existed no complete and detailed instru-
mentation for monitoring the end-to-end performance of
Facebook requests. Such end-to-end monitoring is vital
because individual components can be well-optimized in
isolation yet still miss opportunities to improve perfor-
mance when components interact. Indeed, the opportuni-
ties for performance improvement we identify all involve
the interaction of multiple components.

Thus, the first step in our work was to unify the indi-
vidual logging systems at Facebook into a single end-to-
end performance tracing tool, dubbed ÜberTrace. Our
basic approach is to define a minimal schema for the in-

formation contained in a log message, and then map ex-
isting log messages to that schema.

ÜberTrace requires that log messages contain at least:

1. A unique request identifier.

2. The executing computer (e.g., the client or a partic-
ular server)

3. A timestamp that uses the local clock of the execut-
ing computer

4. An event name (e.g., “start of DOM rendering”).

5. A task name, where a task is defined to be a dis-
tributed thread of control.

ÜberTrace requires that each <event, task> tuple is
unique, which implies that there are no cycles that would
cause a tuple to appear multiple times. Although this
assumption is not valid for all execution environments, it
holds at Facebook given how requests are processed. We
believe that it is also a reasonable assumption for similar
Internet service pipelines.

Since all log timestamps are in relation to local clocks,
ÜberTrace translates them to estimated global clock val-
ues by compensating for clock skew. ÜberTrace looks
for the common RPC pattern of communication in which
the thread of control in an individual task passes from
one computer (called the client to simplify this explana-
tion) to another, executes on the second computer (called
the server), and returns to the client. ÜberTrace calcu-
lates the server execution time by subtracting the latest
and earliest server timestamps (according to the server’s
local clock) nested within the client RPC. It then cal-
culates the client-observed execution time by subtract-
ing the client timestamps that immediately succeed and
precede the RPC. The difference between the client and
server intervals is the estimated network round-trip time
(RTT) between the client and server. By assuming that
request and response delays are symmetric, ÜberTrace
calculates clock skew such that, after clock-skew adjust-
ment, the first server timestamp in the pattern is exactly
1/2 RTT after the previous client timestamp for the task.

The above methodology is subject to normal variation
in network performance. In addition, the imprecision
of using existing log messages rather than instrument-
ing communication points can add uncertainty. For in-
stance, the first logged server message could occur only
after substantial server execution has already completed,
leading to an under-estimation of server processing time
and an over-estimation of RTT. ÜberTrace compensates
by calculating multiple estimates. Since there are many
request and response messages during the processing of
a higher-level request, it makes separate RTT and clock

220 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

skew calculations for each pair in the cross-product of re-
quests. It then uses the calculation that yields the lowest
observed RTT.

Timecard [23] used a similar approach to reconcile
timestamps and identified the need to account for the ef-
fects of TCP slow start. Our use of multiple RTT esti-
mates accomplishes this. Some messages such as the ini-
tial request are a single packet and so are not affected by
slow start. Other messages such as the later responses oc-
cur after slow start has terminated. Pairing two such mes-
sages will therefore yield a lower RTT estimate. Since
we take the minimum of the observed RTTs and use its
corresponding skew estimate, we get an estimate that is
not perturbed by slow start.

Due to performance considerations, Facebook log-
ging systems use statistical sampling to monitor only
a small percentage of requests. ÜberTrace must en-
sure that the individual logging systems choose the same
set of requests to monitor; otherwise the probability of
all logging systems independently choosing to monitor
the same request would be vanishingly small, making it
infeasible to build a detailed picture of end-to-end la-
tency. Therefore, ÜberTrace propagates the decision
about whether or not to monitor a request from the initial
logging component that makes such a decision through
all logging systems along the path of the request, ensur-
ing that the request is completely logged. The decision
to log a request is made when the request is received at
the Facebook Web server; the decision is included as part
of the per-request metadata that is read by all subsequent
components. ÜberTrace uses a global identifier to col-
lect the individual log messages, extracts the data items
enumerated above, and stores each message as a record
in a relational database.

We made minimal changes to existing logging sys-
tems in order to map existing log messages to the
ÜberTrace schema. We modified log messages to use
the same global identifier, and we made the event or task
name more human-readable. We added no additional log
messages. Because we reused existing component log-
ging and required only a minimal schema, these logging
changes required approximately one person-month of ef-
fort.

4 The Mystery Machine
The Mystery Machine uses the traces generated by

ÜberTrace to create a causal model of how software
components interact during the end-to-end processing of
a Facebook request. It then uses the causal model to per-
form several types of distributed systems performance
analysis: finding the critical path, quantifying slack for
segments not on the critical path, and identifying seg-
ments that are correlated with performance anomalies.
The Mystery Machine enables more targeted analysis by

Relationship Example Counterexample

Happens Before

Pipeline

A B

A
B

AB
or

A B C

Mutual Exclusion
A B

B A
or A

B

t

t1
t2 A' B' C'

A B Ct1
t2 C' A' B'

Figure 1: Causal Relationships. This figure depicts examples
of the three kinds of causal relationship we consider. Happens-
before relationships are when one segment (A) always finishes
in its entirety before another segment (B) begins. FIFO re-
lationships exist when a sequence of segments each have a
happens-before relationship with another sequence in the same
order. A mutual exclusion relationship exists when two seg-
ments never overlap.

exporting its results through a relational database and
graphical query tools.

4.1 Causal Relationships Model

To generate a causal model, The Mystery Machine
first transforms each trace from a collection of logged
events to a collection of segments, which we define to be
the execution interval between two consecutive logged
events for the same task. A segment is labeled by the tu-
ple <task, start event, end event>, and the segment du-
ration is the time interval between the two events.

Next, The Mystery Machine identifies causal relation-
ships. Currently, it looks for three types of relationships:

1. Happens-before (→) We say that segment A
happens-before segment B (A → B) if the start
event timestamp for B is greater than or equal to
the end event timestamp for A in all requests.

2. Mutual exclusion (∨) Segments A and B are mutu-
ally exclusive (A ∨ B) if their time intervals never
overlap.

3. Pipeline (�) Given two tasks, t1 and t2, there ex-
ists a data dependency between pairs of segments
of the two tasks. Further, the segment that operates
on data element d1 precedes the segment that oper-
ates on data element d2 in task t1 if and only if the
segment that operates on d1 precedes the segment
that operates on d2 in task t2 for all such pairs of
segments. In other words, the segments preserve a
FIFO ordering in how data is produced by the first
task and consumed by the second task.

We summarize these relationships in Figure 1. For each
relationship we provide a valid example and at least one
counterexample that would contradict the hypothesis.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 221

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

Timing

Model

No Traces After Trace 1 After Trace 2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

Critical Path of Trace 1 Critical Path of Trace 2

S1 N1 C1

S2 N2 C2

Refined Model

Timing

Model

Step 2: Calculate critical path of dependency graph through longest path analysis

Step 1: Refine dependency graph with counter examples

Critical Path

t

t
Figure 2: Dependency model generation and critical path calculation. This figure provides an example of discovering the true
dependency model through iterative refinement. We show only a few segments and relationships for the sake of simplicity. Without
any traces, the dependency model is a fully connected graph. By eliminating dependency edges invalidated by counterexamples,
we arrive at the true model. With a refined model, we can reprocess the same traces and derive the critical path for each.

We use techniques from the race detection literature to
map these static relationships to dynamic happens-before
relationships. Note that mutual exclusion is a static prop-
erty; e.g., two components A and B that share a lock
are mutually exclusive. Dynamically, for a particular re-
quest, this relationship becomes a happens-before rela-
tionship: either A → B or B → A, depending on the order
of execution. Pipeline relationships are similar. Thus, for
any given request, all of these static relationships can be
expressed as dynamic causal relationships between pairs
of segments.

4.2 Algorithm

The Mystery Machine uses iterative refinement to in-
fer causal relationships. It first generates all possible hy-
potheses for causal relationships among segments. Then,
it iterates through a corpus of traces and rejects a hypoth-
esis if it finds a counterexample in any trace.

Step 1 of Figure 2 illustrates this process. We depict
the set of hypotheses as a graph where nodes are seg-

ments (”S” nodes are server segments, ”N” nodes are
network segments and ”C” nodes are client segments)
and edges are hypothesized relationships. For the sake
of simplicity, we restrict this example to consider only
happens-before relationships; an arrow from A to B
shows a hypothesized “A happens before B” relationship.

The “No Traces” column shows that all possible rela-
tionships are initially hypothesized; this is a large num-
ber because the possible relationships scale quadratically
as the number of segments increases. Several hypothe-
ses are eliminated by observed contradictions in the first
request. For example, since S2 happens after S1, the hy-
pothesized relationship, S2 → S1, is removed. Further
traces must be processed to complete the model. For in-
stance, the second request eliminates the hypothesized
relationship, N1 → N2. Additional traces prune new hy-
potheses due to the natural perturbation in timing of seg-
ment processing; e.g., perhaps the second user had less
friends, allowing the network segments to overlap due to

222 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 3: Hypothesis Refinement. This graph shows the
growth of number of hypothesized relationships as a function
of requests analyzed. As more requests are analyzed, the rate at
which new relationships are discovered and removed decreases
and eventually reaches a steady-state. The total number of re-
lationships increases over time due to code changes and the
addition of new features.

shorter server processing time.
The Mystery Machine assumes that the natural vari-

ation in timing that arises over large numbers of traces
is sufficient to expose counterexamples for incorrect re-
lationships. Figure 3 provides evidence supporting this
hypothesis from traces of over 1.3 million requests to
the Facebook home page gathered over 30 days. As the
number of traces analyzed increases, the observation of
new counterexamples diminishes, leaving behind only
true relationships. Note that the number of total rela-
tionships changes over time because developers are con-
tinually adding new segments to the pipeline.

4.3 Validation

To validate the causal model produced by the Mys-
tery Machine, we confirmed several specific relation-
ships identified by the Mystery Machine. Although we
could not validate the entire model due to its size, we did
substantial validation of two of the more intricate compo-
nents: the interplay between JavaScript execution on the
client and the dependencies involved in delivering data to
the client. These components have 42 and 84 segments,
respectively, as well as 2,583 and 10,458 identified ca-
sual relationships.

We confirmed these specific relationships by examin-
ing source code, inserting assertions to confirm model-
derived hypotheses, and consulting relevant subsystem
experts. For example, the system discovered the specific,
pipelined schedule according to which page content is
delivered to the client. Further, the model correctly re-
flects that JavaScript segments are mutually exclusive (a
known property of the JavaScript execution engine) and

identified ordering constraints arising from synchroniza-
tion.

4.4 Analysis
Once The Mystery Machine has produced the causal

model of segment relationships, it can perform several
types of performance analysis.
4.4.1 Critical Path

Critical path analysis is a classic technique for under-
standing how individual components of a parallel execu-
tion impact end-to-end latency [22, 32]. The critical path
is defined to be the set of segments for which a differ-
ential increase in segment execution time would result in
the same differential increase in end-to-end latency.

The Mystery Machine calculates the critical path on a
per-request basis. It represents all segments in a request
as a directed acyclic graph in which the segments are ver-
tices with weight equal to the segment duration. It adds
an edge between all vertices for which the corresponding
segments have a causal relationship. Then, it performs a
transitive reduction in which all edges A → C are recur-
sively removed if there exists a path consisting of A →
B and B → C that links the two nodes.

Finally, The Mystery Machine performs a longest-path
analysis to find the critical path from the first event in
the request (the initiation of the request) to the last event
(which is typically the termination of some JavaScript
execution). The length of the critical path is the end-to-
end latency of the entire request. If there are equal-length
critical paths, the first discovered path is chosen.

We illustrate the critical path calculation for the two
example requests in Step 2 of Figure 2. Each request
has a different critical path even though the dependency
graph is the same for both. The critical path of the first
request is {S1, S2, N2, C2}. Because S2 has a long du-
ration, all dependencies for N2 and C2 have been met
before they start, leaving them on the critical path. The
critical path of the second request is {S1, N1, C1, C2}.
In this case, S2 and N2 could have longer durations and
not affect end-to-end latency because C2 must wait for
C1 to finish.

Typically, we ask The Mystery Machine to calculate
critical paths for large numbers of traces and aggregate
the results. For instance, we might ask how often a given
segment falls on the critical path or the average percent-
age of the critical path represented by each segment.
4.4.2 Slack

Critical path analysis is useful for determining where
to focus optimization effort; however, it does not pro-
vide any information about the importance of latency for
segments off the critical path. The Mystery Machine pro-
vides this information via slack analysis.

We define slack to be the amount by which the du-
ration of a segment may increase without increasing the

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 223

Hive

Mystery MachineRequests

Web Server

Sampling
w/ Scribe

Dependency Model Generation Critical path calculation

Generate Predictive Model

Sl
ac

k

Feature

Data Aggregation Performance Analytics

1
2
3
4Thread

Scheduler

Figure 4: The Mystery Machine data pipeline.

end-to-end latency of the request, assuming that the du-
ration of all other segments remains constant. By this
definition, segments on the critical path have no slack
because increasing their latency will increase the end-to-
end latency of the request.

To calculate the slack for a given segment, S, The
Mystery Machine calculates CPstart , the critical path
length from the first event in the request to the start of
S and CPend the critical path length from the end of S to
the last event in the request. Given the critical path length
for the entire request (CP) and the duration of segment S
(DS), the slack for S is CP - CPstart - DS - CPend . The
Mystery Machine’s slack analysis calculates and reports
this value for every segment. As with critical path re-
sults, slack results are typically aggregated over a large
number of traces.

4.4.3 Anomaly detection
One special form of aggregation supported by The

Mystery Machine is anomaly analysis. To perform this
analysis, it first classifies requests according to end-to-
end latency to identify a set of outlier requests. Currently,
outliers are defined to be requests that are in the top 5%
of end-to-end latency. Then, it performs a separate ag-
gregation of critical path or slack data for each set of
requests identified by the classifiers. Finally, it performs
a differential comparison to identify segments with pro-
portionally greater representation in the outlier set of re-
quests than in the non-outlier set. For instance, we have
used this analysis to identify a set of segments that corre-
lated with high latency requests. Inspection revealed that
these segments were in fact debugging components that
had been returned in response to some user requests.

4.5 Implementation

We designed The Mystery Machine to automatically
and continuously analyze production traffic at scale over
long time periods. It is implemented as a large-scale data
processing pipeline, as depicted in Figure 4.

ÜberTrace continuously samples a small fraction of
requests for end-to-end tracing. Trace data is collected
by the Web servers handling these requests, which write
them to Scribe, Facebook’s distributed logging service.

The trace logs are stored in tables in a large-scale data
warehousing infrastructure called Hive [30]. While
Scribe and Hive are the in-house analysis tools used at
Facebook, their use is not fundamental to our system.

The Mystery Machine runs periodic processing jobs
that read trace data from Hive and calculate or refine the
causal model based on those traces. The calculation of
the causal model is compute-intensive because the num-
ber of possible hypotheses is quadratic with the num-
ber of segments and because model refinement requires
traces of hundreds of thousands of requests. Therefore,
our implementation parallelizes this step as a Hadoop
job running on a compute cluster. Infrequently occur-
ring testing and debugging segments are automatically
removed from the model; these follow a well-defined
naming convention that can be detected with a single reg-
ular expression. The initial calculation of the model an-
alyzed traces of over 1.3 million requests collected over
30 days. On a Hadoop cluster, it took less than 2 hours
to derive a model from these traces.

In practice, the model must be recomputed periodi-
cally in order to detect changes in relationships. Paral-
lelizing the computation made it feasible to recompute
the model every night as a regularly-scheduled batch job.

In addition to the three types of analysis described
above, The Mystery Machine supports on-demand user
queries by exporting results to Facebook’s in-house an-
alytic tools, which can aggregate, pivot, and drill down
into the results. We used these tools to categorize re-
sults by browser, connection speed, and other such di-
mensions; we share some of this data in Section 5.

4.6 Discussion

A key characteristic of The Mystery Machine is that
it discovers dependencies automatically, which is criti-
cal because Facebook’s request processing is constantly
evolving. As described previously, The Mystery Machine
assumes a hypothesized relationship between two seg-
ments until it finds a counterexample. Over time, new
segments are added as the site evolves and new features
are added. The Mystery Machine automatically finds the
dependencies introduced by the new segments by hy-

224 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: Mean End-to-End Performance Breakdown. Simply summing delay measured at each system component (“Summed
Delay”) ignores overlap and underestimates the importance of server latency relative to the actual mean critical path (“Critical
Path”).

pothesizing new possible relationships and removing re-
lationships in which a counterexample is found. This is
shown in Figure 3 by the increase in number of total re-
lationships over time. To account for segments that are
eliminated and invariants that are added, one can simply
run a new Hadoop job to generate the model over a dif-
ferent time window of traces.

Excluding new segments, the rate at which new rela-
tionships are added levels off. The rate at which relation-
ships are removed due to counterexamples also levels off.
Thus, the model converges on a set of true dependencies.

The Mystery Machine relies on ÜberTrace for com-
plete log messages. Log messages, however, may be
missing for two reasons: the component does no logging
at all for a segment of its execution or the component
logs messages for some requests but not others. In the
first case, The Mystery Machine cannot identify causal
relationships involving the unlogged segment, but causal
relationships among all other segments will be identified
correctly. When a segment is missing, the model over-
estimates the concurrency in the system, which would
affect the critical path/slack analysis if the true critical
path includes the unlogged segment. In the second case,
The Mystery Machine would require more traces in or-
der to discover counterexamples. This is equivalent to
changing the sampling frequency.

5 Results

We demonstrate the utility of The Mystery Machine
with two case studies. First, we demonstrate its use for
aggregate performance characterization. We study live
traffic, stratifying the data to identify factors that influ-
ence which system components contribute to the critical
path. We find that the critical path can shift between three
major components (servers, network, and client) and that

these shifts correlate with the client type and network
connection quality.

This variation suggests one possible performance op-
timization for Facebook servers: provide differentiated
service by prioritizing service for connections where the
server has no slack while deprioritizing those where net-
work and client latency will likely dominate. Our second
case study demonstrates how the natural variance across
a large trace set enables testing of such performance hy-
potheses without expensive modifications to the system
under observation. Since an implementation that pro-
vided differential services would require large-scale ef-
fort to thread through hundreds of server components, we
use our dataset to first determine whether such an opti-
mization is likely to be successful. We find that slack, as
detected by The Mystery Machine, indeed indicates that
slower server processing time minimally impacts end-to-
end latency. We also find that slack tends to remain stable
for a particular user across multiple Facebook sessions,
so the observed slack of past connections can be used to
predict the slack of the current connection.

5.1 Characterizing End-to-End Performance

In our first case study, we characterize the end-to-
end performance critical path of Web accesses to the
home.php Facebook endpoint. The Mystery Machine an-
alyzes traces of over 1.3 million Web accesses collected
over 30 days in July and August 2013.

Importance of critical path analysis. Figure 5
shows mean time breakdowns over the entire trace
dataset. The breakdown is shown in absolute time in the
left graph, and as a percent of total time on the right. We
assign segments to one of five categories: Server for seg-
ments on a Facebook Web server or any internal service
accessed from the Web server over RPC, Network for
segments in which data traverses the network, DOM for

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 225

(a) Server (b) Network (c) Client
Figure 6: Cumulative distribution of the fraction of the critical path attributable to server, network, and client portions

browser segments that parse the document object model,
CSS for segments processing cascading style sheets, and
JavaScript for JavaScript segments. Each graph includes
two bars: one showing the stacked sum of total pro-
cessing time in each component ignoring all concurrency
(“Summed Delay”) and the other the critical path as iden-
tified by The Mystery Machine (“Critical Path”).

On average, network delays account for the largest
fraction of the critical path, but client and server pro-
cessing are both significant. JavaScript execution re-
mains a major bottleneck in current Web browsers, par-
ticularly since the JavaScript execution model admits lit-
tle concurrency. The comparison of the total delay and
critical path bars reveals the importance of The Mystery
Machine—by examining only the total latency break-
down (e.g., if an engineer were profiling only one sys-
tem component), one might overestimate the importance
of network latency and JavaScript processing on end-to-
end performance. In fact, the server and other client pro-
cessing segments are frequently critical, and the overall
critical path is relatively balanced across server, client,
and network.

High variance in the critical path. Although analyz-
ing the average case is instructive, it grossly oversimpli-
fies the performance picture for the home.php endpoint.
There are massive sources of latency variance over the
population of requests, including the performance of the
client device, the size of the user’s friend list, the kind of
network connection, server load, Memcache misses, etc.
Figure 6 shows the cumulative distribution of the frac-
tion of the critical path attributable to server, network,
and client segments over all requests. The key revela-
tion of these distributions is that the critical path shifts
drastically across requests—any of the three components
can dominate delay, accounting for more than half of the
critical path in a non-negligible fraction of requests.

Variance is greatest in the contribution of the network
to the critical path, as evidenced by the fact that its CDF
has the least curvature. It is not surprising that network
delays vary so greatly since the trace data set includes ac-
cesses to Facebook over all sorts of networks, from high-

speed broadband to cellular networks and even some
dial-up connections. Client processing always accounts
for at least 20% of the critical path. After content de-
livery, there is a global barrier in the browser before the
JavaScript engine begins running the executable compo-
nents of the page, hence, JavaScript execution is a factor
in performance measurement. However, the client rarely
accounts for more than 40% of the critical path. It is un-
usual for the server to account for less than 20% of the
critical path because the initial request processing before
the server begins to transmit any data is always critical.
Noticing this high variance in the critical path was very
valuable to us because it triggered the idea of differenti-
ated services that we explore in Section 5.2.

Stratification by connection type. We first consider
stratifying by the type of network over which a user con-
nects to Facebook’s system, as it is clear one would ex-
pect network latency to differ, for example, between ca-
ble modem and wireless connections. Facebook’s edge
load balancing system tags each incoming request with
a network type. These tags are derived from the net-
work type recorded in the Autonomous System Number
database for the Internet service provider responsible for
the originating IP address. Figure 7 illustrates the criti-
cal path breakdown, in absolute time, for the four largest
connection type categories. Each bar is annotated with
the fraction of all requests that fall within that connec-
tion type (only a subset of connection types are shown,
so the percentages do not sum to 100%).

Perhaps unsurprisingly, these coarse network type
classifications correlate only loosely to the actual per-
formance of the network connection. Mobile connec-
tions show a higher average network critical path than
the other displayed connection types, but the data is oth-
erwise inconclusive. We conclude that the network type
reported by the ASN is not very helpful for making per-
formance predictions.

Stratification by client platform. The client plat-
form is included in the HTTP headers transmitted by the
browser along with each request, and is therefore also
available at the beginning of request processing. The

226 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 7: Critical path breakdowns stratified by browser, platform, connection type, and computed bandwidth

client operating system is a hint to the kind of client de-
vice, which in turn may suggest relative client perfor-
mance. Figure 7 shows a critical path breakdown for the
five most common client platforms in our traces, again
annotated with the fraction of requests represented by the
bar. Note that we are considering only Web browser re-
quests, so requests initiated by Facebook cell phone apps
are not included. The most striking feature of the graph
is that Mac OS X users (a small minority of Facebook
connections at only 7.1%) tend to connect to Facebook
from faster networks than Windows users. We also see
that the bulk of connecting Windows users still run Win-
dows 7, and many installations of Windows XP remain
deployed. Client processing time has improved markedly
over the various generations of Windows. Nevertheless,
the breakdowns are all quite similar, and we again find
insufficient predictive power for differentiating service
time by platform.

Stratification by browser. The browser type is also
indicated in the HTTP headers transmitted with a re-
quest. In Figure 7, we see critical paths for the four most
popular browsers. Safari is an outlier, but this category is
strongly correlated with the Mac OS X category. Chrome
appears to offer slightly better JavaScript performance
than the other browsers.

Stratification by measured network bandwidth.
All of the preceding stratifications only loosely corre-
late to performance—ASN is a poor indication of net-
work connection quality, and browser and OS do not
provide a reliable indication of client performance. We
provide one more example stratification where we sub-
divide the population of requests into five categories di-
rectly from the measured network bandwidth, which can
be deduced from our traces based on network time and

Figure 8: Slack CDF for Last Data Item. Nearly 20% of
traces exhibit considerable slack—over 2 s—for the server seg-
ment that generates the last pagelet transmitted to the client.
Conversely, nearly 20% of traces exhibit little (< 250 ms) slack.

bytes transmitted. Each of the categories are equally
sized to represent 20% of requests, sorted by increas-
ing bandwidth (p80 is the quintile with the highest ob-
served bandwidth). As one would expect, network crit-
ical path is strongly correlated to measured network
bandwidth. Higher bandwidth connections also tend
to come from more capable clients; low-performance
clients (e.g., smart phones) often connect over poor net-
works (3G and Edge networks).

5.2 Differentiated Service using Slack

Our second case study uses The Mystery Machine
to perform early exploration of a potential performance
optimization—differentiated service—without undertak-
ing the expense of implementing the optimization.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 227

Figure 9: Server vs. End-to-end Latency. For the traces with slack below 25ms (left graph), there is strong correlation (clustering
near y = x) between server and end-to-end latency. The correlation is much weaker (wide dispersal above y = x) for the traces with
slack above 2.5s (right graph).

The characterization in the preceding section reveals
that there is enormous variation in the relative impor-
tance of client, server, and network performance over
the population of Facebook requests. For some requests,
server segments form the bulk of the critical path. For
these requests, any increase in server latency will result
in a commensurate increase in end-to-end latency and a
worse user experience. However, after the initial critical
segment, many connections are limited by the speed at
which data can be delivered over the network or rendered
by the client. For these connections, server execution can
be delayed to produce data as needed, rather than as soon
as possible, without affecting the critical path or the end-
to-end request latency.

We use The Mystery Machine to directly measure the
slack in server processing time available in our trace
dataset. For simplicity of explanation, we will use the
generic term “slack” in this section to refer to the slack
in server processing time only, excluding slack available
in any other types of segments.

Figure 8 shows the cumulative distribution of slack
for the last data item sent by the server to the client.
The graph is annotated with a vertical line at 500 ms of
slack. For the purposes of this analysis, we have selected
500 ms as a reasonable cut-off between connections for
which service should be provided with best effort (<
500 ms slack), and connections for which service can be
deprioritized (> 500 ms). However, in practice, the best
cut-off will depend on the implementation mechanism
used to deprioritize service. More than 60% of all con-
nections exhibit more than 500 ms of slack, indicating
substantial opportunity to defer server processing. We
find that slack typically increases monotonically during
server processing as data items are sent to the client dur-
ing a request. Thus, we conclude that slack is best con-
sumed equally as several segments execute, as opposed
to consuming all slack at the start or end of processing.

Validating Slack Estimates It is difficult to directly
validate The Mystery Machine’s slack estimates, as we
can only compute slack once a request has been fully
processed. Hence, we cannot retrospectively delay server
segments to consume the slack and confirm that the end-
to-end latency is unchanged. Such an experiment is dif-
ficult even under highly controlled circumstances, since
it would require precisely reproducing the conditions of
a request over and over while selectively delaying only a
few server segments.

Instead, we turn again to the vastness of our trace data
set and the natural variance therein to confirm that slack
estimates hold predictive power. Intuitively, small slack
implies that server latency is strongly correlated to end-
to-end latency; indeed, with a slack of zero we expect any
increase in server latency to delay end-to-end latency by
the same amount. Conversely, when slack is large, we
expect little correlation between server latency and end-
to-end latency; increases in server latency are largely hid-
den by other concurrent delays. We validate our notion
of slack by directly measuring the correlation of server
and end-to-end latency.

Figure 9 provides an intuitive view of the relationship
for which we are testing. Each graph is a heat map of
server generation time vs. end-to-end latency. The left
graph includes only requests with the lowest measured
slack, below 25 ms. There are slightly over 115,000 such
requests in this data set. For these requests, we expect
a strong correlation between server time and end-to-end
time. We find that this subset of requests is tightly clus-
tered just above the y = x (indicated by the line in the
figure), indicating a strong correlation. The right fig-
ure includes roughly 100,000 requests with the greatest
slack (above 2500 ms). For these, we expect no particu-
lar relationship between server time and end-to-end time
(except that end-to-end time must be at least as large as
slack, since this is an invariant of request processing).

228 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 10: Server–End-to-end Latency Correlation vs.
Slack. As reported slack increases, the correlation between
total server processing time and end-to-end latency weakens,
since a growing fraction of server segments are non-critical.

Indeed, we find the requests dispersed in a large cloud
above y = x, with no correlation visually apparent.

We provide a more rigorous validation of the slack
estimate in Figure 10. Here, we show the correlation
coefficient between server time and end-to-end time for
equally sized buckets of requests sorted by increasing
slack. Each block in the graph corresponds to 5% of
our sample, or roughly 57,000 requests (buckets are
not equally spaced since the slack distribution is heavy-
tailed). As expected, the correlation coefficient between
server and end-to-end latency is quite high, nearly 0.8,
when slack is low. It drops to 0.2 for the requests with
the largest slack.

Predicting Slack. We have found that slack is predic-
tive of the degree to which server latency impacts end-
to-end latency. However, The Mystery Machine can dis-
cover slack only through a retrospective analysis. To be
useful in a deployed system, we must predict the avail-
ability or lack of slack for a particular connection as
server processing begins.

One mechanism to predict slack is to recall the slack a
particular user experienced in a prior connection to Face-
book. Previous slack was found to be more useful in
predicting future slack than any other feature we stud-
ied. Most users connect to Facebook using the same de-
vice and over the same network connection repeatedly.
Hence, their client and network performance are likely
to remain stable over time. The user id is included as
part of the request, and slack could be easily associated
with the user id via a persistent cookie or by storing the
most recent slack estimate in Memcache [20].

We test the hypothesis that slack remains stable over
time by finding all instances within our trace dataset
where we have multiple requests associated with the

Figure 11: Historical Slack as Classifier. The clustering
around the line y = x shows that slack is relatively stable over
time. The history-based classifier is correct 83% of the time. A
type I error is a false positive, reporting slack as available when
it is not. A type II error is a false negative.

same user id. Since the request sampling rate is ex-
ceedingly low, and the active user population is so large,
selecting the same user for tracing more than once is a
relatively rare event. Nevertheless, again because of the
massive volume of traces collected over the course of 30
days of sampling, we have traced more than 1000 repeat
users. We test a simple classifier that predicts a user will
experience a slack greater than 500 ms if the slack on
their most recent preceding connection was also greater
than 500 ms. Figure 11 illustrates the result. The graph
shows a scatter plot of the first slack and second slack
in each pair; the line at y = x indicates slack was iden-
tical between the two connections. Our simple history-
based classifier predicts the presence or absence of slack
correctly 83% of the time. The shaded regions of the
graph indicate cases where we have misclassified a con-
nection. A type I error indicates a prediction that there is
slack available for a connection when in fact server per-
formance turns out to be critical–8% of requests fall in
this category. Conversely, a type II error indicates a pre-
diction that a connection will not have slack when in fact
it does, and represents a missed opportunity to throttle
service—9% of requests fall in this category.

Note that achieving these results does not require fre-
quent sampling. The repeated accesses we study are of-
ten several weeks separated in time, and, of course, it is
likely that there have been many intervening unsampled
requests by the same user. Sampling each user once ev-
ery few weeks would therefore be sufficient.

Potential Impact. We have shown that a potential
performance optimization would be to offer differenti-
ated service based on the predicted amount of slack avail-
able per connection. Deciding which connections to ser-
vice is equivalent to real-time scheduling with deadlines.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 229

By using predicted slack as a scheduling deadline, we
can improve average response time in a manner simi-
lar to the earliest deadline first real-time scheduling al-
gorithm. Connections with considerable slack can be
given a lower priority without affecting end-to-end la-
tency. However, connections with little slack should see
an improvement in end-to-end latency because they are
given scheduling priority. Therefore, average latency
should improve. We have also shown that prior slack val-
ues are a good predictor of future slack. When new con-
nections are received, historical values can be retrieved
and used in scheduling decisions. Since calculating slack
is much less complex than servicing the actual Facebook
request, it should be feasible to recalculate the slack for
each user approximately once per month.

6 Related Work
Critical path analysis is an intuitive technique for un-

derstanding the performance of systems with concurrent
activity. It has been applied in a wide variety of areas
such as processor design [26], distributed systems [5],
and Internet and mobile applications [22, 32].

Deriving the critical path requires knowing causal
dependencies between components throughout the en-
tire end-to-end system. A model of causal dependen-
cies can be derived from comprehensively instrumenting
all middleware for communication, scheduling, and/or
synchronization to record component interactions [1, 3,
9, 13, 15, 18, 22, 24, 28]. In contrast to these prior
systems, The Mystery Machine is targeted at environ-
ments where adding comprehensive new instrumentation
to an existing system would be too time-consuming due
to heterogeneity (e.g., at Facebook, there a great num-
ber of scheduling, communication, and synchronization
schemes used during end-to-end request processing) and
deployment feasibility (e.g., it is not feasible to add new
instrumentation to client machines or third-party Web
browser code). Instead, The Mystery Machine extracts
a causal model from already-existing log messages, rely-
ing only a minimal schema for such messages.

Sherlock [4] also uses a “big data” approach to build
a causal model. However, it relies on detailed packet
traces, not log messages. Packet traces would not serve
our purpose: it is infeasible to collect them on user
clients, and they reveal nothing about the interaction
of software components that run on the same computer
(e.g., JavaScript), which is a major focus of our work.
Observing a packet sent between A and B inherently im-
plies some causal relationship, while The Mystery Ma-
chine must infer such relationships by observing if the
order of log messages from A and B obey a hypothe-
sized invariant. Hence, Sherlock’s algorithm is funda-
mentally different: it reasons based on temporal local-
ity and infers probabilistic relationships; in contrast, The

Mystery Machine uses only message order to derive in-
variants (though timings are used for critical path and
slack analysis).

The lprof tool [36] also analyzes log messages to re-
construct the ordering of logged events in a request. It
supplements logs with static analysis to discover depen-
dencies between log points and uses those dependencies
to differentiate events among requests. Since static anal-
ysis is difficult to scale to heterogeneous production envi-
ronments, The Mystery Machine used some manual mod-
ifications to map events to traces and leverages a large
sample size and natural variation in ordering to infer
causal dependencies between events in a request.

In other domains, hypothesizing likely invariants
and eliminating those contradicted by observations has
proven to be a successful technique. For instance, likely
invariants have been used for fault localization [25] and
diagnosing software errors [12, 21]. The Mystery Ma-
chine applies this technique to a new domain.

Many other systems have looked at the notion of criti-
cal path in Web services. WebProphet [17] infers Web
object dependencies by injecting delays into the load-
ing of Web objects to deduce the true dependencies be-
tween Web objects. The Mystery Machine instead lever-
ages a large sample size and the natural variation of tim-
ings to infer the causal dependencies between segments.
WProf [32] modifies the browser to learn browser page
load dependencies. It also injects delays and uses a series
of test pages to learn the dependencies and applies a crit-
ical path analysis. The Mystery Machine looks at end-to-
end latency from the server to the client. It automatically
deduces a dependency model by analyzing a large set of
requests. Google Pagespeed Insight [14] profiles a page
load and reports its best estimate of the critical path from
the client’s perspective. The Mystery Machine traces a
Web request from the server through the client, enabling
it to deduce the end-to-end critical path.

Chen et al. [11] analyzed end-to-end latency of a
search service. They also analyzed variation along the
server, network, and client components. The Mystery
Machine analyzes end-to-end latency using critical path
analysis, which allows for attributing latency to specific
components and performing slack analysis.

Many other systems have looked at automatically
discovering service dependencies in distributed systems
by analyzing network traffic. Orion [10] passively ob-
serves network packets and relies on discovering service
dependencies by correlating spikes in network delays.
The Mystery Machine uses a minimum common con-
tent tracing infrastructure finds counterexamples to dis-
prove causal relationship dependencies. WISE [29] an-
swers ”what-if” questions in CDN configuration. It uses
machine learning techniques to derive important features
that affect user response time and uses correlation to de-

230 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

rive dependencies between these features. Butkiewicz et
al. [8] measured which network and client features best
predicted Web page load times across thousands of web-
sites. They produced a predictive model from these fea-
tures across a diverse set of Web pages. The Mystery
Machine aims to characterize the end-to-end latency in a
single complex Web service with a heterogeneous client
base and server environment.

The technique of using logs for analysis has been ap-
plied to error diagnosis [2, 34, 33] and debugging perfor-
mance issues [19, 27].

7 Conclusion
It is challenging to understand an end-to-end request

in a highly-concurrent, large-scale distributed system.
Analyzing performance requires a causal model of the
system, which The Mystery Machine produces from ob-
servations of component logs. The Mystery Machine uses
a large number of observed request traces in order to val-
idate hypotheses about causal relationships.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Willy

Zwaenepoel, for comments that improved this paper. We also
thank Claudiu Gheorghe, James Ide, and Okay Zed for their
help and support in understanding the Facebook infrastructure.
This research was partially supported by NSF awards CNS-
1017148 and CNS-1421441. The views and conclusions con-
tained in this document are those of the authors and should not
be interpreted as representing NSF, Michigan, Facebook, or the
U.S. government.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 74–89, Bolton Landing, NY, October 2003.

[2] Gautam Altekar and Ion Stoica. ODR: Output-
deterministic replay for multicore debugging. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems
Principles, pages 193–206, Big Sky, MT, October 2009.

[3] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray:
Automating root-cause diagnosis of performance anoma-
lies in production software. In Proceedings of the 10th
Symposium on Operating Systems Design and Implemen-
tation, Hollywood, CA, October 2012.

[4] Paramvir Bahl, Ranveer Chandra, Albert Greenberg,
Srikanth Kandula, David A. Maltz, and Ming Zhang. To-
wards highly reliable enterprise network services via in-
terface of multi-level dependencies. In Proceedings of the
Symposium on Communications Architectures and Proto-
cols (SIGCOMM), August 2007.

[5] Paul Barford and Mark Crovella. Critical path analysis of
TCP transactions. In Proceedings of the ACM Conference

on Computer Communications (SIGCOMM), Stockholm,
Sweden, August/September 2000.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using Magpie for request extraction and
workload modelling. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation,
pages 259–272, San Francisco, CA, December 2004.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the 2013 USENIX
Annual Technical Conference, San Jose, CA, June 2013.

[8] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas
Sekar. Understanding website complexity: Measure-
ments, metrics, and implications. In Internet Measure-
ment Conference (IMC), Berlin, Germany, November
2011.

[9] Anupam Chanda, Alan L. Cox, and Willy Zwanepoel.
Whodunit: Transactional profiling for multi-tier applica-
tions. In Proceedings of the 2nd ACM European Con-
ference on Computer Systems, Lisboa, Portugal, March
2007.

[10] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramir
Bahl. Automating network application dependency dis-
covery: Experiences, limitations, and new solutions. In
Proceedings of the 8th Symposium on Operating Systems
Design and Implementation, San Diego, CA, December
2008.

[11] Yingying Chen, Ratul Mahajan, Baskar Sridharan, and
Zhi-Li Zhang. A provider-side view of web search re-
sponse time. In Proceedings of the 2013 ACM Confer-
ence on Computer Communications, Hong Kong, China,
August 2013.

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2), February
2001.

[13] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implemen-
tation, pages 271–284, Cambridge, MA, April 2007.

[14] Google. Google Pagespeed Insight. https://

developers.google.com/speed/pagespeed/.

[15] Eric Koskinen and John Jannotti. Borderpatrol: Isolat-
ing events for precise black-box tracing. In Proceedings
of the 3rd ACM European Conference on Computer Sys-
tems, April 2008.

[16] Adam Lazur. Building a billion user load balancer. In
Velocity Web Performance and Operations Conference,
Santa Clara, CA, June 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 231

[17] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Al-
bert Greenberg, and Yi-Min Wang. Webprophet: Au-
tomating performance prediction for web services. In
Proceedings of the 7th USENIX Symposium on Net-
worked Systems Design and Implementation, April 2010.

[18] Gideon Mann, Mark Sandler, Darja Krushevskaja,
Sudipto Guha, and Eyal Even-dar. Modeling the paral-
lel execution of black-box services. In Proceedings of the
3rd USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud), Portland, OR, June 2011.

[19] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation, San Jose, CA, April 2012.

[20] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, Lombard, IL, April 2013.

[21] Brock Pytlik, Manos Renieris, Shriram Krishnamurthi,
and Steven P. Reiss. Automated fault localization using
potential invariants. In Proceedings of the 5th Interna-
tional Workshop on Automated and Algorithmic Debug-
ging, Ghent, Belgium, September 2003.

[22] Lenin Ravindranath, Jitendra Padjye, Sharad Agrawal,
Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.
AppInsight: Mobile app performance monitoring in the
wild. In Proceedings of the 10th Symposium on Operat-
ing Systems Design and Implementation, Hollywood, CA,
October 2012.

[23] Lenin Ravindranath, Jitendra Pahye, Ratul Mahajan, and
Hari Balakrishnan. Timecard: Controlling user-perceived
delays in server-based mobile applications. In Proceed-
ings of the 24th ACM Symposium on Operating Systems
Principles, Farmington, PA, October 2013.

[24] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-
frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In Pro-
ceedings of the 3rd USENIX Symposium on Networked
Systems Design and Implementation, pages 115–128, San
Jose, CA, May 2006.

[25] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and
Vikram Adve. Using likely invariants for automated soft-
ware fault localization. In Proceedings of the 18th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Houston,
TX, March 2013.

[26] Ali Ghassan Saidi. Full-System Critical-Path Analysis
and Performance Prediction. PhD thesis, Department of
Computer Science and Engineering, University of Michi-
gan, 2009.

[27] Raja R. Sambasivan, Alice X. Zheng, Michael De
Rosa, Elie Krevat, Spencer Whitman, Michael Stroucken,

William Wang, Lianghong Xu, and Gregory R. Ganger.
Diagnosing performance changes by comparing request
flows. In Proceedings of the 8th USENIX Symposium
on Networked Systems Design and Implementation, pages
43–56, Boston, MA, March 2011.

[28] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul
Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. Technical re-
port, Google research, 2010.

[29] Mukarram Bin Tariq, Amgad Zeitoun, Vytautas Valan-
cius, Nick Feamster, and Mostafa Ammar. Answer-
ing what-if deployment and configuration questions with
wise. In Proceedings of the 2008 ACM Conference on
Computer Communications, Seattle, WA, August 2008.

[30] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive – a warehous-
ing solution over a map-reduce framework. In 35th Inter-
national Conference on Very Large Data Bases (VLDB),
Lyon, France, August 2009.

[31] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy,
Mike Spreitzer, and Asser Tantawi. An analytical model
for multi-tier Internet services and its applications. In
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems (ACM
SIGMETRICS), Banff, AB, June 2005.

[32] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Kr-
ishnamurthy, and David Wetherall. Demystifying page
load performance with wprof. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, April 2013.

[33] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael I. Jordan. Detecting large-scale system problems
by mining console logs. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky,
MT, October 2009.

[34] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. SherLog: Er-
ror diagnosis by connecting clues from run-time logs. In
Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 143–154, Pittsburgh, PA, March
2010.

[35] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark
Williams, Qi Gao, Guilherme Ottoni, Andrew Paroski,
Scott MacVicar, Jason Evans, and Stephen Tu. The
HipHop compiler for PHP. ACM International Con-
ference on Object Oriented Programming Systems, Lan-
guages, and Applications, October 2012.

[36] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan,
Yu Luo, Ding Yuan, and Michael Stumm. lprof: A non-
intrusive request flow profiler for distributed systems. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation, October 2014.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 233

End-to-end Performance Isolation through Virtual Datacenters

Sebastian Angel�, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, Eno Thereska
Microsoft Research �The University of Texas at Austin

Abstract
The lack of performance isolation in multi-tenant dat-
acenters at appliances like middleboxes and storage
servers results in volatile application performance. To in-
sulate tenants, we propose giving them the abstraction of
a dedicated virtual datacenter (VDC). VDCs encapsulate
end-to-end throughput guarantees—specified in a new
metric based on virtual request cost—that hold across
distributed appliances and the intervening network.

We present Pulsar, a system that offers tenants their
own VDCs. Pulsar comprises a logically centralized con-
troller that uses new mechanisms to estimate tenants’
demands and appliance capacities, and allocates data-
center resources based on flexible policies. These al-
locations are enforced at end-host hypervisors through
multi-resource token buckets that ensure tenants with
changing workloads cannot affect others. Pulsar’s design
does not require changes to applications, guest OSes,
or appliances. Through a prototype deployed across 113
VMs, three appliances, and a 40 Gbps network, we show
that Pulsar enforces tenants’ VDCs while imposing over-
heads of less than 2% at the data and control plane.

1 Introduction
In recent years, cloud providers have moved from sim-
ply offering on-demand compute resources to providing
a broad selection of services. For example, Amazon EC2
offers over twenty services including networked stor-
age, monitoring, load balancing, and elastic caching [1].
Small and enterprise datacenters are also part of this
trend [56, 59]. These services are often implemented us-
ing appliances, which include in-network middleboxes
like load balancers and end-devices like networked stor-
age servers. Although tenants (i.e., customers) can build
their applications atop these services, application perfor-
mance is volatile, primarily due to the lack of isolation
at appliances and the connecting network. This lack of
isolation hurts providers too—overloaded appliances are
more prone to failure [59].

We present Pulsar, the first system that enables
datacenter operators to offer appliance-based services
while ensuring that tenants receive guaranteed end-to-
end throughput. Pulsar gives each tenant a virtual data-
center (VDC)—an abstraction that affords them the elas-
ticity and convenience of the shared cloud, without relin-
quishing the performance isolation of a private datacen-

ter. A VDC is composed of virtual machines (VMs), and
resources like virtual appliances and a virtual network
that are associated with throughput guarantees. These
guarantees are independent of tenants’ workloads, hold
across all VDC resources, and are therefore end-to-end.

Providing the VDC abstraction to tenants presents
two main challenges. First, tenants can be bottlenecked
at different appliances or network links, and chang-
ing workloads can cause these bottlenecks to shift over
time (§2.1). Second, resources consumed by a request
at an appliance can vary based on request characteristics
(type, size, etc.), appliance internals, and simultaneous
requests being serviced. For example, an SSD-backed
filestore appliance takes disproportionately longer to
serve WRITE requests than READ requests (§2.4). This
behavior has two implications: (i) the capacity, or max-
imum achievable throughput, of an appliance varies de-
pending on the workload. This is problematic because
the amount of appliance resources that can be allocated
to tenants becomes a moving target. (ii) Standard met-
rics for quantifying throughput, like requests/second or
bits/second, become inadequate. For example, offering
throughput guarantees in request/second, irrespective of
the request type, requires the operator to provision the
datacenter conservatively based on the costliest request.

Pulsar addresses these challenges and provides the
VDC abstraction. It responds to shifting bottlenecks
through a logically centralized controller that periodi-
cally allocates resources to tenants based on their VDC
specifications, demands, and appliance capacities. These
allocations are enforced by rate enforcers, found at end-
host hypervisors, through a novel multi-resource token
bucket (§4.4). Since the actual cost of serving requests
can vary, Pulsar charges requests using their virtual cost,
given in tokens (§3). This is a unified metric common
to all VDC resources, and hence throughput in Pulsar is
measured in tokens/sec. For each appliance, the provider
specifies a virtual cost function that translates a request
into its cost in tokens. This gives tenants a pre-advertised
cost model, and allows the provider to offer guarantees
that are independent of tenants’ workloads without con-
servative provisioning.

Pulsar’s implementation of the VDC abstraction al-
lows the provider to express different resource allocation
policies. The provider can offer VDCs with fixed or min-
imum guarantees. The former gives tenants predictable

234 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

performance, while the latter allows them to elastically
obtain additional resources. The provider can then allo-
cate spare resources to tenants based on policies that, for
example, maximize profit instead of fairness. Addition-
ally, tenants enjoy full control of their VDC resources
and can specify their own allocation policies. For exam-
ple, tenants can give some of their VMs preferential ac-
cess to an appliance, or can divide their resources fairly.

The flexibility of these policies comes from decom-
posing the allocation of resources into two steps: (1)
a per-tenant allocation step in which tenants receive
enough resources to meet their VDC specifications, and
(2) a global allocation step in which spare resources
are given to tenants with minimum guarantees that have
unmet demand (§4.1). For each step, tenants and the
provider can choose from existing multi-resource allo-
cation mechanisms [24, 30, 38, 48, 57] to meet a variety
of goals (e.g., fairness, utilization, profit maximization).

Overall, this paper makes the following contributions:

• We propose the VDC abstraction, and present the de-
sign, implementation, and evaluation of Pulsar.

• We introduce a unified throughput metric based on
virtual request cost. This makes it tractable for the
provider to offer workload-independent guarantees.

• We design controller-based mechanisms to estimate
the demand of tenants and the capacity of unmodified
appliances for a given workload.

• We design a rate-limiter based on a new multi-resource
token bucket that ensures tenants with changing work-
loads cannot affect other tenants’ guarantees.

A key feature of Pulsar is its ease of deployment. Pul-
sar isolates tenants without requiring any modifications
to applications, guest OSes, appliances, or the network.
As a proof of concept, we deployed a prototype imple-
mentation of Pulsar on a small testbed comprising eleven
servers, 113 VMs, and three types of appliances: an SSD-
backed filestore, an in-memory key-value store, and an
encryption appliance. We show that Pulsar is effective at
enforcing tenant VDCs with data and control plane over-
heads that are under 2% (§6.3). We also find that con-
troller scalability is reasonable: the controller can com-
pute allocations for datacenters with 24K VMs and 200
appliances in 1–5 seconds (§6.4).

2 Motivation and background
Performance interference in shared datacenters is well
documented both in the context of the network [33, 46,
55, 70, 71], and of shared appliances like storage servers
(filestores, block stores, and key-value stores) [25, 31,
46], load balancers [49], IDSes [20], and software
routers [23]. These observations have led to propos-

als that provide performance isolation across the net-
work [12, 14, 28, 43, 51, 52, 60, 73], storage servers [26,
62, 66, 72], and middleboxes [23]. However, in all cases
the focus is either on a single resource (network or stor-
age), or on multiple resources within a single appliance.

By contrast, today’s cloud platforms offer a diverse
selection of appliances that tenants can use to compose
their applications. Measurements from Azure’s datacen-
ters show that up to 44% of their intra-datacenter traffic
occurs between VMs and appliances [49]. In this sec-
tion, we show that tenants can be bottlenecked at any
of the appliances or network resources they use, that
these bottlenecks can vary over time as tenants’ work-
loads change, and that the end result is variable appli-
cation performance. Furthermore, we show that existing
mechanisms cannot address these challenges.

2.1 How do tenant bottlenecks change?

We begin with a simple experiment on our testbed (de-
tailed in Section 6) comprising 16-core servers con-
nected using RDMA over converged Ethernet (RoCE) on
a 40 Gbps network. The setup, depicted in Figure 1(a),
involves three physical servers and two appliances: a file-
store with an SSD back-end and an encryption appliance.
The filestore is a centralized appliance providing persis-
tent storage for all the VMs, while the encryption appli-
ance is a distributed appliance present inside the hypervi-
sor at each server. There are three tenants, A–C, running
synthetic workloads on six, six, and twelve VMs respec-
tively. Tenant A is reading from the filestore and tenant B
is writing to the filestore, resulting in 64 KB IO requests
across the network. Tenant C is running an application
that generates an all-to-one workload between its VMs.
This models the “aggregate” step of partition/aggregate
workloads, a common pattern for web applications [10].

We focus on tenant performance across three phases of
the experiment—phase transitions correspond to one of
the tenants changing its workload. The first set of bars in
Figure 1(b) shows the aggregate throughput for the three
tenants in phase 1. Tenants A and B are bottlenecked at
the filestore. Having similar workloads, they share the
SSD throughput and achieve 5.2 Gbps each. Tenant C,
with its all-to-one traffic, is bottlenecked at the network
link of the destination VM and achieves 29.9 Gbps.

In the next phase, tenant B’s traffic is sent through
the encryption appliance (running AES). This may be re-
quested by the tenant or could be done to accommodate
the provider’s security policy. Tenant B’s throughput is
thus limited by the encryption appliance’s internal bottle-
neck resource: the CPU. As depicted in phase 2 of Fig-
ure 1(b), this decreases tenant B’s performance by 7×,
and has a cascading effect. Since more of the filestore ca-
pacity is available to tenant A, its performance improves
by 36%, thereby reducing tenant C’s throughput by 9.2%

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 235

Filestore
SSDs

Encryption appliance
(inside hypervisor)

Servers
with VMs6 3 66 3

A
C B

(a) Experiment setup with three tenants.

 0

 10

 20

 30

T
en

an
t

th
ro

u
g
h
p
u
t

(G
b
p
s)

Bottleneck:

Phase 1

FS FS NW

Phase 2

FS EN NW

Phase 3

NW EN NW

Tenant A

Tenant B

Tenant C

(b) Tenant performance varies as bottlenecks change.

Figure 1—Tenant performance is highly variable and depends on the appliances used and the workloads of other tenants. Numbers
in (a) represent the # of VMs for a tenant; arrows represent the direction of traffic. The x-axis labels in (b) indicate the bottleneck
appliance: “FS” is filestore, “EN” is encryption appliance, and “NW” is network.

50th 90th 95th 99th Duration (mins)

Key-value IO 0.04 0.14 0.28 0.41 2
Filestore IO 0.14 0.24 0.32 0.87 2 – 23
Network 0.002 0.004 0.005 0.61 1.3 – 49

Figure 2—Throughput at selected percentiles normalized based
on the maximum value in each trace. Large differences between
the median and higher percentiles indicate workload changes.
The last column shows the duration of these changes.

(since both tenants are colocated on the same server and
share the network link).

In phase 3, tenant C generates more network flows
from each of the source VMs to the destination VM.
Since most TCP-like transport protocols achieve per-
flow fairness, this allows tenant C to grab more of
the bandwidth at the destination’s network link and its
throughput improves. However, this degrades the perfor-
mance of tenant A’s colocated VMs by 2.1×. These VMs
are unable to saturate the filestore throughput and are in-
stead bottlenecked at the network.

Overall, these simple yet representative experiments
bring out two key takeaways:

• Variable application performance. A tenant’s perfor-
mance can vary significantly depending on its work-
load, the appliances it is using, and the workloads of
other tenants sharing these appliances.

• Multiple bottlenecks. The performance bottleneck for
tenants can vary across space and time. At any instant,
tenants can be bottlenecked at different resources
across different appliances. Over time, these bottle-
necks can vary (as shown by the x-label in Fig. 1(b)).

The observations above are predicated on the preva-
lence of workload changes. We thus study tenant work-
loads in the context of two production datacenters next.

2.2 How common are workload changes?

We investigate workload changes by examining two traf-
fic traces: (i) a week-long network trace from an enter-
prise datacenter with 300 servers running over a hun-
dred applications, (ii) a two-day I/O trace from a Hot-
mail datacenter [67] running several services, including

 0

 0.5

 1

No Yes No Yes No Yes

R
el

at
iv

e
sh

ar
e

Aggressive:
Network Filestore (C) Encryption (O)

Tenant B
Tenant A

Figure 3—Tenant A can acquire a greater share of any appli-
ance or the network by being aggressive. “(C)” is closed-loop
workload, “(O)” is open-loop workload.

a key-value store and a filestore. Figure 2 tabulates the
percentiles of the per-second traffic, normalized to the
maximum observed value in each trace. The big differ-
ence (orders of magnitude for the key-value and network
traces) between the median and higher percentiles indi-
cates a skewed distribution and changing workloads. To
study the duration of workload changes, we identified the
time intervals where the observed traffic is higher than
the 95th percentile. The last column of Figure 2 shows
that these workload changes can vary from minutes to
almost an hour; such changes are common in both traces.

2.3 Why is tenant performance affected?

The root cause for variable tenant performance is that
neither the network nor appliances isolate tenants from
each other. Tenants can even change their workload to
improve their performance at others’ expense. We expose
this behavior through experiments involving two tenants
with six VMs each; the results are depicted in Figure 3.

In the first scenario, both tenants generate the same
number of TCP flows through a network link, and hence,
share it equally. However, tenant A can grab a greater
share of the link bandwidth simply by generating more
flows. For instance, the first set of bars in Figure 3 shows
that tenant A can acquire 80% of the link bandwidth by
generating four times more flows than tenant B.

Similar effects can be observed across appliances,
but their relative performance depends on the nature of
their workload. With closed-loop workloads, each tenant
maintains a fixed number of outstanding requests against
the appliance. Any tenant can improve its performance

236 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 5

 10

 15

 20 40 60

R
eq

ue
st

 c
os

t (
µs

/r
eq

ue
st

)

Request Size (KB)

GETs
PUTs

(a) Key-Value Store

 0

 50

 100

 150

 20 40 60

R
eq

ue
st

 c
os

t (
µs

/r
eq

ue
st

)

Request Size (KB)

Writes
C-Writes

Reads

(b) SSD Filestore

 0

 150

 300

 450

 20 40 60

R
eq

ue
st

 c
os

t (
µs

/r
eq

ue
st

)

Request Size (KB)

AES
RC4

(c) Encryption

1K

2K

3K

 20 40 60

R
eq

ue
st

 c
os

t (
µs

/r
eq

ue
st

)

Request Size (KB)

Random
Sequential

(d) HDD Filestore

2K

4K

6K

 20 40 60

R
eq

ue
st

 c
os

t (
µs

/r
eq

ue
st

)

Request Size (KB)

Random
Normal
Cached

(e) WAN Optimizer

Figure 4—For appliances, the cost of serving a request can vary with request characteristics. “C-Writes” in (b) represents WRITE

requests that can be compressed by the filestore’s SSDs. “Sequential” and “Random” in (d) refers to the workload’s access pattern
(for both READs and WRITEs). (e) depicts the costs of a WAN Optimizer that performs compression for compressible (“Normal”)
and incompressible (“Random”) requests; the cost of serving requests that are cached is also depicted.

by being aggressive and increasing the number of re-
quests outstanding. For example, the second set of bars
in Figure 3 shows the relative throughput of two tenants
accessing a filestore. When both tenants have the same
number of outstanding requests, they share the appliance
equally. However, tenant A can acquire 80% of the file-
store throughput simply by having four times as many re-
quests outstanding as tenant B. In the case of open-loop
workloads, there is no limit on the number of outstanding
requests; in the absence of any isolation at the appliance,
a tenant’s share is dictated by the transport protocol used.
The last set of bars in Figure 3 exposes this behavior.

2.4 Why are absolute guarantees hard to provide?

Isolating appliances is challenging because the resources
consumed can vary substantially across individual re-
quests. Figure 4 depicts this observation for five appli-
ances: an in-memory key-value store, an SSD-backed
and an HDD-backed filestore, an encryption appliance,
and a WAN optimizer that performs compression [8].
For each appliance, we measured its throughput for a
stream of requests with identical characteristics. We use
the average time for serving a request as an approxima-
tion of the actual request cost. For the encryption appli-
ance (Fig. 4(c)), the request cost depends on the encryp-
tion algorithm being used. For the HDD-backed filestore
(Fig. 4(d)), the request cost depends not only on the re-
quest size, but also on the access pattern (sequential or
random). A request’s cost also depends on the appliance
internals (including optimizations like caching). For ex-
ample, Figure 4(b) shows that WRITE requests that can
be compressed by the filestore SSDs (“C-Writes”) are
cheaper to serve than an incompressible write workload.

Another source of variability is the interference be-
tween tenant workloads. This exacerbates the difficulty
of quantifying a request’s cost as a function of its char-
acteristics. The combinatorial explosion resulting from
considering all possible workload combinations and the
diversity of appliances makes this problem intractable.

Variable request cost has two implications for perfor-

mance isolation. First, while tenants should ideally re-
ceive guarantees in request/sec (or bits/sec) across an ap-
pliance, offering such guarantees regardless of tenants’
workloads is too restrictive for the provider. Offering
guaranteed requests/sec requires provisioning to support
tenants always issuing the most expensive request (e.g.,
maximum-size WRITEs at a filestore appliance). Simi-
larly, offering guaranteed bits/sec requires provisioning
based on the request with the maximum cost-to-size ra-
tio. Moreover, both cases require the provider to quantify
the actual request cost which, as we discussed, is hard.

The second implication is that the capacity, or max-
imum aggregate throughput, of an appliance can vary
over time and across workloads. This is problematic be-
cause sharing an appliance in accordance to tenants’
guarantees—while ensuring that it is not underutilized—
requires a priori knowledge of its capacity.

2.5 Why are existing solutions insufficient?

Existing systems focus on either network or appliance
isolation. In Section 6.1, we show that, independently,
these solutions do not guarantee end-to-end throughput.
This raises a natural question: is a naive composition
of these systems sufficient to provide end-to-end guaran-
tees? The answer, as we explain below, is no.1

Consider a two-tenant scenario in which both tenants
are guaranteed half of the available resources. Tenants A
and B each have a single VM sharing a network link and
a key-value store appliance (KVS). Tenant A issues PUTs
and tenant B issues GETs to the KVS. On the network,
GETs are very small as they contain only the request
header; PUTs contain the actual payload. This means that
isolating requests based on network semantics (i.e., mes-
sage size) would allow many more GETs than PUTs to be
sent to the KVS. This is problematic because process-
ing GETs at the KVS consumes as many resources as
processing PUTs (Fig 4(a)). Even if the KVS optimally

1A very similar proposition is discussed as a strawman design in
DRFQ [23, §4.2], where each resource within a middlebox is man-
aged by an independent scheduler.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 237

schedules the arriving requests, the task is moot: the
scheduler can only choose from the set of requests that
actually reaches the KVS. Effectively, tenant B’s GETs
crowd out tenant A’s PUTs, leading to tenant B dominat-
ing the KVS bandwidth—an undesired outcome!

The key takeaway from this example is that naively
composing existing systems is inadequate because their
mechanisms are decoupled: they operate independently,
lack common request semantics, and have no means
to propagate feedback. While it may be possible to
achieve end-to-end isolation by bridging network and
per-appliance isolation, such a solution would require
complex coordination and appliance modifications.

3 Virtual datacenters
We propose virtual datacenters (VDCs) as an abstrac-
tion that encapsulates the performance guarantees given
to tenants. The abstraction presents to tenants dedicated
virtual appliances connected to their VMs through a vir-
tual network switch. Each appliance and VM link is as-
sociated with a throughput guarantee that can be either
fixed or minimum. Tenants with fixed guarantees receive
the resources specified in their VDCs and no more. Ten-
ants with minimum guarantees forgo total predictabil-
ity but retain resource elasticity; they may be given re-
sources that exceed their guarantees (when they can use
them). These tenants can also specify maximum through-
put guarantees to bound their performance variability.

Figure 5 depicts a sample VDC containing two virtual
appliances (a filestore and an encryption service), N vir-
tual machines, and the connecting virtual network. The
guarantees for the filestore and the encryption service are
Gs and GE, respectively. VMs links’ guarantees are also
depicted. These guarantees are aggregate: even if only
one or all N VMs are accessing the virtual filestore at a
given time, the tenant is still guaranteed GS across it.

For a tenant, the process of specifying a VDC is anal-
ogous to that of procuring a small dedicated cluster: it
requires specifying the number of VMs, and the type,
number, and guarantees of the virtual appliances and vir-
tual network links. Note that VM provisioning (RAM,
cores, etc.) remains unchanged—we rely on existing
hypervisors to isolate end-host resources [4, 7, 29, 68].
Providers can offer tenants tools like Cicada [42] and
Bazaar [35] to automatically determine the guarantees
they need, or tenants can match an existing private dat-
acenter. Alternatively, providers may offer templates for
VDCs with different resources and prices, as they do to-
day for VMs (e.g., small, medium, etc.).

Virtual request cost. In Section 2.4 we showed that
the actual cost of serving a request at an appliance can
vary significantly. We address this by charging requests
based on their virtual cost in tokens. For each appliance

Virtual Appliances

Virtual Machines

G1 GN

GS GE

…VM1 VMN

Virtual Network

Figure 5—A VDC is composed of virtual appliances and VM
links associated with throughput guarantees (in tokens/sec).

Request size Request size Packet size

To
ke

ns

8KB

8K
WRITEs

READs

GETs

&

PUTs

(a) Filestore (b) Key-value store (c) Network

To
ke

ns

To
ke

ns

Figure 6—Sample virtual cost functions showing the mapping
between request characteristics and their cost in tokens.

and the network, the provider advertises a virtual cost
function that maps a request to its cost in tokens. Ten-
ant guarantees across all appliances and the network are
thus specified in tokens/sec, a unified throughput metric.
This strikes a balance between the provider and tenants’
requirements. The provider is able to offer workload-
independent guarantees without conservative provision-
ing, while tenants can independently (and statically) de-
termine the requests/second (and bits/second) throughput
that can be expected from an appliance.

Figure 6 shows examples of virtual cost functions.
The key-value store cost function states that any request
smaller than 8 KB costs a flat 8K tokens, while the cost
for larger requests increases linearly with request size.
Consider a tenant with a guarantee of 16K tokens/sec.
The cost function implies that if the tenant’s workload
comprises 4 KB PUTs, it is guaranteed 2 PUTs/s, and if
it comprises 16 KB PUTs, it is guaranteed 1 PUTs/s. For
the network, the relation between packet size and tokens
is linear; tokens are equivalent to bytes. Cloud providers
already implicitly use such functions: Amazon charges
tenants for DyanamoDB key-value store requests in in-
tegral multiples of 1 KB [2]. This essentially models a
virtual cost function with a step-wise linear shape.

The provider needs to determine the virtual cost func-
tion for each appliance. This typically involves approxi-
mating the actual cost of serving requests through bench-
marking, based on historical statistics, or even domain
expertise. However, cost functions need not be exact
(they can even be deliberately different); our design ac-
counts for any mismatch between the virtual and actual
request cost, and ensures full appliance utilization (§4.3).
It is thus sufficient for the provider to roughly approxi-
mate a request’s cost from its observable characteristics.
Section 8 discusses appliances for which observable re-
quest characteristics are a poor indicator of request cost.

238 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4 Design
Pulsar enables the VDC abstraction by mapping tenant
VDCs onto the underlying physical infrastructure and
isolating them from each other. Pulsar’s architecture, de-
picted in Figure 7, consists of a logically centralized con-
troller with full visibility of the datacenter topology and
tenants’ VDC specifications, and a rate enforcer inside
the hypervisor at each compute server. The controller es-
timates tenants’ demands, appliance capacities, and com-
putes allocations that are sent to rate enforcers. The rate
enforcers collect local VM traffic statistics, and enforce
tenant allocations.

Pulsar’s design does not require the modification of
physical appliances, guest OSes, or network elements,
which eases the path to deployment. It also reconciles
the isolation requirements of tenants with the provider’s
goal of high utilization by allocating spare capacity to
tenants that can use it. Specifically, Pulsar’s allocation
mechanism achieves the following goals:

G1 VDC-compliance. Tenants receive an allocation of
resources that meets the guarantees specified in their
VDCs. A tenant can choose from different mecha-
nisms to distribute these resources among its VMs.

G2 VDC-elasticity. Tenants receive allocations that do
not exceed their demands (i.e., the resources they can
actually consume). Moreover, spare resources are al-
located to tenants with minimum guarantees and un-
met demand in accordance to the provider’s policy.

4.1 Allocating resources to tenants

We treat each appliance as an atomic black box and do
not account for resources inside of it. For example, a key-
value store includes internal resources like its CPU and
memory, but we treat all of them as a single resource.
Henceforth, a “resource” is either a network link or an
appliance.2 Each resource is associated with both a ca-
pacity that can vary over time and must be dynamically
estimated, and a cost function that maps a request’s char-
acteristics into the cost (in tokens) of servicing that re-
quest. All of Pulsar’s mechanisms act directly on tenant
flows. A flow encapsulates all connections between a pair
of VMs that share the same path (defined in terms of
the physical resources used). Note that a flow can have
the same source and destination VM, as is the case with
flows that access end-devices like storage servers.

Allocations in Pulsar are performed in control inter-
vals (e.g., 1 sec), and involve the controller assigning
allocation vectors to flows. Each entry in an allocation
vector describes the amount of a particular resource that
a flow can use over the control interval. A flow’s alloca-
tion is the sum of two components. First, a local com-
2Network links are bidirectional and are treated as two resources.

VM1 VMNVM2

Hypervisor
Rate Enforcer

Network Interface Card

…

Compute Servers

Demand Estimation
Capacity Estimation

Rate Allocation

Centralized Controller

VDCs Topology

Figure 7—Pulsar’s architecture is made up of a centralized con-
troller that apportions resources to tenants, and distributed rate
enforcers that uphold these allocations.

ponent is computed by applying a local policy (chosen
by the tenant from a pre-advertised set) to the tenant’s
VDC. Next, a global component is computed by apply-
ing a global policy (chosen by the provider) to the phys-
ical infrastructure. The local policy describes how a ten-
ant distributes its guaranteed resources to its flows, while
the global policy describes how the provider distributes
spare resources in the datacenter to flows with unmet de-
mand. We describe multi-resource allocation next, fol-
lowed by a description of the local and global allocations.

Multi-resource allocation (MRA). The goal of an
MRA scheme is to distribute multiple types of re-
sources among clients with heterogeneous demands.
MRA schemes have been around for decades, primar-
ily in the context of multi-capacity (or multi-dimension)
bin packing problems [41, 45, 47, 54]. However, recent
work [16, 19, 24, 30, 38, 40, 48, 57] has extended MRA
schemes to ensure that the resulting allocations are not
only efficient, but also meet different notions of fairness.

Generally, an MRA mechanism for m clients (flows in
our context) and n resources provides the interface:

A ← MRA(D, W, C) (1)

where A, D, and W are m×n matrices, and C is an n-entry
vector. Di,j represents the demand of flow i for resource j,
or how much of resource j flow i is capable of consuming
in a control interval. Ai,j contains the resulting demand-
aware allocation (i.e., Ai,j ≤ Di,j for all i and j). W con-
tains weight entries used to bias allocations to achieve
a chosen objective (e.g., weighted fairness, or revenue
maximization). C contains the capacity of each resource.
With Pulsar, we can plug in any mechanism that imple-
ments the interface above for either allocation step.

Local allocations. Pulsar gives each tenant a private
VDC. To give tenants control over how their guaran-
teed resources are assigned to their flows, we allow them
to choose a local MRA mechanism (MRAL). For exam-
ple, tenants who want to divide their VDC resources
fairly across their flows could choose a mechanism
that achieves dominant-resource fairness (DRF) [24]
or bottleneck-based fairness [19]. Alternatively, tenants
may prefer a different point in the fairness-efficiency
space, as achieved by other mechanisms [38, 57]. Hence,

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 239

tenant t’s local allocation matrix (At) is given by:

At ← MRAL(Dt, Wt, Ct) (2)

Dt and Wt are demand and weight matrices containing
only t’s flows, and Ct is the capacity vector containing
the capacities of each virtual resource in t’s VDC. These
capacities correspond to the tenant’s guarantees, which
are static and known a priori (§3). Wt is set to a default
(all entries are 1) but can be overridden by the tenant. We
describe how flow demands are estimated in Section 4.2.

Global allocations. To achieve VDC-elasticity, Pulsar
assigns unused resources to flows with unmet demand
based on the provider’s global policy.3 This policy need
not be fair or efficient. For example, the provider can
choose a global allocation mechanism, MRAG, that maxi-
mizes its revenue by favoring tenants willing to pay more
for spare capacity, or prioritizing the allocation of re-
sources that yield a higher profit (even if these allocations
are not optimal in terms of fairness or utilization).

The resulting global allocation is the m× n matrix AG,
where m is the total number of flows (across all tenants
with minimum guarantees), and n is the total number of
resources in the datacenter. AG is given by:

AG ← MRAG(DG, WG, CG) (3)

DG contains the unmet demand for each flow across each
physical resource after running the local allocation step;
entries for resources that are not in a flow’s path are set
to 0. The weights in WG are chosen by the provider, and
can be derived from tenants’ VDCs to allow spare re-
sources to be shared in proportion to up-front payment
(a weighted fair allocation), or set to 1 to allow a fair
(payment-agnostic) allocation. The n-entry capacity vec-
tor CG contains the remaining capacity of every physical
resource in the datacenter. Since tenants’ demands vary
over time, we describe how we estimate them next.

4.2 Estimating a flow’s demand

The first input to Pulsar’s MRA mechanisms is the de-
mand matrix D. A row in D represents the demand vector
for a flow, which in turn, contains the demand (in tokens)
for each resource along the flow’s path. The controller
computes each flow’s demand vector from estimates pro-
vided by rate enforcers. At a high level, the rate enforcer
at a flow’s source uses old and current request statistics
to estimate a flow’s demand for the next interval.

A flow’s demand is the amount of resources that the
application sourcing the flow could consume during a
control interval, and it depends on whether the applica-
tion is open- or closed-loop. Open-loop applications have
no limit on the number of outstanding requests; the ar-
rival rate is based on external factors like user input or
timers. Consequently, a rate enforcer can observe a flow
3Tenants with fixed guarantees are excluded from global allocations.

f ’s demand for the current control interval by tracking
both processed and queued requests.

The two components used to estimate the demand for
flows of open-loop applications are the utilization vector
and the backlog vector. Flow f ’s utilization vector, uf [i],
contains the total number of tokens consumed for each
resource by f ’s requests over interval i.4 Note that if f ’s
requests arrive at a rate exceeding its allocation, some
requests will be queued (§4.4). f ’s backlog vector, bf [i],
contains the tokens needed across each resource in order
to process all the requests that are still queued at the end
of the interval. Put together, the demand vector for flow
f for the next interval, df [i + 1], is simply the sum of the
utilization and backlog vector for the current interval:

df [i + 1] = uf [i] + bf [i] (4)
Estimating the demand for flows of a closed-loop ap-

plication is more challenging. These flows maintain a
fixed number of outstanding requests which limits the
usefulness of the backlog vector (since queuing at any
point in time cannot exceed the number of outstanding
requests). To address this, we account for queuing that
occurs throughout a control interval and not just at the
end of it. Within each control interval, we obtain periodic
samples for the number of requests that are queued above
and are outstanding beyond the rate enforcer; a flow’s
queuing (qf) and outstanding (of) vectors contain the av-
erage number of requests (in tokens) that are queued and
outstanding during a control interval. The demand vector
for closed-loop flows at interval i + 1 is thus given by:

df [i + 1] = uf [i] + qf [i] ·
uf [i]
of [i]

(5)

where “·” and “/” are element-wise operations. The ra-
tionale behind the second component is that an average
of of [i] outstanding tokens results in a utilization of uf [i].
Consequently, if the rate enforcer were to immediately
release all queued requests (which on average account
for qf [i] tokens), the maximum expected additional uti-
lization would be: qf [i] · (uf [i]/of [i]).

In practice, however, it is difficult to differentiate be-
tween open- and closed-loop workloads. To reduce the
probability that our mechanism under-estimates flow de-
mands (which can result in violation of tenants’ VDCs),
we use the maximum of both equations:

df [i + 1] = uf [i] + max
(

bf [i], qf [i] ·
uf [i]
of [i]

)
(6)

During every control interval, rate enforcers compute
and send demand vectors for their flows to the controller,
allowing it to construct the per-tenant and the global de-
mand matrices. To avoid over-reacting to bursty work-
loads, the controller smoothens these estimates through
an exponentially weighted moving average.
4Rate enforcers derive tokens consumed by a flow’s requests on re-
sources along its path by applying the corresponding cost functions.

240 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.3 Estimating appliance capacity

Recall that appliance capacity (measured in to-
kens/second) is the last input to Pulsar’s MRA mecha-
nisms (§4.1). If an appliance’s virtual cost function per-
fectly describes the actual cost of serving a request, the
appliance capacity is independent of its workload; the ca-
pacity is actually constant. However, determining actual
request cost is hard, and thus virtual cost functions are
likely to be approximate. This means that the capacity of
an appliance varies depending on the given workload and
needs to be estimated dynamically.

For networks, congestion control protocols implicitly
estimate link capacity and distribute it among flows.
However, they conflate capacity estimation with resource
allocation which limits them to providing only flow-level
notions of fairness, and their distributed nature increases
complexity and hurts convergence time. Instead, Pulsar’s
controller serves as a natural coordination point, allow-
ing us to design a centralized algorithm that estimates
appliance capacity independently of resource allocation.
This decoupling enables tenant-level allocations instead
of being restricted to flow-level objectives. Furthermore,
global visibility at the controller means that the mecha-
nism is simple—it does not require appliance modifica-
tion or inter-tenant coordination—yet it is accurate.

The basic idea is to dynamically adapt the capac-
ity estimate for the appliance based on congestion sig-
nals. “Congestion” indicates that the capacity estimate
exceeds the appliance’s actual capacity and the appli-
ance is overloaded. We considered both implicit con-
gestion signals like packet loss and latency [22, 37, 74],
and explicit signals like ECN [53] and QCN [32]. How-
ever, obtaining explicit signals requires burdensome ap-
pliance modifications, while implicit signals like packet
loss are not universally supported (e.g., networked stor-
age servers cannot drop requests [58]). Indeed, systems
like PARDA [26] use latency as the sole signal for esti-
mating system capacity. Nevertheless, latency is a noisy
signal, especially when different flows have widely dif-
ferent paths.5 Instead, we use the controller’s global vis-
ibility to derive two implicit congestion signals: appli-
ance throughput and VDC-violation.

Appliance throughput is the total throughput (in to-
kens) of all flows across the appliance over a given in-
terval. When the capacity estimate exceeds the actual ca-
pacity, the appliance is overloaded and is unable to keep
up with its workload. In this case, appliance throughput
is less than the capacity estimate, signaling congestion.

The second congestion signal is needed because we
aim to determine the appliance’s VDC-compliant ca-
pacity—the highest capacity that meets tenants’ VDCs.
Since capacity is workload-dependent, and VDCs im-

5PARDA dampens noise through inter-client coordination.

pact the nature of the workload that reaches the appli-
ance, the VDC-compliant capacity can be lower than
the maximum capacity (across all workloads). To un-
derstand this, consider a hypothetical encryption appli-
ance that serves either 4 RC4 requests, or 1 RC4 and 1
AES request per second (i.e., AES requests are 3× more
expensive than RC4 requests). Assume that the virtual
cost function charges 2 tokens for an AES request and
1 token for an RC4 request, and that two tenants are ac-
cessing the appliance—tAES with a minimum guarantee
of 2 tokens/s, and tRC4 with a minimum guarantee of 1
token/s. The VDC-compliant workload in this scenario
corresponds to 1 AES and 1 RC4 request every second,
resulting in a VDC-compliant capacity of 3 tokens/s.
However, notice that the maximum capacity is actually 4
tokens/s (when the workload is 4 RC4 requests). Assum-
ing 1-second discrete timesteps and FIFO scheduling at
the appliance, using a capacity of 4 tokens/s in Pulsar’s
global allocation step would result in tAES’s guarantee be-
ing violated at least once every 3 seconds: Pulsar allows
an additional RC4 request to go through, leading to un-
even queuing at the appliance, and a workload that is not
VDC-compliant. To avoid this, we use VDC-violation as
a congestion signal.

Capacity estimation algorithm. We use a window-
based approach for estimating appliance capacity. At a
high level, the controller maintains a probing window in
which the appliance’s actual capacity (CREAL) is expected
to lie. The probing window is characterized by its ex-
tremes, minW and maxW, and is constantly refined in re-
sponse to the presence or absence of congestion signals.
The current capacity estimate (CEST) is always within the
probing window and is used by the controller for rate
allocation. The refinement of the probing window com-
prises four phases:

� Binary search increase. In the absence of conges-
tion, the controller increases the capacity estimate to
the midpoint of the probing window. This binary search
is analogous to BIC-TCP [74]. The controller also in-
creases minW to the previous capacity estimate as a lack
of congestion implies that the appliance’s actual capacity
exceeds the previous estimate. This process repeats until
stability is reached or congestion is detected.

� Revert. When congestion is detected, the con-
troller’s response depends on the congestion signal. On
observing the throughput congestion signal, the con-
troller reverts the capacity estimate to minW. This en-
sures that the appliance does not receive an overload-
ing workload for more than one control interval. Further,
maxW is reduced to the previous capacity estimate since
the appliance’s actual capacity is less than this estimate.

� Wait. On observing the VDC-violation signal, the
controller goes through the revert phase onto the wait
phase. The capacity estimate, set to minW in the revert

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 241

0K

3K

7K

10K

0 1 2 3 4 5 6 7 8 9

Search + StableSearch

Wait

Search

Revert

maxW

minW

CEST

Revert

CREAL

Time (seconds)

Ca
pa

ci
ty

 (T
ok

en
s/s

ec
)

Figure 8—Pulsar estimates an appliance’s capacity by probing
for a higher capacity and responding to congestion signals. Sta-
bility is reached once the probing window is small enough.

phase, is not changed until all guarantees are met again.
This allows the appliance, which had been overloaded
earlier, to serve all outstanding requests. This is particu-
larly important as, unlike network switches, many appli-
ances cannot drop requests.

� Stable. Once the probing window is small enough
(e.g., 1% of the maximum capacity), the controller
reaches the stable state in which the capacity estimate is
adjusted in response to minor fluctuations in workload.
Our mechanism relies on tracking the average number of
outstanding requests (measured in tokens) at the appli-
ance during interval i, O[i],6 and comparing its value to
the average number of outstanding requests at the appli-
ance at the beginning of the stable phase, Os. The differ-
ence between these observations affects CEST as follows:

CEST [i + 1] = CEST [i]− α · (O[i]− Os) (7)

where α governs the sensitivity to workload changes.
The rationale is that Os serves as a good predictor of the
number of outstanding requests that can be handled by
the appliance when it is the bottleneck resource. When
the outstanding requests at interval i (O[i]) exceed this
amount, the appliance is likely to be overloaded; the
estimate is reduced to ensure that fewer requests are
let through by the rate enforcers during the next inter-
val. The opposite is also true. Furthermore, workloads
reaching the appliance that differ significantly (more than
10%) from the workload at the beginning of the stable
phase restart the estimation process.

Figure 8 depicts a sample run of our algorithm on an
appliance with an actual capacity (CREAL) of 6500 to-
kens/second. Both minW and maxW are initialized to
conservative values known to be much lower/higher than
CREAL, while the current estimate (CEST) is initialized
to minW. The dotted lines represent minW and maxW,
while the solid line represents CEST . At time t = 1, there
is no congestion signal, so the controller enters phase �,
resulting in CEST being set to 7500 (an overestimate).
During the next interval, the controller notices that the
6The average number of outstanding requests at an appliance, O, is
derived by summing over all flows’ outstanding vectors (§4.2) and
retrieving the entry corresponding to the appliance.

total appliance throughput does not match CEST , which
triggers phase �. The queues that built up at the appli-
ance due to capacity overestimation remain past t = 3,
causing VDCs to be violated and leading into phase �.
This lasts until time t = 5, at which point all remnant
queues have been cleared and the controller is able to go
back to phase �. This process repeats until stability is
reached at time t = 9.

4.4 Rate enforcement

Pulsar rate limits each flow via a rate enforcer found
at the flow’s source hypervisor. Existing single-resource
isolation systems use token buckets [65, §5.4.2] to rate-
limit flows. However, traditional token buckets are insuf-
ficient to enforce multi-resource allocations, as tenants
with changing workloads can consume more resources
than they are allocated.

To understand why, assume a rate-limiter based on a
single-resource token bucket where the bucket is filled
with tokens from the first entry in a flow f ’s allocation
vector (the same applies to any other entry). Further as-
sume that f goes through 2 resources and its estimated
demand vector at interval i is 〈800, 5000〉 (i.e., f is ex-
pected to use 800 tokens of resource 1 and 5,000 of re-
source 2). Suppose that the controller allocates to f all of
its demand, and hence f ’s allocation vector is also 〈800,
5000〉. If f changes its workload and its actual demand
is 〈800, 40000〉—e.g., a storage flow switching from is-
suing ten 500 B READs to ten 4 KB READs, where the
request messages are the same size but the response mes-
sage size increases—the rate-limiter would still let ten
requests go through. This would allow f to consume 8×
its allocation on resource 2; an incorrect outcome!

To address this, we propose a multi-resource token
bucket that associates multiple buckets with each flow,
one for each resource in a flow’s path. Each bucket is
replenished at a rate given by the flow’s allocation for
the corresponding resource. For example, in the above
scenario, a request is let through only if each bucket con-
tains enough tokens to serve the request. Since f was al-
located 5,000 tokens for resource 2, only one 4 KB READ
is sent during interval i, and the remaining requests are
queued until enough tokens are available. This mecha-
nism ensures that even if a flow’s workload changes, its
throughput over the next control interval cannot exceed
its allocation, and thus cannot negatively impact the per-
formance of other flows or tenants.

4.5 Admission control

Pulsar’s allocation assumes that tenants have been ad-
mitted into the datacenter, and their VDCs have been
mapped onto the physical topology in a way that ensures
that enough physical resources are available to meet
their guarantees. This involves placing VMs on physical

242 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

servers and virtual appliances on their respective coun-
terparts. While VM placement is well-studied [12, 14,
18, 44, 50, 73], prior proposals do not consider appliance
placement. Our observation is that Hadrian’s [14] place-
ment algorithm can be adapted to support appliances.

Hadrian proposes a technique for modeling network
bandwidth guarantees (among a tenant’s VMs and across
tenants) as a max-flow network problem [13, §4.1.1].
The result is a set of constraints that guide VM place-
ment in the datacenter. Pulsar’s VDCs can be similarly
modeled. The key idea is to treat appliances as “tenants”
with a single VM, and treat all VM-appliance interac-
tions as communication between tenants. Consequently,
we are able to model the guarantees in tenants’ VDCs
as a maximum-flow network, derive constraints for both
VM and virtual appliance placement, and use Hadrian’s
greedy placement heuristic to map tenants’ VDCs.

However, Hadrian’s placement algorithm requires that
the minimum capacity of each resource be known at ad-
mission time. While we assume that both the datacenter
topology and link capacities are static and well known,
determining the minimum capacity for each appliance is
admittedly burdensome. Fortunately, Libra [61] proposes
a methodology that, while tailored to SSDs, is general
enough to cover numerous appliances. Furthermore, the
work needed to derive appliances’ minimum capacities
can be used towards deriving cost functions as well.

5 Implementation
We implemented a Pulsar prototype comprising a stan-
dalone controller and a rate enforcer. The rate enforcer
is implemented as a filter driver in Windows Hyper-V.
There are two benefits from a hypervisor-based imple-
mentation. First, Pulsar can be used with unmodified ap-
plications and guest OSes. Second, the hypervisor con-
tains the right semantic context for understanding char-
acteristics of requests from VMs to appliances. Thus,
the rate enforcer can inspect the header for each re-
quest to determine its cost. For example, for a request
to a key-value appliance, the enforcer determines its type
(GET/PUT) and its size in each direction (i.e., from the
VM to the appliance and back). For encryption requests,
it determines the request size and kind of encryption.

The driver implementing the rate enforcer is ≈11K
lines of C; 3.1K for queuing and request classification,
6.8K for stat collection, support code, and controller
communication, and 1.1K for multi-resource token buck-
ets. The rate enforcer communicates with the controller
through a user-level proxy that uses TCP-based RPCs; it
provides demand estimates to the controller, and receives
information about flows’ paths, cost functions, and allo-
cations. Each flow is associated with a multi-resource to-
ken bucket. The size of each bucket is set to a default of

token rate × 1 second. A 10 ms timer refills tokens and
determines the queuing and outstanding vectors (§4.2).

The controller is written in ≈6K lines of C# and runs
on a separate server. Inputs to the controller include a
topology map of the datacenter, appliances’ cost func-
tions, and tenants’ VDC specifications. The control in-
terval is configurable and is set to a default of 1 second.
Our traces show that workload changes often last much
longer (§2.1), so a 1 second control interval ensures good
responsiveness and stresses scalability. The controller es-
timates appliance capacity as described in Section 4.3. To
prevent reacting to spurious congestion signals that result
from noisy measurements we require multiple consistent
readings (3 in our experiments).

At the controller, we have implemented DRF [24], H-
DRF [16], and a simple first-fit heuristic as the available
MRA mechanisms. In our experiments, we use DRF for
local allocations (all weights are set to 1), and H-DRF
for global allocations (weights are derived from tenants’
guarantees). When computing these allocations the con-
troller sets aside a small amount of headroom (2–5%)
across network links. This is used to allocate each VM a
(small) default rate for new VM-to-VM flows, which en-
ables these flows to ramp up while the controller is con-
tacted. Note that a new TCP connection between VMs
is not necessarily a new flow since all transport connec-
tions between a pair of VMs (or between a VM and an
appliance) are considered as one flow (§4).

6 Experimental evaluation
To evaluate Pulsar we use a testbed deployment coupled
with simulations. Our testbed consists of eleven servers,
each with 16 Intel 2.4 GHz cores and 380 GB of RAM.
Each server is connected to a Mellanox switch through
a 40 Gbps RDMA-capable Mellanox NIC. At the link
layer, we use RDMA over converged Ethernet (RoCE).
The servers run Windows Server 2012 R2 with Hyper-
V as the hypervisor and each can support up to 12 VMs.
We use three appliances: (i) a filestore with 6 SSDs (Intel
520) as the back-end, (ii) an in-memory key-value store,
and (iii) an encryption appliance inside the hypervisor
at each server. Admission control and placement is done
manually. Overall, our key findings are:

• Using trace-driven experiments, we show that Pulsar
can enforce tenants’ VDCs. By contrast, existing solu-
tions do not ensure end-to-end isolation.

• Our capacity estimation algorithm is able to predict
the capacity of appliances over varying workloads.

• We find that Pulsar imposes reasonable overheads at
the data and control plane. Through simulations, we
show that the controller can compute allocations of
rich policies for up to 24K VMs within 1-5 seconds.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 243

800

125 125
NW

…
VM1 VM8

FS

D

800

125 125
NW

…
VM1 VM8

FS

C

1600

400 400
NW

…
VM1 VM49

EN

A

1600

400 400
NW

…
VM1 VM48

KVS EN
1600

B

Figure 9—VDCs with minimum guarantees for tenants A–D

Tenant READ or GET % IO Size Outstanding IOs #

Database IO (B) 61% 8 KB 8
Trans. Log (C) 1% 0.5 KB 64
Email (D) 56% 64 KB 8

Figure 10—Workload characteristics of each VM for tenants
B–D are derived from a two-day Hotmail trace (§2.2).

6.1 Virtual datacenter enforcement

We first show that Pulsar enforces tenants’ VDCs. The
experiment involves four tenants, A–D, with their VDCs
shown in Figure 9. For example, tenant A has forty-
nine VMs, each with a minimum network bandwidth
of 400 MT/s. For the network, tokens are equivalent
to bytes, so these VMs have a guarantee of 400 MB/s
(3.2 Gbps). This tenant also has a virtual encryption ap-
pliance with a minimum guarantee of 1600 MT/s. For
ease of exposition we use the same cost function for all
three appliances in our testbed: small requests (≤8 KB)
are charged 8 Ktokens, while the cost for other requests
is the equivalent of their size in tokens (Figure 6(b) de-
picts the shape of this cost function).

Workloads. Tenant A has an all-to-one workload with
its VMs sending traffic to one destination VM (this mod-
els a partition/aggregate workflow [10]). We use Iome-
ter [5] parameterized by Hotmail IO traces (§2.2) to drive
the workloads for tenants B–D; we tabulate their charac-
teristics in Figure 10. Database IO is used for tenant B’s
key-value store access, while Transactional log IO and
Email message IO to Hotmail storage are used for C and
D respectively. Traffic from tenants A and B is encrypted
with RC4 by the encryption appliance before being sent
on the wire. Since tenant C generates 512 byte requests
that cost 8 Ktokens, its bytes/sec throughput is 1

16
th

of the
reported tokens/sec. The bytes/sec throughput for other
tenants is the same as their tokens/sec.

Tenants A and C are aggressive: each of A’s VMs has
8 connections to the destination, while C’s generate a
closed-loop workload with 64 outstanding IO requests.

Topology. Figure 11 shows the physical topology of the
testbed. We arrange tenants’ VMs and appliances across
our servers so that at least two tenants compete for each
resource. Tenants A and B compete for the encryption
appliance. Tenants C and D compete for the bandwidth at
the physical filestore appliance. Further, the destination

Filestore
6 SSDs

88

8 servers

C

1

D
KV Store

RAM
6 6 B

A

Figure 11—Testbed’s physical topology. Numbers indicate # of
VMs while arrows show the direction of traffic.

 0

 2000

 4000

 6000

 8000

 0 30 60 90 120

T
h

ro
u

g
h

p
u

t
(M

to
k

en
s/

se
c)

Time (seconds)

Pulsar No enforcement

D

C

B

A

Figure 12—VM-to-VM and VM-to-appliance traffic of four
tenants (113 VMs). Pulsar ensures all guarantees are met.

VM for tenant A, the key-value store used by tenant B,
and all the VMs of tenant D are co-located on the same
server. Thus, they compete at the server’s network link.

Tenant guarantees. For the workload in this experi-
ment, the end-to-end throughput for tenants A-D should
be at least 400, 1600, 800, 800 MT/s respectively.

Tenant performance. The first half of Figure 12 shows
that, with Pulsar, the aggregate throughput of each tenant
exceeds its minimum guarantee. Further, spare capacity
at each resource is shared in proportion to tenants’ guar-
antees. On average, tenant A gets 1100 MT/s for its VM-
to-VM traffic, tenant B gets 3150 MT/s for its key-value
traffic, and tenants C and D get 930 and 900 MT/s across
the filestore respectively.

By contrast, the second half of Figure 12 shows base-
line tenant throughput without Pulsar. We find that the
aggressive tenants (A and C) are able to dominate the
throughput of the underlying resources at the expense of
others. For instance, tenants C and D have the same guar-
antee to the filestore but C’s throughput is 3× that of D’s.
Tenant B’s average throughput is just 580 MT/s, 64%
lower than its guarantee. Similarly, tenant D’s average
throughput is 575 MT/s, 28% lower than its guarantee.

In this experiment, the total throughput (across all ten-
ants) with Pulsar is lower than without it by 8.7%. This is
because Pulsar, by enforcing tenant guarantees, is effec-
tively changing the workload being served by the data-
center. Depending on the scenario and the cost functions,
such a workload change can cause the total throughput to
either increase or decrease (with respect to the baseline).

We also experimented with prior solutions for single-
resource isolation. DRFQ [23] achieves per-appliance
isolation for general middleboxes, while Pisces [62] and

244 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 2500

 5000

 7500

Per-
appliance

Network
 only

Pulsar

T
en

an
t T

hr
ou

gh
pu

t
(M

to
ke

ns
/s

ec
)

D
C
B
A

Figure 13—Prior isolation mechanisms fail to meet tenants’
guarantees. Per-appliance isolation violates C and D’s guaran-
tee, while network only isolation violates D’s guarantee.

 0

 2000

 4000

 6000

 8000

 0 30 60 90 120 150 180

T
h

ro
u

g
h

p
u

t
(M

to
k

en
s/

se
c)

Time (seconds)

D

C

B

(a) Key-value store

 0

 1000

 2000

 3000

 0 30 60 90 120 150 180

T
h

ro
u

g
h

p
u

t
(M

to
k

en
s/

se
c)

Time (seconds)

D

C

B

(b) Filestore

Figure 14—Pulsar’s capacity estimation. The solid black line
represents the estimated capacity. The guarantees of the three
tenants have a ratio of 3:2:1 which is preserved throughout.

IOFlow [66] focus on storage appliances. With such per-
appliance isolation, the filestore, key-value store, and en-
cryption appliances are shared in proportion to tenant
guarantees but not the network. Figure 13 shows that
with per-appliance isolation, tenants B and D miss their
guarantees by 63% and 12% respectively. Note that even
though tenant D is bottlenecked at the filestore, it is
sharing network links with tenant A whose aggressive-
ness hurts D’s performance. We also compare against
network-only isolation, as achieved by Hadrian [14]. Fig-
ure 13 shows that with this approach, tenant C is still able
to hog the filestore bandwidth at the expense of tenant D,
resulting in D’s guarantee being violated by 30%.

6.2 Capacity estimation

We evaluate Pulsar’s capacity estimation algorithm with
an experiment that involves three tenants, B–D, whose
workloads are tabulated in Figure 10. Unlike the previ-
ous experiments, we focus on one appliance at a time,
and change the setup so that all three tenants use the ap-

0

1750

3500

5250

7000

0.5 1 2 4 8 16 32 64Th
ro

ug
hp

ut
 (M

to
ke

ns
/s

ec
)

I/O size (KB)

Baseline

Pulsar

Figure 15—Baseline (no rate limiting) and Pulsar’s throughput

pliance being evaluated. The appliance guarantees for the
tenants are 600, 400, and 200 MT/s, respectively.

To experiment with varying workloads, we activate
tenants one at a time. Figure 14(a) shows the esti-
mated capacity and tenant throughput for the key-value
store appliance. In the first phase, tenant D operates in
isolation. The capacity estimate starts at a low value
(3000 MT/s) and increases through the binary search
phase until the appliance is fully utilized. After 8 sec-
onds, the capacity estimate stabilizes at 6840 MT/s. Ten-
ant C is activated next. Its VMs generate small 512 B
requests that are more expensive for the key-value store
to serve than they are charged, so the appliance’s capac-
ity reduces. The controller detects this workload change
and the capacity estimate is reduced until it stabilizes
at 3485 MT/s. Finally, when tenant B is activated, the
appliance’s actual capacity increases as the fraction of
small requests (from C’s VMs) reduces. The controller
searches for the increased capacity and the estimate sta-
bilizes at 5737 MT/s. Note that the guarantees of all three
tenants are met throughout. Using H-DRF as the MRAG

mechanism ensures that spare resources are given based
on tenants’ guarantees, preserving the 3:2:1 ratio. In all
three phases, the estimate converges within 15 seconds.

Figure 14(b) shows capacity estimation for the file-
store. As tenants are added, their workloads increase the
percentage of small WRITEs, leading to a decrease in the
appliance’s capacity. The root cause for the lower capac-
ity is that the cost function that we chose undercharges all
small requests and incorrectly charges WRITEs the same
as READs (cf. Fig 4(b)). To account for this mismatch, the
capacity estimate is consistently refined and converges to
a value that ensures the appliance is neither being under-
utilized nor are tenants’ guarantees being violated. We
validate our observations by re-running the experiments
with more accurate cost functions. The result is a ca-
pacity estimate that remains constant despite workload
changes. We also experimented with the encryption ap-
pliance and the HDD-filestore, and the estimation results
are similar. We omit them for brevity.

6.3 Data- and control-plane overheads

We first quantify the data-plane overhead of our rate
enforcer. We measure the throughput at an unmodified
Hyper-V server and compare it to the throughput when

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 245

8K

16K

24K

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

o
f

V
M

s

Load (active fraction of VMs)

 0

 1

 2

 3

 4

 5

T
im

e
 (

se
c
o
n
d
s)

Figure 16—Average time for computing rate allocations

our rate limiter is enabled. To show worst-case overheads
we use the in-memory key-value store since that achieves
the highest baseline throughput. 12 VMs are used to gen-
erate a workload with the same number of PUTs and
GETs. We vary the request size from 512 B to 64 KB, thus
shifting the bottleneck from the key-value store’s CPU
for small IO requests to the network for larger requests.

Figure 15 shows the average throughput from 5 runs.
The worst-case reduction in throughput is 15% and hap-
pens for small request sizes (<32 KB). This overhead is
due mostly to data structure locking at high 40+ Gbps
speeds. The overhead for requests larger than 32 KB is
less than 2%. The CPU overhead at the hypervisor was
less than 2% in all cases.

In terms of control-plane overhead, the network cost
of the controller updating rate allocations at the servers is
140 bytes/flow, while the cost of transmitting statistics to
the controller is 256 bytes/flow per control interval. For
example, for 10,000 flows this would mean 10.4 Mbps
of traffic from the controller to the rate limiters and
19.52 Mbps of traffic to the controller. Both numbers
are worst-case—if the rate allocation or the statistics col-
lected by the rate enforcer do not change from one inter-
val to the next, then no communication is necessary. The
latency (including work done by both the controller and
the hypervisor) for setting up a rate limiter for a given
flow is approximately 83 µs. In general, these numbers
indicate reasonable control plane overheads.

6.4 Controller scalability

We evaluate controller scalability through large-scale
simulations. Flow demand estimation and appliance ca-
pacity estimation incur negligible costs for the controller.
Local allocations are parallelizable, and involve much
fewer flows and resources than global allocations. We
thus focus on quantifying the cost of computing global
allocations. We simulate a datacenter with a fat-tree
topology [9] and 12 VMs per physical server. Tenants
are modeled as a set of VMs with a VDC specification.
Each VM sources one flow, either to another VM, or to
an appliance. This results in 12 flows per server, which is
twice the average number observed in practice [39, §4.1].
Based on recent datacenter measurements [49, Fig. 3],
we configure 44% of flows to go to appliances while the

14 43 36 51 32 11 47 41

7 19 16 26 17 5 21 27

5 12 13 20 13 5 14 33

4 10 13 29 15 7 13 43

10 min 3 10 16 197 76 10 min 3 12 28

cale tio e

1 2 86

5 21 27

5 16 30

5 14 33

7 13 43

10 min 3 12 28

30 min 1 4 13

cale tio e s sent

48 35 37 19

50 48 44 43

50 48 44 43

49 49 43 43

49 48 43 41

10 min 50 60 38 29

30 min 47 70 26 10

Er
ro

r (
%

)

0

25

50

75

100

Time-scale
100 msec 1 sec 10 sec 30 sec 1 min 10 min

RW ratio IO size # IOs Bytes sent Bytes received

Figure 17—The choice of control interval affects the accuracy
of the utilization vector (§4.2) for estimating future demand.
The error reduces when the control interval is ≈10–30 seconds.

rest are VM-to-VM flows. For resources, we model each
server’s network link (uplink and downlink) and all phys-
ical appliances. Thus, for a datacenter with 2000 servers
and 200 appliances, we model 4200 resources.

Figure 16 shows the average allocation time with our
iterative DRF implementation as the global allocation
mechanism; we vary the total number of VMs and the
fraction of VMs that are active. We find that our con-
troller can compute allocations for a medium-scale data-
center with 24K VMs and 2000 servers within 1–5 sec-
onds. When only 20% of the VMs are active, allocation
time is at or below 1.5 seconds, even with 24K VMs.
However, high loads can push allocation time to as high
as 4.9 seconds. The majority of the time is spent perform-
ing element-wise arithmetic operations on the 4200-entry
vectors. This suggests that parallelizing these operations
could provide meaningful performance benefits. We are
currently experimenting with GPU implementations of
different allocation mechanisms.

Repeating the experiment with H-DRF shows that
costs are an order of magnitude higher. This highlights
the tradeoff between a policy’s expressiveness and its
computational burden.

6.5 Choice of control interval

Resource allocation in Pulsar is demand-driven. Hence,
the ideal control interval should capture the true demand
of flows. Estimating demand for a very short future inter-
val can be impacted by bursts in workload while estimat-
ing for a long interval may not be responsive enough (i.e.,
it may not capture actual workload changes). To verify
this, we used our network and IO traces (§2.2) to esti-
mate flow demand at various time-scales. Unfortunately,
the traces do not have queuing and backlog information,
so we cannot use Pulsar’s demand estimation mechanism
detailed in Section 4.2. Instead, we simply use past uti-
lization as an indicator of future demand. Specifically,
we approximate the demand for a time interval using an
exponentially weighted moving average of the utilization
over the previous intervals. Thus, the demand errors we
report are an over-estimate.

246 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

For the network, we use two demand metrics: bytes
sent and received. For the storage traffic, the metrics
are the number and mean size of IOs, and the read-
to-write IO ratio. Figure 17 shows the average demand
estimation error across several time-scales. As is well-
known [15, 39], most workloads exhibit bursty behavior
at very fine timescales (below 1 sec); hence, using a very
short control interval leads to large estimation errors. At
large time scales (several minutes), past utilization is a
poor predictor of future demand. For these workloads, a
control interval of ≈10–30 seconds is best suited for de-
mand estimation, offering a good trade-off between re-
sponsiveness and stability. While preliminary, these re-
sults indicate that Pulsar’s controller-based architecture
can cope with real datacenter workloads.

7 Related work
Section 2 briefly described existing work on inter-tenant
performance isolation. Below we expand that description
and contrast related work to Pulsar.
Appliance isolation. A large body of recent work fo-
cuses on storage isolation [17, 26, 27, 62, 66], but in
all cases the network is assumed to be over-provisioned.
While DRFQ [23] achieves fair sharing of multiple re-
sources within a single appliance, it differs from Pulsar
mechanistically and in scope: Pulsar decouples capacity
estimation from resource allocation, and provides isola-
tion across multiple appliances and the network. Further-
more, Pulsar provides workload-independent guarantees
by leveraging an appliance-agnostic throughput metric.

Like Pisces [62] and IOFlow [66], Pulsar uses a cen-
tralized controller to offer per-tenant guarantees. How-
ever, Pisces relies on IO scheduling at the storage server,
while Pulsar performs end-host enforcement without ap-
pliance modification. Moreover, Pulsar dynamically es-
timates the capacity of appliances, whereas IOFlow re-
quires that they be known a priori.
Network isolation. Numerous systems isolate tenants
across a shared datacenter network [11, 12, 14, 28, 36,
43, 51, 52, 60, 73]. Beyond weighted sharing [60] and
fixed reservations [12, 28, 73], recent efforts ensure min-
imum network guarantees, both with switch modifica-
tions [11, 14, 51], and without them [36, 43, 52]. Pulsar
extends the latter body of work by providing guarantees
that span datacenter appliances and the network.
Market-based resource pricing. Many proposals allo-
cate resources to bidding users based on per-resource
market prices that are measured using a common vir-
tual currency [21, 34, 63, 64, 69]. However, the value
of a unit of virtual currency in terms of actual through-
put (e.g., requests/sec) varies with supply and demand.
Consequently, a tenant’s throughput is not guaranteed.
By contrast, Pulsar charges requests based on their vir-

tual cost (measured in tokens). While tokens can be seen
as a virtual currency, the fact that each resource is asso-
ciated with a pre-advertised virtual cost function means
that a tenant’s guarantees in tokens/sec can still be stati-
cally translated into guarantees in requests/sec.
Virtual Datacenters. The term VDC has been used as
a synonym for Infrastructure-as-a-service offerings (i.e.,
VMs with CPU and memory guarantees [3, 6]). Sec-
ondNet [28] extended the term to include network ad-
dress and performance isolation by associating VMs with
private IPs and network throughput guarantees. Pulsar
broadens the VDC definition to include appliances and
ensures throughput guarantees across all resources.

8 Discussion and summary
Pulsar’s design relies on cost functions that translate re-
quests into their virtual cost. However, for some appli-
ances, observable request characteristics (size, type, etc.)
are not a good indicator of request cost. For example,
quantifying the cost of a query to a SQL database re-
quires understanding the structure of the query, the data
being queried, and database internals. Similarly, the iso-
lation of appliances that perform caching requires fur-
ther work. While Pulsar implicitly accounts for caching
through higher capacity estimates, it does not discrimi-
nate between requests that hit the cache and those that do
not. We are experimenting with stateful cost functions
that can charge requests based on past events (e.g., re-
peated requests within an interval cost less), to explicitly
account for such appliances.

In summary, Pulsar gives tenants the abstraction of a
virtual datacenter (VDC) that affords them the perfor-
mance stability of a in-house cluster, and the convenience
and elasticity of the shared cloud. It uses a centralized
controller to enforce end-to-end throughput guarantees
that span multiple appliances and the network. This de-
sign also allows for a simple capacity estimation mech-
anism that is both effective, and appliance-agnostic. Our
prototype shows that Pulsar can enforce tenant VDCs
with reasonable overheads, and allows providers to re-
gain control over how their datacenter is utilized.

Acknowledgments

This paper was improved by conversations with Attilio
Mainetti, Ian Kash, Jake Oshins, Jim Pinkerton, Antony
Rowstron, Tom Talpey, and Michael Walfish; and by
helpful comments from Josh Leners, Srinath Setty, Riad
Wahby, Edmund L. Wong, the anonymous reviewers, and
our shepherd, Remzi Arpaci-Dusseau. We are also grate-
ful to Swaroop Kavalanekar and Bruce Worthington for
the Hotmail IO traces, Andy Slowey for testbed support,
and Mellanox for the testbed switches. Sebastian Angel
was supported by NSF grant 1040083 during the prepa-
ration of this paper.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 247

References
[1] Amazon AWS Products. http://aws.amazon.com/

products/.
[2] Amazon DynamoDB capacity unit. http://aws.amazon.com/

dynamodb/faqs/#What_is_a_readwrite_capacity_unit.
[3] Bluelock: Virtual data centers. http://www.bluelock.com/

virtual-datacenters.
[4] Hyper-V resource allocation. http://technet.microsoft.

com/en-us/library/cc742470.aspx.
[5] Iometer. http://iometer.org.
[6] VMware vCloud: Organization virtual data center. http://kb.

vmware.com/kb/1026320.
[7] vSphere resource management guide.

https://www.vmware.com/support/pubs/

vsphere-esxi-vcenter-server-pubs.html.
[8] WANProxy. http://wanproxy.org.
[9] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commod-

ity data center network architecture. In Proceedings of the ACM
SIGCOMM Conference, Aug. 2008.

[10] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In Proceedings of the ACM SIGCOMM Conference,
Aug. 2010.

[11] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. The price
is right: Towards location-independent costs in datacenters. In
Proceedings of the ACM Workshop on Hot Topics in Networks
(HotNets), Nov. 2011.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In Proceedings of the ACM SIG-
COMM Conference, Aug. 2011.

[13] H. Ballani, D. Gunawardena, and T. Karagiannis. Network shar-
ing in multi-tenant datacenters. Technical Report MSR-TR-2012-
39, MSR, 2012.

[14] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawaradena,
and G. O’Shea. Chatty tenants and the cloud network sharing
problem. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), Apr. 2013.

[15] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding
data center traffic characteristics. In Proceedings of the ACM
SIGCOMM Workshop on Research on Enterprise Networking
(WREN), Aug. 2009.

[16] A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker,
and I. Stoica. Hierarchical scheduling for diverse datacenter
workloads. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC), Oct. 2013.

[17] J.-P. Billaud and A. Gulati. hClock: Hierarchical QoS for packet
scheduling in a hypervisor. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Apr. 2013.

[18] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera. A stable network-aware VM placement for cloud sys-
tems. In Proceedings of the IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), May 2012.

[19] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and
N. Linial. No justified complaints: On fair sharing of multiple
resources. In Proceedings of the Innovations in Theoretical Com-
puter Science (ITCS) Conference, Aug. 2012.

[20] H. Dreger, A. Feldman, V. Paxson, and R. Sommer. Predicting
the resource consumption of network intrusion detection systems.
In Proceedings of the International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Sept. 2008.

[21] M. Feldman, K. Lai, and L. Zhang. A price-anticipating resource
allocation mechanism for distributed shared clusters. In Proceed-
ings of the ACM Conference on Electronic Commerce (EC), June
2005.

[22] S. Floyd. HighSpeed TCP for large congestion windows, Dec.
2003. RFC 3649. http://www.ietf.org/rfc/rfc3649.txt.

[23] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource

fair queueing for packet processing. In Proceedings of the ACM
SIGCOMM Conference, Aug. 2012.

[24] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation of mul-
tiple resource types. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Mar.
2011.

[25] D. Ghoshal, R. S. Canon, and L. Ramakrishnan. I/O performance
of virtualized cloud environments. In Proceedings of the Inter-
national Workshop on Data Intensive Computing in the Clouds
(DataCloud), May 2011.

[26] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: pro-
portional allocation of resources for distributed storage access.
In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), Feb. 2009.

[27] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling
throughput variability for hypervisor IO scheduling. In Proceed-
ings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct. 2010.

[28] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network virtualization
architecture with bandwidth guarantees. In Proceedings of the
International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), Nov. 2010.

[29] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforc-
ing performance isolation across virtual machines in XEN. In
Proceedings of the ACM/IFIP/USENIX International Middleware
Conference, Dec. 2006.

[30] A. Gutman and N. Nisan. Fair allocation without trade. In Pro-
ceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), June 2012.

[31] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early
observations on the performance of Windows Azure. In Proceed-
ings of the International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC), June 2010.

[32] IEEE Computer Society. Virtual bridged local area networks.
Amendment 13: Congestion notification, Apr. 2010. IEEE Std.
802.1Qau-2010.

[33] A. Iosup, N. Yigitbasi, and D. Epema. On the performance vari-
ability of cloud services. Technical Report PDS-2010-002, Delft
University, 2010.

[34] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi. Self-recharging
virtual currency. In Proceedings of the ACM SIGCOMM Work-
shop on the Economics of Peer-to-Peer Systems (P2PECON),
Aug. 2005.

[35] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron. Bridging the tenant-provider gap in cloud services. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC),
2012.

[36] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim,
and A. Greenberg. EyeQ: Practical network performance iso-
lation at the edge. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Apr.
2013.

[37] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, ar-
chitecture, algorithms, performance. In Proceedings of the IEEE
International Conference on Computer Communications (INFO-
COM), Mar. 2004.

[38] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allo-
cation: Fairness-efficiency tradeoffs in a unifying framework. In
Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), Apr. 2012.

[39] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken.
The nature of data center traffic: Measurements & analysis. In
Proceedings of the ACM SIGCOMM Conference on Internet
Measurement (IMC), Nov. 2009.

[40] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind: Dy-
namic fair division of multiple resources. In Proceedings of the

248 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), May 2013.

[41] L. T. Kou and G. Markowsky. Multidimensional bin packing
algorithms. IBM Journal of Research and Development, 21(5),
Sept. 1977.

[42] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Ci-
cada: Introducing predictive guarantees for cloud networks. In
Proceedings of the USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), June 2014.

[43] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banarjee, J.-M. Kang, and
P. Sharma. Application-driven bandwidth guarantees in datacen-
ters. In Proceedings of the ACM SIGCOMM Conference, Aug.
2014.

[44] S. Lee, R. Panigraphy, V. Prabhakaran, V. Ramasubramanian,
K. Talwar, L. Uyeda, and U. Wieder. Validating heuristics for vir-
tual machines consolidation. Technical Report MSR-TR-2011-9,
Microsoft Research, 2011.

[45] W. Leinberger, G. Karypis, and V. Kumar. Multi-capacity bin
packing algorithms with applications to job scheduling under
multiple constraints. In Proceedings of the International Con-
ference on Parallel Processing (ICPP), Sept. 1999.

[46] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Com-
paring public cloud providers. In Proceedings of the ACM SIG-
COMM Conference on Internet Measurement (IMC), Nov. 2010.

[47] K. Maruyama, S. K. Chang, and D. T. Tang. A general packing
algorithm for multidimensional resource requirements. Interna-
tional Journal of Computer and Information Sciences, 6(2), 1977.

[48] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant
resource fairness: Extensions, limitations, and indivisibilities. In
Proceedings of the ACM Conference on Electronic Commerce
(EC), June 2012.

[49] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and
N. Karri. Ananta: Cloud scale load balancing. In Proceedings
of the ACM SIGCOMM Conference, Aug. 2013.

[50] J. T. Piao and J. Yan. A network-aware virtual machine place-
ment and migration approach in cloud computing. In Proceedings
of the International Conference on Grid and Cloud Computing
(GCC), Nov. 2010.

[51] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica. FairCloud: Sharing the network in cloud
computing. In Proceedings of the ACM SIGCOMM Conference,
Aug. 2012.

[52] L. Popa, P. Yalagandula, S. Banarjee, J. C. Mogul, Y. Turner, and
J. R. Santos. ElasticSwitch: Practical work-conserving bandwidth
guarantees for cloud computing. In Proceedings of the ACM SIG-
COMM Conference, Aug. 2013.

[53] K. Ramakrishnan, S. Floyd, and D. Black. The addition of ex-
plicit congestion notification (ECN) to IP, Sept. 2001. RFC 3168.
http://www.ietf.org/rfc/rfc3168.txt.

[54] N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and D. C.
Schmidt. Toward effective multi-capacity resource allocation in
distributed real-time embedded systems. In Proceedings of the
IEEE Symposium on Object/Component/Service-oriented Real-
time Distributed Computing (ISORC), May 2008.

[55] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance.
In Proceedings of the International Conference on Very Large
Data Bases (VLDB), Sept. 2010.

[56] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The
middlebox manifesto: Enabling innovation in middlebox deploy-
ment. In Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets), Nov. 2011.

[57] D. Shah and D. Wischik. Principles of resource allocation in net-
works. In Proceedings of the ACM SIGCOMM Education Work-
shop, May 2011.

[58] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network file system (NFS) version 4
protocol, Apr. 2003. RFC3530. http://www.ietf.org/rfc/
rfc3530.txt.

[59] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem: Net-
work processing as a cloud service. In Proceedings of the ACM
SIGCOMM Conference, Aug. 2012.

[60] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Shar-
ing the data center network. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), Mar. 2011.

[61] D. Shue and M. J. Freedman. From application requests to Vir-
tual IOPs: Provisioned key-value storage with Libra. In Proceed-
ings of the ACM European Conference on Computer Systems (Eu-
roSys), Apr. 2014.

[62] D. Shue, M. J. Freedman, and A. Shaikh. Performance isolation
and fairness for multi-tenant cloud storage. In Proceedings of
the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), Oct. 2012.

[63] I. Stoica, H. Abdel-Wahab, and A. Pothen. A microeconomic
scheduler for parallel computers. In Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, 1994.

[64] I. E. Sutherland. A futures market in computer time. Communi-
cations of the ACM, 11(6), June 1968.

[65] A. S. Tanenbaum and D. J. Wetherall. Computer Networks. Pren-
tice Hall, 5th edition, Oct. 2010.

[66] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu. IOFlow: A software-defined
storage architecture. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), Nov. 2013.

[67] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Practical
power-proportionality for data center storage. In Proceedings of
the ACM European Conference on Computer Systems (EuroSys),
Apr. 2011.

[68] C. A. Waldspurger. Memory resource management in VMware
ESX server. In Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), Dec. 2002.

[69] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexi-
ble proportional-share resource management. In Proceedings of
the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), Nov. 1994.

[70] E. Walker. Benchmarking Amazon EC2 for high-performance
scientific computing. USENIX ;login:, 33(5), 2008.

[71] G. Wang and T. S. E. Ng. The impact of virtualization on net-
work performance of Amazon EC2 data center. In Proceedings
of the IEEE International Conference on Computer Communica-
tions (INFOCOM), Apr. 2010.

[72] H. Wang and P. J. Varman. Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation. In Pro-
ceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST), Feb. 2014.

[73] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is
change: Incorporating time-varying network reservations in data
centers. In Proceedings of the ACM SIGCOMM Conference, Aug.
2012.

[74] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. In Proceedings
of the IEEE International Conference on Computer Communica-
tions (INFOCOM), Mar. 2004.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 249

Simple Testing Can Prevent Most Critical Failures

An Analysis of Production Failures in Distributed Data-intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain, Michael Stumm

University of Toronto

Abstract

Large, production quality distributed systems still fail pe-

riodically, and do so sometimes catastrophically, where

most or all users experience an outage or data loss. We

present the result of a comprehensive study investigat-

ing 198 randomly selected, user-reported failures that oc-

curred on Cassandra, HBase, Hadoop Distributed File

System (HDFS), Hadoop MapReduce, and Redis, with

the goal of understanding how one or multiple faults

eventually evolve into a user-visible failure. We found

that from a testing point of view, almost all failures re-

quire only 3 or fewer nodes to reproduce, which is good

news considering that these services typically run on a

very large number of nodes. However, multiple inputs

are needed to trigger the failures with the order between

them being important. Finally, we found the error logs

of these systems typically contain sufficient data on both

the errors and the input events that triggered the failure,

enabling the diagnose and the reproduction of the pro-

duction failures.

We found the majority of catastrophic failures could

easily have been prevented by performing simple testing

on error handling code – the last line of defense – even

without an understanding of the software design. We ex-

tracted three simple rules from the bugs that have lead to

some of the catastrophic failures, and developed a static

checker, Aspirator, capable of locating these bugs. Over

30% of the catastrophic failures would have been pre-

vented had Aspirator been used and the identified bugs

fixed. Running Aspirator on the code of 9 distributed sys-

tems located 143 bugs and bad practices that have been

fixed or confirmed by the developers.

1 Introduction

Real-world distributed systems inevitably experience

outages. For example, an outage to Amazon Web Ser-

vices in 2011 brought down Reddit, Quora, FourSqure,

part of the New York Times website, and about 70 other

sites [1], and an outage of Google in 2013 brought down

Internet traffic by 40% [21]. In another incident, a DNS

error dropped Sweden off the Internet, where every URL

in the .se domain became unmappable [46].

Given that many of these systems were designed to be

highly available, generally developed using good soft-

ware engineering practices, and intensely tested, this

raises the questions of why these systems still experi-

ence failures and what can be done to increase their re-

siliency. To help answer these questions, we studied 198

randomly sampled, user-reported failures of five data-

intensive distributed systems that were designed to tol-

erate component failures and are widely used in produc-

tion environments. The specific systems we considered

were Cassandra, HBase, Hadoop Distributed File System

(HDFS), Hadoop MapReduce, and Redis.

Our goal is to better understand the specific failure

manifestation sequences that occurred in these systems

in order to identify opportunities for improving their

availability and resiliency. Specifically, we want to bet-

ter understand how one or multiple errors1 evolve into

component failures and how some of them eventually

evolve into service-wide catastrophic failures. Individual

elements of the failure sequence have previously been

studied in isolation, including root causes categoriza-

tions [33, 52, 50, 56], different types of causes includ-

ing misconfiguraitons [43, 66, 49], bugs [12, 41, 42, 51]

hardware faults [62], and the failure symptoms [33, 56],

and many of these studies have made significant impact

in that they led to tools capable of identifying many bugs

(e.g., [16, 39]). However, the entire manifestation se-

quence connecting them is far less well-understood.

For each failure considered, we carefully studied the

failure report, the discussion between users and develop-

ers, the logs and the code, and we manually reproduced

73 of the failures to better understand the specific mani-

festations that occurred.

Overall, we found that the error manifestation se-

quences tend to be relatively complex: more often than

not, they require an unusual sequence of multiple events

with specific input parameters from a large space to lead

the system to a failure. This is perhaps not surprising

considering that these systems have undergone thorough

testing using unit tests, random error injections [18], and

static bug finding tools such as FindBugs [32], and they

are deployed widely and in constant use at many orga-

nization. But it does suggest that top-down testing, say

1Throughout this paper, we use the following standard terminol-

ogy [36]. A fault is the initial root cause, which could be a hardware

malfunction, a software bug, or a misconfiguration. A fault can produce

abnormal behaviors referred to as errors, such as system call error re-

turn or Java exceptions. Some of the errors will have no user-visible

side-effects or may be appropriately handled by software; other errors

manifest into a failure, where the system malfunction is noticed by end

users or operators.

1

250 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

using input and error injection techniques, will be chal-

lenged by the large input and state space. This is perhaps

why these studied failures escaped the rigorous testing

used in these software projects.

We further studied the characteristics of a specific sub-

set of failures — the catastrophic failures that affect all

or a majority of users instead of only a subset of users.

Catastrophic failures are of particular interest because

they are the most costly ones for the vendors, and they

are not supposed to occur as these distributed systems

are designed to withstand and automatically recover from

component failures. Specifically, we found that:

almost all (92%) of the catastrophic system failures

are the result of incorrect handling of non-fatal errors

explicitly signaled in software.

While it is well-known that error handling code is often

buggy [24, 44, 55], its sheer prevalence in the causes of

the catastrophic failures is still surprising. Even more

surprising given that the error handling code is the last

line of defense against failures, we further found that:

in 58% of the catastrophic failures, the underlying

faults could easily have been detected through simple

testing of error handling code.

In fact, in 35% of the catastrophic failures, the faults

in the error handling code fall into three trivial patterns:

(i) the error handler is simply empty or only contains a

log printing statement, (ii) the error handler aborts the

cluster on an overly-general exception, and (iii) the error

handler contains expressions like “FIXME” or “TODO”

in the comments. These faults are easily detectable by

tools or code reviews without a deep understanding of the

runtime context. In another 23% of the catastrophic fail-

ures, the error handling logic of a non-fatal error was so

wrong that any statement coverage testing or more care-

ful code reviews by the developers would have caught

the bugs.

To measure the applicability of the simple rules we ex-

tracted from the bugs that have lead to catastrophic fail-

ures, we implemented Aspirator, a simple static checker.

Aspirator identified 121 new bugs and 379 bad practices

in 9 widely used, production quality distributed systems,

despite the fact that these systems already use state-of-

the-art bug finding tools such as FindBugs [32] and error

injection tools [18]. Of these, 143 have been fixed or

confirmed by the systems’ developers.

Our study also includes a number of additional obser-

vations that may be helpful in improving testing and de-

bugging strategies. We found that 74% of the failures are

deterministic in that they are guaranteed to manifest with

an appropriate input sequence, that almost all failures are

guaranteed to manifest on no more than three nodes, and

that 77% of the failures can be reproduced by a unit test.

Software lang.
failures

total sampled catastrophic

Cassandra Java 3,923 40 2

HBase Java 5,804 41 21

HDFS Java 2,828 41 9

MapReduce Java 3,469 38 8

Redis C 1,192 38 8

Total – 17,216 198 48

Table 1: Number of reported and sampled failures for the sys-

tems we studied, and the catastrophic ones from the sample set.

Moreover, in 76% of the failures, the system emits ex-

plicit failure messages; and in 84% of the failures, all of

the triggering events that caused the failure are printed

into the log before failing. All these indicate that the

failures can be diagnosed and reproduced in a reason-

ably straightforward manner, with the primary challenge

being to have to sift through relatively noisy logs.

2 Methodology and Limitations

We studied 198 randomly sampled, real world fail-

ures reported on five popular distributed data-analytic

and storage systems, including HDFS, a distributed file

system [27]; Hadoop MapReduce, a distributed data-

analytic framework [28]; HBase and Cassandra, two

NoSQL distributed databases [2, 3]; and Redis, an in-

memory key-value store supporting master/slave replica-

tion [54]. We focused on distributed data-intensive sys-

tems because they are the building blocks of many inter-

net software services, and we selected the five systems

because they are widely used and are considered produc-

tion quality.

The failures we studied were extracted from the issue

tracking databases of these systems. We selected tickets

from these databases because of their high quality: each

selected failure ticket documents a distinct failure that

is confirmed by the developers, the discussions between

users and developers, and the failure resolutions in the

form of a patch or configuration change. Duplicate fail-

ures were marked by the developers, and are excluded

from our study.

The specific set of failures we considered were se-

lected from the issue tracking databases as follows. First,

we only selected severe failures with the failure ticket

priority field marked as “Blocker”, “Critical”, or “Ma-

jor”. Secondly, we only considered tickets dated 2010 or

later so as not to include failures of obsolete systems or

systems early in their lifetime. Thirdly, we filtered out

failures in testing systems by heuristically rejecting fail-

ures where the reporter and assignee (i.e., the developer

who is assigned to resolve the failure) were the same. Fi-

nally, we randomly selected failures from the remaining

set to make our observations representative of the entire

failure population. Table 1 shows the distribution of the

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 251

failure sets considered amongst the five systems and their

sampling rates.

For each sampled failure ticket, we carefully studied

the failure report, the discussion between users and de-

velopers, related error logs, the source code, and patches

to understand the root cause and its propagation leading

to the failure. We also manually reproduced 73 of the

failures to better understand them.

Limitations: as with all characterization studies, there

is an inherent risk that our findings may not be repre-

sentative. In the following we list potential sources of

biases and describe how we used our best-efforts to ad-

dress them.

(1) Representativeness of the selected systems. We only

studied distributed, data-intensive software systems. As

a result, our findings might not generalize to other types

of distributed systems such as telecommunication net-

works or scientific computing systems. However, we

took care to select diverse types of data-intensive pro-

grams that include both data-storage and analytical sys-

tems, both persistent store and volatile caching, both

written in Java and C, both master-slave and peer-to-peer

designs. (HBase, HDFS, Hadoop MapReduce, and Redis

use master-slave design, while Cassandra uses a peer-to-

peer gossiping protocol.) At the very least, these projects

are widely used: HDFS and Hadoop MapReduce are

the main elements of the Hadoop platform, which is the

predominant big-data analytic solution [29]; HBase and

Cassandra are the top two most popular wide column

store system [30], and Redis is the most popular key-

value store system [53].

Our findings also may not generalize to systems earlier

in their development cycle since we only studied systems

considered production quality. However, while we only

considered tickets dated 2010 or later to avoid bugs in

premature systems, the buggy code may have been newly

added. Studying the evolutions of these systems to estab-

lish the correlations between the bug and the code’s age

remains as the future work.

(2) Representativeness of the selected failures. Another

potential source of bias is the specific set of failures we

selected. We only studied tickets found in the issue-

tracking databases that are intended to document soft-

ware bugs. Other errors, such as misconfigurations, are

more likely to be reported in user discussion forums,

which we chose not to study because they are much less

rigorously documented, lack authoritative judgements,

and are often the results of trivial mistakes. Conse-

quently, we do not draw any conclusions on the distri-

bution of faults, which has been well-studied in comple-

mentary studies [50, 52]. Note, however, that it can be

hard for a user to correctly identify the nature of the cause

of a failure; therefore, our study still includes failures that

Symptom all catastrophic

Unexpected termination 74 17 (23%)

Incorrect result 44 1 (2%)

Data loss or potential data loss* 40 19 (48%)

Hung System 23 9 (39%)

Severe performance degradation 12 2 (17%)

Resource leak/exhaustion 5 0 (0%)

Total 198 48 (24%)

Table 2: Symptoms of failures observed by end-users or oper-

ators. The right-most column shows the number of catastrophic

failures with “%” identifying the percentage of catastrophic

failures over all failures with a given symptom. *: examples

of potential data loss include under-replicated data blocks.

stem from misconfigurations and hardware faults.

In addition, we excluded duplicated bugs from our

study so that our study reflects the characteristics of

distinct bugs. One could argue that duplicated bugs

should not be removed because they happened more of-

ten. There were only a total of 10 duplicated bugs that

were excluded from our original sample set. Therefore

they would not significantly change our conclusions even

if they were included.

(3) Size of our sample set. Modern statistics suggests that

a random sample set of size 30 or more is large enough

to represent the entire population [57]. More rigorously,

under standard assumptions, the Central Limit Theorem

predicts a 6.9% margin of error at the 95% confidence

level for our 198 random samples. Obviously, one can

study more samples to further reduce the margin of error.

(4) Possible observer errors. To minimize the possibility

of observer errors in the qualitative aspects of our study,

all inspectors used the same detailed written classifica-

tion methodology, and all failures were separately inves-

tigated by two inspectors before consensus was reached.

3 General Findings

This section discusses general findings from the entire

failure data set in order to provide a better understanding

as to how failures manifest themselves. Table 2 catego-

rizes the symptoms of the failures we studied.

Overall, our findings indicate that the failures are rel-

atively complex, but they identify a number of oppor-

tunities for improved testing. We also show that the

logs produced by these systems are rich with informa-

tion, making the diagnosis of the failures mostly straight-

forward. Finally, we show that the failures can be re-

produced offline relatively easily, even though they typ-

ically occurred on long-running, large production clus-

ters. Specifically, we show that most failures require no

more 3 nodes and no more than 3 input events to repro-

duce, and most failures are deterministic. In fact, most

of them can be reproduced with unit tests.

3

252 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Num. of events %

1 23%
�

single event

2 50%

multiple events: 77%
3 17%

4 5%

> 4 5%

Table 3: Minimum number of input events required to trigger

the failures.

Input event type %

Starting a service 58%

File/database write from client 32%

Unreachable node (network error, crash, etc.) 24%

Configuration change 23%

Adding a node to the running system 15%

File/database read from client 13%

Node restart (intentional) 9%

Data corruption 3%

Other 4%

Table 4: Input events that led to failures. The % column re-

ports the percentage of failure where the input event is required

to trigger the failure. Most failures require multiple preceding

events, so the sum of the “%” column is greater than 100%.

3.1 Complexity of Failures

Overall, our findings indicate that the manifestations of

the failures are relatively complex.

Finding 1 A majority (77%) of the failures require more

than one input event to manifest, but most of the failures

(90%) require no more than 3. (See Table 3.)

Figure 1 provides an example where three input events

are required for the failure to manifest.

Table 4 categorizes the input events that lead to fail-

ures into 9 categories. We consider these events to be “in-

put events” from a testing and diagnostic point of view —

some of the events (e.g., “unreachable node”, “data cor-

ruption”) are not strictly user inputs but can easily be em-

ulated by a tester or testing tools. Note that many of the

events have specific requirements for a failure to mani-

fest (e.g., a “file write” event needs to occur on a partic-

ular data block), making the input event space to explore

for testing immensely large.

Of the 23% of failures that require only a single event

to manifest, the event often involves rarely used or newly

introduced features, or are caused by concurrency bugs.

Finding 2 The specific order of events is important in

88% of the failures that require multiple input events.

Obviously, most of the individual events in Table 4

are heavily exercised and tested (e.g., read and write),

which is why only in minority of cases will a single input

NameNode DataNode1

(only one DataNode started) 1. upload

 blkA_100 send to DN1

(100 is the

generation stamp)

stores block:

blkA_100
add blkA_100 to

‘needReplication’ queue

 2. append

 to blkA updates to: blkA_101

 3. Start DN2

check needReplication:

ask DN1 to replicate

blkA_100 to DN2

gen-stamp mismatch:

blkA_100 (from NN) ≠

blkA_101 (local copy)
namenode.register

Refuse to replicate!

‘needReplication’: blkA_100

 gen-stamp not updated!

Figure 1: An HDFS failure where a data block remains

under-replicated, potentially leading to a data loss. Three in-

put events are needed (shown in boxes): (1) the user up-

loads a data block, causing HDFS to assign a generation

stamp. NameNode (NN) asks DataNode1 (DN1) to store this

block, and because this block is currently under-replicated,

adds it to needReplication queue. (2) the user appends

to this block, causing DN1 to increment the generation stamp

from 100 to 101. However, the generation stamp in the

needReplication queue is not updated – an error. (3) DN2

is started, so NN asks DN1 to replicate the block to DN2. But

since the generation stamps from needReplication queue

and DN1 do not match, DN1 keeps refusing to replicate.

event induce a failure. In most cases, a specific combi-

nation and sequence of multiple events is needed to tran-

sition the system into a failed state. Consider the failure

example shown in Figure 1. While the events “upload

file”, “append to file”, and “add another datanode” are

not problematic individually, the combination of the first

two will lead the system into an error state, and the last

event actually triggers the failure.

Finding 1 and 2 show the complexity of failures in

large distributed system. To expose the failures in test-

ing, we need to not only explore the combination of mul-

tiple input events from an exceedingly large event space,

we also need to explore different permutations.

3.2 Opportunities for Improved Testing

Additional opportunities to improve existing testing

strategies may be found when considering the types of

input events required for a failure to manifest. We briefly

discuss some of the input event types of Table 4.

Starting up services: More than half of the failures re-

quire the start of some services. This suggests that the

starting of services — especially more obscure ones —

should be more heavily tested. About a quarter of the

failures triggered by starting a service occurred on sys-

tems that have been running for a long time; e.g., the

HBase “Region Split” service is started only when a ta-

ble grows larger than a threshold. While such a failure

may seem hard to test since it requires a long running

system, it can be exposed intentionally by forcing a start

of the service during testing.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 253

Number cumulative distribution function

of nodes all failures catastrophic

1 37% 43%

2 84% 86%

3 98% 98%

> 3 100% 100%

Table 5: Min. number of nodes needed to trigger the failures.

Unreachable nodes: 24% of the failures occur because a

node is unreachable. This is somewhat surprising given

that network errors and individual node crashes are ex-

pected to occur regularly in large data centers [14]. This

suggests that tools capable of injecting network errors

systematically [18, 23, 65] should be used more exten-

sively when inputing other events during testing.

Configuration changes: 23% of the failures are caused

by configuration changes. Of those, 30% involve mis-

configurations. The remaining majority involve valid

changes to enable certain features that may be rarely-

used. While the importance of misconfigurations have

been observed in previous studies [22, 50, 66], only a

few techniques exist to automatically explore configura-

tions changes and test the resulting reaction of the sys-

tem [19, 40, 63]. This suggests that testing tools should

be extended to combine (both valid and invalid) configu-

ration changes with other operations.

Adding a node: 15% of the failures are triggered by

adding a node to a running system. Figure 1 provides

an example. This is somewhat alarming, given that elas-

tically adding and removing nodes is one of the principle

promises of “cloud computing”. It suggests that adding

nodes needs to be tested under more scenarios.

The production failures we studied typically mani-

fested themselves on configurations with a large number

of nodes. This raises the question of how many nodes are

required for an effective testing and debugging system.

Finding 3 Almost all (98%) of the failures are guaran-

teed to manifest on no more than 3 nodes. 84% will man-

ifest on no more than 2 nodes. (See Table 5.)

The number is similar for catastrophic failures. Finding 3

implies that it is not necessary to have a large cluster to

test for and reproduce failures.

Note that Finding 3 does not contradict the conven-

tional wisdom that distributed system failures are more

likely to manifest on large clusters. In the end, testing is

a probabilistic exercise. A large cluster usually involves

more diverse workloads and fault modes, thus increas-

ing the chances for failures to manifest. However, what

our finding suggests is that it is not necessary to have a

large cluster of machines to expose bugs, as long as the

specific sequence of input events occurs.

We only encountered one failure that required a larger

number of nodes (over 1024): when the number of simul-

Software num. of deterministic failures

Cassandra 76% (31/41)

HBase 71% (29/41)

HDFS 76% (31/41)

MapReduce 63% (24/38)

Redis 79% (30/38)

Total 74% (147/198)

Table 6: Number of failures that are deterministic.

Source of non-determinism number

Timing btw. input event & internal exe. event 27 (53%)

Multi-thread atomicity violation 13 (25%)

Multi-thread deadlock 3 (6%)

Multi-thread lock contention (performance) 4 (8%)

Other 4 (8%)

Total 51 (100%)

Table 7: Break-down of the non-deterministic failures. The

“other” category is caused by nondeterministic behaviors from

the OS and third party libraries.

taneous Redis client connections exceeded the OS limit,

epoll() returned error, which was not handled prop-

erly, causing the entire cluster to hang. All of the other

failures require fewer than 10 nodes to manifest.

3.3 The Role of Timing

A key question for testing and diagnosis is whether the

failures are guaranteed to manifest if the required se-

quence of input events occur (i.e., deterministic failures),

or not (i.e., non-deterministic failures)?

Finding 4 74% of the failures are deterministic — they

are guaranteed to manifest given the right input event

sequences. (See Table 6.)

This means that for a majority of the failures, we only

need to explore the combination and permutation of in-

put events, but no additional timing relationship. This is

particularly meaningful for testing those failures that re-

quire long-running systems to manifest. As long as we

can simulate those events which typically only occur on

long running systems (e.g., region split in HBase typi-

cally only occurs when the region size grows too large),

we can expose these deterministic failures. Moreover,

the failures can still be reproduced after inserting addi-

tional log output, enabling tracing, or using debuggers.

Finding 5 Among the 51 non-deterministic failures,

53% have timing constraints only on the input events.

(See Table 7.)

These constraints require an input event to occur either

before or after some software internal execution event

such as a procedure call. Figure 2 shows an example. In

addition to the order of the four input events (that can be

5

254 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

HMaster RegionServer (RS)

1. RS network error Cannot connct to RS,

thinks RS is dead

Recovers RS’ region data

from its HLog

Recovery finishes

2. RS is back online

4. Receive client writes requests,

log into the new HLog

3. rolls its HLog (HBase’s

write-ahead-log)

A new RS is assigned to

serve the recovered region

Order dependency btw. input

operation and internal exe. state

Data writes

are lost!

Figure 2: A non-deterministic failure in HBase with timing

requirements (shown with solid arrows) only on input events

(boxed). Some newly written data will be lost because when

HMaster assigns a new region server, it only recovered the old

HLog that does not contain the newly written data.

write_lock();

/* remove a

* large directory */

write_unlock();

Critical region is too large,

causing concurrent write

requests to hang

Figure 3: Performance degradation in HDFS caused by a

single request to remove a large directory.

controlled by a tester), the additional requirement is that

the client write operations must occur before HMaster

assigns the region to a new Region Server, which cannot

be completely controlled by the user.

Note that these non-deterministic dependencies are

still easier to test and debug than non-determinisms stem-

ming from multi-threaded interleavings, since at least

one part of the timing dependency can be controlled by

testers. Testers can carefully control the timing of the

input events to induce the failure. Unit tests and model

checking tools can further completely manipulate such

timing dependencies by controlling the timing of both

the input events and the call of internal procedures. For

example, as part of the patch to fix the bug in Figure 2,

developers used a unit test that simulated the user inputs

and the dependencies with HMaster’s operations to de-

terministically reproduce the failure.

The majority of the remaining 24 non-deterministic

failures stem from shared-memory multi-threaded inter-

leavings. We observed three categories of concurrency

bugs in our dataset: atomicity violation [42], deadlock,

and lock contention that results in performance degra-

dation. It is much harder to expose and reproduce such

failures because it is hard for users or tools to control tim-

ing, and adding a single logging statement can cause the

failure to no longer expose itself. We reproduced 10 of

these non-deterministic failures and found the atomicity

violations and deadlocks the most difficult to reproduce

(we had to manually introduce additional timing delays,

0 %

20 %

40 %

60 %

80 %

100 %

Cassandra HBase HDFS MapRed. Redis

%
 o

f f
ail

ur
es

error log
event log

Figure 4: The logging comprehensiveness of the studied fail-

ures. Logging of both the input events and errors are consid-

ered. For failures requiring multiple events to trigger, we count

it as “logged” only when all the required events are logged.

like Thread.sleep() in the code to trigger the bugs).

The lock contention cases, however, are not as difficult

to reproduce. Figure 3 shows an example where a bug

caused unnecessary lock contention.

3.4 Logs Enable Diagnosis Opportunities

Overall, we found the logs output by the systems we

studied to be rich with useful information.We assume the

default logging verbosity level is used.

Finding 6 76% of the failures print explicit failure-

related error messages. (See Figure 4.)

This finding somewhat contradicts the findings of our

previous study [67] on failures in non-distributed sys-

tems, including Apache httpd, PostgreSQL, SVN, squid,

and GNU Coreutils, where only 43% of failures had ex-

plicit failure-related error messages logged. We surmise

there are three possible reasons why developers output

log messages more extensively for the distributed sys-

tems we studied. First, since distributed systems are

more complex, and harder to debug, developers likely

pay more attention to logging. Second, the horizon-

tal scalability of these systems makes the performance

overhead of outputing log message less critical. Third,

communicating through message-passing provides natu-

ral points to log messages; for example, if two nodes can-

not communicate with each other because of a network

problem, both have the opportunity to log the error.

Finding 7 For a majority (84%) of the failures, all of

their triggering events are logged. (See Figure 4.)

This suggests that it is possible to deterministically re-

play the majority of failures based on the existing log

messages alone. Deterministic replay has been widely

explored by the research community [4, 13, 15, 26, 35,

47, 61]. However, these approaches are based on intru-

sive tracing with significant runtime overhead and the

need to modify software/hardware.

Finding 8 Logs are noisy: the median of the number of

log messages printed by each failure is 824.

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 255

Software % of failures reproducible by unit test

Cassandra 73% (29/40)

HBase 85% (35/41)

HDFS 82% (34/41)

MapReduce 87% (33/38)

Redis 58% (22/38)

Total 77% (153/198)

Table 8: Percentage of failures that can be reproduced by a

unit test. The reason that only a relatively small number of

Redis failures can be reproduced by unit tests is that its unit-test

framework is not as powerful, being limited to command-line

commands. Consequently, it cannot simulate many errors such

as node failure, nor can it call some internal functions directly.

This number was obtained when reproducing 73 of the

198 failures with a minimal configuration and using a

minimal workload that is just sufficient to reproduce the

failure. Moreover, we did not count the messages printed

during the start-up and shut-down phases.

This suggests that manual examination of the log files

could be tedious. If a user only cares about the error

symptoms, a selective grep on the error verbosity levels

will reduce noise since a vast majority of the printed log

messages are at INFO level. However, the input events

that triggered the failure are often logged at INFO level.

Therefore to further infer the input events one has to ex-

amine almost every log message. It would be helpful if

existing log analysis techniques [5, 6, 48, 64] and tools

were extended so they can infer the relevant error and

input event messages by filtering out the irrelevant ones.

3.5 Failure Reproducibility

Conventional wisdom has it that failures which occur

on large, distributed system in production are extremely

hard to reproduce off-line. The users’ input may be un-

available due to privacy concerns, the difficulty in setting

up an environment that mirrors the one in production,

and the cost of third-party libraries, are often reasons

cited as to why it is difficult for vendors to reproduce pro-

duction failures. Our finding below indicates that failure

reproduction might not be as hard as it is thought to be.

Finding 9 A majority of the production failures (77%)

can be reproduced by a unit test. (See Table 8.)

While this finding might sound counter-intuitive, it is not

surprising given our previous findings because: (1) in

Finding 4 we show that 74% of the failures are determin-

istic, which means the failures can be reproduced with

the same operation sequence; and (2) among the remain-

ing non-deterministic failures, in 53% of the cases the

timing can be controlled through unit tests.

Specific data values are not typically required to re-

produce the failures; in fact, none of the studied failures

public void testLogRollAfterSplitStart {

startMiniCluster(3);

// create an HBase cluster with 1 master and 2 RS

HMaster.splitHLog();

// simulate a hlog splitting (HMaster’s recovery

// of RS’ region data) when RS cannot be reached

RS.rollHLog();

// simulate the region server’s log rolling event

for (i = 0; i < NUM_WRITES; i++)

writer.append(..); // write to RS’ region

HMaster.assignNewRS();

// HMaster assigns the region to a new RS

assertEquals (NUM_WRITES, countWritesHLog());

// Check if any writes are lost

}

Figure 6: Unit test for the failure shown in Figure 2.

required specific values of user’s data contents. Instead,

only the required input sequences (e.g., file write, dis-

connect a node, etc.) are needed.

Figure 6 shows how a unit test can simulate the

non-deterministic failure of Figure 2. It simulates a

mini-cluster by starting three processes running as three

nodes. It further simulates the key input events, including

HMaster’s log split, Region Server’s log rolling, and the

write requests. The required dependency where the client

must send write requests before the master re-assigns the

recovered region is also controlled by this unit test.

The failures that cannot be reproduced easily either de-

pend on a particular execution environment (such as OS

version or third party libraries), or were caused by non-

deterministic thread interleavings.

4 Catastrophic Failures

Table 2 in Section 3 shows that 48 failures in our entire

failure set have catastrophic consequences. We classify a

failure to be catastrophic when it prevents all or a major-

ity of the users from their normal access to the system.

In practice, these failures result in cluster-wide outage, a

hung cluster, or a loss to all or a majority of the user data.

Note that a bug resulting in under-replicated data blocks

is not considered as catastrophic, even when it affect all

data blocks, because it does not prevent users from their

normal read and write to their data yet. We specifically

study the catastrophic failures because they are the ones

with the largest business impact to the vendors.

The fact that there are so many catastrophic failures

is perhaps surprising given that the systems considered

all have High Availability (HA) mechanisms designed

to prevent component failures from taking down the en-

tire service. For example, all of the four systems with a

master-slave design — namely HBase, HDFS, MapRe-

duce, and Redis — are designed to, on a master node

failure, automatically elect a new master node and fail

7

256 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Incorrect handling of errors

explicitly signaled in s.w.

Latent error

Errors ignored (25%)

Abort in over-caught

exceptions (8%)

“TODO” in handler (2%)

92%

8%

C
a

ta
stro

p
h

ic
 fa

ilu
re

s (1
0

0
%

)

Initial faults

100%

(e.g., h.w. fault,

bugs, misconfig.)

Trivial

mistakes

System-

specific

Easily detectable (23%)

Complex bugs (34%)

35%

57%

Figure 5: Break-down of all catastrophic failures by their error handling.

over to it.2 Cassandra is a peer-to-peer system, thus by

design it avoids single points of failure. Then why do

catastrophic failures still occur?

Finding 10 Almost all catastrophic failures (92%) are

the result of incorrect handling of non-fatal errors ex-

plicitly signaled in software. (See Figure 5.)

These catastrophic failures are the result of more than

one fault triggering, where the initial fault, whether due

to a hardware fault, a misconfiguration, or a bug, first

manifests itself explicitly as a non-fatal error — for ex-

ample by throwing an exception or having a system call

return an error. This error need not be catastrophic; how-

ever in the vast majority of cases, the handling of the ex-

plicit error was faulty, resulting in an error manifesting

itself as a catastrophic failure.

This prevalence of incorrect error handling is unique

to catastrophic failures. In comparison, only 25% of the

non-catastrophic failures in our study involve incorrect

error handling, indicating that in non-catastrophic fail-

ures, error handling was mostly effective in preventing

the errors from taking down the entire service.

Overall, we found that the developers are good at an-

ticipating possible errors. In all but one case, the errors

were checked by the developers. The only case where

developers did not check the error was an unchecked er-

ror system call return in Redis. This is different from the

characteristics observed in previous studies on file sys-

tem bugs [24, 41, 55], where many errors weren’t even

checked. This difference is likely because (i) the Java

compiler forces developers to catch all the checked ex-

ceptions; and (ii) a variety of errors are expected to occur

in large distributed systems, and the developers program

more defensively. However, we found they were often

simply sloppy in handling these errors. This is further

corroborated in Findings 11 and 12 below. To be fair,

we should point out that our findings are skewed in the

2We assume the HA feature is always enabled when classifying

catastrophic failures. We did not classify failures as catastrophic if HA

was not enabled and the master node failed, even though it would likely

have affected all the users of the system. This is because such failures

are not unique compared to the other failures we studied — they just

happened to have occurred on the master node.

sense that our study did not expose the many errors that

are correctly caught and handled.

Nevertheless, the correctness of error handling code is

particularly important given their impact. Previous stud-

ies [50, 52] show that the initial faults in distributed sys-

tem failures are highly diversified (e.g., bugs, miscon-

figurations, node crashes, hardware faults), and in prac-

tice it is simply impossible to eliminate them all in large

data centers [14]. It is therefore unavoidable that some

of these faults will manifest themselves into errors, and

error handling then becomes the last line of defense [45].

Of the catastrophic failures we studied, only four were

not triggered by incorrect error handling. Three of them

were because the servers mistakenly threw fatal excep-

tions that terminated all the clients, i.e., the clients’ error

handling was correct. The other one was a massive per-

formance degradation when a bug disabled DNS look-up

result caching.

4.1 Trivial Mistakes in Error Handlers

Finding 11 35% of the catastrophic failures are caused

by trivial mistakes in error handling logic — ones that

simply violate best programming practices; and that can

be detected without system specific knowledge.

Figure 5 further breaks down the mistakes into three

categories: (i) the error handler ignores explicit er-

rors; (ii) the error handler over-catches an exception and

aborts the system; and (iii) the error handler contains

“TODO” or “FIXME” in the comment.

25% of the catastrophic failures were caused by ignor-

ing explicit errors (an error handler that only logs the er-

ror is also considered as ignoring the error). For systems

written in Java, the exceptions were all explicitly thrown,

whereas in Redis they were system call error returns.

Figure 7 shows a data loss in HBase caused by ignoring

an exception. Ignoring errors and allowing them to prop-

agate is known to be bad programming practice [7, 60],

yet we observed this lead to many catastrophic failures.

At least the developers were careful at logging the errors:

all the errors were logged except for one case where the

Redis developers did not log the error system call return.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 257

Split region

Remove old region’s metadata from META table

Region (table) size grows > threshold

Region split failed: old region removed

but new regions not created --- Data loss!

 try {

 split(..);

 } catch (Exception ex) {

 LOG.error(“split failed..”);

+ retry_split(); // fix: retry!

 }

Flaky file system returned

NullPointerException

Figure 7: A data loss in HBase where the error handling was

simply empty except for a logging statement. The fix was to

retry in the exception handler.

 try {
 namenode.registerDatanode();
+ } catch (RemoteException e) {
+ // retry.
 } catch (Throwable t) {
 System.exit(-1);
 }

RemoteExcepion is thrown
due to glitch in namenode

Figure 8: Entire HDFS cluster brought down by an over-catch.

User: MapReduce jobs hang when a rare Resource Manager restart occurs.

I have to ssh to every one of our 4000 nodes in a cluster and try to kill all the

running Application Manager.
Patch:

 catch (IOException e) {

- // TODO

 LOG(“Error event from RM: shutting down..”);

+ // This can happen if RM has been restarted. Must clean up.

+ eventHandler.handle(..);

 }

Figure 9: A catastrophic failure in MapReduce where devel-

opers left a “TODO” in the error handler.

Another 8% of the catastrophic failures were caused

by developers prematurely aborting the entire cluster on

a non-fatal exception. While in principle one would need

system specific knowledge to determine when to bring

down the entire cluster, the aborts we observed were all

within exception over-catch, where a higher level excep-

tion is used to catch multiple different lower-level excep-

tions. Figure 8 shows such an example. The exit() was

intended only for IncorrectVersionException. However,

the developers catch a high-level exception: Throwable.

Consequently, when a glitch in the namenode caused

registerDatanode() to throw RemoteException, it

was over-caught by Throwable and thus brought down

every datanode. The fix was to handle RemoteException

explicitly, so that only IncorrectVersionException would

fall through. However, this is still bad practice since later

when the code evolves, some other exceptions may be

over-caught again. The safe practice is to catch the pre-

cise exception [7].

Figure 9 shows an even more obvious mistake, where

the developers only left a comment “TODO” in the han-

dler logic in addition to a logging statement. While this

error would only occur rarely, it took down a production

cluster of 4,000 nodes.

1: HMaster assigns region R from RS1 to RS2

2: RS2 opens R

6: RS3 opens R

HMaster.OpenedRegionHandler()

 try {

 3: newlyOpened(getZookeeper(), R);

 // inform zookeeper

 // that R is OPENED

 } catch (KeeperException e) {

 // R is already OPENED...

 7:abort(“Error in”);

 }

5: HMaster

assigns R to RS3

4: RS2 dies

Figure 10: A catastrophic failure where the error handling

code was wrong and simply not tested at all. A rare sequence

of events caused newlyOpened() to throw a rare KeeperEx-

ception, which simply took down the entire HBase cluster.

4.2 System-specific Bugs

The other 57% of the catastrophic failures are caused

by incorrect error handling where system-specific knowl-

edge is required to detect the bugs. (See Figure 5.)

Finding 12 In 23% of the catastrophic failures, while

the mistakes in error handling were system specific, they

are still easily detectable. More formally, the incorrect

error handling in these cases would be exposed by 100%

statement coverage testing on the error handling logic.

In other words, once the problematic basic block in the

error handling code is triggered, the failure is guaranteed

to be exposed. This suggests that these basic blocks were

completely faulty and simply never properly tested. Fig-

ure 10 shows such an example. Once a test case can de-

terministically trigger KeeperException, the catastrophic

failure will be triggered with 100% certainty.

Hence, a good strategy to prevent these failures is to

start from existing error handling logic and try to reverse

engineer test cases that trigger them. For example, sym-

bolic execution techniques [8, 10] could be extended to

purposefully reconstruct an execution path that can reach

the error handling code block, instead of blindly explor-

ing every execution path from the system entry points.

While high statement coverage on error handling code

might seem difficult to achieve, aiming for higher state-

ment coverage in testing might still be a better strategy

than a strategy of applying random fault injections. For

example, the failure in Figure 10 requires a very rare

combination of events to trigger the buggy error handler.

Our finding suggests that a “bottom-up” approach could

be more effective: start from the error handling logic and

reverse engineer a test case to expose errors there.

Existing testing techniques for error handling logic

primarily use a “top-down” approach: start the system

using testing inputs or model-checking [23, 65], and ac-

tively inject errors at different stages [9, 18, 44]. Tools

like LFI [44] and Fate&Destini [23] are intelligent to

inject errors only at appropriate points and avoid dupli-

cated injections. Such techniques inevitably have greatly

9

258 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Client with corrupted memory

1. Read blockA from DataNode 1

2.Detects CheckSum exception

3. Report error to NameNode

4. Add blockA@DataNode1

 to CorruptReplicaMap

5. Repeat 1-3 on

 blockA@DN2, blockA@DN3

6. Add blockA@DN2, blockA@DN3

 to CorruptReplicaMap

7. No more valid replicas for blockA

8. Mark blockA as non-recoverable
Client 2

9. Read blockA

NameNode

10.No valid replica!

 Bug! Should verify the replica

 is indeed corrupted!

Figure 11: A massive data loss for all clients in HDFS. A

client with corrupted RAM reported data corruption on almost

every block it reads to the namenode. Instead of verifying

the checksum on datanodes, namenode blindly trusts the faulty

client and marks the blocks as permanently corrupted, causing

a massive data loss to all clients.

improved the reliability of software systems. In fact,

Hadoop developers have their own error injection frame-

work to test their systems [18], and the production fail-

ures we studied are likely the ones missed by such tools.

However, our findings suggest that it could be chal-

lenging for such “top-down” approaches to further ex-

pose these remaining production failures. They require

rare sequence of input events to first take the system to

a rare state, before the injected error can take down the

service. In addition, 38% of the failures only occur in

long-running systems. Therfore, the possible space of

input events would simply be untractable.

Complex bugs: the remaining 34% of catastrophic fail-

ures involve complex bugs in the error handling logic.

These are the cases where developers did not anticipate

certain error scenarios. As an example, consider the fail-

ure shown in Figure 11. While the handling logic makes

sense for a majority of the checksum errors, it did not

consider the scenario where a single client reports a mas-

sive number of corruptions (due to corrupt RAM) in a

very short amount of time. These type of errors — which

are almost byzantine — are indeed the hardest to test for.

Detecting them require both understanding how the sys-

tem works and anticipating all possible real-world fail-

ure modes. While our study cannot provide constructive

suggestions on how to identify such bugs, we found they

only account for one third of the catastrophic failures.

4.3 Discussion

While we show that almost all of the catastrophic fail-

ures are the result of incorrect error handling, it could be

argued that most of the code is reachable from error han-

dling blocks in real-world distributed system, therefore

most of the bugs are “incorrect error handling”. How-

ever, our findings suggest many of the bugs can be de-

tected by only examining the exception handler blocks

(e.g., the catch block in Java). As we show will in Ta-

ble 9, the number of catch blocks in these systems is

relatively small. For example, in HDFS, there are only

2652 catch blocks. In particular, the bugs belonging to

the “trivial mistakes” category in Finding 11 can be eas-

ily detected by only examining these catch blocks.

An interesting question is whether the outages from

large internet software vendors are also the result of in-

correct error handling. While we cannot answer this rig-

orously without access to their internal failure databases,

the postmortem analysis of some of the most visible out-

ages are released to the public. Interestingly, some of

the anecdotal outages are the result of incorrect error

handling. For example, in an outage that brought down

facebook.com for approximately 2.5 hours, which at that

time was “the worst outage Facebook have had in over

four years”, “the key flaw that caused the outage to be

so severe was an unfortunate handling of an error con-

dition” [17]. In the outage of Amazon Web Services in

2011 [59] that brought down Reddit, Quora, FourSquare,

parts of the New York Times website, and about 70 other

sites, the initial cause was a configuration change that

mistakenly routed production traffic to a secondary net-

work that was not intended for a heavy workload. Conse-

quently, nodes start to fail. What lead this to further prop-

agate into a service-level failure was the incorrect han-

dling of node-failures — “the nodes failing to find new

nodes did not back off aggressively enough when they

could not find space, but instead, continued to search re-

peatedly”. This caused even more network traffic, and

eventually lead to the service-level failure.

5 Aspirator: A Simple Checker

In Section 4.1, we observed that some of the most catas-

trophic failures are caused by trivial mistakes that fall

into three simple categories: (i) error handler is empty;

(ii) error handler over-catches exceptions and aborts; and

(iii) error handler contains phrases like “TODO” and

“FIXME”. To measure the applicability of these simple

rules, we built a rule-based static checker, Aspirator, ca-

pable of locating these bug patterns. Next we discuss

how Aspirator is implemented and the results of apply-

ing it to a number of systems.

5.1 Implementation of Aspirator

We implemented Aspirator using the Chord static analy-

sis framework [11] on Java bytecode. Aspirator works as

follows: it scans Java bytecode, instruction by instruc-

tion. If an instruction can throw exception e, Aspira-

tor identifies and records the corresponding catch block

for e. Aspirator emits a warning if the catch block

is empty or just contains a log printing statement, or if

the catch block contains “TODO” or “FIXME” com-

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 259

ments in the corresponding source code. It also emits

a warning if a catch block for a higher-level excep-

tion (e.g., Exception or Throwable) might catch multiple

lower-level exceptions and at the same time calls abort

or System.exit(). Aspirator is capable of identify-

ing these over-catches because when it reaches a catch

block, it knows exactly which exceptions from which in-

structions the catch block handles.

Not every empty catch block is necessarily a bad

practice or bug. Consider the following example where

the exception is handled outside of the catch block:

uri = null;

try {

uri = Util.fileAsURI(new File(uri));

} catch (IOException ex) { /* empty */ }

if (uri == null) { // handle it here!

Therefore Aspirator will not emit a warning on an empty

catch block if both of the following conditions are true:

(i) the corresponding try block modifies a variable V;

and (ii) the value of V is checked in the basic block

following the catch block. In addition, if the last in-

struction in the corresponding try block is a return,

break, or continue, and the block after the catch

block is not empty, Aspirator will not report a warning

if the catch block is empty because all the logic after

the catch block is in effect exception handling.

Aspirator further provides runtime configuration op-

tions to allow programmers to adjust the trade-offs be-

tween false positives and false negatives. It allows pro-

grammers to specify exceptions that should not result in

a warning. In our testing, we ignored all instances of the

FileNotFound exception, because we found the vast ma-

jority of them do not indicate a true error. Aspirator also

allows programmers to exclude certain methods from the

analysis. In our testing, we use this to suppress warnings

if the ignored exceptions are from a shutdown, close or

cleanup method — exceptions during a cleanup phase

are likely less important because the system is being

brought down anyway. Using these two heuristics did not

affect Aspirator’s capability to detect the trivial mistakes

leading to catastrophic failures in our study, yet signifi-

cantly reduce the number of false positives.

Limitations: As a proof-of-concept, Aspirator currently

only works on Java and other languages that are compat-

ible with Java bytecode (e.g., Scala), where exceptions

are supported by the language and are required to be ex-

plicitly caught. The main challenge to extend Aspirator

to non-Java programs is to identify the error conditions.

However, some likely error conditions can still be eas-

ily identified, including system call error returns, switch

fall-through, and calls to abort().

In addition, Aspirator cannot estimate the criticality of

the warnings it emits. Hence, not every warning emitted

will identify a bug that could lead to a failure; in fact,

try {
 journal.recoverSegments();
} catch (IOException ex) {

}
Cannot apply the updates
from Edit log, ignoring it
can cause dataloss!

try {
 tableLock.release();
} catch (IOException e) {
 LOG("Can't release lock",
 e);
} hang: lock is never released!

(a) (b)

Figure 12: Two new bugs found by Aspirator.

some false positives are emitted. However, because As-

pirator provides, with each warning, a list of caught ex-

ceptions together with the instructions that throw them,

developers in most cases will be able to quickly assess

the criticality of each warning and possibly annotate the

program to suppress specific future warnings.

Finally, the functionality of Aspirator could (and prob-

ably should) be added to existing static analysis tools,

such as FindBugs [32].

5.2 Checking Real-world Systems

We first evaluated Aspirator on the set of catastrophic

failures used in our study. If Aspirator had been used and

the captured bugs fixed, 33% of the Cassandra, HBase,

HDFS, and MapReduce’s catastrophic failures we stud-

ied could have been prevented.

We then used Aspirator to check the latest stable ver-

sions of 9 distributed systems or components used to

build distributed systems (e.g., Tomcat web-server). As-

pirator’s analysis finishes within 15 seconds for each sys-

tem on a MacBook Pro laptop with 2.7GHz Intel Core i7

processor, and has memory footprints of less than 1.2GB.

We categorize each warning generated by Aspirator

into one of three categories: bug, bad practice, and false

positive. For each warning, we use our best-effort to

understand the consequences of the exception handling

logic. Warnings are categorized as bugs only if we could

definitively conclude that, once the exception occurs, the

handling logic could lead to a failure. They were cate-

gorized as false positives if we clearly understood they

would not lead to a failure. All other cases are those

that we could not definitively infer the consequences

of the exception handling logic without domain knowl-

edge. Therefore we conservatively categorize them as

bad practices.

Table 9 shows the results. Overall, Aspirator detected

500 new bugs and bad practices along with 115 false

positives. Note that most of these systems already run

state-of-the-art static checkers like FindBugs [32], which

checks for over 400 rules, on every code check-in. Yet

Aspirator has found new bugs in all of them.

Bugs: many bugs detected by Aspirator could indeed

lead to catastrophic failures. For example, all 4 bugs

caught by the abort-in-over-catch checker could bring

11

260 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

System
Handler Bug Bad practice False

blocks total / confirmed ignore / abort / todo total / confirmed ignore / abort / todo pos.

Cassandra 4,365 2 2 2 - - 2 2 2 - - 9

Cloudstack 6,786 27 24 25 - - 185 21 182 1 2 20

HDFS 2,652 24 9 23 - 1 32 5 32 - - 16

HBase 4,995 16 16 11 3 2 43 6 35 5 3 20

Hive 9,948 25 15 23 - 2 54 14 52 - 2 8

Tomcat 5,257 7 4 6 1 - 23 3 17 4 2 30

Spark 396 2 2 - - 2 1 1 1 - - 2

YARN/MR2 1,069 13 8 6 - 7 15 3 10 4 1 1

Zookeeper 1,277 5 5 5 - - 24 3 23 - 1 9

Total 36,745 121 85 101 4 16 379 58 354 14 11 115

Table 9: Results of applying Aspirator to 9 distributed systems. If a case belongs to multiple categories (e.g., an empty handler

may also contain a “TODO” comment), we count it only once as an ignored exception. The “Handler blocks” column shows the

number of exception handling blocks that Aspirator discovered and analyzed. “-” indicates Aspirator reported 0 warning.

down the cluster on an unexpected exception in a sim-

ilar fashion as in Figure 8. All 4 of them have been fixed.

Some bugs can also cause the cluster to hang. Aspi-

rator detected 5 bugs in HBase and Hive that have a pat-

tern similar to the one depicted in Figure 12 (a). In this

example, when tableLock cannot be released, HBase

only outputs an error message and continues executing,

which can deadlock all servers accessing the table. The

developers fixed this bug by immediately cleaning up the

states and aborting the problematic server [31].

Figure 12 (b) shows a bug that could lead to data loss.

An IOException could be thrown when HDFS is recov-

ering user data by replaying the updates from the Edit

log. Ignoring it could cause a silent data loss.

Bad practices: the bad practice cases include potential

bugs for which we could not definitively determine their

consequences without domain expertise. For example,

if deleting a temporary file throws an exception and is

subsequently ignored, it may be inconsequential. How-

ever, it is nevertheless considered a bad practice because

it may indicate a more serious problem in the file system.

Some of these cases could as well be false positives.

While we cannot determine how many of them are false

positives, we did report 87 of the cases that we initially

classified as “bad practices” to developers. Among them,

58 were confirmed or fixed, but 17 were rejected. The

17 rejected ones were subsequently classified as “false

positives” in Table 9.

False positives: 19% of the warnings reported by Aspi-

rator are false positives. Most of them are due to that As-

pirator does not perform inter-procedural analysis. Con-

sider the following example, where an exception is han-

dled by testing the return value of a method call:

try {

set_A();

} catch (SomeException e) { /* empty */ }

if (A_is_not_set()) {/* handle it here! */}

In addition to FileNotFound and exceptions from from

shutdown, close, and cleanup, Aspirator should have

been further configured to exclude the warnings on other

exceptions. For example, many of the false positives

are caused by empty handlers of Java’s reflection re-

lated exceptions, such as NoSuchFieldException. Once

programmers realize an exception should have been ex-

cluded from Aspirator’s analysis, they can simply add

this exception to Aspirator’s configuration file.

5.3 Experience

Interaction with developers: We reported 171 bugs and

bad practices to the developers through the official bug

tracking website. To this date, 143 have already been

confirmed or fixed by the developers (73 of them have

been fixed, and the other 70 have been confirmed but not

fixed yet), 17 were rejected, and the others have not re-

ceived any responses.

We received mixed feedback from developers. On the

one hand, we received some positive comments like: “I

really want to fix issues in this line, because I really want

us to use exceptions properly and never ignore them”,

“No one would have looked at this hidden feature; ig-

noring exceptions is bad precisely for this reason”, and

“catching Throwable [i.e., exception over-catch] is bad,

we should fix these”. On the other hand, we received neg-

ative comments like: “I fail to see the reason to handle

every exception”.

There are a few reasons for developers’ obliviousness

to the handling of errors. First, these ignored errors may

not be regarded as critical enough to be handled prop-

erly. Often, it is only until the system suffers serious fail-

ures will the importance of the error handling be realized

by developers. We hope to raise developers’ awareness

by showing that many of the most catastrophic failures

today are caused precisely by such obliviousness to the

correctness of error handling logic.

Secondly, the developers may believe the errors would

never (or only very rarely) occur. Consider the following

code snippet detected by Aspirator from HBase:

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 261

try {

t = new TimeRange(timestamp, timestamp+1);

} catch (IOException e) {

// Will never happen

}

In this case, the developers thought the constructor could

never throw an exception, so they ignored it (as per the

comment in the code). We observed many empty error

handlers contained similar comments in multiple sys-

tems we checked. We argue that errors that “can never

happen” should be handled defensively to prevent them

from propagating. This is because developers’ judge-

ment could be wrong, later code evolutions may enable

the error, and allowing such unexpected errors to propa-

gate can be deadly. In the HBase example above, devel-

opers’ judgement was indeed wrong. The constructor is

implemented as follows:

public TimeRange (long min, long max)

throws IOException {

if (max < min)

throw new IOException("max < min");

}

It could have thrown an IOException when there is an in-

teger overflow, and swallowing this exception could have

lead to a data loss. The developers later fixed this by han-

dling the IOException properly.

Thirdly, proper handling of the errors can be difficult.

It is often much harder to reason about the correctness of

a system’s abnormal execution path than its normal ex-

ecution path. The problem is further exacerbated by the

reality that many of the exceptions are thrown by third

party components lacking of proper documentations. We

surmise that in many cases, even the developers may not

fully understand the possible causes or the potential con-

sequences of an exception. This is evidenced by the fol-

lowing code snippet from CloudStack:

} catch (NoTransitionException ne) {

/* Why this can happen? Ask God not me. */

}

We observed similar comments from empty exception

handlers in other systems as well.

Finally, in reality feature development is often prior-

itized over exception handling when release deadlines

loom. We embarrassingly experienced this ourselves

when we ran Aspirator on Aspirator’s code: we found

5 empty exception handlers, all of them for the purpose

of catching exceptions thrown by the underlying libraries

and put there only so that the code would compile.

Good practice in Cassandra: among the 9 systems we

checked, Cassandra has the lowest bug-to-handler-block

ratio, indicating that Cassandra developers are careful

in following good programming practices in exception

handling. In particular, the vast majority of the excep-

tions are handled by recursively propagating them to the

callers, and are handled by top level methods in the call

graphs. Interestingly, among the 5 systems we studied,

Cassandra also has the lowest rate of catastrophic fail-

ures in its randomly sampled failure set (see Table 1).

6 Related Work

A number of studies have characterized failures in dis-

tributed systems, which led to a much deeper understand-

ing of these failures and hence improved reliability. Our

study is the first (to the best of our knowledge) analy-

sis to understand the end-to-end manifestation sequence

of these failures. The manual analysis allowed us to

find the weakest link on the manifestation sequence for

the most catastrophic failures, namely the incorrect error

handling. While it is well-known that error handling is a

source of many errors, we found that these bugs in error

handling code, many of them extremely simple, are the

dominant cause of today’s catastrophic failures.

Next, we discuss three categories of related work:

characterization studies, studies on error handling code,

and distributed system testing.

Failure characterization studies Oppenheimer et al.

eleven years ago studied over 100 failure reports from

deployed internet services [50]. They discussed the root

causes, time-to-repair, and mitigation strategies of these

failures, and summarized a series of interesting find-

ings (e.g., operator mistakes being the most dominant

cause). Our study is largely complementary since the

open-source projects allow us to examine a richer source

of data, including source code, logs, developers’ discus-

sions, etc., which were not available for their study. In-

deed, as acknowledged by the authors, they “could have

been able to learn more about the detailed causes if [they]

had been able to examine the system logs and bug track-

ing database”.

Rabkin and Katz [52] analyzed reports from Cloud-

era’s production hadoop clusters. Their study focused on

categorizing the root causes of the failures.

Li et al. [38] studied bugs in Microsoft Bing’s data

analytic jobs written in SCOPE. They found that most of

the bugs were in the data processing logic and were often

caused by frequent change of table schema.

Others studied bugs in non-distributed systems. In

1985, Gray examined over 100 failures from the Tan-

dem [22] operating system, and found operator mistakes

and software bugs to be the two major causes. Chou et

al. [12] studied OS bugs and observed that device drivers

are the most buggy. This finding led to many systems and

tools to improve device driver quality, and a study [51]

ten years later suggested that the quality of device drivers

have indeed greatly improved. Lu et al. [42] studied con-

currency bugs in server programs, and found many inter-

13

262 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

esting findings, e.g., almost all of the concurrency bugs

can be triggered using 2 threads.

Study on error handling code Many studies have

shown that error handling code is often buggy [24, 44,

55, 58]. Using a static checker, Gunawi et al. found that

file systems and storage device drivers often do not cor-

rectly propagate error code [24]. Fu and Ryder also ob-

served that a significant number of catch blocks were

empty in many Java programs [20]. But they did not

study whether they have caused failures. In a study on

field failures with IBM’s MVS operating system between

1986 and 1989, Sullivan et al. found that incorrect error

recovery was the cause of 21% of the failures and 36%

of the failures with high impact [58]. In comparison, we

find that in the distributed systems we studied, incorrect

error handling resulted in 25% of the non-catastrophic

failures, and 92% of the catastrophic ones.

Many testing tools can effectively expose incorrect

error handling through error injections [18, 23, 44].

Fate&Destini [23] can intelligently inject unique com-

binations of multiple errors; LFI [44] selectively injects

errors at the program/library boundary and avoids dupli-

cated error injections. While these tools can be effec-

tive in exposing many incorrect error handling bugs, they

all use a “top-down” approach and rely on users/testers

to provide workloads to drive the system. In our study,

we found that a combination of input events is needed

to drive the system to the error state which is hard to

trigger using a top-down approach. Our findings sug-

gests that a “bottom-up” approach, which reconstruct test

cases from the error handling logic, can effectively ex-

pose most faults that lead to catastrophic failures.

Other tools are capable of identify bugs in error han-

dling code via static analysis [24, 55, 67]. EIO [24]

uses static analysis to detect error code that is either

unchecked or not further propagated. Errlog [67] reports

error handling code that is not logged. In comparison,

our simple checker is complementary. It detects excep-

tions that are checked but incorrectly handled, regardless

whether they are logged or not.

Distributed system testing Model checking [25, 34,

37, 65] tools can be used to systematically explore a

large combination of different events. For example,

SAMC [37] can intelligently inject multiple errors to

drive the target system into a corner case. Our study

further helps users make informed decisions when using

these tools (e.g., users need to check no more than three

nodes).

7 Conclusions

This paper presented an in-depth analysis of 198 user-

reported failures in five widely used, data-intensive dis-

tributed systems in the form of 12 findings. We found

that the error manifestation sequences leading to the fail-

ures to be relatively complex. However, we also found

that for the most catastrophic failures, almost all of them

are caused by incorrect error handling, and 58% of them

are trivial mistakes or can be exposed by statement cov-

erage testing.

It is doubtful that existing testing techniques will be

successful uncovering many of these error handling bugs.

They all use a “top-down” approach: start the system us-

ing generic inputs or model-checking [65, 23], and ac-

tively inject errors at different stages [9, 18, 44]. How-

ever the size of the input and state space, and the fact

that a significant number of failures only occur on long-

running systems, makes the problem of exposing these

bugs intractable. For example, Hadoop has its own er-

ror injection framework to test their system [18], but the

production failures we studied are likely the ones missed

by such tools.

Instead, we suggest a three pronged approach to ex-

pose these bugs: (1) use a tool similar to the Aspi-

rator that is capable of identifying a number of triv-

ial bugs; (2) enforce code reviews on error-handling

code, since the error handling logic is often simply

wrong; and (3) use, for example, extended symbolic

execution techniques [8, 10] to purposefully recon-

struct execution paths that can reach each error handling

code block. Our detailed analysis of the failures and

the source code of Aspirator are publicly available at:

http://www.eecg.toronto.edu/failureAnalysis/.

Acknowledgements

We greatly appreciate the anonymous reviewers, our

shepherd Jason Flinn, and Leonid Ryzhyk for their in-

sightful feedback. This research is supported by NSERC

Discovery grant, NetApp Faculty Fellowship, and Con-

naught New Researcher Award.

References

[1] Why Amazon’s cloud titanic went down. http:

//money.cnn.com/2011/04/22/technology/a

mazon ec2 cloud outage/index.htm.

[2] Apache Cassandra. http://cassandra.apache.o

rg.

[3] Apache HBase. http://hbase.apache.org.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deter-

ministic process groups in dOS. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’10, 2010.

[5] I. Beschastnikh, Y. Brun, , J. Abrahamson, M. D. Ernst,

and A. Krishnamurthy. Unifying FSM-inference algo-

rithms through declarative specification. In Proceedings

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 263

of The International Conference on Software Engineer-

ing, ICSE’13, 2013.

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy,

and T. E. Anderson. Mining temporal invariants from par-

tially ordered logs. In Managing Large-scale Systems via

the Analysis of System Logs and the Application of Ma-

chine Learning Techniques, SLAML’11, pages 3:1–3:10,

2011.

[7] J. Bloch. Effective Java (2nd Edition). Prentice Hall,

2008.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex

systems programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI’08, pages 209–224, 2008.

[9] Chaos monkey. https://github.com/Netflix/S

imianArmy/wiki/Chaos-Monkey.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. The

S2E platform: Design, implementation, and applications.

ACM Trans. Comput. Syst., 30(1):2:1–2:49, Feb. 2012.

[11] Chord: A program analysis platform for Java. http:

//pag.gatech.edu/chord.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In Proceed-

ings of the 18th ACM Symposium on Operating Systems

Principles, SOSP ’01, pages 73–88, 2001.

[13] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu,

J. Yang, G. A. Gibson, and R. E. Bryant. Parrot: A practi-

cal runtime for deterministic, stable, and reliable threads.

In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 388–405,

2013.

[14] J. Dean. Underneath the covers at Google: current sys-

tems and future directions. In Google I/O, 2008.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and

P. M. Chen. ReVirt: enabling intrusion analysis through

virtual-machine logging and replay. In Proceedings of

the Fifth Symposium on Operating Systems Design and

Implementation, OSDI’02, 2002.

[16] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking

system rules using system-specific, programmer-written

compiler extensions. In Proceedings of the 4th confer-

ence on Symposium on Operating System Design and Im-

plementation, OSDI’00, pages 1–16, 2000.

[17] Facebook: More details on today’s outage. https:

//www.facebook.com/note.php?note id=

431441338919&id=9445547199&ref=mf.

[18] Hadoop team. Fault injection framework: How to

use it, test using artificial faults, and develop new

faults. http://wiki.apache.org/hadoop/HowT

oUseInjectionFramework.

[19] N. Feamster and H. Balakrishnan. Detecting BGP con-

figuration faults with static analysis. In Proceedings of

the 2nd USENIX Symposium on Networked System De-

sign and Implementation, NSDI’05, 2005.

[20] C. Fu and G. B. Ryder. Exception-chain analysis: Re-

vealing exception handling architecture in java server ap-

plications. In 29th International Conference on Software

Engineering, ICSE’07, pages 230–239, 2007.

[21] Google outage reportedly caused big drop in global

traffic. http://www.cnet.com/news/google-

outage-reportedly-caused-big-drop-in-

global-traffic/.

[22] J. Gray. Why do computers stop and what can be done

about it? In Proceedings of the Symposium on Reliability

in Distributed Software and Database Systems, 1986.

[23] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen,

and D. Borthakur. FATE and DESTINI: a framework for

cloud recovery testing. In Proceedings of the 8th USENIX

conference on Networked Systems Design and Implemen-

tation, NSDI’11, 2011.

[24] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau,

R. H. Arpaci-Dussea, and B. Liblit. EIO: Error handling

is occasionally correct. In Proceedings of the 6th USENIX

Conference on File and Storage Technologies, FAST’08,

2008.

[25] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang.

Practical software model checking via dynamic interface

reduction. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles, pages 265–278, October

2011.

[26] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.

Kaashoek, and Z. Zhang. R2: An application-level kernel

for record and replay. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI’08, pages 193–208, Berkeley, CA, USA,

2008. USENIX Association.

[27] Hadoop Distributed File System (HDFS) architecture

guide. http://hadoop.apache.org/docs/stab

le/hdfs design.html.

[28] Hadoop MapReduce. http://hadoop.apache.org

/docs/stable/mapred tutorial.html.

[29] Hadoop market is expected to reach usd 20.9 billion glob-

ally in 2018. http://www.prnewswire.com/new

s-releases/hadoop-market-is-expected-

to-reach-usd-209-billion-globally-

in-2018-transparency-market-research-

217735621.html.

[30] DB-Engines ranking of wide column stores.

http://db-engines.com/en/ranking/wi

de+column+store.

[31] HBase bug report 10452 – Fix bugs in exception han-

dler. https://issues.apache.org/jira/brow

se/HBASE-10452.

[32] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIG-

PLAN Notice, 39(12):92–106, Dec. 2004.

[33] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-

hye, and P. Bahl. Detailed diagnosis in enterprise net-

works. In Proceedings of the ACM SIGCOMM 2009 con-

ference, SIGCOMM ’09, pages 243–254, 2009.

[34] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,

death, and the critical transition: finding liveness bugs in

systems code. In Proceedings of the Fourth Symposium

on Networked Systems Design and Implementation, pages

243–256, April 2007.

[35] O. Laadan, N. Viennot, and J. Nieh. Transparent,

lightweight application execution replay on commodity

15

264 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

multiprocessor operating systems. In Proceedings of the

ACM SIGMETRICS International Conference on Mea-

surement and Modeling of Computer Systems, SIGMET-

RICS ’10, pages 155–166, 2010.

[36] J.-C. Laprie. Dependable computing: concepts, limits,

challenges. In Proceedings of the 25th International Con-

ference on Fault-tolerant Computing, FTCS’95, pages

42–54, 1995.

[37] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman,

and H. S. Gunawi. Samc: Semantic-aware model check-

ing for fast discovery of deep bugs in cloud systems. In

Proceedings of the 11th USENIX Symposium on Operat-

ing System Design and Implementation, OSDI’14, 2014.

[38] S. Li, T. Xiao, H. Zhou, H. Lin, H. Lin, W. Lin, and

T. Xie. A characteristic study on failures of production

distributed data-parallel programs. In Proc. International

Conference on Software Engineering (ICSE 2013), Soft-

ware Engineering in Practice (SEIP) track, May 2013.

[39] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A

tool for finding copy-paste and related bugs in operating

system code. In Proceedings of the 6th Conference on

Symposium on Opearting Systems Design and Implemen-

tation, OSDI’04, 2004.

[40] G. C. Lorenzo Keller, Prasang Upadhyaya. ConfErr: A

tool for assessing resilience to human configuration er-

rors. In Proceedings International Conference on De-

pendable Systems and Networks, DSN’08, 2008.

[41] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and

S. Lu. A study of Linux file system evolution. In Proceed-

ings of the 11th USENIX Conference on File and Storage

Technologies, FAST’13, pages 31–44, 2013.

[42] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis-

takes: a comprehensive study on real world concurrency

bug characteristics. In Proceedings of the 13th interna-

tional conference on Architectural support for program-

ming languages and operating systems, ASPLOS’08,

pages 329–339, 2008.

[43] R. Mahajan, D. Wetherall, and T. Anderson. Understand-

ing BGP misconfiguration. In Proceedings of the ACM

SIGCOMM 2002 conference, SIGCOMM ’02, pages 3–

16, 2002.

[44] P. D. Marinescu, R. Banabic, and G. Candea. An ex-

tensible technique for high-precision testing of recovery

code. In Proceedings of the 2010 USENIX annual techni-

cal conference, USENIX ATC’10, 2010.

[45] P. D. Marinescu and G. Candea. Efficient testing of re-

covery code using fault injection. ACM Trans. Comput.

Syst., 29(4):11:1–11:38, Dec. 2011.

[46] Missing dot drops Sweden off the internet.

http://www.networkworld.com/communi

ty/node/46115.

[47] P. Montesinos, L. Ceze, and J. Torrellas. De-

lorean: Recording and deterministically replaying shared-

memory multiprocessor execution effiently. In Proceed-

ings of the 35th Annual International Symposium on

Computer Architecture, ISCA ’08, pages 289–300, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[48] K. Nagaraj, C. Killian, and J. Neville. Structured compar-

ative analysis of systems logs to diagnose performance

problems. In Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation,

NSDI’12, 2012.

[49] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and

T. D. Nguyen. Understanding and dealing with operator

mistakes in internet services. In Proceedings of the 6th

conference on Symposium on Opearting Systems Design

and Implementation, OSDI’04, 2004.

[50] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why

do Internet services fail, and what can be done about it?

In Proceedings of the 4th conference on USENIX Sympo-

sium on Internet Technologies and Systems, USITS’03,

pages 1–15, 2003.

[51] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and

G. Muller. Faults in Linux: ten years later. In Proceed-

ings of the 16th International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’11, pages 305–318, 2011.

[52] A. Rabkin and R. Katz. How Hadoop clusters break. Soft-

ware, IEEE, 30(4):88–94, 2013.

[53] DB-Engines ranking of key-value stores. http://db-

engines.com/en/ranking/key-value+store.

[54] Redis: an open source, advanced key-value store. http:

//redis.io/.

[55] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.

Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error prop-

agation analysis for file systems. In Proceedings of the

2009 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’09, pages 270–

280, 2009.

[56] B. Schroeder and G. Gibson. A large-scale study of

failures in high-performance computing systems. IEEE

Transactions on Dependable and Secure Computing,

7(4):337–350, 2010.

[57] C. Spatz. Basic statistics, 1981.

[58] M. Sullivan and R. Chillarege. Software defects and their

impact on system availability — A study of field failures

in operating systems. In Twenty-First International Sym-

posium on Fault-Tolerant Computing, FTCS’91, pages 2–

9, 1991.

[59] Summary of the Amazon EC2 and RDS service

disruption. http://aws.amazon.com/message

/65648/.

[60] The curse of the swallowed exception. http://mi

chaelscharf.blogspot.ca/2006/09/dont-

swallow-interruptedexception-call.html.

[61] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.

Chen, J. Flinn, and S. Narayanasamy. DoublePlay: Paral-

lelizing sequential logging and replay. In Proceedings of

the 16th International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, ASPLOS ’11, 2011.

[62] K. V. Vishwanath and N. Nagappan. Characterizing cloud

computing hardware reliability. In Proceedings of the 1st

ACM symposium on Cloud computing, SoCC ’10, pages

193–204, New York, NY, USA, 2010. ACM.

[63] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,

Y. Zhou, and S. Pasupathy. Do not blame users for mis-

configurations. In Proceedings of the 24th ACM Sympo-

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 265

sium on Operating Systems Principles, SOSP ’13, 2013.

[64] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proceedings of the ACM SIGOPS 22nd Sympo-

sium on Operating Systems Principles, SOSP ’09, pages

117–132, 2009.

[65] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: Transpar-

ent model checking of unmodified distributed systems. In

Proceedings of the Sixth Symposium on Networked Sys-

tems Design and Implementation (NSDI ’09), pages 213–

228, April 2009.

[66] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,

and S. Pasupathy. An empirical study on configuration er-

rors in commercial and open source systems. In Proceed-

ings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, pages 159–172, 2011.

[67] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou,

and S. Savage. Be conservative: Enhancing failure di-

agnosis with proactive logging. In Proceedings of the

10th USENIX Symposium on Operating System Design

and Implementation, OSDI’12, pages 293–306, 2012.

17

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 267

Shielding applications from an untrusted cloud with Haven

Andrew Baumann Marcus Peinado Galen Hunt
Microsoft Research

Abstract

Today’s cloud computing infrastructure requires substan-
tial trust. Cloud users rely on both the provider’s staff and
its globally-distributed software/hardware platform not to
expose any of their private data.

We introduce the notion of shielded execution, which
protects the confidentiality and integrity of a program and
its data from the platform on which it runs (i.e., the cloud
operator’s OS, VM and firmware). Our prototype, Haven,
is the first system to achieve shielded execution of un-
modified legacy applications, including SQL Server and
Apache, on a commodity OS (Windows) and commod-
ity hardware. Haven leverages the hardware protection of
Intel SGX to defend against privileged code and physi-
cal attacks such as memory probes, but also addresses the
dual challenges of executing unmodified legacy binaries
and protecting them from a malicious host. This work
motivated recent changes in the SGX specification.

1 Introduction

Although users of cloud computing infrastructure may
expect their data to remain confidential, today’s clouds
are built using a classical hierarchical security model that
aims only to protect the privileged code (of the cloud
provider) from untrusted code (the user’s virtual ma-
chine), and does nothing to protect user data from access
by privileged code. As a result, besides the hardware used
to execute their applications, the cloud user must trust:
(i) the provider’s software, including privileged software
such as a hypervisor and firmware but also the provider’s
full stack of management software; and (ii) the provider’s
staff, including system administrators but also those with
physical access to hardware such as cleaners and secu-
rity guards. Furthermore, as the Snowden leaks demon-
strate [18, 19], the cloud user also implicitly trusts (iii) law
enforcement bodies in any jurisdiction where their data
may be replicated. By any measure, this is a large and in-
scrutable trusted computing base, and the related concerns
are a significant factor limiting cloud adoption [13, 43].

The current best practice for protecting secrets in the
cloud uses hardware security modules (HSMs) [e.g., 1].
These dedicated appliances rely on tamper-proof hard-
ware to protect critical secrets, such as keys, and support
a range of cryptographic functions, but come at a signif-
icant cost, and do not usually run general-purpose appli-
cations. Typical deployments use HSMs to protect key
material, but transiently decrypt data on untrusted nodes
for computation, rendering the data vulnerable to the
threats outlined above. Previous research relied on trusted
hypervisors to protect an application from a malicious
OS [11, 25, 54, 60, 63], but cannot protect against a hy-
pervisor controlled by a malicious or compromised cloud
provider. Finally, although some applications can operate
on encrypted data [4, 46, 55], cryptographic schemes for
general-purpose computing [20, 21] have severe perfor-
mance limitations.

Our objective is to run existing server applications in
the cloud with a level of trust and security roughly equiv-
alent to a user operating their own hardware in a locked
cage at a colocation facility. Like the colocation provider
(who is responsible only for power, cooling and network
connectivity), the cloud provider is limited to offering raw
resources: processor cycles, storage, and networking; it
can deny service, but cannot observe or modify any user
data except what is transmitted over the network. We refer
to this property as shielded execution, and define it in §2.
Essentially the inverse of sandboxing, it protects the confi-
dentiality and integrity of code and data from an untrusted
host. The high-level guarantee to the user is that secrecy
is always preserved, and if their program executes, it be-
haves as if it ran on reference hardware under the user’s
control. The provider retains control of resource alloca-
tion, and may protect itself from a malicious guest.

Our prototype, Haven, implements shielded execution
of unmodified Windows applications. It leverages Intel
software guard extensions (SGX) [28, 29, 41], a set of
new instructions and memory access changes summarised
in §3.1. SGX allows a process to instantiate a secure re-
gion of address space known as an enclave; it then pro-
tects execution of code within the enclave, even from ma-
licious privileged code or hardware attacks such as mem-

268 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ory probes. While SGX was designed to enable new trust-
worthy applications to protect specific secrets by placing
portions of their code and data inside enclaves [24], Haven
aims to shield entire unmodified legacy applications writ-
ten without any knowledge of SGX. This leads to two key
challenges. First, executing legacy binary code inside an
enclave pushes the limits of the SGX execution model:
our target applications are large, raise and handle excep-
tions, dynamically allocate memory, and may execute ar-
bitrary x86 instructions. Second, the code we seek to pro-
tect was written assuming that the OS it ran on would op-
erate correctly, but the host OS may be malicious. To
defeat such “Iago attacks” [10], where a malicious OS
subverts a protected application by exploiting the applica-
tion’s reliance on correct results of system calls, we use an
in-enclave library OS (LibOS). The LibOS used by Haven
is derived from Drawbridge [47]; it implements the Win-
dows 8 API using a small set of primitives such as threads,
virtual memory, and file I/O. As we describe in §4, Haven
implements these primitives using a mutually-distrusting
interface with the host OS. This ensures shielded execu-
tion of unmodified applications; a malicious host cannot
trick an application into divulging its secrets nor executing
incorrectly. Combined with a remote attestation mecha-
nism [2], Haven gives the user an end-to-end guarantee of
application security without trusting the cloud provider,
its software, or any hardware beyond the processor itself.

We developed Haven on an instruction-accurate SGX
emulator provided by Intel, but evaluate it using our own
model of SGX performance. Haven goes beyond the orig-
inal design intent of SGX, so while the hardware was
mostly sufficient, it did have three fundamental limitations
for which we proposed fixes (§5.4). These are incorpo-
rated in a revised version of the SGX specification [29],
published concurrently by Intel.

The contributions of this paper are:

• We define the concept of shielded execution (§2), de-
scribe how SGX supports it (§3.1), and later outline
generalised hardware requirements (§7.4).
• We present Haven, the first system to implement

shielded execution of unmodified binaries for a com-
modity OS, achieving mutual distrust with the entire
host software stack (§4–5). Haven shields applica-
tions using mechanisms such as private scheduling,
distrustful virtual memory management, and an en-
crypted and integrity-protected file system.
• We evaluate Haven’s performance using unmodified

server applications: SQL Server and Apache (§6).
• We identify minimal changes to SGX to enable effi-

cient shielded execution of unmodified applications
(§5.4), and note optimisation opportunities (§7.3).

2 Security Overview

2.1 Shielded execution
Like others [41, 44, 59], we use the term isolated execu-
tion to refer generally to mechanisms that protect the con-
fidentiality and integrity of specific code and data from
other actors. In contrast to previous protection mech-
anisms such as process isolation, sandboxing, managed
code, etc. which serve to confine an untrusted program
and protect the rest of a system from its actions, isolated
execution refers to the inverse: protecting specific code
from the rest of the system, however large or privileged.

Various forms of isolated execution are possible. Soft-
ware implementations rely on a trusted component such
as a hypervisor that implements isolation (e.g., using page
protection and/or encryption) [11, 14, 25, 39, 54, 60, 63].
Conversely, in pure-hardware implementations, no soft-
ware other than the isolated code is in the trusted comput-
ing base. While several hardware isolation mechanisms
exist [9, 31, 34, 44, 59], SGX is the first commodity hard-
ware that permits efficient multiplexing among multiple
isolated programs without relying on trusted software.

However, isolation alone is not sufficient to protect ap-
plications. In order to be useful, an isolation mecha-
nism must permit interaction with untrusted software or
hardware, to communicate results or access system ser-
vices, and it is at these points that a naı̈ve isolated pro-
gram is vulnerable [10]. For example, SGX isolates
self-contained sequences of x86 instructions (typically,
individual modules or functions) that are aware of the
SGX protection model and are explicitly written to de-
fend against threats outside the enclave, that do not handle
faults or exceptions, and do not interact with the OS.

Shielded execution builds on an isolation mechanism to
provide higher-level security properties; specifically, for
an abstract program, it guarantees:

• Confidentiality: The execution of the shielded pro-
gram appears as a “black box” to the rest of the sys-
tem. Only its inputs and outputs, but no intermediate
states, are observable.
• Integrity: The system cannot affect the behaviour of

the program, except by choosing not to execute it
at all or withholding resources (denial of service at-
tacks). If the program completes, its output is the
same as a correct execution on a reference platform.

While the term may be new, the underlying concept is
not. In using a new term, we attempt to generalise be-
yond specific implementations such as cloaking [11, 12],
“pieces of application logic” [33, 38, 39], protected mod-
ules [45] and high-assurance processes [25] that provide

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 269

shielded execution under a specific set of constraints.
Moreover, in Haven, our goal is to relax those constraints
to achieve shielded execution for unmodified application
binaries with complex OS dependencies.

Note that shielded execution is necessary but not suf-
ficient to meet our goal of confidential execution in the
cloud. We also require an attestation mechanism to estab-
lish confidence in the integrity of a remote shielded pro-
gram, and a mechanism to provision secrets directly to it,
allowing it to operate on encrypted inputs and extend con-
fidentiality beyond the confines of the shield mechanism.
We describe how SGX supports this in §3.1.

2.2 Threat model and assumptions

We seek to protect the confidentiality and integrity of a
user’s unmodified server application from an untrusted
cloud provider. We specifically exclude software-based
isolation mechanisms, because besides their vulnerabil-
ity to simple hardware attacks, we wish to give the cloud
provider the unfettered ability to patch and update its priv-
ileged software (we expand on this later in §8). We there-
fore assume a powerful adversary that controls most of the
provider’s hardware and all its software.

At the hardware level, we assume that the processor it-
self is implemented correctly, and not compromised (so
the adversary cannot extract secrets residing within it).
The adversary has full control beyond the physical pack-
age of the processor, including memory and all I/O de-
vices. They may probe memory, and arbitrarily alter or
inject I/O including network traffic.

The adversary also controls the cloud provider’s entire
software stack, including the host OS, hypervisor, man-
agement software, platform firmware, BIOS, code exe-
cuting in system management mode, and device firmware.
As a result, they may interrupt execution of the user’s pro-
gram indefinitely, and may pass arbitrary values across
the isolation boundary (e.g., the SGX enclave), including
the results of calls to OS services and arbitrarily-injected
upcalls. We assume a secure source of random numbers
(which recent processors provide). However, the adver-
sary may interfere with other sources of non-determinism
such as thread interleaving, subject to the constraints of
the hardware specification (e.g., the memory model).

We do not consider any side-channel attacks. Common
side-channels, such as timing and cache-collision, have
known (but expensive) attack mitigations [e.g., 8] that can
be implemented by application software; others, such as
power analysis, require hardware modifications, and are
ultimately a limitation of our approach.

Enclave
TCS
TCS

Code/data

Virtual address space
Physical memory

RAM

EPC

E
nc

ry
pt

ed
 &

in
te

gr
ity

-p
ro

te
ct

ed

Page table
mappings
verified by
SGX HW

Figure 1: SGX virtual and physical memory layout

3 Background

3.1 Intel SGX

In this section, we summarise the SGX functionality rel-
evant to Haven; readers are directed to the specifica-
tion [28, 29, 41] for full details. Although SGX protects
against any malicious privileged code (OS, hypervisor,
firmware, system management mode, etc.), we refer to it
collectively as simply the “OS”.

Memory protection SGX protects the confidentiality
and integrity of pages in an enclave, a region of a user-
mode address space (Figure 1). While cache-resident, en-
clave data is protected by CPU access controls (the TLB).
However, it is encrypted and integrity protected when
written to memory, and if the data in memory is modified,
a subsequent load will signal a fault.

SGX mediates page mappings at enclave setup and
maintains shadow state for each page. Enclaves are cre-
ated by an ECREATE instruction, which initialises a con-
trol structure in protected memory. Once an enclave has
been created, pages of memory are added to it using EADD.
These pages are allocated by the OS, but must occupy
a specific region of physical memory: the enclave page
cache (EPC). For each EPC page, hardware tracks its
type, the enclave to which it is mapped, the virtual ad-
dress within the enclave, and permissions (read, write, ex-
ecute). On each enclave page access, after walking the
page table, SGX ensures that the processor is in enclave
mode, the page belongs to the EPC and is correctly typed,
the current enclave maps the page at the accessed virtual
address, and the access agrees with the page permissions.

Like the RAM backing it, EPC is a limited resource.
Therefore, SGX enables the OS to virtualise EPC by pag-
ing its contents to other storage [28, §3.5]. Privileged in-
structions cause the hardware to free an EPC page cho-

270 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

sen by the OS, writing its contents to an encrypted buffer
in main memory, which the OS may then relocate. To
prevent rollback attacks on page-in, the hardware keeps a
version number for the page in EPC. It also requires the
OS to follow a hardware-verified protocol to ensure that
TLB shootdown has completed when evicting a page.

Attestation SGX supports CPU-based attestation [2],
enabling a remote system to verify cryptographically that
specific software has been loaded within an enclave, and
establish shared secrets allowing it to bootstrap an end-to-
end encrypted channel with the enclave.

During enclave creation, a secure hash known as a mea-
surement is established of the enclave’s initial state. The
enclave may later retrieve a report signed by the proces-
sor that proves its identity to, and communicates a unique
value (such as a public key) with, another local enclave.
Using a trusted quoting enclave, this mechanism can be
leveraged to obtain an attestation known as a quote which
proves to a remote system that the report comes from an
enclave running on a genuine SGX implementation [2].
Ultimately, the processor manufacturer (e.g., Intel) is the
root of trust for attestation.

Enclave entry and exit Besides protecting the content
and integrity of memory mappings, SGX also mediates
transitions into and out of the enclave, and protects the
enclave’s register file from OS exception handlers. This is
managed using a thread control structure (TCS).

User code begins executing an enclave by invoking
EENTER on an idle TCS; this acts as a call gate, transferring
control to a defined entry point within the enclave. En-
clave code may access enclave pages according to the pro-
tection model outlined above; it may also read and write
memory outside the enclave region (as permitted by OS
page tables), but any attempt to execute code there faults.
The processor continues in enclave mode until software
explicitly leaves it by invoking EEXIT, or until an interrupt
or exception returns control to the OS, which is known
as an asynchronous exit. After an explicit exit, control
resumes outside the enclave at an address chosen by the
enclave; in this way EENTER and EEXIT can be used with
stubs that wrap invocations of enclave functions, taking
care to validate inputs on entry and scrub secrets on exit
from any registers not used as return values.

After an asynchronous exit, control transfers to the OS
exception handler; typically this would save the registers
for later use (e.g., when next scheduled), but the OS can-
not be trusted with the enclave’s register state. Instead,
SGX saves the full context and information about the
cause of the exit in the TCS, replacing it with a synthetic
context before reporting the exception to the OS. The en-
clave may later be resumed by ERESUME on the TCS, which

restores its last saved context. Alternatively, the OS can
re-enter the enclave, giving it the opportunity to inspect
and modify its own state before resuming; this is used to
report an exception which must be handled by the enclave.

SGX is an imperfect implementation of shielded exe-
cution according to our definition in §2.1, because the OS
exception handler observes some of the enclave’s internal
state: the exception vector, and in the case of a page fault,
the type of access and base address of the page [28, §4.4].
This allows the OS to retain control over resource man-
agement (i.e., CPU time and memory); in general, it can
deny service to the enclave, but cannot cause it to execute
incorrectly. We discuss hardware designs to decouple re-
source management from observations of guest behaviour
later in §7.4.

Dynamic memory allocation As described, SGX does
not allow enclave pages to be added after creation, nor
EPC permissions changed, which is clearly insufficient
for Haven to run unmodified applications. However, revi-
sion 2 of the SGX specification [29] includes new instruc-
tions allowing the enclave and host OS to cooperatively
add/remove enclave pages and modify their permissions.

Allocation requires cooperation, because the host man-
ages EPC but cannot be trusted to arbitrarily add enclave
pages (e.g., in an unallocated region). To allocate a new
page, the host invokes EAUG to place an unused EPC page
at a specific offset in an enclave; this must then be ac-
knowledged by the enclave executing EACCEPT, before it
becomes accessible. Similarly, reducing permissions or
removing pages also requires cooperation, because like
page eviction, hardware must help ensure TLB shootdown
has occurred. SGX includes instructions (EMODT, EMODPR,
EBLOCK, ETRACK and EACCEPT) to enable this.

These operations do not change the enclave measure-
ment established by EINIT; since the modified pages come
under the full control of the enclave, its identity is equiv-
alent for trust purposes.

3.2 Drawbridge
Haven builds on Drawbridge [6, 47], a system support-
ing low-overhead sandboxing of Windows applications.
Drawbridge consists of two core mechanisms, both of
which Haven leverages: the picoprocess, and library OS.

The picoprocess is a secure isolation container con-
structed from a hardware address space, but with no ac-
cess to traditional OS services or system calls [15]; in-
stead, a narrow ABI of OS primitives is provided, im-
plemented using a security monitor. The ABI consists
of 40 downcalls and three upcalls [6]. Downcalls are re-
quests for OS services including virtual memory, thread-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 271

ing, and I/O streams (e.g., files and network sockets). Up-
calls are initiated by the host, have only input parameters,
and do not return; they are used for initialisation, thread
startup, and exception delivery. In Haven, as in Draw-
bridge, the picoprocess serves to protect the host (i.e., the
cloud provider) from a potentially-malicious guest.

The Drawbridge LibOS is a version of Windows 8
refactored to run as a set of libraries within the picopro-
cess, depending only on the ABI. It consists of lightly-
modified binaries for most user-mode and some kernel
components of Windows, and a “user-mode kernel” that
implements the interfaces on which they depend.

Together, the picoprocess and LibOS enable sandbox-
ing of unmodified Windows applications with comparable
security to virtual machines, but substantially lower over-
heads. While Drawbridge aims only to protect the host
from an untrusted guest, Haven shields the execution of
the application and LibOS from an untrusted host, thereby
enabling mutual distrust between host and guest.

4 Design

We now present the design of Haven, which leverages the
instruction-level isolation mechanism of SGX to achieve
shielded execution of entire legacy application binaries.
In doing this, we address two key challenges: protecting
from a malicious host OS, and executing existing binaries
in an enclave. We first discuss these in more detail.

4.1 Design challenges

Malicious host OS A general class of threats known
as Iago attacks arises when a malicious OS attempts to
subvert an isolated application by exploiting its assump-
tion of correct OS behaviour, for example when using
the results of system calls [10]. Besides simply return-
ing semantically-incorrect results from system calls (e.g.,
returning the address of an already-allocated region for a
new memory allocation), the malicious OS may seek to
exploit latent bugs in the application. For example, it may
allocate valid but abnormally-high virtual addresses, re-
turn unusual values for parameters such as memory size
and number of processors, alter timing to seek to exploit
latent race conditions, inject spurious exceptions, return
unexpected error codes from system calls, or simply fail
calls that an application naively assumes will succeed.

Our approach to this challenge is twofold. First, we
limit its scope using a LibOS within the enclave. The
LibOS implements the full OS API using a much nar-
rower set of core OS primitives. Since the LibOS is under

Drawbridge ABI, SGX priv. ops

Picoprocess (protects host from guest)

Untrusted Interface

Enclave (protects guest from host)

Windows 8 API

Drawbridge ABI

Host kernel (Windows)

Untrusted runtime

Application (unmodified binary)

Library OS

Shield module

Drawbridge hostSGX driver

U
pc

al
ls

(e
xc

ep
tio

ns
)

D
ow

nc
al

ls
(O

S
 s

er
vi

ce
s)

• Threads
•Scheduling

•Virtual memory
• File system

Figure 2: Haven components and interfaces

user control, and can be arbitrarily tested or inspected of-
fline, we assume that it is not malicious (to the user), even
though it may be large, complex, and contain bugs. Sec-
ond, having reduced the scope of attacks by narrowing
the interface they must traverse, we use established tech-
niques to correctly implement the OS primitives in the
presence of a malicious host: careful defensive coding,
exhaustive validation of untrusted inputs, and encryption
and integrity protection of any private data exposed to un-
trusted code.

Unmodified binaries SGX was designed to protect lim-
ited subsets of application logic [24], however full appli-
cation binaries have properties that make them challeng-
ing to execute in an enclave. They load code and data at
runtime, dynamically allocate and change protection on
virtual memory, execute arbitrary user-mode instructions
(including some not supported by SGX), raise and handle
exceptions (e.g., page faults, divide-by-zero or floating-
point exceptions), and use thread-local storage.

Haven addresses each of these challenges. For some,
such as thread-local storage, we rely on enhancements to
SGX described later in §5.4. For most, we work around
the limitations, by emulating unsupported instructions,
carefully validating and handling exceptions that occur
within an enclave, and modifying LibOS behaviour.

4.2 Architecture

Figure 2 shows the architecture of Haven. We create an
enclave within the Drawbridge picoprocess containing the
entire application and LibOS. To protect the LibOS and
application from a malicious host, Haven augments Draw-
bridge with two layers: a shield module below the LibOS
in the enclave, and an untrusted runtime outside the en-

272 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Upcalls:
ExceptionDispatch(ExceptionInfo)

ThreadEntry()

Downcalls:
AsyncCancel(AsyncHandle)

AsyncPoll(AsyncHandle) -> Results

DebugStringPrint(Message)

EventClear(EventHandle)

EventSet(EventHandle)

ObjectClose(Handle)

ObjectsWaitAny(Count, Handles, Timeout) -> Index

ProcessExit(ExitCode)

StreamAttributesQueryByHandle(StreamHandle) -> Attribs

StreamFlush(StreamHandle)

StreamGetEvent(StreamHandle, EventId) -> EventHandle

StreamOpen(URI, Options) -> StreamHandle

StreamRead(StreamHandle, Off, Len, Buf) -> AsyncHandle

StreamWrite(StreamHandle, Off, Len, Buf) -> AsyncHandle

SystemTimeQuery() -> Time

ThreadCreate(Tcs) -> ThreadHandle

ThreadExit()

ThreadInterrupt(ThreadHandle)

ThreadYieldExecution()

VirtualMemoryCommit(Addr, Size, Prot)

VirtualMemoryFree(Addr, Size)

VirtualMemoryProtect(Addr, Size, Prot)

Figure 3: Untrusted interface to enclave.

clave. These effectively interpose on the LibOS/host inter-
face (the Drawbridge ABI) [6], implementing a shielded
version in the enclave by calling out to the untrusted host.

Our design is independent of the specific LibOS; recent
Linux LibOSes [6, 27, 58] might also be used.1

Shield module As with all code inside the enclave, this
is in the application’s trusted computing base. Its high-
level role is to implement the Drawbridge ABI required
by the LibOS in terms of a more limited subset of core
OS operations. It therefore includes private implementa-
tions of typical kernel functionality such as memory man-
agement, a file system, and thread synchronisation. It also
acts as a trusted bootloader for the LibOS and application.

The shield is responsible for protecting the LibOS and
application from Iago attacks outside the enclave. It does
this by careful validation of all parameters and results
passed across a narrow interface with the untrusted run-
time. At its most basic, this validation consists of ensur-
ing that the parameters of upcalls and results of downcalls
are consistent with their specification. For example, the
number of bytes read from a stream cannot be more than
the requested size, and it is not acceptable to return an
error code indicating a timeout for an operation that can-
not do so (more generally, each downcall has a specific
list of acceptable failure codes). Specific calls require fur-
ther validation, using either hardware support (e.g., when
changing virtual memory permissions), or additional soft-
ware (e.g., for thread synchronisation), and are discussed
in the relevant sections below.

Since our threat model permits denial of service, the
shield can and does handle any incorrect host behaviour
by panicking: it emits a short debug message, requests
the host to terminate its process, and rejects subsequent

1We note however that fork() would be both complex and expen-
sive, as it requires a new enclave communicating via untrusted channels.

attempts to enter the enclave.

Untrusted interface The interface at the enclave
boundary must allow the shield to verify the correctness of
all operations while also enabling an efficient implementa-
tion. Besides minimality, our guiding principle in design-
ing it was a form of policy/mechanism separation [32]:
the guest controls policy for virtual resources (virtual ad-
dress allocation, threads, etc.), while the host manages
policy only for physical resources (e.g., memory and CPU
time). In general, this prevents operations that give any
implementation freedom to the host beyond physical re-
source allocation, makes verification efficient, and limits
the scope of attacks.

The interface is summarised in Figure 3; it is expressed
as a Drawbridge ABI subset, with fewer (22 rather than
40) calls and fewer permissible arguments; specifically:

• calls to commit, free and protect specific pages;
• thread management and signalling;
• I/O streams to access untrusted storage and network;
• a source of system time.

Untrusted runtime Primarily bootstrap and glue code,
this is trusted by neither enclave nor host kernel. Its main
tasks are creating the enclave, loading the shield, and for-
warding calls between the enclave and host OS.

4.3 Shield services
Virtual memory The virtual address region occupied
by a Haven enclave always starts at zero (enforced by a
check at startup), allowing the enclave to reliably detect
and handle NULL pointer dereferences. Otherwise, a ma-
licious host OS could map pages there, and redirect NULL
accesses to data of their choosing. The enclave’s virtual
size must be large enough for all possible allocations by

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 273

the application/LibOS, and small enough to leave some
address space for the untrusted runtime and host OS. In
our prototype, enclaves occupy 64GB of address space.

The shield manages virtual memory within the enclave.
It includes a region allocator, tracking sub-regions of the
enclave that are reserved for use. For each reserved re-
gion, it tracks which pages are committed (i.e., accessi-
ble to the application), and for those pages, their permis-
sions (read, write, execute). For each allocation, the shield
chooses an address based on its knowledge of allocated
regions. When memory is committed or its protection is
changed, the shield calls out to the host to make the appro-
priate changes (e.g., allocating and mapping EPC pages
and performing TLB shootdown if necessary), then uses
the dynamic memory allocation instructions described in
§3.1 to ensure that the expected changes were made. To
prevent exploits of latent bugs in the application or LibOS,
the shield never allows the host to choose virtual ad-
dresses. It also blocks the application from using non-
enclave memory, by failing requests to allocate it.

Storage While SGX provides confidentiality and in-
tegrity protection for data in memory, Haven must also
support secure persistent storage. Rather than simply
encrypting file contents, which risks leaking guest state
through file metadata, the shield implements a private
filesystem. Our prototype uses a FAT32 filesystem inside
an encrypted virtual hard disk (VHD) image.

The shield encrypts each disk block independently with
an authenticated encryption algorithm (AES-GCM [40]),
keying the encryption to the block number. Like other
systems [16, 17, 26, 36, 62], a Merkle tree [42] protects
the integrity of the overall disk. This can be implemented
with little overhead, as only the root and the leaf nodes of
the tree are persisted to disk [26]. Like InkTag [25], we
store the crypto metadata (message authentication codes
of data blocks, nonces, and the Merkle tree root) in sep-
arate blocks from filesystem data. We also adapted Ink-
Tag’s two-hash-versions scheme to maintain consistency
after crashes. We discuss rollback attacks in §7.2.

Threads and synchronisation To prevent the host from
exploiting the application, for example by allowing two
threads to concurrently acquire a mutex, the shield imple-
ments a form of user-level scheduling [3, 37]. At startup,
it creates a fixed number of threads according to the de-
sired level of parallelism (typically, the number of hard-
ware threads). These operate as virtual CPUs support-
ing an arbitrary number of application threads inside the
enclave. Besides multiplexing application threads across
the virtual CPUs, the shield’s scheduler implements prim-
itives for events, mutexes and semaphores. It maintains its
internal state (run queues and synchronisation objects) us-

Table 1: Summary of component sizes

LoCa Size

Drawbridge LibOS millionsb 209 MBc

Shield module 23,095 180 kB
Untrusted runtime 7,446 52 kB
SGX driver 4,520 41 kB

a Lines of code counted by David A. Wheeler’s “SLOCCount”.
b See Porter et al. [47] for a breakdown (of a previous version).
c We report file size for all binaries in the LibOS; the subset that is

loaded depends on the application, but is usually much smaller.

ing atomic instructions for safety, and uses the untrusted
interface’s event and interrupt mechanisms to support sus-
pending/resuming and signalling the virtual CPUs.

The untrusted host can deny service by delaying wake-
ups or interrupts, but cannot cause the application to ex-
ecute incorrectly. Moreover, its ability to exploit latent
race conditions in the application by delaying guest exe-
cution is severely curtailed by the multiplexing of applica-
tion threads (which it cannot observe) onto virtual CPUs.

Miscellaneous The shield handles calls for entropy gen-
eration (using RDRAND, a secure source of randomness) and
dynamic loading/relocation of application binaries. Our
loader does not yet implement address-space layout ran-
domisation [7]; this is planned for future work.

Process creation is not supported. While not inconceiv-
able, it would be extremely complex and expensive to im-
plement on SGX, requiring the creation of a new enclave
(in a separate address space), and communication with
it over untrusted channels. One advantage of the Win-
dows OS is that surprisingly few applications use child
processes [6, 47]. For those that do, it is often sufficient to
run the “subprocess” in a different portion of the parent’s
address space (i.e., in the same enclave), since the API has
no fork() operation; this is supported by the LibOS.

5 Implementation
Table 1 reports the size of various components in our cur-
rent prototype. Besides implementing the shield and un-
trusted runtime, we added SGX support to our host OS
(Windows 8.1) by writing a driver and making some ker-
nel changes. The driver implements SGX kernel-mode
operations: allocating and mapping EPC pages, and cre-
ating and destroying enclaves. It is trusted by the host,
but untrusted by enclave code. We also modified the host
kernel to enable efficient mapping of EPC pages to user-
mode. This was necessary, because EPC regions appear
as reserved device space to the kernel, and the existing

274 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

driver APIs for mapping device memory to user-mode did
not anticipate the need for efficient page-granular map-
ping and protection changes. We also implemented sup-
port for debugging an enclave using the SGX debug mech-
anisms [28, Chapter 7]. Finally, we made minor modifi-
cations (249 lines of code) to the LibOS to avoid using
shared memory within the picoprocess,2 which SGX does
not support.

5.1 Application deployment and attestation

Haven applications are deployed similarly to cloud VMs,
with an extra attestation step we now describe. A user
constructs a disk image containing application and LibOS
binaries and data, and then encrypts it symmetrically, re-
taining the key. The encrypted VHD and shield binary are
sent to the cloud provider. The shield is not encrypted,
but its integrity will be verified.3 The cloud provider es-
tablishes a picoprocess, and loads the untrusted runtime,
which then creates an enclave and loads the shield mod-
ule. While the shield is loaded, the SGX hardware attes-
tation mechanism (§3.1) is used to measure (i.e., compute
a secure hash of) its code and initial state. The shield
receives two startup parameters: a structure of untrusted
parameters chosen by the host, such as addresses of down-
call functions in the untrusted runtime, and trusted param-
eters chosen by the user, such as configuration options and
environment variables, which form part of the enclave’s
measurement.

After initialising itself, the shield generates a pub-
lic/private key pair, and then uses its parameters to estab-
lish a network connection with the user – this may be a
machine physically under the control of the user, or an-
other enclave in the cloud. In either case, the shield uses
the SGX attestation mechanism to produce a quote con-
taining its public key which it sends to the user, proving
that it has been correctly loaded and executes in an SGX
enclave. If the enclave’s measurement is as expected (i.e.,
if the shield was loaded correctly with the desired param-
eters), the user encrypts the VHD key using the public key
contained in the quote, and sends it back to the shield; any
tampering with the shield binary is detected and subverted
at this point. Assuming it was loaded correctly, the shield
may now decrypt the VHD key using its private key, and
use it to access the contents of the VHD, allowing it to
continue to load the LibOS and application.

2Code that relied on making multiple mappings of a shared memory
section within the process was changed to use a single virtual address.

3If confidentiality of the shield was desirable, a smaller trusted boot-
loader could be used whose only task would be to perform attestation at
startup and then decrypt and load the shield binary.

From this point onward, communication with the out-
side world, and therefore access to any secrets contained
in the VHD, is under application control. Typical server
applications supporting SSL-encrypted connections may
be configured using certificates and keys stored directly
in the VHD, and accessed over the cloud provider’s un-
trusted network. For future work, we are planning to add
support for encrypted virtual private networks between a
user’s enclaves (or trusted hosts), providing a secure net-
work to applications that require one.

5.2 Enclave entry/exit
In Haven, an application performs most of its execution in
the enclave, calling out to the untrusted host only for sys-
tem services. This is the opposite of the typical SGX us-
age model of untrusted code calling into an enclave [24].
To perform an upcall, the untrusted runtime loads the up-
call parameters into specific registers, and invokes EENTER,
which does not return to its caller but instead delivers con-
trol to the shield entry point inside the enclave.

To perform a downcall, the shield passes arguments
in registers while clearing any unused registers (to pre-
vent leaking secrets), stores the return address and stack
pointer inside the shield’s thread record, and invokes
EEXIT with a target address of the relevant downcall han-
dler. SGX leaves the enclave and executes the untrusted
handler, which first loads a stack pointer before calling C
code. When the downcall returns (generally, after a sys-
tem call) its results are delivered to the enclave by EENTER,
which re-enters the enclave at the shield entry point.

The shield must disambiguate the different entry
causes. To do so it inspects the SGX thread structure,
which identifies whether an exception occurred, and its
own thread record, which records whether a downcall was
in progress. It then reloads the stack pointer, and either
calls (on an upcall) or returns to (on a downcall) C code.

Parameters that are passed by reference (e.g., I/O
buffers) cannot be located inside the enclave, since they
are inaccessible to the host. Instead, the shield allocates
a “bounce buffer” from a memory region outside the en-
clave, and copies the parameters appropriately. We are
considering (but have not yet implemented) an optimisa-
tion to the file system to encrypt directly into the bounce
buffer on writes, and decrypt from it on reads; this would
reduce the copy overhead for most file I/O.

5.3 Exception handling
When a page fault occurs within an enclave, SGX saves
the register context and fault information to an in-enclave
data structure (see §3.1). It then delivers an exception

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 275

to the host OS, which may choose to handle the fault
(e.g., by lazily updating a page table) and resume exe-
cution, or to report it to the user process. In the latter
case, the untrusted runtime upcalls the shield in the en-
clave, which must then determine the true cause using the
information and register context provided by SGX. The
shield exception handler performs sanity-checks to ensure
that the exception is valid and should be reported to the
LibOS. These include checking that: an exception actu-
ally occurred (as reported by SGX); the instruction is in
the enclave but not the shield module (which should never
fault); and the fault type (read, write, or execute) is con-
sistent with the page’s expected permissions.

The shield prepares to deliver the exception to the
LibOS, by copying the context and cause in a format de-
fined by the Drawbridge ABI, and modifying the context
to run the LibOS exception handler. Haven must now re-
sume the modified context. Unfortunately, SGX only al-
lows ERESUME outside an enclave, so the shield must EEXIT
to a small (untrusted) stub that immediately resumes the
enclave, restoring the context. We discuss the perfor-
mance implications of this additional exit later, in §7.3.

Most other exceptions are handled similarly to page
faults. The one special case is illegal instructions: as we
describe later in §5.4, some user-mode instructions are il-
legal in an enclave. The trusted exception handler decodes
and emulates these, by modifying the processor context
and advancing the instruction pointer.

5.4 SGX limitations and workarounds
In addition to the need for dynamic memory allocation,
we encountered three architectural limitations with SGX
as initially specified [28] that made it impossible to run
existing application and LibOS binaries. We summarise
these issues, our workarounds, and proposed changes.
Working with Intel, these changes are now incorporated
in the revised SGX specification [29].

Exception handling SGX allows an enclave to handle
its own exceptions by reporting the exception cause and
register context securely in the TCS. However, while the
registers are always saved, not all exception causes are
reported to the enclave. For example, hardware inter-
rupts are of no relevance to the enclave and may reveal
private information about the host configuration, so they
are not reported. As originally specified [28, §2.6.3], the
list of reported exceptions included program faults such
as division by zero, breakpoint instructions, undefined in-
structions, and floating point / SIMD exceptions, but not
page faults or general protection faults. This prevented
an enclave from handling these faults without trusting

the host for information such as faulting address and ac-
cess type. However, page faults are commonly handled
by user-mode code, for example in demand loading or
stack allocation. General protection faults are less com-
mon, but may also occur, e.g. in a LibOS emulating priv-
ileged instructions. SGX now reports these faults to the
enclave [29].

Permitted instructions SGX disallows in-enclave exe-
cution of instructions that may cause a VM exit or change
software privilege levels [28, §3.6]. Unfortunately, three
of these instructions are commonly encountered in LibOS
and application binaries: CPUID, RDTSC, and IRET.
CPUID This instruction queries processor features,

generally to test for extended instructions. SGX prevents
its use within an enclave, because a virtual machine may
be configured to trap and emulate it, but emulation is im-
possible since the enclave’s registers are not visible to the
hypervisor. Instead, the processor signals an invalid in-
struction, and Haven’s exception handler emulates CPUID
using static knowledge of features available on SGX.
RDTSC and RDTSCP These instructions return the cycle

counter, and are commonly used as a low-overhead time
source, e.g. to measure hold-time in adaptive spinlocks.
The initial version of SGX prevented their use because,
like CPUID, they may cause a VM exit. However, unlike
CPUID, they are not feasible to emulate: first, there is no
reliable source of time, and second, most uses of RDTSC
rely on its low overhead, which emulation cannot achieve.
Instead, the SGX specification was revised to permit these
instructions if VM exiting is disabled [29].
IRET Nominally an “interrupt return”, this is used at

the end of an exception handler when restoring proces-
sor state. It pops registers including instruction and stack
pointers, and returns in the new context.4 Since IRET can
also change protection level, SGX disallows its execution
in an enclave. Haven presently emulates IRET, but this
adds overhead to exceptions, as we discuss later in §7.3.

Thread-local storage For legacy reasons, thread-local
data on x86 is accessed via FS or GS segments. On
SGX, EENTER and ERESUME load private FS and GS base
addresses from the TCS. However, because a TCS is im-
mutable once created, the addresses must be known at
startup. Instructions exist to change FS/GS (WRFSBASE,
WRGSBASE), but these could not reliably be used in an en-
clave, since the changes were not saved on asynchronous
exits, and ERESUME restored FS and GS from the TCS.

As a result of this limitation, it was not possible to
context-switch a TCS between application threads, and

4IRET is used since, to our knowledge, it is the only user-mode in-
struction that can restore a complete context, including volatile registers.

276 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

therefore impossible to perform user-mode scheduling
within an enclave. As a workaround, the Haven proto-
type maps application threads 1:1 onto TCSs and host
threads.5 Although the shield’s scheduler still ensures the
correct behaviour of all synchronisation primitives, the
host’s ability to control scheduling of application threads
makes it more likely that a malicious host could exploit
application-level bugs by arbitrarily delaying threads.

This problem has been addressed in the revised SGX
specification [29], but an implementation was not yet
available to us, so our prototype relies on the workaround.

5.5 Unimplemented aspects

Our prototype implements the full design, with three ex-
ceptions. Rather than the attestation mechanism, we send
the VHD key in the clear. We also built a simplified ver-
sion of the disk integrity scheme that has equivalent per-
formance, but cannot detect all block rollback attacks. Fi-
nally, we “emulate” CPUID by exiting the enclave to exe-
cute the instruction. We do not expect these shortcuts to
materially impact performance.

6 Performance Evaluation

We developed and tested Haven using a functional emula-
tor for SGX provided by Intel. However, in the absence of
an SGX CPU or cycle-accurate emulator, we must do our
own performance modelling. Our approach is to measure
Haven’s sensitivity to key SGX performance parameters.

In this section, we first describe our performance
model, before reporting results for two typical cloud ap-
plications: Microsoft SQL Server, and Apache HTTP
Server. Our performance experiments were run on a sys-
tem comprised of a 4-core Intel Core i7-4700HQ CPU
running at 2.4GHz with 8GB of 1600MHz DDR3 RAM, a
240GB SSD (Intel SC2CW240A3), and a gigabit Ethernet
interface (Intel I217-LM) running Windows 8.1 Pro. We
used this mobile-optimised platform, because it permits
us to adjust the DRAM frequency and timings, allowing
us to simulate a variable memory penalty for SGX.

6.1 Performance model

To model performance, we assume that an SGX imple-
mentation will perform the same as a current CPU, ex-
cept for (i) additional costs (direct and indirect) of SGX

5This workaround is possible since the storage sizes for FS and GS
are constant and Drawbridge does not choose their location [6, §3.1].

instructions and asynchronous exits, and (ii) an addi-
tional memory penalty (latency and/or bandwidth of cache
misses) for memory encryption when accessing EPC.

Many SGX instructions are executed only at enclave
startup, and are therefore irrelevant to the performance
of long-running server applications. We also assume that
the EPC will be large enough to hold the working set of
our applications, and therefore do not model the over-
head of paging it to backing store. The only remaining
direct overheads for Haven performance on SGX are the
instructions for dynamic memory allocation (§3.1), and
transitions into and out of enclave mode: EENTER, EEXIT,
ERESUME, and asynchronous exits. The dynamic allocation
instructions only check and update page protection meta-
data. The transitions are documented as requiring a TLB
flush [28] and also perform a series of checks and updates.

For our evaluation, we implemented a second version of
Haven that does not use SGX. Instead, it simulates SGX
performance for the above critical instructions by busy-
waiting for a configurable number of processor cycles,
which we vary. In addition, for each enclave transition a
system call is used to flush the TLB. Since the system call
itself adds overhead not present on SGX, we view this as
a conservative estimate for the performance of SGX. We
cannot simulate the overhead of disallowed instructions
such as IRET and CPUID, since there is no practical way to
make them trap without SGX. However, we know from
experience with the emulator that CPUID is only invoked
at startup, and IRET is relatively rare (e.g., we observed
around 100 IRETs per second for a web server workload).

Memory penalties for EPC access are more difficult to
model. We simulate the impact of slower EPC by artifi-
cially reducing the system’s DRAM frequency.

6.2 Application workloads

Database We run Microsoft SQL Server 2014, Enter-
prise Edition, and TPC-E [56], a standard online transac-
tion processing benchmark. We use the default configu-
ration for SQL Server when running natively or in a VM,
but for Drawbridge and Haven we varied some parame-
ters. Drawbridge does not support large pages or locked
physical allocations, so we disabled them. We also limited
the buffer cache to 6.5GB (the best-performing size), be-
cause the LibOS does not report physical memory usage,
and the server’s default behaviour led to excessive paging.

The TPC-E clients run on a single machine connected
to our test system by a local gigabit network. We gen-
erated a database of 1000 customers6 and left other pa-

6Our database is smaller than the minimum for official TPC-E results
(5000 customers), but sufficient to saturate our test system.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 277

N
at

iv
e

H
yp

er
−V

 V
M

D
ra

w
br

id
ge

H
av

en
H

os
t F

S
H

av
en

V
H

D
H

av
en

E
nc

. V
H

Dtp
sE

0
20
40
60
80

100
120
140

(a) SQL Server, TPC-E

N
at

iv
e

H
yp

er
−V

 V
M

D
ra

w
br

id
ge

H
av

en
H

os
t F

S
H

av
en

V
H

D
H

av
en

E
nc

. V
H

D

Th
ro

ug
hp

ut
 (r

eq
/s

)

0
10

20

30

40

50

60

(b) MediaWiki on Apache

Figure 4: Performance breakdown

rameters at the default settings. For each run we allowed
at least 30 minutes of warm-up time, and then measured
transaction performance for one hour, reporting the over-
all throughput. Error bars show minimum and maximum
throughput over the run for a sliding 1-minute interval.

Web server We run Apache HTTP server7 version 2.4.7
and PHP 5.5.11. We configured Drawbridge to run
Apache’s worker processes in the same address space (and
enclave), and modified Apache’s configuration to avoid
using AcceptEx, which exposed a compatibility bug in
the LibOS socket code. We installed MediaWiki 1.22.5
backed by a SQLite database, and enabled the Alternative
PHP Cache for intermediate code and MediaWiki page
data. We benchmarked the server using 50 worker threads
on the client that repeatedly fetched the 14kB main page
over persistent SSL connections for a period of 5 minutes.

6.3 Results
Overall performance We begin by comparing the per-
formance of Haven to alternative host environments (none
of which provide shielded execution). Figure 4 shows a
performance breakdown for several configurations of each
workload: native execution on Windows 8.1, in a Hyper-
V VM, in Drawbridge, and three different configurations
of Haven: one that trusts the host to implement the filesys-
tem, the next using the private (VHD-backed) filesystem
but not encrypting it, and finally the full system with VHD
encryption and integrity protection enabled. In all Haven
workloads, we flush the TLB on enclave crossings, but do
not insert any additional delay for the SGX instructions.
We verified that the server’s CPU (and not network or stor-
age I/O) is the bottleneck in all non-Haven runs, so these
results give a reasonable indication of the overhead of the
various software components.

For SQL Server, the extra runtime layers and TLB
flush on enclave crossings give Haven a 13% slowdown
vs. Drawbridge. Furthermore, Haven’s unoptimised FAT
filesystem is a bottleneck for the I/O-intensive SQL work-
load. Besides a further 25% slowdown (with encryption),

7We used the 64-bit VC11 build from www.apachelounge.com.

Simulated delay (kcycles)
0 10 20 30 40 50

tp
sE

0

20

40

60

80

100

120

(a) SQL Server, TPC-E
Simulated delay (kcycles)

0 10 20 30 40 50

Th
ro

ug
hp

ut
 (r

eq
/s

)

0

10

20

30

40

50

Memory allocation
Enclave crossing

(b) MediaWiki on Apache

Figure 5: Sensitivity to SGX instruction overhead

it shows significant drops in throughput when limited I/O
bandwidth causes the server to periodically delay transac-
tion processing to allow checkpoint writes to complete.

Drawbridge and Haven exhibit relatively poor network-
ing performance with Apache, because all socket op-
erations traverse a security monitor in a separate pro-
cess. Moreover, Haven performs substantially (40%)
worse than Drawbridge with the host filesystem, because
of many small file operations that flush the TLB. The pri-
vate filesystem avoids this and even outperforms Draw-
bridge, since the workload is read-intensive and served
almost entirely from the buffer cache inside the enclave.

Sensitivity to SGX instruction overhead Figure 5
shows the sensitivity of our workloads to SGX overheads.
We vary the delay for either dynamic memory manage-
ment instructions or enclave crossings while keeping the
other at zero; the TLB is flushed on enclave crossings
in all cases. SQL Server is sensitive to crossing over-
head, with diminishing effects beyond 30k cycles, but un-
affected by memory allocation overhead because few allo-
cations occur in its steady state. The web server’s through-
put is sensitive to both parameters, because memory is al-
located in request handlers, but drops less overall.

Sensitivity to EPC performance We artificially re-
duced the memory performance of our system, by lower-
ing the DRAM clock rate from 1600MHz to 1067MHz.8

This slowed the memory system by a third overall,
but only reduced TPC-E throughput by 21%, and web
throughput by 7%. We conclude that memory-intensive
workloads are sensitive to EPC performance, but note that
our experiment over-estimates its effect, since only some
of the system’s memory accesses would go to EPC.

Summary For now, we must speculate about perfor-
mance of SGX implementations, but find our results
encouraging: for large, complex, CPU and memory-
intensive applications such as SQL Server, and for OS-
intensive applications like a modern web stack, even given

8We reduced the DRAM clock multiplier, but kept the delay times
(such as CAS latency, expressed in clock cycles) unchanged.

278 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

our inefficient prototype and assuming 10,000+ cycles for
SGX instructions, Haven’s performance penalty vs. a VM
is 31–54%. We suspect that significant classes of users
will readily accept such overheads, in return for not need-
ing to trust the cloud.

7 Discussion

This section discusses various issues, starting with an
analysis of the trusted computing base. We then cover
future work, suggest SGX optimisations, and discuss gen-
eral hardware support for shielded execution.

7.1 Trusted computing base

As Table 1 shows, the trusted computing base (TCB) of
Haven is substantial, because the LibOS includes a large
subset of Windows. However, in contrast to the current
cloud model, all code in the enclave, and thus all code in
the user’s TCB, is under user control. They may use any
means to achieve trust, including scanning for malware,
code inspection, etc., and update it at will.

Ultimately, our goal is not to minimise the TCB, but
rather to give the user equivalent trust in the confidential-
ity and integrity of their data when moving an application
from a private data centre to a public cloud. In this re-
gard, Haven addresses two real threats: a malicious em-
ployee of the cloud provider with either admin privileges
or hardware access, or a government subpoena.

Besides the software TCB, Haven also relies on the pro-
cessor’s correctness. While a feature like SGX undoubt-
edly adds complexity, hardware (even microcode) is ex-
tremely hard for an attacker to modify, and hardware ven-
dors perform significant validation to ensure correctness.

7.2 Future work

Storage rollback Haven does not currently prevent roll-
back of filesystem state beyond the enclave’s lifetime. It
cannot avoid the following attack: the enclave is termi-
nated (e.g., the host fakes a crash), and its in-memory state
is lost. A new instance of the enclave accessing the VHD
is guaranteed to read consistent data, but not necessarily
the latest version. Protecting against such attacks requires
secure non-volatile storage [45]. Such storage may be lo-
cated on other nodes, but the cost of network communica-
tion on every write is likely prohibitive. Instead, we plan
to communicate only on “critical” writes (e.g., transaction
commits) to balance this cost against the likely risks.

Untrusted time Our prototype relies on the host for sys-
tem time and timeouts. However, a malicious host may
lie about the time or signal timeouts early. We are plan-
ning two mitigations. One is to ensure the clock always
runs forward. The other uses the cycle counter as an al-
ternative time source; after calibrating it via network time
synchronisation, we can check for early timeouts.

Cloud management Besides isolation, virtual ma-
chines can be saved, resumed and migrated. However,
the implementation of these features depends on the host’s
ability to capture and recreate guest state, something that
Haven explicitly prevents. We aim to support similar fea-
tures cooperatively, using prior work that implemented
checkpoint and resume at the Drawbridge ABI level [6].
In its simplest form, the host could request the Haven
guest to suspend itself, which it would do by capturing
its own state to an encrypted image. The host may then
establish a new enclave to resume execution on another
node. Before gaining access to the encrypted image, the
new guest would perform an attestation step, giving it the
keys necessary to access the encrypted checkpoint image.
If the guest failed to complete these operations in a timely
manner, the host could simply terminate it.

7.3 SGX optimisations
Besides the limitations identified in §5.4, two further op-
portunities exist to optimise SGX performance for Haven.

Exception handling As mentioned in §5.3 and §5.4,
two aspects of SGX combine to substantially increase the
overhead of exception handling: ERESUME and IRET are
both illegal in an enclave. Haven’s exception handler
must EEXIT to a tiny stub that ERESUMEs a modified con-
text within the enclave. This then runs the LibOS and
application exception handlers, which typically finish by
executing IRET to restore the original context. However,
this causes another illegal instruction exception. Overall,
a single application exception (e.g., stack growth) results
in two exceptions and eight enclave crossings. As there
appear to be no insurmountable security implications, we
suggest permitting (or providing equivalent replacements
for) these instructions within the enclave.

Demand loading Haven’s shield loads application and
LibOS binaries. Modern systems typically load lazily:
virtual address space is reserved, but pages are allocated
and filled only on first access, in response to faults. Since
other threads may also access the same pages while they
are loaded, demand loading is done using a private mem-
ory mapping before remapping pages with appropriate
permissions in the final location. However, since SGX

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 279

does not support moving an existing page, Haven must ea-
gerly load all binaries. This adds time and memory over-
head, particularly at startup. For example, running Pow-
erShell until it displays a prompt causes 124MB of DLLs
to be loaded, but only 4% of those pages are accessed.

The revised SGX specification includes an
EACCEPTCOPY instruction [29], which allows a new
page to be both allocated and initialised with a copy of
data located elsewhere in the enclave before it becomes
accessible to software. This should enable demand-
loading, although we have not yet had the opportunity to
experiment with an implementation.

7.4 Hardware for shielded execution
Shielded VMs As we noted in §2.1, SGX is the first
commodity hardware that permits efficient multiplexing
among multiple isolated programs without relying on
trusted software. However, for many use-cases including
cloud deployments, hardware capable of isolating full vir-
tual machines (rather than portions of a user-mode address
space, as in SGX) would be desirable from a compatibil-
ity standpoint: it would support complete guest operating
systems. There are many performance and complexity-
related challenges to building such hardware, including
multiple levels of address translation, privileged instruc-
tions and virtual devices. However, if it were available, we
suspect that a Haven-like shield module would be a suit-
able architecture to protect unmodified guest VMs from
a malicious hypervisor, since the same trust issues ad-
dressed by Haven in the OS also arise in VM interfaces.

Shielding without information leakage Our definition
of shielded execution (§2.1) requires confidentiality for
intermediate state of the guest. As we noted (§3.1), SGX
limits our ability to achieve this, because it exposes to the
host information such as exceptions and page faults, and
because side-channels such as cache footprint leak guest
state information. At first glance, this concession seems
necessary for the OS to dynamically manage resources.
If all resources were allocated statically for the life of the
guest, a host would have no reason to observe guest states.
However, an OS relies on seeing application behaviour
to efficiently multiplex resources over varying demands;
e.g., by monitoring faulting addresses it can use page re-
placement algorithms to manage physical memory.

We conjecture that a hardware isolation mechanism
supporting true shielded execution can in fact permit dy-
namic resource multiplexing by changing the role of the
resource manager. Present mechanisms conflate deter-
mining the quantity of resources (e.g., the number of
physical pages) to allocate with the selection of specific

resources (the virtual-to-physical mapping). We propose
decoupling these, giving the host control only over re-
source quantities, and allowing the guest to choose spe-
cific resources to relinquish when allocations change. For
example, memory would be managed by allocating phys-
ical pages in the host, but allowing the guest to control
its virtual mappings, and using self-paging [22] to permit
oversubscription. The host may ask a guest to relinquish
pages, and kill it if it did not meet a deadline. We antici-
pate that hardware could also support cache partitioning,
achieving similar results to page colouring [64] without
constraints on physical allocation; a host could flush and
repartition caches without exposing guest access patterns.

8 Related Work
We survey related work in two areas: trusted hardware,
and systems to isolate applications from an untrusted
OS. Notwithstanding prior research [9, 12, 31, 34, 44],
hardware security modules (HSMs) [1, 53], trusted plat-
form modules (TPMs) [57] and ARM TrustZone [5] are
presently the main hardware sources of trust on commod-
ity platforms, and we focus on them.

Hardware security modules HSMs [53] are often used
to protect high-value secrets (e.g., keys) in the cloud. An
HSM is a protected computing element made tamper-
proof using a physical barrier and a self-destruct mech-
anism to erase data if the barrier is compromised. Cloud
HSMs such as AWS CloudHSM [1] offer APIs for key
manipulation, signing, and encryption. As a result, the
cloud user’s keys are protected, but other data must still
be transiently decrypted in a general-purpose node in or-
der to use it. This reduces, but does not eliminate, the at-
tack window compared to storing data persistently in the
clear. As dedicated hardware, HSMs are also expensive.

Trusted hardware TPMs [57] are hardware devices in-
cluded in many PCs supporting a similar attestation mech-
anism to SGX. The original approach to TPM-based attes-
tation builds a chain of trust using progressive measure-
ment of code during system boot, such as the bootloader,
OS, etc. [50]. More recent CPU extensions enable the late
launch and dynamic attestation of an isolated “secure ker-
nel”. This can reduce a platform’s software TCB to just
the late-launched code, a form of isolated execution, al-
beit one with two key drawbacks compared to SGX: vul-
nerability to relatively-simple hardware attacks including
memory snooping, and lack of support for efficient multi-
plexing of distinct late-launch environments.

There are two general approaches to multiplexing TPM
systems. The first, taken by Flicker [38], is to time-

280 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

multiplex the entire PC between secure kernels and an
untrusted host OS. Unfortunately, because it uses a sep-
arate chip, TPM dynamic attestation is notoriously slow –
Flicker’s transition times are tens to hundreds of millisec-
onds for small modules. The second approach is to attest a
trusted hypervisor or OS, which implements isolated ex-
ecution in software [39, 49, 52]; the main downside for
our scenario is that, regardless of its size, the hypervisor
remains under the cloud provider’s control. A cloud user
may compare a TPM attestation to a known hash of the
hypervisor binary, but we assume that the provider must
be able to update the hypervisor (e.g., to patch security
flaws, but also to insert arbitrary backdoors), and the user
must ultimately trust them. This approach may be feasible
given a hypervisor that is verified (down to binary code)
to protect guest confidentiality and integrity, so that the
attestation a user receives is meaningfully connected to
a proof of the isolation mechanism, but current progress
on OS-level formal verification is some way from this
goal [23, 30].

A set of extensions in many ARM processors, Trust-
Zone enables a “secure world” execution environment that
is isolated from the OS [5]. Like the TPM, systems using
TrustZone rely on software to multiplex the secure world;
for example, to enable a runtime for security-critical com-
ponents of mobile applications [51].

Shielding apps from an untrusted OS A number of
systems seek to defend applications from a malicious OS.
While XOMOS [35] used custom hardware, most recent
approaches rely on the support of a trusted hypervisor.
Proxos [54] runs isolated applications in a separate VM,
but allows them to interact with a commodity OS. Over-
shadow [11] and SP3 [60] pioneered transparent encryp-
tion of user memory when visible to the OS, protecting
application data from direct tampering. CloudVisor [63]
extended this technique to full VMs using nested virtu-
alisation, while SecureME [12] accelerated it in hard-
ware. More recently, InkTag [25] showed how to opti-
mise the guest OS and protect persistent storage, and Vir-
tual Ghost [14] used compiler techniques to implement a
similar mechanism within the OS kernel.

However, systems based solely on protecting applica-
tion memory from an untrusted OS are vulnerable to Iago
attacks through the system call interface [10]. Systems
such as InkTag [25] attempt to defeat Iago attacks by in-
terposing on system calls (e.g., in a custom libc) and
checking their results, but we feel that this approach is
unlikely to be tractable for arbitrary applications given
the complexity of modern OS interfaces – Linux today
includes more than 300 system calls, and Windows well
over 1000, as well as exceptions and asynchronous event

mechanisms. Instead, Haven defeats Iago attacks by de-
sign, using a LibOS, shield module, and a substantially
smaller (≈20 calls) mutually-distrusting host interface; it
also avoids the need for a trusted hypervisor through SGX
assistance.

Cloud security Finally, other research tackles the prob-
lem of removing trust from the cloud. Although fully
homomorphic encryption schemes which allow arbitrary
computation on encrypted data suffer intractably high
overhead [20, 21], partially homomorphic encryption has
been successfully applied in some domains; e.g., some
database queries [4, 46] and MapReduce programs [55]
can be implemented without ever decrypting data. While
this cannot support existing applications, it also does not
require trusted hardware.

MiniBox [33] combines the isolation of TrustVisor [39]
with the sandbox of Native Client [61]. Like Haven, Mini-
Box achieves mutual distrust between application code
and the host OS. Unlike Haven, MiniBox relies on a
trusted hypervisor, and its isolated execution environment
supports only small pieces of application logic, rather than
complete unmodified applications.

PrivateCore vCage [48] is a virtual machine moni-
tor implementing full memory encryption for commodity
hardware by executing guest VMs entirely in-cache and
encrypting their data before it is evicted to main memory.
Although it relies on a trusted hypervisor, and thus cannot
meet our security goals, it shares with SGX a resistance
to memory probes and similar physical attacks.

9 Conclusion
Today’s cloud platforms offer many advantages, but these
are often outweighed by the risks inherent in a hierarchi-
cal security architecture: the provider is trusted with full
access to user data. To eliminate this risk, Haven imple-
ments shielded execution of unmodified server applica-
tions in an untrusted cloud host. Haven brings us one step
closer to a true “utility computing” model for the cloud,
where the utility provides resources (processor cores, stor-
age, and networking) but has no access to user data.

Acknowledgements
We appreciate the assistance and collaboration of Intel
Labs, especially Matthew Hoekstra, Simon Johnson, Re-
bekah Leslie-Hurd, Frank McKeen, Carlos Rozas and
Krystof Zmudzinski. We are also grateful to all who pro-
vided feedback, in particular Steve Hand, Jon Howell, Re-
becca Isaacs, Rama Kotla, Bryan Parno, Oriana Riva, Em-
mett Witchel and the anonymous reviewers.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 281

References
[1] AWS CloudHSM Getting Started Guide. Amazon Web

Services, Nov. 2013. http://aws.amazon.com/cloudhsm/.
[2] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. In-

novative technology for CPU based attestation and seal-
ing. In 2nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, 2013.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: Effective kernel support for
the user-level management of threads. ACM Transactions
on Computer Systems, 10:53–79, 1992.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security
with Cipherbase. In 6th Conference on Innovative Data
Systems Research, Jan. 2013.

[5] Building a Secure System using TrustZone Technology.
ARM Limited, Apr. 2009. Ref. PRD29-GENC-009492C.

[6] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R.
Lorch, B. Bond, R. Olinsky, and G. C. Hunt. Compos-
ing OS extensions safely and efficiently with Bascule. In
EuroSys Conference, pages 239–252, Apr. 2013.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfus-
cation: an efficient approach to combat a broad range of
memory error exploits. In 12th USENIX Security Sympo-
sium, pages 105–120, Aug. 2003.

[8] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Soft-
ware mitigations to hedge AES against cache-based soft-
ware side channel vulnerabilities. Report 2006/052, Cryp-
tology ePrint Archive, 2006.

[9] D. Champagne and R. B. Lee. Scalable architectural sup-
port for trusted software. In 16th IEEE International Sym-
posium on High-Performance Computer Architecture, Jan.
2010.

[10] S. Checkoway and H. Shacham. Iago attacks: why the sys-
tem call API is a bad untrusted RPC interface. In 18th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Mar. 2013.

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems.
In 13th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 2–13, 2008.

[12] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Se-
cureME: a hardware-software approach to full system se-
curity. In International Conference on Supercomputing,
pages 108–119, 2011.

[13] Cloud Security Alliance. Government access to informa-
tion survey. https://cloudsecurityalliance.org/research/
surveys/# nsa prism, July 2013.

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost:
Protecting applications from hostile operating systems. In

19th International Conference on Architectural Support
for Programming Languages and Operating Systems, AS-
PLOS ’14, pages 81–96, 2014.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Lever-
aging legacy code to deploy desktop applications on the
web. In 8th USENIX Symposium on Operating Systems
Design and Implementation, pages 339–354, Dec. 2008.

[16] K. Fu, F. Kaashoek, and D. Mazières. Fast and secure dis-
tributed read-only file system. In 4th USENIX Symposium
on Operating Systems Design and Implementation, pages
181–196, 2000.

[17] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. De-
vadas. Caches and hash trees for efficient memory in-
tegrity verification. In 9th IEEE International Symposium
on High-Performance Computer Architecture, pages 295–
306, 2003.

[18] B. Gellman and L. Poitras. U.S., British intelligence min-
ing data from nine U.S. Internet companies in broad secret
program. The Washington Post, June 2013.

[19] B. Gellman and A. Soltani. NSA infiltrates links to Yahoo,
Google data centers worldwide, Snowden documents say.
The Washington Post, Oct. 2013.

[20] C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[21] C. Gentry, S. Halevi, and N. Smart. Homomorphic evalu-
ation of the AES circuit. In 32nd International Cryptology
Conference, 2012.

[22] S. M. Hand. Self-paging in the Nemesis operating system.
In 3rd USENIX Symposium on Operating Systems Design
and Implementation, pages 73–86, 1999.

[23] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps: End-
to-end security via automated full-system verification. In
11th USENIX Symposium on Operating Systems Design
and Implementation, Oct. 2014.

[24] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In 2nd International Work-
shop on Hardware and Architectural Support for Security
and Privacy, 2013.

[25] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: secure applications on an untrusted
operating system. In 18th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 265–278, 2013.

[26] F. Hou, N. Xiao, F. Liu, H. He, and D. Gu. Perfor-
mance and consistency improvements of hash tree based
disk storage protection. In 2009 IEEE International Con-
ference on Networking, Architecture, and Storage (NAS
2009), pages 51–56, 2009.

[27] J. Howell, B. Parno, and J. R. Douceur. How to run POSIX
apps in a minimal picoprocess. In 2013 USENIX Annual
Technical Conference, pages 321–332, June 2013.

[28] Software Guard Extensions Programming Reference. Intel

282 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Corp., Sept. 2013. Ref. #329298-001 http://software.intel.
com/sites/default/files/329298-001.pdf.

[29] Software Guard Extensions Programming Reference,
Rev. 2. Intel Corp., Oct. 2014. Ref. #329298-002.

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In 22nd
ACM Symposium on Operating Systems Principles, pages
207–220, 2009.

[31] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin,
and Z. Wang. Architecture for protecting critical secrets
in microprocessors. In 32nd International Symposium on
Computer Architecture, pages 2–13, 2005.

[32] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in HYDRA. In 5th ACM
Symposium on Operating Systems Principles, pages 132–
140, 1975.

[33] Y. Li, J. M. McCune, J. Newsome, A. Perrig, B. Baker,
and W. Drewry. MiniBox: A two-way sandbox for x86
native code. In 2014 USENIX Annual Technical Confer-
ence, June 2014.

[34] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[35] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing
an untrusted operating system on trusted hardware. In 19th
ACM Symposium on Operating Systems Principles, pages
178–192, 2003.

[36] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
build a trusted database system on untrusted storage. In
4th USENIX Symposium on Operating Systems Design
and Implementation, pages 135–150, 2000.

[37] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos. First-class user-level threads. In 13th ACM
Symposium on Operating Systems Principles, pages 110–
121, Oct. 1991.

[38] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for TCB
minimization. In EuroSys Conference, pages 315–328,
2008.

[39] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. In IEEE Symposium on Security and Privacy,
pages 143–158, May 2010.

[40] D. McGrew and J. Viega. The Galois/counter mode of
operation (GCM). http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/gcm/gcm-spec.pdf,
2004.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Inno-
vative instructions and software model for isolated exe-

cution. In 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, 2013.

[42] R. Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptology –
CRYPTO’87, pages 369–378, 1987.

[43] C. C. Miller. Revelations of N.S.A. spying cost U.S. tech
companies. The New York Times, Mar. 2014.

[44] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Per-
rig, and A. Vasudevan. OASIS: On achieving a sanctuary
for integrity and secrecy on untrusted platforms. In 20th
ACM Conference on Computer and Communications Se-
curity, pages 13–24, 2013.

[45] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In IEEE Symposium on Security and Privacy,
pages 379–394, 2011.

[46] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Bal-
akrishnan. CryptDB: Protecting confidentiality with en-
crypted query processing. In 23rd ACM Symposium on
Operating Systems Principles, pages 85–100, 2011.

[47] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinksy,
and G. C. Hunt. Rethinking the library OS from the top
down. In 16th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 291–304, Mar. 2011.

[48] PrivateCore. Trustworthy computing for OpenStack with
vCage. http://privatecore.com/vcage/, 2014.

[49] H. Raj, D. Robinson, T. B. Tariq, P. England, S. Saroiu,
and A. Wolman. Credo: Trusted computing for guest VMs
with a commodity hypervisor. Technical Report MSR-TR-
2011-130, Microsoft Research, Dec. 2011.

[50] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. De-
sign and implementation of a TCG-based integrity mea-
surement architecture. In 13th USENIX Security Sympo-
sium, Aug. 2004.

[51] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM
TrustZone to build a trusted language runtime for mobile
applications. In 19th International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, pages 67–80, 2014.

[52] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: An
authorization architecture for trustworthy computing. In
23rd ACM Symposium on Operating Systems Principles,
pages 249–264, 2011.

[53] S. W. Smith and S. Weingart. Building a high-
performance, programmable secure coprocessor. Com-
puter Networks, 31(9):831–860, Apr. 1999. ISSN 1389-
1286.

[54] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Mak-
ing trust between applications and operating systems con-
figurable. In 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 279–292, 2006.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 283

[55] S. D. Tetali, M. Lesani, R. Majumdar, and T. Mill-
stein. MrCrypt: Static analysis for secure cloud compu-
tations. In 2013 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations, pages 271–286, 2013.

[56] TPC benchmark E standard specification. Transaction
Processing Performance Council, June 2010. Rev. 1.12.0.

[57] TPM Main Specification Level 2. Trusted Computing
Group, Mar. 2011. Version 1.2, Revision 116.

[58] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen,
J. John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and
D. E. Porter. Cooperation and security isolation of library
OSes for multi-process applications. In EuroSys Confer-
ence, Apr. 2014.

[59] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune. Trustworthy execution on mobile devices: What
security properties can my mobile platform give me? In
5th International Conference on Trust and Trustworthy
Computing, pages 159–178, June 2012.

[60] J. Yang and K. G. Shin. Using hypervisor to provide
data secrecy for user applications on a per-page basis. In
4th International conference on Virtual Execution Envi-
ronments, pages 71–80, 2008.

[61] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A sandbox for portable, untrusted x86 native code.
In IEEE Symposium on Security and Privacy, 2009.

[62] A. Yun, C. Shi, and Y. Kim. On protecting integrity and
confidentiality of cryptographic file system for outsourced
storage. In 2009 ACM Workshop on Cloud Computing
Security, pages 67–76, 2009.

[63] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In 23rd ACM Symposium
on Operating Systems Principles, pages 203–216, 2011.

[64] X. Zhang, S. Dwarkadas, and K. Shen. Towards practi-
cal page coloring-based multicore cache management. In
EuroSys Conference, pages 89–102, 2009.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 285

Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou
Microsoft

Zhengping Qian, Ming Wu, Lidong Zhou
Microsoft Research

Abstract
Efficiently scheduling data-parallel computation jobs
over cloud-scale computing clusters is critical for job
performance, system throughput, and resource utiliza-
tion. It is becoming even more challenging with growing
cluster sizes and more complex workloads with diverse
characteristics. This paper presents Apollo, a highly
scalable and coordinated scheduling framework, which
has been deployed on production clusters at Microsoft
to schedule thousands of computations with millions of
tasks efficiently and effectively on tens of thousands of
machines daily. The framework performs scheduling de-
cisions in a distributed manner, utilizing global cluster
information via a loosely coordinated mechanism. Each
scheduling decision considers future resource availabil-
ity and optimizes various performance and system fac-
tors together in a single unified model. Apollo is ro-
bust, with means to cope with unexpected system dy-
namics, and can take advantage of idle system resources
gracefully while supplying guaranteed resources when
needed.

1 Introduction
MapReduce-like systems [7, 15] make data-parallel
computations easy to program and allow running jobs
that process terabytes of data on large clusters of com-
modity hardware. Each data-processing job consists of
a number of tasks with inter-task dependencies that de-
scribe execution order. A task is a basic unit of compu-
tation that is scheduled to execute on a server.

Efficient scheduling, which tracks task dependencies
and assigns tasks to servers for execution when ready,
is critical to the overall system performance and ser-
vice quality. The growing popularity and diversity of
data-parallel computation makes scheduling increasingly
challenging. For example, the production clusters that
we use for data-parallel computations are growing in
size, each with over 20,000 servers. A growing commu-
nity of thousands of users from many different organiza-

tions submit jobs to the clusters every day, resulting in a
peak rate of tens of thousands of scheduling requests per
second. The submitted jobs are diverse in nature, with a
variety of characteristics in terms of data volume to pro-
cess, complexity of computation logic, degree of paral-
lelism, and resource requirements. A scheduler must (i)
scale to make tens of thousands of scheduling decisions
per second on a cluster with tens of thousands of servers;
(ii) maintain fair sharing of resources among different
users and groups; and (iii) make high-quality scheduling
decisions that take into account factors such as data local-
ity, job characteristics, and server load, to minimize job
latencies while utilizing the resources in a cluster fully.

This paper presents the Apollo scheduling framework,
which has been fully deployed to schedule jobs in cloud-
scale production clusters at Microsoft, serving a variety
of on-line services. Scheduling billions of tasks daily
efficiently and effectively, Apollo addresses the schedul-
ing challenges in large-scale clusters with the following
technical contributions.

• To balance scalability and scheduling quality,
Apollo adopts a distributed and (loosely) coordi-
nated scheduling framework, in which indepen-
dent scheduling decisions are made in an optimistic
and coordinated manner by incorporating synchro-
nized cluster utilization information. Such a de-
sign strikes the right balance: it avoids the subop-
timal (and often conflicting) decisions by indepen-
dent schedulers of a completely decentralized archi-
tecture, while removing the scalability bottleneck
and single point of failure of a centralized design.

• To achieve high-quality scheduling decisions,
Apollo schedules each task on a server that min-
imizes the task completion time. The estimation
model incorporates a variety of factors and al-
lows a scheduler to perform a weighted decision,
rather than solely considering data locality or server
load. The data parallel nature of computation al-

286 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

lows Apollo to refine the estimates of task execu-
tion time continuously based on observed runtime
statistics from similar tasks during job execution.

• To supply individual schedulers with cluster infor-
mation, Apollo introduces a lightweight hardware-
independent mechanism to advertise load on
servers. When combined with a local task queue on
each server, the mechanism provides a near-future
view of resource availability on all the servers,
which is used by the schedulers in decision making.

• To cope with unexpected cluster dynamics, subopti-
mal estimations, and other abnormal runtime behav-
iors, which are facts of life in large-scale clusters,
Apollo is made robust through a series of correc-
tion mechanisms that dynamically adjust and rec-
tify suboptimal decisions at runtime. We present a
unique deferred correction mechanism that allows
resolving conflicts between independent schedulers
only if they have a significant impact, and show that
such an approach works well in practice.

• To drive high cluster utilization while maintaining
low job latencies, Apollo introduces opportunistic
scheduling, which effectively creates two classes of
tasks: regular tasks and opportunistic tasks. Apollo
ensures low latency for regular tasks, while using
the opportunistic tasks for high utilization to fill in
the slack left by regular tasks. Apollo further uses a
token based mechanism to manage capacity and to
avoid overloading the system by limiting the total
number of regular tasks.

• To ensure no service disruption or performance re-
gression when we roll out Apollo to replace a previ-
ous scheduler deployed in production, we designed
Apollo to support staged rollout to production clus-
ters and validation at scale. Those constraints have
received little attention in research, but are never-
theless crucial in practice and we share our experi-
ences in achieving those demanding goals.

We observe that Apollo schedules over 20,000 tasks
per second in a production cluster with over 20,000 ma-
chines. It also delivers high scheduling quality, with 95%
of regular tasks experiencing a queuing delay of under
1 second, while achieving consistently high (over 80%)
and balanced CPU utilization across the cluster.

The rest of the paper is organized as follows. Sec-
tion 2 presents a high-level overview of our distributed
computing infrastructure and the query workload that
Apollo supports. Section 3 presents an architectural
overview, explains the coordinated scheduling in detail,
and describes the correction mechanisms. We describe

Figure 1: A sample SCOPE execution graph.
our engineering experiences in developing and deploy-
ing Apollo to our cloud infrastructure in Section 4. A
thorough evaluation is presented in Section 5. We review
related work in Section 6 and conclude in Section 7.

2 Scheduling at Production Scale
Apollo serves as the underlying scheduling framework
for Microsoft’s distributed computation platform, which
supports large-scale data analysis for a variety of busi-
ness needs. A typical cluster contains tens of thousands
of commodity servers, interconnected by an oversub-
scribed network. A distributed file system stores data in
partitions that are distributed and replicated, similar to
GFS [12] and HDFS [3]. All computation jobs are writ-
ten using SCOPE [32], a SQL-like high-level scripting
language, augmented with user-defined processing logic.
The optimizer transforms a job into a physical execution
plan represented as a directed acyclic graph (DAG), with
tasks, each representing a basic computation unit, as ver-
tices and the data flows between tasks as edges. Tasks
that perform the same computation on different parti-
tions of the same inputs are logically grouped together
in stages. The number of tasks per stage indicates the
degree of parallelism (DOP).

Figure 1 shows a sample execution graph in SCOPE,
greatly simplified from an important production job that
collects user click information and derives insights for
advertisement effectiveness. Conceptually, the job per-
forms a join between an unstructured user log and a
structured input that is pre-partitioned by the join key.
The plan first partitions the unstructured input using the
partitioning scheme from the other input: stages S1 and
S2 respectively partition the data and aggregate each par-
tition. A partitioned join is then performed in stage S4.
The DOP is set to 312 for S1 based on the input data vol-
ume, set to 10 for S5, and set to 150 for S2, S3, and S4.

2.1 Capacity Management and Tokens
In order to ensure fairness and predictability of perfor-
mance, the system uses a token-based mechanism to al-
locate capacity to jobs. Each token is defined as the right

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 287

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106 107

C
D

F

Stage DOP

By Task Count
By Stage Count

 0
 0.2
 0.4
 0.6
 0.8

 1

1GB 10GB 100GB 1TB 10TB 100TB 1PB 10PB 100PB

C
D

F

Bytes processed

(a) Distribution of stage DOP. (b) Distribution of bytes processed per job.

 0.2
 0.4
 0.6
 0.8

 1

10-1 100 101 102 103 104

C
D

F

Runtime (seconds)

0
20k
40k
60k
80k

100k
120k
140k
160k

Sep Oct Nov Dec Jan Feb

R
eq

ue
st

/s
ec

Time

Peak Rate within Hour

(c) Distribution of task runtime. (d) Rate of scheduling requests.

Figure 2: Heterogeneous workload.

to execute a regular task, consuming up to a predefined
amount of CPU and memory, on a machine in the cluster.
For example, if a job has an allocation of 100 tokens, this
means it can run 100 tasks, each of which consumes up
to a predefined maximum amount of CPU and memory.

A virtual cluster is created for each user group for se-
curity and resource sharing reasons. Each virtual clus-
ter is assigned a certain amount of capacity in terms of
number of tokens, and maintains a queue of all submitted
jobs. A job submission contains the target virtual clus-
ter, the necessary credentials, and the required number
of tokens for execution. Virtual cluster management uti-
lizes various admission control policies and decides how
and when to assign its allocated tokens to submitted jobs.
Jobs that do not get their required tokens will be queued
in the virtual cluster. The system also supports a wide
range of capabilities, such as job priorities, suspension,
upgrades, and cancellations.

Once a job starts to execute with required tokens, it is
a scheduler’s responsibility to execute its optimized exe-
cution plan by assigning tasks to servers while respecting
token allocation, enforcing task dependencies, and pro-
viding fault tolerance.

2.2 The Essence of Job Scheduling
Scheduling a job involves the following responsibilities:
(i) ready list: maintain a list of tasks that are ready to
be scheduled: initially, the list includes those leaf tasks
that operate on the original inputs (e.g., tasks in stages S1
and S3 in Figure 1); (ii) task priority: sort the ready list
appropriately; (iii) capacity management: manage the
capacity assigned to the job and decide when to sched-
ule a task based on the capacity management policy; (iv)
task scheduling: decide where to schedule a task and dis-
patch it to the selected server; (v) failure recovery: mon-

itor scheduled tasks, initiate recovery actions when tasks
fail, and mark the job failed if recovery is not possible;
(vi) task completion: when a task completes, check its
dependent tasks in the execution graph and move them
to the ready list if all the tasks that they depend on have
completed; (vii) job completion: repeat the whole pro-
cess until all tasks in the job are completed.

2.3 Production Workload Characteristics

The characteristics of our target production workloads
greatly influence the Apollo design. Our computation
clusters run more than 100,000 jobs on a daily basis. At
any point in time, there are hundreds of jobs running con-
currently. Those jobs vary drastically in almost every di-
mension, to meet a wide range of business scenarios and
requirements. For example, large jobs process terabytes
to petabytes of data, contain sophisticated business logic
with a few dozen complex joins, aggregations, and user-
defined functions, have hundreds of stages, contain over
a million tasks in the execution plan, and may take hours
to finish. On the other hand, small jobs process giga-
bytes of data and can finish in seconds. In SCOPE, dif-
ferent jobs are also assigned with different amounts of
resources. The workload evolves constantly as the sup-
porting business changes over time. This workload di-
versity poses tremendous challenges for the underlying
scheduling framework to deal with efficiently and effec-
tively. We describe several job characteristics in our pro-
duction environment to illustrate the diverse and dynamic
nature of the computation workload.

In SCOPE, the DOP for a stage in a job is chosen based
on the amount of data to process and the complexity of
each computation. Even within a single job, the DOP
changes for different stages as the data volume changes
over the job’s lifetime. Figure 2(a) shows the distribution

288 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

of stage DOP in our production environment. It varies
from a single digit to a few tens of thousands. Almost
40% of stages have a DOP of less than 100, account-
ing for less than 2% of the total workload. More than
98% of tasks are part of stages with DOP of more than
100. These large stage sizes allow a scheduler to draw
statistics from some tasks to infer behavior of other tasks
in the same stage, which Apollo leverages to make in-
formed and better decisions. Job sizes vary widely from
a single vertex to millions of vertices per job graph. As il-
lustrated in Figure 2(b), the amount of data processed per
job ranges from gigabytes to tens of petabytes. Task exe-
cution times range from less than 100ms to a few hours,
as shown in Figure 2(c). 50% of tasks run for less than
10 seconds and are sensitive to scheduling latency. Some
tasks require external files such as executables, config-
urations, and lookup tables for their execution, thus in-
curring initialization costs. In some cases, such exter-
nal files required for execution are bigger than the actual
input to be processed, which means locality should be
based on where those files are cached rather than input
location. Collectively, such a large number of jobs create
a high scheduling-request rate, with peaks above 100,000
requests per second, as shown in Figure 2(d).

The very dynamic and diverse characteristics of our
computing workloads and cluster environments impose
several challenges for the scheduling framework, includ-
ing scalability, efficiency, robustness, and resource usage
balance. The Apollo scheduling framework has been de-
signed and shown to address these challenges over large
production clusters at Microsoft.

3 The Apollo Framework
To support the scale and scheduling rate required for the
production workload, Apollo adopts a distributed and
coordinated architecture, where the scheduling of each
job is performed independently and incorporates aggre-
gated global cluster load information.

3.1 Architectural Overview
Figure 3 provides an overview of Apollo’s architecture.
A Job Manager (JM), also called a scheduler, is assigned
to manage the life cycle of each job. The global cluster
load information used by each JM is provided through
the cooperation of two additional entities in the Apollo
framework: a Resource Monitor (RM) for each cluster
and a Process Node (PN) on each server. A PN pro-
cess running on each server is responsible for managing
the local resources on that server and performing local
scheduling, while the RM aggregates load information
from PNs across the cluster continuously, providing a
global view of the cluster status for each JM to make
informed scheduling decisions.

While treated as a single logical entity, the RM can

Figure 3: Apollo architectural overview.
be implemented physically in different configurations
with different mechanisms, as it essentially addresses the
well-studied problem of monitoring dynamically chang-
ing state of a collection of distributed resources at a large
scale. For example, it can use a tree hierarchy [20] or
a directory service with an eventually consistent gossip
protocol [8, 26]. Apollo’s architecture can accommodate
any of such configurations. We implemented the RM in a
master-slave configuration using Paxos [18]. The RM is
never on the performance critical path: Apollo can con-
tinue to make scheduling decisions (at a degraded qual-
ity) even when the RM is temporarily unavailable, for
example, during a transient master-slave switch due to a
machine failure. In addition, once a task is scheduled to a
PN, the JM obtains up-to-date load information directly
from the PN via frequent status updates.

To better predict resource utilization in the near future
and to optimize scheduling quality, each PN maintains a
local queue of tasks assigned to the server and advertises
its future resource availability in the form of a wait-time
matrix inferred from the queue (Section 3.2). Apollo
thereby adopts an estimation-based approach to making
task scheduling decisions. Specifically, Apollo considers
the wait-time matrices, aggregated by the RM, together
with the individual characteristics of tasks to be sched-
uled, such as the location of inputs (Section 3.3). How-
ever, cluster dynamics pose many challenges in practice;
for example, the wait-time matrices might be stale, es-
timates might be suboptimal, and the cluster environ-
ment might sometimes be unpredictable. Apollo there-
fore incorporates correction mechanisms for robustness
and dynamically adjusts scheduling decisions at runtime
(Section 3.4). Finally, there is an inherent tension be-
tween providing guaranteed resources to jobs (e.g., to
ensure SLAs) and achieving high cluster utilization, be-
cause both the load on a cluster and the resource needs
of a job fluctuate constantly. Apollo resolves this tension
through opportunistic scheduling, which creates second-
class tasks to use idle resources (Section 3.5).

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 289

3.2 PN Queue and Wait-Time Matrix
The PN on each server manages a queue of tasks as-
signed to the server in order to provide projections on
future resource availability. When a JM schedules a task
on a server, it sends a task-creation request with (i) fine
grained resource requirement (CPU cores and memory),
(ii) estimated runtime, and (iii) a list of files required to
run the task (e.g., executables and configuration files).
Once a task creation request is received, the PN copies
the required files to a local directory using a peer-to-peer
data transfer framework combined with a local cache.
The PN monitors CPU and memory usage, considers the
resource requirements of tasks in the queue, and executes
them when the capacity is available. It maximizes re-
source utilization by executing as many tasks as possi-
ble, subject to the CPU and memory requirements of in-
dividual tasks. The PN queue is mostly FIFO, but can be
reordered. For example, a later task requiring a smaller
amount of resources can fill a gap without affecting the
expected start time of others.

The use of task queues enables schedulers to dispatch
tasks to the PNs proactively based on future resource
availability, instead of based on instantaneous availabil-
ity. As illustrated later in Section 3.3, Apollo considers
task wait time (for sufficient resources to be available)
and other task characteristics holistically to optimize task
scheduling. The use of task queues also masks task ini-
tialization cost by copying the files before execution ca-
pacity is available, thereby avoiding idle gaps between
tasks. Such a direct-dispatch mechanism provides the
efficiency needed particularly by small tasks, for which
any protocol to negotiate incurs significant overhead.

The PN also provides feedback to the JM to help im-
prove accuracy of task runtime estimation. Initially, the
JM uses conservative estimates provided by the query
optimizer [32] based on the operators in a task and the
amount of data to be processed. Tasks in the same stage
perform the same computation over different datasets.
Their runtime characteristics are similar and the statis-
tics from the executions of the earlier tasks can help im-
prove runtime estimates for the later ones. Once a task
starts running, the PN monitors its overall resource us-
age and responds to the corresponding JM’s status update
requests with information such as memory usage, CPU
time, execution time (wall clock time), and I/O through-
put. The JM then uses this information along with other
factors such as operator characteristics and input size to
refine resource usage and predict expected runtime for
tasks from the same stage.

The PN further exposes the load on the current server
to be aggregated by its RM. Its representation of the
load information should ideally convey a projection of
the future resource availability, mask the heterogeneity
of servers in our data centers (e.g., servers with 64GB

of memory and 128GB of memory have different capac-
ities), and be concise enough to allow frequent updates.
Apollo’s solution is a wait-time matrix, with each cell
corresponding to the expected wait time for a task that
requires a certain amount of CPU and memory. Figure 3
contains a matrix example: the value 10 in cell 〈12 GB,
4 cores〉 denotes that a task that needs 4 CPU cores and
12GB of memory has to wait 10 seconds in this PN be-
fore it can get its resource quota to execute. The PN
maintains a matrix of expected wait times for any hypo-
thetical future task with various resource quotas, based
on the currently running and queued tasks. The algo-
rithm simulates local task execution and evaluates how
long a future task with a given CPU/memory requirement
would wait on this PN to be executed. The PN updates
this matrix frequently by considering the actual resource
situation and the latest task runtime and resource esti-
mates. Finally, the PN sends this matrix, along with a
timestamp, to every JM that has running or queued tasks
in this PN. It also sends the matrix to the RM using a
heartbeat mechanism.

3.3 Estimation-Based Scheduling
A JM has to decide which server to schedule a particu-
lar task to using the wait-time matrices in the aggregated
view provided by the RM and the individual characteris-
tics of the task to be scheduled. Apollo has to consider a
variety of (often conflicting) factors that affect the qual-
ity of scheduling decisions and does so in a single unified
model using an estimation-based approach.

Server Wait I/O Wait+I/O
A 0s 63.13s 63.13s
B 0s 63.5s 63.5s
C 40s 32.50s 72.50s
D 5s 51.25s 56.25s

(a) Server map. (b) Scheduling alternatives.

Figure 4: A task scheduling example.

We use an example to illustrate the importance of con-
sidering various factors all together, as well as the ben-
efit of having a local queue on each server. Figure 4(a)
shows a simplified server map with two racks, each with
four servers, connected via a hierarchically structured
network. Assume data can be read from local disks at
160MB/s, from within the same rack at 100MB/s, and
from a different rack at 80MB/s. Consider scheduling
a task with two inputs (one 100MB stored on server A
and the other 5GB stored on server C) whose runtime is
dominated by I/O. Figure 4(b) shows the four scheduling
choices, where servers A and B are immediately avail-
able, while server C has the best data locality. Yet, D
is the optimal choice among those four choices. This
can be recognized only when we consider data locality

290 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

and wait time together. This example also illustrates the
value of local queues: without a local queue on each
server, any scheduling mechanism that checks for im-
mediate resource availability would settle on the non-
optimal choice of server A or B.

Apollo therefore considers various factors holistically
and performs scheduling by estimating task completion
time. First, we estimate the task completion time if there
is no failure, denoted by Esucc, using the formula

Esucc = I +W +R (1)

I denotes the initialization time for fetching the needed
files for the task, which could be 0 if those files are
cached locally. The expected wait time, denoted as W ,
comes from a lookup in the wait-time matrix of the tar-
get server with the task resource requirement. The task
runtime, denoted as R, consists of both I/O time and CPU
time. The I/O time is computed as the input size divided
by the expected I/O throughput. The I/O could be from
local memory, disks, or network at various bandwidths.
Overall, estimation of R initially incorporates informa-
tion from the optimizer and is refined with runtime statis-
tics from the tasks in the same stage.

Second, we consider the probability of task failure to
calculate the final completion time estimate, denoted by
C. Hardware failures, maintenance, repairs, and software
deployments are inevitable in a real large-scale environ-
ment. To mitigate their impact, the RM also gathers in-
formation on upcoming and past maintenance scheduled
on every server. Together, a success probability Psucc is
derived and considered to calculate C, as shown below. A
penalty constant Kf ail , determined empirically, is used to
model the cost of server failure on the completion time.

C = PsuccEsucc +Kfail(1−Psucc)Esucc (2)

Task Priorities. Besides completion time estimation, the
task-execution order also matters for overall job latency.
For example, for the job graph in Figure 1, the tasks in
S1 run for 1 minute on average, the tasks in S2 run for an
average of 2 minutes, with potential partition-skew in-
duced stragglers running up to 10 minutes, and the tasks
in S3 run for 30 seconds on average. As a result, effi-
ciently executing S1 and S2 surely appears more critical
to achieve the fastest runtime. Therefore, the scheduler
should prioritize resources to S1 and S2 before consider-
ing S3. Within S2, the scheduler should start the vertex
with the largest input as early as possible, because it is
the most likely to be on the critical path of the job.

A static task priority is annotated per stage by the op-
timizer through analyzing the job DAG and calculating
the potential critical path of the job execution. Tasks
within a stage are prioritized based on the input size.
Apollo schedules tasks and allocates their resources in a

Figure 5: A matching example.

descending order of their priorities. Since a job contains
a finite number of tasks, the starvation of a task with low
static priority is impossible, because eventually it will be
the only task left to execute, and will be executed.
Stable Matching. For efficiency, Apollo schedules tasks
with similar priorities in batches and turns the problem of
task scheduling into that of matching between tasks and
servers. For each task, we could search all the servers in
a cluster for the best match. The approach becomes pro-
hibitively expensive on a large cluster. Instead, Apollo
limits the search space for a task to a candidate set of
servers, including (i) a set of servers on which inputs of
significant sizes are located (ii) a set of servers in the
same rack as those from the first group (iii) two servers
randomly picked from a set of lightly-loaded servers; the
list is curated in the background.

A greedy algorithm can be applied for each task se-
quentially, choosing the server with the earliest estimated
completion time at each step. However, the outcome of
the greedy algorithm is sensitive to the order in which
tasks are matched and often leads to suboptimal deci-
sions. Figure 5 shows an example with a batch of three
tasks being scheduled. Assume both Task1 and Task2
read data from server A while Task3 reads from server B,
as shown with dotted lines. Each server has capacity to
start one task. The greedy matcher first matches Task1 to
server A, then matches Task2 to server B because Task1
is already scheduled on A, and finally Task3 to server C,
as shown with solid lines. A better match would have
assigned Task3 to server B for better locality.

Apollo therefore adopts a variant of the stable match-
ing algorithm [10] to match tasks with servers. For each
task in a batch, Apollo finds the server with the earliest
estimated completion time as a proposal for that task. A
server accepts a proposal from a task if that is the only
proposal assigned. A conflict arises when more than one
task proposes to the same server. In this case, the server
picks the task whose completion time saving is the great-
est if it is assigned to the server. The tasks not picked
withdraw their proposals and enter the next iteration that
tries to match the remaining tasks and servers. The algo-
rithm iterates until all tasks have been assigned, or until
it reaches the maximum number of iterations. As shown
in Figure 5, the stable matcher matches Task2 to C and
Task3 to B, which effectively leverages locality and re-
sults in better job performance.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 291

The scheduler then sorts all the matched pairs based
on their quality to decide the dispatch order. A match is
considered with a higher quality if its task has a lower
server wait time. The scheduler iterates over the sorted
matches and dispatches in order until it is out of the allo-
cated capacity. If opportunistic scheduling (Section 3.5)
is enabled, the scheduler continues to dispatch the tasks
until the opportunistic scheduling limit.

To simplify the matching algorithm for a tradeoff be-
tween efficiency and quality, Apollo assigns only one
task to each server in a single batch, because otherwise
Apollo has to update the wait-time matrix for a server
to take into account the newly assigned task, which in-
creases the complexity of the algorithm. This simplifica-
tion might lead to a suboptimal match for a task in a case
where servers taking on a task in the same batch already
remains a better choice. Apollo mitigates the effect in
two ways: if the suboptimal match is of a low quality,
sorting the matches by quality will cause the dispatch-
ing of this task to be postponed, and later re-evaluated.
Even if the suboptimal match is dispatched, the correc-
tion mechanisms described in Section 3.4 are designed
to catch this case and reschedule the task if needed.

3.4 Correction Mechanisms
In Apollo, each JM can schedule tasks independently at
a high frequency, with no delay in the process. This is
critical for scheduling a large number of small tasks in
the workload. However, due to the distributed nature of
the scheduling, several JMs might make competing de-
cisions at the same time. In addition, the information
used, such as wait-time matrices, for scheduling deci-
sions might be stale; the task wait time and runtime might
be under or overestimated. Apollo has built-in mecha-
nisms to address those challenges and dynamically adjust
scheduling decisions with new information.

Unlike previous proposals (e.g., as in Omega [23]) in
which conflicts are immediately handled at the schedul-
ing time, Apollo optimistically defers any correction un-
til after tasks are dispatched to PN queues. This de-
sign choice is based on our observation that conflicts are
not always harmful. Two tasks scheduled to the same
server simultaneously by different job managers might
be able to run concurrently if there are sufficient re-
sources for both; tasks that are previously scheduled on
the server might complete soon, releasing the resources
early enough to make any conflict resolution unneces-
sary. In those cases, a deferred correction mechanism,
made possible with local queues, avoids the unneces-
sary overhead associated with eager detection and reso-
lution. Correction mechanisms continuously re-evaluate
the scheduling decisions with up-to-date information and
make appropriate adjustments whenever necessary.
Duplicate Scheduling. When a JM gets fresh informa-

tion from a PN during task creation, task upgrade, or
while monitoring its queued tasks, it compares the infor-
mation from this PN (and the elapsed wait time so far) to
the information that was used to make the scheduling de-
cision. The scheduler re-evaluates the decision if (i) the
updated expected wait time is significantly higher than
the original; (ii) the expected wait time is greater than
the average among the tasks in the same stage; (iii) the
elapsed wait time is already greater than the average. The
first condition indicates an underestimated task comple-
tion time on the server, while the second/third conditions
indicate a low matching quality. Any change in the deci-
sion triggers scheduling a duplicate task to a new desired
server. Duplicates are discarded when one task starts.
Randomization. Multiple JMs might schedule tasks to
the same lightly loaded PN, not aware of each other,
thereby leading to scheduling conflicts. Apollo adds a
small random number to each completion time estima-
tion. This random factor helps reduce the chances of
conflicts by having different JMs choose different, al-
most equally desirable, servers. The number is typically
proportional to the communication interval between the
JM and the PN, introducing no noticeable impact on the
quality of the scheduling decisions.
Confidence. The aggregated cluster information ob-
tained from the RM contains wait-time matrices of dif-
ferent ages, some of which can be stale. The scheduler
attributes a lower confidence to older wait-time matrices
because it is likely that the wait time changed since the
time the matrix was calculated. When the confidence in
the wait-time matrix is low, the scheduler will produce a
pessimistic estimate by looking up the wait time of a task
consuming more CPU and memory.
Straggler Detection. Stragglers are tasks making
progress at a slower rate than other tasks, and have a crip-
pling impact on job performances [4]. Apollo’s straggler
detection mechanism monitors the rate at which data is
processed and the rate at which CPU is consumed to pre-
dict the amount of time remaining for each task. Other
tasks in the same stage are used as a baseline for com-
parison. When the time it would take to rerun a task is
significantly less than the time it would take to let it com-
plete, a duplicate copy is started. They will execute in
parallel until the first one finishes, or until the duplicate
copy caught up with the original task. The scheduler also
monitors the rate of I/O and detects stragglers caused by
slow intermediate inputs. When a task is slow because
of abnormal I/O latencies, it can rerun a copy of the up-
stream task to provide an alternate I/O path.

3.5 Opportunistic Scheduling
Besides achieving high quality scheduling at scale,
Apollo is also designed to operate efficiently and drive
high cluster utilization. Cluster utilization fluctuates over

292 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

time for several reasons. First, not all users submit jobs at
the same time to consume their allocated capacities fully.
A typical example is that the cluster load on weekdays
is always higher than on weekends. Second, jobs differ
in their resource requirements. Even daily jobs with the
same computation logic consume different amount of re-
sources as their input data sizes vary. Finally, a complete
job typically goes through multiple stages, with different
levels of parallelism and varied resource requirements.
Such load fluctuation on the system provides schedulers
with an opportunity to improve job performance by in-
creasing utilization, at the cost of predictability. How
to judiciously utilize occasionally idle computation re-
sources without affecting SLAs remains challenging.

We introduce opportunistic scheduling in Apollo to
gracefully take advantage of idle resources whenever
they are available. Tasks can execute either in the reg-
ular mode, with sufficient tokens to cover its resource
consumption, or in the opportunistic mode, without allo-
cated resources. Each scheduler first applies optimistic
scheduling to dispatch regular tasks with its allocated to-
kens. If all the tokens are utilized and there are still pend-
ing tasks to be scheduled, opportunistic scheduling may
be applied to dispatch opportunistic tasks. Performance
degradation of regular task is prevented by running op-
portunistic tasks at a lower priority at each server, and
any opportunistic task can be preempted or terminated if
the server is under resource pressure.

One immediate challenge is to prevent one job from
consuming all the idle resources unfairly. Apollo uses
randomized allocation to achieve probabilistic resource
fairness for opportunistic tasks. In addition, Apollo up-
grades opportunistic tasks to regular ones when tokens
become available and assigned.
Randomized Allocation Mechanism. Ideally, the op-
portunistic resources should be shared fairly among jobs,
proportionally to jobs’ token allocation. This is particu-
larly challenging as both the overall cluster load and in-
dividual server load fluctuate over time, which makes it
difficult, if not impossible, to guarantee absolute instan-
taneous fairness. Instead, we focus on avoiding the worst
case of a few jobs consuming all the available capacity of
the cluster and target average fairness.

Apollo achieves this by setting a maximum oppor-
tunistic allowance for a given job proportionally to its to-
ken allocation. For example, a job with n tokens can have
up to cn opportunistic tasks dispatched for some constant
c. When a PN has spare capacity and the regular queue
is empty, the PN picks a random task to execute from
the opportunistic-task queue, regardless of when it was
dispatched. If the chosen task requires more resources
than what is available, the randomized selection process
continues until there is no more task that can execute.
Compared to a FIFO queue, the algorithm has the benefit

of allowing jobs that start later to get a share of the capac-
ity quickly. If a FIFO queue were used for opportunistic
tasks, it could take an arbitrary amount of time for a later
task to make its way through the queue, offering unfair
advantages to tasks that start earlier.

As the degree of parallelism for a job varies in its life-
time, the number of tasks that are ready to be scheduled
also varies. As a result, a job may not always be able to
dispatch enough opportunistic tasks to use its opportunis-
tic allowance fully. We further enhance the system by
allowing each scheduler to increase the weight of an op-
portunistic task during random selection, to compensate
for the reduction in the number of tasks. For example, a
weight of 2 means a task has twice the probability to be
picked. The total weight of all opportunistic tasks issued
by the job must not exceed its opportunistic allowance.

Under an ideal workload, in which tasks run for the
same amount of time and consume the same amount of
resources, and in a perfectly balanced cluster, this strat-
egy averages to sharing the opportunistic resources pro-
portionally to the job allocation. However, in reality,
tasks have large variations in runtime and resource re-
quirements. The number of tasks dispatched per jobs
change constantly as tasks complete and new tasks be-
come ready. Further, jobs may not have enough paral-
lelism at all times to use their opportunistic allowance
fully. Designing a fully decentralized mechanism that
maintains a strong fairness guarantee in a dynamic envi-
ronment remains a challenging topic for future work.

Task Upgrade. Opportunistic tasks are subject to starva-
tion if the host server experiences resource pressure. Fur-
ther, the opportunistic tasks can wait for an unbounded
amount of time in the queue. In order to avoid job starva-
tion, tasks scheduled opportunistically can be upgraded
to regular tasks after being assigned a token. Because a
job requires at least one token to run and there is a finite
amount of tasks in a job, the scheduler is able to transi-
tion a starving opportunistic task to a regular task at one
point, thus preventing job starvation.

After an opportunistic task is dispatched, the scheduler
tracks the task in its ready list until it completes. When
scheduling a regular task, the scheduler considers both
unscheduled tasks and previously scheduled opportunis-
tic tasks that still wait for execution. Each scheduler al-
locates its tokens to tasks and performs task matches in a
descending order of their priorities. It is not required that
an opportunistic task be upgraded on the same machine,
but it might be preferable as there is no initialization
time. By calculating all costs holistically, the scheduler
favors upgrading opportunistic tasks on machines with
fewer regular tasks, while waiting for temporarily heav-
ily loaded machines to drain. This strategy results in a
better utilization of the tokens and better load balancing.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 293

4 Engineering Experiences
Before the development of Apollo, we already had a pro-
duction system running at full scale with our previous
generation DAG scheduler, also referred to as the base-
line scheduler. The baseline scheduler schedules jobs
without any global cluster load information. When tasks
wait in a PN queue, the baseline scheduler systematically
triggers duplicates to explore other idle PNs and balance
the load. Locality is modeled as a per-task scheduling
constraint that is relaxed over time, instead of using com-
pletion time estimation.

In our first attempt to improve the baseline scheduler,
we took an approach of a centralized global scheduler,
which is responsible for scheduling all jobs in a cluster.
While the global scheduler theoretically oversees all ac-
tivities in the cluster and could make optimal scheduling
decisions, we found that it became a performance bottle-
neck and its scheduling quality degraded as the numbers
of machines in the cluster and concurrent jobs continued
to grow. In addition, as described in Section 2, our het-
erogeneous workload consists of jobs with diverse char-
acteristics. Any scheduling delay could have a direct and
severe impact on small tasks. Such lessons ultimately led
us to choose Apollo’s distributed and loosely coordinated
scheduling paradigm.

During the development of Apollo, we had to ensure
the availability of our production system throughout the
process, from early prototyping and experimentation to
evaluation and eventual full deployment. This has posed
many interesting challenges in validation, migration, de-
ployment, and operation at full production scale.
Validation at Scale. We started by evaluating Apollo
in an isolated test cluster at a smaller scale. It helps us
verify scheduling decisions at every step and track down
performance issues quickly. However, the approach has
limitations as the scale of the test cluster is rather lim-
ited and cannot emulate the dynamic cluster environ-
ment. Many interesting challenges arise as the scale and
complexity of the workload grows. For example, Apollo
and the baseline scheduler make different assumptions
around the capacity of the machines. In a test cluster
with a single job running at a time, the baseline sched-
uler schedules a single task to a server, resulting in much
lower machine utilization compared to Apollo. However,
this improvement does not translate into gain in produc-
tion environments because the utilization in production
clusters is already high. Therefore, it is important for
us to evaluate Apollo in real production clusters, side by
side with busy production workloads.

Another lesson we learned from our first failed attempt
was to validate design and performance continuously, in-
stead of delaying full validation until completion and ex-
posing scalability and performance issues when it is too
late. This is particularly important as each engineering

attempt is significant and time-consuming at this large
scale.

Apollo’s fully decentralized design allows each sched-
uler to run side by side with other schedulers, or other
versions of Apollo itself. Such engineering agility is crit-
ical and allows us to compare performance across dif-
ferent schedulers at scale in the same production envi-
ronments. We sampled production jobs and reran them
twice, one with the baseline scheduler and the other with
the Apollo scheduler, to compare the job performance.
In order to minimize other random factors, we initially
ran them side by side. However, the approach resulted in
artificial resource contention as both jobs read the same
inputs. Instead, we chose to run the two jobs one after
another. Our experiences show that the cluster load is un-
likely to change drastically between the two consecutive
runs. We also modified the baseline scheduler to produce
accurate estimates for task runtime and resource require-
ments using Apollo’s logic so that Apollo could perform
adequately well in this mixed mode environment. This
allowed us to get performance data from early exposure
to large scale environment in the design and experimen-
tation phase.
Migration at Scale. We designed Apollo to replace the
previous scheduler in place. On the one hand, this means
that protocols had to be carefully designed to be com-
patible; on the other hand, it also means that we had
to make sure both schedulers could coexist in the same
environment, each scheduling a part of the workload on
the same set of machines, without creating interferences.
For example, Apollo judiciously performs opportunis-
tic scheduling with significantly less resource. In iso-
lation, Apollo issues 98% less duplicates than the base-
line scheduler, without losing performance. However, in
the mixed mode where both schedulers runs, the baseline
scheduler gains an unfair advantage by issuing more du-
plicates to get work done. We therefore tuned the system
during the transition to increase the probability to start
opportunistic tasks for Apollo-scheduled jobs in order to
correct the bias caused by the reduction in the number of
tasks scheduled.
Deployment at Scale. Without any service downtime
or unavailability, we rolled out Apollo to our users in
stages and increased user coverage over time until even-
tually fully deployed on all clusters. At each stage, we
closely watched various system metrics, verified job per-
formance, and studied impact on other system compo-
nents before proceeding to the next stage.

One interesting observation was that users who had
not yet migrated to Apollo also experienced some per-
formance improvement during the deployment process.
This was because Apollo avoided scheduling tasks to
hotspots inside the system, which helped improve job
performance across the cluster, including the ones sched-

294 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

uled by the baseline scheduler. When we finally enabled
those jobs with Apollo, the absolute percentage of im-
provement was less than what we observed initially.
Operation at Scale. Even with thoughtful design and
implementation, the dynamic behavior of such a large
scale system continues to pose new challenges, which
motivate us to refine and improve the system contin-
uously while operating Apollo at scale. For example,
Apollo leverages an opportunistic scheduling mechanism
to increase system utilization by operating tasks either in
normal-priority regular mode or in lower-priority oppor-
tunistic mode. Initially, this priority is enforced by local
operating system but not by the underlying distributed
file system. During the early validation, this did not
pose a problem. However, as we deployed Apollo, both
CPU and I/O utilization in the cluster increased. The
overall increase in I/O pressure caused a latency impact
and interfered with tasks even running in regular mode.
This highlights the importance of interpreting task pri-
ority throughout the entire stack to maintain predictable
performance at high utilization.

Another example is that we developed a server failure
model by mining historical data and various factors to
predict the likelihood of possible repeated server failures
in the near future, based on recent observed events. As
described in Section 3.3, such failure model has a direct
impact on task completion time estimation and thus in-
fluences scheduling decisions. The model works great
in most cases and helps Apollo avoid scheduling tasks
to repeated offenders, thereby improving system relia-
bility. However, a rare power transformer outage caused
failures on a large number of servers all at once. Af-
ter the power was restored, the model predicted that they
were likely to fail again and prevented Apollo from using
those machines. As a result, the recovery of the cluster
was unnecessarily slowed down. This indicates the im-
portance of further distinguishing failure types and deal-
ing with them presumably in different models.

5 Evaluation
Since late 2013, Apollo has been deployed in production
clusters at Microsoft, each containing over 20,000 com-
modity servers. To evaluate Apollo thoroughly, we use a
combination of the following methods: (i) We analyze
and report various system metrics on large-scale pro-
duction clusters where Apollo has been deployed; fur-
ther, we compare the behavior before and after enabling
Apollo. (ii) We perform in-depth studies on representa-
tive production jobs to highlight our observations at per-
job level. (iii) We use trace-driven simulations on certain
specific points in the Apollo design to compare with al-
ternatives. Whenever possible, we prefer reporting the
production Apollo behavior, instead of using simulated
results, because it is hard, if not infeasible, to model the

 0

 5000

 10000

 15000

 20000

Sep Oct Nov Dec Jan Feb

Ta
sk

 S
ch

ed
ul

ed
/s

ec Peak Rate within Hour

Figure 6: Scheduling rates.
complexity of real workload and production environment
faithfully in a simulator. To our knowledge, this is the
first detailed analysis of production schedulers at such a
large scale with such a complex and diverse workload.

We intend to answer the following questions: (a) How
well does Apollo scale and utilize resources in a large-
scale cluster? (b) What is the scheduling quality with
Apollo? (c) How accurate are the estimates on task ex-
ecution and queuing time used in Apollo and how much
do the estimates help? (d) How does Apollo cope with
dynamic cluster environment? (e) What is the complex-
ity of Apollo’s core scheduling algorithm?

5.1 Apollo at Scale
We first measured the aggregated scheduling rate in a
cluster over time to understand Apollo’s scalability. We
define scheduling rate as the number of materialized
scheduling decisions (those resulting a task execution at
a PN) made by all the individual schedulers in the clus-
ter per second. Figure 6 shows the peak scheduling rates
for each hour over the past 6 months, highlighting that
Apollo can constantly provide a scheduling rate of above
10,000, reaching up to 20,000 per second in a single clus-
ter. This confirms the need for a distributed scheduling
infrastructure, as it would be challenging for any single
scheduler to make high quality decisions at this rate. It
is important to note that the scheduling rate is also gov-
erned by the capacity of the cluster and the number of
concurrent jobs. With its distributed architecture, we ex-
pect the scheduling rate to increase with the number of
jobs and the size of the cluster.

We then drill down into a period of two weeks and re-
port various aspects of Apollo, without diluting data over
a long period of time. Figure 7(a) shows the number of
concurrently running jobs and their tasks in the cluster
while Figure 7(b) shows server CPU utilization in the
same period, both sampled at every 10 seconds. Apollo
is able to run 750 concurrent complex jobs (140,000 con-
current regular tasks) and achieve over 90% CPU uti-
lization when the demand is high during the weekdays,
reaching closely the capacity of the cluster.

To illustrate the distribution of system utilization
among all the servers in the cluster, Figure 7(b) shows
the median, as well as the 20th and 80th percentiles in
CPU utilization. When the demand surges, Apollo makes
use of all the available resources and only leaves a 3%

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 295

 0
 100
 200
 300
 400
 500
 600
 700
 800

Mon Wed Fri Sun Tue Thu Sat Mon
0

40K

80K

120K

170K
Jo

b
C

on
cu

rre
nc

y

Ta
sk

 C
on

cu
rre

nc
y

Job Concurrency
Task Concurrency

(a) Concurrent jobs and tasks.

0%
20%
40%

60%
80%

100%

Mon Wed Fri Sun Tue Thu Sat Mon

80th percentile
median

20th percentile

(b) CPU utilization.

0%
20%
40%

60%
80%

100%

Mon Wed Fri Sun Tue Thu Sat Mon

Regular Task
Opportunistic Task

(c) CPU time breakdown: regular and opportunistic task.

Figure 7: Apollo in production.
gap between the 20th and the 80th percentiles. When
the demand is low, such as on Sundays, the load is less
balanced and the machine utilization is mostly corre-
lated to the popularity of the data stored on them. The
figures shows a clear weekly pattern of the workloads.
The task concurrency decreases during the weekends and
recovers back to a large volume during the weekdays.
However, the dip in system utilization is significantly
less than that of the number of jobs submitted. With
opportunistic scheduling, Apollo allows jobs to grace-
fully exploit idle system resources to achieve better job
performances and continues to drive system utilization
high even with fewer number of jobs. This is further
validated in Figure 7(c), which shows the percentage of
CPU hours attributed to regular and opportunistic tasks.
During the weekdays, 70% of Apollo’s workload comes
from regular tasks. The balance shifts during the week-
ends: more opportunistic tasks get executed on the avail-
able resources when there are fewer regular tasks.

Task location % Tasks % I/Os

The same server that contains the input 28% 46%
Within the same rack as the input 56% 47%
Across rack 16% 7%

Table 1: Breakdown of tasks and their I/Os.
We also measured the average task queuing time for

all regular tasks to verify that the queuing time remains

low despite the high concurrency and system utilization.
At the 95th percentile, the tasks show less than 1 second
queuing time across the entire cluster. Apollo achieves
this by considering data locality, wait time, and other fac-
tors holistically when distributing tasks. Table 1 catego-
rizes tasks into three groups and reports the percentage of
I/Os they account for. 72% of the tasks are dispatched to
servers that require reading inputs remotely, either within
or across rack, to avoid wait time. If only data locality
is considered, tasks are likely to concentrate on a small
group of servers that contain hot data.
Summary. Combined, those results show that Apollo
is highly scalable, capable of scheduling over 20,000 re-
quests per second, and driving high and balanced system
utilization while incurring minimum syqueuing time.

5.2 Scheduling Quality
We evaluate the scheduling quality of Apollo in two
ways: (i) compare with the previously implemented
baseline scheduler using production workloads and (ii)
study business critical production jobs and use trace-
based simulations to compare the quality.

Performing a fair comparison between the baseline
scheduler and Apollo in a truly production environment
with real workload is challenging. Fortunately, we re-
placed the baseline scheduler in place with Apollo, al-
lowing us to observe both schedulers in the same cluster
with similar workloads. Further, about 40% of the pro-
duction jobs in the cluster has a recurring pattern and
such recurring jobs account for more than 75% system
resource utilization [5]. We therefore choose two time
frames, before and after the Apollo deployment, to com-
pare performance and speedup of each recurring job, run-
ning Apollo and the baseline scheduler respectively. The
recurring nature of the workload produced a strong cor-
relation in CPU time between the workloads in the two
time frames, as shown in Figure 8(a). Figure 8(b) shows
the CDF of the speedups for all recurring jobs and it
indicates that about 80% of recurring jobs receive var-
ious degrees of performance improvements (up to 3x in
speedup) with Apollo. To understand the reason for the
differences, we measured the average task queuing time
on each server for every window of 10 minutes. Fig-
ure 8(c) shows the standard deviation of the average task
queue time across servers, comparing Apollo with the
baseline scheduler, which indicates clearly that Apollo
achieves much more balanced task queues across servers.

For the second experiment, we present a study of one
business critical production job, which runs every hour.
The job consumes logs from a search and advertisement
engine and analyzes user click information. Its execu-
tion graph consists of around ten thousands tasks, pro-
cessing a few terabytes of data. The execution graph
shown in Figure 1 is a much simplified version of this

296 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0
20k
40k
60k
80k

100k
120k
140k
160k
180k
200k

To
ta

l C
PU

 ti
m

e

Time

Apollo
Baseline 0

 0.2
 0.4
 0.6
 0.8

 1

0x 1x 2x 3x 4x

C
D

F

Speedup
 0
 5

 10
 15
 20
 25
 30

St
de

v
of

 w
ai

t t
im

e
(s

ec
)

ac
ro

ss
 m

ac
hi

ne
s

Time

Apollo
Baseline

(a) Comparable workloads. (b) Recurring job speedup. (c) Scheduling balance.

Figure 8: Comparison between Apollo and the baseline scheduler.

 20
 25
 30
 35
 40
 45
 50

Sun Mon Tue Wed Thu Fri Sat

Jo
b

ru
nt

im
e

(m
in

ut
es

)

Oracle (Capacity Constraint)
Oracle (Infinite Capacity)
Baseline
Apollo

Figure 9: Job latencies with different schedulers.

job. The performance of the job varies by weekdays be-
cause of periodic fluctuations in the input volume of user
clicks. To compare performance, we use one job per day
at the same hour in a week and evaluated the scheduling
performance of Apollo, baseline scheduler, and a sim-
ulated oracle scheduler, which has zero task wait time,
zero scheduling latency, zero task failures, and knows
exact runtime statistics about each task. Further, we use
two variants of the oracle scheduler: (i) oracle with ca-
pacity constraint, which is limited to the same capacity
that was allocated to the job when it ran in the production
environment and (ii) oracle without capacity constraint,
which has access to unlimited capacity, roughly repre-
senting the best case scenario.

Figure 9 shows job performance using Apollo and
the baseline scheduler, respectively, and compares them
with the oracle scheduler using runtime traces. On aver-
age, the job latency improved around 22% with Apollo
over the baseline scheduler, and Apollo performed within
4.5% of the oracle scheduler. On some days, Apollo
is even better than the oracle scheduler with the capac-
ity constraint because the job is able to get some extra
speedup from opportunistic scheduling, allowing the job
to get more capacity than the capacity constraint used by
the oracle scheduler.
Summary. Apollo delivers excellent job performance
compared with the baseline scheduler and its scheduling
quality is close to the optimal case.

5.3 Evaluating Estimates
Estimating task completion time, as described in Sec-
tion 3.3, plays an important role in Apollo’s scheduling
algorithm and thus job performance. Both task initializa-
tion time and I/O time can be calculated when the inputs
and server locations are known at runtime.

 0
 0.2
 0.4
 0.6
 0.8

 1

0% 10% 20% 30% 40% 50%

C
D

F

Relative Error

Figure 10: CPU time estimation.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

St
de

v
w

ai
t t

im
e

ac
ro

ss
 m

ac
hi

ne
s(

se
c)

Time

w/ Estimation
w/o Estimation

Figure 11: Scheduling balance (estimation effect).

We first measure the accuracy of the estimated task
wait time, as a result of applying task resource estima-
tion to the wait-time matrix. Over 95% tasks have a wait
time estimation error of less than 1 second. We then mea-
sure the CDF of the estimation error for task CPU time,
as shown in Figure 10. For 75% of tasks, the CPU time
predicted when the task is scheduled is within 25% of the
actual CPU consumption. Apollo continues to refine run-
time estimates based on statistics from the finished tasks
within the same stage at runtime. Nevertheless, a num-
ber of factors make runtime estimation challenging. A
common case is for tasks with early-out behavior with-
out reading all of its input. An example of such tasks may
consist of a filter operator followed by a TOP N operator.
Different tasks may consume different amount of input
data before collecting N rows satisfying the filter condi-
tion, which makes inference based on past task runtime
difficult. Complex user code whose resource consump-
tion and execution time varies by input data characteris-
tics also makes prediction difficult, if not infeasible. We
evaluate how Apollo dynamically adjusts scheduling de-
cisions at runtime in Section 5.4.

In order to evaluate the overall estimation impact, we
compare the Apollo performance with and without esti-
mation. As we rolled out Apollo to one production clus-
ter, we went through a phase in which we used a default
estimate for all tasks uniformly, before we enabled all
the internal estimation mechanism. We refer the phase

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 297

as Apollo without estimation. Comparing the system be-
havior before and after allows us to understand the im-
pact of estimation on scheduling decisions in a produc-
tion cluster because the workloads are similar as we re-
ported in Section 5.2. Figure 11 shows the distributions
of task queuing time. With estimation enabled, Apollo
achieves much more balanced scheduling across servers,
which in turn leads to shorter task queuing latency.
Summary. Apollo provides good estimates on task wait
time and CPU time, despite all the challenges, and esti-
mation does help improve scheduling quality. Further
improvements can be achieved by leveraging statistics
of recurring jobs and better understanding task internals,
which is part of our future work.

5.4 Correction Effectiveness
In case of inaccurate estimates or sudden changes in a
cluster environment, Apollo applies a series of correc-
tion mechanisms to mitigate effectively. For duplicate
scheduling, we call a duplicate task successful if it starts
before the initial task.

Conditions (W : wait time) Trigger rate Success rate

New expected W significantly higher 0.12% 81.3%
Expected W greater than average 0.12% 81.3%
Elapsed W greater than average 0.17% 83.0%

Table 2: Duplicate scheduling efficiency.

Table 2 evaluates different heuristics of duplicate
scheduling, described in Section 3.4, for the same two-
week period and reports how frequently they are trig-
gered and their success rate. Overall, Apollo’s dupli-
cate scheduling is efficient, with 82% success rates, and
accounts for less than 0.5% of task creations. Such a
low correction rate confirms the viability of optimistic
scheduling and deferred corrections for this workload.

Straggler detection and mitigation is also important for
job performance. Apollo is able to catch more than 70%
stragglers efficiently and apply mitigation timely to expe-
dite query execution. We omit the detailed experiments
due to space constraints.
Summary. Apollo’s correction mechanisms are shown
effective with small overhead.

5.5 Stable Matching Efficiency
In a general case, the complexity of the stable match-
ing algorithm, when using a red-black tree to maintain a
sorted set of tasks to schedule, is O(n2) while the greedy
algorithm is O(n log(n)). However in our case the com-
plexity of the stable matching algorithm is limited to
O(n log(n)). The algorithm usually converges in less
than 3 iterations and our implementation limits the num-
ber of iterations of the matcher, which makes the worst
case complexity O(n log(n)), the same as the greedy al-
gorithm. In practice, a scheduling batch contains less

 0
 5

 10
 15
 20
 25

101 102 103

Jo
b

co
m

pl
et

io
n

tim
e

(s
ec

)

Number of tasks

Stable Matcher
Greedy Matcher
Optimal Matcher

Figure 12: Matching quality.
than 1,000 tasks and the computation overhead is negli-
gible, with no observed performance differences.

We verify the effectiveness of the stable matching al-
gorithm using a simulator. We measure the amount of
time it takes for a workload of N tasks to complete on 100
servers, using the greedy, stable matching, and optimal
matching algorithms, respectively. The optimal match-
ing algorithm uses an exhaustive search to compute the
best possible sequence of scheduling. Each server has
a single execution slot and have an expected wait time
that is exponentially distributed with an average of 1.
The expected runtime of each tasks is exponentially dis-
tributed with an average of 1. Each task is randomly
assigned a server preference and runs faster on the pre-
ferred server. Figure 12 shows that the stable match-
ing algorithm performs within 5% of the optimal match-
ing under the simulated conditions while the greedy ap-
proach, which schedules tasks one at a time on the server
with the minimum expected completion time, was 57%
slower than the optimal matching.
Summary. Apollo’s matching algorithm has the same
asymptotic complexity as a naive greedy algorithm with
negligible overhead. It performs significantly better than
the greedy algorithm and is within 5% of the optimal
scheduling in our simulation.

6 Related Work
Job scheduling was extensively studied [24, 25] in
high-performance computing for scheduling batch CPU-
intensive jobs and has become a hot topic again with
emerging data-parallel systems [7, 15, 29]. Monolithic
schedulers, such as Hadoop Fair Scheduler [28] and
Quincy [16], implement a scheduling policy for an en-
tire cluster using a centralized component. This class of
schedulers suffers from scalability challenges when serv-
ing large-scale clusters.

Mesos [14] and YARN [27] aim to ease the support for
multiple workloads by decoupling resource management
from application logic in a two-layer design. Facebook
Corona [1] uses a similar design but focuses on reduc-
ing job latency and improving scalability for Hadoop by
leveraging a push-based message flow and an optimistic
locking pattern. Mesos, YARN, and Corona remain fun-
damentally centralized. Apollo in contrast makes decen-
tralized scheduling decisions with no central scheduler,
which facilitates small task scheduling.

298 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Distributed schedulers such as Omega [23] and Spar-
row [22] address the scalability challenges by not relying
on a centralized entity for scheduling. Two different ap-
proaches have been explored to resolve conflicts. Omega
resolves any conflict using optimistic concurrency con-
trol [17] where only one of the conflicting schedulers
succeeds and the others have to roll back and retry later.
Sparrow instead relies on (random) sampling and specu-
lative scheduling to balance the load.

Similar to Omega, schedulers in Apollo makes op-
timistic scheduling decisions based on their views of
the cluster (with the help of the RM). Unlike Omega,
which detects and resolves conflicts at the scheduling
time, Apollo is optimistic in conflict detection and res-
olution by deferring any corrections until after tasks are
dispatched. This is made possible by Apollo’s design
of having local queues on servers. The use of local
task queue and task runtime estimates provides criti-
cal insight about future resource availability and allows
Apollo schedulers to optimize task scheduling by esti-
mating task completion time, instead of based on instan-
taneous resource availability at the scheduling time. This
also gives Apollo the extra benefit of masking resource-
prefetching latency effectively, which is important for
our target workload.

Although both adopting a distributed scheduling
framework, Sparrow and Apollo differ in how they make
scheduling decisions. Sparrow’s sampling mechanism
will schedule tasks on machines with the shortest queue,
with no consideration for other factors affecting the com-
pletion time, such as locality. In contrast, Apollo sched-
ulers optimize task scheduling by estimating task com-
pletion time that takes into account multiple factors such
as load and locality. Sparrow uses reservation on multi-
ple servers with late binding to alleviate its reliance on
queue length, rather than task completion time. Such
a reservation mechanism would introduce excessive ini-
tialization costs on multiple servers in our workload.
Apollo introduces duplicate scheduling only as a correc-
tion mechanism; it is rarely triggered in our system.

While Omega and Sparrow have been evaluated us-
ing simulation and a 110-machine cluster respectively,
our work distinguishes itself by showing Apollo’s effec-
tiveness in a real production environment at a truly large
scale, with diverse workloads, and complex resource and
job requirements.

Capacity management often goes hand-in-hand with
scheduling. Capacity scheduler [2] in Hadoop/YARN
uses global capacity queues to specify the share of re-
sources for each job, which is similar to token-based re-
source guarantee implemented in Apollo. Apollo uses
fine grained allocations and opportunistic scheduling to
take advantage of idle resources gracefully. Resource
management on local servers is also critical. Existing

work leverages Linux containers [13], usage monitor-
ing [27] and/or contention detection [31] to provide per-
formance isolation. Apollo can accommodate any of
those mechanisms.

Operator runtime estimation based on data statistics
and operator semantics has been extensively studied in
the database community for effective query optimiza-
tion [19, 11, 6]. For distributed computing of arbitrary
input and program, most effort (e.g., ParaTimer [21])
has been focusing on estimating the progress of running
jobs based on runtime statistics. Apollo combines both
static and runtime information and leverages program
patterns (e.g., stage) to estimate task runtime. Apollo
also includes a set of mechanisms to compensate inac-
curacy whenever needed. For example, many existing
works on outlier detection and straggler mitigation (e.g.,
LATE [30], Mantri [4], and Jockey [9]) are complemen-
tary to our work and can be integrated with the Apollo
framework for reducing job latency.

7 Conclusion

In this paper, we present Apollo, a scalable and coor-
dinated scheduling framework for cloud-scale comput-
ing. Apollo adopts a distributed and loosely coordinated
scheduling architecture that scales well without sacrific-
ing scheduling quality. Each Apollo scheduler consid-
ers various factors holistically and performs estimation-
based scheduling to minimize task completion time. By
maintaining a local task queue on each server, Apollo
enables each scheduler to reason about future resource
availability and implement a deferred correction mecha-
nism to effectively adjust suboptimal decisions dynami-
cally. To leverage idle system resources gracefully, op-
portunistic scheduling is used to maximize the overall
system utilization. Apollo has been deployed on produc-
tion clusters at Microsoft: it has been shown to achieve
high utilization and low latency, while coping well with
the dynamics in diverse workloads and large clusters.

Acknowledgements

We are grateful to our shepherd Andrew Warfield for his
guidance in the revision process and to the anonymous
reviewers for their insightful comments. David Chu and
Jacob Lorch provided feedback that helped improve the
paper. We would also like to thank the members of Mi-
crosoft SCOPE team for their contributions to the SCOPE
distributed computation system, of which Apollo serves
as the scheduling component. The following people con-
tributed to our scheduling framework: Haochuan Fan,
Jay Finger, Sapna Jain, Bikas Saha, Sergey Shelukhin,
Sen Yang, Pavel Yatsuk, and Hongbo Zeng. Finally, we
would like to thank Microsoft Big Data team members
for their support and collaboration.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 299

References
[1] Under the hood: Scheduling MapReduce jobs

more efficiently with Corona. http://on.fb.me/
TxUsYN, 2012. [Online; accessed 16-April-2014].

[2] Hadoop Capacity Scheduler. http://hadoop.

apache.org/docs/r2.3.0/hadoop-yarn/

hadoop-yarn-site/CapacityScheduler.

html, 2014. [Online; accessed 16-April-2014].

[3] Hadoop Distributed File System (HDFS). http://
hadoop.apache.org/, 2014. [Online; accessed
16-April-2014].

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Rein-
ing in the outliers in MapReduce clusters using
Mantri. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implemen-
tation, OSDI’10, pages 1–16, Berkeley, CA, USA,
2010. USENIX Association.

[5] N. Bruno, S. Agarwal, S. Kandula, B. Shi, M.-
C. Wu, and J. Zhou. Recurring job optimization
in scope. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’12, pages 805–806, New York,
NY, USA, 2012. ACM.

[6] S. Chaudhuri. An overview of query optimization
in relational systems. In Proceedings of the sev-
enteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 34–
43. ACM, 1998.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Lar-
son, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the
sixth annual ACM Symposium on Principles of dis-
tributed computing, pages 1–12. ACM, 1987.

[9] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: Guaranteed job latency
in data parallel clusters. In Proceedings of the 7th
ACM European Conference on Computer Systems,
EuroSys ’12, pages 99–112, New York, NY, USA,
2012. ACM.

[10] D. Gale and L. S. Shapley. College admissions and
the stability of marriage. American Mathematical
Monthly, 69(1):9–15, Jan. 1962.

[11] P. Gassner, G. M. Lohman, K. B. Schiefer, and
Y. Wang. Query optimization in the IBM DB2 fam-
ily. IEEE Data Eng. Bull., 16(4):4–18, 1993.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proceedings of the Nine-
teenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43, New York, NY,
USA, 2003. ACM.

[13] M. Helsley. LXC: Linux container tools. IBM de-
vloperWorks Technical Library, 2009.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In Proceedings of the 8th
USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’11, pages 22–22,
Berkeley, CA, USA, 2011. USENIX Association.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: Distributed data-parallel programs
from sequential building blocks. In Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys ’07,
pages 59–72, New York, NY, USA, 2007. ACM.

[16] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair schedul-
ing for distributed computing clusters. In Proceed-
ings of the ACM SIGOPS 22Nd Symposium on Op-
erating Systems Principles, SOSP ’09, pages 261–
276, New York, NY, USA, 2009. ACM.

[17] H.-T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems (TODS), 6(2):213–226, 1981.

[18] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[19] L. F. Mackert and G. M. Lohman. R* optimizer
validation and performance evaluation for local
queries, volume 15. ACM, 1986.

[20] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: Design, im-
plementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[21] K. Morton, M. Balazinska, and D. Grossman. Para-
Timer: A progress indicator for MapReduce DAGs.
In Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of data, pages
507–518. ACM, 2010.

300 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[22] K. Ousterhout, P. Wendell, M. Zaharia, and I. Sto-
ica. Sparrow: Distributed, low latency scheduling.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13,
pages 69–84, New York, NY, USA, 2013. ACM.

[23] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: Flexible, scalable sched-
ulers for large compute clusters. In Proceedings of
the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 351–364, New York,
NY, USA, 2013. ACM.

[24] G. Staples. TORQUE resource manager. In Pro-
ceedings of the 2006 ACM/IEEE conference on Su-
percomputing, page 8. ACM, 2006.

[25] D. Thain, T. Tannenbaum, and M. Livny. Dis-
tributed computing in practice: The Condor experi-
ence. Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[26] R. Van Renesse, K. P. Birman, and W. Vogels. As-
trolabe: A robust and scalable technology for dis-
tributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems
(TOCS), 21(2):164–206, 2003.

[27] V. K. Vavilapalli. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proc. SOCC, 2013.

[28] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay scheduling: A

simple technique for achieving locality and fairness
in cluster scheduling. In Proceedings of the 5th Eu-
ropean Conference on Computer Systems, EuroSys
’10, pages 265–278, New York, NY, USA, 2010.
ACM.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

[30] M. Zaharia, A. Konwinski, A. D. Joseph, R. H.
Katz, and I. Stoica. Improving MapReduce perfor-
mance in heterogeneous environments. In OSDI,
volume 8, page 7, 2008.

[31] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU performance
isolation for shared compute clusters. In Proceed-
ings of the 8th ACM European Conference on Com-
puter Systems, EuroSys ’13, pages 379–391, New
York, NY, USA, 2013. ACM.

[32] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson,
R. Chaiken, and D. Shakib. SCOPE: Parallel
databases meet MapReduce. VLDB J., 21(5):611–
636, 2012.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 301

The Power of Choice in Data-Aware Cluster Scheduling

Shivaram Venkataraman1, Aurojit Panda1, Ganesh Ananthanarayanan2, Michael J. Franklin1, Ion Stoica1

1UC Berkeley 2 Microsoft Research

Abstract
Providing timely results in the face of rapid growth in
data volumes has become important for analytical frame-
works. For this reason, frameworks increasingly operate
on only a subset of the input data. A key property of
such sampling is that combinatorially many subsets of
the input are present. We present KMN, a system that
leverages these choices to perform data-aware schedul-
ing, i.e., minimize time taken by tasks to read their in-
puts, for a DAG of tasks. KMN not only uses choices to
co-locate tasks with their data but also percolates such
combinatorial choices to downstream tasks in the DAG
by launching a few additional tasks at every upstream
stage. Evaluations using workloads from Facebook and
Conviva on a 100-machine EC2 cluster show that KMN
reduces average job duration by 81% using just 5% ad-
ditional resources.

1 Introduction

Data-intensive computation frameworks drive many
modern services like web search indexing and recom-
mendation systems. Computation frameworks (e.g.,
Hadoop [14], Spark [60], Dryad [38]) translate a job into
a DAG of many small tasks, and execute them efficiently
on compute slots across large clusters. Tasks of input
stages (e.g., map in MapReduce or extract in Dryad) read
their data from distributed storage and pass their out-
puts to the downstream intermediate tasks (e.g., reduce
in MapReduce or full-aggregate in Dryad).

The efficient execution of these predominantly I/O-
intensive tasks is predicated on data-aware scheduling,
i.e., minimizing the time taken by tasks to read their data.
Widely deployed techniques for data-aware scheduling
execute tasks on the same machine as their data (if
the data is on one machine, as for input tasks) [8, 59]
and avoid congested network links (when data is spread
across machines, as for intermediate tasks) [13, 24].
However, despite these techniques, we see that produc-
tion jobs in Facebook’s Hadoop cluster are slower by
87% compared to perfect data-aware scheduling (§2.3).
This is because, in multi-tenant clusters, compute slots
that are ideal for data-aware task execution are often un-
available.

A1

A2

A3

A4

Existing Scheduler

app input:
two blocks
A1, A3

A1

A2

A3

A4

app input: any
two blocks from
{A1, A2, A3, A4}
(6 choices)

KMN Scheduler

App provides
all subsets

(a) (b)

App selects two blocks
(e.g. A1, A3)

Figure 1: “Late binding” allows applications to specify
more inputs than tasks and schedulers dynamically choose
task inputs at execution time.

The importance of data-aware scheduling is increasing
with rapid growth in data volumes [31]. To cope with
this data growth and yet provide timely results, there is a
trend of jobs using only a subset of their data. Examples
include sampling-based approximate query processing
systems [5,12] and machine learning algorithms [16,42].
A key property of such jobs is that they can compute
on any of the combinatorially many subsets of the in-
put dataset without compromising application correct-
ness. For example, say a machine learning algorithm
like stochastic gradient descent [16] needs to compute
on a 5% uniform random sample of data. If the data is
spread over 100 blocks then the scheduler can choose any
5 blocks and has

(100
5

)
input choices for this job.

Our goal is to leverage the combinatorial choice of in-
puts for data-aware scheduling. Current schedulers re-
quire the application to select a subset of the data on
which the scheduler runs the job. This prevents the
scheduler from taking advantage of available choices. In
contrast, we argue for “late binding” i.e., choosing the
subset of data dynamically depending on the current state
of the cluster (see Figure 1). This dramatically increases
the number of data local slots for input tasks (e.g., map
tasks), which increases the probability of achieving data
locality even during high cluster utilizations.

Extending the benefits of choice to intermediate stages
(e.g., reduce) is challenging because they consume all
the outputs produced by upstream tasks. Thus, they have
no choice in picking their inputs. When upstream out-
puts are not evenly spread across machines, the over-
subscribed network links, typically cross-rack switch

1

302 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

links [24], become the bottleneck. We introduce choices
for intermediate stages by launching a small number of
additional tasks in the previous stage. As an example,
consider a job with 400 map tasks and 50 reduce tasks.
By launching 5% extra map tasks (420 tasks), we can
pick the 400 map outputs that best avoid congested links.

Choosing the best upstream outputs used by interme-
diate stages is non-trivial due to complex communica-
tion patterns like many-to-many (for reduce tasks) and
many-to-one (for joins). In fact, selecting the best up-
stream outputs can be shown to be NP-hard. We develop
an efficient round-robin heuristic that attempts to bal-
ance data transfers evenly across cross-rack switch links.
Further, upstream tasks do not all finish simultaneously
due to stragglers [13, 61]. We handle stragglers in up-
stream tasks using a delay-based approach that balances
the gains in balanced network transfers against the time
spent waiting for stragglers. In the above example, for
instance, it may schedule reduce tasks based on the ear-
liest 415 map tasks and ignore the last 5 stragglers.

In summary, we make the following contributions:

• Identify the trend of combinatorial choices in inputs
of jobs and leverage this for data-aware scheduling.

• Extend the benefits of choices to a DAG of stages
by running a few extra tasks in each upstream stage.

• Build KMN, a system for analytics frameworks to
seamlessly benefit from the combinatorial choices.

We have implemented KMN inside Spark [60]. We
evaluate KMN using jobs from a production workload at
Conviva, a video analytics company, and by replaying a
trace from a production Hadoop cluster at Facebook. Our
experiments on an EC2 cluster with 100 machines show
that we can reduce average job duration by 81% (93% of
ideal improvements) compared to Spark’s scheduler. Our
gains are due to KMN achieving 98% memory locality for
input tasks and improving intermediate data transfers by
48%, while using ≤ 5% extra resources.

2 Choices and Data-Awareness

In this section we first discuss application trends that re-
sult in increased choices for scheduling (§2.1). We then
explain data-aware scheduling (§2.2) and quantify its po-
tential benefit in production clusters (§2.3).

2.1 Application Trends

With the rapid increase in the volume of data collected,
it has become prohibitively expensive for data analytics
frameworks to operate on all of the data. To provide

timely results, there is a trend towards trading off accu-
racy for performance. Quick results obtained from just
part of the dataset are often good enough.
(1) Approximate Query Processing: Many analyt-
ics frameworks support approximate query processing
(AQP) using standard SQL syntax (e.g., BlinkDB [5],
Presto [29]). They power many popular applications
like exploratory data analysis [19,54] and interactive de-
bugging [3]. For example, products analysts could use
AQP systems to quickly decide if an advertising cam-
paign needs to be changed based on a sample of click
through rates. AQP systems can bound both the time
taken and the quality of the result by selecting appropri-
ately sized inputs (samples) to met the deadline and error
bound. Sample sizes are typically small relative to the
original data (often, one-twentieth to one-fifth [43]) and
many equivalent samples exist. Thus, sample selection
presents a significant opportunity for smart scheduling.
(2) Machine Learning: The last few years has seen the
deployment of large-scale distributed machine learning
algorithms for commercial applications like spam clas-
sification [40] and machine translation [18]. Recent ad-
vances [17] have introduced stochastic versions of these
algorithms, for example stochastic gradient descent [16]
or stochastic L-BFGS [53], that can use small random
data samples and provide statistically valid results even
for large datasets. These algorithms are iterative and
each iteration processes only a small sample of the data.
Stochastic algorithms are agnostic to the sample selected
in each iteration and support flexible scheduling.
(3) Erasure Coded Storage: Rise in data volumes have
also led to clusters employing efficient storage tech-
niques like erasure codes [50]. Erasure codes provide
fault tolerance by storing k extra parity blocks for every
n data blocks. Using any n data blocks of the (n+ k)
blocks, applications can compute their input. Such stor-
age systems also provide choices for data-aware schedul-
ing.

Note that while the above applications provide an op-
portunity to pick any subset of the input data, our system
can also handle custom sampling functions, which gen-
erate samples based on application requirements.

2.2 Data-Aware Scheduling

Data aware scheduling is important for both the input
as well as intermediate stages of jobs due to their IO-
intensive nature. In the input stage, tasks reads their in-
put from a single machine and the natural goal is locality
i.e. to schedule the task on a machine that stores its input
(§2.2.1). For intermediate stages, tasks have their input
spread across multiple machines. In this case, it is not
possible to co-locate the task with all its inputs. Instead,
the goal in this case is to schedule the task at a machine

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 303

that minimizes the time it takes to transfer all remote in-
puts. As over-subscribed cross-rack links are the main
bottleneck in reads [22], we seek to balance the utiliza-
tion of these links (§2.2.2).

2.2.1 Memory Locality for Input Tasks

Riding on the trend of falling memory prices, clusters
are increasingly caching data in memory [11, 58]. As
memory bandwidths are about 10×−100× greater than
the fastest network bandwidths, data reads from memory
provide dramatic acceleration for the IO-intensive ana-
lytics jobs. However, to reap the benefits of in-memory
caches, tasks have to be scheduled with memory locality,
i.e., on the same machine that contains their input data.
Obtaining memory locality is important for timely com-
pletion of interactive approximate queries [9]. Iterative
machine learning algorithms typically run 100’s of iter-
ations and lack of memory locality results in huge slow-
down per iteration and the overall job.

Achieving memory locality is a challenging problem
in clusters. Since in-memory storage is used only as
a cache, data stored in memory is typically not repli-
cated. Further, the amount of memory in a cluster is
relatively small (often by three orders of magnitude [9])
when compared to stable storage: this difference means
that replicating data in memory is not practical. There-
fore, techniques for improving locality [8] developed for
disk-based replicated storage are insufficient; they rely
on the probability of locality increasing with the number
of replicas. Further, as job completion times are dictated
by the slowest task in the job, improving performance
requires memory locality for all its tasks [11].

These challenges are reflected in production Hadoop
clusters. A Facebook trace from 2010 [8, 21] shows that
less than 60% of tasks achieve locality even with three
replicas. As in-memory data is not replicated, it is harder
for jobs to achieve memory locality for all their tasks.

2.2.2 Balanced Network for Intermediate Tasks

Intermediate stages of a job have communication pat-
terns that result in their tasks reading inputs from many
machines (e.g., all-to-all “shuffle” or many-to-one “join”
stages). For I/O intensive intermediate tasks, the time
to access data across the network dominates the run-
ning time, more so when intermediate outputs are stored
in memory. Despite fast network links [56] and newer
topologies [6, 35], bandwidths between machines con-
nected to the same rack switch are still 2× to 5× higher
than to machines outside the rack switch via the net-
work core. Thus the runtime for an intermediate stage
is dictated by the amount of data transferred across
racks. Prior work has also shown that reducing cross-

Rack Switch Rack Switch Rack Switch Rack Switch

R1

Rack Switch Rack Switch

M1 M2 M3 M4

R2 R3 R4

M1 M2 M3 M4

R1 R2 R3 R4

d1
2

d1
3

d1
4

d2
2

d2
3

d2
4

d3
1

d4
1

d3
1

d3
4

d1
2

d2
2

d4
2

d1
3

d2
3

d4
3

d4
1

d4
2

d4
3

d1
4

d2
4

d3
4

d1
4

d2
3

d2
4

d1
3

d1
3

d2
3

d4
3

d3
2

d3
4

d3
1

d1
4

d2
4

d3
4

d4
1

d4
2

d4
3

Reduce
task

Map
task Mi Rj Transfer from Mi to Rj di

j

d4
1

d3
2

d4
2

d3
1

(a) (b)

Figure 2: Value of balanced network usage for a job with 4
map tasks and 4 reduce tasks. The left-hand side has unbal-
anced cross-rack links (maximum of 6 transfers, minimum
of 2) while the right-hand side has better balance (maxi-
mum of 4 transfers, minimum of 3).

1 2 5 10 20 50

0.0
0.2
0.4
0.6
0.8
1.0

Ratio of transfers on most loaded
 rack to transfers on least loaded rack

C
D

F

< 50 tasks
50−150 tasks
>150 tasks

Figure 3: CDF of cross-rack skew for the Facebook trace
split by number of map tasks. Reducing cross-rack skew
improves intermediate stage performance.

rack hotspots, i.e., optimizing the bottleneck cross-rack
link [13, 24] can significantly improve performance.

Given the over-subscribed cross-rack links and the
slowest tasks dictating job completion, it is important to
balance traffic on the cross-rack links [15]. Figure 2 il-
lustrates the result of having unbalanced cross-rack links.
The schedule in Figure 2(b) results in a cross-rack skew,
i.e., ratio of the highest to lowest used network links, of
only 4

3 (or 1.33) as opposed to 6
2 (or 3) in Figure 2(a).

To highlight the importance of cross-rack skew, we
used a trace of Hadoop jobs run in a Facebook cluster
from 2010 [21] and computed the cross-rack skew ratio.
Figure 3 shows a CDF of this ratio and is broken down
by the number of map tasks in the job. From the figure
we can see that for jobs with 50− 150 map tasks more
than half of the jobs have a cross-rack skew of over 4×.
For larger jobs we see that the median is 15× and the
90th percentile value is in excess of 30×.

2.3 Potential Benefits

How much do the above-mentioned lack of locality and
imbalanced network usage hurt jobs? We estimate the
potential for data-aware scheduling to speed up jobs us-
ing the same Facebook trace (described in detail in §6).

3

304 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Utilization

Pr
ob

. A
ll

Ta
sk

s L
oc

al
K=100

N=2000
N=1000
N=300
N=200
Pre−selected

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Utilization

K=10

N=200
N=100
N=30
N=20
Pre−selected

Figure 4: Probability of input-stage locality when choosing
any K out of N blocks. The scheduler can choose to execute
a job on any of

(K
N
)

samples.

We mimic job performance with an ideal data-aware
scheduler using a “what-if” simulator. Our simulator is
unconstrained and (i) assigns memory locality for all the
tasks in the input phase (we assume 20× speed up for
memory locality [45] compared to reading data over the
network based on our micro-benchmark) and (ii) places
tasks to perfectly balance cross-rack links. We see that
jobs speed up by 87.6% on average with such ideal data-
aware scheduling.

Given these potential benefits, we have designed
KMN, a scheduling framework that exploits the available
choices to improve performance. At the heart of KMN lie
scheduling techniques to increase locality for input (§3)
stages and balance network usage for intermediate (§4)
stages. In §5, we describe an interface that allows appli-
cations to specify all available choices to the scheduler.

3 Input Stage

For the input stage (i.e., the map stage in MapReduce
or the extract stage in Dryad) accounting for combinato-
rial choice leads to improved locality and hence reduced
completion time. Here we analyze the improvements in
locality in two scenarios: in §3.1 we look at jobs which
can use any K of the N input blocks; in §3.2 we look at
jobs which use a custom sampling function.

We assume a cluster with s compute slots per ma-
chine. Tasks operate on one input block each and input
blocks are uniformly distributed across the cluster, this is
in line with the block placement policy used by Hadoop.
For ease of analysis we assume machines in the cluster
are uniformly utilized (i.e., there are no hot-spots). In
our evaluation §6) we consider hot-spots due to skewed
input-block and machine popularity.

3.1 Choosing any K out of N blocks
Many modern systems e.g., BlinkDB [5], Presto [29],
AQUA [2] operate by choosing a random subset of
blocks from shuffled input data. These systems rely

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Utilization

Pr
ob

. A
ll

Ta
sk

s L
oc

al

K=100

f=20
f=10
f=5
f=2
f=1

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Utilization

K=10

f=20
f=10
f=5
f=2
f=1

Figure 5: Probability of input-stage locality when using a
sampling function which outputs f disjoint samples. Sam-
pling functions specify additional constraints for samples.

on the observation that block sampling [20] is statisti-
cally equivalent to uniform random sampling (page 243
in [55]) when each block is itself a random sample of the
overall population. Given a sample size K, these systems
can operate on any K input blocks i.e., for an input of size
N the scheduler can choose any one of

(N
K

)
combinations.

In the cluster setup described above, the probability
that a task operating on an input block gets locality is
pt = 1−us where u is the cluster utilization (probability
that all slots in a machine are busy is = us). For such a
cluster the probability for K out of N tasks getting local-
ity is given by the binomial CDF function with the prob-
ability of success = pt , i.e., 1−∑K−1

i=0

(N
i

)
pi

t(1− pt)
N−i.

The dominant factor in this probability is the ratio be-
tween K and N. In Figure 4 we fix the number of slots per
machine to s = 8 and plot the probability of K = 10 and
K = 100 tasks getting locality in a job with varying input
size N and varying cluster utilization. We observe that
the probability of achieving locality is high even when
90% of the cluster is utilized. We also compare this to
a baseline that does not exploit this combinatorial choice
and pre-selects a random K blocks beforehand. For the
baseline the probability that all tasks are local drops dra-
matically even with cluster utilization of 60% or less.

3.2 Custom Sampling Functions
Some systems require additional constraints on the sam-
ples used and use custom sampling functions. These
sampling functions can be used to produce several K-
block samples and the scheduler can pick any sample.
The scheduler is however constrained to use all of the K-
blocks from one sample. We consider a sampling func-
tion that produces f disjoint samples and analyze locality
improvements in this setting.

As noted previous, the probability of a task getting lo-
cality is pt = 1− us. The probability that all K blocks
in a sample get locality is pK

t . Since the f samples are
disjoint (and therefore the probability of achieving lo-
cality is independent) the probability that at least one
among the f samples can achieve locality is p j = 1−

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 305

(1 − pK
t)

f . Figure 5 shows the probability of K = 10
and K = 100 tasks achieving locality with varying uti-
lization and number of samples. We see that the proba-
bility of achieving locality significantly increases with f .
At f = 5 we see that small jobs (10 tasks) can achieve
complete locality even when the cluster is 80% utilized.

We thus find that accounting for combinatorial choices
can greatly improve locality for the input stage. Next we
analyze improvements for intermediate stages.

4 Intermediate Stages

Intermediate stages of jobs commonly involve one-to-
all (broadcast), many-to-one (coalesce) or many-to-many
(shuffle) network transfers [23]. These transfers are
network-bound and hence, often slowed down by con-
gested cross-rack network links. As described in §2.2.2,
data-aware scheduling can improve performance by bet-
ter placement of both upstream and downstream tasks to
balance the usage of cross-rack network links.

While effective heuristics can be used in scheduling
downstream tasks to balance network usage (we deal
with this in §5), they are nonetheless limited by the
locations of the outputs of upstream tasks. Schedul-
ing upstream tasks to balance the locations of their out-
puts across racks is often complicated due to many dy-
namic factors in clusters. First, they are constrained by
data locality (§3) and compromising locality is detrimen-
tal. Second, the utilization of the cross-rack links when
downstream tasks start executing are hard to predict in
multi-tenant clusters. Finally, even the size of upstream
outputs varies across jobs and are not known beforehand.

We overcome these challenges by scheduling a few ad-
ditional upstream tasks. For an upstream stage with K
tasks, we schedule M tasks (M > K). Additional tasks
increase the likelihood that task outputs are distributed
across racks. This allows us to choose the “best” K out
of M upstream tasks, out of

(M
K

)
choices, to minimize

cross-rack network utilization. In the rest of this sec-
tion, we show analytically that a few additional upstream
tasks can significantly reduce the imbalance (§4.1). §4.2
describes a heuristic to pick the best K out of M up-
stream tasks. However, not all M upstream tasks may
finish simultaneously because of stragglers; we modify
our heuristic to account for stragglers in §4.3.

4.1 Additional Upstream Tasks
While running additional tasks can balance network us-
age, it is important to consider how many additional tasks
are required. Too many additional tasks can often lead to
worsening of overall cluster performance.

We analyze this using a simple model of the schedul-
ing of upstream tasks. For simplicity, we assume that

1.0 1.2 1.4 1.6

1
2
3
4
5
6
7

200 tasks
100 tasks
50 tasks
10 tasks

Uniform

M/K values

C
ro

ss
−r

ac
k

sk
ew

(a)

1.0 1.2 1.4 1.6

1
2

5
10
20

200 tasks
100 tasks
50 tasks
10 tasks

Log−Normal

M/K values

C
ro

ss
−r

ac
k

sk
ew

(b)

Figure 6: Cross-rack skew as we vary M/K for uniform and
log-normal distributions. Even 20% extra upstream tasks
greatly reduces network imbalance for later stages.

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

M/K=2.0
M/K=1.5
M/K=1.1
M/K=1.05
M/K=1.0

Jobs with 50 to 150 tasks

Cross−rack skew

(a)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

Cross−rack skew

M/K=2.0
M/K=1.5
M/K=1.1
M/K=1.05
M/K=1.0

Jobs with > 150 tasks

(b)

Figure 7: CDF of cross-rack skew as we vary M/K for the
Facebook trace.

upstream task outputs are equal in size and network links
are equally utilized. We only model tasks at the level
of racks and evaluate the cross-rack skew (ratio of the
rack with largest and smallest number of upstream tasks)
using both synthetic distributions of upstream task loca-
tions as well as data from our Facebook trace.
Synthetic Distributions: We first consider a scheduler
that places tasks on racks uniformly at random. Fig-
ure 6(a) plots the cross-rack skew in a 100 rack cluster
for varying values of K (i.e., the stage’s desired number
of tasks) and M/K (i.e., the fraction of additional tasks
launched). We can see that even with a scheduler that
places the upstream tasks uniformly, there is significant
skew for large jobs when there are no additional tasks
(M

K = 1). This is explained by the balls and bins prob-
lem [46] where the maximum imbalance is expected to
be O(logn) when distributing n balls.

However, we see that even with 10% to 20% additional
tasks (M

K = 1.1−1.2) the cross-rack skew is reduced by
≥ 2×. This is because when the number of upstream
tasks, n is > 12, 0.2n > logn. Thus, we can avoid most
of the skew with just a few extra tasks.

We also repeat this study with a log normal distri-
bution (θ = 0,m = 1) of upstream task placement; this
is more skewed compared to the uniform distribution.

5

306 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

However, even with a log-normal distribution, we again
see that a few extra tasks can be very effective at reduc-
ing skew. This is because the expected value of the most
loaded bin is still linear and using 0.2n additional tasks
is sufficient to avoid most of the skew.
Facebook Distributions: We repeat the above analy-
sis using the number and location of upstream tasks of
a phase in the Facebook trace (used in §2.2.2). Recall
the high cross-rack skew in the Facebook trace. Despite
that, again, a few additional tasks suffices to eliminate a
large fraction of the skews. Figure 7 plots the results for
varying values of M

K for different jobs. A large fraction
of the skew is reduced by running just 10% more tasks.
This is nearly 66% of the reductions we get using M

K = 2.
In summary we see that running a few extra tasks is an

effective strategy to reduce skew, both with synthetic as
well as real-world distributions. We next look at mecha-
nisms that can help us achieve such reduction.

4.2 Selecting Best Upstream Outputs
The problem of selecting the best K outputs from the M
upstream tasks can be stated as follows: We are given
M upstream tasks U = u1...uM , R downstream tasks D =
d1...dR and their corresponding rack locations. Let us
assume that tasks are distributed over racks 1...L and let
U � ⊂U be some set of K upstream outputs. Then for each
rack we can define the uplink cost C2i−1 and downlink
cost C2i using a cost function Ci(U �,D). Our objective
then is to select U � to minimize the most loaded link i.e.

argmin
U �

max
i∈2L

Ci(U �,D)

While this problem is NP-Hard [57], many approxi-
mation heuristics have been developed. We use a heuris-
tic that corresponds to spreading our choice of K outputs
across as many racks as possible.1

Our implementation for this approximation heuristic is
shown in Algorithm 1. We start with the list of upstream
tasks and build a hash map that stores how many tasks
were run on each rack. Next we sort the tasks first by
their index within a rack and then by the number of tasks
in the rack. This sorting criteria ensures that we first see
one task from each rack, thus ensuring we spread our
choices across racks. We use an additional heuristic of
favoring racks with more outputs to help our downstream
task placement techniques (§5.2.2). The main computa-
tion cost in this method is the sorting step and hence this
runs in O(MlogM) time for M tasks.

1This problem is an instance of the facility location problem [26]
where we have a set of clients (downstream tasks), set of potential fa-
cility locations (upstream tasks), a cost function that maps facility lo-
cations to clients (link usage). Our heuristic follows from picking a
facility that is farthest from the existing set of facilities [30].

Algorithm 1 Choosing K upstream outputs out of M
using a round-robin strategy

1: Given: upstreamTasks - list with rack, index within rack
for each task

2: Given: K - number of tasks to pick

3: // Number of upstream tasks in each rack

4: upstreamRacksCount = map()
5:
6: // Initialize

7: for task in upstreamTasks do
8: upstreamRacksCount[task.rack] += 1
9: end for

10:
11: // Sort the tasks in round-robin fashion

12: roundRobin = upstreamTasks.sort(CompareTasks)
13: chosenK = roundRobin[0 : K]
14: return chosenK
15:
16: procedure COMPARETASKS(task1, task2)
17: if task1.idx != task2.idx then
18: // Sort first by index

19: return task1.idx < task2.idx
20: else
21: // Then by number of outputs

22: numRack1 = upstreamRacksCount[task1.rack]
23: numRack2 = upstreamRacksCount[task2.rack]
24: return numRack1 > numRack2
25: end if
26: end procedure

4.3 Handling Upstream Stragglers

While the previous section described a heuristic to pick
the best K out of M upstream outputs, waiting for all
M can be inefficient due to stragglers. Stragglers in
the upstream stage can delay completion of some tasks
which cuts into the gains obtained by balancing the
network links. Stragglers are a common occurrence
in clusters with many clusters reporting significantly
slow tasks despite many prevention and speculation solu-
tions [10, 13, 61]. This presents a trade-off in waiting for
all M tasks and obtaining the benefits of choice in picking
upstream outputs against the wasted time for completion
of all M upstream tasks including stragglers. Our solu-
tion for this problem is to schedule downstream tasks at
some point after K upstream tasks have completed but
not wait for the stragglers in the M tasks. We quantify
this trade-off with analysis and micro-benchmarks.

4.3.1 Stragglers vs. Choice

We study the impact of stragglers in the Facebook trace
when we run 2%, 5% and 10% extra tasks (i.e., M

K =
1.02,1.05,1.1). We compute the difference between the
time taken for the fastest K tasks and the time to com-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 307

1 to 10 11 to 50 51 to 150 >150

Number of upstream tasks

%
 In

cr
ea

se
 w

ai
tin

g
fo

r
ad

di
tio

na
l u

ps
tre

am
 ta

sk
s

0
20
40
60
80

100
2% Extra
5% Extra
10% Extra

Figure 8: Percentage of time spent waiting for additional
upstream tasks when running 2%, 5% or 10% extra tasks.
Stage completion time can be increased by up 20%− 40%
due to stragglers.

1 to 10 11 to 50 51 to 150 >150

Number of upstream tasks

%
 In

cr
ea

se
 in

 d
ow

ns
tre

am
da

ta
 tr

an
sf

er

0
20
40
60
80

100
2% Extra
5% Extra
10% Extra

Figure 9: Percentage of additional time spent in down-
stream data transfer when not using choices from 2%, 5%
or 10% extra tasks. Decrease in choice increases data trans-
fer time by 20%−40%.

plete all M tasks. Figure 8 shows that waiting for the
extra tasks can inflate the completion of the upstream
phase by 20%− 40% (for jobs with > 150 tasks). Also,
the trend of using a large number of small tasks [48]
for interactive jobs will only worsen such inflation. On
the other hand avoiding upstream stragglers by using the
fastest tasks reduces the available choice. Consequently,
the time taken for downstream data transfer increases.
The lack of choices from extra tasks means we cannot
balance network usage. Figure 9 shows that not using
choice from additional tasks can increase data transfer
time by 20% for small jobs (11 to 50 tasks) and up to
40% for large jobs (> 150 tasks). We now devise a sim-
ple approach to balance between the above two factors—
waiting for upstream stragglers versus losing choice for
downstream data transfer.

4.3.2 Delayed Stage Launch

The problem we need to solve can be formulated as: we
have M upstream tasks u1,u2, ...,uM and for each task we
have corresponding rack locations. Our goal is to find the
optimal delay after the first K tasks have finished, such
that the overall time taken is minimized. In other words,
our goal is to find the optimal K� tasks to wait for before
starting the downstream tasks.

We begin with assuming an oracle that can give us the
task finish times for all the tasks. Given such a oracle we

can sort the tasks in an increasing order of finish times
such that Fj ≥ Fi ∀ j > i. Let us define the waiting delay
for tasks K + 1 to M as Di = Fi −Fk ∀i > k. We also
assume that given K� tasks, we can compute the optimal
K tasks to use (§4.2) and the estimated transfer time SK� .

Our problem is to pick K� (K ≤ K� ≤ M) such that the
total time for the data transfer is minimized. That is we
need to pick K� such that Fk +Dk� +Sk� is minimized. In
this equation Fk is known and independent of K�. Of the
other two, Dk� increases as k� goes from K to M, while
Sk� decreases. However as the sum of an increasing and
decreasing function is not necessarily convex 2 it isn’t
easy to minimize the total time taken.

Delay Heuristic: While the brute-force approach
would require us to try all values from K to M, we de-
velop two heuristics that allow us to bound the search
space and quickly find the optimal value of K�.

• Bounding transfer: At the beginning of the search
procedure we find the maximum possible improve-
ment we can get from picking the best set of tasks.
Whenever the delay DK� is greater than the maxi-
mum improvement, we can stop the search as the
succeeding delays will increase the total time.

• Coalescing tasks: We can also coalesce a number
of task finish events to further reduce the search
space. For example we can coalesce task finish
events which occur close together by time i.e., cases
Di+1 −Di < δ . This will mean our result is off by
at most δ from the optimal, but for small values of
δ we can coalesce tasks of a wave that finish close
to each other.

Using these heuristics we can find the optimal number
of tasks to wait for quickly. For example, in the Face-
book trace described before using M/K = 1.1 or 10% ex-
tra tasks, determining the optimal wait time for a job re-
quires looking at less than 4% of all configurations when
we use a coalescing error of 1%. We found coalescing
tasks to be particularly useful as even with a δ of 0.1%
we need to look at around 8% of all possible configura-
tions. Running without any coalescing is infeasible since
it takes ≈ 1000 ms.

Finally, we relax our assumption of an oracle as fol-
lows. While the task finish times are not exactly known
beforehand, we use job sizes to figure out if the same job
has been run before. Based on this we use the job history
to predict the task finish times. This approach should
work well for clusters that have many jobs run periodi-
cally [36]. In case the job history is not available we can
fit the tasks length distribution using the first few task
finish times and use that to get approximate task finish
times for the rest of the tasks [28].

2Take any non-convex function and make its increasing region Fi
and its decreasing region Fd and it can be seen that the sum isn’t convex.

7

308 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

// SQL Query

SELECT status, SUM(quantity)

FROM items

GROUP BY status

// Spark Query

kv = file.map{ li =>

(li.l linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()

// KMN Query

sample = file.blockSample(0.1, sampler=None)

kv = sample.map{ li =>

(li.l linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()
Figure 10: An example of a query in SQL, Spark and KMN

5 System Implementation

We have built KMN on top of Spark [60], an open-source
cluster computing framework. Our implementation is
based on Spark version 0.7.3 and KMN consists of 1400
lines of Scala code. In this section we discuss the features
of our implementation and implementation challenges.

5.1 Application Interface

We define a blockSample operator which jobs can use
to specify input constraints (for instance, use K blocks
from file F) to the framework.The blockSample opera-
tor takes two arguments: the ratio K

N and a sampling func-
tion that can be used to impose constraints. The sampling
function can be used to choose user-defined sampling al-
gorithms (e.g., stratified sampling). By default the sam-
pling function picks any K of N blocks.

Consider an example SQL query and its correspond-
ing Spark [60] version shown in Figure 10. To run the
same query in KMN we just need to prefix the query with
the blockSample operator. The sampler argument is a
Scala closure and passing None causes the scheduler to
use the default function which picks any K out of the N
input blocks. This design can be readily adapted to other
systems like Hadoop MapReduce and Dryad.

KMN also provides an interface for jobs to introspect
which samples where used in a computation. This can
be used for error estimation using algorithms like Boot-
strap [4] and also provides support for queries to be re-
peated. We implement this in KMN by storing the K parti-
tions used during computation as a part of a job’s lineage.
Using the lineage also ensures that the same samples are
used if the job is re-executed during fault recovery [60].

5.2 Task Scheduling
We modify Spark’s scheduler in KMN to implement the
techniques described in earlier sections.

5.2.1 Input Stage

Schedulers for frameworks like MapReduce or Spark
typically use a slot-based model where the scheduler is
invoked whenever a slot becomes available in the cluster.
In KMN, to choose any K out of N blocks we modify the
scheduler to run tasks on blocks local to the first K avail-
able slots. To ensure that tasks don’t suffer from resource
starvation while waiting for locality, we use a timeout af-
ter which tasks are scheduled on any available slot. Note
that, choosing the first K slots provides a sample similar
or slightly better in quality compared to existing systems
like Aqua [2] or BlinkDB [5] that reuse samples for short
time periods. To schedule jobs with custom sampling
functions, we similarly modify the scheduler to choose
among the available samples and run the computation on
the sample that has the highest locality.

5.2.2 Intermediate Stage

Existing cluster computing frameworks like Spark and
Hadoop place intermediate stages without accounting for
their dependencies. However smarter placement which
accounts for a tasks’ dependencies can improve perfor-
mance. We implemented two strategies in KMN:

Greedy assignment: The number of cross-rack trans-
fers in the intermediate stage can be reduced by co-
locating map and reduce tasks (more generally any de-
pendent tasks). In the greedy placement strategy we
maximize the number of reduce tasks placed in the rack
with the most map tasks. This strategy works well for
small jobs where network usage can be minimized by
placing all the reduce tasks in the same rack.

Round-robin assignment: While greedy placement
minimizes the number of transfers from map tasks to re-
duce tasks it results in most of the data being sent to
one or a few racks. Thus the links into these racks are
likely to be congested. This problem can be solved by
distributing tasks across racks while simultaneously min-
imizing the amount of data sent across racks. This can be
achieved by evenly distributing the reducers across racks
with map tasks. This strategy can be shown to be opti-
mal if we know the map task locations and is similar in
nature to the algorithm described in §4.2. We perform a
more detailed comparison of the two approaches in §6

5.3 Support for extra tasks
One consequence of launching extra tasks to improve
performance is that the cluster utilization could be af-

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 309

Q1 Q2 Q3 Q4

Ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

92 % 77.1 % 71.1 % 74.7 %

KMN−M/K=1.05
Baseline

(a) Conviva queries with 1% Sampling

Q1 Q2 Q3 Q4

Ti
m

e
(s

ec
on

ds
)

0

5

10

15

83.1 % 78.9 %

39.3 %
38.6 %

KMN−M/K=1.05
Baseline

(b) Conviva queries with 5% Sampling

Q1 Q2 Q3 Q4

Ti
m

e
(s

ec
on

ds
)

0

5

10

15

20

79.8 % 77.8 %

26.9 %
24.7 %KMN−M/K=1.05

Baseline

(c) Conviva queries with 10% Sampling

Figure 11: Comparing baseline and KMN-1.05 with sampling-queries from Conviva. Numbers on the bars represent per-
centage improvement when using KMN-M/K = 1.05.

fected by these extra tasks. To avoid utilization spikes,
in KMN the value for M/K (the percentage of extra tasks
to launch) can only be set by the cluster administrator
and not directly by the application. Further, we imple-
mented support for killing tasks once the scheduler de-
cides that the tasks’ output is not required. Killing tasks
in Spark is challenging as tasks are run in threads and
many tasks share the same process. To avoid expensive
clean up associated with killing threads [1], we modified
tasks in Spark to periodically poll and check a status bit.
This means that tasks sometimes could take a few sec-
onds more before they are terminated, but we found that
this overhead was negligible in practice.

In KMN, using extra tasks is crucial in extending the
flexibility of many choices throughout the DAG. In §3
and §4 we discussed how to use the available choices in
the input and intermediate stages in a DAG. However,
jobs created using frameworks like Spark or DryadLINQ
can extend across many more stages. For example, com-
plex SQL queries may use a map followed a shuffle to do
a group-by operation and follow that up with a join. One
solution to this would be run more tasks than required in
every stage to retain the ability to choose among inputs
in succeeding stages. However we found that in prac-
tice this does not help very much. In frameworks like
Spark which use lazy evaluation, every stage following
than the first stage is treated as an intermediate stage.
As we use a round-robin strategy to schedule intermedi-
ate tasks (§5.2.2), the outputs from the first intermediate
stage are already well spread out across the racks. Thus
there isn’t much skew across racks that affects the per-
formance of following stages. In evaluation runs we saw
no benefits for later stages of long DAGs.

6 Evaluation

We evaluate the benefits of KMN using two approaches:
first we run approximate queries used in production at
Conviva, a video analytics company, and study how KMN
compares to using existing schedulers with pre-selected
samples. Next we analyze how KMN behaves in a shared
cluster, by replaying a workload trace obtained from

Facebook’s production Hadoop cluster.
Metric: In our evaluation we measure percentage im-

provement of job completion time when using KMN. We
define percentage improvement as:

% Improvement =
Baseline Time−KMN Time

Baseline Time
×100

Our evaluation shows that,

• KMN improves real-world sampling-based queries
from Conviva by more than 50% on average across
various sample sizes and machine learning work-
loads by up to 43%.

• When replaying the Facebook trace, on an EC2
cluster, KMN can improve job completion time by
81% on average (92% for small jobs)

• By using 5% – 10% extra tasks we can balance
bottleneck link usage and decrease shuffle times by
61% – 65% even for jobs with high cross-rack skew.

6.1 Setup
Cluster Setup:We run all our experiments using 100
m2.4xlarge machines on Amazon’s EC2 cluster, with
each machine having 8 cores, 68GB of memory and 2
local drives. We configure Spark to use 4 slots and 60
GB per machine. To study memory locality we cache the
input dataset before starting each experiment. We com-
pare KMN with a baseline that operates on a pre-selected
sample of size K and does not employ any of the shuf-
fle improvement techniques described in §4, §5. We also
label the fraction of extra tasks run (i.e., M/K), so KMN-
M/K = 1.0 has K = M and KMN-M/K = 1.05 has 5%
extra tasks. Finally, all experiments were run at least
three times and we plot median values across runs and
use error bars to show minimum and maximum values.
Workload: Our evaluation uses a workload trace from
Facebook’s Hadoop cluster [21]. The traces are from a
mix of interactive and batch jobs and capture over half
a million jobs on a 3500 node cluster. We use a scaled
down version of the trace to fit within our cluster and use
the same inter-arrival times and the task-to-rack mapping

9

310 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

.

.

.

Aggregate 2

Aggregate 3

Aggregate 1
Gradient

Figure 12: Execution DAG for Stochastic Gradient Descent
(SGD).

22.01
15.28

13.73
12.52

0 5 10 15 20 25

1

Average time for Stochastic Gradient Descent (s)

KMN-M/K=1.1
KMN-M/K=1.05
KMN-M/K=1.0
Baseline

Figure 13: Overall improvement when running Stochastic
Gradient Descent using KMN

as in the trace. Unless specified, we use 10% sampling
when running KMN for all jobs in the trace.

We begin by showing overall gains with KMN (§6.2),
then present benefits for input stages from KMN (§6.3)
and finally show how KMN affects intermediate stages
(§6.4).

6.2 Benefits of KMN

We evaluate the benefits of using KMN on three work-
loads: real-world approximate queries from Conviva, a
machine learning workload running Stochastic Gradient
Descent and a Hadoop workload trace from Facebook.

6.2.1 Conviva Sampling jobs

We first present results from running 4 real-world sam-
pling queries obtained from Conviva, a video analytics
company. The queries were run on access logs obtained
across a 5-day interval. We treat the entire data set as N
blocks and vary the sampling fraction (K/N) to be 1%,
5% and 10%. We run the queries at 50% cluster utiliza-
tion and run each query multiple times.

Figure 11 shows the median time taken for each query
and we compare KMN-M/K = 1.05 to the baseline that
uses pre-selected samples. For query 1 and query 2 we
can see that KMN gives 77%–91% win across 1%, 5%
and 10% samples. Both these queries calculate summary
statistics across a time window and most of the compu-
tation is performed in the map stage. For these queries
KMN ensures that we get memory locality and this re-
sults in significant improvements. For queries 3 and 4,
we see around 70% improvement for 1% samples, and
this reduces to around 25% for 10% sampling. Both

0.00 5.00 10.00 15.00 20.00

Job

Aggregate1

Aggregate2

Aggregate3

Time (s)

KMN (First Three Stages)
KMN (First Two Stages)
KMN (First Stage)
KMN-M/K=1.0

Figure 14: Breakdown of aggregation times when using
KMN for different number of stages in SGD

Job Size % Overall % Map Stage % Shuffle
1 to 10 92.8 95.5 84.61

11 to 100 78 94.1 28.63
> 100 60.8 95.4 31.02

Table 1: Improvements over baseline, by job size and stage

these queries compute the number of distinct users that
match a specified criteria. While input locality also im-
proves these queries, for larger samples the reduce tasks
are CPU bound (while they aggregate values).

6.2.2 Machine learning workload

Next, we look at performance benefits for a machine
learning workload that uses sampling. For our analysis,
we use Stochastic Gradient Descent (SGD). SGD is an it-
erative method that scales to large datasets and is widely
used in applications such as machine translation and im-
age classification. We run SGD on a dataset contain-
ing 2 million data items, where each each item contains
4000 features. The complete dataset is around 64GB in
size and each of our iterations operates on a 1% sample
1% of the data. Thus the random sampling step reduces
the cost of gradient computation by 100× but maintains
rapid learning rates [52]. We run 10 iterations in each
setting to measure the total time taken for SGD.

Each iteration consists of a DAG comprised of a map
stage where the gradient is computed on sampled data
items and the gradient is then aggregated from all points.
The aggregation step can be efficiently performed by us-
ing an aggregation tree as shown in Figure 12. We imple-
ment the aggregation tree using a set of shuffle stages and
use KMN to run extra tasks at each of these aggregation
stages.

The overall benefits from using KMN are shown in
Figure 13. We see that KMN-M/K = 1.1 improves per-
formance by 43% as compared to the baseline. These
improvements come from a combination of improving
memory locality for the first stage and by improving
shuffle performance for the aggregation stages. We fur-
ther break down the improvements by studying the ef-
fects of KMN at every stage in Figure 14.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 311

0−10

11−100

>100

Job Completion Time (seconds)

0 10 20 30 40 50

92.8 %

78 %

60.8 %

Baseline
KMN−M/K=1.05

Jo
b

Si
ze

Figure 15: Overall improvement from KMN compared to
baseline. Numbers on the bar represent percentage im-
provement using KMN-M/K = 1.05.

0−10

11−100

>100

Map Stage Time (seconds)

0 5 10 15 20 25 30

95.5 %

94.1 %

95.4 %

Baseline
KMN−M/K=1.05

Jo
b

Si
ze

Figure 16: Improvement due to memory locality for the
Map Stage for the Facebook trace. Numbers on the bar rep-
resent percentage improvement using KMN-M/K = 1.05.

When running extra tasks for only the first stage (gra-
dient stage), we see improvements of around 26% for the
first aggregation (Aggregate 1); see KMN (First Stage).
Without extra tasks the next two aggregation stages (Ag-
gregate 2 and Aggregate 3) behave similar to KMN-
M/K = 1.0. When extra tasks are spawned for later
stages too, benefits propagate and we see 50% improve-
ment in the second aggregation (Aggregate-2) while us-
ing KMN for the first two stages. However, propagating
choice across stages does impose some overheads. Thus
even though we see that KMN (First Three Stages) im-
proves the performance of the last aggregation stage (Ag-
gregate 3), running extra tasks slows down the overall job
completion time (Job). This is because the final aggrega-
tion steps usually have fewer tasks with smaller amounts
of data, which makes running extra tasks not worth the
overhead. We plan to investigate techniques to estimate
this trade-off and automatically determine which stages
to use KMN for in the future.

6.2.3 Facebook workload

We next quantify the overall improvements across the
trace from using KMN. To do this, we use a baseline
configuration that mimics task locality from the origi-
nal trace while using pre-selected samples. We compare
this to KMN-M/K = 1.05 that uses 5% extra tasks and a
round-robin reducer placement strategy (§5.2.2). The re-
sults showing average job completion time broken down

0 10 20 30 40 50 60

0
20
40
60
80

100

Average Utilization %

Ti
m

e
(s

)

● ● ●
●

●

0
20
40
60
80
100

%
 L

oc
al

 Jo
bs

● Locality
Avg. Job Time

Figure 17: Job completion time and locality as we increase
utilization.

5 10 15 30 50

0
20
40
60
80

100

Average Utilization %

U
til

iz
at

io
n

D
is

tri
bu

tio
n

Figure 18: Boxplot showing utilization distribution for dif-
ferent values of average utilization.

by job size is shown in Figure 15 and relative improve-
ments are shown in Table 1. As seen in the figure, using
KMN leads to around 92% improvement for small jobs
with < 10 tasks and more than 60% improvement for all
other jobs. Across all jobs KMN-M/K = 1.05 improves
performance by 81%, which is 93% of the potential win
(§2.3).

To quantify where we get improvements from, we
break down the time taken by different stages of a job.
Improvements for the input stage or the map stage are
shown in Figure 16. We can see that using KMN we
are able to get memory locality for almost all the jobs
and this results in around 94% improvement in the time
taken for the map stage. This is consistent with the pre-
dictions from our model in §3 and shows that pushing
down sampling to the run-time can give tremendous ben-
efits. The improvements in the shuffle stage are shown in
Figure 19. For small jobs with < 10 tasks we get around
85% improvement and these are primarily because we
co-locate the mappers and reducers for small jobs and
thus avoid network transfer overheads. For large jobs
with > 100 tasks we see around 30% improvement due
to reduction in cross-rack skew.

6.3 Input Stage Locality

Next, we attempt to measure how the locality obtained
by KMN changes with cluster utilization. As we vary the
cluster utilization, we measure the average job comple-
tion time and fraction of jobs where all tasks get locality.
The results shown in Figure 17 show that for up to 30%
average utilization, KMN ensures that more than 80% of

11

312 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Job Size M/K = 1.0 M/K =1.05 M/K =1.1
1 to 10 85.04 84.61 83.76

11 to 100 27.5 28.63 28.18
> 100 14.44 31.02 36.35

Table 2: Shuffle time improvements over baseline while
varying M/K

0−10

11−100

>100

Shuffle Stage Time (seconds)

0 5 10 15 20 25 30

Baseline
KMN−M/K=1.0
KMN−M/K=1.05
KMN−M/K=1.1Jo

b
Si

ze

Figure 19: Shuffle improvements when running extra
tasks.

jobs get perfect locality. We also observed significant
variance in the utilization during the trace replay and the
distribution of utilization values is shown as a boxplot in
Figure 18. From this figure we can see that while average
utilization is 30% we observe utilization spikes of up to
90%. Because of such utilization spikes, we see periods
of time where all jobs do not get locality.

Finally, at 50% average utilization (utilization spikes
> 90%) only around 45% of jobs get locality. This is
lower than predictions from our model in §3. There are
two reasons for this difference: First, our experimental
cluster has only 400 slots and as we do 10% sampling
(K/N = 0.1), the setup doesn’t have enough choices for
jobs with > 40 map tasks. Further the utilization spikes
also are not taken into account by the model and jobs
which arrive during a spike do not get locality.

6.4 Intermediate Stage Scheduling

In this section we evaluate scheduling decisions by KMN
for intermediate stages. First we look at the benefits from
running additional map tasks and then evaluate the delay
heuristic used for straggler mitigation. Finally we also
measure KMN’s sensitivity to reducer placement strate-
gies.

6.4.1 Effect of varying M/K

We evaluate the effect of running extra map tasks (i.e
M/K > 1.0) and measure how that influences the time
taken for shuffle operations. For this experiment we wait
until all the map tasks have finished and then calculate
the best reducer placement and choose the best K map
outputs as per techniques described in §4.2. The average
time for the shuffle stage for different job sizes is shown

Cross-rack skew M/K=1.0 M/K =1.05 M/K =1.1
≤ 4 24.45 29.22 30.81

4 to 8 15.26 27.60 33.92
≥ 8 48.31 61.82 65.82

Table 3: Shuffle improvements with respect to baseline as
cross-rack skew increases.

<=4

4−8

>8

Shuffle Stage Time (seconds)

C
ro

ss
 R

ac
k

sk
ew

0 5 10 15 20 25 30 35

Baseline
KMN−M/K=1.0
KMN−M/K=1.05
KMN−M/K=1.1

Figure 20: Difference in shuffle performance as cross-rack
skew increases

in Figure 19 and the improvements with respect to the
baseline are shown in Table 2. From the figure, we see
that for small jobs with less than 10 tasks there is almost
no improvement from running extra tasks as they usually
do not suffer from cross-rack skew. However for large
jobs with more than 100 tasks, we now get up to 36%
improvement in shuffle time over the baseline.

Further, we can also analyze how the benefits are sen-
sitive to the cross-rack skew. We plot the average shuffle
time split by cross-rack skew in Figure 20. Correspond-
ingly we list the improvements over the baseline in Ta-
ble 3. We can see that for jobs which have low cross-
rack skew, we get up to 33% improvement when using
KMN-M/K = 1.1. Further, for jobs which have cross-
rack skew > 8, we get up to 65% improvement in shuffle
times and a 17% improvement over M/K = 1.

6.4.2 Delayed stage launch

We next study the impact of stragglers and the effect
of using the delayed stage launch heuristic from §4.3.
We run the Facebook workload at 30% cluster utilization
with KMN-M/K = 1.1 and compare our heuristic to two
baseline strategies. In one case we wait for the first K
map tasks to finish before starting the shuffle while in the
other case we wait for all M tasks for finish. The perfor-
mance break down for each stage is shown in Figure 21.
From the figure we see that for small jobs (< 10 tasks)
which don’t suffer from cross-rack skew, KMN performs
similar to picking the first K map outputs. This is because
in this case stragglers dominate the shuffle wins possible
from using extra tasks. For larger tasks we see that our
heuristic can dynamically adjust the stage delay to ensure
we avoid stragglers while getting the benefits of balanced

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 313

<10 Tasks 10−to−100 Tasks >100 Tasks

1.72s 1.84s 2.67s
5.83s 6.97s 8.48s

13.79s

21.80s

17.16s

0

5

10

15

20

25

KMN First
K

All
M

KMN First
K

All
M

KMN First
K

All
M

Ti
m

e
(s

)

Shuffle
Delay
Map

Figure 21: Benefits from straggler mitigation and delayed
stage launch.

1.0 1.2 1.4 1.6

0.0
0.2
0.4
0.6
0.8
1.0

% Relative delay

C
D

F

(a)

0 2 4 6 8 10

0.0
0.2
0.4
0.6
0.8
1.0

% Extra tasks used

C
D

F

(b)

Figure 22: (a) CDF of % time that the job was delayed (b)
CDF of % of extra map tasks used.

shuffle operations. For example for jobs with > 10 tasks
KMN adds 5%− 14% delay after first K tasks complete
and still gets most of the shuffle benefits. Overall, this
results in an improvement of up to 35%.

For more fine-grained analysis we also ran an event-
driven simulation that uses task completion times from
the same Facebook trace. The CDF of extra map tasks
used is shown in Figure 22(b), where we see that around
80% of the jobs wait for 5% or more map tasks. We
also measured the time relative to when the first K map
tasks finished and to normalize the delay across jobs we
compute the relative wait time. Figure 22(a) shows the
CDF of relative wait times and we see that the delay is
less than 25% for 62% of the jobs. The simulation results
again show that our relative delay is not very long and
that job completion time can be improved when we use
extra tasks available within a short delay.

6.4.3 Sensitivity to reducer placement

To evaluate the importance of reduce placement strategy,
we compare the time taken for the shuffle stage for the
round-robin strategy described in §5.2.2 against a greedy
assignment strategy that attempts to pack reducers into
as few machines as possible. Note that the baseline used
in our earlier experiments used a random reducer assign-
ment policy and §6.2.3 compares the round-robin strat-
egy to random assignment. Figure 23 shows the results

0−10

11−100

>100

Time (seconds)

0 5 10 15 20 25 30

Greedy
Round−robin

Jo
b

Si
ze

Figure 23: Difference between using greedy assignment of
reducers versus using a round-robin scheme to place reduc-
ers among racks with upstream tasks.

from this experiment with the results broken down by
job size. From the results we can see that for jobs with
> 10 tasks using a round-robin placement can improve
performance by 10%-30%. However for very small jobs,
running tasks on more machines increases the variance
and the greedy assignment in fact performs 8% better.

7 Related Work

Cluster schedulers: Cluster scheduling has been an
area of active research and recent work has proposed
techniques to enforce fairness [32, 39], satisfy job con-
straints [33] and improve locality [39, 59]. In KMN, we
focus on applications that have input choices and pro-
pose techniques to exploit the available flexibility while
scheduling tasks. Straggler mitigation solutions launch
extra copies of tasks to mitigate the impact of slow run-
ning tasks [10, 12, 61]. While KMN shares the simi-
larity of executing extra copies, our goals are different.
Further, straggler mitigation solutions are limited by the
number of replicas of the input data, and can leverage
our observation of combinatorial choices towards more
effective speculation. Prior efforts in improving shuf-
fle performance [7, 24] have looked at either provision-
ing the network better or scheduling flows to improve
performance. On the other hand, in KMN we use addi-
tional tasks and better placement techniques to balance
data transfers across racks. Finally, recent work [49] has
also looked at using the power of many choices to reduce
scheduling latency. In KMN we exploit the power choices
to improve network balance using just a few additional
tasks.
Approximate Query Processing Systems: Approxi-
mate query processing (AQP) systems such as Aqua [2],
STREAM [47], and BlinkDB [5] use pre-computed sam-
ples to answer queries. These works are complimentary
to our work, and we expect that projects like BlinkDB
can use KMN to improve performance, while maintain-
ing, or in some cases even improving response qual-
ity. Prior work in databases has also proposed Online
Aggregation [37] (OLA) methods that can be used to

13

314 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

present approximate aggregation results while the input
data is processed in a streaming fashion. Recent exten-
sions [25, 51] have also looked at supporting OLA-style
computations in MapReduce. In contrast, KMN can be
used for scheduling sampling applications which do not
process the entire dataset and process a fixed and small
sample of data.
Machine learning frameworks: Recently, a large body
of work has focused on building cluster computing
frameworks that support machine learning tasks. Ex-
amples include GraphLab [34, 44], Spark [60], DistBe-
lief [27], and MLBase [41]. Of these, GraphLab and
Spark add support for abstractions commonly used in
machine learning. Neither of these frameworks provide
any explicit system support for sampling. For instance,
while Spark provides a sampling operator, this operation
is carried out entirely in application logic, and the Spark
scheduler is oblivious to the use of sampling.

8 Conclusion

The rapid growth of data stored in clusters, increasing
demand for interactive analysis, and machine learning
workloads have made it inevitable that applications will
operate on subsets of data. It is therefore imperative that
schedulers for cluster computing frameworks exploit the
available choices to improve performance. As a first step
towards this goal we have presented KMN, a system that
improves data-aware scheduling for jobs with combina-
torial choices. Using our prototype implementation, we
have shown that KMN can improve performance by in-
creasing locality and balancing intermediate data trans-
fers.

Acknowledgments

We are indebted to Ali Ghodsi, Kay Ousterhout, Colin
Scott, Peter Bailis, the various reviewers and our shep-
herd Yuanyuan Zhou for their insightful comments and
suggestions. This research is supported in part by
NSF CISE Expeditions Award CCF-1139158, LBNL
Award 7076018, and DARPA XData Award FA8750-
12-2-0331, and gifts from Amazon Web Services,
Google, SAP, The Thomas and Stacey Siebel Foun-
dation, Adobe, Apple, Inc., Bosch, C3Energy, Cisco,
Cloudera, EMC, Ericsson, Facebook, GameOnTalis,
Guavus, HP, Huawei, Intel, Microsoft, NetApp, Pivotal,
Splunk, Virdata, VMware, and Yahoo!.

References

[1] Why is Thread.stop deprecated. http://docs.

oracle.com/javase/1.5.0/docs/guide/misc/

threadPrimitiveDeprecation.html.

[2] S. Acharya, P. Gibbons, and V. Poosala. Aqua: A fast de-
cision support systems using approximate query answers.
In Proceedings of the International Conference on Very
Large Data Bases, pages 754–757, 1999.

[3] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari,
and I. Stoica. Blink and it’s done: interactive queries on
very large data. Proceedings of the VLDB Endowment,
5(12):1902–1905, 2012.

[4] S. Agarwal, H. Milner, A. Kleiner, A. Talwarkar, M. Jor-
dan, S. Madden, B. Mozafari, and I. Stoica. Knowing
When Youre Wrong: Building Fast and Reliable Approx-
imate Query Processing Systems. In Proceedings of the
2014 ACM SIGMOD International Conference on Man-
agement of data. ACM, 2014.

[5] S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden,
and I. Stoica. Blinkdb: Queries with bounded errors and
bounded response times on very large data. In Proceed-
ings of the 8th European conference on Computer Sys-
tems. ACM, 2013.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In ACM
SIGCOMM 2008, Seattle, WA.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic flow scheduling for
data center networks. In NSDI, 2010.

[8] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Green-
berg, I. Stoica, D. Harlan, and E. Harris. Scarlett: coping
with skewed content popularity in mapreduce clusters.
In Proceedings of the European conference on Computer
systems (Eurosys’11), pages 287–300. ACM, 2011.

[9] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Disk-locality in datacenter computing considered
irrelevant. In Proceedings of the 13th USENIX confer-
ence on Hot topics in operating systems, pages 12–12.
USENIX Association, 2011.

[10] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Effective straggler mitigation: Attack of the clones.
In 10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), April 2013.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. Pacman: Coordinated memory caching for parallel
jobs. In USENIX NSDI, 2012.

[12] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. Grass: Trimming stragglers in
approximation analytics. NSDI, 2014.

[13] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-
ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers
in Map-Reduce clusters using Mantri. In Proceedings of
the 9th USENIX conference on Operating systems design
and implementation. USENIX Association, 2010.

[14] Apache Hadoop NextGen MapReduce (YARN). Re-
trieved 9/24/2013, URL: http://hadoop.apache.

org/docs/current/hadoop-yarn/hadoop-yarn-

site/YARN.html.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 315

[15] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A.
Maltz, and I. Stoica. Surviving failures in bandwidth-
constrained datacenters. In Proceedings of ACM SIG-
COMM 2012, pages 431–442. ACM, 2012.

[16] L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of the 19th Interna-
tional Conference on Computational Statistics (COMP-
STAT’2010), pages 177–187, Paris, France, August 2010.
Springer.

[17] L. Bottou and O. Bousquet. The tradeoffs of large scale
learning. In Advances in Neural Information Processing
Systems, volume 20, pages 161–168. NIPS Foundation,
2008.

[18] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large
language models in machine translation. In Proceedings
of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages 858–
867, Prague, Czech Republic, June 2007.

[19] M. Cafarella, E. Chang, A. Fikes, A. Halevy, W. Hsieh,
A. Lerner, J. Madhavan, and S. Muthukrishnan. Data
management projects at Google. SIGMOD Record,
37(1):34–38, Mar. 2008.

[20] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of
block-level sampling in statistics estimation. In Proceed-
ings of the 2004 ACM SIGMOD international conference
on Management of data, pages 287–298. ACM, 2004.

[21] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: a cross-industry study of
mapreduce workloads. Proceedings of the VLDB Endow-
ment, 5(12):1802–1813, 2012.

[22] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging
endpoint flexibility in data-intensive clusters. In Pro-
ceedings of ACM SIGCOMM 2013, pages 231–242, Hong
Kong, China, 2013.

[23] M. Chowdhury and I. Stoica. Coflow: a networking ab-
straction for cluster applications. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages
31–36. ACM, 2012.

[24] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clus-
ters with orchestra. In Proceedings of the ACM SIG-
COMM 2011 Conference, pages 98–109, Toronto, On-
tario, Canada, 2011. ACM.

[25] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. In
Proceedings of the 7th USENIX conference on Networked
systems design and implementation, 2010.

[26] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. The
uncapacitated facility location problem. Technical report,
DTIC Document, 1983.

[27] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. Le, M. Mao, A. Senior, P. Tucker, K. Yang, et al.
Large scale distributed deep networks. In Advances in
Neural Information Processing Systems 25, pages 1232–
1240, 2012.

[28] C. Delimitrou and C. Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. ASPLOS,
2014.

[29] Facebook Presto. Retrieved 9/21/2013, URL:
http://gigaom.com/2013/06/06/facebook-

unveils-presto-engine-for-querying-250-pb-

data-warehouse/.

[30] T. Feder and D. Greene. Optimal algorithms for approxi-
mate clustering. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88,
pages 434–444, Chicago, Illinois, USA, 1988. ACM.

[31] J. Gantz and D. Reinsel. Digital universe study: Extract-
ing value from chaos, 2011.

[32] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In USENIX
NSDI, 2011.

[33] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy:
Max-min fair sharing for datacenter jobs with constraints.
In Proceedings of the 8th European conference on Com-
puter Systems. ACM, 2013.

[34] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In Proc. of the 10th USENIX conference
on Operating systems design and implementation, 2012.

[35] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
ACM SIGCOMM 2009, Barcelona, Spain.

[36] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su,
H. Wang, and L. Zhou. Wave computing in the cloud.
In HotOS, 2009.

[37] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online ag-
gregation. In ACM SIGMOD Record, volume 26, pages
171–182. ACM, 1997.

[38] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. Proc. of the 2nd European Conference on
Computer Systems, 41(3), 2007.

[39] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair scheduling for distributed
computing clusters. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, 2009.

[40] P. Kolari, A. Java, T. Finin, T. Oates, and A. Joshi. De-
tecting spam blogs: A machine learning approach. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence, volume 21, page 1351, 2006.

[41] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. J.
Franklin, and M. Jordan. MLbase: A distributed machine-
learning system. In Conference on Innovative Data Sys-
tems Research (CIDR), 2013.

[42] J. Langford. The Ideal Large-Scale Machine Learning
Class. http://hunch.net/?p=1729.

15

316 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[43] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results
for advanced analytics on mapreduce. Proceedings of the
VLDB Endowment, 5(10):1028–1039, 2012.

[44] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed GraphLab: A frame-
work for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 2012.

[45] J. McCalpin. STREAM update for Intel Xeon Phi
SE10P. http://www.cs.virginia.edu/stream/

stream_mail/2013/0015.html.

[46] M. Mitzenmacher. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[47] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, resource management,
and approximation in a data stream management system.
CIDR, 2003.

[48] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica. The case
for tiny tasks in compute clusters. HotOS, 2013.

[49] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 69–84. ACM, 2013.

[50] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and
J. Kelly. The quantcast file system. Proceedings of the
VLDB Endowment, 2013.

[51] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie.
Online aggregation for Large Mapreduce Jobs. PVLDB,
4(11):1135–1145, 2011.

[52] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In Advances in Neural Information Processing Systems,
pages 693–701, 2011.

[53] N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-
newton method for online convex optimization. Journal
of Machine Learning Research, 2:428–435, 2007.

[54] L. Sidirourgos, M. Kersten, and P. Boncz. Sciborq: Sci-
entific Data Management with Bounds on Runtime and
Quality. In Proceedings of the International Confer-
ence on Innovative Data Systems Research (CIDR), pages
296–301, 2011.

[55] P. Sukhatme and B. Sukhatme. Sampling theory of sur-
veys: with applications. Asia Publishing House, 1970.

[56] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore,
G. Porter, and S. Radhakrishnan. Scale-Out Networking
in the Data Center. IEEE Micro, 30(4):29–41, July 2010.

[57] J. Vygen. Approximation algorithms facility location
problems. Technical Report 05950, Research Institute for
Discrete Mathematics, University of Bonn, 2005.

[58] R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and Rich Analytics at Scale.
In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of data, 2013.

[59] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling. In Proceedings of the 5th European confer-
ence on Computer systems, pages 265–278, 2010.

[60] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica. Re-
silient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, 2012.

[61] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Sto-
ica. Improving mapreduce performance in heterogeneous
environments. In Proceedings of the 8th USENIX confer-
ence on Operating Systems Design and Implementation,
pages 29–42, 2008.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 317

Heading Off Correlated Failures through Independence-as-a-Service

Ennan Zhai†, Ruichuan Chen§, David Isaac Wolinsky†, Bryan Ford†

†Yale University §Bell Labs / Alcatel-Lucent

Abstract

Today’s systems pervasively rely on redundancy to en-

sure reliability. In complex multi-layered hardware/soft-

ware stacks, however – especially in the clouds where

many independent businesses deploy interacting services

on common infrastructure – seemingly independent sys-

tems may share deep, hidden dependencies, undermin-

ing redundancy efforts and introducing unanticipated

correlated failures. Complementing existing post-failure

forensics, we propose Independence-as-a-Service (or

INDaaS), an architecture to audit the independence of

redundant systems proactively, thus avoiding correlated

failures. INDaaS first utilizes pluggable dependency ac-

quisition modules to collect the structural dependency

information (including network, hardware, and software

dependencies) from a variety of sources. With this infor-

mation, INDaaS then quantifies the independence of sys-

tems of interest using pluggable auditing modules, of-

fering various performance, precision, and data secrecy

tradeoffs. While the most general and efficient auditing

modules assume the auditor is able to obtain all required

information, INDaaS can employ private set intersection

cardinality protocols to quantify the independence even

across businesses unwilling to share their full structural

information with anyone. We evaluate the practicality of

INDaaS with three case studies via auditing realistic net-

work, hardware, and software dependency structures.

1 Introduction

Cloud services normally require high reliability, and per-

vasively rely on redundancy techniques to ensure this re-

liability [7, 10, 12, 29]. Amazon S3, for example, repli-

cates each data object across multiple racks in an S3 re-

gion [3]. iCloud rents infrastructures from multiple cloud

providers – both Amazon EC2 and Microsoft Azure –

for redundancy [28]. Seemingly independent infrastruc-

ture components, however, may share deep, hidden de-

pendencies. Failures in these shared dependencies may

lead to unexpected correlated failures, undermining re-

dundancy efforts [19, 27, 34, 44, 47, 74, 75].

In redundant systems, a risk group [35] or RG is a set

of components whose simultaneous failures could cause

a service outage. Suppose some service A replicates crit-

ical state across independent servers B, C and D located

in three separate racks. The intent of this 3-way redun-

dancy configuration is for all RGs to be of size three, i.e.,

three servers must fail simultaneously to cause an outage.

Unbeknownst to the service provider, however, the three

racks share an infrastructure component, such as an ag-

gregation switch S. If the switch S fails for whatever rea-

son, B, C and D could become unavailable at the same

time, causing the service A to fail. We say such common

dependency introduces an unexpected RG, defined as a

smaller than expected RG, whose failure could disable

the whole service despite redundancy efforts.

This example, while simplistic, nevertheless illustrates

documented failures. In an Amazon AWS event [4],

a glitch on one Amazon Elastic Block Store (EBS)

server disabled the EBS service across Amazon’s US-

East availability zones. The failure of the EBS service

caused correlated failures across multiple Elastic Com-

pute Cloud (EC2) instances utilizing that EBS for stor-

age, and in turn disabled applications designed for re-

dundancy across these EC2 instances. The EBS server

in this example was a single common dependency that

undermined the EC2’s redundancy efforts.

Discovering unexpected common dependencies is ex-

tremely challenging [20,22]. Many diagnostic and foren-

sic approaches attempt to localize or tolerate such fail-

ures after they occur [5, 12, 15, 24–27, 31, 37, 43].

These retroactive approaches, however, still require hu-

man intervention, leading to prolonged failure recovery

time [68]. Google has estimated that “close to 37% of

failures are truly correlated” within its global storage sys-

tem, but they lack the tools to identify these failure cor-

relations systematically [20].

Worse, correlated failures can be hidden not just by

inadequate tools or analysts within one cloud provider,

but also by non-transparent business contracts between

cloud providers forming complex multi-level service

stacks [19]. Application-level cloud services such as

iCloud [28] often redundantly rely on multiple cloud

providers, e.g., Amazon EC2 and Microsoft Azure. How-

ever, a storm in Dublin recently took down a local power

source and its backup generator, disabling both the Ama-

zon and Microsoft clouds in that region for hours [16].

Providers of higher-level cloud services cannot read-

ily know how independent the lower-level services they

build on redundantly really are, since the relevant com-

mon dependencies (e.g., power sources) are often propri-

1

318 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

etary internal information, which cloud providers do not

normally share [19, 69, 74].

We propose Independence-as-a-Service or INDaaS, a

novel architecture that aims to address the above prob-

lems proactively. Rather than localizing and tolerating

failures after an outage, INDaaS collects and audits

structural dependency data to evaluate the independence

of redundant systems before failures occur. In particu-

lar, INDaaS consists of a pluggable set of dependency

acquisition modules that collect dependency data, and

an auditing agent that employs a similarly pluggable set

of auditing modules to quantify the independence of re-

dundant systems and identify common dependencies that

may introduce unexpected correlated failures.

In the dependency acquisition phase, we introduce a

uniform representation for different types of dependency

data, enabling dependency acquisition modules to be tai-

lored and reused for a particular cloud provider’s infras-

tructure. As an example, our experimental prototype was

able to collect dependency data from various sources

with respect to network topologies, hardware compo-

nents, and software packages.

To represent this collected dependency data, INDaaS

builds on the traditional fault analysis techniques [52,

60], and further adapts these techniques to audit the in-

dependence of redundant systems. Our fault graph rep-

resentation supports three levels of detail appropriate

in different situations: component-sets, fault-sets, and

fault graphs. INDaaS can use component-sets to identify

shared components even if no failure likelihood informa-

tion is available. With fault-sets, INDaaS can take failure

likelihood information into account. Fault graphs further

enable INDaaS to account for deep internal structures in-

volving multiple levels of redundancy.

In its auditing phase, INDaaS offers multiple auditing

modules to address tradeoffs among performance, preci-

sion, and data secrecy. Our most powerful and informa-

tive auditing methods assume that a single independent

auditing agent is able to obtain all the required structural

dependency data in the clear. This assumption may hold

if the agent is a system run by and within a single cloud

provider, or if the agent is run by a trusted third party

such as a cloud insurance company or a non-profit un-

derwriting agency.

To support independence auditing even across mutu-

ally distrustful cloud providers who may be unwilling to

share full dependency data with anyone, INDaaS offers

private independence auditing or PIA. We have explored

two approaches to PIA. The first uses secure multi-party

computation [72], which offers the best generality in

principle but performs adequately only on small depen-

dency datasets [69]. We therefore focus here on the sec-

ond approach, based on private set intersection cardinal-

ity [38, 58]. This approach restricts INDaaS’s auditing

to the component-set level of detail, but we find it to be

practical and scalable to large datasets.

We have developed a prototype INDaaS auditing sys-

tem, and evaluated its performance with three small

but realistic case studies. These case studies exercise

INDaaS’s two capabilities: 1) proactively quantifying the

independence of given redundancy configurations, and 2)

identifying potential correlated failures. We find that the

prototype scales well. For example, the prototype can

audit a cloud dependency structure containing 27,648

servers and 2,880 switches/routers, and identify about

90% of relevant dependencies, within 3 hours.

Our INDaaS prototype has many limitations, and

would need to be refined and customized to particu-

lar cloud environments before real-world deployment.

Nevertheless, even as a proof-of-concept, we feel that

INDaaS represents one step towards building reliable

cloud infrastructures whose redundancy structures can

avoid various types of unexpected common-mode fail-

ures [23], emergent risks due to overwhelming complex-

ity [44], and proprietary information barriers that natu-

rally arise in the cloud ecosystem [19].

In summary, this paper’s contributions are: 1) the first

architecture designed to audit the independence of re-

dundant cloud systems before or during deployment; 2)

adaptation of fault graph analysis techniques to support

multiple levels of detail in explicit dependency struc-

tures; 3) an efficient fault graph analysis technique that

scales to large datasets representing realistic cloud in-

frastructures; 4) an application of private set intersection

cardinality techniques to enable efficient private indepen-

dence auditing; 5) a prototype implementation and eval-

uation of INDaaS’s practicality with small but realistic

case studies and larger-scale simulations.

2 Architecture Overview

We now present a high-level overview of the INDaaS ar-

chitecture, deferring details to subsequent sections. Fig-

ure 1 illustrates the basic INDaaS workflow, which in-

volves three main roles or types of entities: auditing

client, dependency data source, and auditing agent.

The auditing client, i.e., Alice in Figure 1, requests an

audit of the independence of two or more cloud systems,

which may either be operated by Alice herself or rented

from other cloud providers, and which she believes to

be independent so as to offer redundancy. For example,

Alice may request a one-time independence audit prior to

deploying a new service onto multiple redundant clouds,

like iCloud’s use of both Amazon EC2 and Microsoft

Azure [28]. Alice might also request periodic audits on a

deployed configuration to identify correlated failure risks

that configuration changes or evolution might introduce.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 319

Figure 1: An example INDaaS auditing process, where

an auditing client Alice wishes to audit the independence

of a two-way redundancy deployment.

Dependency data sources (or data sources for brevity)

represent the providers of cloud systems whose inde-

pendence the auditing client wishes to check. The data

sources in practice may be providers of computation,

storage and networking components to be used redun-

dantly by the auditing client. INDaaS might be deployed

so as to utilize data sources either from a single provider

or across multiple providers. In the first case, a stor-

age service like Amazon S3 might provide data sources

for each of multiple Amazon data centers offering intra-

provider redundancy for S3. In the second, inter-provider

scenario, Amazon EC2 and Microsoft Azure might serve

as distinct data sources for redundant services rented

by iCloud. Either way, as shown in Figure 1, each data

source employs pluggable dependency acquisition mod-

ules to collect structural dependency data on its com-

ponents such as network topology, hardware devices, or

even software packages whose dependencies could lead

to common-mode failures (e.g., Heartbleed [23]).

The auditing agent mediates the interaction between

the auditing client and the data sources. In the case where

the auditing agent can obtain the dependency data from

all the relevant data sources, the auditing agent constructs

a dependency graph based on the data from these data

sources. Then, the agent processes the dependency graph

and quantifies its independence, or identifies any unex-

pected common dependencies using a set of pluggable

independence auditing modules. In the case of private in-

dependence auditing, the agent cannot obtain the full de-

pendency data from data sources in cleartext, but super-

vises a private set intersection cardinality protocol per-

formed by the data sources collaboratively.

We briefly summarize the independence auditing pro-

cess as illustrated in Figure 1:

Step 1: The auditing client, Alice, specifies to the au-

diting agent what services she wishes to audit and in

Table 1: Format definition of various dependencies.

Type Dependency Expression

Network <src="S" dst="D" route="x,y,z"/>

Hardware <hw="H" type="T" dep="x"/>

Software <pgm="S" hw="H" dep="x,y,z"/>

what way. This specification includes: a) the relevant

data sources; b) the level of redundancy desired; c) the

types of components and dependencies to be considered;

and d) the metrics used to quantify independence.

Step 2: The auditing agent issues a request to each data

source Alice specified.

Step 3: Each specified data source uses one or more

dependency acquisition modules to collect the depen-

dency data for future independence auditing (see §3).

Step 4: In the private independence auditing (or PIA)

case, the data sources collaborate to obtain the auditing

results without revealing the proprietary dependency data

to each other (see §4.2).

Step 5: Each data source returns to the auditing agent

either the full dependency data for structural indepen-

dence auditing (see §4.1), or in the PIA case, returns the

collaboratively computed independence auditing results.

Step 6: The auditing agent returns to Alice an audit-

ing report quantifying the independence of various re-

dundancy deployments, optionally computing some use-

ful information such as the estimates of correlated failure

probabilities and ranked lists of potential risk groups.

3 Dependency Acquisition

Acquiring accurate structural dependency data within

heterogeneous cloud systems is non-trivial, and realis-

tic solutions would need to be adapted to different cloud

environments. As many dependency acquisition tools

have been deployed in today’s clouds for various pur-

poses (e.g., system diagnosis) [2, 5, 6, 14, 15, 18, 31, 36,

37, 39], we expect such tools can be adapted and reused

to collect the dependency data required by INDaaS.

Towards this end, INDaaS leverages pluggable de-

pendency acquisition modules (DAM), and maintains a

uniform representation of different types of dependency

data. Different data sources first collect dependency data

through their dependency acquisition systems or service

monitoring systems, and then adapt the collected data to

a common XML-based format illustrated in Table 1. Fi-

nally, the DAM stores the adapted dependency data in a

database, DepDB, for further processing.

Table 1 shows how our prototype expresses network,

hardware, and software dependencies. Each such depen-

dency corresponds to one of the three most common

causes of correlated failures [22, 68]: incorrect network

3

320 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 2: A sample distributed storage system.

configurations, faulty hardware components, and buggy

or insecure software packages.

A network dependency describes a route from source

S to destination D via various network components in

between, such as routers and/or switches x, y, and z.

A hardware dependency describes a physical compo-

nent, e.g., a disk or CPU of a server. The hw field denotes

a physical component, and type specifies the type of

this component such as CPU, disk, RAM, etc. The dep

field specifies the model number of the component.

A software dependency describes the package infor-

mation of a software component. The pgm field denotes

the software component S itself, hw specifies the hard-

ware H on which the S runs, and dep specifies various

packages x, y and z used by S.

Dependency acquisition examples. Our INDaaS pro-

totype currently includes three dependency acquisition

modules employing existing tools to collect various raw

dependency data, then adapt them into the common

format as discussed above. In particular, we employ

NSDMiner [31, 46] to collect network dependencies,

HardwareLister [61] to collect hardware dependencies,

and apt-rdepends [17] to collect software dependencies.

These first-cut INDaaS modules are in no way intended

to be definitive but merely aim to provide some examples

of realistic dependency acquisition methods.

NSDMiner is a traffic-based network data collector,

which discovers network dependencies by analyzing net-

work traffic flows collected from network devices or in-

dividual packets [31,46]. HardwareLister (lshw) extracts

a target machine’s detailed hardware configuration in-

cluding CPUs, disks and drivers [61]. The apt-rdepends

tool extracts the software package and library dependen-

cies for popular Linux software distributions [17].

Figure 2 illustrates a sample distributed storage sys-

tem. Suppose an auditing client desires two-way redun-

dancy for her service running on two of the three servers

S1-S3 within her cloud. She submits to the auditing agent

a specification indicating: 1) IP addresses of the three

servers, and 2) relevant software components running on

Network dependencies of S1 and S2:

<src="S1" dst="Internet" route="ToR1,Core1"/>

<src="S1" dst="Internet" route="ToR1,Core2"/>

<src="S2" dst="Internet" route="ToR1,Core1"/>

<src="S2" dst="Internet" route="ToR1,Core2"/>

Hardware dependencies of S1 and S2:

<hw="S1" type="CPU" dep="S1-Intel(R)X5550@2.6GHz"/>

<hw="S1" type="Disk" dep="S1-SED900"/>

<hw="S2" type="CPU" dep="S2-Intel(R)X5550@2.6GHz"/>

<hw="S2" type="Disk" dep="S2-SED900"/>

Software dependencies of S1 and S2:

<pgm="QueryEngine1" hw="S1" dep="libc6,libgccl">

<pgm="Riak1" hw="S1" dep="libc6,libsvn1">

<pgm="QueryEngine2" hw="S2" dep="libc6,libgccl">

<pgm="Riak2" hw="S2" dep="libc6,libsvn1">

Figure 3: A sample of the collected dependency data.

these servers. Our current prototype requires the audit-

ing client to list software components of interest man-

ually – e.g., Query Engine and Riak [8] (a distributed

database) in this example. With this specification, the

auditing agent invokes the dependency acquisition mod-

ules (i.e., NSDMiner, lshw, and apt-rdepends) on each

server to collect the network, hardware, and software de-

pendencies, and store them in the DepDB, as shown in

Figure 3.

4 Independence Auditing

After dependency data acquisition, INDaaS performs in-

dependence auditing to generate auditing reports.

As described in §2, INDaaS supports two scenarios.

We first present a structural independence auditing pro-

tocol in §4.1, which assumes data sources are willing

to provide the auditing agent with the full dependency

data, e.g., for auditing a common cloud provider. We later

present a private independence auditing protocol in §4.2

to support analysis across multiple cloud providers un-

willing to reveal the full dependency data to anyone.

4.1 Structural Independence Auditing

Upon acquiring full dependency data from the data

sources, the auditing agent executes our structural in-

dependence auditing (SIA) protocol to generate the de-

pendency graph, determine the risk groups, rank the risk

groups, and eventually generate an auditing report.

4.1.1 Generating Dependency Graph

To implement structural independence auditing, the au-

diting agent first generates an explicit dependency graph

representation, which will later be used by the pluggable

auditing modules. In designing this representation, we

adapt traditional fault tree models [52, 60] to a directed

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 321

Figure 4: Dependency graphs represented at three different levels of detail: (a) component-set level of detail, (b)

fault-set level of detail, and (c) fault graph level of detail.

acyclic graph structure, and generalize the representation

to express dependencies at any of three different levels of

detail: component-set, fault-set and fault graph.

Component-set. At the most basic level of detail, we

organize dependencies in terms of component-sets. As

shown in Figure 4(a), if a system E1 depends on compo-

nents A1 and A2, and another system E2 depends on com-

ponents A2 and A3, then the two relevant component-sets

are {A1,A2} and {A2,A3}, respectively. E1 and E2 are

the data sources. At this level of detail, for independence

reasoning, we focus only on the presence of shared com-

ponents – e.g., A2 – that may lead to correlated failures.

As Figure 4(a) illustrates, we express component-sets

in a two-level “AND-of-ORs” dependency graph. This

structure consists of two types of nodes: components and

logic gates. If a component fails (or not), it outputs a

1 (or 0) to its higher-layer logic gate. The two types

of logic gates, AND and OR, depict the different logi-

cal relationships among components’ failures. For an OR

gate, if any of its subsidiary components fails, this failure

propagates upwards. For an AND gate, only if all of its

subsidiary components fail, the gate propagates a failure

upwards. The top-level AND gate thus represents redun-

dancy across the data sources (e.g., E1 and E2), each of

which uses an OR gate to connect all its dependent com-

ponents. Our representation also supports n-of-m redun-

dant deployments (n ≤ m) via n-of-m AND gates.

Fault-set. At the fault-set level of detail, we addition-

ally assign some form of weight to each component, e.g.,

probability of failure over some time period. As shown

in Figure 4(b), the failure of A1 or A2 leads to the out-

age of system E1; thus, the two failure events {A1 fails,

A2 fails} form a fault-set. Hereafter, when reasoning at

the fault-set level, we assign each failure event a failure

probability between 0 and 1. Approaches to obtaining re-

alistic failure probabilities are discussed later in §5.1.

Fault graph. The component-set and fault-set levels of

detail assume a single level of redundancy across data

sources (e.g., E1 and E2), each depending on a “flat” set

of components among which any failure causes the re-

spective data source to fail. The fault graph, the richest

level of detail INDaaS supports, can describe more com-

plex dependency structures as shown in Figure 4(c). In a

fault graph, event nodes having no child nodes are called

basic events, the root node is called the top event, and

the remaining nodes are intermediate events. Each node

in a fault graph has a weight expressing the failure prob-

ability of the associated event. A fault graph is evaluated

from basic events to the top event. Each top and interme-

diate event has an input gate connecting the lower-layer

events. For example, in Figure 4(c), the top event’s input

gate is an AND gate representing top-level redundancy,

but the fault graph also expresses internal redundancy via

the internal AND gates at lower levels.

Building the dependency graph. Any dependency

graph, at whichever level of detail, in principle represents

the underlying structure of a top-level service across a

number of redundant systems. Each such system is a data

source where the auditing agent can obtain the depen-

dency data. Automatically building a fault graph with the

5

322 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

dependency data is non-trivial in practice. We summarize

here how the auditing agent builds a dependency graph

at the fault graph level of detail from top to bottom.

Step 1: The fault graph’s top event is the failure of the

entire redundancy deployment R.

Step 2: According to the auditing client’s specifica-

tion (see Step 1 in §2), the auditing agent sends a query to

the dependency information database DepDB for infor-

mation about all servers given in the specification. Each

server’s failure event then becomes a child node of the

top event, and an AND gate connects the top event with

its child nodes to express the servers’ redundancy.

Step 3: The auditing agent then queries DepDB for

each server’s network, hardware, and software depen-

dencies. As a result, each server’s failure event has three

child nodes, i.e., network, software, and hardware fail-

ure events. An OR gate connects the server failure event

with its three child nodes, since the failure of any of these

dependencies effectively causes the server to fail.

Step 4: For the hardware failure event of each server,

the auditing agent gets its dependency data from DepDB,

then uses an OR gate to connect the hardware failure

event with its dependencies’ failure events.

Step 5: For each server’s network failure event, the

auditing agent queries DepDB for network paths rele-

vant to the server, then connects them as child nodes

to the server’s network failure event. The agent puts an

AND gate between the network failure event and child

nodes representing redundant paths, while network de-

vices comprising each path are connected by an OR gate.

Step 6: The auditing agent repeats Step 5 to construct

the child nodes for each server’s software failure event.

Different layers of software components are connected

by an OR gate, and all packages underlying a software

component are connected by an OR gate.

As an example, the redundancy deployment in Fig-

ure 2 may be represented by the fault graph in Fig-

ure 4(c). An information-rich fault graph may be “down-

graded” to the lower fault-set or component-set levels of

detail, by discarding partial information in a fault graph.

Our INDaaS prototype can also compose individual

dependency graphs collected from multiple services into

more complex aggregate dependency graphs (e.g., EC2

instances depending on services offered by EBS and

ELB). Details on dependency graph composition may be

found in the associated technical report [75].

4.1.2 Determining Risk Groups

After building a dependency graph, SIA needs to deter-

mine risk groups (RGs) of interest in the dependency

graph. The SIA provides two pluggable auditing algo-

rithms which make trade-offs between accuracy and effi-

ciency. The minimal RG algorithm computes precise re-

sults, but its execution time increases exponentially with

the size of dependency graph, making it impractical on

large datasets. The failure sampling algorithm, in con-

trast, runs much faster but scarifies accuracy. Both algo-

rithms operate on dependency graphs represented at any

level of detail. Without loss of generality, hereafter we

elaborate on the algorithms at the fault graph level.

Minimal RGs. An RG within a dependency graph is a

group of basic failure events with the property that if all

of them occur simultaneously, then the top event occurs

as well. For example, in Figure 4(a), if A1 and A3 fail

simultaneously, the redundancy deployment fails. Here,

{A1,A3}, {A1,A2}, {A1,A2,A3}, {A2}, and {A2,A3} are

five RGs. Some RGs, however, are more critical than oth-

ers. We define an RG as a minimal RG if the removal of

any of its constituent failure events makes it no longer

an RG. Consider the following two RGs: {A1,A2} and

{A2,A3} in Figure 4(a). Neither are minimal RGs be-

cause {A2} alone is sufficient to cause the top event to oc-

cur; thus, the minimal RGs should be {A2} and {A1,A3}.

As another example, the minimal RGs in Figure 4(c) are

{ToR1 fails}, {Core1 fails, Core2 fails}, etc.

Minimal RG algorithm. The first algorithm for deter-

mining RGs is adapted from classic fault tree analysis

techniques [52, 60]. This algorithm traverses a depen-

dency graph G in a reverse breadth-first order (from basic

events to the top event). Basic events first generate RGs

containing only themselves, while non-basic events pro-

duce RGs based on their child events’ RGs and their in-

put gates. For a non-basic event, if its input gate is an OR

gate, the RGs of this event include all its child events’

RGs; otherwise, if its input gate is an AND gate, each

RG of this event is an element of the cartesian product

among the RGs of its child events. Traversing the depen-

dency graph G generates all the RGs, and in turn all the

minimal RGs through simplification procedures. This al-

gorithm produces precise results, but is NP-hard [59].

Failure sampling algorithm. To address the efficiency

issue, we developed an RG detection algorithm based

on random sampling, which makes a trade-off between

accuracy and efficiency. This algorithm uses multiple

sampling rounds, each of which performs a breadth-first

traversal of the dependency graph G. Within each sam-

pling round, the algorithm assigns either a 1 or a 0 to each

basic event of G based on random coin flipping, where 1

represents failure and 0 represents non-failure. Starting

from such an assignment, the algorithm assigns 1s and

0s to all non-basic events from bottom to top based on

their logic gates and the values of their child events. Af-

ter each sampling round, the algorithm checks whether

the top event fails. If it fails (i.e., its value is 1), then

the algorithm generates an RG consisting of all the basic

events being assigned a 1 in this sampling round. The al-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 323

gorithm executes a large number of sampling rounds and

aggregates the resulting RGs in all rounds. The failure

sampling algorithm offers the linear time complexity, but

is non-deterministic and cannot guarantee that the result-

ing RGs it identifies are minimal RGs. This failure sam-

pling algorithm is similar in principle to heuristic SAT al-

gorithms such as ApproxCount [67], and these methods

may offer ways to improve INDaaS failure sampling.

4.1.3 Ranking Risk Groups

After determining RGs, we have two algorithms to rank

them and generate the RG-ranking list.

Size-based ranking. To rank RGs at the component-

set level or at the unweighted fault graph level, we use

a simple size-based ranking algorithm which ranks RGs

based on the number of components in each RG. While

this algorithm cannot distinguish which potential compo-

nent failures may be more or less likely, identifying RGs

with fewer components – especially any of size 1 indi-

cating no redundancy – can point to areas of the system

that may warrant closer manual inspection. For example,

in Figure 4(c), the RGs {ToR1} and {libc6} are ranked

highest since they have the least size.

Failure probability ranking. In cases where the prob-

abilities of failure events can be estimated, we provide

a probability-based ranking algorithm to evaluate RGs

at the levels of fault-set and weighted fault graph. This

algorithm ranks RGs by their relative importance. Here,

for a given RG’s failure event (say, C), its relative im-

portance, IC, is computed using the probability of C,

Pr(C), in comparison to the probability of the top event

T , Pr(T): IC = Pr(C)/Pr(T). Specifically, Pr(C) is the

probability that all the events in C occur simultaneously,

and Pr(T) is computed by the inclusion-exclusion prin-

ciple where the involved sets are all the minimal RGs of

T . In Figure 4(b), since the probabilities of events A1,

A2 and A3 are 0.1, 0.2 and 0.3, respectively, we have:

Pr(T) = 0.1 · 0.3+ 0.2 − 0.1 · 0.3 · 0.2 = 0.224. There-

fore, the relative importances of the minimal RGs {A2

fails} and {A1 fails, A3 fails} are: 0.2/0.224 = 0.8929

and 0.03/0.224 = 0.1339, respectively. As a result, {A2

fails} is ranked higher than {A1 fails, A3 fails}.

4.1.4 Generating the Auditing Report

Upon getting the RG-ranking lists for all redundancy

deployments, SIA computes an independence score for

each of them. If the size-based ranking algorithm is used,

a given redundancy deployment R’s independence score

is computed as indep(R) = ∑n
i=1 size(ci), where ci de-

notes the ith RG in the R’s RG-ranking list, and n de-

notes the number of top RGs in the RG-ranking list used

for this independence evaluation. If the failure probabil-

ity based ranking algorithm is used, a given redundancy

deployment R’s independence score is then indep(R) =

∑n
i=1 Ici

, where Ici
denotes the relative importance of ci.

The auditing agent generates an auditing report by

ranking all the redundancy deployments based on their

independence scores, and finally sends the report back to

the auditing client for reference. With the auditing report,

the auditing client might for example select the most in-

dependent redundancy deployment for her service.

The auditing report can also help an auditing client

understand unexpected common dependencies to focus

further analysis. In the case of one documented Amazon

EC2 outage, for example [4], we speculate that the avail-

ability of an INDaaS auditing report might have enabled

the operators to notice that a specific EBS server had be-

come a common dependency, and fix it, thus avoiding the

outage.

4.2 Private Independence Auditing

We now address the challenge of independence auditing

across mutually distrustful data sources, e.g., multiple

cloud providers, who may be unwilling to share depen-

dency data with each other or any third-party auditor. To

reflect the motivating deployment model, we use the term

cloud providers instead of data sources when describing

the private independence auditing (PIA) protocol.

The most general and direct approach, explored by

Xiao et al. [69], is to use secure multi-party computa-

tion (SMPC) [72] to compute and reveal overlap among

the datasets of multiple cloud providers while keeping

the data themselves private. This approach works in the-

ory, but scales poorly in practice due to its inherent com-

plexity. We find SMPC to be impractical currently even

for datasets with only a few hundreds of components.

We thus focus henceforth on a more scalable ap-

proach built on private set intersection cardinality tech-

niques [21, 38, 58, 73]. This approach sacrifices general-

ity and dependency graph expressiveness, operating only

at the component-set level of detail. The basic idea is to

evaluate Jaccard similarity [32] using a private set inter-

section cardinality protocol [58] to quantify the indepen-

dence of redundancy configurations.

4.2.1 Trust Assumptions

As described in §2, our architecture consists of entities

filling three roles: auditing client, cloud providers (i.e.,

data sources in Figure 1), and auditing agent.

We assume that auditing clients are potentially mali-

cious and wish to learn as much as possible about the

cloud providers’ private dependency data. We assume

cloud providers and the auditing agent are honest but cu-

rious: they run the specified PIA protocol faithfully but

7

324 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

may try to learn additional information in doing so. We

assume there is no collusion among cloud providers and

the auditing agent. We discuss some potential solutions

to dealing with dishonest parties in §5.2.

4.2.2 Technical Building Blocks

There are three technical building blocks that we utilize

throughout the PIA design.

Jaccard similarity. Jaccard similarity [32] is a

widely-adopted metric for measuring similarity across

multiple datasets. Jaccard similarity is defined as

J(S0, · · · ,Sk−1) = |S0∩·· ·∩Sk−1|/|S0∪·· ·∪Sk−1| where

Si denotes the ith dataset. A Jaccard similarity J close to 1

indicates high similarity, whereas a J close to 0 indicates

the datasets are almost disjoint. In practice, datasets with

similarity J ≥ 0.75 are considered significantly corre-

lated [62]. While there are many other similarity metrics,

e.g., the Sørensen-Dice index [57], we choose Jaccard

similarity because it is efficient, easy to understand, and

extends readily to more than two datasets.

MinHash. Computing the Jaccard similarity incurs a

complexity linear with the dataset sizes. In the pres-

ence of large datasets, an approximation of the Jaccard

similarity based on MinHash is often preferred [11]. The

MinHash technique [13] extracts a vector {h
(i)

min(S)}
m
i=1

of a dataset S through deterministic sampling, where

h(1)(·), · · · ,h(m)
(·) denote m different hash functions, and

h
(i)

min(S) denotes the item e ∈ S with the minimum value

h(i)(e). Let δ denote the number of datasets satisfying

h
(i)

min(S0) = · · ·= h
(i)

min(Sk−1). Then, the Jaccard similarity

J(S0, · · · ,Sk−1) can be approximated as δ/m. Here, the

parameter m correlates to the expected error to the pre-

cise Jaccard similarity — a larger m (i.e., more hash func-

tions) yields a smaller approximation error. Broder [13]

proves that the expected error of MinHash-based Jaccard

similarity estimation is O(1/
√

m).

Private set intersection cardinality. A private set in-

tersection cardinality protocol allows a group of k ≥ 2

parties, each with a local dataset Si, to compute the num-

ber of overlapping elements among them privately with-

out learning any elements in other parties’ datasets. We

adopt P-SOP, a private set intersection cardinality pro-

tocol based on commutative encryption [58]. In P-SOP,

all parties form a logical ring, and agree on the same

deterministic hash function (e.g., SHA-1 or MD5). In

addition, each party has its own permutation function

used to shuffle the elements in its local dataset, as well

as its own public/private key pair used for commutative

encryption [50, 56]. Commutative encryption offers the

property that EK(EJ(M)) = EJ(EK(M)) where EX de-

notes using X’s public key to encrypt the message M.

In P-SOP, each party first makes every element in its

own dataset Si identical. Specifically, any element e ap-

pearing t times in Si is represented as t unique elements

{e�1, · · · ,e�t}, with ‘�’ being a concatenation operator.

Each party then hashes and encrypts every individual el-

ement in its dataset, and randomly permutes all the en-

crypted elements. Afterwards, each party sends the en-

crypted and permuted dataset to its successor in the ring.

Next, once the successor receives the dataset, it simply

encrypts each individual element in the received dataset,

permutes them, and sends the resulting dataset to its suc-

cessor. The process repeats until each party receives its

own dataset whose individual elements have been en-

crypted and permuted by all parties in the ring. Finally,

all parties share their respective encrypted and permuted

datasets, so that they can count the number of common

elements in these datasets, i.e., |∩i Si|, as well as the num-

ber of unique elements in these datasets |∪i Si|.

4.2.3 Generating Dependency Graph

To perform private independence auditing, each cloud

provider pi (holding an individual data source) within

a given redundancy deployment R first generates its

local dependency graph at the component-set level.

In addition, each pi needs to normalize its generated

component-set. This normalization ensures that the same

component shared across different cloud providers al-

ways has the same identifier.

Common sources of correlated failures across cloud

providers are third-party components such as routers and

software packages [19]. Therefore, our current PIA pro-

totype normalizes two types of components: 1) third-

party routing elements (e.g., ISP routers), and 2) third-

party software packages (e.g., the widely-used OpenSSL

toolkit). PIA normalizes these components as follows:

1) for routers, PIA uses their accessible IP addresses

as unique identifiers, and 2) for software packages,

PIA uses their standard names plus version numbers as

unique identifiers. In so doing, any given component

in all cloud providers’ generated component-sets has a

unique normalized identifier.

4.2.4 Auditing Independence Privately

If cloud providers involved in a potential redundancy

deployment have relatively small component-sets, PIA

takes these (normalized) component-sets Si directly as

input to the private set intersection cardinality protocol

(P-SOP) to compute the number of common components

| ∩i Si| and the number of unique components | ∪i Si|

across cloud providers. With the two numbers, PIA can

compute the Jaccard similarity as | ∩i Si|/| ∪i Si| to eval-

uate the independence of this redundancy deployment.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 325

Otherwise, if cloud providers in a potential redun-

dancy deployment have large component-sets, PIA uses

m hash functions based on the MinHash technique to

map each such component-set to a much smaller dataset

Si, and then takes these MinHash-generated datasets as

input to the P-SOP as normal to get the number of com-

mon components across cloud providers, i.e., | ∩i Si|. As

discussed in §4.2.2, the Jaccard similarity can then be ap-

proximated as | ∩i Si|/m. This MinHash-based approach

leads to much higher efficiency but lower accuracy. To

increase the accuracy, we can use more hash functions in

MinHash. How to make the trade-off between efficiency

and accuracy depends on the application domain.

4.2.5 Generating the Auditing Report

In the design as so far, each cloud provider pi has com-

puted the Jaccard similarities (or estimated Jaccard sim-

ilarities using MinHash) corresponding to all the redun-

dancy deployments involving pi. After collecting these

Jaccard similarities from all cloud providers, the audit-

ing agent generates an auditing report ranking all the re-

dundancy deployments based on the Jaccard similarities,

and finally sends this report to the auditing client. For

an n-of-m redundancy deployment (n ≤ m), the auditing

agent needs to obtain the Jaccard similarity across all the

n cloud providers and the similarity across all the m cloud

providers, then generate the auditing report.

At the client side, since the auditing client receives

only a list ranking all potential redundancy deployments,

she obtains no proprietary information about the partici-

pating cloud providers’ internal infrastructures other than

the information produced intentionally to describe their

degree of independence.

5 Limitations and Practical Issues

This section discusses a few INDaaS’s limitations and

areas for further exploration, as well as some practical

issues regarding INDaaS deployment.

5.1 Limitations and Potential Solutions

Failure probability acquisition. Part of INDaaS’s util-

ity depends on the acquisition of accurate failure proba-

bility information. Without this, we cannot perform some

auditing operations, e.g., dependency graph generation at

the fault-set level and failure probability based ranking.

Collecting failure probabilities automatically is a chal-

lenging problem in practice, however. Gill et al. proposed

one approach [22]: they estimate failure probability by

dividing the number of components of a given type that

have ever failed during a time period, by the total com-

ponent population of that given type. They successfully

provide the failure probabilities of various network de-

vices (e.g., aggregation switches and core routers) dur-

ing a one year period. Regarding the failure probabili-

ties of software dependencies, the Common Vulnerabil-

ity Scoring System (or CVSS) [48] can be used to pro-

vide vulnerability-related failure probabilities for many

software libraries and packages.

Complex dependency acquisition. Our current soft-

ware dependency collector takes only static software de-

pendency data into account. In practice, many cloud out-

ages have been caused by more tricky bugs within com-

plex cloud software stacks [5,40,47,51]. Collecting such

software dependency data would be challenging, and we

are not aware of any existing systematic solutions. A

potential solution may need to access the logs gener-

ated by various cloud components, and their configura-

tion scripts. For example, we might be able to adapt soft-

ware failure detection techniques based on mining con-

sole logs [70]. Joukov et al. [33] developed a tool that

discovers static dependencies between Java programs by

parsing these programs’ code. In addition, traffic-aware

optimizations, e.g., the UDS, BDS and ASD mechanisms

proposed by Li et al. [41, 42], can greatly reduce the

workload of the network dependency acquisition.

5.2 Practical Issues

The motivation for auditing clients to use INDaaS is

straightforward: they can choose redundancy deploy-

ments with better independence property, and can under-

stand unexpected common dependencies which may lead

to correlated failures. On the other hand, especially in

the PIA case the cloud providers who offer data sources

may not explicitly benefit from honestly participating in

such a process. We now discuss what incentives the cloud

providers have to join PIA, and how they deal with dis-

honest cloud providers.

Do cloud providers have incentives to join? By par-

ticipating in PIA, a cloud provider has the opportunity to

better understand its potential dependency issues in rela-

tion to other cloud providers. While the cloud provider

may not learn which specific components overlap with

others, it can learn to what extent common dependen-

cies exist between itself and other cloud providers. PIA

thus gives cloud providers the opportunity to improve

the independence of their deployments. Another po-

tential incentive is that cloud providers not participat-

ing in PIA will not appear among the alternative cloud

providers that PIA offers to auditing clients. As a re-

sult, the clients may be less likely to learn or consider

these non-participating alternatives while evaluating var-

ious redundancy deployments. These non-participating

cloud providers may lose potential customers due to the

9

326 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

lack of the PIA “reliability label” or merely due to not be-

ing on the PIA “certified provider list”. Finally, PIA of-

fers cloud providers the opportunity to improve their rep-

utation for transparency and reliability, without risking

significant leaks of proprietary secrets about their infras-

tructure. Joining PIA offers cloud providers a privacy-

preserving way to increase the effective transparency of

their infrastructures.

Will cloud providers behave honestly? Some cloud

providers might execute PIA dishonestly, for example,

by declaring a subset of their actual component-sets. In

doing so, these providers might benefit from their dis-

honesty by appearing to have a smaller set intersection

and hence greater independence than other providers.

Thus, dishonest cloud providers might be ranked higher

in the resulting ranking list. To address this issue, we

could use the trusted hardware (e.g., TPM) to remotely

attest whether cloud providers are performing PIA as re-

quired. Recent efforts such as Excalibur [53] have de-

ployed TPM into some cloud platforms successfully.

A less technical solution is to rely on the common

business practice of “trust but leave an audit trail.” For

most executions of PIA, the auditing client simply trusts

the participating cloud providers to feed honest and ac-

curate information into the protocol, but the providers

must also save and digitally sign the data they used.

If an auditing client suspects dishonesty, or during oc-

casional “spot-checks,” a specially-authorized indepen-

dent authority – analogous to the IRS – might perform

a “meta-audit” of the provider’s PIA records, so that a

persistently dishonest participant risks eventually getting

caught.

6 Implementation and Evaluation

This section first describes our INDaaS prototype im-

plementation (§6.1), then evaluates its practicality (§6.2)

and performance (§6.3).

6.1 Implementation and Deployment

We have built an INDaaS prototype system written in a

mix of Python and Java. For clarity, this section focuses

first on our implementation of SIA, followed by PIA.

6.1.1 Structural Independence Auditing

Figure 5a shows the key components of an INDaaS pro-

totype in the SIA scenario.

Auditing client. Our auditing client software, currently

written in Python, is deployed on a machine main-

tained by the cloud provider itself, e.g., Node A in Fig-

ure 5a. The auditing client communicates with the audit-

(a) Structural Independence Auditing (SIA).

(b) Private Independence Auditing (PIA).

Figure 5: INDaaS implementation and deployment.

ing agent to send the specification and receive the audit-

ing report.

Dependency acquisition. The dependency acquisition

modules, written in Python, are deployed on each worker

machine to support the audited redundancy deployment

in a cloud, e.g., Node C-E in Figure 5a. Our current

dependency acquisition implementation includes three

open-source tools: NSDMiner [46], lshw [61], and apt-

rdepends [17], which are used to collect network, hard-

ware, and software dependencies, respectively. Since

each worker machine executes its local dependency ac-

quisition modules separately, the dependency acquisition

process can be parallelized.

Auditing agent. The auditing agent, written in Python

with the NetworkX [49] library, is deployed on another

machine, e.g., Node B in Figure 5a. It collects the depen-

dency data from the dependency acquisition modules on

each worker machine over the SSH channels. The agent

then audits the collected dependency data, and returns

the auditing report back to the auditing client.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 327

(a) Common network dependency. (b) Common hardware dependency. (c) Common software dependency.

Figure 6: Practicality evaluation through three case studies: (a) common network dependency, (b) common hardware

dependency, and (c) common software dependency.

6.1.2 Private Independence Auditing

Figure 5b presents the key components of our INDaaS

prototype in the PIA scenario.

Auditing client and auditing agent. In PIA, the au-

diting client and auditing agent are implemented and de-

ployed in a similar way as in SIA, except that the auditing

agent is deployed on a machine maintained by a third-

party auditor, i.e., not by any audited cloud provider.

Dependency acquisition and proxy. For each cloud

provider, there are three dependency acquisition mod-

ules deployed on each of its worker machines, as in

SIA. Moreover, we implemented a proxy in Java for each

cloud provider. The proxy first collects dependency data

from the dependency acquisition modules deployed in its

own cloud, and then runs the private set intersection car-

dinality protocol (P-SOP) together with the proxies op-

erated by other cloud providers. In particular, we imple-

mented the P-SOP protocol with MD5, Java permutation,

and the commutative RSA encryption scheme [56].

6.2 Practicality Evaluation: Case Studies

This section evaluates INDaaS’s practicality through

three small but realistic case studies with respect to un-

expected common network, hardware, and software de-

pendencies, respectively.

6.2.1 Common Network Dependency

Our first case study targets a scenario similar to the ex-

ample given in the introduction. A data center operator,

Alice, wants to deploy a new service S in her data center,

and replicates the critical states of S across two servers

within her data center. Before service deployment, Alice

uses INDaaS to structurally audit the data center net-

work in order to avoid potential correlated failures result-

ing from common network dependencies. We used a real

data center topology [9] to model Alice’s data center net-

work. As shown in Figure 6a, this data center has many

Top-of-Rack (ToR) switches (i.e., e1-e33) each of which

is connected to an individual rack. There are four core

routers (i.e., b1, b2, c1, and c2) connecting ToR switches

to the Internet.

The INDaaS first collects network dependencies, and

then executes the SIA protocol to provide auditing at

the fault graph level. The auditing report generated by

our prototype, based on the failure sampling algorithm

(which we ran for 106 rounds) and the size-based rank-

ing algorithm, suggests that {Rack 5, Rack 29} is the

most-independent deployment in this scenario.

A formal analysis indicates that there are 190 different

two-way redundancy deployments, among which 27 do

not have unexpected RGs. This means, without INDaaS,

a random selection leads to only 14% probability for

Alice to avoid correlated failures. Furthermore, if we as-

sume the failure probability of all network devices is 0.1,

the redundancy deployment {Rack 5, Rack 29} is indeed

the one with the lowest failure probability.

6.2.2 Common Hardware Dependency

As shown in Figure 6b, we have built a simple IaaS

cloud in the lab with four servers and four switches.

We used OpenStack to support the automatic virtual ma-

chine (VM) management, and deployed various services

on VMs for different uses. In particular, we deployed an

S3-like Riak [8] cloud storage service. For redundancy,

Riak was run on two VMs (VM7 and VM8).

Before releasing the Riak storage service for public

use, we ran SIA to check whether there would be any

unexpected RGs. We chose to use the minimal RG al-

gorithm and the size-based ranking algorithm. The top

4 RGs in the RG ranking list generated by our proto-

type are: {Sever2}, {Switch1}, {Core1 & Core2}, and

{VM7 & VM8}. Note that SIA randomly orders RGs

with the same size. With this list, we noticed that we had

failed to improve the reliability of Riak service via re-

dundant VMs, because the automatic placement module

in OpenStack placed the two redundant VMs on the same

11

328 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Table 2: Ranking lists of two- and three-way redundancy

deployments based on Jaccard similarities. Cloud1, 2, 3,

and 4 are equipped with Riak, MongoDB, Redis, and

CouchDB, respectively.

Rank Two-Way Redundancy Deployment Jaccard

1 Cloud2 & Cloud4 0.1419

2 Cloud2 & Cloud3 0.1547

3 Cloud1 & Cloud4 0.2081

4 Cloud1 & Cloud3 0.2939

5 Cloud3 & Cloud4 0.3489

6 Cloud1 & Cloud2 0.5059

Rank Three-Way Redundancy Deployment Jaccard

1 Cloud2 & Cloud3 & Cloud4 0.1128

2 Cloud1 & Cloud2 & Cloud4 0.1207

3 Cloud1 & Cloud3 & Cloud4 0.1353

4 Cloud1 & Cloud2 & Cloud3 0.1536

server (a shared hardware source). As a result, the failure

of that server would undermine the redundancy effort.

The fundamental cause is that the OpenStack’s automatic

virtual machine placement policy randomly selects from

the least loaded resources to host a VM.

To make the most effective redundancy deployment,

we consulted INDaaS for an auditing report on the in-

dependence of all potential redundancy deployments.

According to the report, which suggests {Server2 and

Server3}, we re-deployed the two redundant VMs for the

Riak storage service.

6.2.3 Common Software Dependency

The last case study targets a scenario where INDaaS

offers private independence auditing across multiple

cloud providers. In particular, a service provider, Alice,

wants a reliable storage solution leveraging multiple

cloud providers, e.g., iCloud uses Amazon EC2 and Mi-

crosoft Azure for its reliable storage. Suppose Alice has

found four alternative cloud providers: Cloud 1-4, each

of which offers a key-value store. Alice then consults

INDaaS for a redundancy deployment to avoid correlated

failures caused by any shared software dependency [23].

Here, we chose four popular key-value storage sys-

tems, i.e., Riak, MongoDB, Redis, and CouchDB. As

shown in Figure 6c, we assigned each one to a cloud

provider as follows, Cloud1: Riak, Cloud2: MongoDB,

Cloud3: Redis, and Cloud4: CouchDB. Suppose each

cloud provider has used our prototype to automatically

collect the software dependencies of the packages and li-

braries in its storage system. Our PIA protocol privately

computes the Jaccard similarity for each potential redun-

dancy deployment. Table 2 shows the ranking lists of var-

ious two- and three-way redundancy deployments.

Table 3: Configurations of the generated topologies.

Topology A Topology B Topology C

switch ports 16 24 48

core routers 64 144 576

agg switches 128 288 1,152

ToR switches 128 288 1,152

servers 1,024 3,456 27,648

Total # devices 1,344 4,176 30,528

6.3 Performance Evaluation

We evaluate INDaaS’s two major components: SIA and

PIA. The performance evaluation was conducted on a

research cluster of 40 workstations equipped with Intel

Xeon Quad Core HT 3.7 GHz CPU and 16 GB RAM.

6.3.1 SIA: Efficiency v.s. Accuracy

We first explore the efficiency/accuracy trade-off be-

tween SIA’s two algorithms for analyzing a dependency

graph: the minimal RG algorithm and the failure sam-

pling algorithm (see §4.1.2). We generate three topolo-

gies from a small-scale cloud deployment to a large-scale

deployment, based on the three-stage fat tree model [45].

These topologies include the typical components within

a commercial data center: servers, Top-of-Rack (ToR)

switches, aggregation switches, and core routers. Table 3

gives the detail of these generated topologies.

We compare the computational overhead of the accu-

rate but NP-hard minimal RG algorithm to that of the

failure sampling algorithm with various sampling rounds

(103 to 107). Figure 7 shows the result that the failure

sampling algorithm runs much more efficiently than the

minimal RG algorithm while achieving a reasonably high

accuracy. For example, in topology B, the failure sam-

pling algorithm uses 90 minutes to detect 92% of all the

minimal RGs with 106 sampling rounds, in comparison

to 1046 minutes for the minimal RG algorithm.

6.3.2 PIA: System Overheads

To better understand the performance of PIA, we imple-

mented a comparable private independence auditing sys-

tem based on another private set intersection cardinal-

ity protocol, Kissner and Song (KS) [38], and then com-

pared this system with our PIA system.

For a private independence auditing system, the cryp-

tographic operations tend to be the major computational

bottleneck. Thus, we evaluate PIA by comparing PIA’s

P-SOP protocol with the comparable system’s KS proto-

col. Specifically, the cryptographic primitives of P-SOP

are hashing, commutative encryption, and permutation.

The KS protocol is mainly built on hashing, homomor-

phic crypto operations, and permutation.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 329

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(a) Topology A: 1,344 devices.

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512 1024

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(b) Topology B: 4,176 devices.

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512 2048

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(c) Topology C: 30,528 devices.

Figure 7: Performance evaluation of the minimal RG algorithm and the failure sampling algorithm in SIA.

 0

 50

 100

 150

 200

 1000 10000 100000

T
o

ta
l
tr

a
ff

ic
 s

e
n

t
(M

B
)

Number of elements in each provider’s dataset

P-SOP (2)

P-SOP (3)

P-SOP (4)

KS (2)

KS (3)

KS (4)

(a) Bandwidth overhead.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000
C

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of elements in each provider’s dataset

P-SOP (2)
P-SOP (3)
P-SOP (4)

KS (2)
KS (3)
KS (4)

(b) Computational overhead.

Figure 8: System overhead evaluation of PIA. P-SOP (k) and KS(k) mean that there are k cloud providers participating

in the P-SOP and KS protocols, respectively. The commutative encryption in P-SOP uses a 1024-bit key, and the

homomorphic encryption in KS also uses a 1024-bit key.

In the evaluation, there are k cloud providers with n

elements in each provider’s local dataset. We set k to

2, 3 and 4, and vary n between 1,000 and 100,000 to

cover a wide range of real-world settings. We measure

and compare P-SOP with KS in terms of their band-

width and computational overheads at each such cloud

provider. Figure 8a and 8b show the bandwidth overhead

and computational overhead, respectively.

With a small number of cloud providers (e.g., k =

2), the bandwidth overhead of KS is comparable to

that of P-SOP. However, with an increasing number

of cloud providers, KS’s bandwidth overhead increases

much faster than P-SOP’s. With respect to the compu-

tational overhead, P-SOP outperforms KS by a few or-

ders of magnitude although both protocols’ computa-

tional overheads increase almost linearly with the num-

ber of elements in each cloud provider’s dataset. Alto-

gether, the evaluation shows that our PIA system can

efficiently handle large cloud providers each with even

hundreds of thousands of system components.

6.3.3 Comparison: SIA Versus PIA

Compared with the SIA where there is a trusted audi-

tor, we would also like to understand how much extra

overhead the PIA approach incurs to preserve the se-

crecy of each participating cloud provider’s data. As-

sume each cloud provider maintains a local dataset con-

taining 10,000 elements. To preserve secrecy for each

cloud provider, an auditing client relies on either the PIA

system or the comparable KS-based system to determine

the most independent redundancy deployment. For a

comparison, we also assume another setting where there

exists a trusted auditor who knows all cloud providers’

datasets. This trusted auditor runs SIA at the component-

set level of detail based on the minimal RG algorithm or

the failure sampling algorithm with 106 rounds.

Figure 9a and 9b show the computational overheads

of these independence calculations for all potential two-

and three-way redundancies, respectively. As expected,

preserving the secrecy of cloud providers’ data does in-

cur extra overhead. Surprisingly, this cost is not as high

as might be expected: we see that the computational

overhead of “PIA based on P-SOP” is less than twice that

of “SIA based on sampling (106 rounds)”. The SIA sam-

pling scheme does implement a more general analysis

than PIA, supporting fault graphs rather than just com-

ponent sets. Unsurprisingly, both “PIA based on KS” and

“SIA based on minimal RG Alg” do not scale well.

13

330 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of cloud providers

PIA based on KS

SIA based on minimal RG Alg

PIA based on P-SOP

SIA based on sampling (10
6
 rounds)

(a) Two-way redundancy.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of cloud providers

PIA based on KS

SIA based on minimal RG Alg

PIA based on P-SOP

SIA based on sampling (10
6
 rounds)

(b) Three-way redundancy.

Figure 9: Performance comparison between SIA and PIA. Each cloud provider maintains a 10,000-element dataset.

7 Related Work

Providing audits for clouds is a well-known approach to

increase reliability [54]. Practical and systematic cloud

auditing, however, still remains an open problem. To the

best of our knowledge, INDaaS is the first systematic ef-

fort to enable independence audits for cloud services.

Privacy-preserving auditing systems. Following the

auditing concept proposed by Shah et al. [54], many

privacy-preserving auditing systems have been proposed

extending this approach [55, 63–66, 71].

Similar to PIA, iRec [74] and Xiao et al. [69] also

focused on analyzing correlated failures resulting from

the common infrastructure dependencies across multiple

cloud providers. These efforts proposed using the private

set intersection cardinality protocol [21] and the secure

multi-party computation protocol [72] to perform the de-

pendency analysis in a privacy-preserving fashion, re-

spectively. These initial efforts did not scale to handle

realistically large cloud datasets, however,

Diagnosis & accountability systems. Diagnosis sys-

tems, unlike auditing, attempt to discover failures after

they occur. For example, many inference-based diagnosis

systems [5, 15, 31, 37] have been proposed to obtain the

network dependencies of a cloud service when a failure

occurs. Unlike existing diagnosis systems, NetPilot [68]

aimed to mitigate these failures rather than directly lo-

calize their sources.

Accountability systems attempt to place blame after

failures occur, whereas our auditing system attempts to

prevent failures in the first place. Haeberlen [24] pro-

posed using third-party verifiable evidence to determine

whether the cloud customer or the cloud provider should

be held liability when a failure occurs.

Private set operations. Secure multi-party computation

(SMPC) [72] is a general approach to supporting com-

putation on private data including set operations. How-

ever, current circuit-based SMPC protocols are too ex-

pensive and scale poorly to large computations. Arawal

et al. [1] proposed a private set intersection cardinality

protocol based on commutative encryption. This proto-

col was limited to two-party cases, however. Vaidya and

Clifton [58] extended this protocol to support more than

two parties, and optimized its efficiency.

The first private set intersection cardinality protocol

based on homomorphic encryption was proposed by

Freedman et al. [21], which could privately compute the

number of elements common to two datasets. Hohen-

berger et al. proposed enhancements to this protocol pro-

tocol [30]. Later, Kissner and Song proposed multi-party

private set operations based upon homomorphic encryp-

tion and polynomial generation [38].

8 Conclusion

This paper has presented INDaaS, an architecture to au-

dit the independence of future or existing redundant ser-

vice deployments in the cloud. While only a start, our

proof-of-concept prototype and experiments suggest that

INDaaS could be both practical and effective in detecting

and heading off correlated failure risks before they occur.

Acknowledgments

We thank our shepherd, Timothy Roscoe, and the anony-

mous reviewers for their insightful comments. We also

thank Gustavo Alonso, Hongqiang Liu, Jeff Mogul, Ruz-

ica Piskac, Xueyuan Su, Hongda Xiao, and Sebastian

Zander for their valuable feedback on earlier drafts of

this paper. This research was sponsored by the NSF un-

der grants CNS-1017206 and CNS-1149936.

References

[1] Rakesh Agrawal, Alexandre V. Evfimievski, and

Ramakrishnan Srikant. Information sharing across

private databases. In ACM SIGMOD, June 2003.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 331

[2] Marcos Kawazoe Aguilera, Jeffrey C. Mogul,

Janet L. Wiener, Patrick Reynolds, and Athicha

Muthitacharoen. Performance debugging for dis-

tributed systems of black boxes. In 19th ACM Sym-

posium on Operating Systems Principles (SOSP),

October 2003.

[3] Amazon S3’s redundant storage. http://aws.

amazon.com/s3/, accessed on Sep 9, 2014.

[4] Amazon Web Services Team. Summary of the

October 22, 2012 AWS service event in the US-

East region. https://aws.amazon.com/

message/680342/, accessed on Sep 9, 2014.

[5] Paramvir Bahl, Ranveer Chandra, Albert G. Green-

berg, Srikanth Kandula, David A. Maltz, and Ming

Zhang. Towards highly reliable enterprise network

services via inference of multi-level dependencies.

In ACM SIGCOMM, August 2007.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using Magpie for request extrac-

tion and workload modelling. In 6th USENIX Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI), December 2004.

[7] Cristina Basescu, Christian Cachin, Ittay Eyal,

Robert Haas, Alessandro Sorniotti, Marko Vukolic,

and Ido Zachevsky. Robust data sharing with key-

value stores. In 42nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Net-

works (DSN), June 2012.

[8] Basho Technologies. Riak. http://basho.

com/riak/, accessed on Sep 9, 2014.

[9] Theophilus Benson, Aditya Akella, and David A.

Maltz. Network traffic characteristics of data cen-

ters in the wild. In Internet Measurement Confer-

ence (IMC), November 2010.

[10] Alysson Neves Bessani, Miguel P. Correia, Bruno

Quaresma, Fernando André, and Paulo Sousa. Dep-

Sky: Dependable and secure storage in a cloud-

of-clouds. In ACM SIGOPS/EuroSys European

Conference on Computer Systems (EuroSys), April

2011.

[11] Carlo Blundo, Emiliano de Cristofaro, and Paolo

Gasti. EsPRESSo: Efficient privacy-preserving

evaluation of sample set similarity. In DPM/SE-

TOP, September 2012.

[12] Nicolas Bonvin, Thanasis G. Papaioannou, and

Karl Aberer. A self-organized, fault-tolerant and

scalable replication scheme for cloud storage. In

ACM Symposium on Cloud Computing (SoCC),

June 2010.

[13] Andrei Z. Broder. On the resemblance and contain-

ment of documents. In Compression and Complex-

ity of Sequences (SEQUENCES), June 1997.

[14] Mike Y. Chen, Anthony Accardi, Emre Kiciman,

David A. Patterson, Armando Fox, and Eric A.

Brewer. Path-based failure and evolution manage-

ment. In 1st USENIX Symposium on Networked

System Design and Implementation (NSDI), March

2004.

[15] Xu Chen, Ming Zhang, Zhuoqing Morley Mao,

and Paramvir Bahl. Automating network appli-

cation dependency discovery: Experiences, limita-

tions, and new solutions. In 8th USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation (OSDI), December 2008.

[16] Jack Clark. Lightning strikes Amazon’s

European cloud. ZDNet, August 2011.

http://www.zdnet.com/lightning-

strikes-amazons-european-cloud-

3040093641/, accessed on Sep 9, 2014.

[17] Debian. Package apt-rdepends: Recursively lists

package dependencies. http://packages.

debian.org/sid/apt-rdepends, accessed

on Sep 9, 2014.

[18] John Dunagan, Nicholas J. A. Harvey, Michael B.

Jones, Dejan Kostic, Marvin Theimer, and Alec

Wolman. FUSE: Lightweight guaranteed dis-

tributed failure notification. In 6th USENIX Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI), December 2004.

[19] Bryan Ford. Icebergs in the clouds: the other risks

of cloud computing. In 4th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud), June

2012.

[20] Daniel Ford, François Labelle, Florentina I.

Popovici, Murray Stokely, Van-Anh Truong, Luiz

Barroso, Carrie Grimes, and Sean Quinlan. Avail-

ability in globally distributed storage systems. In

9th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI), October 2010.

[21] Michael J. Freedman, Kobbi Nissim, and Benny

Pinkas. Efficient private matching and set intersec-

tion. In EUROCRYPT, May 2004.

[22] Phillipa Gill, Navendu Jain, and Nachiappan Na-

gappan. Understanding network failures in data

centers: Measurement, analysis, and implications.

In ACM SIGCOMM, August 2011.

15

332 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[23] Dan Greer. Heartbleed as metaphor. Lawfare, April

2014. http://www.lawfareblog.com/

2014/04/heartbleed-as-metaphor/, ac-

cessed on Sep 9, 2014.

[24] Andreas Haeberlen. A case for the accountable

cloud. In 3rd ACM SIGOPS International Work-

shop on Large-Scale Distributed Systems and Mid-

dleware (LADIS), October 2009.

[25] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Ro-

drigues, and Peter Druschelnd. Accountable virtual

machines. In 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Octo-

ber 2010.

[26] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-

uschel. PeerReview: Practical accountability for

distributed systems. In 21st ACM Symposium

on Operating Systems Principles (SOSP), October

2007.

[27] Andreas Haeberlen, Alan Mislove, and Peter Dr-

uschel. Glacier: Highly durable, decentralized stor-

age despite massive correlated failures. In 2nd Sym-

posium on Networked Systems Design and Imple-

mentation (NSDI), May 2005.

[28] Devindra Hardawar. Apple’s iCloud runs on

Microsoft’s Azure and Amazon’s cloud. Ven-

tureBeat News, September 2011. http://

venturebeat.com/2011/09/03/

icloud-azure-amazon/, accessed on

Sep 9, 2014.

[29] Keqiang He, Alexis Fisher, Liang Wang, Aaron

Gember, Aditya Akella, and Thomas Ristenpart.

Next Step, the Cloud: Understanding modern web

service deployment in EC2 and Azure. In Internet

Measurement Conference (IMC), October 2013.

[30] Susan Hohenberger and Stephen A. Weis. Honest-

verifier private disjointness testing without random

oracles. In 6th Workshop on Privacy Enhancing

Technologies, 2006.

[31] Barry Peddycord III, Peng Ning, and Sushil Jajo-

dia. On the accurate identification of network ser-

vice dependencies in distributed systems. In 26th

Large Installation System Administration Confer-

ence (LISA), December 2012.

[32] Paul Jaccard. Étude comparative de la distribu-

tion florale dans une portion des Alpes et du Jura.

Bulletin de la Société Vaudoise des Sciences Na-

turelles, 37(142):547–579, June 1901.

[33] Nikolai Joukov, Vasily Tarasov, Joel Ossher, Bir-

git Pfitzmann, Sergej Chicherin, Marco Pistoiz, and

Takaaki Tateishi. Static discovery and remedia-

tion of code-embedded resource dependencies. In

Integrated Network Management, pages 233–240,

2011.

[34] Flavio Paiva Junqueira, Ranjita Bhagwan, Ale-

jandro Hevia, Keith Marzullo, and Geoffrey M.

Voelker. Surviving Internet catastrophes. In

USENIX Annual Technical Conference, pages 45–

60, April 2005.

[35] Ivan P Kaminow and Thomas L Koch. Optical

Fiber Telecommunications IIIA. Academic Press,

New York, 1997.

[36] Srikanth Kandula, Dina Katabi, and Jean-Philippe

Vasseur. Shrink: A tool for failure diagnosis in IP

networks. In SIGCOMM MineNet Workshop, Au-

gust 2005.

[37] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik,

Sharad Agarwal, Jitendra Padhye, and Paramvir

Bahl. Detailed diagnosis in enterprise networks. In

ACM SIGCOMM, August 2009.

[38] Lea Kissner and Dawn Xiaodong Song. Privacy-

preserving set operations. In 25th Annual Interna-

tional Cryptology Conference (CRYPTO), August

2005.

[39] Ramana Rao Kompella, Jennifer Yates, Albert G.

Greenberg, and Alex C. Snoeren. IP fault localiza-

tion via risk modeling. In 2nd USENIX Symposium

on Networked System Design and Implementation

(NSDI), May 2005.

[40] Sarah Kuranda. The 10 Biggest Cloud Outages of

2013. CRN, January 2014. http://www.crn.

com/slide-shows/cloud/240165024/

the-10-biggest-cloud-outages-of-

2013.htm, accessed on Sep 9, 2014.

[41] Zhenhua Li, Cheng Jin, Tianyin Xu, Christo Wil-

son, Yao Liu, Linsong Cheng, Yunhao Liu, Yafei

Dai, and Zhi-Li Zhang. Towards network-level ef-

ficiency for cloud storage services. In 14th ACM

Internet Measurement Conference (IMC), Novem-

ber 2014.

[42] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao

Liu, Ben Y. Zhao, Cheng Jin, Zhi-Li Zhang,

and Yafei Dai. Efficient batched synchroniza-

tion in Dropbox-like cloud storage services. In

14th ACM/IFIP/USENIX International Middleware

Conference (Middleware), December 2013.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 333

[43] Vincent Liu, Daniel Halperin, Arvind Krishna-

murthy, and Thomas Anderson. F10: A fault-

tolerant engineered network. In 10th USENIX Sym-

posium on Networked Systems Design and Imple-

mentation (NSDI), April 2013.

[44] Jeffrey C. Mogul. Emergent (mis)behavior vs. com-

plex software systems. In 1st ACM SIGOPS/Eu-

roSys European Conference on Computer Systems

(EuroSys), April 2006.

[45] Radhika Niranjan Mysore, Andreas Pamboris,

Nathan Farrington, Nelson Huang, Pardis Miri,

Sivasankar Radhakrishnan, Vikram Subramanya,

and Amin Vahdat. PortLand: A scalable fault-

tolerant layer 2 data center network fabric. In ACM

SIGCOMM, August 2009.

[46] Arun Natarajan, Peng Ning, Yao Liu, Sushil Jajo-

dia, and Steve E. Hutchinson. NSDMiner: Auto-

mated discovery of network service dependencies.

In IEEE INFOCOM, December 2012.

[47] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and

Srinivasan Seshan. Subtleties in tolerating corre-

lated failures in wide-area storage systems. In 3rd

USENIX/ACM Symposium on Networked Systems

Design and Implementation (NSDI), May 2006.

[48] National Institute of Standards and Technol-

ogy. Common Vulnerability Scoring System

(CVSS). http://nvd.nist.gov/cvss.

cfm, accessed on Sep 9, 2014.

[49] NetworkX. http://networkx.github.

com/, accessed on Sep 9, 2014.

[50] Stephen C. Pohlig and Martin E. Hellman. An

improved algorithm for computing logarithms over

GF(p) and its cryptographic significance (Cor-

resp.). IEEE Transactions on Information Theory,

24(1):106–110, 1978.

[51] Rahul Potharaju and Navendu Jain. When the net-

work crumbles: An empirical study of cloud net-

work failures and their impact on services. In ACM

Symposium on Cloud Computing (SoCC), October

2013.

[52] Chittoor V. Ramamoorthy, Gary S. Ho, and Yih-Wu

Han. Fault tree analysis of computer systems. In

AFIPS National Computer Conference, 1977.

[53] Nuno Santos, Rodrigo Rodrigues, Krishna P Gum-

madi, and Stefan Saroiu. Policy-sealed data: A new

abstraction for building trusted cloud services. In

21st USENIX Security Symposium (USENIX Secu-

rity), August 2012.

[54] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and

Ram Swaminathan. Auditing to keep online storage

services honest. In 11th Workshop on Hot Topics in

Operating Systems (HotOS), May 2007.

[55] Mehul A. Shah, Ram Swaminathan, and Mary

Baker. Privacy-preserving audit and extraction

of digital contents. Technical Report HPL-2008-

32R1, HP Laboratories, April 2008.

[56] Adi Shamir, Ron Rivest, and Leonard Adleman.

Mental poker. Technical Report LCS/TM-125,

Massachusetts Institute of Technology, February

1979.

[57] T. Sørensen. A Method of Establishing Groups of

Equal Amplitude in Plant Sociology Based on Sim-

ilarity of Species Content and Its Application to

Analyses of the Vegetation on Danish Commons. I

kommission hos E. Munksgaard, 1948.

[58] Jaideep Vaidya and Chris Clifton. Secure set in-

tersection cardinality with application to associa-

tion rule mining. Journal of Computer Security,

(4):593–622, 2005.

[59] Leslie G. Valiant. The Complexity of Enumeration

and Reliability Problems. SIAM Journal of Com-

puting, 8(3):410–421, 1979.

[60] William E. Vesely, Francine F. Goldberg, Nor-

man H. Roberts, and David F. Haasl. Fault Tree

Handbook. U.S. Nuclear Regulatory Commission,

January 1981.

[61] Lyonel Vincent. Hardware Lister (lshw).

http://ezix.org/project/wiki/

HardwareLiSter, accessed on Sep 9, 2014.

[62] Kevin Walsh and Emin Gün Sirer. Experience with

an object reputation system for Peer-to-Peer file-

sharing. In 3rd USENIX Symposium on Networked

Systems Design and Implementation (NSDI), May

2006.

[63] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui

Ren, and Wenjing Lou. Privacy-preserving public

auditing for secure cloud storage. IEEE Transac-

tions on Computers, 62(2):362–375, 2013.

[64] Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. To-

ward publicly auditable secure cloud data storage

services. IEEE Network, 24(4):19–24, 2010.

[65] Cong Wang, Qian Wang, Kui Ren, and Wenjing

Lou. Privacy-preserving public auditing for data

storage security in cloud computing. In IEEE IN-

FOCOM, March 2010.

17

334 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[66] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou,

and Jin Li. Enabling public auditability and data

dynamics for storage security in cloud computing.

IEEE Transactions on Parallel and Distributed Sys-

tems, 22(5):847–859, 2011.

[67] Wei Wei and Bart Selman. A new approach to

model counting. In 8th Internal Conference on The-

ory and Applications of Satisfiability Testing (SAT),

June 2005.

[68] Xin Wu, Daniel Turner, Chao-Chih Chen, David A.

Maltz, Xiaowei Yang, Lihua Yuan, and Ming

Zhang. NetPilot: Automating datacenter network

failure mitigation. In ACM SIGCOMM, August

2012.

[69] Hongda Xiao, Bryan Ford, and Joan Feigenbaum.

Structural cloud audits that protect private informa-

tion. In ACM Cloud Computing Security Workshop

(CCSW), November 2013.

[70] Wei Xu, Ling Huang, Armando Fox, David Patter-

son, and Michael I. Jordan. Detecting large-scale

system problems by mining console logs. In 22nd

ACM Symposium on Operating Systems Principles

(SOSP), October 2009.

[71] Kan Yang and Xiaohua Jia. Data storage auditing

service in cloud computing: Challenges, methods

and opportunities. World Wide Web, 15(4):409–

428, 2012.

[72] Andrew Chi-Chih Yao. Protocols for secure com-

putations (Extended abstract). In 23rd Annual

Symposium on Foundations of Computer Science

(FOCS), November 1982.

[73] Sebastian Zander, Lachlan L. H. Andrew, and

Grenville Armitage. Scalable private set intersec-

tion cardinality for capture-recapture with multiple

private datasets. In Centre for Advanced Internet

Architectures, Technical Report 130930A, 2013.

[74] Ennan Zhai, Ruichuan Chen, David Isaac Wolin-

sky, and Bryan Ford. An untold story of redundant

clouds: Making your service deployment truly reli-

able. In 9th Workshop on Hot Topics in Dependable

Systems (HotDep), November 2013.

[75] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao,

Hongqiang Liu, Xueyuan Su, and Bryan Ford.

Auditing the structural reliability of the clouds.

Technical Report YALEU/DCS/TR-1479, De-

partment of Computer Science, Yale University,

2014. Available at http://cpsc.yale.edu/

sites/default/files/files/tr1479.

pdf, accessed on Sep 9, 2014.

18

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 335

Characterizing Storage Workloads with Counter Stacks

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and Andrew Warfield
Coho Data

Abstract
Existing techniques for identifying working set sizes
based on miss ratio curves (MRCs) have large memory
overheads which make them impractical for storage work-
loads. We present a novel data structure, the counter
stack, which can produce approximate MRCs while us-
ing sublinear space. We show how counter stacks can
be checkpointed to produce workload representations that
are many orders of magnitude smaller than full traces, and
we describe techniques for estimating MRCs of arbitrary
workload combinations over arbitrary windows in time.
Finally, we show how online analysis using counter stacks
can provide valuable insight into live workloads.

1 Introduction
Caching is poorly understood. Despite being a pervasive
element of computer system design – one that spans pro-
cessor, storage system, operating system, and even appli-
cation architecture – the effective sizing of memory tiers
and the design of algorithms that place data within them
remains an art of characterizing and approximating com-
mon case behaviors.

The design of hierarchical memories is complicated by
two factors: First, the collection of live workload-specific
data that might be analyzed to make “application aware”
decisions is generally too expensive to be worthwhile.
Approaches that model workloads to make placement de-
cisions risk consuming the computational and memory re-
sources that they are trying to preserve. As a result, sys-
tems in many domains have tended to use simple, general
purpose algorithms such as LRU to manage cache place-
ment. Second, attempting to perform offline analysis of
access patterns suffers from the performance overheads
imposed in trace collection, and the practical challenges
of both privacy and sheer volume, in sharing and analyz-
ing access traces.

Today, these problems are especially pronounced in de-
signing enterprise storage systems. Flash memories are
now available in three considerably different form factors:
as SAS or SATA-attached solid state disks, as NVMe de-
vices connected over the PCIe bus, and finally as flash-

backed nonvolatile RAM, accessible over a DIMM inter-
face. These three connectivity models all use the same un-
derlying flash memory, but present performance and pric-
ing that are pairwise 1-2 orders of magnitude apart. Fur-
ther, in addition to solid-state memories, spinning disks
remain an economical option for the storage of cold data.

This paper describes an approach to modeling, analyz-
ing, and reasoning about memory access patterns that has
been motivated through our experience in designing a hi-
erarchical storage system [10] that combines these vary-
ing classes of storage media. The system is a scalable,
network-attached storage system that can benefit from
workload awareness in two ways: First, the system can
manage allocation of the memory hierarchy in response
to workload characteristics. Second, the capacity at each
level of the hierarchy can be independently expanded to
satisfy application demands, by adding additional hard-
ware. Both of these properties require a more precise
ability to understand and characterize individual storage
workloads, and in particular their working set sizes over
time.

Miss ratio curves (MRCs) are an effective tool for as-
sessing working set sizes, but the space and time required
to generate them make them impractical for large-scale
storage workloads. We present a new data structure, the
counter stack, which can generate approximate MRCs in
sublinear space, for the first time making this type of anal-
ysis feasible in the storage domain.

Counter stacks use probabilistic counters [18] to esti-
mate MRCs. The original approach to generating MRCs
is based on the observation that a block’s ‘stack distance’
(also known as its ‘reuse distance’) gives the capacity
needed to cache it, and this distance is exactly the number
of unique blocks accessed since the previous request for
the block. The key idea behind counter stacks is that prob-
abilistic counters can be used to efficiently estimate stack
distances, allowing us to compute approximate MRCs at
a fraction of the cost of traditional techniques.

Counter stacks are fast. Our Java implementation can
process a week-long trace of 13 enterprise servers in 17
minutes using just 80 MB of RAM; at a rate of 2.3 mil-
lion requests per second, the approach is practical for on-

336 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

line analysis in production systems. By comparison, a re-
cent C implementation of a tree-based optimization [27]
of Mattson’s original stack algorithm [23] takes roughly
an hour and 92 GB of RAM to process the same trace.

Our contributions in this paper are threefold. First,
we introduce a novel technique for estimating miss ratio
curves using counter stacks, and we evaluate the perfor-
mance and accuracy of this technique. Second, we show
how counter stacks can be periodically checkpointed and
streamed to disk to provide a highly compressed repre-
sentation of storage workloads. Counter stack streams
capture important details that are discarded by statisti-
cal aggregation while at the same time requiring orders
of magnitude less storage and processing overhead than
full request traces; a counter stack stream of the com-
pressed 2.9 GB trace mentioned above consumes just
11 MB. Third, we present techniques for working with
multiple independent counter stacks to estimate miss ra-
tio curves for new workload combinations. Our library
implements slice, shift, and join operations, enabling the
nearly-instantaneous computation of MRCs for arbitrary
workload combinations over arbitrary windows in time.
These capabilities extend the functionality of MRC anal-
ysis and provide valuable insight into live workloads, as
we demonstrate with a number of case studies.

2 Background
The many reporting facilities embedded in the modern
Linux storage stack [5, 7, 19, 25] are testament to the
importance of being able to accurately characterize live
workloads. Common characterizations typically fall into
one of two categories: coarse-grain aggregate statistics
and full request traces. While these representations have
their uses, they can be problematic for a number of rea-
sons: averages and histograms discard key temporal in-
formation; sampling is vulnerable to the often bursty and
irregular nature of storage workloads; and full traces im-
pose impractical storage and processing overheads. New
representations are needed which preserve the important
features of full traces while remaining manageable to col-
lect, store, and query.

Working set theory [12] provides a useful abstrac-
tion for describing workloads more concisely, particularly
with respect to how they will behave in hierarchical mem-
ory systems. In the original formulation, working sets
were defined as the set of all pages accessed by a pro-
cess over a given epoch. This was later refined by using
LRU modelling to derive an MRC for a given workload
and restricting the working set to only those pages that
exhibit strong locality. Characterizing workloads in terms
of the unique, ‘hot’ pages they access makes it easier to

understand their individual hardware requirements, and
has proven useful in CPU cache management for many
years [21, 28, 35]. These concepts hold for storage work-
loads as well, but their application in this domain is chal-
lenging for two reasons.

First, until now it has been prohibitively expensive to
calculate the working set of storage workloads due to their
large sizes. Mattson’s original stack algorithm [23] re-
quired O(NM) time and O(M) space for a trace of N
requests and M unique elements. An optimization using
a balanced tree to maintain stack distances [1] reduces the
time complexity to O(N logM), and recent approxima-
tion techniques [14, 38] reduce the time complexity even
further, but they still have O(M) space overheads, making
them impractical for storage workloads that may contain
billions of unique blocks.

Second, the extended duration of storage workloads
leads to subtleties when reasoning about their work-
ing sets. CPU workloads are relatively short-lived, and
in many cases it is sufficient to consider their working
sets over small time intervals (e.g., a scheduling quan-
tum) [42]. Storage workloads, on the other hand, can span
weeks or months and can change dramatically over time.
MRCs at this scale can be tricky: if they include too little
history they may fail to capture important recurring pat-
terns, but if they include too much history they can signif-
icantly misrepresent recent behavior.

This phenomenon is further exacerbated by the fact that
storage workloads already sit behind a file system cache
and thus typically exhibit longer reuse distances than CPU
workloads [43]. Consequently, cache misses in storage
workloads may have a more pronounced effect on miss
ratios than CPU cache misses, because subsequent re-
accesses are likely to be absorbed by the file system cache
rather than contributing to hits at the storage layer.

One implication of this is that MRC analysis needs to
be performed over various time intervals to be effective
in the storage domain. A workload’s MRC over the past
hour may differ dramatically from its MRC over the past
day; both data points are useful, but neither provides a
complete picture on its own.

This leads naturally to the notion of a history of locality:
a workload representation which characterizes working
sets as they change over time. Ideally, this representation
contains enough information to produce MRCs over arbi-
trary ranges in time, in much the same way that full traces
support statistical aggregation over arbitrary intervals. A
naı̈ve implementation could produce this representation
by periodically instantiating new Mattson stacks at fixed
intervals of a trace, thereby modelling independent LRU
caches with various amounts of history, but such an ap-

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 337

proach would be impractical for real-world workloads.
In the following section we describe a novel technique

for computing stack distances (and by extension, MRCs),
from an inefficient, idealized form of counter stacks. Sec-
tion 4 explains several optimizations which allow a prac-
tical counter stack implementation that requires sublinear
space, and Section 5 presents the additional operations
that counter stacks support, such as slicing and joining.

3 Counter Stacks
Counter stacks capture locality properties of a sequence of
accesses within an address space. In the context of a stor-
age system, accesses are typically read or write requests
to physical disks, logical volumes, or individual files. A
counter stack can process a sequence of requests as they
occur in a live storage system, or it can process, in a sin-
gle pass, a trace of a storage workload. The purpose of a
counter stack is to represent specific characteristics of the
stream of requests in a form that is efficient to compute
and store, and that preserves enough information to char-
acterize aspects of the workload, such as cache behaviour.

Rather than representing a trace as a sequence of re-
quests for specific addresses, counter stacks maintain a
list of counters, which are periodically instantiated while
processing the trace. Each counter records the number
of unique trace elements observed since the inception of
that counter; this captures the size of the working set over
the corresponding portion of the trace. Computing and
storing samples of working set size, rather than a com-
plete access trace, yields a very compact representation
of the trace that nevertheless reveals several useful prop-
erties, such as the number of unique blocks requested, or
the stack distances of all requests, or phase changes in
the working set. These properties enable computation of
MRCs over arbitrary portions of the trace. Furthermore,
this approach supports composition and extraction oper-
ations, such as joining together multiple traces or slicing
traces by time, while examining only the compact repre-
sentation, not the original traces.

3.1 Definition

A counter stack is an in-memory data structure that is up-
dated while processing a trace. At each time step, the
counter stack can report a list of values giving the num-
bers of distinct blocks that were requested between the
current time and all previous points in time. This data
structure evolves over time, and it is convenient to display
its history as a matrix, in which each column records the
values reported by the counter stack at some point in time.

Formally, given a trace sequence (e1 . . . eN), where ei
is the ith trace element, consider an N × N matrix C
whose entry in the ith row and jth column is the number
of distinct elements in the set {ei . . . ej}. For example,
the trace (a, b, c, a) yields the following matrix.

(a, b, c, a,)
1 2 3 3

1 2 3
1 2

1

The j th column of this matrix gives the values reported
by the counter stack at time step j, i.e., the numbers of
distinct blocks that were requested between that time and
all previous times. The ith row of the matrix can be viewed
as the sequence of values produced by the counter that was
instantiated at time step i.

The in-memory counter stack only stores enough infor-
mation to produce, at any point in time, a single column of
the matrix. To compute our desired properties over arbi-
trary portions of the trace, we need to store the entire his-
tory of the data structure, i.e., the entire matrix. However,
the history does not need be stored in memory. Instead,
at each time step we write to disk the current column of
values reported by the counter stack. This can be viewed
as checkpointing, or incrementally updating, the on-disk
representation of the matrix. This on-disk representation
is called a counter stack stream; for conciseness we will
typically refer to it simply as a stream.

3.2 LRU Stack Distances
Stack distances and MRCs have numerous applications in
cache sizing [23], memory partitioning between processes
or VMs [20,34,35,42], garbage collection frequency [39],
program analysis [14,41], workload phase detection [31],
etc. A significant obstacle to the widespread use of MRCs
is the cost of computing them, particularly the high stor-
age cost [4, 27, 30, 33, 40] – all existing methods require
linear space. Counter stacks eliminate this obstacle by
providinge xtremely efficient MRC computation while us-
ing sublinear space.

In this subsection we explain how stack distances, and
hence MRCs, can be derived from counter stack streams.
Recall that the stack distance of a given request is the
number of distinct elements observed since the last refer-
ence to the requested element. Because a counter stack
stores information about distinct elements, determining
the stack distance is straightforward. At time step j one
must find the last position in the trace, i, of the requested
element, then examine entry Cij of the matrix to deter-
mine the number of distinct elements requested between

3

338 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

times i and j. For example, let us consider the matrix
given in Section 3.1. To determine the stack distance
for the second reference to trace element a at position 4,
whose previous reference was at position 1, we look up
the value C1,4 and get a stack distance of 3.

This straightforward method ignores a subtlety: how
can one find the last position in the trace of the requested
element? It turns out that this information is implicitly
contained in the counter stack. To explain this, suppose
that the counter that was instantiated at time i does not
increase during the processing of element ej . Since this
counter reports the number of distinct elements that it has
seen, we can infer that this counter has already seen el-
ement ej . On the other hand, if the counter instantiated
at time i + 1 does increase while processing ej , then we
can infer that this counter has not yet seen element ej .
Combining those inferences, we can conclude that i is the
position of last reference.

These observations lead to a finite-differencing scheme
that can pinpoint the positions of last reference. At each
time step, we must determine how much each counter in-
creases during the processing of the current element of
the trace. This is called the intra-counter change, and it is
defined to be

∆xij = Ci,j − Ci,j−1

To pinpoint the position of last reference, we must find the
newest counter that does not increase. This can be done by
comparing the intra-counter change of adjacent counters.
This difference is called the inter-counter change, and it
is defined to be

∆yij =

{
∆xi+1,j −∆xi,j if i < j

0 if i = j

Let us illustrate these definitions with an example. Re-
stricting our focus to the first four elements of the example
trace from Section 3.1, the matrices ∆x and ∆y are

{ a, b, c, a }
1 1 1 0

1 1 1
1 1

1
∆x

{ a, b, c, a }
0 0 0 1

0 0 0
0 0

0
∆y

Every column of ∆y either contains only zeros, or con-
tains a single 1. The former case occurs when the element
requested in this column has never been requested before.
In the latter case, if the single 1 appears in row i, then the
last request for that element was at time i. For example,
because ∆y14 = 1, the last request for element a before
time 4 was at time 1.

Determining the stack distance is now simple, as be-
fore. While processing column j of the stream, we infer

that the last request for the element ej occurred at time i
by observing that ∆yij = 1. The stack distance for the
jth request is the number of distinct elements that were re-
quested between time i and time j, which is Cij . Recall
that the MRC at cache size x is the fraction of requests
with stack distance exceeding x. Therefore given all the
stack distances, we can easily compute the MRC.

4 Practical Counter Stacks
The idealized counter stack stream defined in Section 3
stores the entire matrix C, so it requires space that is
quadratic in the length of the trace. This is actually more
expensive than storing the original trace. In this section
we introduce several ideas that allow us to dramatically
reduce the space of counter stacks and streams.

Section 4.1 discusses the natural idea of decreasing the
time resolution, i.e., keeping only every dth row and col-
umn of the matrix C. Section 4.2 discusses the idea
of pruning: eventually a counter may have observed the
same set of elements as its adjacent counter, at which
point maintaining both of them becomes unnecessary. Fi-
nally, Section 4.3 introduces the crucial idea of using
probabilistic counters to efficiently and compactly esti-
mate the number of distinct elements seen in the trace.

4.1 Downsampling
The simplest way to improve the space used by counter
stacks and streams is to decrease the time resolution. This
idea is not novel, and similar techniques have been used
in previous work [16].

In our context, decreasing the time resolution amounts
to keeping only a small submatrix of C that provides
enough data, and of sufficient accuracy, to be useful for
applications. For example, one could start a new counter
only at every dth position in the trace; this amounts to
keeping only every dth row of the matrix C. Next, one
could update the counters only at every dth position in the
trace; this amounts to keeping only every dth column of
the matrix C. We call this process downsampling.

Adjacent entries in the original matrix C can differ only
by 1, so adjacent entries in the downsampled matrix can
differ only by d. Thus, any entry that is missing from
the downsampled matrix can be estimated using nearby
entries that are present, up to additive error d. For large-
scale workloads with billions of distinct elements, even
choosing a very large value of d has negligible impact on
the estimated stack distances and MRCs.

Our implementation uses a slightly more elaborate
form of downsampling because we wish to combine traces
that may have activity bursts in disjoint time intervals and

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 339

avoid writing columns during idle periods. As well as
starting a new counter and updating the old counters after
every dth request, we also start a new counter and update
the old counters every s seconds with one exception: we
do not output a column if the previous s seconds contain
no activity. Our experiments reported in Section 7 pick
d = 106 and s ∈ {60, 3600}.

4.2 Pruning
Recall that every row of the matrix contains a sequence
of values reported by some counter. For any two adja-
cent counters, the older one (the upper row) will always
emit values larger than or equal to the younger one (the
lower row). Let us consider the difference of these coun-
ters. Initially, at the time the younger one is created, their
difference is simply the number of distinct elements seen
by the older counter so far. If any of these elements reap-
pears in the trace, the older counter will not increase (as
it has seen this element before), but the younger counter
will increase, so the difference of the counters shrinks.

If at some point the younger counter has seen every el-
ement seen by the older counter, then their difference be-
comes zero and will remain zero forever. In this case, the
younger counter provides no additional information, so it
can be deleted. An extension of this idea is that, when
the difference between the counters becomes sufficiently
small, the younger counter provides negligible additional
information. In this case, the younger counter can again
be deleted, and its value can be approximated by referring
to the older counter. We call this process pruning.

The simplest pruning strategy is to delete the younger
counter whenever its value differs from its older neighbor
by at most p. This strategy ensures that the number of ac-
tive counters at any point in time is at most M/p. (Recall
that M is the number of distinct blocks in the entire trace.)
In our current implementation, in order to fix a set of pa-
rameters that work well across many workloads of vary-
ing sizes, we instead delete the younger counter when-
ever its value is at least (1 − δ) times the older counter’s
value. This ensures that the number of active counters is
at most O(log(M)/δ). Our experiments reported in Sec-
tion 7 pick δ ∈ {0.1, 0.02}.

4.3 Probabilistic Counters
Counter stack streams contain the number of distinct
blocks seen in the trace between any two points in time
(neglecting the effects of downsampling and pruning).
The on-disk stream only needs to store this matrix of
counts, as the examples in Section 3 suggested. The in-
memory counter stack has a more difficult job – it must

be able to update these counts while processing the trace,
so each counter must keep an internal representation of
the set of blocks it has seen.

The naı̈ve approach is for each counter to represent this
set explicitly, but this would require quadratic memory
usage (again, neglecting downsampling and pruning). A
slight improvement can be obtained through the use of
Bloom filters [6], but for an acceptable error tolerance,
the space would still be prohibitively large. Our approach
is to use a tool, called a probabilistic counter or cardinal-
ity estimator, that was developed over the past thirty years
in the streaming algorithms and database communities.

Probabilistic counters consume extremely little space
and have guaranteed accuracy. The most practical of these
is the HyperLogLog counter [18], which we use in our im-
plementation. Each count appearing in our on-disk stream
is not the true count of distinct blocks, but rather an esti-
mate produced by a HyperLogLog counter which is cor-
rect up to multiplicative factor 1+ε. The memory usage of
each HyperLogLog counter is roughly logarithmic in M ,
with more accurate counters requiring more space. More
concretely, our evaluation discussed in Section 7 uses as
little as 53 MB of memory to process traces containing
over a hundred million requests and distinct blocks.

4.4 LRU Stack Distances
The technique in Section 3.2 for computing stack dis-
tances and MRCs using idealized counter stacks can be
adapted to use practical counter stacks. The matrices
∆x and ∆y are defined as before, but are now based on
the downsampled, pruned matrix containing probabilistic
counts. Previously we asserted that every column of ∆y
is either all zeros or contains a single 1. This is no longer
true. The entry ∆yij now reports the number of requests
since the counters were last updated whose stack distance
was approximately Cij .

To approximate the stack distances of all requests, we
process all columns of the stream. As there may be many
non-zero entries in the j th column of ∆y, we record ∆yij
occurrences of stack distance Cij for every i. As before,
given all stack distances we can compute the MRC.

An online version of this approach which does not
emit streams can produce an MRC of guaranteed accu-
racy using provably sublinear memory. In a companion
paper [15] we prove the following theorem. The key point
is that the space depends polynomially on � and ε, the pa-
rameters controlling the precision of the MRC, but only
logarithmically on N , the length of the trace.

Theorem 1. The online algorithm produces an es-
timated MRC that is correct to within additive er-
ror ε at cache sizes 1

�M, 2
�M, 3

�M, . . . ,M using only

5

340 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

O(�2 log(M) log2(N)/ε2) bits of space, with high proba-
bility.

5 The Counter Stack API
The previous two sections have given an abstract view of
counter stacks. In this section we describe the system that
we have implemented based on those ideas. The system
is a flexible, memory-efficient library that can be used to
process traces, produce counter stack streams, and per-
form queries on those streams. The workflow of applica-
tions that use this library is illustrated in Figure 1.

5.1 On-disk Streams
The on-disk streams output by the library are produced by
periodically outputting a new column of the matrix. As
discussed in Section 4, a new column is produced if either
d requests have been observed in the trace or s seconds
have elapsed (in the trace’s time) since the last column
was produced, except for idle periods, which are elided.
Each column is written to disk in a sparse format to incor-
porate the fact that pruning may cause numerous entries
to be missing.

In addition, the on-disk matrix C includes an extra row,
called row R, which records the raw number of requests
observed in the stream. That is, CRj contains the total
number of requests processed at the time that the jth col-
umn is output. Finally, the on-disk stream also records the
trace’s time of the current request.

5.2 Compute Queries
The counter stack library supports three computational
queries on streams: Request Count, Unique Request
Count and MRC.

The first two query operations are straightforward but
useful, as we will show in Section 8.4. The Request Count
query simply asks for the total number of requests that
occur in the stream, which is CRj where j is the index
of the last column. The Unique Request Count query is
similar except that it asks for the total number of unique
requests, which is C1j .

The most complicated stream operation is the MRC
query, which asks for the miss ratio curve of the given
stream. This query is processed using the method de-
scribed in Section 4.4.

5.3 Time Slicing and Shifting
It is often useful to analyze only a subset of a given trace
within a specific time interval. We refer to this time-based
selection as slicing. It is similarly useful when joining

I/O Trace
(per-device, volume, or object)

CStack

Stream

Writer

CS1 Reader

Reader

Reader

Request Count

Miss Ratio Curve

Unique Request Count
CS2

CSm

slice

shift

...
join

specify compute

Counter Stack Creation

Query Execution

CS1 CS2

CSmCS3

Figure 1: The counter stack library architecture.

traces to alter the time signature by a constant time inter-
val. We refer to this alteration as shifting.

The counter stack library supports slicing and shifting
as specification operations. Given a stream containing
a matrix C, the stream for the time slice between time
step i and j is the submatrix with corners at Cii and Cjj .
Likewise, to obtain the stream for the trace shifted for-
ward/backward s time units, we simply add/subtract s
to each of the time indices associated with the rows and
columns of the matrix.

5.4 Joining
Given two or more workloads, it is often useful to under-
stand the behavior that would result if they were combined
into a single workload. For example, if each workload is
an I/O trace of a different process, one may want to in-
vestigate the cache performance of those processes with a
shared LRU cache.

Counter stacks enable such analyses through the join
operation. Given two counter stack streams, the desired
output of the join operation is what one would obtain by
merging the original two traces according to the traces’
times, then producing a new counter stack stream from
that merged trace. Our library can produce this new
stream using only the two given streams, without exam-
ining the original traces. The only assumption we require
is that the two streams must access disjoint sets of blocks.

The join process would be simple if, for every i, the
time of the ith request were the same in both traces; in this
case, we could simply add the matrices stored in the two
streams. Unfortunately that assumption is implausible, so
more effort is required. The main ideas are to:

• Expand the two matrices so that each has a row and
column for every time that appears in either trace.

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 341

time 1:00 1:02 1:05 1:14 1:17
A a b b
CA 1 1 2 2 2

0 1 1 1
1 1 1

0 1
1

B d d
CB 0 1 1 1 1

1 1 1 1
0 1 1

1 1
0

merge a d b d b
CA + CB 1 2 3 3 3

1 2 2 2
1 2 2

1 2
1

Figure 2: An example illustrating the join operation.

• Interpolate to fill in the new matrix entries.
• Add the resulting matrices together.
Let us illustrate this process with an example. Consider

a trace A that requests blocks (a, b, b) at times 1:00, 1:05,
1:17, and a trace B requests blocks (d, d) at times 1:02
and 1:14. The merge of the two traces is as follows:

time 1:00 1:02 1:05 1:14 1:17
A a b b
B d d

merge a d b d b

To join these streams, we must expand the matrices in
the two streams so that each has five rows and columns,
corresponding to the five times that appear in the traces.
After this expansion, each matrix is missing entries corre-
sponding to times that were missing in its trace. We fill in
those missing entries by an interpolation process: a miss-
ing row is filled by copying the nearest row beneath it, and
a missing column is filled by copying the nearest column
to the left of it. Figure 2 shows the resulting matrices;
interpolated values are shown in bold blue.

Pruned counters can sometimes create negative values
in ∆x. For example, after pruning a counter in row j
at time t, the interpolated value of the pruned counter at
t + 1 is set to the nearest row beneath it, representing a
younger counter. Often, this lower counter has a smaller
value than the pruned counter. The interpolated value at
t+1 will then be less than its previous value at t, produc-
ing a negative intra-counter change. We can avoid intro-
ducing negative values in ∆x by replacing any negative

values in ∆x by the nearest nonnegative value beneath
it. This replacement has the same effect of changing the
value of the pruned counter to the lower counter in col-
umn t prior to calculating the intra-counter change for the
column representing t+ 1.

6 Error and Uncertainty
While each of the optimizations described in Section 4
dramatically reduce the storage requirements of counter
stacks, they may also introduce uncertainty and error into
the final calculations. In this section, we discuss potential
sources of error, as well as how to modify the different
operations described in Section 3 to compute lower and
upper bounds on the stack distances.

6.1 Counter Error

HyperLogLog counters introduce error in two ways:
count estimation and simultaneous register updates. Hy-
perLogLog counters report a count of distinct elements
that is only correct up to multiplicative factor ε, which
is determined by a precision parameter. This uncertainty
produces deviation from the true MRC and can be con-
trolled by increasing the precision of the HyperLogLog
counters, at the cost of a greater memory requirement.

Simultaneous register updates introduce a subtler form
of error. A HyperLogLog counter estimates unique counts
by taking the harmonic mean of a set of internal vari-
ables called registers. Due to the design of HLLs, some-
times a register update might cause the older counter to
increase in value more than the younger counter. This
phonemoneon leads to negative updates in ∆y, because
older counters are expected to change more slowly than
younger counters. Theorem 1 implies that the negative
entries in the ∆y matrix introduced by simultaneous reg-
ister updates are offset by corresponding over-estimates
when register modifications between counters are not si-
multaneous.

In some cases, the histogram of stack distances may ac-
cumulate enough negative entries that there are bins with
negative counts. The cumulative sum of such a histogram
will result in a non-monotonic MRC. We can enforce a
monotonic MRC by accumulating any negative histogram
bins in a separate counter, carrying the difference forward
in the cumulative sum and discounting positive bins by
the negative count. In practice, negative histogram entries
make up less then one percent of the reported stack dis-
tances, with little to no visible effect on the accumulated
MRC.

7

342 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

6.2 Downsampling Uncertainty
Whereas the scheme of Section 3.2 computes stack dis-
tances exactly, the modified scheme of Section 4.4 only
computes approximations. This uncertainty in the stack
distances is caused by downsampling, pruning and use of
probabilistic counters. To illustrate this, consider the ex-
ample shown in Figure 3, and for simplicity let us ignore
pruning and any probabilistic error.

At every time step j, the finite differencing scheme uses
the matrix ∆y to help estimate the stack distances for all
requests that occurred since time step j − 1. More con-
cretely, if such a request increases the (i+1)th counter but
does not increase the ith counter, then we know that the
most recent occurrence of the requested block lies some-
where between time step i and time step i+1. Since there
may have been many requests between time i and time
i + 1, we do not have enough information to determine
the stack distance exactly, but we estimate it up to addi-
tive error d (the downsampling factor). A careful analysis
can show that the request must have stack distance at least
Ci+1,j−1 + 1 and at most Cij .

7 Evaluation
In this section we empirically validate two claims: (1) the
time and space requirements of counter stack processing
are sufficiently low that it can be used for online analysis
of real storage workloads, and (2) the technique produces
accurate, meaningful results.

We use a well-studied collection of storage traces re-
leased by Microsoft Research in Cambridge (MSR) [26]
for much of our evaluation. The MSR traces record the
disk activity (captured beneath the file system cache) of
13 servers with a combined total of 36 volumes. No-
table workloads include a web proxy (prxy), a filer serv-
ing project directories (proj), a pair of source control
servers (src1 and src2), and a web server (web). The
raw traces comprise 417 million records and consume just
over 5 GB in compressed CSV format.

We compare our technique to the ‘ground truth’ ob-
tained from full trace analysis (using trace trees, the
tree-based optimization of Mattson’s algorithm [23, 27]),
and, where applicable, to a recent approximation tech-
nique [37] which derives estimated MRCs from average
footprints (see Section 9 for more details). For fairness,
we modify the original implementation [13] by using a
sparse dictionary to reduce memory overhead.

7.1 Performance
The following experiments were conducted on a Dell
PowerEdge R720 with two six-core Intel Xeon proces-

Fidelity Time Memory Throughput Storage

low 17.10 m 78.5 MB 2.31M reqs/sec 747 KB

high 17.24 m 80.6 MB 2.29M reqs/sec 11 MB

Table 1: The resources required to create low and high fidelity
counter stacks for the combined MSR workload (64 MB heap).

sors and 96 GB of RAM. Traces were read from high-
performance flash to eliminate disk IO bottlenecks.

Throughout this section we present figures for both
‘low’ and ‘high’ fidelity streams. We control the fidelity
by adjusting the number of counters maintained in each
stream; the parameters used in these experiments repre-
sent just two points of a wide spectrum, and were chosen
in part to illustrate how accuracy can be traded for perfor-
mance to meet individual needs.

We first report the resources required to convert a raw
storage trace to a counter stack stream. The memory foot-
print for the conversion process is quite modest: convert-
ing the entire set of MSR traces to high-fidelity counter
stacks can be done with about 80 MB of RAM 1. The pro-
cessing time is low as well: our Java implementation can
convert a trace to a high-fidelity stream at a rate of 2.3
million requests per second with a 64 MB heap and 2.7
million requests per second with a 256 MB heap.

The size of counter stack streams can also be con-
trolled by adjusting fidelity. Ignoring write requests,
the full MSR workload consumes 2.9 GB in a com-
pressed, binary format. We can reduce this to 854 MB
by discarding latency values and capping timestamp res-
olutions at one second, and we can shave off another
50 MB through domain-specific compaction techniques
like delta-encoding time and offset values. But as Ta-
ble 1 shows, this is more than 70 times larger than a high-
fidelity counter stack representation.

The compression achieved by counter stack streams is
workload-dependent. High-fidelity streams of the MSR
workloads are anywhere from 12 (hm) to 1,024 (prxy)
times smaller than their compressed binary counterparts,
with larger traces tending to compress better. A stream of
the combined traces consumes just over 1.5 MB per day,
meaning that weeks or even months of workload history
can be retained at very reasonable storage costs.

Once a trace has been converted to a counter stack
stream, performing queries is very quick. For example,
an MRC for the entire week-long MSR trace can be com-

1This is not a lower bound. Additional reductions can be achieved
at the expense of increased garbage collection activity in the JVM; for
example, enforcing a heap limit of 32 MB increases processing time
for the high-fidelity counter stack by about 30% and results in a peak
resident set size of 53 MB.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 343

C 10 20 50
15 50

40
R 100 200 300

→

∆x 10 10 30
15 35

40
∆R 100 100 100

→

∆y 90 (1, 10) 5 (1, 20) 5 (16, 50)
85 (1, 15) 5 (1, 50)

60 (1, 40)

Figure 3: An example of computing stack distances using a downsampled matrix. The entries of ∆y show the number of requests
and the parenthesized values show the bounds on the stack distances that we can infer for those requests.

puted from the counter stack stream in just seconds, with
negligible memory overheads. By comparison, comput-
ing the same MRC using a trace tree takes about an hour
and reaches a peak memory consumption of 92 GB, while
the average footprint technique requires 8 and a half min-
utes and 23 GB of RAM.

7.2 Accuracy
Figure 4 shows miss ratio curves for each of the individ-
ual workloads contained in the MSR traces as well as the
combined master trace; superimposed on the baseline
curves (showing the exact MRCs) are the curves com-
puted using footprint averages and counter stacks. Some
of the workloads feature MRCs that are notably different
from the convex functions assumed in the past [35]. The
web workload is the most obvious example of this, and it
is also the workload which causes the most trouble for the
average footprint technique.

Figure 5 shows three examples of MRCs produced by
joining individual counter stacks. The choice of work-
loads is somewhat arbitrary; we elected to join work-
loads of commensurate size so that each would contribute
equally to the resulting merged MRC. As described in
Section 5.4, the join operation can introduce additional
uncertainty due to the need to infer the values of missing
counters, but the effects are not prominent with the high-
fidelity counter stacks used in these examples.

We performed an analysis of curve errors at different fi-
delities, with verylow (δ = 0.46, d = 19M , s = 32K)
at one extreme and high (δ = 0.01, d = 1M , s = 60) at
the other. To measure curve error, we use the Mean Abso-
lute Error (MAE) between a given curve and its ground-
truth counterpart. The MAE is defined as the average ab-
solute difference between two series mrc and mrc′, or
1
N

∑
|mrc(x)−mrc′(x)|. Because MRCs range between

0 and 1, the MAEs are also confined to the same range,
where a value of 0 implies perfectly corresponding curves.
At the other extreme, it is difficult to know what consti-
tutes a “bad” MAE because it is unlikely to be close to 1
except in singular cases. For example, the MAE between
the hm and the ts Mattson curves is only 0.15. For the
high fidelity counter stacks, we observe MAEs between
0.002 and 0.02, and for the average footprint algorithm,

we observe MAEs between 0.001 and 0.04.
We find that curve error under compression is highly

workload-dependent. We observed the largest errors on
“jagged” workloads with sharp discontinuities, such as
src1 and web, while workloads with “flatter” MRCs
such as stg and usr are almost invariant to compression.
Figure 6 summarizes our findings on two such workloads.
On the left, we illustrate the difference in the change in er-
ror as fidelity decreases for a jagged workload, src1, and
a flat workload, usr. On the right, we show the smooth-
ing effect of decreasing the counter stack fidelity by com-
paring the verylow and high fidelity curves against
Mattson on src1.

8 Workload Analysis
We have shown that counter stacks can be used to produce
accurate MRC estimations in a fraction of the time and
space used by existing techniques. We now demonstrate
some of the capabilities of the counter stack query inter-
face through a series of case studies of the MSR traces.

8.1 Combined Workloads
Hit rates are often used to gauge the health of a storage
system: high hit rates are considered a sign that a system
is functioning properly, while poor hit rates suggest that
tuning or configuration changes may be required. One
problem with this simplistic view is that the combined hit
rates of multiple independent workloads can be dominated
by a single workload, thereby hiding potential problems.

We find this is indeed the case for the MSR traces. The
prxy workload features a small working set and a high
activity rate – it accesses only 2 GB of unique data over
the entire week but issues 15% of all read requests in the
combined trace. Table 2 puts this in perspective: the com-
bined workload achieves a hit rate of 50% with a 550 GB
cache; more than 250 GB of additional cache capacity
would be required to achieve this same hit rate without
the prxy workload. This illustrates why combined hit
rate is not an adequate metric of system behavior. Diag-
nostic tools which present hit rates as an indicator of stor-
age well-being should be careful to consider workloads
independently as well as in combination.

9

344 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

hm mds prn

proj prxy rsrch

src1 src2 stg

ts usr wdev

web master

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 0 25 50 75 0 20 40 60 80

0 400 800 1200 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6

0 50 100 150 200 250 0 10 20 30 40 0 25 50 75

0.0 0.1 0.2 0.3 0.4 0.5 0 250 500 750 1000 0.00 0.05 0.10 0.15 0.20

0 20 40 60 80 0 1000 2000

Cache Size (GB)

M
is

s
 R

a
ti
o

Algorithm

avgfp

cs−high

cs−low

mattson

Figure 4: MSR miss ratio curves.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 345

hm−rsrch−merged src2−prn−merged stg−web−merged

0.00

0.25

0.50

0.75

1.00

0 1 2 0 30 60 90 120 0 50 100 150

Cache Size (GB)

M
is

s
 R

a
ti
o

Algorithm cs mattson

Figure 5: MRCs for various combinations of MSR workloads (produced by the join operation).

verylow

Counter Stack Error Trends

0.00

0.02

0.04

0.06

0.08

0 20 40 60

Counter Stack Size (KB)

M
e
a
n
 A

b
o
s
lu

te
 E

rr
o
r

VM

src1

usr

src1

0.25

0.50

0.75

1.00

0 50 100 150 200 250

Cache Size (GB)

M
is

s
 R

a
te

Quality

high

mattson

verylow

Figure 6: The qualitative effect of counter stack fidelity is workload-dependent. On the left, we show the curve error and file
sizes of different fidelities. The usr workload is robust to compression to very low fidelity, while the src1 workload degrades
progressively. On the right, we show the visual outcome of compression to both high and verylow fidelity on src1.

Desired Hit Rate Required Cache Size

With prxy Without prxy

30% 2.5 GB 21.6 GB

40% 19.2 GB 525.5 GB

50% 566.6 GB 816.0 GB

Table 2: Cache sizes required to obtain desired hit rates for
combined MSR workloads with and without prxy.

8.2 Erratic Workloads

MRCs can be very sensitive to anomalous events. A one-
off bulk read in the middle of an otherwise cache-friendly
workload can produce an MRC with high miss rates, ar-
guably mischaracterizing the workload. We wrote a sim-
ple script that identifies erratic workloads by searching
for hour-long slices with unusually high miss ratios. The
script found several workloads, including mds, stg, ts,
and prn, whose week-long MRCs are dominated by just
a few hours of intense activity.

Figure 7 shows the effect these bursts can have on
workload performance. The full-week MRC for prn
(Figure 4) shows a maximum achievable hit rate of 60%

hours 0 − 101 hours 101 − 103 hours 103 − 168

0.00

0.25

0.50

0.75

1.00

0 5 10 15 0 20 40 0 5 10 15 20

Cache Size (GB)

M
is

s
 R

a
ti
o

Figure 7: Time-sliced prn workload.

at a cache size of 83 GB. The workload features a two-
hour read burst starting 102 hours into the trace which ac-
counts for 29% of the total requests and 69% of the unique
blocks. Time-sliced MRCs before and after this burst fea-
ture hit rates of 60% at cache sizes of 10 GB and 12 GB,
respectively. This is a clear example of how anomalous
events can significantly distort MRCs, and it shows why
it is important to consider MRCs over various intervals in
time, especially for long-lived workloads.

8.3 Conflicting Workloads

Many real-world workloads exhibit pronounced diurnal
patterns: interactive workloads typically reflect natu-

11

346 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

675 GB

1 TB

combined workloads

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Cache Size (GB)

M
is

s
 R

a
ti
o

Schedule

best

worst

Figure 8: Best and worst time-shifted MRCs for MSR work-
loads (excluding prxy). We omit cache sizes greater than 1.5
TB to preserve details in the plot.

ral trends in business hours, while automatic workloads
are often scheduled at regular intervals throughout the
day [17, 22, 29]. When such workloads are served by the
same shared storage, it makes sense to try to limit the de-
gree to which they interfere with one another.

The time-shifting functionality of counter stacks pro-
vides a powerful tool for exploring coarse-grain schedul-
ing of workloads. To demonstrate this, we wrote a script
which computes the MRCs of the combined MSR trace
(excluding prxy) in which the start times of a few of the
larger workloads (proj, src1, and usr) are shifted by
up to six hours. Figure 8 plots the best and worst MRCs
computed by this script. As is evident, workload schedul-
ing can significantly affect hit rates. In this case, shift-
ing workloads by just a few hours changes the capacity
needed for a 50% hit rate by almost 50%.

8.4 Periodic Workloads
MRCs are good at characterizing the raw capacity needed
to accommodate a given working set, but they provide
very little information about how that capacity is used
over time. In environments where many workloads share
a common cache, this lack of temporal information can be
problematic. For example, as Figure 4 shows, the entire
working set of web is less than 80 GB, and it exhibits a hit
rate of 75% with a dedicated cache at this size. However,
as shown in Figure 9, the workload is highly periodic and
is idle for all but a few hours every day.

This behavior is characteristic of automated tasks like
nightly backups and indexing jobs, and it can be problem-
atic because periodic workloads with long reuse distances
tend to perform poorly in shared caches. The cost of this
is twofold: first, the periodic workloads exhibit low hit
rates because their long reuse distances give them low pri-
ority in LRU caches; and second, they can penalize other
workloads by repeatedly displacing ‘hotter’ data. This is

web

0e+00

3e+06

6e+06

9e+06

0 50 100 150

Hour

R
e

q
u

e
s
ts Type

total

unique

Figure 9: web total and unique requests per hour.

exactly what happens to web in a cache shared with the
rest of the MSR workloads: despite its modest working set
size and high locality, it achieves a hit rate of just 7.5% in
a 250 GB cache and 20% in a 500 GB cache.

Scan-resistant replacement policies like ARC [24] and
CAR [3] offer one defense against this poor behavior by
limiting the cache churn induced by periodic workloads.
But a better approach might be to the exploit the highly
regular nature of such workloads – assuming they can
be identified – through intelligent prefetching. Counter
stacks are well-suited for this task because they make it
easy to detect periodic accesses to non-unique data. While
this alone would not be sufficient to implement intelligent
prefetching (because the counters do not indicate which
blocks should be prefetched), it could be used to alert the
system of the recurring pattern and initiate the capture of
a more detailed trace for subsequent analysis.

8.5 Zipfian Workloads

We end with a brief discussion of synthetic workload gen-
erators like FIO [2] and IOMeter [32]. These tools are
commonly used to test and validate storage systems. They
are capable of generating IO workloads based on parame-
ters describing, among other things, read/write mix, queue
depth, request size, and sequentiality. The simpler among
them support various combinations of random and se-
quential patterns; FIO recently added support for pareto
and zipfian distributions, with the goal of better approxi-
mating real-world workloads.

Moving from uniform to zipfian distributions is a step
in the right direction. Indeed, many of the MSR work-
loads, including hm, mds, and prn, exhibit roughly zip-
fian distributions. However, as is evident in Figure 4, the
MRCs of these workloads vary dramatically. Figure 10
plots the MRC of a perfectly zipfian workload produced
by FIO alongside two permutations of the same workload;
as expected, request ordering has a significant impact on
locality and cache behavior. These figures show that syn-

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 347

zipf

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20

Cache Size (GB)

M
is

s
 R

a
ti
o Order

random

series

sorted

Figure 10: MRCs for three permutations of a single zipfian dis-
tribution: random, series (a concatenation of sorted series of
unique requests), and sorted (truncated to preserve detail).

thetic zipfian workloads do not necessarily produce ‘re-
alistic’ MRCs, emphasizing the importance of using real-
world workloads when evaluating storage performance.

9 Related Work
Mattson et al. [23] defined stack distances and presented a
simple O(NM) time, O(M) space algorithm to calculate
them. Bennett and Kruskal [4] used a tree-based imple-
mentation to bring the runtime to O(N log(N)). Almási
et al. improved this to O(N log(M)), and Niu et al. [27]
introduced a parallel algorithm.

A different line of work explores techniques to effi-
ciently approximate stack distances. Eklov and Hager-
sten [16] proposed a method to estimate stack distances
based on sampling. Ding and Zhong [14] use an approx-
imation technique inspired by the tree-based algorithms.
Xiang et al. [37] define the footprint of a given trace win-
dow to be the number of distinct blocks occurring in the
window. Using reuse distances, they estimate the average
footprint across a logarithmic scale of window lengths.
Xiang et al. [38] then develop a theory connecting the av-
erage footprint and the miss ratio, contingent on a regu-
larity condition they call the reuse-window hypothesis. In
comparison, counter stacks use dramatically less memory
while producing MRCs with comparable accuracy.

A large body of work from the storage community
explores methods for representing workloads concisely.
Chen et al. [9] use machine learning techniques to extract
workload features, Tarasov et al. [36] describe workloads
with feature matrices, and Delimitrou et al. [11] model
workloads with Markov Chains. These representations
are largely incomparable to counter stacks – they cap-
ture many details that are not preserved in counter stack
streams, but they discard much of the temporal informa-
tion required to compute accurate MRCs.

Many domain-specific compression techniques have

been proposed to reduce the cost of storing and process-
ing workload traces. These date back to Smith’s stack
deletion [33] and include Burtscher’s VPC compression
algorithms [8]. They generally preserve more information
than counter stacks but achieve lower compression ratios.
They do not offer new techniques for MRC computation.

10 Conclusion
Sizing the tiers of a hierarchical memory system and man-
aging data placment across them is a difficult, workload
dependent problem. Techniques such as miss ratio curve
estimation have existed for decades as a method of mod-
eling workload behaviors offline, but their computational
and memory overheads have prevented their incorporation
as a means to make live decisions in real systems. Even
as an offline tool, practical issues such as the overheads
associated with trace collection and storage often prevent
the sharing and analysis of memory access traces.

Counter stacks provide a powerful software tool to ad-
dress these issues. They are a compact form of local-
ity characterization that allow workloads to be studied
in new interactive ways, for instance by searching for
anomalies or shifting workloads to identify pathological
load possibilities. They can also be incorporated directly
into system design as a means of making more informed
and workload-specific decisions about resource allocation
across multiple tenants.

While the design and implementation of counter stacks
described in this paper have been motivated through the
design of an enterprise storage system, the techniques
are relevant in other domains, such as processor architec-
ture, where the analysis of working set size over time and
across workloads is critical to the design of efficient, high-
performance systems.

References
[1] G. S. Almási, C. Caşcaval, and D. A. Padua. Calcu-

lating stack distances efficiently. In Proceedings of
the 2002 workshop on memory system performance
(MSP ’02), pages 37–43, 2002.

[2] J. Axboe. Fio–flexible I/O tester, 2011.

[3] S. Bansal and D. S. Modha. CAR: Clock with adap-
tive replacement. In FAST, volume 4, pages 187–
200, 2004.

[4] B. T. Bennett and V. J. Kruskal. LRU stack pro-
cessing. IBM Journal of Research and Development,
19(4):353–357, 1975.

13

348 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[5] M. Blaze. NFS tracing by passive network moni-
toring. In Proceedings of the USENIX Winter 1992
Technical Conference, pages 333–343, 1992.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[7] A. D. Brunelle. Block I/O Layer Tracing: blktrace.
HP, Gelato-Cupertino, CA, USA, 2006.

[8] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke,
P. Ratanaworabhan, and N. B. Sam. The vpc trace-
compression algorithms. Computers, IEEE Transac-
tions on, 54(11):1329–1344, 2005.

[9] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz.
Design implications for enterprise storage systems
via multi-dimensional trace analysis. In Proceedings
of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 43–56. ACM, 2011.

[10] B. Cully, J. Wires, D. Meyer, K. Jamieson, K. Fraser,
T. Deegan, D. Stodden, G. Lefebvre, D. Ferstay, and
A. Warfield. Strata: scalable high-performance stor-
age on virtualized non-volatile memory. In Proceed-
ings of the 12th USENIX conference on File and
Storage Technologies, pages 17–31. USENIX Asso-
ciation, 2014.

[11] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis.
Decoupling datacenter studies from access to large-
scale applications: A modeling approach for storage
workloads. In Workload Characterization (IISWC),
2011 IEEE International Symposium on, pages 51–
60. IEEE, 2011.

[12] P. J. Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323–
333, 1968.

[13] C. Ding. Program locality analysis tool. https:
//github.com/dcompiler/loca, 2014.

[14] C. Ding and Y. Zhong. Predicting whole-program
locality through reuse distance analysis. In PLDI,
pages 245–257. ACM, 2003.

[15] Z. Drudi, N. J. A. Harvey, S. Ingram, A. Warfield,
and J. Wires. Approximating MRCs using counter
stacks. Technical report, Coho Data, 2014.

[16] D. Eklov and E. Hagersten. StatStack: Efficient
modeling of LRU caches. In Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE Inter-
national Symposium on, pages 55–65. IEEE, 2010.

[17] D. Ellard, J. Ledlie, P. Malkani, and M. I. Seltzer.
Passive NFS tracing of email and research work-
loads. In FAST. USENIX, 2003.

[18] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier.
HyperLogLog: the analysis of a near-optimal cardi-
nality estimation algorithm. DMTCS Proceedings,
0(1), 2008.

[19] B. Jacob, P. Larson, B. Leitao, and S. da Silva. Sys-
temTap: instrumenting the Linux kernel for analyz-
ing performance and functional problems. IBM Red-
book, 2008.

[20] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Geiger: Monitoring the buffer cache in a
virtual machine environment. In ASPLOS, pages 14–
24. ACM, 2006.

[21] S. Kim, D. Chandra, and Y. Solihin. Fair cache shar-
ing and partitioning in a chip multiprocessor archi-
tecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compi-
lation Techniques, pages 111–122. IEEE Computer
Society, 2004.

[22] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L.
Miller. Measurement and analysis of large-scale net-
work file system workloads. In USENIX Annual
Technical Conference, pages 213–226, 2008.

[23] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation techniques for storage hierar-
chies. IBM Systems journal, 9(2):78–117, 1970.

[24] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In FAST, vol-
ume 3, pages 115–130, 2003.

[25] P. Mochel. The sysfs Filesystem. In Linux Sympo-
sium, page 313, 2005.

[26] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enter-
prise storage. ACM Transactions on Storage (TOS),
4(3):10, 2008.

[27] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan.
Parda: A fast parallel reuse distance analysis algo-
rithm. In Parallel & Distributed Processing Sympo-
sium (IPDPS), 2012 IEEE 26th International, pages
1284–1294. IEEE, 2012.

[28] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 349

runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 423–
432. IEEE Computer Society, 2006.

[29] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova,
N. C. Hutchinson, and A. Warfield. Capo: Recapit-
ulating storage for virtual desktops. In FAST, pages
31–45, 2011.

[30] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality
approximation using time. In POPL, pages 55–61.
ACM, 2007.

[31] X. Shen, Y. Zhong, and C. Ding. Locality phase pre-
diction. In ASPLOS, pages 165–176. ACM, 2004.

[32] J. Sievert. Iometer: The I/O performance analysis
tool for servers, 2004.

[33] A. J. Smith. Two methods for the efficient analysis
of memory address trace data. Software Engineer-
ing, IEEE Transactions on, 3(1):94–101, 1977.

[34] G. Soundararajan, D. Lupei, S. Ghanbari, A. D.
Popescu, J. Chen, and C. Amza. Dynamic resource
allocation for database servers running on virtual
storage. In FAST. USENIX, 2009.

[35] H. S. Stone, J. Turek, and J. L. Wolf. Optimal parti-
tioning of cache memory. Computers, IEEE Trans-
actions on, 41(9):1054–1068, 1992.

[36] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand,
A. Povzner, G. Kuenning, and E. Zadok. Extracting
flexible, replayable models from large block traces.
FAST, 2012.

[37] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time
modeling of program working set in shared cache. In
Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on, pages
350–360. IEEE, 2011.

[38] X. Xiang, C. Ding, H. Luo, and B. Bao. HOTL: a
higher order theory of locality. In Proceedings of the
eighteenth international conference on Architectural
support for programming languages and operating
systems, pages 343–356. ACM, 2013.

[39] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. CRAMM: Virtual memory support for
garbage-collected applications. In OSDI, pages 103–
116. ACM, 2006.

[40] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and
X. Li. Low cost working set size tracking. In Annual
Technical Conference, pages 223–228. USENIX,
2011.

[41] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Ar-
ray regrouping and structure splitting using whole-
program reference affinity. In PLDI, pages 255–266.
ACM, 2004.

[42] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar. Dynamic tracking of page
miss ratio curve for memory management. In ASP-
LOS, pages 177–188. ACM, 2004.

[43] Y. Zhou, J. Philbin, and K. Li. The multi-queue re-
placement algorithm for second level buffer caches.
In USENIX Annual Technical Conference, General
Track, pages 91–104, 2001.

15

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 351

Pelican: A building block for exascale cold data storage

Shobana Balakrishnan
Microsoft Research

Richard Black
Microsoft Research

Austin Donnelly
Microsoft Research

Paul England
Microsoft Research

Adam Glass
Microsoft Research

Dave Harper
Microsoft Research

Sergey Legtchenko
Microsoft Research

Aaron Ogus
Microsoft

Eric Peterson
Microsoft Research

Antony Rowstron
Microsoft Research

Abstract

A significant fraction of data stored in cloud storage is
rarely accessed. This data is referred to as cold data;
cost-effective storage for cold data has become a chal-
lenge for cloud providers. Pelican is a rack-scale hard-
disk based storage unit designed as the basic building
block for exabyte scale storage for cold data. In Peli-
can, server, power, cooling and interconnect bandwidth
resources are provisioned by design to support cold data
workloads; this right-provisioning significantly reduces
Pelican’s total cost of ownership compared to traditional
disk-based storage.

Resource right-provisioning in Pelican means only 8%
of the drives can be concurrently spinning. This intro-
duces complex resource management to be handled by
the Pelican storage stack. Resource restrictions are ex-
pressed as constraints over the hard drives. The data lay-
out and IO scheduling ensures that these constraints are
not violated. We evaluate the performance of a prototype
Pelican, and compare against a traditional resource over-
provisioned storage rack using a cross-validated simu-
lator. We show that compared to this over-provisioned
storage rack Pelican performs well for cold workloads,
providing high throughput with acceptable latency.

1 Introduction

Cloud storage providers are experiencing an exponential
growth in storage demand. A key characteristic of much
of the data is that it is rarely read. This data is commonly
referred to as being cold data. Storing data that is read
once a year or less frequently in online hard disk based
storage, such as Amazon S3, is expensive, as the hard-
ware is provisioned for low latency access to the data [7].
This has led to a push in industry to understand and build
out cloud-scale tiers optimized for storing cold data, for
example Amazon Glacier [1] and Facebook Cold Data
Storage [8]. These systems attempt to minimize up front

capital costs of buying the storage, as well as the costs of
running the storage.

In this paper we describe Pelican, a prototype rack-
scale storage unit that forms a basic building block for
building out exabyte-scale cold storage for the cloud.
Pelican is a converged design, with the mechanical, hard-
ware and storage software stack being co-designed. This
allows the entire rack’s resources to be carefully bal-
anced, with the goal of supporting only a cold data work-
load. We have designed Pelican to target a peak sus-
tainable read rate of 1 GB per second per PB of storage
(1 GB/PB/sec), assuming a Pelican stores 1 GB blobs
which are read in their entirety. We believe that this is
higher than the actual rate required to support a cold data
workload. The current design provides over 5 PB of stor-
age in a single rack, but at the rate of 1 GB/PB/s the en-
tire contents of a Pelican could be transferred out every
13 days.

All aspects of the design of Pelican are right-
provisioned to the expected workload. Pelican uses a
52U standard-sized rack. It uses two servers connected
using dual 10 Gbps Ethernet ports to the data center net-
work, providing an aggregate of 40 Gbps of full-duplex
bandwidth. It has 1,152 archive-grade hard disks packed
into the rack, and using currently available drives of av-
erage size 4.55 TB provides over 5PB of storage. As-
suming a goodput of approximately 100 MB/s for a hard
disk drive, including redundancy overheads, then only 50
active disks are required to sustain 40 Gbps.

A traditional storage rack would be provisioned for
peak performance, with sufficient power and cooling to
allow all drives to be concurrently spinning and active.
In Pelican there is sufficient cooling to allow only 96
drives to be spun up. All disks which are not spun up
are in standby mode, with the drive electronics powered
but the platters stationary. Likewise we have sufficient
power for only 144 active spinning drives. The PCIe-
bus is stretched out across the entire rack, and we provi-
sion it to have 64 Gbps of bandwidth at the root of the

352 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

PCIe-bus, much less than 1 Gbps per drive. This careful
provisioning reduces the hardware required in the rack
and increases efficiency of hardware layout within the
rack. This increases storage density; the entire rack drive
density is significantly higher than any other design we
know, and reduces peak and average power consump-
tion. All these factors result in a hardware platform sig-
nificantly cheaper to build and operate.

This right-provisioning of the hardware, yet providing
sufficient resources to satisfy the workloads, differenti-
ates us from prior work. Massive Arrays of Idle Disks
(MAID) systems [5] and storage systems that achieve
power-proportionality [15] assume that there is sufficient
power and cooling to have all disks spinning and active
when required. Therefore, they simply provide a power
saving during operation but still require the hardware and
power to be provisioned for the peak. For a Pelican rack
the peak power is approximately 3.7 kW, and average
power is around 2.6 kW. Hence, a Pelican provides both
a lower capital cost per disk as well as a lower running
cost, whereas the prior systems provide just a lower run-
ning cost.

However, to benefit from our hardware design we need
a software storage stack that is able to handle the re-
strictions of having only 8% of the disks spinning con-
currently. This means that Pelican operates in a regime
where spin up latency is the modern day equivalent of
disk seek latency. We need to design the Pelican storage
stack to handle the disk spin up latencies that are on the
order of 10 seconds.

The contributions of this paper are that we describe the
core algorithms of the Pelican software stack that give
Pelican good performance even with hardware restricted
resources, in particular how we handle data layout and
IO scheduling. These are important to optimize in or-
der to achieve high throughput and low per operation la-
tency. Naive approaches yield very poor performance but
carefully designing these algorithms allows us to achieve
high-throughput with acceptable latency.

To support data layout and IO scheduling Pelican uses
groups of disks that can be considered as a schedulable
unit, meaning that all disks in the group can be spun up
concurrently without violating any hardware restrictions.
Each resource restriction, such as power, cooling, vibra-
tion, PCIe-bandwidth and failure domains, is expressed
as constraints over sets of physical disks. Disks are then
placed into one of 48 groups, ensuring that all the con-
straints are maintained. Files are stored within a single
group and, as a consequence, the IO scheduler needs to
schedule in terms of 48 groups rather than 1,152 disks.
This allows the stack to handle the complexity of the
right-provisioning.

We have built out a prototype Pelican rack, and we
present experimental results using that rack. In order

to allow us to compare to an over-provisioned storage
rack we use a rack-scale simulator to compare the per-
formance. We cross-validate the simulator against the
full Pelican rack, and show that it is accurate. The re-
sults show that we are able to sustain a good through-
put and control latency of access for workloads up to
1 GB/PB/sec.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the Pelican hardware, and
describes the data layout and IO Scheduler. Section 3 de-
scribes a number of issues we discovered when using the
prototype hardware, including issues around sequencing
the power-up with hardware restrictions. In Section 4
we evaluate the performance of Pelican and the design
choices. Related work is detailed in Section 5. Finally,
Section 6 discusses future work and Section 7 concludes.

2 A Pelican Rack

A Pelican stores unstructured, immutable chunks of data
called blobs and has a key-value store interface with
write, read and delete operations. Blobs in the size
range of 200 MB to 1 TB are supported, and each blob
is uniquely identified by a 20 byte key supplied with the
operation.

Pelican is designed to store blobs which are infre-
quently accessed. Under normal operation, we assume
that for the first few months blobs will be written to a
Pelican, until a target capacity utilization is hit, and from
then on blobs will be rarely read or deleted during the rest
of the lifetime of the Pelican until it is decommissioned.
Hence the normal mode of operation for the lifetime of
the rack will be servicing reads, and generating internal
repair traffic when disks fail or are replaced.

We also assume that Pelican is used as a lower tier in
a cloud-based storage system. Data is staged in a higher
tier awaiting transfer to a Pelican, and the actual time
when the data is migrated is under the control of the tar-
get Pelican. This means that writes can always occur
during quiescent or low load periods. Therefore, we fo-
cus on the performance of a Pelican for read-dominated
workloads.

We start by providing an overview of the Pelican hard-
ware, before describing in detail how the storage stack
performs data placement and request scheduling to han-
dle the right-provisioned hardware.

2.1 Pelican hardware
Pelican is a 52U rack filled with 1,152 archival class
3.5” SATA disks. Pelican uses a new class of archival
drive manufactured for cold storage systems. The disks
are placed in trays of 16 disks. The rack contains six 8U
chassis each containing 12 trays (192 disks) organized

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 353

x6

Disk d

Power domain of d

Cooling domain of d

x16

x12

Figure 1: Schematic representation of the Pelican rack

in 2 rows of 6 trays. Each tray is approximately 4U high
and the disks are inserted as 8 pairs back-to-back and ver-
tically mounted in the tray. Each chassis has a backplane
connecting the 12 horizontally laid trays. Figure 1 shows
a schematic representation of a Pelican, a cuboid of 6
(width) x 16 (depth) x 12 (height) disks where the power
is shared by disks in the same row and cooling shared
by disks in the same column. The backplane supplies
power to the 72 trays, and this is currently configured
to be sufficient to support two active spinning or spin-
ning up disks. A tray is an independent power domain.
Due to the nature of power distribution, and the use of
electronic fuses, we provision the system to support a
symmetrical power draw across all trays. In-rack cool-
ing uses multiple forced air flow channels, each cooling
a section of multiple trays, the cooling domain. Each air
flow is shared by 12 disks. There are 96 independent
cooling domains in the rack, and each is currently cali-
brated to support cooling only one active or spinning up
disk. Pelican supports the cooling of 96 drives, but there
is sufficient power to have 144 drives spinning. The num-
ber of cooling domains and trays is in part driven by con-
venience for the mechanics and physical layout. Given
that approximately 50 drives need to be active in order
to allow a Pelican to generate 40Gbps of network traffic,
having 96 drives active at any one time, allows us to be
servicing requests concurrently with spinning up drives
for queued requests.

The SATA disks in the trays are connected to a Host
Bus Adapter (HBA) on the tray. The tray HBAs connect
to a PCIe switch on the backplane. This supports virtual
switching, allowing the physical switch to be partitioned
into two virtual switches, each with a root port connected
to one of the two servers. Each HBA is connected to one
of the two virtual switches; this selection is dynamic and
under software control.

Each of the six chassis are connected to both servers

(12 cables in total) and each PCIe hierarchy provides
only 64 Gbps bandwidth at its root. Under normal op-
eration the rack is vertically partitioned into two halves
(of 36 trays) with no shared cooling or power constraints.
Each server can therefore independently and concur-
rently handle reads and writes to its half of the rack.
However, if a server fails, the PCIe virtual switches can
be reconfigured so all disks attach to a single server.
Hence, servers, chassis, trays and disks are the failure
domains of the system.

This right-provisioning of power, cooling and inter-
nal bandwidth resources permits more disks per rack and
reduces total cost of ownership. The cost reduction is
considerable. However, the storage software stack must
ensure that the individual resource demands do not ex-
ceed the limits set by the hardware.

2.2 Pelican Software Storage Stack

The software storage stack has to minimize the impact on
performance of the hardware resource restrictions. Be-
fore describing the data layout and IO scheduling algo-
rithms used in Pelican we more formally define the dif-
ferent resource domains.

2.2.1 Resource domains

We assume that each disk uses resources from a set
of resource domains. Resource domains capture right-
provisioning: a domain is only provisioned to supply its
resource to a subset of the disks simultaneously. Re-
source domains operate at the unit of disks, and a single
disk will be in multiple resource domains (exactly one
for each resource).

Disks that are in the same resource domain for any re-
source are domain-conflicting. Two disks that share no
common resource domains are domain-disjoint. Disks
that are domain-disjoint can move between disk states
independently, and it is guaranteed there will be no over-
committing of any resources. Disks which are domain-
conflicting cannot move independently between states,
as doing so could lead to resource over-commitment.
Most normal storage systems provisioned for peak per-
formance only take into account only failure domains.
With resource right-provisioning we increase consider-
ably the number of domains and so the complexity.

In order to allow the scheduling and the placement to
be efficient, we express resource domains as constraints
over the disks. We classify the constraints as hard or
soft. Violating a hard constraint causes either short- or
long-term failure of the hardware. For example, power
and cooling are hard constraints. Violating the power
constraint causes an electronic fuse to trip that means
drives are not cleanly unmounted, and potentially dam-

354 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

aging the hardware. A tray becomes unavailable until
the electronic fuse (automatically) resets. Violating the
cooling constraint bakes the drives, reducing their life-
time. In contrast, violating a soft constraint does not lead
to failure but instead causes performance degradation or
inefficient resource usage. For example, bandwidth is a
soft constraint: the PCIe bus is a tree topology, and vi-
olating the bandwidth constraint simply results in link
congestion resulting in a throughput drop.

The Pelican storage stack is designed to enforce oper-
ation within the hardware constraints with performance.
The Pelican storage stack uses the following constraints:
(i) one disk spinning or spinning up per cooling domain;
(ii) two disks spinning or spinning up per power domain;
(iii) shared links in the PCIe interconnect hierarchy; and
(iv) disks located back-to-back in a tray share a vibration
domain. Like other storage systems we also have failure
domains, in our case for disks, trays and chassis.

2.2.2 Data layout

In order to provide resiliency to failures, each blob is
stored over a set of disks selected by the data layout al-
gorithm. Blob placement is key as it impacts the concur-
rency of access to blobs.

When a blob is to be written into a Pelican, it is split
into a sequence of 128 kB data fragments. For each k
fragments we generate r additional fragments containing
redundancy information using a Cauchy Reed-Solomon
erasure code [4] and store the k+ r fragments. We use
a systematic code, which means if the k original frag-
ments are read back then the input can be regenerated
by simply concatenating these fragments1. Alternatively,
a reconstruction read can be performed by reading any
k fragments, allowing the reconstruction of the k input
fragments. We refer to the k + r fragments as a stripe.
To protect against failures, we store a stripe’s fragments
on independent disks. For efficiency all the fragments
associated with a single blob are stored on the same set
of k+ r disks. Further, all the fragments of the blob on a
single disk are stored contiguously in a single file, called
a stripe stack. While any k stripe stacks are sufficient
to regenerate a blob, the current policy is to read all the
k+ r stripe stacks on each request for the blob to allow
each stripe stack to be integrity checked to prevent data
corruption. Minimally we would like to ensure that the
k+ r drives that store a blob can be concurrently spun up
and accessed.

In the current Pelican prototype we are using k = 15
and r = 3. First, this provides good data durability
with the anticipated disk and tray annual failure rates
(AFRs) with a reasonable capacity overhead of 20%. The

1Non-systematic codes could also be used if beneficial [3].

r = 3 allows up to three concurrent disk failures with-
out data loss. Secondly, during a single blob read Pel-
ican would like saturate a 10 Gbps network link, and
reading from 15 disks concurrently can be done at ap-
proximately 1,500 MB/s or 12 Gbps provided that all
the disks are spun-up and are chosen to respect the PCI
bandwidth constraints. Thirdly, it is important that each
blob is mapped to 18 domain-disjoint disks. If the disks
cannot be spinning concurrently to stream out the data
then in-memory buffering at the servers proportional to
the size of the blob being accessed would be needed. If
the disks are domain-disjoint then at most k+ r 128 kB
fragments need to be buffered in memory for each read,
possibly reconstructed, and then sent to the client. Simi-
larly for writes only the fragments of the next stripe in the
sequence are buffered in memory, the redundancy frag-
ments are generated, and all fragments sent to disk.

The objective of the data layout algorithm is to maxi-
mize the number of requests that can be concurrently ser-
viced while operating within the constraints. Intuitively,
there is a queue of incoming requests, and each request
has a set of disks that need to be spinning to service the
request. We would like to maximize the probability that,
given one executing request, we can find a queued re-
quest which can be serviced concurrently.

To understand how we achieve layout we first ex-
tend the definition of domain-conflict and domain-
disjointness to sets of disks as follows: two sets, sa and
sb are domain-conflicting if any disk in sa is domain
conflicted with any disk in sb. Operations on domain-
conflicting sets of disks need to be executed sequentially,
while operations on domain-disjoint sets can be executed
concurrently.

Imagine a straw-man algorithm in which the set of
disks is selected with a simple greedy algorithm: all
1,152 disks are put into a list, one is randomly selected
and all drives that have a domain-conflict with it are re-
moved from the list, and this repeats until 18 disks have
been chosen. This is very simple, but yields very poor
concurrency. If you take two groups, a and b, of size g
populated using this algorithm then each disk in b has
a probability proportional to g of conflict with group
a. Therefore, the probability for a and b to be domain-
conflicting is proportional to g2.

The challenge with more complex data layout is to
minimize the probability of domain conflicts while tam-
ing the computational complexity of determining the set
of disks to be used to store a blob. The number of com-
binations of 18 out of 1,152 disks, C1152

18 , is large.
In order to handle the complexity we divided the disks

into l groups, such that each disk is a member of a single
group and all disks within a group are domain-disjoint,
so they can be spinning concurrently. The group abstrac-
tion then removes the need to consider individual disks

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 355

or constraints. The complexity is now determining if
l2 pairs of logical groups are domain-disjointed or not,
rather than C1152

18 sets of disks.
To improve concurrency compared to the straw-man

algorithm, we enforce that if one disk in group a collides
with group b, all the disks in a collide with b. In other
words we make groups either fully colliding or fully dis-
joint, which reduces the collision probability from be-
ing proportional to g2 to being proportional to g. This is
close to the lower bound on the domain-collision proba-
bility for the Pelican hardware because g is the number
of cooling domains used by a group (only one disk can
be active per cooling domain and disks within a group
are domain-disjoint).

Figure 2 shows a simplified example of how we assign
disks to groups. The black squares show one group of
12 disks, the red-and-white squares another group. No-
tice they collide in all their power and cooling domains
and so both groups cannot be spinning simultaneously.
We start with the black group and generate all its rota-
tions, which defines 12 mutually-colliding groups: the
light-blue squares. These groups all fully collide, and we
call this set of groups a class. Within a class only one
group can be spinning at a time because of the domain
conflicts. However the remaining domains are not con-
flicted and so available to form other classes of groups
which will not collide with any of the 12 groups in the
first class. By forming classes of maximally-colliding
groups we reduce collisions between the other remaining
groups and so greatly improve the available concurrency
in the system.

Selecting l is reasonably straightforward: we wish to
maximize (to increase scheduling flexibility) the number
l of groups of size g given l × g = 1152 and with g >=
k+ r (groups have to be large enough to store a stripe).
In the current implementation we use g = 24 rather than
g = 18 so that a blob can always entirely reside within
a single group even after some disks have failed. Stripe
stacks stored on failed drives are initially regenerated and
stored on other drives in the group. Hence l = 48; the 48
groups divide into 4 classes of 12 groups, and each class
is independent from the others.

Using groups for the data layout has several benefits:
(i) groups encapsulate all the constraints because disks in
a group are domain-disjointed by definition; (ii) groups
define the concurrency that can be achieved while servic-
ing a queue of requests: groups from the same class have
disks that share domain-conflicts and so need to be ser-
viced sequentially, while groups from different classes
have disks that are all domain-disjoint so can be serviced
concurrently; (iii) groups span multiple failure domains:
they contain disks distributed across the trays and all
backplanes; and (iv) groups reduce time required to re-
cover from a failed disk because all the required data is

Po
w

er
 d

om
ai

ns

Cooling domains

Class: 12 fully colliding groups

Figure 2: Two fully colliding groups.

contained within the group.
A blob is written to k+ r disks in a single randomly

selected group. The group has 24 disks but the blob only
needs 18 disks. To select the disks to store the blob we
split the group’s disks into six sets each containing disks
from the same backplane failure domain. The six sets are
then ordered on spare capacity and the three disks with
the highest spare capacity are selected. As we will show
this simple approach achieves a high disk utilization.

Pelican preserves the group arrangement even when
disks fail. A disk failure triggers rebuilds of all the blobs
that stored a stripe stack on it. Rebuilding a single blob
requires reading at least k stripe stacks and regenerating
the missing stripe stack(s) across other disks in the group.
By requiring blobs to be entirely within a group we en-
sure that rebuild operations use disks which are all spin-
ning concurrently. The alternative would require buffer-
ing data in memory and spinning disks up and down dur-
ing rebuild, which would slow down rebuild.

We use an off-rack metadata service called the cata-
log which is durable and highly available. Once disks
have been chosen for a write request, the catalog is up-
dated. It holds the mapping from a blob key to the 18
disks and group which store the blob, and other ancillary
metadata. The catalog is modified during write, rebuild
and delete requests, and information is looked up during
read requests.

Using groups to abstract away the underlying hard-
ware constraints is an important simplification for the
IO scheduler: it needs simply consider which class the
group is in rather than the constraints on all the drives.
As we showed, increasing the number of groups which
totally collide also increases the number of independent
groups leading to better throughput and lower latency for
operations. In the next section, we describe the IO sched-
uler in detail.

2.2.3 IO scheduler

In Pelican spin up is the new seek latency. Traditional
disk schedulers have been optimized to re-order IOs in
order to minimize seek latency overheads [14, 16]. In

356 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Pelican we need to re-order requests in order to minimize
the impact of spin up latency. The four classes defined by
the data layout are domain-disjoint and are thus serviced
independently. For each class, we run an independent
instance of the scheduler that only services requests for
its class. It has no visibility of requests on other classes
and therefore the re-ordering happens at a class-level.

Traditional IO re-ordering attempts to order the re-
quests to minimize the disk’s physical head movement;
every IO in the queue has a different relative cost to ev-
ery other IO in the queue. We can define a cost function
cd(hl , IO1, IO2) which, given two IO requests IO1 and
IO2 and the expected head position hl , calculates the ex-
pected time cost of servicing IO1 and then IO2. This cost
function will take into account the location of data being
read or written, the rotational speed of the disk platters
and the speed at which the head can move. This is a con-
tinuous function and cd(hl , IO1, IO2) �= cd(hl , IO2, IO1).
In contrast, in Pelican there is a fixed constant cost of
spinning up a group, which is independent of the current
set of disks spinning. The cost function is cp(ga, IOg)
where ga is the currently spinning group and an IO has a
group associated with it, so IOg refers to an IO operation
on group g. The cost function is binary, and if ga = g
then the cost is zero, else it is 1.

We define the cost c of a proposed schedule of IO re-
quest as the sum of cp() for each request, assuming that
the g of the previous request in the queue is ga for the
next request. Only one group out of the 12 can be spun
up at any given time, and if there are q requests queued,
and we use a FIFO queue, then c ≈ 0.92q, as there is a
probability of 0.92 that two consecutive operations will
be on different groups. Note that there is an upper bound
c = q, where every request causes a group to spin up.

The goal of the IO scheduler is to try to minimize c,
given some constraint on the re-ordering queuing delay
each request can tolerate. When c≈ q then Pelican yields
low throughput, as each spin up incurs a latency of at
least 8 seconds. This means that in the best case only
approximately 8 requests are serviced per minute. This
also has the impact that, not only is throughput low, but
the queuing latency for each operation will be high, as
requests will be queued during the spin ups for the earlier
requests in the queue.

Another challenge is ensuring that the window of vul-
nerability post-failures is controlled to ensure the prob-
ability of data loss is low. A disk failure in a group
triggers a set of rebuild operations to regenerate the lost
stripe-stacks. This rebuild requires activity on the group
for a length of time equal to the data on the failed disk
divided by the disk throughput (e.g., 100 MBps) since
k+ r− 1 stripe-stack reads and 1 stripe-stack write pro-
ceed concurrently. During the rebuild Pelican needs to
service other requests for data from the affected group as

well as other groups in the same class. Simply prioritiz-
ing rebuild traffic over other requests would provide the
smallest window of vulnerability, but would also cause
starvation for the other groups in the class.

The IO scheduler addresses these two challenges using
two mechanisms: request reordering and rate limiting.
Internally each scheduler instance uses two queues, one
for rebuild operations the other for all other operations.
We now describe these two mechanisms.
Reordering. In each queue, the scheduler can reorder
operations independently. The goal of reordering is to
batch sets of operations for the same group to amor-
tize the group spin up latency over the set of operations.
Making the batch sizes as large as possible minimizes c,
but increases the queuing delay for some operations. To
quantify the acceptable delay we use the delay compared
to FIFO order.

Conceptually, the queue has a timestamp counter t that
is incremented each time an operation is queued. When
an operation r is to be inserted into the queue it is tagged
with a timestamp tr = t and is assigned a reordering
counter or = t. In general, or − tr represents the absolute
change in ordering compared to a FIFO queue. There
is an upper bound u on the tolerated re-ordering, and
oa − ta ≤ u must hold for all operations a in the queue.
The scheduler examines the queue and finds l, the last
operation in the same group as r. If no such operation ex-
ists, r is appended to the tail of the queue and the process
completes. Otherwise, the scheduler performs a check to
quantify the impact if r were inserted after l in the queue.
It considers all operations i following l. If oi +1− ti ≤ u
no longer holds for any i, then r is appended to the tail of
the queue. Otherwise all oi counters are incremented by
one, and r is inserted after l with or = tr −|i| where |i| is
the number of requests i, which r has overtaken.

To ease understanding of the algorithm, we have de-
scribed the u in terms of the number of operations, which
works if all the operations are for a uniform blob size. In
order to support non-uniform blob sizes, we operate in
wall clock time, and estimate dynamically the time each
operation will be serviced, given the number of group
spin ups and the volume of data to be read or written by
operations before it in the queue. This allows us to spec-
ify u in terms of wall clock time.

This process is greedily repeated for each queued re-
quest, and guarantees that: (i) batching is maximized un-
less it violates fairness for some requests; and (ii) for
each request the reordering bound is enforced. The al-
gorithm expresses the tradeoff between throughput and
fairness using u, which controls the reordering. For ex-
ample, setting u = 0 results in a FIFO service order pro-
viding fairness, conversely setting u = ∞ minimizes the
number of spin ups which increases throughput, but also
means the request queuing delay is unbounded.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 357

Rate limiting. The rate at which each queue is serviced
is then controlled, to manage the interference between
the rebuild and other operations. In particular, we want to
make sure that the rebuild traffic gets sufficient resources
to allow it to complete the rebuild within an upper time
bound, to allow us to probabilistically ensure data dura-
bility if we know the AFR rates of the hardware.

The scheduler maintains two queues, one for the re-
build operations and one for other operations. We use
a weighted fair queuing mechanism [6, 12] across the
two queues which allows us to control the fraction of re-
sources dedicated to servicing the rebuild traffic.

The approximate time to repair after a single disk fail-
ure is x/t × 1/w where x is the amount of data on the
failed disk, t is the average throughput of a single disk
(e.g., 100 MB/s) and w is the fraction of the resources
the scheduler allocates to the rebuild.

3 Implementation

Early experience with the hardware has highlighted a
number of other issues with right-provisioning. The first
is to ensure that we do not violate the cooling or power
constraints from when power is applied until the OS has
finished booting and the Pelican service is managing the
disks. We achieve this by ensuring the disks do not spin
up when first powered, as done by RAID enclosures. Our
first approach was to float pin 11 of the SATA power con-
nector, which means that the drive spins up only when it
successfully negotiates a PHY link with the HBA. We
modified the Windows Server disk device driver to keep
the PHY disabled until the Pelican service explicitly en-
ables it. Once enabled the device driver announces it
to the OS as normal, and Pelican can start to use it.
However, this added considerable complexity, and so we
moved to use Power Up In Standby (PUIS) where the
drives establish a PHY link on power up, but require an
explicit SATA command to spin up. This ensures disks
do not spin without the Pelican storage stack managing
the constraints.

At boot, once the Pelican storage stack controls the
drives, it needs to mount and check every drive. Se-
quentially bring each disk up would adhere to the power
and cooling constraints, but provides long boot times.
In order to parallelize the boot process we exploit the
group abstraction. We generate an initialization request
for each group and schedule these as the first operation
performed on each group. We know that the disks within
the groups are domain-disjoint, so we can perform ini-
tialization concurrently on all 24 disks in the group. If
there are no user requests present then four groups (96
disks) are concurrently initialized, initializing the entire
rack takes the time required to sequentially initialize 12
disks (less than 3 minutes). External read and write re-

quests can be concurrently scheduled, with the IO sched-
uler effectively on-demand initializing groups, amortiz-
ing the spin up time. The first time a disk is seen, Pelican
writes a fresh GPT partition table and formats it with an
NTFS filesystem.

During early development we observed unexpected
spin ups of disks. When Pelican spins down a disk, it
drains down IOs to the disk, unmounts the filesystem,
and then sets the OFFLINE disk attribute. It then issues
a STANDBY IMMEDIATE command to the disk, causing
it to spin down. Disks would be spun up without a re-
quest from Pelican, due to services like the SMART disk
failure predictor polling the disk. We therefore added
a special No Access flag to the Windows Server driver
stack that causes all IOs issued to a disk marked to return
with a “media not ready” error code.

We also experienced problems with having many
HBAs attached to the PCIe bus. The BIOS is respon-
sible for initial PCI resource allocations of bus numbers,
memory windows, and IO port ranges. Though neither
the HBAs nor the OS require any IO ports, a small num-
ber are exposed by the HBA for legacy purposes. PCI
requires that bridges decode IO ports at a granularity of
4 kB and the total IO port space is only 64 kB. We saw
problems with BIOS code hanging once the total require-
ments exceeded 64 kB instead of leaving the PCI decode
registers disabled and continuing. We have a modified
BIOS on the server we use to ensure it can handle all 72
HBAs.

4 Evaluation

This section evaluates Pelican and in particular quan-
tifies the impact of the resource right-provisioning on
performance. We have a prototype Pelican rack with 6
chassis and a total of 1,152 disks. Our prototype uses
archival class disks from a major disk manufacturer. Six
PCIe uplinks from the chassis backplanes are connected
to a single server using a Pelican PCIe aggregator card.
The server is an HP ProLiant DL360p Gen8 with two
eight-core Intel Xeon E5-2665 2.4GHz processors, 16
GB DRAM, and runs Windows Server 2012 R2. The
server has a single 10 Gbps NIC. In order to allow us to
evaluate the final Pelican configuration with two servers
and to compare to alternative design points, we have de-
veloped a discrete event-based Pelican simulator. The
simulator runs the same algorithms and has been cross-
validated against the storage stack running on the full
rack.

4.1 Pelican Simulator
The discrete event simulator models the disks, network
and PCIe/SATA physical topology. In order to ensure

358 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0

0.2

0.4

0.6

0.8

1

0 10000 20000

CD
F

(a) Spin up delay (ms)

0
0.2
0.4
0.6
0.8

1

0 2000 4000 6000

CD
F

Low server load
High server load

(b) Mount delay (ms)

0
0.2
0.4
0.6
0.8
1

0 1000 2000 3000

CD
F

(c) Unmount delay (ms)

0

0.2

0.4

0.6

0.8

1

0 5000 10000

CD
F

(d) Blob size (MB)

0

0.1

0.2

0.3

0.4

0.5

4.3 4.4 4.5 4.6 4.7 4.8
Fr

ac
tio

n
of

 d
isk

s
(e) Volume capacity (TB)

0
2
4
6
8

10

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

TCP flows
(f) NIC microbenchmark

Figure 3: Distributions and parameters used in the simulation.

that the simulator is accurate we have parameterized the
simulator using micro-benchmarks from the rack. We
have then also cross-validated the simulator against the
rack for a range of workloads.

We measure the spin up delays (shown in Figure 3(a))
and delays for mounting and unmounting a drive once
it is spun up (shown in Figure 3(b) and 3(c)). For the
spin up and unmounts delays we spun up and down disks
100,000 times, and measured the spin up and unmount
latency. We observe that the volume mount delays are
dependent on the load of the system. Under heavy load,
the probability that at least one disk in a group is a strag-
gler when all disks in the group are being mounted is
much higher than when under low load. We therefore
generate the mount delay distributions by taking sam-
ples of mount latencies during different load regimes on
the Pelican. Figure 3(b) compares the distributions taken
during high and low loads. In simulation, the mount de-
lays are sampled from the distribution that corresponds
to the current load.

For the disk throughput we measured the actual
throughput of the disks in a quiescent system, and con-
figure the simulator with an average disk throughput of
105 MB/s. Seeks are simulated by including a constant
latency of 4.2ms for all disk accesses as specified in the
disk data-sheet. In Pelican, seek latency has negligible
impact on performance. Reads are for large blobs, and
even though they are striped over multiple disks, each
stripe stack will be a single contiguous file on disk. Fur-
ther, as we can see from Figure 3(a) and 3(b) the latency
of spinning the disk up and mounting the volume heavily
dominate over seek time. The simulator uses a distribu-
tion of disk sizes shown in Figure 3(e). The capacities
shown are for the drive capacity after formatting with

NTFS. Finally, the Pelican is not CPU bound so we do
not model CPU overheads.

In order to allow us to understand the performance ef-
fects of right-provisioning in Pelican, we also simulate a
system organized like Pelican but with full provisioning
for power and cooling which we denote as FP. In the FP
configuration disks are never spun down, but the same
physical internal topology is used. The disks are, as with
Pelican, partitioned into 48 groups of 24 disks, however,
in the FP configuration all 48 groups can be concurrently
accessed. There is no spin up overhead to minimize, so
FP maintains a queue per group and services each queue
independently in FIFO order. FP represents an idealized
configuration with no resource constraints and is hard to
realize in practice. In particular, due to the high disk den-
sity in Pelican, little physical space is left for cooling and
so forth.

In both configurations we assume, since the stripe
stacks are contiguous on a disk, that they can be read
at full throughput once the disk is spun up and mounted.
The simulator models the PCIe/SATA and network band-
width at flow level. For congested links the throughput
of each flow is determined by using max-min fair shar-
ing. As we will show in Section 4.4 we are able to cross-
validate the Pelican simulator with the Pelican rack with
a high degree of accuracy.

4.2 Configuration parameters

In all experiments the Pelican rack and simulator are con-
figured with 48 groups of 24 disks as described. The
groups are divided into 4 classes, and a scheduler is used
per class. Blobs are stored using a 15+3 erasure encod-
ing so each blob has 15 data blocks and 3 redundancy

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 359

blocks, all stored on separate disks. The maximum queue
depth per scheduler is set to 1000 requests, and the max-
imum reordering allowance is set to 500 GB. For the
cross-validation configuration, all 4 schedulers are run
by a single server with one 10 Gbps NIC. In the rest of
the evaluation, the rack has two servers such that each
server runs two schedulers. Each server is configured
with 20 Gbps network bandwidth, providing an aggre-
gate network throughput of 40 Gbps for the entire Peli-
can rack.

4.3 Workload
We expect Pelican to be able to support a number of
workloads, including archival workloads that would tra-
ditionally use tape. Pelican represents a new design point
for cloud storage, with a small but non-negligible read
latency and a limited aggregate throughput. We expect
tiering algorithms and strategies will be developed that
can identify cold data stored in the cloud that could be
serviced by a Pelican. Due to the wide range of work-
loads we would like to support, we do not focus on a sin-
gle workload but instead do a full parameter sweep over
a range of possible workload characteristics. We gen-
erate a sequence of client read requests using a Poisson
process with an average arrival rate 1/λ , and vary λ =
0.125 to 16. For clarity, in the results we show the aver-
age request rate per second rather than the λ value. As
write requests are offloaded to other storage tiers, we as-
sume that servicing read requests is the key performance
requirement for Pelican and, hence focus on read work-
loads. The read requests are randomly distributed across
all the blobs stored in the rack. Unless otherwise stated
requests operate on a blob size of 1 GB, to allow the
metric of requests per second to be easily translated into
an offered load. Some experiments use a distribution of
blob sizes which is shown in Figure 3(d); a distribution
of VHD image sizes from an enterprise with mean blob
size of 3.3 GB.

In all simulator experiments, we wait for the system to
reach steady state, then gather results over 24 simulated
hours of execution.

4.4 Metrics
Our evaluation uses the following metrics:
Completion time. This is the time between a request
being issued by a client and the last data byte being sent
to the client. This captures the queuing delay, spin up
latency and the time to read and transfer the data.
Time to first byte. The time between a request being
issued by a client and the first data byte being sent to the
client. This includes the queuing delay and any disk spin
up and volume mount delays.

Service time. This is the time from when a request is
dequeued by the scheduler to when the last byte associ-
ated with the request is transferred. This includes delays
due to spinning up disks and the time taken to transfer
the data, but excludes the queuing delay.
Average reject rate. These experiments use an open
loop workload; when the offered load is higher than the
Pelican or FP system can service, requests will be re-
jected once the schedulers’ queues are full. This met-
ric measures the average fraction of requests rejected.
The NIC is the bottleneck at 5 requests per second for
40 Gbps. Therefore in all experiments, unless otherwise
stated, we run the experiment to a rate of 8 request per
second.
Throughput. This is the average rack network through-
put which is calculated as the total number of bytes trans-
ferred during the experiment across the network link di-
vided by the experiment duration.

First we cross-validated the simulator against the cur-
rent Pelican rack. The current prototype rack can support
only one disk spinning and one disk spinning up per tray,
rather than two disks spinning up. The simulator is con-
figured with this restriction for the cross-validation. The
next revision of the rack and drives will be able to sup-
port two disks spinning up per tray. We configure the
simulator to match the prototype Pelican rack hardware.
A large number of experiments were run to test the algo-
rithmic correctness of the simulator against the hardware
implementation.

During the initial experiments on the real platform, we
noticed that the NIC was unable to saturate the 10 Gbps
NIC. Testing the performance of the NIC in isolation
on an unloaded server using TTCP [10] identified that
it had a peak throughput of only 8.5 Gbps. Figure 3(f)
shows the network throughput as a function of the num-
ber of TCP flows. Despite our efforts to tune the NIC,
the throughput of the NIC never exceeded 8.5 Gbps. For
the cross-validation we configure the simulator to use an
8.5Gbps NIC.

We ran a set of performance evaluation experiments
where we generated a set of trace files consisting of a
burst of b read requests for 1GB blobs uniformly dis-
tributed over 60 seconds, where we varied b from 15 to
1,920. We created a test harness that runs on a test server
and reads a trace file and performs the read operations
using the Pelican API running on the Pelican rack. Each
experiment ran until all requests had been serviced. We
replayed the same trace in the simulator. In both cases we
pre-loaded the Pelican with the same set of blobs which
are read during the trace.

To cross-validate we compare the mean throughput,
request completion times, service times and times to first
byte for different numbers of requests. The compari-
son is summarized in Figure 4. Figures 4(a) to 4(d) re-

360 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0
2
4
6
8

10

8 32 128 512 2048Th
ro

ug
hp

ut
c(G

bp
s)

#requests

Simulator
Rack

(a) Throughput

1

10

100

1000

8 32 128 512 2048Co
m

pl
et

io
n

tim
e

(s
)

#requests

Simulator
Rack

(b) Completion time

1

10

100

1000

8 32 128 512 2048

Ti
m

e
to

 fi
rs

t b
yt

e
(s

)

#requests

Simulator
Rack

(c) Time to first byte

0

5

10

15

20

8 32 128 512 2048

Se
rv

ice
 ti

m
e

(s
)

#requests

Simulator
Rack

(d) Service time

Figure 4: Cross-validation of simulator and Pelican rack.

0
20
40
60
80

100
120

0.0625 0.25 1 4 16

Av
g.

 th
ro

ug
hp

ut
 mG

bp
s)

Workload rate mreq/s)

FP - Unbounded
FP - 40Gbps
Pelican - Unbounded
Pelican - 40Gbps
Random placement

(a) Throughput

0
2
4
6
8

10
12
14

0.0625 0.125 0.25 0.5 1 2 4 8

Se
rv

ice
 ti

m
e

(s
)

Workload rate (req/s)

FP
Pelican

(b) Service time

0.0001
0.001

0.01
0.1

1
10

100
1000

10000

0.0625 0.125 0.25 0.5 1 2 4 8

Ti
m

e
(s

ec
)

Workload rate (req/s)

FP - Avg. Pelican-Avg.
Pelican - Max FP - Max

(c) Time to first byte

Figure 5: Base performance of Pelican.

spectively show average throughput of the system, and
average per-request completion time, time to first byte
and service time as a function of the number of requests.
These results show that the simulator accurately captures
the performance of the real hardware for all the consid-
ered metrics. Traditionally, simulating hard disk-based
storage accurately is very hard due to the complexity
of the mechanical hard drives and their complex control
software that runs on the drive [17]. In Pelican, the over-
heads are dominated by the spin up and disk mount la-
tencies. The IO pattern at each disk is largely sequential,
hence we do not need to accurately simulate the low-level
performance of each physical disk.

All further results presented for Pelican and FP use
this cross-validated simulator.

4.5 Base performance

The first set of experiments measure the base perfor-
mance of Pelican and FP. Figure 5(a) shows the through-
put versus the request rate for Pelican, FP and for the
straw-man random layout (described in Section 2.2.2).

The straw-man performs poorly because the random
placement means that the probability of being able to
concurrently spin up two sets of disks to concurrently
service two requests is very low. Across all request rates,
it never achieves a throughput of more than 0.7 Gbps.
The majority of requests are processed sequentially with
group spin ups before each request. The latency of spin-
ning up disks dominates and impacts throughput.

In Figure 5(a) we can also see that the throughput for

0

20

40

60

80

100

5 8 16

PelicanW-WUnbounded
Pelican
FP
Re
je
ct
ra
te
W(%
Wre
qu
es
ts
)

Workload rateW(req/s)

Figure 6: Reject rates versus workload request rate.

the default configurations of Pelican and FP configured
with two servers each with 20 Gbps network bandwidth
(labelled 40 Gbps in Figure 5(a)) is almost identical up
to 4 requests per second. These results show that, for
throughput, the impact of spinning up disks is small:
across all the 40 Gbps configurations Pelican achieves
a throughput within 20% of FP. The throughput plateaus
for both systems after 5 requests per second at 40 Gbps
which is the aggregate network bandwidth.

Figure 5(a) also shows the results for Pelican and
FP configured with unbounded network bandwidth per
server. This means the network bandwidth is never the
bottleneck resource. This clearly shows the impact of
right-provisioning. FP is able to utilize the extra re-
sources in rack when the network bandwidth is no longer
the bottleneck, and is able to sustain a throughput of
106 Gbps. In contrast, Pelican is unable to generate
load for the extra network bandwidth because it is right-
provisioned and configured for a target throughput of 40
Gbps.

Figure 6 shows the average reject rates for all the con-
figurations under different loads, except for FP with un-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 361

bounded bandwidth as it never rejects a request. No con-
figuration rejects a request for rates lower than 5 requests
per second. At 5 requests per second, Pelican and Pelican
unbounded start to become overloaded and reject 35%
and 21% of the requests respectively. FP also marginally
rejects about 1% of requests because request queues are
nearly full and minor fluctuations in the Poisson arrival
rate occasionally cause some requests to be rejected. As
the request rates increase the rejection rate increase sig-
nificantly, with more than half of the submitted requests
rejected.

The results above show that Pelican can achieve a
throughput comparable to FP. The next results explore
the per request service time. Figure 5(b) shows the av-
erage request service time as a function of the request
rate. For FP when the offered load is low, there is no
contention on the network, and hence the service time is
simply the time taken to read the blob from the disks.
Hence, for 1 GB blobs the lower bound on service time
is approximately 0.65 seconds, given the disk throughput
of 105 MB/s. As the offered load increases, concurrent
requests get bottlenecked on the network, leading to the
per-request service time increasing.

For Pelican, request rates in the range of 0.0625 and
0.25 per second, results in most requests incurring a
spin up delay because requests are uniformly distributed
across groups, and there are only 4 groups spun up at
any time out of 48, so the probability of a request be-
ing for a group already spinning is low. As the request
rate increases, the probability of multiple requests being
queued for same group increases, and the average service
time decreases. Above 0.25 requests per second there is
sufficient number of requests being queued for the sched-
uler to re-order them to reduce the number of group spin
ups. Although requests will not be serviced in the order
they arrive, the average service time decreases as multi-
ple requests are serviced per group spin up. Interestingly,
for a rate of 4 requests per second and higher the service
time for Pelican drops below FP, because in FP 48 re-
quests are serviced concurrently versus only 4 in Pelican.
The Pelican requests therefore obtain a higher fraction of
the network bandwidth per request and so complete in
less time.

Next we explore the impact on data access latency of
needing to spin up disks. Figure 5(c) shows the aver-
age and maximum time on a log scale to first byte as a
function of request rate for Pelican and FP. Under low of-
fered load the latency is dominated by the disk seek for
FP and by spin up for Pelican, so FP is able to get the
first byte back in tens of milliseconds on average, while
Pelican has an average time to first byte of 14.2 seconds
even when idle. The maximum times show that FP has
a higher variance, due to a request that experiences even
short queuing delay being impacted by the service time

0
5

10
15
20
25
30

0.0625 0.125 0.25 0.5 1 2 4 8

Re
bu

ild
 ti

m
e

(h
ou

rs
)

Workload rate (req/s)

(a) Rebuild time

10

100

1000

10000

0.0625 0.125 0.25 0.5 1 2 4 8

Ti
m
ep
to
pfi
rs
tpb

yt
ep
(s
)

Workloadpratep(req/s)

95thpptile.p-pwithpconcurrentprebuildptraffic
95thpptile.p-pnoprebuildptraffic

(b) Impact on client requests

Figure 7: Scheduler performance.

of requests scheduled before it. However, the maximum
for FP is over an order of magnitude lower than the mean
for Pelican, until the request rate is 5 requests per second
and are bottlenecked on the network bandwidth.

Overall, the results in Figure 5 show that Pelican can
provide a high utilization with reasonable latency. In an
unloaded Pelican blobs can be served quickly, whereas
under heavy load, high throughput is delivered.

4.5.1 Impact of disk failure

Next, we evaluate how recovering from a disk failure im-
pacts the time to first byte for concurrent client requests.
We also evaluate the time Pelican takes to rebuild all lost
blobs. The experiment is the same as that of the previous
section, except that we mark one disk as failed once the
system reaches steady state. The disk contains 4.28 TB
of data and 64,329 blobs stored in the group have a stripe
stack on the failed disk. For each blob ≥ k undamaged
stripe stacks are read and the regenerated stripe stack is
written to the same group, which has sufficient spare ca-
pacity distributed across the other disks in the group. The
scheduler rate-limits client requests to ensure that the re-
build has at least 50% of the throughput.

Figure 7(a) shows the time to rebuild and persist all the
blobs versus the client request rate. At low client request
rates the offered client load is low enough that it does
not use all the resources available to it, and due to work
conservation, the time to recover is low. As the offered
client traffic increases, the time taken to recover from the
disk failure grows. The rebuild time plateaus below 24
hours, when both the rebuild and client request use their
allocated 50%. Figure 7(b) shows the time to first byte
for the 95th percentile of client requests versus client re-
quest rate with and without rebuild requests. The rate
limiting increases the 95th percentile time to first byte for

362 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0

500

1000

1500

2000

2500

3000

0
5

10
15
20
25
30
35
40

0 500 1000

Th
ro
ug

hp
ut
y(G

bp
s)

MaxyReorderingy(GB)

Throughput
Timeytoyfirstybytey-y99thyptile. Ti

m
e
to
yfi
rs
tyb

yt
ey
(s
)

(a) Impact on throughput and latency

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000fra
ct

io
n

of
 re

qu
es

ts
 re

je
ct

ed

Max Reordering (GB)

(b) Impact on reject rate

Figure 8: Cost of fairness.

client requests by a factor of 2.2 at high workload rates.
The rebuild traffic only affects client requests in the class
impacted by the disk failure. Other classes observe no
performance impact.

4.6 Cost of fairness
The next experiments evaluate the impact on fairness by
the Pelican scheduler. We fix the client workload at 5
read requests per second, the maximum rate which the
network could sustain. We ran the experiment varying u,
the tolerance on re-ordering, between 50 and 1000 GB.
Figure 8(a) shows the throughput and 99th percentile of
time to first byte as a function of u. We show the 99th
percentile for time to first byte to quantify the impact on
the tail, those requests most impacted by queuing delay.

Changing u from 50 to 350 GB nearly doubles the
throughput of the system. Increasing u beyond this has
only a modest impact on throughput. This is because the
fraction of time spent spinning up drives is low therefore
the majority of time is being spent reading data. When
u is below 350 GB, the 99th percentile of time to first
byte is dominated by the queuing delay. A significant
fraction of the time is spent spinning disks up, impact-
ing both throughput and latency of request. Hence in-
creasing reordering improves throughput and reduces the
queuing delay. At above 350GB the 99th percentile for
time to first byte increases, despite the slight increase in
throughput. This is slightly counter intuitive, until you
remember that as u increases we are allowing requests to
be queued for longer. This is then reflected when looking
at the 99th percentile. This also impacts the number of
requests that are rejected. Figure 8(b) shows the reject
rate of the system as a function of u. Changing u from 50
to 1000 GB reduces the percentage of rejected requests

from nearly 85% to approximately 25% due to increased
throughput.

4.7 Disk Lifetime
An obvious concern is the impact on the lifetime of the
disks of spinning them up and down. Also, the new
class of archival drive that systems like Pelican use are
rated for a number of terabytes read and written per year.
We therefore ran an experiment to determine the aver-
age number of spin ups per year as well as the expected
number of terabytes transferred. Figure 9(a) shows the
average number of spin ups and terabytes transferred per
year as a function of the workload rate. The average data
transferred increases with the request rate and peaks at 99
TB per year when the request rate saturates the system.
This is within the specification for the new generation of
archival drives. Currently in the prototype Pelican we do
not do any proactive background data scrubbing, which
is common in storage systems to check for integrity is-
sues. Background scrubbing increases the volume of
data transferred per disk, which in itself impacts the disk
AFR. We are currently long-term empirically testing the
drives and plan to add scrubbing functionality once we
have a better understanding of the drives longer term per-
formance.

The number of spin ups is also shown in Figure 9(a);
interestingly the peak is at 0.5 requests per second. Be-
low this rate the number of spin ups grows with load as
the scheduler has little opportunity to reorder requests.
Above this rate the number of spin ups decreases because
the queues are long enough for the scheduler to perform
reordering. At 4 requests per second the scheduler hits
the maximum reordering limit and the number of spin
ups remains constant as the request rate increases further.
We believe that the archival class of drive that we are us-
ing can tolerate this many spin up cycles per year with
minimal impact on the AFR. It should be noted that these
are controlled head park and unpark operations triggered
by issuing a SATA command to the drive, which is then
allowed to park the head. They are not induced by sud-
den power failure. When a disk is spun down, all the
electronics in the drive are still powered and operating.

4.8 Power Consumption
We now quantify the power savings resulting from power
right-provisioning. The prototype Pelican hardware en-
ables us to measure the power draw of each tray inde-
pendently. We ran an experiment in which we sequen-
tially spun up then down every disk in a tray, sampling
the tray power draw. This allows us to estimate the aver-
age power draw of a disk in standby, spinning up and ac-
tive states. The tray power is dominated by the disks, so

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 363

0

100

200

300

400

0
20
40
60
80
100
120

0.0625 0.25 1 4

TB
/y
r

Workloadpratep(req/s)

Dataptransfered Spinups

x1
00
0
sp
in
up
s/
yr

(a) Disk statistics as a function of the workload

0
2
4
6
8

10
12

0.0625 0.125 0.25 0.5 1 2 4 8Ag
gr

eg
at

e
di

sk
 p

ow
er

 d
ra

w
(k

W
)

Workload rate (req/s)

Pelican average All disks standby

All disks active Pelican peak

(b) Rack power consumption

0

0.2

0.4

0.6

0.8

1

0.92 0.94 0.96 0.98 1

Variable with Pelican Placement

Variable with Random Policy

Uniform with Pelican Placement

Capacity Utilization

D
is

k
C

D
F

(c) Disk utilization distribution

Figure 9: Power draw and disk usage.

we place all 16 disks in standby and estimate the power
draw per disk as 1

16 th of the power draw of a tray. The
average power draw for a disk active or spinning up is
then computed using the average power draw of a tray
with one disk in that test state minus the power draw of
the other disks in standby. The power draws for the three
disks states is: Pstandby = 1.56 W, Pspinup = 21.53 W and
Pactive = 9.42 W.

We parameterize the simulator with these values and
measure the power consumed by just the disks. Fig-
ure 9(b) shows the power draw of the 1,152 disks un-
der different configurations as a function of the work-
load rate. The figure shows the average and peak power
draw for Pelican. It also shows the lower bound when
all drives in spun down in standby and, in order to allow
comparison with a fully provisioned system, it shows the
power draw for all drives spun up and active.

The average power draw of Pelican varies with the
workload rate. The highest average power consumption
which is 3.3 kW is reached when the number of spin ups
is the highest, at around 0.5 requests per second because
spin ups have the highest power draw. At this rate, there
are sufficient requests to require frequent group spin ups,
but not enough for extensive batching. For both lower
and higher request rates, group spin ups are less frequent
and the power consumption is close to 2.6 kW. Across
all request rates the average Pelican power draw is be-
tween 3.6 and 4.1 times lower compared to the fully pro-
visioned power draw with all disk spinning. Pelican peak
power consumption is 3.7 kW and is reached when 96
drives are concurrently spinning up. For comparison,
peak power draw is 3 times lower than all disks active.
In the fully provisioned rack the peak power draw would
be achieved if all 1,152 drives were concurrently spun up
and would peak at 25.8kW. Of course, in practice some
form of deferred spin up technique would be used.

4.9 Capacity Utilization

The final set of experiments evaluate the Pelican data lay-
out algorithm with respect to capacity utilization, partic-
ularly with non-uniform disk capacities. We ran an ex-

periment with a 100% write workload that stopped when
the first write request was rejected because no group had
sufficient remaining capacity to store the blob. We mea-
sure the per-disk utilization across the rack. For this ex-
periment, the blobs sizes are selected using a distribution
of VHD sizes from an internal company VHD store, with
sizes from 200 MB to 9 GB with an average of 3.3 GB.

Figure 9(c) shows the CDF of per-disk utilization for
three configurations. The solid line uses the Pelican
placement policy with variable disk capacities, the dotted
line is if the disks within a group are selected randomly
from the subset that have sufficient spare capacity. Fi-
nally, the dashed line is for disks of equal size (set to the
mean capacity of the disks used for variable). Comparing
the Pelican approach to the random policy with variable
capacity disks shows the benefit of Pelican approach.

To understand this more consider the rack utilization,
rather than per-disk utilization. The total capacity uti-
lization for an entire rack is 99.386% for Pelican with
variable disk capacities as shown in figure 3(e) versus
99.998% for uniform disk capacities. At 1,152 disks,
this implies that the equivalent of 7.07 disks are com-
pletely empty when using variable capacities when the
first request is rejected. However, a traditional RAID
system would have clipped all these drives to the min-
imum 4.2 TB. Therefore, compared to a 100% utiliza-
tion at 4.2 TB, adapting to variable capacity is giving us
99.4×4.55/4.2 = 107.7% utilization.

5 Related Work

There has been extensive work on enabling disks to spin
down under low load, including [5, 9, 2, 15]. Several
of these systems proposed to modify the individual disk
IO handling to increase periods of disk inactivity, allow-
ing disks to spin down to save power [9, 13]. Write off-
loading [9] proposed allowing active disks to be used to
buffer writes that were targeted against disks that were
spun down. Only read requests for data not available
required disks to be spun up, increasing the fraction of
time disks could be spun down. Write-offloading makes
no assumptions on the data layout used and worked at

364 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the block level. Pergamum [13] is a MAID-like system;
it incorporates NVRAM to handle meta-data, absorbing
meta-data reads and writes as well as buffering writes
to spun down disks. It also uses spin up tokens to limit
peak power draw. These mechanisms could be exploited
to support right-provisioning of power. However, unlike
Pelican, Pergamum allows clients to select the disks be-
ing used to store their data. In Pelican the data layout is
a function of the physical location of the disks which de-
termines their power and cooling domains, and Pelican
schedules these accesses appropriately.

Massive Arrays Of Idle Disks (MAID) [5] systems
assume that the power and cooling resources are provi-
sioned to support a peak performance. In contrast, Peli-
can is right-provisioned for the workload rather than for
peak hardware performance.

Systems such as Rabbit [2] and Sierra [15] are power-
proportional. In a power-proportional system the power
consumption is proportional to the load. This is usually
achieved through careful data layout schemes [15]. How-
ever, again most of these systems assume at peak perfor-
mance all disks can be spun up. In many ways Pelican is
also power-proportional, the number of disks spinning is
a function of the workload, except the number of drives
spinning never exceeds 8% of the disks.

Pergamum [13] also assumed a model where each
disk was effectively connected directly to the network
using an Ethernet port, with a small processor board
mounted in front of each disk for local processing. This
general model has been adopted by the Seagate Kinetic
drives [11]. Pelican uses standard SATA archival drives
and PCIe at the rack-scale, primarily to minimize costs.
Further, this allows a single server to accurately control
the drives and their states during boot time and during
operation.

Finally, Amazon Glacier [1] and the Facebook cold
data storage SKU [8] have never had public details re-
leased on their software stack to date. Facebook has re-
leased a design of the hardware through the Open Com-
pute Project (OCP). Compared to the public information,
Pelican has a higher disk density, lower system power
consumption per disk, lower hardware cost, and provides
smaller failure domains when compared to the OCP Cold
Storage reference design.

6 Future Work

Pelican raises a number of interesting questions which
we leave open for future work. The current Pelican soft-
ware stack was co-designed with the hardware. This has
the benefit that we are able to right-provision Pelican,
but it has the drawback that the disk group assignment is
very brittle with respect to hardware changes. For exam-
ple, changing the cooling or power domains, or adding a

new constraint, would require a redesign of the data lay-
out and re-working of the IO scheduler. Further, design-
ing the storage stack to work within the constraints is not
trivial and took many months, and getting it wrong is not
always immediately or trivially visible, for example vio-
lating the vibration domain. We do not know if we have
an optimal design, simply we have one that seems to per-
form well. To address these issues we are currently de-
veloping tools to automatically synthesize the data layout
and IO scheduling policies. We believe that we can en-
capsulate the underlying principles that we learnt when
building this storage stack in a tool. This will enable
rapid (automatic) optimisation of cold storage.

The other issue is that for many years the enterprise
storage community has avoided spinning disks up and
down, as it tends to yield higher failure rates, and even
worse, correlated failures. We hope to gain understand-
ing of this empirically over time. In particular, the spin-
ning up and down of groups together, while helping
improve performance when batching multiple requests,
means all drives in the same group have an identical his-
tory. If we observe correlated failures, we can be more
conservative and spin up only the 18 disks which are
required to service a particular operation. We can also
make sure that all groups spin up with a particular mini-
mum frequency, as well as watch particular performance
metrics for early signs of high wear. Many of these things
we will only discover over time and we look forward to
reporting them to the community.

7 Conclusion

Pelican is designed to support workloads where data
stored is rarely read, often referred to as cold data. Pel-
ican is unique in that the hardware has been designed
to be right-provisioned. In this paper we have described
and evaluated how these hardware limitations impact the
data layout and IO scheduling. We have shown that the
Pelican mechanisms are effective and compared against
a fully provisioned system.

Acknowledgements
We would like to thank the following for their help:
Cheng Huang, Brad Calder, Thierry Fevrier, Karan
Mehra, Erik Hortsch and David Goebel. We’d like to
thank our shepherd, Emin Gün Sirer, for his comments
and support. We’d also like to thank the anonymous re-
views for their insightful and helpful feedback.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 365

References
[1] Amazon glacier. http://aws.amazon.com/glacier/, Au-

gust 2012.

[2] AMUR, H., CIPAR, J., GUPTA, V., GANGER, G. R., KOZUCH,
M. A., AND SCHWAN, K. Robust and flexible power-
proportional storage. In Proceedings of the 1st ACM Symposium
on Cloud Computing (New York, NY, USA, 2010), SoCC ’10,
ACM, pp. 217–228.

[3] ANDRÉ, F., KERMARREC, A.-M., MERRER, E. L.,
SCOUARNEC, N. L., STRAUB, G., AND VAN KEMPEN, A.
Archiving cold data in warehouses with clustered network cod-
ing. In Proceedings of EuroSys (New York, NY, USA, Apr 2014),
ACM.

[4] BLÖMER, J., KALFANE, M., KARP, R., KARPINSKI, M.,
LUBY, M., AND ZUCKERMAN, D. An XOR-Based Erasure-
Resilient Coding Scheme. Tech. Rep. ICSI TR-95-048, Univer-
sity of California, Berkeley, August 1995.

[5] COLARELLI, D., AND GRUMWALD, D. Massive Arrays of
Idle Disks for Storage Archives. In IEEE Supercomputing (July
2002).

[6] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In Symposium Proceed-
ings on Communications Architectures & Protocols (New York,
NY, USA, 1989), SIGCOMM ’89, ACM, pp. 1–12.

[7] MARCH, A. Storage pod 4.0: Direct wire drives - faster, simpler,
and less expensive. http://blog.backblaze.com/2014/03/
19/backblaze-storage-pod-4/, March 2014.

[8] MORGAN, T. P. Facebook loads up innovative cold storage dat-
acenter. http://www.enterprisetech.com/2013/10/25/

facebook-loads-innovative-cold-storage-datacenter/,
October 2013.

[9] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
off-loading: Practical power management for enterprise storage.
Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[10] Ntttcp. http://gallery.technet.microsoft.com/

NTttcp-Version-528-Now-f8b12769, July 2013.

[11] SEAGATE. The seagate kinetic open storage vision. http://

tinyurl.com/noj7glm, August 2014.

[12] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queue-
ing using deficit round robin. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (New York, NY, USA, 1995), SIG-
COMM ’95, ACM, pp. 231–242.

[13] STORER, M. W., GREENAN, K. M., MILLER, E. L., AND
VORUGANTI, K. Pergamum: Replacing tape with energy ef-
ficient, reliable, disk-based archival storage. In Proceedings of
the 6th USENIX Conference on File and Storage Technologies
(2008), USENIX Association, p. 1.

[14] TEOREY, T. J., AND PINKERTON, T. B. A comparative anal-
ysis of disk scheduling policies. In Proceedings of the Third
ACM Symposium on Operating Systems Principles (New York,
NY, USA, 1971), SOSP ’71, ACM, pp. 114–.

[15] THERESKA, E., DONNELLY, A., AND NARAYANAN, D. Sierra:
Practical power-proportionality for data center storage. In Pro-
ceedings of the Sixth Conference on Computer Systems (New
York, NY, USA, 2011), EuroSys ’11, ACM, pp. 169–182.

[16] WORTHINGTON, B. L., GANGER, G. R., AND PATT, Y. N.
Scheduling algorithms for modern disk drives. In Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (New York, NY, USA, 1994),
SIGMETRICS ’94, ACM, pp. 241–251.

[17] WORTHINGTON, B. L., GANGER, G. R., PATT, Y. N., AND
WILKES, J. On-line extraction of scsi disk drive parameters. In
ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (1995), pp. 146–156.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 367

A Self-Configurable Geo-Replicated Cloud Storage System

Masoud Saeida Ardekani1,2 and Douglas B. Terry3

1Inria
2Sorbonne Universités, UPMC Univ Paris 06

3Microsoft Research Silicon Valley

Abstract
Reconfiguring a cloud storage system can improve
its overall service. Tuba is a geo-replicated key-value
store that automatically reconfigures its set of repli-
cas while respecting application-defined constraints
so that it adapts to changes in clients’ locations or
request rates. New replicas may be added, existing
replicas moved, replicas upgraded from secondary
to primary, and the update propagation between
replicas adjusted. Tuba extends a commercial cloud-
based service, Microsoft Azure Storage, with broad
consistency choices (as in Bayou), consistency-based
SLAs (as in Pileus), and a novel replication config-
uration service. Compared with a system that is
statically configured, our evaluation shows that Tuba
increases the reads that return strongly consistent
data by 63%.

1 Introduction

Cloud storage systems can meet the demanding needs
of their applications by dynamically selecting when
and where data is replicated. An emerging model
is to utilize a mix of strongly consistent primary
replicas and eventually consistent secondary replicas.
Applications either explicitly choose which replicas
to access or let the storage system select replicas at
run-time based on an application’s consistency and
performance requirements [15]. In either case, the
configuration of the system significantly impacts the
delivered level of service.

Configuration issues that must be addressed by
cloud storage systems include: (i) where to put pri-
mary and secondary replicas, (ii) how many sec-
ondary replicas to deploy, and (iii) how frequently
secondary replicas should synchronize with the pri-
mary replica. These choices are complicated by the
fact that Internet users are located in different ge-

ographical locations with different time zones and
access patterns. Moreover, systems must consider the
growing legal, security, and cost constraints about
replicating data in certain countries or avoiding repli-
cation in others.

For a stable user community, static configuration
choices made by a system administrator may be ac-
ceptable. But many modern applications, like shop-
ping, social networking, news, and gaming, not only
have evolving world-wide users but also observe time-
varying access patterns, either on a daily or seasonal
basis. Thus, it is advantageous for the storage system
to automatically adapt its configuration subject to
application-specific and geo-political constraints.

Tuba is a geo-replicated key-value store based on
Pileus [15]. It addresses the above challenges by con-
figuring its replicas automatically and periodically.
While clients try to maximize the utility of individual
read operations, Tuba improves the overall utility
of the storage system by automatically adapting to
changes in access patterns and constraints. To this
end, Tuba includes a configuration service that peri-
odically receives from clients their consistency-based
service level agreements (SLAs) along with their hit
and miss ratios. This service then changes the loca-
tions of primary and secondary replicas to improve
the overall delivered utility. A key property of Tuba is
that both read and write operations can be executed
in parallel with reconfiguration operations.

We have implemented Tuba as middleware on top
of Microsoft Azure Storage (MAS) [3]. It extends
MAS with broad consistency choices as in Bayou
[14], and provides consistency-based SLAs like Pileus.
Moreover, it leverages geo-replication for increased
locality and availability. Our API is a minor exten-
sion to the MAS Blob Store API, thereby allowing
existing Azure applications to use Tuba with little
effort while experiencing the benefits of dynamic
reconfiguration.

368 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

An experiment with clients distributed in data-
centers (sites) around the world shows that recon-
figuration every two hours increases the fraction of
reads guaranteeing strong consistency from 33% to
54%. This confirms that automatic reconfiguration
can yield substantial benefits which are realizable in
practice.

The outline of the paper is as follows. We review
Pileus and Tuba in Section 2. We look under the
hood of Tuba’s configuration service in Section 3.
Section 4 describes execution modes of clients in Tuba.
In Section 5, we explain implementation details of
the system. Our evaluation results are presented in
Section 6. We review related work in Section 7 and
conclude the paper in Section 8.

2 System Overview

In this section, we first briefly explain features that
Tuba inherits from Pileus. Since we do not cover all
technical issues of Pileus, we encourage readers to
read the original paper [15] for more detail. Then,
we overview Tuba and its fundamental components,
and how it extends the features of the Pileus system.

2.1 Tuba Features from Pileus

Storage systems cannot always provide rapid access
to strongly consistent data because of the high net-
work latency between geographical sites and diverse
operational conditions. Clients are forced to select
less ideal consistency/latency combinations in many
cases. Pileus addresses this problem by allowing
clients to declare their consistency and latency priori-
ties via SLAs. Each SLA comprises several subSLAs,
and each subSLA contains a desired consistency, la-
tency and utility.

The utility of a subSLA indicates the value of the
associated consistency/latency combination to the ap-
plication and its users. Inside a SLA, higher-ranked
subSLAs have higher utility than lower-ranked sub-
SLAs. For example, consider the SLA shown in Fig-
ure 1. Read operations with strong consistency are
assigned utility 1 as long as they complete in less than
50 ms. Otherwise, the application tolerates eventu-
ally consistent data and longer response times though
the rewarded utility is very small (0.01). Pileus, when
performing a read operation with a given SLA, at-
tempts to maximize the delivered utility by meeting
the highest-ranked subSLA possible.

The replication scheme in Pileus resembles that
of other cloud storage systems. Like BigTable [4],
each key-value store is horizontally partitioned by

Rank Consistency Latency(ms) Utility
1 Strong 50 1
2 Eventual 1000 0.01

Figure 1: SLA Example

key-ranges into tablets, which serve as the granu-
larity of replication. Tablets are replicated at an
arbitrary collection of storage sites. Storage sites are
either primary or secondary. All write operations
are performed at the primary sites. Secondary sites
periodically synchronize with the primary sites in
order to receive updates.

Depending on the desired consistency and latency
as specified in an SLA, the network delays between
clients and various replication sites, and the syn-
chronization period between primary and secondary
sites, the Pileus client library decides on the site to
which a read operation is issued. Pileus provides six
consistency choices that can be included in SLAs:
(i) strong (ii) eventual (iii) read-my-writes (RMW)
(iv) monotonic reads (v) bounded(t), and (vi) causal.

Consider again the SLA shown in Figure 1. A
Pileus client reads the most recent data and hits
the first subSLA as long as the round trip latency
between that client and a primary site is less than
50ms. But, the first subSLA misses for clients with
a round trip latency of more than 50ms to primary
sites. For these clients, Pileus reads data from any
replica site and hits the second subSLA.

Pileus helps developers find a suitable consisten-
cy/latency combination given a fixed configuration of
tablets. Specifically, the locations of primary and sec-
ondary replication sites, the number of required sec-
ondary sites, and the synchronization period between
secondary and primary sites need to be specified by
system administrators manually. However, a world-
wide distribution of users makes it extremely hard
to find an optimal configuration where the overall
utility of the system is maximized with a minimum
cost. Tuba extends Pileus to specifically address this
issue.

2.2 Tuba’s New Features
The main goal of Tuba is to periodically improve the
overall utility of the system while respecting repli-
cation and cost constraints. To this end, it extends
Pileus with a configuration service (CS) delivering
the following capabilities:

1. performing a reconfiguration periodically for
different tablets, and

2. informing clients of the current configuration
for different tablets.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 369

We note that the above capabilities do not necessarily
need to be collocated at the same service. Yet, we
assume they are provided by the same service for the
sake of simplicity.

In order for the CS to configure a tablet’s replicas
such that the overall utility increases, it must be
aware of the way the tablet is being accessed globally.
Therefore, all clients in the system periodically send
their observed latency and the hit and miss ratios of
their SLAs to the CS.

The observed latency is a set comprising the la-
tency between a client (e.g., an application server)
and different datacenters. The original Pileus sys-
tem also requires clients to maintain this set. Since
the observed latency between datacenters does not
change very often, this set is only sent every couple
of hours, or when it changes by more than a certain
threshold.

Tuba clients also send their SLAs’ hit and miss
ratios periodically. It has been previously observed
that placement algorithms with client workload in-
formation (such as the request rate) perform two to
five times better than workload oblivious random
algorithms [10]. Thus, every client records aggregate
ratios of all hit and missed subSLAs for a sliding
window of time, and sends them to the CS periodi-
cally. The CS then periodically (or upon receiving an
explicit request) computes a new configuration such
that the overall utility of the system is improved,
all constraints are respected, and the cost of the mi-
grating to and maintaining the new configuration
remains below some threshold.

Once a new configuration is decided, one or more of
the following operations are performed as the system
changes to the new configuration: (i) changing the
primary replica, (ii) adding or removing secondary
replicas, and (iii) changing the synchronization peri-
ods between primary and secondary replicas. In the
next section, we explain in more detail how the above
operations are performed with minimal disruption to
active clients.

3 Configuration Service (CS)

The CS is responsible for periodically improving the
overall utility of the system by computing and ap-
plying new configurations. The CS selects a new
configuration by first generating all reasonable repli-
cation scenarios that satisfy a list of defined con-
straints.

For each configuration possibility, it then computes
the expected gained utility and the cost of reconfigu-
ration. The new chosen configuration is the one that
offers the highest utility-to-cost ratio. Once a new

configuration is chosen, the CS executes the reconfig-
uration operations required for making a transition
from the old configuration to the new one.

In the remaining of this section, we first explain
the different types of constraints and the cost model
used by the CS. Then, we introduce the algorithm be-
hind the CS to compute a new configuration. Finally,
we describe how the CS executes different reconfigu-
ration operations to install the new configuration.

3.1 Constraints
Given the simple goal of maximizing utility, the CS
would have a greedy nature: it would generally de-
cide to add replicas. Hence, without constraints, the
CS could ultimately replicate data in all available
datacenters. To address this issue, a system admin-
istrator is able to define constraints for the system
that the CS respects.

Through an abstract constraint class, Tuba allows
constraints to be defined on any attribute of the
system. For example, a constraint might disallow
creating more than three secondary replicas or disal-
low a reconfiguration to happen if the total number of
online users is greater than 1 million. Tuba abides by
all defined constraints during every reconfiguration.

Several important constraints are currently im-
plemented and ready for use including: (i) Geo-
replication factor, (ii) Location, (iii) Synchronization
period, and (iv) Cost.

With geo-replication constraints, the minimum
and maximum number of replicas can be defined.
For example, consider an online music store. Devel-
opers may set the maximum geo-replication factor
of tablets containing less popular songs to one, and
set the minimum geo-replication factor of a tablet
containing top-ten best selling songs to three. Even
if the storage cost is relatively small, limiting the
replication factor may still be desirable due to the
cost of communication between sites for replica syn-
chronization.

Location constraints are able to explicitly force
replication in certain sites or disallow them in others.
For example, an online social network application
can respond to security concerns of European citizens
by allowing replication of their data only in Europe
datacenters.

With the synchronization period constraint, ap-
plication developers can impose bounds on how of-
ten a secondary replica synchronizes with a primary
replica.

The last and perhaps most important constraint
in Tuba is the cost constraint. As mentioned before,
the CS picks a configuration with the greatest ratio

370 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

of gained utility over cost. With a cost constraint,
application developers can indicate how much they
are willing to pay (in terms of dollars) to switch
to a new configuration. For instance, one possible
configuration is to put secondary replicas in all avail-
able datacenters. While the gained utility for this
configuration likely dominants all other possible con-
figurations, the cost of this configuration may be
unacceptably large. In the next section, we explain
in more detail how these costs are computed in Tuba.

Should the system administrator neglect to impose
any constraint, Tuba has two default constraints in
order to avoid aggressive replication and to avoid fre-
quent synchronization between replicas: (1) a lower
bound for the synchronization period, and (2) an
upper bound on the recurring cost of a configuration.

3.2 Cost Model
The CS considers the following costs for computing
a new configuration:

• Storage: the cost of storing a tablet in a partic-
ular site.

• Read/Write Operation: the cost of performing
read/write operations.

• Synchronization: the cost of synchronizing a
secondary replica with a primary one.

The first two costs are computed precisely for a
certain period of time, and the third cost is estimated
based on read/write ratios.

Given the above categories, the cost of a primary
replica is the sum of its storage and read/write oper-
ation costs, and the cost of a secondary replica is the
sum of storage, synchronization, and read operation
costs. Since Tuba uses batching for synchronization
to a secondary replica and only sends the last write
operation on an object in every synchronization cycle,
the cost of a primary replica is usually greater than
that of secondary replicas.

In addition to the above costs, the CS also con-
siders the cost of creating a new replica; this cost is
computed as one-time synchronization cost.

3.3 Selection
Potential new configurations are computed by the
CS in the following three steps:

Ratios aggregation. Clients from the same geo-
graphical region usually have similar observed access
latencies. Therefore, as long as they use the same
SLAs, their hit and miss ratios can be aggregated
to reduce the computation. We note that this phase
does not necessarily need to be in the critical path,

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.9
3 Eventual 1000 0.01

Figure 2: SLA of a Social Network Application

and aggregations can be done once clients send their
ratios to the CS.

Configuration computation. In this phase, pos-
sible configurations that can improve the overall util-
ity of the system are generated and sorted. For each
missed subSLA, and depending on its consistency,
the CS may produce several potential configurations
along with their corresponding reconfiguration op-
erations. For instance, for a missed subSLA with
strong consistency, two scenarios would be: (i) creat-
ing a new replica near the client and making it the
solo primary replica, or (ii) adding a new primary
replica near the client and making the system run in
multi-primary mode.

Each new configuration has an associated cost of
applying and maintaining it for a certain period of
time. The CS also computes the overall gained utility
of every new configuration that it considers. Finally,
the CS sorts all potential configurations based on
their gained utility over their cost.

Constraints satisfaction. Configurations that
cannot satisfy all specified constraints are eliminated
from consideration. Constraint classes also have the
ability to add configurations being considered. For in-
stance, the minimum geo-replication constraint might
remove low-replica configurations and create several
new ones with additional secondary replicas at dif-
ferent locations.

3.4 Operations
Once a new configuration is selected, the CS executes
a set of reconfiguration operations to transform the
system from the current configuration. In this section,
we explain various reconfiguration operations and
how they are executed abstractly by the CS, leaving
the implementation specifics to Section 5.

3.4.1 Adjust the Synchronization Period

When a secondary replica is added to the system for
a particular tablet, a default synchronization period
is set, which defines how often a secondary replica
synchronizes with (i.e., receives updates from) the
primary replica. Although this value does not affect

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 371

the latency of read operations with strong or even-
tual consistency, the average latency of reads with
intermediary consistencies (i.e., RMW, monotonic
reads, bounded, and causal) can depend heavily on
the frequency of synchronization. Typically, the cost
of adjusting the synchronization period is smaller
than the cost of adding a secondary replica or of
changing the locations of primary/secondary replicas.
Hence, it is likely that the CS will decide to decrease
this period to increase the hit ratios of subSLAs with
intermediary consistencies.

For example, consider a social network application
with the majority of users located in Brazil and India
accessing a storage system with a primary replica
located in Brazil, initially, and a secondary replica
placed in South Asia with the synchronization period
set to 10 seconds. Assume that the SLA shown in
Figure 2 is set for all read operations. Given the fact
that the round trip latency between India and Brazil
is more than 350 ms, the first subSLA will never
hit for Indian users. Yet, depending on the synchro-
nization period and frequency of write operations
performed by Indian users, the second subSLA might
hit. Thus, if the CS detects low utility for Indian
users, a possible new configuration would be similar
to the old one but with a reduced synchronization
period.

In this case, the chosen operation to apply the
new configuration is adjust_sync_period. Executing
this operation is very simple since the value of the
synchronization period need only be changed in the
secondary replica. Clients do not directly observe
any difference between the new configuration and
the old one, but they benefit from a more up-to-date
secondary replica.

3.4.2 Add/Remove Secondary Replica

In certain cases, the CS might decide to add a sec-
ondary replica to the system. For example, consider
an online multiplayer game with the SLA shown in
Figure 3 and where the primary replica is located
in the East US region. In order to deliver a better
user experience to gamers around the globe, the CS
may add a secondary replica near users during their
peak times. Once the peak time has passed, in order
to reduce costs, the CS may decide to remove the
added, but now lightly used, secondary replica.

Executing add_secondary(sitei) is straight-
forward. A dedicated thread is dispatched to copy
objects from the primary replica to the secondary
one. Once the whole tablet is copied to the secondary
replica, the new configuration becomes available
to clients. Clients with the old configuration may

Rank Consistency Latency(ms) Utility
1 RMW 50 1
2 Monotonic Read 50 0.5
3 Eventual 500 0

Figure 3: SLA of an online multiplayer game

continue submitting read operations to previously
known replicas, and they eventually will become
aware of the newly added secondary replica at sitei.

Executing remove_secondary(sitei) is also simple.
The CS removes the secondary replica from the
current configuration. In addition, a thread is dis-
patched to physically delete the secondary replica.

3.4.3 Change Primary Replica

In cases where the system maintains a single primary
site, the CS may decide to change the location of the
primary replica. For instance, consider the example
given in Section 3.4.1. The CS may detect that
adjusting the synchronization period between the
primary and secondary replicas cannot improve the
utility. In this case, the CS may decide to swap the
primary and secondary replica roles. During peak
times in India, the secondary replica in South Asia
becomes the primary replica. Likewise, during peak
times in Brazil, the replica in Brazil becomes primary.

The CS calls the change_primary(sitei) opera-
tion to make the configuration change. If a sec-
ondary replica does not exist in sitei, the operation
is performed in three steps. First, the CS creates a
new empty replica at sitei. It also invalidates the
configuration cached in clients. As we shall see later,
when a cached configuration is invalid, a client needs
to contact the CS when executing certain operations.
Second, once every cached configuration becomes in-
valid, the CS makes sitei a write_only primary
site. In this mode, all write operations are forwarded
to both the primary site and sitei, but sitei is not
allowed to execute read operations. Finally, once
sitei catches up with the primary replica, the CS
makes it the solo primary site. If a replica exists in
sitei, the first step is skipped. We will explain the
implementation of this operation in Section 5.3.

3.4.4 Add Primary Replica

For applications that require clients to read up-to-
date data as fast as possible, the system may benefit
from having multiple primary sites that are strongly
consistent. In multi-primary mode, write operations
are applied synchronously in several sites before the
client is informed that the operation has completed.

372 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Operation Effect Cost
Decrease synchronization
period of secondary
replica at sitei

Increase hit ratios of subSLAs with bounded,
causal, or RMW consistencies for clients near sitei

Increase in
communication

Add sitei as a secondary
replica

Increase hit ratios of subSLAs with eventual or
intermediary consistencies for clients near sitei

Additional storage;
increased communication

Upgrade sitei from
secondary to primary,
and downgrade sitej

from primary to
secondary

Increase hit ratios of subSLAs with strong or
intermediary consistency for clients near sitei;
decrease hit ratios of subSLAs with strong or
intermediary consistency for clients near sitej

No change

Add sitei as a primary
replica (upgraded from
secondary)

Increase hit ratios of subSLAs with strong or
intermediary consistency for clients near sitei

Increased
communication;
increased write latency

Figure 4: Summary of Common Reconfiguration Operations, Effects on Hit Ratios, and Costs.

The operation that performs the configuration
transformation is called add_primary(sitei). Its exe-
cution is very similar to change_primary(sitei) with
one exception. In the third step, instead of mak-
ing the write_only sitei the solo primary, sitei is
added to the list of primary replicas, thereby making
the system multi-primary. In this mode, multiple
rounds of operations are needed to execute a write.
The protocol that we use is described in Section 5.2.3.

3.4.5 Summary

Figure 4 summarizes the reconfiguration operations
that are generally considered by the CS (inverse and
other less common operations are not shown). Note
that the listed effects are only potential benefits.
Adjusting the synchronization period or adding a
secondary replica to sitei does not impact the ob-
served consistency or write latency of clients that
are not near this site. These operation can possibly
increase the hit ratios of subSLAs with intermedi-
ary consistencies observed by clients close to sitei.
Adding a secondary replica can increase the hit ratios
of subSLAs with eventual consistency. Making sitei

the solo primary increases the hit ratios of subSLAs
with both strong and intermediary consistencies for
clients close to sitei. However, clients close to the
previous primary replica now may miss subSLAs with
strong or intermediary consistencies. Adding a pri-
mary replica can boost strong consistency without
having a negative impact on read operations; but, it
increases the cost of write operations for all clients.

4 Client Execution Modes

Since the CS may reconfigure the system periodically,
clients need to be aware of possible changes in the

locations of primary and secondary replicas. Instead
of clients asking the CS for the latest configuration
before executing each operation, Tuba allows clients
to cache the configuration of a tablet (called the
cview) and use it for performing read and write
operations. In this section, we explain how clients
avoid two potential safety violations: (i) performing
a read operation with strong consistency on a non-
primary replica, or (ii) executing a write operation
on a non-primary replica.

Based on the freshness of a client’s cview, the client
is either in fast or slow mode. Roughly speaking, a
client is in the fast mode for a given tablet if it
knows that it has the latest configuration. That is, it
knows exactly the locations of primary and secondary
replicas, and it is guaranteed that the configuration
will not change in the near future. On the other hand,
whenever a client suspects that a configuration may
have changed, it enters slow mode until it refreshes
its local cache.

Initially, every client is in slow mode. In or-
der to enter fast mode, a client requests the latest
configuration of a tablet (Figure 5). If the CS has
not scheduled a change to the location of a primary
replica, the client obtains the current configuration
along with a promise that the CS will not modify the
set of primary replicas within the next Δ seconds.
Suppose the duration from when the client issues its
request to when it receives the latest configuration
is measured to be δ seconds. The client then enters
the fast mode for Δ− δ seconds. During this period,
the client is sure that the CS will not perform a
reconfiguration that compromises safety.

In order to remain in fast mode, a client needs to
periodically refresh its cview. As long as it receives
the latest configuration within the fast mode window,

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 373

Figure 5: Clients Fast and Slow Execution Modes

it will remain in fast mode, and its fast mode window
is extended.

The CS can force all clients to enter slow mode at
any time by preventing them from refreshing their
configuration views. This feature is used before exe-
cuting change_primary() and add_primary() oper-
ations (see Section 5.3).

Fast Mode. When a client is in fast mode, read
and single-primary write operations involve a single
round-trip to one selected replica. No additional
overhead is imposed on these operations. Multi-
primary write operations use a three-phase protocol
in fast or slow mode (see Section 5.2.3).

Slow Mode. Being in slow mode (for a given
tablet) means that the client is not totally sure about
the latest configuration, and the client needs to take
some precautions. Slow mode has no affect on read
operations with relaxed consistency, i.e., with any
desired consistency except strong consistency. Be-
cause read operations with strong consistency must
always go to a primary replica, when a client is in
slow mode it needs to confirm that such an opera-
tion is indeed executed at a current primary replica.
Upon completion of a strong consistency read, the
client validates that the responding replica selected
from its cview is still a primary replica. If not, the
client retries the read operation.

Unlike read operations, write operations are more
involved when a client is in slow mode. More precisely,
any client in slow mode that wishes to execute a write
operation on a tablet needs to take a non-exclusive
lock on the tablet’s configuration before issuing the
write operation. On the other hand, the CS needs
to take an exclusive lock on the configuration if it
decides to change the set of primary replicas. This
lock procedure is required to ensure the linearizability
[7] of write operations.

5 Implementation

Tuba is built on top of Microsoft Azure Storage
(MAS) [3] and provides a similar API for reading
and writing blobs. Every MAS storage account is
associated with a particular storage site. Although
MAS supports Read-Access Geo-Redundant Storage
(RA-GRS) in which both strong and eventual con-
sistencies are provided, it lacks intermediary consis-
tencies, and replication is limited to a single primary
site and a single secondary site. Our implementa-
tion extends MAS with: (i) multi-site geo-replication
(ii) consistency-based SLAs, and (iii) automatic re-
configuration.

A user of Tuba supplies a set of storage accounts.
This set determines all available sites for replica-
tion. The CS then selects primary and secondary
replica sites by choosing storage accounts from this
set. Thus, a configuration is a set of MAS storage
accounts tagged with primary or secondary.

In the rest of this section, we explain the com-
munication between clients and the CS, and how
operations are implemented in Tuba. We ignore
the implementation of consistency guarantees and
consistency-based SLAs since these aspects of Tuba
are taken directly from the Pileus system [15].

5.1 Communication
Clients communicate with the CS through a des-
ignated Microsoft Azure Storage container. Clients
periodically write their latency and hit/miss ratios to
storage blobs in this shared container. The CS reads
this information and stores the latest configuration
as a blob in this same container. Likewise, clients
periodically read the latest configuration blob from
the shared container and cache it locally.

As we explained in Section 4, when a client reads
the latest configuration, it enters fast mode for Δ−δ
seconds. Since there is no direct communication be-
tween the client and the CS, we also need to ensure
that the CS does not modify a primary replica and
install a new configuration within the next Δ sec-
onds. Our solution is simple. When the CS wants
to perform certain reconfiguration operations (i.e.,
changing or adding a primary replica), it writes a
special reconfiguration-in-progress (RiP) flag to the
configuration blob’s metadata. The CS then waits
for at least Δ seconds before installing the new con-
figuration. If a client fails to refresh its cview on time
or if it finds that the RiP flag is set, then the client
enters slow mode. Once the CS completes the opera-
tions needed to reconfigure the system, it overwrites
the configuration blob with the latest configuration

374 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

and clears the RiP flag. Clients will re-enter fast
mode when they next retrieve the new configuration.

5.2 Client Operations
5.2.1 Read Operation

For each read operation submitted by an application,
the client library selects a replica based on the client’s
latency, cview, and a provided SLA (as in Pileus).
The client then sends a read request to the chosen
replica. Upon receiving a reply, if the client is in fast
mode or if the read operation does not expect strong
consistency, the data is returned immediately to the
application. Otherwise, the client confirms that the
contacted replica had been the primary replica at the
time it answered the read request. More precisely,
when a client receives a read reply message in slow
mode, it reads the latest configuration and confirms
that the timestamp of the configuration blob has not
changed.

5.2.2 Single-primary Write Operation

To execute a single-primary write operation, a client
first checks that it is in fast mode and that the re-
maining duration of the fast mode interval is longer
than the expected time to complete the write opera-
tion. If not, it refreshes its cview. Assuming the RiP
flag is not set, the client then writes to the primary
replica. Once the client receives a positive response
to this write operation, the client checks that it is still
in fast mode. If so, the write operation is finished. If
the write operation takes more time than expected
such that the client enters slow mode during the
execution of the write operation, the client confirms
that the primary replica has not changed.

When a client discovers a reconfiguration in
progress and remains in slow mode, we considered
two approaches for performing writes. The simplest
approach is for the client to wait until a new config-
uration becomes available. In other words, it could
wait until the RiP flag is removed from the configu-
ration blob’s metadata. The main drawback is that
no write operation is allowed on the tablet being
reconfigured for Δ seconds and, during this period,
the CS does nothing while waiting for all clients to
enter slow mode.

Instead, Tuba allows a client in slow mode to ex-
ecute a write operation by taking a lock. A client
acquires a non-exclusive lock on the configuration
to ensure that the CS does not change the primary
replica before it executes the write operation. The
CS, on the other hand, grabs an exclusive lock on
the configuration before changing it. This locking

mechanism is implemented as follows using MAS’s
existing lease support. To take a non-exclusive lock
on the configuration, a client obtains a lease on the
configuration blob and stores the lease-id as meta-
data in the blob. Other clients wishing to take a
non-exclusive lock simply read the lease-id from the
blob’s metadata and renew the lease. To take an
exclusive lock, the CS breaks the client’s lease and re-
moves the lease-id from the metadata. The CS then
acquires a new lease on the configuration blob. Note
that no new write is allowed after this point. After
some safe threshold equal to the maximum allowed
leased time, the CS updates the configuration.

5.2.3 Multi-primary Write Operation

Tuba permits configurations in which multiple servers
are designated as primary replicas. A key imple-
mentation challenge was designing a protocol that
atomically updates any number of replicas on con-
ventional storage servers and that operates correctly
in the face of concurrent readers and writers. Our
multi-primary write protocol involves three phases:
one in which a client marks his intention to write
on all primary replicas, one where the client updates
all of the primaries, and one where the client indi-
cates that the write is complete. To guard against
concurrent writers, we leverage the concept of ETags
in Microsoft Azure, which is also part of the HTML
1.1 specification. Each blob has a string property
called an ETag that is updated whenever the blob
is modified. Azure allows clients to perform a condi-
tional write operation on a blob; the write operation
executes only if the provided ETag has not changed.

When an application issues a write operation to a
storage blob and there are multiple primary replicas,
the Tuba client library performs the following steps.

Step 1: Acquire a non-exclusive lock on the con-
figuration blob. This step is the same as previously
described for a single-primary write in slow mode. In
this case, the configuration is locked even if the client
is in fast mode since the multi-primary write may
take longer than Δ seconds to complete. This en-
sures that the client knows the correct set of primary
replicas throughout the protocol.

Step 2: At the main primary site, add a special
write-in-progress (WiP) flag to the metadata of the
blob being updated. The main primary site is the
one listed first in the set of primary replicas. This
metadata write indicates to readers that the blob is
being updated, and it returns an ETag that is used
later when the data is actually written. Updates to
different blobs can take place in parallel.

Step 3: Write the WiP flag to the blob’s metadata

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 375

on all other primary replicas. Note that these writes
can be done in any order or in parallel.

Step 4: Perform the write on the main primary site
using the ETag acquired in Step 2. Note that since
writes are performed first at the main primary, this
replica always holds the truth, i.e. the latest data.
Other primary replicas hold stale data at this point.
This conditional write may fail because the ETag is
not current, indicating that another client is writing
to the same blob. In the case of concurrent writers,
the last writer to set the WiP flag will successfully
write to the main primary replica; clients whose
writes fail abandon the write protocol and possibly
retry those writes later.

Step 5: Perform conditional writes on all the other
primary replicas using the previously aquired Etags.
These writes can be done in parallel. Again, a failed
write indicates that a concurrent write is in progress.
In this case, this client stops the protocol even though
it may have written to some replicas already; such
writes will be (or may already have been) overwritten
by the latest writer (or by a recovery process as
discussed in section 5.4).

Step 6: Clear the WiP flags in the metadata at all
non-main primary sites. These flags can be cleared
in any order or in parallel. This allows clients to
now read from these primary replicas and obtain the
newly written data. To ensure that one client does
not prematurely clear the flag while another client is
still writing, these metadata updates are performed
as conditional writes using the ETags obtained from
the writes in the previous step.

Step 7: Clear the WiP flag in the metadata on
the main primary using a conditional write with the
ETag obtained in Step 4. Because this is done as the
final step, clients can check if a write is in progress
simply by reading the metadata at the main primary
replica.

An indication that the write has been successfully
completed can be returned to the caller at any time
after Step 4 where the data is written to the main pri-
mary. Waiting until the end of the protocol ensures
that the write is durable since it is held at multiple
primaries.

If a client attempts a strongly consistent read while
another client is performing a multi-primary write,
the reader may obtain a blob from the selected pri-
mary replica whose metadata contains the WiP flag.
In this case, the client redirects its read to the main
primary replica who always holds the latest data.
Relaxed consistency reads, to either primary or sec-
ondary replicas, are unaffected by writes in progress.

5.3 CS Reconfiguration Operations

In this section, we only explain the implementation
of change_primary() and add_primary() since the
implementation details of adjusting a synchronization
period and adding/removing secondary replicas are
straightforward.

As we explained before, change_primary(sitei) is
the operation required for making sitei the solo pri-
mary. If a secondary replica does not exist in sitei,
the operation is performed in three steps. Otherwise,
the first step is skipped.

Step 1: The CS starts by creating a replica at sitei,
and synchronizing it with the primary replica.

Step 2: Before making sitei the new primary
replica, the CS synchronizes sitei with the exist-
ing primary replica. Because write operations can
run concurrently with a change_primary(sitei) oper-
ation, sitei might never be able to catch up with the
primary replica. To address this issue, the CS first
makes sitei a write_only replica by creating a new
temporary configuration. As its name suggests, write
operations are applied to both write_only replicas
and primary replicas (using the multi-primary write
protocol described previously).

The CS installs this configuration as follows:
(i) It writes the RiP flag to the configuration

blob’s metadata, and waits Δ seconds to force all
clients into slow mode.

(ii) Once all clients have entered the slow mode,
the CS breaks the lease on the configuration blob
and removes the lease-id from the metadata.

(iii) It then acquires a new lease on the blob and
waits for some safe threshold.

(iv) Once the threshold is passed, the CS safely
installs the temporary configuration, and removes
the RiP flag.

Consequently, clients again switch to fast mode
execution while the sitei replica catches up with the
primary replica.

Step 3: The final step is to make sitei the primary
replica, once sitei is completely up-to-date. The CS
follows the procedure explained in the previous step
to install a new configuration where the old primary
replica is downgraded to a secondary replica, and
the write_only replica is promoted to be the new
primary. Once the new configuration is installed,
sitei is the sole primary replica.

Note that write operations are blocked from the
time when the CS takes an exclusive lease on the
configuration blob until it installs the new configura-
tion in both steps 2 and 3. However, this duration
is short: a round trip latency from the CS to the
configuration blob plus the safe threshold.

376 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

The add_primary() operation is implemented ex-
actly like change_primary() with one exception. In
the third step, instead of making sitei the solo pri-
mary, this site is added to the list of primary replicas.

5.4 Fault-Tolerance

Replica Failure. A replica being unavailable
should be a very rare occurrence since each of our
replication sites is a collection of three Azure servers
in independent fault domains. In any case, failed
replicas can easily be removed from the system
through reconfiguration. Failed secondary replicas
can be ignored by clients, while failed primary repli-
cas can be replaced using previously discussed recon-
figuration operations.

Client Failure. Most read and write operations
from clients are performed at a single replica and
maintain no locks or leases. The failure of one client
during such operations does not adversely affect oth-
ers. However, Tuba does need to deal explicitly with
client failures that may leave a multi-primary write
partially completed. In particular, a client may crash
before successfully writing to all primary replicas
or before removing the WiP flags on one or more
primary replicas.

When a client, through normal read and write
operations, finds that a write to a blob has been in
progress for an inordinate amount of time, it invokes a
recovery process to complete the write. The recovery
process knows that the main primary replica holds
the truth. It reads the blob from the main primary
and writes its data to the other primary replicas using
the multi-write protocol described earlier. Having
multiple recovery processes running simultaneously
is acceptable since they all will be attempting to
write the same data. The recovery process, after
successfully writing to every primary replica, clears
all of the WiP flags for the recovered blob.

CS Failure. Importantly, the Tuba design does
not depend on an active CS in continuous operation.
The CS may run only occasionally to check whether
a reconfiguration is warranted. Since clients read the
latest configuration directly from the configuration
blob, and do not rely on responses from the CS,
they can stay in fast mode even when the CS is
not available as long as the configuration blob is
available (and the RiP flag is not set). Since the
configuration blob is replicated in MAS, it obtains
the high-availability guarantees provided by Azure.
If higher availability is desired, the configuration

blob could be replicated across sites using Tuba’s
own multi-primary write protocol.

The only troubling scenario is if the CS fails while
in the midst of a reconfiguration leaving the RiP
flag set on the configuration blob. This is not a
concern when the CS fails while adjusting a syn-
chronization period or adding/removing a secondary
replica. Likewise, a failure before the second step of
changing/adding a primary replica does not pose any
problem. Even if a CS failure leaves the RiP flag
set, clients can still perform reads and writes in slow
mode.

Recovery is easy if the CS fails during step 2 or
during step 3 of changing/adding a primary replica
(i.e., after setting the RiP flag and before clearing it).
When the CS wants to performs a reconfiguration,
it obtains an ETag upon setting the RiP flag. To
install a new configuration, the CS writes the new
configuration conditional on the obtained ETag.

A client clears the RiP flag upon waiting too
long in slow mode. Doing so will prevent the CS
from writing a new configuration blob and abort
any reconfiguration in progress in the unlikely event
that the CS had not crashed but was simply oper-
ating slowly. In other words, the CS cannot write
the new configuration if some client had impatiently
cleared the RiP flag and consequently changed the
configuration blob’s ETag.

Finally, if the CS fails after step 2 of adding/chang-
ing a primary replica, clients can still enter fast mode.
In case the CS was executing change_primary() be-
fore its crash, write operations will execute in multi-
primary mode. Thus, they will be slow until the CS
recovers and finishes step 3.

6 Evaluation

In this section, we present our evaluation results,
and show how Tuba improves the overall utility of
the system compared with a system that does not
perform automatic reconfiguration.

6.1 Setup and Benchmark
To evaluate Tuba, we used three storage accounts
located in the South US (SUS), West Europe (WEU),
and South East Asia (SEA). We modeled the num-
ber of active clients with a normal distribution, and
placed them in the US West Coast, West Europe,
and Hong Kong (Figure 6). This is to mimic the
workload of clients in different parts of the world
during working hours. The mean of the normal dis-
tribution is set to 12 o’clock local time, and the
variance is set to 8 hours. Considering the above

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 377

SUS WEU SEA
US Clients 53 153 190
(West US)

Europe Clients 132 <1 277
(West Europe)

Asia Clients 204 296 36
(Hong Kong)

Figure 6: Client Distribution and Latencies (in ms)

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.7
3 Eventual 250 0.5

Figure 7: SLA for Evaluation

normal distribution, the number of online clients at
each hour is computed as a total number of clients
times the probability distribution at that hour. The
total number of clients at each site is 150 over a 24
hour period. Hence, each tablet is accessed by 450
distinct clients in one day.

We used the YCSB benchmark [6] with workload
B (95% Reads and 5% writes) to generate the load.
Each tablet contains 105 objects, and each object
has a 1KB payload. Figure 7 shows the SLA used in
our evaluation, which resembles one used by a social
networking application [15].

The initial setup places the primary replica in SEA
and a secondary replica in WEU. We set the geo-
replication factor to two, allowing the CS to replicate
a tablet in at most two datacenters. Moreover, we
disallowed multi-primary schemes during reconfigu-
rations.

6.2 Macroscopic View
Figure 8 compares the overall utility for read op-
erations when reconfiguration happens every 2, 4,
and 6 hours over a 24 hour period, and when no
reconfiguration happens. We note that without re-

Reconf. Every
6h 4h 2h

AOU 0.76 0.81 0.85
AOU Impr. over No Reconf. 5% 12% 18%
AOU Impr. over Max. Ach. 20% 45% 65%

AOU: Averaged Overall Utility in 24 hours;
No Reconf. AOU: 0.72; Max. Ach. AOU: 0.92

Figure 8: Utility improvement with different recon-
figuration rates

configuration Tuba performs exactly as Pileus. The
average overall utility (AOU) is computed as the
average utility delivered for all read operations from
all clients. The average utility improvement depends
on how frequently the CS performs reconfigurations.
When no reconfiguration happens in the system, the
AOU in the 24 hour period is 0.72. Observe that
without constraints, the maximum achievable AOU
would have been 1. However, limiting replication to
two datacenters and a single primary decreases the
maximum achievable AOU to 0.92.

Performing a reconfiguration every 6 hours im-
proves the overall utility for almost 12 hours, and
degrades it for 8 hours. This results in a 5 percent
AOU improvement. When reconfiguration happens
every 4 hours, the overall utility improves for 16
hours. This leads to a 12 percent AOU improvement.
Finally, with 2 hour reconfigurations, AOU is im-
proved 18 percent. Note that this improvement is 65
percent of the maximum possible improvement.

Interestingly, when no reconfiguration happens,
the overall utility is better than other configurations
around UTC midnight. The reason behind this phe-
nomena is that at UTC midnight, the original replica
placement is well suited for the client distribution at
that time.

Figure 9 shows the hit percentages of different
subSLAs. With no reconfiguration, 34% of client
reads return eventually consistent data (i.e., hit the
third subSLA). With 2 hour reconfigurations, Tuba

378 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 9: Hit Percentage of subSLAs

reduces this to 11% (a 67% improvement). Likewise,
the percentage of reads returning strongly consistent
data increases by around 63%.

Although the computed AOU depends heavily on
the utility values specified in the SLA, we believe
that the qualitative comparisons in this study are
insensitive to the specific values. Certainly, the hit
percentages in Figure 9 would be unaffected by vary-
ing utilities as long as the rank order of the subSLAs
is unchanged.

In addition to reduced utility, systems without sup-
port for automatic reconfiguration have additional
drawbacks stemming from the way they are manually
reconfigured. A system administrator must stop the
system (at least for certain types of configuration
changes), install the new configuration, inform clients
of the new configuration, and then restart the system.
Such systems are unable to perform frequent reconfig-
urations. Moreover, the effect of a reconfiguration on
throughput can be substantial since all client activity
ceases while the reconfiguration is in progress.

6.3 Microscopic View
Figure 10 shows how Tuba adapts the system con-
figuration in our experiment where reconfiguration
happens every 4 hours. The first five reconfigura-
tions are labeled on the plot. Initially, the primary
replica is located in SEA, and the secondary replica
is located in WEU. Upon the first reconfiguration,
the CS decides to make WEU the primary replica.
Though the number of clients in Asia is decreasing

Ep Configuration Reconfiguration
och Pri. Sec. Operation
0 SEA WEU change_primary(WEU)
1 WEU SEA add_secondary(SUS)

remove_secondary(SEA)
2 WEU SUS change_primary(SUS)
3 SUS WEU add_secondary(SEA)

remove_secondary(WEU)
4 SUS SEA change_primary(SEA)
5 SEA SUS

Figure 10: Tuba with Reconfigurations Every 4 hour

at this time, the overall utility stays above 0.90 for
two hours before starting to degrade.

The second reconfiguration happens around 2PM
(UTC time) when the overall utility is decreased
by 10%. At this time, the CS detects poor utility
for users located in the US, and decides to move
the secondary replica from SEA to SUS. Since the
geo-replication factor is set to 2, the CS necessar-
ily removes the secondary replica in SEA to comply
with the constraint. At 6PM, the third reconfigura-
tion happens, and SUS becomes the primary replica.
This reconfiguration improves the AOU to more than
0.90. In the fourth reconfiguration, the CS decides
to create a secondary replica again in the SEA re-
gion. Like the second reconfiguration, in order to
respect the geo-replication constraint, the secondary
replica in WEU is removed. Note that the fourth
reconfiguration is suboptimal since the CS does not
predict clients’ future behavior and solely focuses on
their past behavior. A better reconfiguration would
have been to make SEA the primary replica rather
than the secondary replica. After 4 hours, the CS
performs another reconfiguration and again is able
to boost the overall utility of the system.

Although the CS performs adjust_sync_period()
with two hour reconfiguration intervals, this opera-
tion is never selected by the CS when reconfigurations
happen every 4 hours. This is because changing
the primary or secondary replica boosts the util-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 379

Fast Mode Slow Mode
Read Write Read Write

Client in Europe 54 143 270 785
Client in Asia 297 899 533 1598

Figure 11: Average Latency (in ms) of Read/Write
Operations in Fast and Slow Modes

ity enough that reducing the synchronization period
would result in little additional benefit.

6.4 Fast Mode vs. Slow Mode

In this experiment, we compare the latency of read
and write executions in fast and slow modes. Since
the latency of read operations with any consistency
other than strong does not change in fast and slow
modes, we solely focus on the latency of executing
read operations with strong consistency and write
operations. We placed the configuration blob in the
West US (WUS) datacenter, a data tablet in West
Europe (WEU), and clients in Central Europe and
East Asia. The latency (in ms) between the two
clients and the two storage sites are as follows:

WEU WUS
Client in Europe 54 210

Client in Asia 296 230

Figure 11 compares the average latencies of read
and write operations in slow and fast modes. Execut-
ing strongly consistent read operations in slow mode
requires also reading the configuration blob to ensure
that the primary replica has not changed. Therefore,
the latency of a read operation in slow mode is more
than 200 ms longer than in fast mode.

Executing write operations in slow mode requires
three additional RPC calls to the US (where the con-
figuration blob is stored) in the case where no client
has written a lease-id to the configuration’s meta-
data (as in this experiment). Specifically, slow mode
writes involve reading the latest configuration, taking
a non-exclusive lease on the configuration blob, and
writing the lease-id to the configuration’s metadata.
If a lease-id is already set in the configuration’s meta-
data, the last phase is not needed, and two RPC calls
are enough. We note that, with additional support
from the storage servers, the overhead of write oper-
ations in slow mode could be trimmed to only one
additional RPC call. This is achievable by taking or
renewing the lease in one RPC call to the server that
stores the configuration.

Figure 12: Scalability of the CS

6.5 Scalability of the CS

As we explained in Section 3.3, the CS considers a
potentially large number of candidates when select-
ing a new configuration. To better understand the
limitations of the selection algorithm used by our
CS, we studied its scalability in practice. We put
clients at four sites: East US, West US, West Europe,
and Southeast Asia. Each client’s SLA has three
subSLAs, and all SLAs are distinct; thus, no ratio
aggregation is possible. Initially, the East US site
is chosen as the primary replica, and no secondary
replica is deployed. We also impose the following
three constraints: (i) Do not replicate in East US,
(ii) Replicate in at least two sites, and (iii) Replicate
in a maximum of three sites. We ran the CS on a
dual-core 2.20 GHz machine with 3.5GB of memory.

Figure 12 plots the latency of computing a new
configuration with 3, 5, and 7 available storage sites
when the CS performs an exhaustive search of all
possible configurations. With one hundred clients, it
takes less than 3 seconds to compute the expected
utility gain for every configuration and to select the
best one. With one thousand clients, the computa-
tion time for 3 available storage sites is still less than
3 seconds, while it reaches 3.8 seconds for 7 sites.
When the number of clients reaches ten thousand,
the CS computes a new configuration for 3 available
storage sites in 20 seconds, and for 7 available storage
sites in 170 seconds.

This performance is acceptable for many systems
since typically the set of cloud storage sites (i.e., the
datacenters in which data can be stored) is small
and reconfigurations are infrequent. For systems
with very large numbers of clients and a large list
of possible storage sites, heuristics for pruning the
search space could yield substantial improvements
and other techniques like ILP or constraint program-
ming should be explored.

380 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

7 Related Work

Lots of previous work has focused on data placement
and adaptive replication algorithms in LAN envi-
ronments (e.g., [2, 8, 11–13, 18]). These techniques
are not applicable for WAN environments mainly
because: (i) intra-datacenter transfer costs are neg-
ligible compared to inter-datacenter costs, (ii) data
should be placed in the datacenters that are closest
to users, and (iii) the system should react to users’
mobility around the globe. Therefore, in the remain-
ing of this section, we only review solutions tailored
specifically for WAN environments.

Kadambi et al. [9] introduce a mechanism for se-
lectively replicating large databases globally. Their
main goal is to minimize the bandwidth required to
send updates and the bandwidth required to forward
reads to remote datacenters while respecting policy
constraints. They extend Yahoo! PNUTs [5] with a
per-record selective replication policy. Their dynamic
placement algorithm is based on work by Wolfson
et al. [18] and responds to changes in access patterns
by creating and removing replicas. They replicate
all records in all locations either as a full copy or as
a stub. The full replica is a normal copy of the data
while the stub contains only the primary-key and
some metadata. Instead of recording access patterns
as in Tuba, they rely on a simple approach: a stub
replica becomes full when a read operation is deliv-
ered at its location, and a full replica demotes when
a write operation is observed in another location or if
there has not been any read at that location for some
period. Unlike Tuba, changing the primary replica
is not studied in this work. Moreover, once data
is inserted into a tablet, policy constraints cannot
be changed. In contrast, Tuba allows modifying or
adding new constraints, and the current set of con-
straints will be respected in the next reconfiguration
cycle.

Tran et al. [16] introduce a key-value store called
Nomad that allows migrating of data between data-
centers. They propose and implement an abstraction
called overlays. These overlays are responsible for
caching and migrating object containers across data-
centers. Nomad considers the following three migra-
tion policies: (i) count, (ii) time, and (iii) rate. Users
can specify the number of times, a certain period,
and the rate that data is accessed from the same
remote location. In comparison, Tuba focuses on
maximizing the overall utility of the storage system
and respecting replication constraints.

Volley [1] relies on access logs to determine data
locations. Their goal is to improve datacenter capac-
ity skew, inter-datacenter traffic, and client latency.

In each round, Volley computes the data placement
for all data items, while the granularity in Tuba is
a tablet. Unlike Tuba, Volley does not take into
account the configuration costs or constraints. More-
over, the Volley paper does not suggest any migration
mechanisms.

Venkataramani et al. [17] propose a bandwidth-
constrained placement algorithm for WAN environ-
ments. Their main goal is to place copies of objects
at a collection of caches to minimize access time.
However, complex coordination between distributed
nodes and the assumption of a fixed size for all objects
makes this scheme less practical than the techniques
presented in this paper.

8 Conclusion

Tuba is a replicated key-value store that, like Pileus,
allows applications to specify their desired consis-
tency and dynamically selects replicas in order to
maximize the utility delivered to read operations.
Additionally, Tuba automatically reconfigures itself
while respecting user defined constraints so that
it adapts to changes in users locations or request
rates. The system is built on Microsoft Azure Stor-
age (MAS), and extends MAS with broad consis-
tency choices, consistency-based SLAs, and explicit
geo-replication configurations.

Our experiments with clients distributed in differ-
ent datacenters around the world show that Tuba
with two hour reconfiguration intervals increases the
reads that return strongly consistent data by 63% and
improves average utility up to 18%. This confirms
that automatic reconfiguration can yield substantial
benefits which are realizable in practice.

Acknowledgements
We thank Marcos K. Aguilera, Mahesh Balakrishnan,
and Ramakrishna Kotla for their insightful discus-
sions as well as for their contributions to the design
and implementation of the original Pileus system.
We would like to also thank Pierpaolo Cincilla, Tyler
Crain, Gilles Muller, Marc Shapiro, Pierre Sutra,
Marek Zawirski, the anonymous reviewers, and our
shepherd, Emin Gün Sirer, for their thoughtful sug-
gestions and feedback on this work.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 381

References

[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu,
A. Wolman, and H. Bhogan. Volley: auto-
mated data placement for geo-distributed cloud
services. In Networked Sys. Design and Im-
plem. (NSDI), page 2. USENIX Association,
Apr. 2010.

[2] K. Amiri, D. Petrou, G. R. Ganger, and G. A.
Gibson. Dynamic function placement for data-
intensive cluster computing. In Usenix Annual
Tech. Conf. (Usenix-ATC). USENIX Associa-
tion, June 2000.

[3] B. Calder, H. Simitci, J. Haridas, C. Ud-
daraju, H. Khatri, A. Edwards, V. Bedekar,
S. Mainali, R. Abbasi, A. Agarwal, M. F.
ul Haq, J. Wang, M. I. ul Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, L. Rigas, A. Ogus,
N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, and J. Wu. Windows
Azure Storage. In Symp. on Op. Sys. Principles
(SOSP), pages 143—-157, New York, New York,
USA, Oct. 2011. ACM Press.

[4] F. Chang, J. Dean, S. Ghemawat, W. C.
Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A
Distributed Storage System for Structured Data.
Trans. on Computer Sys., 26(2):1–26, June 2008.

[5] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2):1277–1288, Aug. 2008.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ra-
makrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Symp. on Cloud
Computing (SoCC), pages 143—-154, New York,
NY, USA, 2010. ACM.

[7] M. Herlihy and J. M. Wing. Linearizability:
a correctness condition for concurrent objects.
ACM Trans. Prog. Lang. Syst., 12(3):463—-492,
1990.

[8] G. C. Hunt and M. L. Scott. The Coign auto-
matic distributed partitioning system. In Symp.
on Op. Sys. Design and Implementation (OSDI),
OSDI ’99, pages 187–200. USENIX Association,
Feb. 1999.

[9] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax,
A. Silberstein, E. Tam, and H. Garcia-molina.
Where in the World is My Data ? In Int. Conf.
on Very Large Data Bases (VLDB), pages 1040–
1050, 2011.

[10] G. M. V. Lili Qiu, Venkata N. Padmanabhan.
On the placement of web server replicas. In
Int. Conf. on Computer Communications (IN-
FOCOM), pages 1587—-1596, 2001.

[11] R. R. Madhukar R. Korupolu, C. Greg Plaxton.
Placement Algorithms for Hierarchical Coopera-
tive Caching. In Symp. on Discrete Algorithms
(SODA), pages 586–595. Society for Industrial
and Applied Mathematics, 1999.

[12] G. Soundararajan, C. Amza, and A. Goel.
Database replication policies for dynamic con-
tent applications. In Euro. Conf. on Comp. Sys.
(EuroSys), number 4, page 89, New York, New
York, USA, Oct. 2006. ACM.

[13] C. Stewart, S. Dwarkadas, and M. Scott. Dis-
tributed Systems Online, 05(10):1–1, Oct. 2004.

[14] D. B. Terry, A. J. Demers, K. Petersen, M. Spre-
itzer, M. Theimer, and B. W. Welch. Session
Guarantees for Weakly Consistent Replicated
Data. In Int. Conf. on Para. and Dist. Info.
Sys. (PDIS), pages 140–149. IEEE Computer
Society, Sept. 1994.

[15] D. B. Terry, V. Prabhakaran, R. Kotla, M. Bal-
akrishnan, M. K. Aguilera, and H. Abu-Libdeh.
Consistency-based service level agreements for
cloud storage. In Symp. on Op. Sys. Principles
(SOSP), pages 309–324, New York, New York,
USA, Nov. 2013. ACM Press.

[16] N. Tran, M. K. Aguilera, and M. Balakrishnan.
Online migration for geo-distributed storage sys-
tems. In Usenix Annual Tech. Conf. (Usenix-
ATC), Berkeley, CA, USA, 2011. USENIX As-
sociation.

[17] A. Venkataramani, P. Weidmann, and
M. Dahlin. Bandwidth constrained placement
in a WAN. In Symp. on Principles of Dist.
Comp. (PODC), pages 134–143, New York,
New York, USA, Aug. 2001. ACM Press.

[18] O. Wolfson, S. Jajodia, and Y. Huang. An
adaptive data replication algorithm. Trans. on
Database Sys., 22(2):255–314, June 1997.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 383

f4: Facebook’s Warm BLOB Storage System
Subramanian Muralidhar∗, Wyatt Lloyd†∗, Sabyasachi Roy∗, Cory Hill∗, Ernest Lin∗, Weiwen Liu∗,

Satadru Pan∗, Shiva Shankar∗, Viswanath Sivakumar∗, Linpeng Tang‡∗, Sanjeev Kumar∗
∗Facebook Inc., †University of Southern California, ‡Princeton University

Abstract
Facebook’s corpus of photos, videos, and other Binary
Large OBjects (BLOBs) that need to be reliably stored
and quickly accessible is massive and continues to grow.
As the footprint of BLOBs increases, storing them in
our traditional storage system, Haystack, is becoming in-
creasingly inefficient. To increase our storage efficiency,
measured in the effective-replication-factor of BLOBs,
we examine the underlying access patterns of BLOBs
and identify temperature zones that include hot BLOBs
that are accessed frequently and warm BLOBs that are
accessed far less often. Our overall BLOB storage sys-
tem is designed to isolate warm BLOBs and enable us to
use a specialized warm BLOB storage system, f4. f4 is
a new system that lowers the effective-replication-factor
of warm BLOBs while remaining fault tolerant and able
to support the lower throughput demands.

f4 currently stores over 65PBs of logical BLOBs
and reduces their effective-replication-factor from 3.6
to either 2.8 or 2.1. f4 provides low latency; is resilient
to disk, host, rack, and datacenter failures; and provides
sufficient throughput for warm BLOBs.

1. Introduction
As Facebook has grown, and the amount of data shared
per user has grown, storing data efficiently has become
increasingly important. An important class of data that
Facebook stores is Binary Large OBjects (BLOBs),
which are immutable binary data. BLOBs are created
once, read many times, never modified, and sometimes
deleted. BLOB types at Facebook include photos, videos,
documents, traces, heap dumps, and source code. The
storage footprint of BLOBs is large. As of February 2014,
Facebook stored over 400 billion photos.

Haystack [5], Facebook’s original BLOB storage
system, has been in production for over seven years and is
designed for IO-bound workloads. It reduces the number
of disk seeks to read a BLOB to almost always one and
triple replicates data for fault tolerance and to support a
high request rate. However, as Facebook has grown and
evolved, the BLOB storage workload has changed. The
types of BLOBs stored have increased. The diversity in
size and create, read, and delete rates has increased. And,
most importantly, there is now a large and increasing
number of BLOBs with low request rates. For these
BLOBs, triple replication results in over provisioning

from a throughput perspective. Yet, triple replication also
provided important fault tolerance guarantees.

Our newer f4 BLOB storage system provides the
same fault tolerance guarantees as Haystack but at a
lower effective-replication-factor. f4 is simple, modular,
scalable, and fault tolerant; it handles the request rate
of BLOBs we store it in; it responds to requests with
sufficiently low latency; it is tolerant to disk, host, rack
and datacenter failures; and it provides all of this at a low
effective-replication-factor.

We describe f4 as a warm BLOB storage system
because the request rate for its content is lower than that
for content in Haystack and thus is not as “hot.” Warm
is also in contrast with cold storage systems [20, 40]
that reliably store data but may take days or hours to
retrieve it, which is unacceptably long for user-facing
requests. We also describe BLOBs using temperature,
with hot BLOBs receiving many requests and warm
BLOBs receiving few.

There is a strong correlation between the age of
a BLOB and its temperature, as we will demonstrate.
Newly created BLOBs are requested at a far higher rate
than older BLOBs. For instance, the request rate for
week-old BLOBs is an order of magnitude lower than for
less-than-a-day old content for eight of nine examined
types. In addition, there is a strong correlation between
age and the deletion rate. We use these findings to inform
our design: the lower request rate of warm BLOBs en-
ables us to provision a lower maximum throughput for f4
than Haystack, and the low delete rate for warm BLOBs
enables us to simplify f4 by not needing to physically re-
claim space quickly after deletes. We also use our finding
to identify warm content using the correlation between
age and temperature.

Facebook’s overall BLOB storage architecture is de-
signed to enable warm storage. It includes a caching stack
that significantly reduces the load on the storage systems
and enables them to be provisioned for fewer requests
per BLOB; a transformer tier that handles computational-
intense BLOB transformation and can be scaled inde-
pendently of storage; a router tier that abstracts away
the underlying storage systems and enables seamless
migration between them; and the hot storage system,
Haystack, that aggregates newly created BLOBs into vol-
umes and stores them until their request and delete rates
have cooled off enough to be migrated to f4.

1

384 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Web Tier�

User Requests (Browsers, Mobile Devices)�

CDN�

Graph�
Store�

BLOB Storage System�

C1 R1

C2 C3 R2

R3

R4

Figure 1: Reading (R1-R4) and creating (C1-C3) BLOBs.

f4 stores volumes of warm BLOBs in cells that use dis-
tributed erasure coding, which uses fewer physical bytes
than triple replication. It uses Reed-Solomon(10,4) [46]
coding and lays blocks out on different racks to ensure
resilience to disk, machine, and rack failures within a
single datacenter. Is uses XOR coding in the wide-area
to ensure resilience to datacenter failures. f4 has been
running in production at Facebook for over 19 months.
f4 currently stores over 65PB of logical data and saves
over 53PB of storage.

Our contributions in this paper include:

• A case for warm storage that informs future research
on it and justifies our efforts.

• The design of our overall BLOB storage architecture
that enables warm storage.

• The design of f4, a simple, efficient, and fault tolerant
warm storage solution that reduces our effective-
replication-factor from 3.6 to 2.8 and then to 2.1.

• A production evaluation of f4.

The paper continues with background in Section 2.
Section 3 presents the case for warm storage. Section 4
presents the design of our overall BLOB storage archi-
tecture that enables warm storage. f4 is described in
Section 5. Section 6 covers a production evaluation of
f4, Section 7 covers lessons learned, Section 8 covers
related work, and Section 9 concludes.

2. Background
This section explains where BLOB storage fits in the full
architecture of Facebook. It also describes the different
types of BLOBs we store and their size distributions.

2.1 Where BLOB Storage Fits
Figure 1 shows how BLOB storage fits into the overall
architecture at Facebook. BLOB creates—e.g., a video
upload—originate on the web tier (C1). The web tier
writes the data to the BLOB storage system (C2) and
then stores the handle for that data into our graph store
(C3), Tao [9]. The handle can be used to retrieve or delete

Figure 2: Size distribution for five BLOB types.

the BLOB. Tao associates the handle with other elements
of the graph, e.g., the owner of a video.

BLOB reads—e.g., watching a video—also originate
on the web tier (R1). The web tier accesses the Graph
Store (R2) to find the necessary handles and constructs
a URL that can be used to fetch the BLOB. When
the browser later sends a request for the BLOB (R3),
the request first goes to a content distribution network
(CDN) [2, 34] that caches commonly accessed BLOBs.
If the CDN does not have the requested BLOB, it sends
a request to the BLOB storage system (R4), caches the
BLOB, and returns it to the user. The CDN shields the
storage system from a significant number of requests on
frequently accessed data, and we return to its importance
in Sections 4.1.

2.2 BLOBs Explained
BLOBs are immutable binary data. They are created once,
read potentially many times, and can only be deleted, not
modified. This covers many types of content at Facebook.
Most BLOB types are user facing, such as photos, videos,
and documents. Other BLOB types are internal, such as
traces, heap dumps, and source code. User-facing BLOBs
are more prevalent so we focus on them for the remainder
of the paper and refer to them as simply BLOBs.

Figure 2 shows the distribution of sizes for five types
of BLOBs. There is a significant amount of diversity
in the sizes of BLOBs, which has implications for our
design as discussed in Section 5.6.

3. The Case for Warm Storage
This section motivates the creation of a warm storage
system at Facebook. It demonstrates that temperature
zones exist, age is a good proxy for temperature, and that
warm content is large and growing.

Methodology The data presented in this section is
derived from a two-week trace, benchmarks of existing
systems, and daily snapshots of summary statistics. The
trace includes a random 0.1% of reads, 10% of creates,
and 10% of deletes.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 385

Figure 3: Relative request rates by age. Each line is rela-
tive to only itself, absolute values have been denormal-
ized to increase readability, and points mark an order-of-
magnitude decrease in request rate.

Data is presented for nine user-facing BLOB types.
We exclude some data types from some analysis due to
incomplete logging information.

The nine BLOB types include Profile Photos, Photos,
HD Photos, Mobile Sync Photos [17], HD Mobile Sync
Photos, Group Attachments [16], Videos, HD Videos,
and Message (chat) Attachments. Group Attachments
and Message Attachments are opaque BLOBS to our
storage system, they can be text, pdfs, presentation, etc.

Temperature Zones Exist To make the case for warm
storage we first show that temperature zones exist, i.e.,
that content begins as hot, receiving many requests, and
then cools over time, receiving fewer and fewer requests.

Figure 3 shows the relative request rate, requests-per-
object-per-hour, for content of a given age. The two-week
trace of 0.1% of reads was used to create this figure. The
age of each object being read is recorded and these are
bucketed into 1-day intervals. We then count the number
of requests to the daily buckets for each hour in the trace
and report the mean—the medians are similar but noisier.
Absolute values are denormalized to increase readability
so each line is relative to only itself. Points mark order-
of-magnitude decreases.

The existence of temperature zones is clear in the
trend of decreasing request rates over time. For all nine
types, content less than one day old receives more than
100 times the request rate of one-year-old content. For
eight of the types the request rate drops by an order of
magnitude in less than a week, and for six of the types
the request rate drops by 100x in less than 60 days.

Differentiating Temperature Zones Given that tem-
perature zones exist, the next questions to answer are
how to differentiate warm from hot content and when it
is safe to move content to warm storage. We define the

Figure 4: 99th percentile load in IOPS/TB of data for
different BLOB types for BLOBs of various ages.

warm temperature zone to include unchanging content
with a low request rate. BLOBs are not modified, so the
only changes are the deletes. Thus, differentiating warm
from hot content depends on the request and delete rates.

First, we examine the request rate. To determine
where to draw the line between hot and warm storage
we consider near-worst-case request rates because our
internal service level objects require low near-worst-case
latency during our busiest periods of the day.

Figure 4 shows the 99th percentile or near-worst-case
request load for BLOBs of various types grouped by age.
The two-week trace of 0.1% of reads was used to create
this figure. The age of each object read is recorded and
these are bucketed into intervals equivalent to the time
needed to create 1 TB of that BLOB type. For instance, if
1 TB of a type is created every 3600 seconds, then the first
bucket is for ages of 0-3599 seconds, the second is for
3600-7200 seconds, and so on.1 We then compensate for
the 0.1% sampling rate by looking at windows of 1000
seconds. We report the 99th percentile request rate for
these windows, i.e., we report the 99th percentile count
of requests in a 1000 second window across our two-
week trace for each age bucket. The 4TB disks used in f4
can deliver a maximum of 80 Input/Output Operations
Per Second (IOPS) while keeping per-request latency
acceptably low. The figure shows this peak warm storage
throughput at 20 IOPS/TB.

For seven of the nine types the near-worst-case
throughput is below the capacity of the warm storage sys-
tem in less than a week. For Photos, it takes ~3 months to
drop below the capacity of warm storage and for Profile
Photos it takes a year.

We also examined, but did not rigorously quantify, the
deletion rate of BLOB types over time. The general trend

1 We spread newly created BLOBs over many hosts and disks, so no
host or disk in our system is subject to the extreme loads on far left of
Figure 4. We elaborate on this point further in Section 5.6

3

386 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: Median percentage of each type that was warm
9-6 months ago, 6-3 months ago, 3 months ago to now.
The remaining percentage of each type is hot.

is that most deletes are for young BLOBs and that once
the request rate for a BLOB drops below the threshold
of warm storage, the delete rate is low as well.

Combining the deletion analysis with the request rate
analysis yields an age of a month as a safe delimiter
between hot and warm content for all but two BLOB
types. One type, Profile Photos, is not moved to warm
storage. The other, Photos, uses a three months threshold.

Warm Content is Large and Growing We finish the
case for warm storage by demonstrating that the percent-
age of content that is warm is large and continuing to
grow. Figure 5 gives the percentage of content that is
warm for three-month intervals for six BLOB types.

We use the above analysis to determine the warm
cutoff for each type, i.e., one month for most types.
This figure reports the median percentage of content for
each type that is warm in three-month intervals from 9-6
months ago, 6-3 months ago, and 3 months ago to now.

The figure shows that warm content is a large percent-
age of all objects: in the oldest interval more than 80%
of objects are warm for all types. It also shows that the
warm fraction is increasing: in the most recent interval
more than 89% of objects are warm for all types.

This section showed that temperature zones exist, that
the line between hot and warm content can safely be
drawn for existing types at Facebook at one month
for most types, and that warm content is a large and
growing percentage of overall BLOB content. Next,
we describe how Facebook’s overall BLOB storage
architecture enables warm storage.

4. BLOB Storage Design
Our BLOB storage design is guided by the principle of
keeping components simple, focused, and well-matched
to their job. In this section we explain volumes, describe

Transformer
Tier�

Router Tier�

C2

C1 R2

R3

R4

Haystack�
Hot Storage�

f4�
Warm Storage�

Controller�

D2

D1 CDN�

R1

Figure 6: Overall BLOB Storage Architecture with cre-
ates (C1-C2), deletes (D1-D2), and reads (R1-R4). Cre-
ates are handled by Haystack, most deletes are handled
by Haystack, reads are handled by either Haystack or f4.

the full design of our BLOB storage system, and explain
how it enables focused and simple warm storage with f4.

Volumes We aggregate BLOBs together into logical
volumes. Volumes aggregate filesystem metadata, allow-
ing our storage systems to waste few IOPS as we discuss
further below. We categorize logical volumes into two
classes. Volumes are initially unlocked and support reads,
creates (appends), and deletes. Once volumes are full,
at around 100GB in size, they transition to being locked
and no longer allow creates. Locked volumes only allow
reads and deletes.

Each volume is comprised of three files: a data file, an
index file, and a journal file. The data file and index files
are the same as the published version of Haystack [5],
while the journal file is new. The data file holds each
BLOB along with associated metadata such as the key,
the size, and checksum. The index file is a snapshot of the
in-memory lookup structure of the storage machines. Its
main purpose is allowing rebooted machines to quickly
reconstruct their in-memory indexes. The journal file
tracks BLOBs that have been deleted; whereas in the
original version of Haystack, deletes were handled by
updating the data and index files directly. For locked
volumes, the data and index files are read-only, while the
journal file is read-write. For unlocked volumes, all three
files are read-write.

4.1 Overall Storage System
The full BLOB storage architecture is shown in Figure 6.
Creates enter the system at the router tier (C1) and
are directed to the appropriate host in the hot storage
system (C2). Deletes enter the system at the router
tier (D1) and are directed to the appropriate hosts in
appropriate storage system (D2). Reads enter the system
at the caching stack (R1) and, if not satisfied there,
traverse through the transformer tier (R2) to the router
tier (R3) that directs them to the appropriate host in the
appropriate storage system (R4).

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 387

Controller The controller ensures the smooth function-
ing of the overall system. It helps with provisioning new
store machines, maintaining a pool of unlocked volumes,
ensuring that all logical volumes have enough physical
volumes backing them, creating new physical volumes
if necessary, and performing periodic maintenance tasks
such as compaction and garbage collection.

Router Tier The router tier is the interface of BLOB
storage; it hides the implementation of storage and en-
ables the addition of new subsystems like f4. Its clients,
the web tier or caching stack, send operations on logical
BLOBs to it.

Router tier machines are identical, they execute the
same logic and all have soft state copies of the logical-
volume-to-physical-volume mapping that is canonically
stored in a separate database (not pictured). The router
tier scales by adding more machines and its size is
independent of the other parts of the overall system.

For reads, a router extracts the logical volume id from
the BLOB id and finds the physical mapping of that
volume. It chooses one of available physical volumes—
typically, the volume on the closest machine—and sends
the request to it. In case of failure, a timeout fires and the
request is directed to the next physical volume.

For creates, the router picks a logical volume with
available space, and sends the BLOB out to all physical
volumes for that logical volume. In case of any errors, any
partially written data is ignored to be garbage collected
later, and a new logical volume is picked for the create.

For deletes, the router issues deletes to all physi-
cal replicas of a BLOB. Responses are handled asyn-
chronously and the delete is continually retried until the
BLOB is fully deleted in case of failure.

The router tier enables warm storage by hiding the
storage implementation from its clients. When a volume
is migrated from the hot storage system to the warm
storage system it temporarily resides in both while the
canonical mapping is updated and then client operations
are transparently directed to the new storage system.

Transformer Tier The transformer tier handles a set
of transformations on the retrieved BLOB. For exam-
ple, these transformations include resizing and cropping
photos. In Facebook’s older system, these computational
intensive transformations were performed on the storage
machines.

The transformer tier enables warm storage by freeing
the storage system to focus solely on providing storage.
Separating computation into its own tier allows us to
scale out the storage tier and the transformer tier inde-
pendently. In turn, that allows us to match the size of
the storage tiers precisely to our needs. Furthermore, it
enables us to choose more optimal hardware for each of
these tasks. In particular, storage nodes can be designed

to hold a large number of disks with only a single CPU
and relatively little RAM.

Caching Stack BLOB reads are initially directed to the
caching stack [2, 34] and if a BLOB is resident in one of
the caches it is returned directly, avoiding a read in the
storage system. This absorbs reads for popular BLOBs
and decreases the request rate at the storage system.
The caching stack enables warm storage by lowering
its request rate.

Hot Storage with Haystack Facebook’s hot storage
system, Haystack, is designed to use only fully-utilized
IOPS. It enables warm storage by handling all BLOB
creates, handling most of the deletes, and handling a
higher read rate.

Haystack is designed to fully utilize disk IOPS by:

• Grouping BLOBs: It creates only a small number
(~100) of files with BLOBs laid out sequentially
in those files. The result is a simple BLOB storage
system that uses a small number of files, and bypasses
the underlying file system for most metadata access.

• Compact metadata management: It identifies the
minimal set of metadata that is needed to locate
each BLOB and carefully lays out this metadata so
that it fits in the available memory on the machine.
This allows the system to waste very few IOPS for
metadata fetches.

BLOBs are grouped into logical volumes. For fault
tolerance and performance, each logical volume maps
into multiple physical volumes or replicas on different
hosts across different geographical regions: all physical
volumes for a logical volume store the same set of
BLOBs. Each physical volume lives entirely on one
Haystack host. There are typically 3 physical volumes for
each logical volume. Each volume holds up to millions
of immutable BLOBs, and can grow to ~100GB in size.

When a host receives a read it looks up the relevant
metadata—the offset in the data file, the size of the
data record, and whether it has been deleted—in the in-
memory hash table. It then performs a single I/O request
to the data file to read the entire data record.

When a host receives a create it synchronously ap-
pends a record to its physical volume, updates the in-
memory hash tables, and synchronously updates the in-
dex and journal files.

When a host receives a delete it updates the its in-
memory hash tables and the journal file. The contents
of the BLOB still exist in the data file. Periodically we
compact volumes, which completely deletes the BLOB
and reclaims its space.

Fault tolerance Haystack has fault tolerance to disk,
host, rack, and datacenter failure through triple replica-
tion of data files and hardware RAID-6 (1.2X replication).

5

388 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Two replicas of each volume are in a primary datacenter
but on different racks, and thus hosts and disks. This pro-
vides resilience to disk, host, and rack failure. RAID-6
provides additional protection against disk failure. The
third replica is in another datacenter and provides re-
silience to datacenter failure.

This scheme provides good fault tolerance and high
throughput for BLOBs, but at an effective-replication-
factor of 3 ∗ 1.2 = 3.6. This is the main limitation of
Haystack: it is optimized for IOPS but not storage effi-
ciency. As the case for warm storage demonstrated, this
results in significant over replication of many BLOBs.

Expiry-Driven Content Some BLOB types have ex-
piration times for their content. For instance, uploaded
videos are stored in their original format temporary while
they are transcoded to our storage formats. We avoid ever
moving this expiry-driven content to f4 and keep it in
Haystack. The hot storage system copes with the high
delete rate by running compaction frequently to reclaim
the now available space.

5. f4 Design
This section describes our design goals for warm storage
and then describes f4, our warm storage system.

5.1 Design Goals
At a high level, we want our warm storage system to
provide storage efficiency and to provide fault tolerance
so we do not lose data or appear unavailable to our users.

Storage Efficiency One of the key goals of our new
system is to improve storage efficiency, i.e., reduce the
effective-replication-factor while still maintaining a high
degree of reliability and performance.

The effective replication factor describes the ratio of
actual physical size of the data to the logical size stored.
In a system that maintains 3 replicas, and uses RAID-
6 encoding on each node with 12 disks, the effective
replication factor is 3.6.

Fault Tolerance Another important goal for our stor-
age system is fault tolerance to a hierarchy of faults to
ensure we do not lose data and that storage is always
available for client requests. We explicitly consider four
types of failures:

1. Drive failures, at a low single digit annual rate.

2. Host failures, periodically.

3. Rack failures, multiple time per year.

4. Datacenter failures, extremely rare and usually tran-
sient, but potentially more disastrous.

5.2 f4 Overview
f4 is our storage subsystem for warm data. It is comprised
of a number of cells, where each cell lives entirely

BLOB�

Stripe�

Block� �
�

Volume��
��
�

�
�

�
�

�
�

Companions� Parity�

Figure 7: BLOBs in Blocks in Stripes in Volumes.

within one datacenter and is comprised of homogeneous
hardware. Current cells use 14 racks of 15 hosts [42]
with 30 4TB drives per host. We treat a cell as a unit of
acquisition and as a unit of deployment and roll out.

A cell is responsible for reliably storing a set of locked
volumes and uses Reed-Solomon coding to store these
volumes with lower storage overhead. Distributed erasure
coding achieves reliability at lower-storage overheads
than replication, with the tradeoff of increased rebuild
and recovery times under failure and lower maximum
read throughput. Reed-Solomon coding [46] is one of the
most popular erasure coding techniques, and has been
employed in a number of different systems. A Reed-
Solomon(n, k) code encodes n bits of data with k extra
bits of parity, and can tolerate k failures, at an overall
storage size of n+ k. This scheme protects against disk,
host, and rack failures.

We use a separate XOR coding scheme to tolerate
datacenter or geographic region failure. We pair each
volume/stripe/block with a buddy volume/stripe/block in
a different geographic region. We store an XOR of the
buddies in a third region. This scheme protects against
failure of one of the three regions. We discuss fault
tolerance in Section 5.5

5.3 Individual f4 Cell
Individual f4 cells are resilient to disk, host, and rack
failures and are the primary location and interface for
the BLOBs they store. Each f4 cell handles only locked
volumes, i.e., it only needs to support read and delete
operations against that volume. The data and index files
are read-only. The haystack journal files that track deletes
are not present in f4. Instead, all BLOBs are encrypted
with keys that are stored in an external database. Deleting
the encryption key for a BLOB in f4 logically deletes it
by making it unreadable.

The index files use triple replication within a cell. The
files are small enough that the storage gain from encoding
them is too small to be worth the added complexity.

The data file with the actual BLOB data is encoded
and stored via a Reed-Solomon(n, k) code. Recent f4
cells use n = 10 and k = 4. The file is logically divided
up into contiguous sequences of n blocks, each of size
b. For each such sequence of n blocks, k parity blocks
are generated, thus forming a logical stripe of size n+ k

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 389

�
�

Index API File API

R3
Data API

Storage Node�
�
�

Index API File API

R3
Data API

Storage Node�
�
�

Index API File API

R3
Data API

Storage Node�
�
�

Index API File API

R3
Data API

Storage Node�

df

Coordinator Node�Coordinator Node�

RebuilderRebuilderRebuilder Node�

�
�

Backoff Node�

File API

Router Tier�

R1 R4 R2 F4 Cell�

R5

R6

�
�

Index API File API

R3
Data API

Storage Node�

Name Node�Name Node�

KF1

Figure 8: f4 Single Cell Architecture. R1–R3 shows
a normal-case read. R1, R4, R5 shows a failure-case
read. KF1 show the encryption key fetch that happens
in parallel with the rest of the read path in f4.

blocks. For a given block in a stripe, the other blocks
in the stripe are considered to be its companion blocks.
If the file is not an integral multiple of n blocks, it is
zero-padded to the next multiple. In normal operation
BLOBs are read directly from their data block. If a block
is unavailable it can be recovered by decoding any n of
its companion and parity blocks. A subset of a block,
corresponding to a BLOB, can also be decoded from
only the equivalent subsets of any n of its companion and
parity blocks. Figure 7 shows the relationship between
BLOBs, blocks, strips, and volumes.

The block-size for encoding is chosen to be a large
value—typically 1 GB—for two reasons. First, it de-
creases the number of BLOBs that span multiple blocks
and thus require multiple I/O operations to read. Second,
it reduces the amount of per-block metadata that f4 needs
to maintain. We avoid a larger block size because of the
larger overhead for rebuilding blocks it would incur.

Figure 8 shows a f4 cell. Its components include
storage nodes, name nodes, backoff nodes, rebuilder
nodes, and coordinator nodes.

Name Node The name node maintains the mapping be-
tween data blocks and parity blocks and the storage nodes
that hold the actual blocks. The mapping is distributed
to storage nodes via standard techniques [3, 18]. Name
nodes are made fault tolerant with a standard primary-
backup setup.

Storage Nodes The storage nodes are the main com-
ponent of a cell and handle all normal-case reads and
deletes. Storage nodes expose two APIs: an Index API
that provides existence and location information for vol-
umes, and a File API that provides access to data.

Each node is responsible for the existence and location
information of a subset of the volumes in a cell and

exposes this through its Index API.2 It stores the index—
BLOB to data file, offset, and length—file on disk and
loads them into custom data structures in memory. It also
loads the location-map for each volume that maps offsets
in data files to the physically-stored data blocks. Index
files and location maps are pinned in memory to avoid
disk seeks.

Each BLOB in f4 is encrypted with a per-BLOB
encryption key. Deletes are handled outside of f4 by
deleting a BLOB’s encryption key that is stored in a
separate key store, typically a database. This renders
the BLOB unreadable and effectively deletes it without
requiring the use of compaction in f4. It also enables f4
to eliminate the journal file that Haystack uses to track
key presence and deletion information.

Reads (R1) are handled by validating that the BLOB
exists and then redirecting the caller to the storage node
with the data block that contains the specified BLOB.

The Data API provides data access to the data and
parity blocks the node stores. Normal-case reads are
redirected to the appropriate storage node (R2) that
then reads the BLOB directly from its enclosing data
block (R3). Failure-case reads use the Data API to read
companion and parity blocks needed to reconstruct the
BLOB on a backoff node.

The router tier fetches the per-BLOB encryption key
in parallel with the rest of the read path, i.e., R1–R3 or R1,
R4, R5. The BLOB is then decrypted on the router tier.
Decryption is computationally expensive and performing
it on the router tier allows f4 to focus on efficient storage
and allows decryption to be scaled independently from
storage.

Backoff Nodes When there are failures in a cell, some
data blocks will become unavailable, and serving reads
for the BLOBs it holds will require online reconstruction
of them from companion data blocks and parity blocks.
Backoff nodes are storage-less, CPU-heavy nodes that
handle the online reconstruction of request BLOBs.

Each backoff node exposes a File API that receives
reads from the router tier after a normal-case read fails
(R4). The read request has already been mapped to a data
file, offset, and length by a primary volume-server. The
backoff volume-server sends reads of that length from
the equivalent offsets from all n− 1 companion blocks
and k parity blocks for the unavailable block (R5). Once
it receives n responses it decodes them to reconstruct the
requested BLOB.

This online reconstruction rebuilds only the requested
BLOB, it does not rebuild the full block. Because the
size of a BLOB is typically much smaller than the block

2 Each storage node owns a subset of the volumes in a cell, each
volume is owned by exactly one storage node at a time, and all volumes
are owned at all times. The volume-to-storage-node assignment is
maintained by a separate system that is out of the scope of this paper.

7

390 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

size—e.g., 40KB instead of 1GB—reconstructing the
BLOB is much faster and lighter weight than rebuilding
the block. Full block rebuilding is handled offline by
rebuilder nodes.

Rebuilder Nodes At large scale, disk and node failures
are inevitable. When this happens blocks stored on the
failed components need to be rebuilt. Rebuilder nodes are
storage-less, CPU-heavy nodes that handle failure detec-
tion and background reconstruction of data blocks. Each
rebuilder node detects failure through probing and re-
ports the failure to a coordinator node. It rebuilds blocks
by fetching n companion or parity blocks from the failed
block’s strip and decoding them. Rebuilding is a heavy-
weight process that imposes significant I/O and network
load on the storage nodes. Rebuilder nodes throttle them-
selves to avoid adversely impacting online user requests.
Scheduling the rebuilds to minimize the likelihood of
data loss is the responsibility of the coordinator nodes.

Coordinator Nodes A cell requires many maintenance
task, such as scheduling block rebuilding and ensuring
that the current data layout minimizes the chances of
data unavailability. Coordinator nodes are storage-less,
CPU-heavy nodes that handle these cell-wide tasks.

As noted earlier, blocks in a stripe are laid out on dif-
ferent failure domains to maximize reliability. However,
after initial placement and after failure, reconstruction,
and replacement there can be violations where a stripe’s
blocks are in the same failure domain. The coordinator
runs a placement balancer process that validates the block
layout in the cell, and rebalance blocks as appropriate.
Rebalancing operations, like rebuilding operations, in-
cur significant disk and network load on storage nodes
and are also throttled so that user requests are adversely
impacted.

5.4 Geo-replication
Individual f4 cells all reside in a single datacenter and
thus are not tolerant to datacenter failures. To add dat-
acenter fault tolerance we initially double-replicated f4
cells and placed the second replica in a different data-
center. If either datacenter fails, all the BLOBs are still
available from the other datacenter. This provides all of
our fault tolerance requirements and reduces the effective-
replication-factor from 3.6 to 2.8.

Given the rarity of datacenter failure events we
sought a solution that could further reduce the effective-
replication-factor with the tradeoff of decreased through-
put for BLOBs stored at the failed datacenter. We are
currently deploying geo-replicated XOR coding that
reduces the effective-replication-factor to 2.1.

Geo-replicated XOR coding provides datacenter fault
tolerance by storing the XOR of blocks from two differ-
ent volumes primarily stored in two different datacenters
in a third datacenter as shown in Figure 9. Each data

Datacenter 1�

Datacenter 2�

Datacenter 3�

Block B�

A XOR B�

Block A�

Figure 9: Geo-replicated XOR Coding.

and parity block in a volume is XORed with the equiv-
alent data or parity block in the other volume, called
its buddy block, to create their XOR block. These XOR
blocks are stored with normal triple-replicated index files
for the volumes. Again, because the index files are tiny
relative to the data, coding them is not worth the added
complexity.

The 2.1 replication factor comes from the 1.4X for the
primary single cell replication for each of two volumes
and another 1.4X for the geo-replicated XOR of the two
volumes: 1.4∗2+1.4

2 = 2.1.
Reads are handled by a geo-backoff node that receives

requests for a BLOB that includes the data file, offset,
and length (R6 in Figure 8). This node then fetches the
specified region from the local XOR block and the remote
XOR-companion block and reconstructs the requested
BLOB. These reads go through the normal single-cell
read path through storage nodes Index and File APIs or
backoff node File APIs if there are disk, host, or rack
failures that affect the XOR or XOR-companion blocks.

We chose XOR coding for geo-replication because
it significantly reduces our storage requirements while
meeting our fault tolerance goal of being able to survive
the failure of a datacenter.

5.5 f4 Fault Tolerance
Single f4 cells are tolerant to disk, host, and rack fail-
ures. Geo-replicating XOR volumes brings tolerance to
datacenter failures. This subsection explains the failure
domains in a single cell, how f4 lays out blocks to in-
crease its resilience, gives an example of recovery if all
four types of failure all affect the same BLOB, and sum-
marizes how all components of a cell are fault tolerant.

Failure Domains and Block Placement Figure 10 il-
lustrates how data blocks in a stripe are laid out in a
f4 cell. A rack is the largest failure domain and is our
primary concern. Given a stripe S of n data blocks and
k parity blocks, we attempt to lay out the blocks so that
each of these is on a different rack, and at least on a dif-
ferent node. This requires that a cell have at least n+ k
racks, of roughly the same size. Our current implemen-
tation initially lays out blocks making a best-effort to
put each on a different rack. The placement balancer pro-
cess detects and corrects any rare violations that place a
stripe’s blocks on the same rack.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 391

Host

Host

Host

Host

Host

Host

Host

Host

Rack 1�

Host

Host

Host

Host

Host

Host

Host

Host

Rack r�

Host

Host

Host

Host

Host

Host

Host

Host

Rack 2�

Host

Host

Host

Host

Host

Host

Host

Host

Rack 3�

Host

Host

Host

Host

Host

Host

Host

Host

Rack 4�

Host

Host

Host

Host

Host

Host

Host

Host

Rack 5�

D1 D2 Dn P1 Pk D1 D2 Dn P1 Pk Stripe(n,k)�

Figure 10: Distributing data & parity blocks in a f4 cell.

Laying blocks for a stripe out on different racks also
provide resilience to host and disk failures. Blocks in a
stripe on different racks will also be on different hosts
and disks.

Quadruple Failure Example To illustrate f4’s fault
tolerance we examine a case where a failure at all four
levels affects a single BLOB. The failures include:

1. Primary cell’s datacenter fails.

2. Data block’s XOR block’s rack fails.

3. One of the parity block’s XOR block’s host fails.

4. Data block’s XOR-companion block’s disk fails.

The router tier will detect the primary’s cell datacenter
failure and send a BLOB read request to the XOR
datacenter. The BLOB read request will be converted
to a data file read request with an offset and length by
the Index API on a geo-storage node using the triple-
replicated index file in the XOR datacenter. Then a geo-
backoff node will fetch the equivalent section of the
XOR-data block locally and the buddy block from a
third datacenter. The local XOR-data block read will
initially fail because its enclosing rack is unavailable.
Then the XOR-backoff node reads the XOR-data block
through a (regular) backoff node that reconstructs the
XOR-data block from n of its companion and parity
blocks. Simultaneously, the remote buddy block read will
fail because its enclosing disk failed. A (regular) backoff
node in that datacenter will reconstruct the relevant
section of buddy block from n of its companion and
parity blocks. The XOR-backoff node will then receive
the sections of the XOR-data block and the buddy block,
XOR them, and return the BLOB.

Fault Tolerance for All Our primary fault tolerance
design concern for f4 was providing four level of fault
tolerance for data files, the dominant resource for warm
BLOB storage, at a low effective-replication-factor. We
also require that the other components of a cell be
tolerance to the same faults, but use simpler and more

Node Fault Tolerance Strategy

Name Primary-backup; 2 backups; different racks.
Coordinator "

Backoff Soft state only.
Rebuilder "

Storage:
Index 3x local cell; 3x remote cell.
Data Reed-Solomon local cell; XOR remote cell.

Table 1: Fault tolerance strategy for components of f4.

common techniques because they are not the dominant
resource. Table 1 summarizes the techniques we use for
fault tolerance for all components of a cell for failures
within a cell. We do not provide datacenter fault tolerance
for the other components of a cell because they are fate-
sharing, i.e., datacenter failures take down entire cells.

5.6 Additional Design Points
This subsection briefly covers additional design points
we excluded from the basic f4 design for clarity.

Mixing Age and Types Our BLOB storage system fills
many volumes for each BLOB type concurrently. This
mixes the age of BLOBs within a volume and smoothes
their temperature. The most recent BLOBs in a volume
may have a higher temperature than our target for f4.
But, if the older BLOBs in the volume reduce its overall
temperature below our target the volume may still be
migrated to f4.

Different BLOB types are mixed together on hosts in
a f4 cell to achieve a similar effect. High temperature
types can be migrated to f4 sooner if they are mixed with
low temperature types that will smooth out the overall
load on each disk.

Index Size Consideration The memory needs of f4
(and Haystack) are primarily driven by the memory
footprint of the index. The multiple caching layers in
front of f4 obviate the need for a large buffer cache on
the storage machine.3

Other than for profile photos, the memory sizes for the
index fit into the memory in our custom hardware. For
profile photos, we currently exclude them from f4 and
keep them in Haystack. The index size for profile photos
is still problematic for Haystack hosts, even though they
store fewer BLOBs than f4 hosts. To keep the index size
reasonable we under utilize the storage on the Haystack
hosts. This enabled us to keep Haystack simple and
does not significantly impact the efficiency of the overall
system because there is only a single profile photo per
user and they are quite small.

3 A small buffer cache in Haystack is useful for newly written BLOBs,
which are likely to be read and are not yet in the caching stack.

9

392 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Effect of the caching stack on load. (b) CDF of age of BLOB reads. (c) CDF of age of BLOB deletes.

Figure 11: Effects of our general architecture on the workload for f4.

Looking forward, we are evaluating lower-powered
CPUs for the storage nodes because the CPU require-
ments are quite low. Unfortunately, lower powered CPUs
usually come with smaller on-board memories. This, cou-
pled with the fact that the drive densities as well as the
number of drives per box are increasing, means that the
index might not fit in memory for these lower-end con-
figurations. We are exploring storing the index on flash
instead of memory for these future configurations.

Software/Hardware Co-Design An important consid-
eration in the design of f4 was keeping the hardware and
software well matched. Hardware that provides capac-
ity or IOPS that are not used by the software is waste-
ful; software designed with unrealistic expectations of
the hardware will not work. The hardware and software
components of f4 were co-designed to ensure they were
well-matched by using software measurements to inform
hardware choices and vice-versa.

For instance, we measured the candidate hard drives
for f4 using a synthetic benchmark to determine the
maximum IOPS we could consistently achieve while
keeping per-request latency low. We then used these
measurements to inform our choice of drives and our
provisioning on the software side. The f4 software is
designed so the weekly peak load on any drive is less
than the maximum IOPS it can deliver.

6. Evaluation
This evaluation answers four key questions. Does our
overall BLOB storage architecture enable warm storage?
Can f4 handle the warm BLOB storage workload’s
throughput and latency requirements? Is f4 fault tolerant?
And, does f4 save a significant amount of storage?

6.1 Methodology
Section 6.4 presents analytic results, all other results in
this section are based on data captured from our produc-
tion systems. The caching stack results in Section 6.2
are based on a day-long trace of 0.5% of BLOB requests
routed through Facebook’s caching stack; they do not
include results served from browser or device caches.
The read/delete results in Section 6.2 are based on a two-

week sample from the router tier of 0.1% of reads and
10% of deletes. The results in Section 6.3 are obtained
by dynamically tracking all operations to a uniform sam-
ple (0.01%) of all stored content. The storage savings in
Section 6.5 are from measurements on a subset of f4.

We measure performance on our production system
using a uniform sampling function so multiple genera-
tions of our storage machines are reflected in the cap-
tured data. Our older storage machines are commodity
servers with a quad-core Intel Xeon CPU, 16/24/32 GB
of memory, a hardware raid controller with 256-512 byte
NVRAM and 12 x 1TB/2TB/3TB SATA drives. More
recent machines are custom hosts with an Open Vault
2U chassis holding 30 x 3TB/4TB SATA drives [42].
Haystack uses Hardware RAID-6 with a NVRAM write-
back cache while f4 uses these machines in a JBOD (Just
a Bunch Of Disks) configuration.

6.2 General Architecture Enables Warm Storage
Our general architecture enables our warm storage sys-
tem in four ways: (1) the caching stack reduces the load
on f4; (2) the hot storage system bears the majority of
reads and deletes, allowing our warm storage system to
focus on efficient storage; (3) the router tier allows us to
migrate volumes easily because it is an abstraction layer
on top of the physical storage; and (4) the transformer tier
allows an independent scaling of processing and storage.

The latter two points (3) and (4) are fundamental to
our design. We validate points (1) and (2) experimentally.

Caching Stack Enables f4 Figure 11a shows the nor-
malized request rate for BLOBs before and after the
caching stack for different groups of BLOBs based on
age. The Figure shows the caching stack reduces the
request rate for all BLOBs to ~30% of what it would
have otherwise been. Caching is the most effective for
the most popular content, which we expect to be newer
content. Thus, we expect the reduction in load from the
cache to be less for older content. Our data shows this
with the caching stack reducing the request rate to 3+
month old BLOBs to ~55% of its pre-caching volume.
This reduction is still significant, however, without it the
load for these BLOBs would increase 100−55

55 = 82%.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 393

Figure 12: Maximum request rates over a week to f4’s
most loaded cluster.

Haystack Enables f4 Figure 11b shows the CDF of the
age of read BLOBs. Haystack handles all read requests
for BLOBs less than 3 months old and some of the
read request for BLOBs older than that.4 This accounts
for more than 50% of the read requests, significantly
lowering the load on f4.

Figure 11c shows the CDF of the age of deleted
BLOBs. All deletes are plotted, and all deletes excluding
those for BLOBs that auto-expire after a day are plotted.
Haystack again handles all deletes for content less than 3
months old. Haystack absorbs most BLOB deletes—over
70% of deletes excluding auto-expiry, and over 80% of
deletes including auto-expiry—making them less of a
concern for f4.

6.3 f4 Production Performance
This subsection characterizes f4’s performance in pro-
duction and demonstrated it can handle the warm storage
workload and that it provides low latency for reads.

f4 Handles Peak Load The IOPS requirement for real-
time requests is determined by the peak load rather
than average requirement, so we need to look at peak
request rates at a fine granularity. Figure 12 shows load
in IOPS/TB for the f4 cluster with the highest load over
the course of a week. The data is gathered from the 0.1%
of reads trace and we compensate for the sampling rate
by examining windows of 1000 seconds (instead of 1
second). Our trace identifies only the cluster for each
request, so we randomly assign BLOBs to disks and use
this assignment to determine the load on disks, machines,
and racks. The maximum across all disk, machines, and
racks is reported for each time interval.

The figure show the request rate has predictable peaks
and troughs that result from different users across the
globe accessing the site at different times and this can
vary load by almost 2x during the course of a day.

4 We currently use an approximately 3-month cutoff for all types in
production for simplicity. BLOBs older than 3 months can be served
by Haystack due to lag in migrations to f4.

Figure 13: CDF of local read latency for Haystack/f4.

The maximum rack load is indistinguishable from
the cluster load in the figure and peaks at 3.5 IOPS/TB
during the trace week. The maximum machine load is
slightly higher and peaks at 4.1 IOPS/TB. Maximum disk
load is notably higher and peaks at 8.5 IOPS/TB. All of
these are still less than half the 20 IOPS/TB maximum
rate of f4. Even when examining the near-worse-case
loads, f4 is able to cope with the lower throughput and
decreased variance demands of warm BLOBs.

f4 Provides Low Latency Figure 13 shows the same
region read latency for Haystack and f4. In our system,
most (>99%) of the storage tier read accesses are within
the same region. The latencies for f4 reads are higher
than those for Haystack, e.g., the median read latency is
14 ms for Haystack and 17 ms for f4. But, the latency
for f4 are still sufficiently low to provide a good user
experience: the latency for reads in f4 is less than 30 ms
for 80% of them and 80ms for 99% of them.

6.4 f4 is Resilient to Failure
f4 is resilient to datacenter failures because we replicate
data in multiple geographically distinct locations. Here
we verify that f4 is resilient to disk, host, and rack failure.

Our implementation places blocks on different racks
initially and continually monitors and rebalances blocks
so they are on different racks due to failure. The result is
that blocks are almost always in different failure domains,
which we assume to be true for the rest of this analysis.
Figure 14 shows the CDF of BLOBs that are unavailable
if N disks, hosts, or racks fail in an f4 cell. Worst case,
expected case, and best case CDFs are plotted. All results
assume we lose some data when there are more than 4
failures in a stripe, though there is work that can recover
some of this data [22] we do not implement it. Worst case
results assume failures are assigned to one or a small
number of blocks first and that parity blocks are the last
to fail. Best case results assume failures are assigned to
individual racks first and that parity blocks are the first to
fail. Non-parity blocks can be used to individually extract
the BLOBs they enclose. Expected results are calculated

11

394 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) (b) (c)

Figure 14: Fraction of unavailable BLOBs for a f4 cell with N disk, host, and rack failures.

by the Monte Carlo method. There are 30 disks/host, 15
hosts/rack, and 14 racks.

Figure 14a shows the results for N disk failures. In the
worst case there are some unavailable BLOBs after 4 disk
failures, 50% unavailable BLOBs after 2250 disk failures,
and 100% unavailable BLOBs after 4500 disk failures. In
the best case there are no unavailable BLOBs until there
are more than 1800 disk failures. In expectation, there
will be some unavailable BLOBs after 450 disk failures,
and 50% unavailable BLOBs after 3200 disk failures.

Figure 14b shows the results for N host failures. In
the worst case there are unavailable BLOBs after 4 host
failures, 50% unavailable BLOBs after 74 host failures,
and 100% unavailable BLOBs after 150 host failures. In
the best case, there are no unavailable BLOBs until there
are more than 60 host failures. In expectation, there will
be some unavailable BLOBs with 32 host failures and
50% unavailable BLOBs once there are 100 host failures.

Figure 14c shows the results for N rack failures. In the
worst case there are unavailable BLOBs after 4 rack fail-
ures and 100% unavailable BLOBs after 10 rack failures.
Even in the best case, there will be some unavailable
BLOBs once there are 5 rack failures. In expectation,
once there are 7 rack failures 50% of BLOBs will be
unavailable. Taken together Figure 14 demonstrates that
f4 is resilient to failure.

Failure Experience In general, we see an Annualized
Failure Rate (AFR) of ~1% for our disks and they are
replaced in less than 3 business days so we typically have
at most a few disks out at a time per cluster. We recently
received a batch of bad disks and have a higher failure
rate for the cluster they are in, as discussed further in
Section 7. Even so, we are always on the far left parts
of the graphs in Figure 14 where there is no difference
between worst/best/expected thus far. Host failures occur
less often, though we do not have a rule-of-thumb failure
rate for them. Host failures typically do not lose data,
once the faulty component is replaced (e.g., DRAM) the
host returns with the data still on its disks. Our worst
failure thus far has been a self-inflicted drill that rebuilt
2 hosts worth of data (240 TB) in the background over 3

days. The only adverse affect of the drill was an increase
in p99 latency to 500ms.

6.5 f4 Saves Storage
f4 saves storage space by reducing the effective-replication-
factor of BLOBs, but it does not reclaim the space of
deleted BLOBs. Thus, the true benefit in reduced storage
for f4 must account for the space. We measured the space
used for deleted data in f4, which was 6.8%.

Let replhay = 3.6 be the effective replication factor
for Haystack, replf4 = 2.8 or 2.1 be the effective
replication factor of f4, delf4 = .068 the fraction of
BLOBs in f4 that are deleted, and logicalf4 > 65PB be
the logical size of BLOBs stored in f4. Then the reduction
in storage space from f4 is:

Reduction = (replhay − replf4 ∗ 1

1− delf4
) ∗ logicalwarm

= (3.6− replf4 ∗ 1.07) ∗ 65PB

= 30PB at 2.8, 68PB at 2.1, 53PB currently

With a current corpus over 65 PB, f4 saved over 39
PB of storage at the 2.8 effective-replication-factor and
will save over 87 PB of storage at 2.1. f4 currently saves
over 53PB with the partial deployment of 2.1.

7. Experience
In the course of designing, building, deploying, and
refining f4 we learned many lessons. Among these the
importance of simplicity for operational stability, the
importance of measuring underlying software for your
use case’s efficiency, and the need for heterogeneity in
hardware to reduce the likelihood of correlated failures
stand out.

The importance of simplicity in the design of a system
for keeping its deployment stable crops up in many
systems within Facebook [41] and was reinforced by our
experience with f4. An early version of f4 used journal
files to track deletes in the same way that Haystack does.
This single read-write file was at odds with the rest of
the f4 design, which is read-only. The at-most-one-writer
requirement of the distributed file system at the heart of

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 395

our implementation (HDFS), the inevitability of failure
in large distributed systems, and the rarity of writes to
the journal file did not play well together. This was the
foremost source of production issues for f4. Our later
design that removed this read-write journal file pushed
delete tracking to another system that was designed to be
read-write. This change simplified f4 by making it fully
read-only and fixed the production issues.

Measuring and understanding the underlying software
that f4 was built on top of helped improve the efficiency
of f4. f4’s implementation is built on top of the Hadoop
File System (HDFS). Reads in HDFS are typically han-
dled by any server in the cluster and then proxied by that
server to the server that has the requested data. Through
measurement we found that this proxied read has lower
throughput and higher latency than expected due to the
way HDFS schedules IO threads. In particular, HDFS
used a thread for each parallel network IO request and
Java’s multithreading did not scale well to a large number
of parallel requests, which resulted in an increasing back-
log of network IO requests. We worked around this with a
two-part read, described in Section 5.3, that avoids prox-
ying the read through HDFS. This workaround resulted
in the expected throughput and latency for f4.

We recently learned about the importance of hetero-
geneity in the underlying hardware for f4 when a crop of
disks started failing at a higher rate than normal. In addi-
tion, one of our regions experienced higher than average
temperatures that exacerbated the failure rate of the bad
disks. This combination of bad disks and high tempera-
tures resulted in an increase from the normal ~1% AFR
to an AFR over 60% for a period of weeks. Fortunately,
the high-failure-rate disks were constrained to a single
cell and there was no data loss because the buddy and
XOR blocks were in other cells with lower temperatures
that were unaffected. In the future we plan on using hard-
ware heterogeneity to decrease the likelihood of such
correlated failures.

8. Related Work
We divide related work into distributed file system,
distributed disk arrays, erasure codes, erasure coded
storage, hierarchical storage, other related techniques,
and BLOB storage systems. f4 is primarily distinguished
by its specificity and thus simplicity, and by virtue of it
running in production at massive scale across many disk,
hosts, racks, and datacenters.

Distributed File Systems There are many classic dis-
tributed file systems including Cedar [26], Andrew [32],
Sprite [39], Coda [48], Harp [38], xfs [3], and Petal [36]
among many others. Notable recent examples include the
Google File System [18], BigTable [12], and Ceph [53].
All of these file systems are much more general, and thus

necessarily more complex, than f4 whose design was
informed by its simpler workload.

Distributed Disk Arrays There is also a large body of
work on striping data across multiple disks for improved
throughput and fault tolerance that was first advocated
in a case for RAID [43]. Later work included Zebra [30]
that forms of a client’s write into a log and stripes them
together, similar to how we stripe many BLOBs together
in a block. Other work includes disk shadowing [7], max-
imizing performance in a striped disk array [13], parity
declustering [31], parity logging [51], AFRAID [49],
TickerTAIP [11], NASD [19], and D-GRAID [50]. Chen
et al.’s survey on provides a thorough overview of RAID
in practice [14]. f4 continues the tradition of distributing
data for reliability, but does so across racks and datacen-
ter as well as disks and hosts.

Erasure Codes Erasure codes enjoy a long history
starting with the Hamming’s original error-correcting
code [27]. Our work uses Reed-Solomon codes [46] and
XOR codes. EVENODD [8] simplifies error correction
using XOR codes. WEAVER codes [24] are a more
recent XOR-based erasure code. HoVer codes [25] add
parity in two dimensions, similar to our local vs. geo-
replicated distinction, though at a much lower level and
with more similar techniques. STAIR codes [37] provide
fault tolerance to disk sector failures, a level below our
currently smallest failure domain. XORing elephants [4]
presents a new family of erasure codes that are more
efficiently repairable. A hitchhiker’s guide to fast and
efficient data reconstruction [45] presents new codes that
reduce network and disk usage. f4 uses erasure codes as
tools and does not innovate in this area.

Erasure Coded Storage Plank gave a tutorial on Reed-
Solomon codes for error correction in RAID-like sys-
tems [44]. f4 implements something similar, but uses
checksums colocated with blocks for error detection and
uses Reed-Solomon for erasure correction that can tol-
erate more failures at same parity level. More recent
erasure coded storage includes Oceanstore [35], a peer-
to-peer erasure coded system. Weatherspoon et al. [52]
provide a detailed comparison of replication vs. erasure-
coding for peer-to-peer networks. Other systems include
Glacier [23] and Ursa Minor [1]. Windows Azure stor-
age [33] uses new Local Reconstruction Codes for effi-
cient recovery with local and global parity information,
but is not a Maximum Distance Separable (MDS) code.
Our local Reed-Solomon coding is MDS, though the
combination with XOR is not.

Hierarchical Storage The literature is also rich with
work on hierarchical storage that uses different storage
subsystems for different working sets. A canonical exam-
ple is HP AutoRAID [54] that has two levels of storage
with replication at the top-level and RAID 5 for the bot-

13

396 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tom level. HP AutoRAID transparently migrates data
between the two levels based on inactivity. The replica-
tion our BLOB storage system is similar, though at a
far larger scale, for a simpler workload, and with very
different migration choices and costs.

Other Similar Techniques Our approach of append-
ing new BLOBs to a physical volume resembles log-
structured file systems [47], and greatly improves our
write latency. Harter et al. [28] analyzed the I/O behavior
of iBench, a collection of productivity and multimedia
applications and observed that many modern applications
manage a single file as a mini-filesystem. This is also
how we treat our files (including data files, index files
and journal files). Copyset replication [15] explores how
to group replicas to decrease the likelihood of data loss,
but does not use erasure codes.

BLOB Storage Our work on warm storage builds on
some key ideas from Haystack [5], Facebook’s hot BLOB
storage system. Huang et al. [34] performed an exten-
sive study of Facebook photo and found that advanced
caching algorithms would increase cache hit ratios and
further drive down backend load. If implemented, this
could enable faster migration from hot storage to f4.
Harter et al. [29] performed a multilayer study of the
Facebook Messages stack, which is also built on top
of HDFS. Blobstore [6] provides a good overview of
Twitter’s in-house photo storage system, but does not de-
scribe performance or efficiency aspects in much detail.
Microsoft’s Windows Azure Storage [10] is designed to
be a generic cloud service while ours is a more special-
ized application, with more unique challenges as well
as optimization opportunities. Their coding techniques
are discussed above. Google provides a durable but re-
duced availability storage service (DRA) on its cloud
platform [21], but implementation details are not public
and there is no support for migrating groups of objects
(buckets) from normal to DRA storage.

9. Conclusion
Facebook’s BLOB corpus is massive, growing, and in-
creasingly warm. This paper made a case for a special-
ized warm BLOB storage system, described an overall
BLOB storage system that enables warm storage, and
gave the design of f4. f4 reduces the effective-replication-
factor of warm BLOBs from 3.6 to 2.1; is fault tolerant
to disk, host, rack, and datacenter failures; provides low
latency for client requests; and is able to cope with the
lower throughput demands of warm BLOBs.

References
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J.

Wylie. Ursa minor: Versatile cluster-based storage. In
Proceedings of the USENIX Conference on File and Stor-
age Technologies (FAST), 2005.

[2] Akamai. http://www.akamai.com.

[3] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang. Serverless network
file systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 1995.

[4] M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur. Xoring elephants: Novel
erasure codes for big data. Proceedings of the VLDB
Endowment (PVLDB), 6(5), 2013.

[5] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: Facebook’s photo storage.
In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[6] A. Bigian. Blobstore: Twitter’s in-house photo storage
system. http://tinyurl.com/cda5ahq, 2012.

[7] D. Bitton and J. Gray. Disk shadowing. In Proceedings of
the International Conference on Very Large Data Bases
(VLDB), 1988.

[8] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd:
An efficient scheme for tolerating double disk failures in
raid architectures. IEEE Transactions on Computers, 44
(2), 1995.

[9] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the Usenix Annual
Technical Conference (ATC), 2013.

[10] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar,
S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u.
Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas. Windows
azure storage: A highly available cloud storage service
with strong consistency. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2011.

[11] P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes. The
tickertaip parallel raid architecture. ACM Transactions on
Computer Systems (TOCS), 12(3), 1994.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Transactions of Computer Systems (TOCS), 26(2),
2008.

[13] P. M. Chen and D. A. Patterson. Maximizing performance
in a striped disk array. In Proceedings of the Annual In-
ternational Symposium on Computer Architecture (ISCA),
1990.

[14] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2), 1994.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 397

[15] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout,
and M. Rosenblum. Copysets: Reducing the frequency of
data loss in cloud storage. In Proceedings of the Usenix
Annual Technical Conference (ATC), 2013.

[16] Facebook Groups. Facebook groups. https://www.

facebook.com/help/groups.

[17] Facebook Mobile Photo Sync. Facebook mobile
photo sync. https://www.facebook.com/help/

photosync.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles (SOSP), 2003.

[19] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. In ACM SIGPLAN Notices, 1998.

[20] A. Glacier. https://aws.amazon.com/glacier/.

[21] Google. Durable reduced availability storage.
https://developers.google.com/storage/

docs/durable-reduced-availability, 2014.

[22] V. Guruswami and M. Sudan. Improved decoding of
reed-solomon and algebraic-geometry codes. IEEE Trans-
actions on Information Theory, 1999.

[23] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor-
related failures. In Proceedings of the Conference on
Symposium on Networked Systems Design & Implementa-
tion (NSDI), 2005.

[24] J. L. Hafner. Weaver codes: Highly fault tolerant erasure
codes for storage systems. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2005.

[25] J. L. Hafner. Hover erasure codes for disk arrays. In
International Conference on Dependable Systems and
Networks (DSN), 2006.

[26] R. Hagmann. Reimplementing the cedar file system
using logging and group commit. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), 1987.

[27] R. W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2), 1950.

[28] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. A file is not a file: Under-
standing the i/o behavior of apple desktop applications.
In Proc. Symposium on Operating Systems Principles
(SOSP), 2011.

[29] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L. Tang,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analy-
sis of hdfs under hbase: A facebook messages case study.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2014.

[30] J. H. Hartman and J. K. Ousterhout. The zebra striped
network file system. ACM Transactions on Computer
Systems (TOCS), 13(3), 1995.

[31] M. Holland and G. A. Gibson. Parity declustering for
continuous operation in redundant disk arrays. In Pro-
ceedings of the International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS), 1992.

[32] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems (TOCS), 6(1), 1988.

[33] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, S. Yekhanin, et al. Erasure coding
in windows azure storage. In Proceedings of the Usenix
Annual Technical Conference (ATC), 2012.

[34] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An analysis of facebook photo caching.
In Proceedings of the Symposium on Operating Systems
Principles (SOSP), Nov. 2013.

[35] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, et al. Oceanstore: An architecture for
global-scale persistent storage. ACM Sigplan Notices, 35
(11), 2000.

[36] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the Architectural support for pro-
gramming languages and operating systems (ASPLOS),
1996.

[37] M. Li and P. P. C. Lee. Stair codes: A general family of
erasure codes for tolerating device and sector failures in
practical storage systems. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2014.

[38] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the harp file system.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 1991.

[39] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the sprite network file system. ACM Transaction on
Computer Systems (TOCS), 6(1), 1988.

[40] J. Niccolai. Facebook puts 10,000 blu-ray discs in low-
power storage system. http://tinyurl.com/qx759f4,
2014.

[41] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling mem-
cache at facebook. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[42] Open Compute. Open compute. http://www.

opencompute.org/.

[43] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (raid). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, 1988.

[44] J. S. Plank et al. A tutorial on reed-solomon coding for
fault-tolerance in raid-like systems. Software: Practice
and Experience, 27(9), 1997.

15

398 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[45] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A hitchhikers guide to fast and
efficient data reconstruction in erasure-coded data centers.
In Proceedings of the ACM conference on SIGCOMM,
2014.

[46] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and
Applied Mathematics, 8, 1960.

[47] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions of Computer Systems (TOCS), 10(1), 1992.

[48] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4), 1990.

[49] S. Savage and J. Wilkes. Afraid: A frequently redundant
array of independent disks. In Proceedings of the Usenix
Annual Technical Conference (ATC), 1996.

[50] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving storage system
availability with d-graid. ACM Transactions on Storage
(TOS), 1(2), 2005.

[51] D. Stodolsky, G. Gibson, and M. Holland. Parity log-
ging overcoming the small write problem in redundant
disk arrays. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), 1993.

[52] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In Interna-
tional workshop on Peer-To-Peer Systems (IPTPS. 2002.

[53] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In In Proceedings of Symposium
on Operating Systems Design and Implementation (OSDI),
2006.

[54] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The hp
autoraid hierarchical storage system. ACM Transactions
on Computer Systems (TOCS), 14(1), 1996.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 399

SAMC: Semantic-Aware Model Checking for

Fast Discovery of Deep Bugs in Cloud Systems

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi∗,

Jeffrey F. Lukman† and Haryadi S. Gunawi

University of Chicago ∗NEC Labs America †Surya University

Abstract

The last five years have seen a rise of implementation-

level distributed system model checkers (dmck) for ver-

ifying the reliability of real distributed systems. Ex-

isting dmcks however rarely exercise multiple failures

due to the state-space explosion problem, and thus do

not address present reliability challenges of cloud sys-

tems in dealing with complex failures. To scale dmck,

we introduce semantic-aware model checking (SAMC),

a white-box principle that takes simple semantic infor-

mation of the target system and incorporates that knowl-

edge into state-space reduction policies. We present four

novel reduction policies: local-message independence

(LMI), crash-message independence (CMI), crash recov-

ery symmetry (CRS), and reboot synchronization sym-

metry (RSS), which collectively alleviate redundant re-

orderings of messages, crashes, and reboots. SAMC is

systematic; it does not use randomness or bug-specific

knowledge. SAMC is simple; users write protocol-

specific rules in few lines of code. SAMC is powerful;

it can find deep bugs one to three orders of magnitude

faster compared to state-of-the-art techniques.

1 Introduction

As more data and computation move from local to cloud

settings, cloud systems1 such as scale-out storage sys-

tems [7, 13, 18, 41], computing frameworks [12, 40],

synchronization services [5, 28], and cluster manage-

ment services [27, 47] have become a dominant back-

bone for many modern applications. Client-side software

is getting thinner and more heavily relies on the capabil-

ity, reliability, and availability of cloud systems. Unfor-

tunately, such large-scale distributed systems remain dif-

ficult to get right. Guaranteeing reliability has proven to

be challenging in these systems [23, 25, 51].

Software (implementation-level) model checking is

one powerful method of verifying systems reliability [21,

1These systems are often referred with different names (e.g., cloud

software infrastructure, datacenter operating systems). For simplicity,

we use the term “cloud systems”.

52, 53]. The last five years have seen a rise of software

model checkers targeted for distributed systems [22, 25,

43, 50, 51]; for brevity, we categorize such systems as

dmck (distributed system model checker). Dmck works

by exercising all possible sequences of events (e.g., dif-

ferent reorderings of messages), and hereby pushing the

target system into corner-case situations and unearthing

hard-to-find bugs. To address the state-space explosion

problem, existing dmcks adopt advanced state reduc-

tion techniques such as dynamic partial order reduction

(DPOR), making them mature and highly practical for

checking large-scale systems [25, 51].

Despite these early successes, existing dmcks unfor-

tunately fall short in addressing present reliability chal-

lenges of cloud systems. In particular, large-scale cloud

systems are expected to be highly reliable in dealing with

complex failures, not just one instance, but multiple of

them. However, to the best of our knowledge, no exist-

ing dmcks can exercise multiple failures without explod-

ing the state space. We elaborate this issue later; for now,

we discuss complex failures in cloud environments.

Cloud systems run on large clusters of unreliable com-

modity machines, an environment that produces a grow-

ing number and frequency of failures, including “surpris-

ing” failures [2, 26]. Therefore, it is common to see com-

plex failure-induced bugs such as the one below.

ZooKeeper Bug #335: (1) Nodes A, B, C start with

latest txid #10 and elect B as leader, (2) B crashes,

(3) Leader election re-run; C becomes leader, (4)

Client writes data; A and C commit new txid-value

pair {#11:X}, (5) A crashes before committing tx

#11, (6) C loses quorum, (7) C crashes, (8) A re-

boots and B reboots, (9) A becomes leader, (10)

Client updates data; A and B commit a new txid-

value pair {#11:Y}, (11) C reboots after A’s new tx

commit, (12) C synchronizes with A; C notifies A of

{#11:X}, (13) A replies to C the “diff” starting with

tx 12 (excluding tx {#11:Y}!), (14) Violation: per-

manent data inconsistency as A and B have {#11:Y}
and C has {#11:X}.

The bug above is what we categorize as deep bug. To

unearth deep bugs, dmck must permute a large number

1

400 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

of events, not only network events (messages), but also

crashes and reboots. Although arguably deep bugs occur

with lower probabilities than “regular” bugs, deep bugs

do occur in large-scale deployments and have harmful

consequences (§2.3). We observe that cloud developers

are prompt in fixing deep bugs (in few weeks) as they

seem to believe in Murphy’s law; at scale, anything that

can go wrong will go wrong.

As alluded above, the core problem is that state-of-

the-art dmcks [22, 25, 34, 43, 50, 51] do not incorporate

failure events to their state exploration strategies. They

mainly address scalability issues related to message re-

orderings. Although some dmcks are capable of injecting

failures, usually they only exercise at most one failure.

The reason is simple: exercising crash/reboot events will

exacerbate the state-space explosion problem. In this re-

gard, existing dmcks do not scale and take very long time

to unearth deep bugs. This situation led us to ask: how

should we advance dmck to discover deep bugs quickly

and systematically, and thereby address present reliabil-

ity challenges of cloud systems in dealing with complex

failures?

In this paper, we present semantic-aware model check-

ing (SAMC; pronounced “Sam-C”), a white-box princi-

ple that takes simple semantic information of the target

system and incorporates that knowledge in state-space

reduction policies. In our observation, existing dmcks

treat every target system as a complete black box, and

therefore many times perform message re-orderings and

crash/reboot injections that lead to the same conditions

that have been explored in the past. These redundant ex-

ecutions must be removed significantly to tame the state-

space explosion problem. We find that simple semantic

knowledge can scale dmck greatly.

The main challenge of SAMC is in defining what se-

mantic knowledge can be valuable for reduction poli-

cies and how to extract that information from the tar-

get system. We find that useful semantic knowledge can

come from event processing semantic (i.e., how mes-

sages, crashes, and reboots are processed by the target

system). To help testers extract such information from

the target system, we provide generic event processing

patterns, patterns of how messages, crashes, and reboots

are processed by distributed systems in general.

With this method, we introduce four novel semantic-

aware reduction policies. First, local-message indepen-

dence (LMI) reduces re-orderings of concurrent intra-

node messages. Second, crash-message independence

(CMI) reduces re-orderings of crashes among outstand-

ing messages. Third, crash recovery symmetry (CRS)

skips crashes that lead to symmetrical recovery behav-

iors. Finally, reboot synchronization symmetry (RSS)

skips reboots that lead to symmetrical synchronization

actions. Our reduction policies are generic; they are ap-

plicable to many distributed systems. SAMC users (i.e.,

testers) only need to feed the policies with short protocol-

specific rules that describe event independence and sym-

metry specific to their target systems.

SAMC is purely systematic; it does not incorporate

randomness or bug-specific knowledge. Our policies run

on top of sound model checking foundations such as state

or architectural symmetry [9, 45] and independence-

based dynamic partial order reduction (DPOR) [17, 20].

Although these foundations have been around for a

decade or more, its application to dmck is still limited;

these foundations require testers to define what events

are actually independent or symmetrical. With SAMC,

we can define fine-grained independence and symmetry.

We have built a prototype of SAMC (SAMPRO) from

scratch for a total of 10,886 lines of code. We have

integrated SAMPRO to three widely popular cloud sys-

tems, ZooKeeper [28], Hadoop/Yarn [47], and Cassan-

dra [35] (old and latest stable versions; 10 versions in

total). We have run SAMPRO on 7 different protocols

(leader election, atomic broadcast, cluster management,

speculative execution, read/write, hinted handoff, and

gossiper). The protocol-specific rules are written in only

35 LOC/protocol on average. This shows the simplic-

ity of applying SAMC reduction policies across different

systems and protocols; all the rigorous state exploration

and reduction are automatically done by SAMPRO.

To show the power of SAMC, we perform an exten-

sive evaluation of SAMC’s speed in finding deep bugs.

We take 12 old real-world deep bugs that require mul-

tiple crashes and reboots (some involve as high as 3

crashes and 3 reboots) and show that SAMC can find the

bugs one to three orders of magnitude faster compared

to state-of-the-art techniques such as black-box DPOR,

random+DPOR, and pure random. We show that this

speed saves tens of hours of testing time. More impor-

tantly, some deep bugs cannot be reached by non-SAMC

approaches, even after 2 days; here, SAMC’s speed-up

factor is potentially much higher. We also found 2 new

bugs in the latest version of ZooKeeper and Hadoop.

To the best of our knowledge, our work is the first so-

lution that systematically scales dmck with the inclusion

of failures. We believe none of our policies have been

introduced before. Our prototype is also the first avail-

able dmck for our target systems. Overall, we show that

SAMC can address deep reliability challenges of cloud

systems by helping them discover deep bugs faster.

The rest of the paper is organized as follows. First, we

present a background and an extended motivation (§2).

Next, we present SAMC and our four reduction policies

(§3). Then, we describe SAMPRO and its integration to

cloud systems (§4). Finally, we close with evaluations

(§5), related work (§7), and conclusion (§8).

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 401

2 Background

This section gives a quick background on dmck and re-

lated terms, followed with a detailed overview of the

state of the art. Then, we present cases of deep bugs

and motivate the need for dmck advancements.

2.1 DMCK Framework and Terms

As mentioned before, we define dmck as software model

checker that checks distributed systems directly at the

implementation level. Figure 1 illustrates a dmck inte-

gration to a target distributed system, a simple represen-

tation of existing dmck frameworks [25, 34, 43, 51]. The

dmck inserts an interposition layer in each node of the

target system with the purpose of controlling all impor-

tant events (e.g., network messages, timeouts) and pre-

venting the target system to process the events until the

dmck enables them. A main dmck mechanism is the per-

mutation of events; the goal is to push the target system

into all possible ordering scenarios. For example, the

dmck can enforce abcd ordering in one execution, bcad

in another, and so on.

We now provide an overview of basic dmck terms we

use in this paper and Figure 1. Each node of the tar-

get system has a local state (ls), containing many vari-

ables. An abstract local state (als) is a subset of the lo-

cal state; dmck decides which als is important to check.

The collection of all (and abstract) local states is the

global state (gs) and the abstract global state (ags) re-

spectively. The network state describes all the outstand-

ing messages currently intercepted by dmck (e.g., abd).

To model check a specific protocol, dmck starts a work-

load driver (which restarts the whole system, runs spe-

cific workloads, etc.). Then, dmck generates many (typi-

cally hundreds/thousands) executions; an execution (or a

path) is a specific ordering of events that dmck enables

(e.g., abcd, dbca) from an initial state to a termination

point. A sub-path is a subset of a path/execution. An

event is an action by the target system that is intercepted

by dmck (e.g., a network message) or an action that dmck

can inject (e.g., a crash/reboot). Dmck enables one event

at a time (e.g., enable(c)). To permute events, dmck

runs exploration methods such as brute-force (e.g., depth

first search) or random. As events are permuted, the tar-

get system enters hard-to-reach states. Dmck continu-

ously runs state checks (e.g., safety checks) to verify the

system’s correctness. To reduce the state-space explo-

sion problem, dmck can employ reduction policies (e.g.,

DPOR or symmetry). A policy is systematic if it does not

use randomness or bug-specific knowledge. In this work,

we focus on advancing systematic reduction policies.

Node 1

ls1:{…}

ab c d

enable(c)

Messages: {a,b,d}

GS: {ls1, ls2, …}

Policy: DPOR, Random, …

Checks / assertions

Features (crash, reboot, …)

Dmck ServerNode 2

ls2:{…}

Figure 1: DMCK. The figure illustrates a typical framework

of a distributed system model checker (dmck).

2.2 State-of-the-Art DMCKs

MODIST [51] is arguably one of the most powerful

dmcks that comes with systematic reduction policies.

MODIST has been integrated to real systems due to its ex-

ploration scalability. At the heart of MODIST is dynamic

partial order reduction (DPOR) [17] which exploits the

independence of events to reduce the state explosion. In-

dependent events mean that it does not matter in what

order the system execute the events, as their different or-

derings are considered equivalent.

To illustrate how MODIST adopts DPOR, let’s use the

example in Figure 1, which shows four concurrent out-

standing messages abcd (a and b for N1, c and d for N2).

A brute-force approach will try all possible combinations

(abcd, abdc, acbd, acdb, cabd, and so on), for a total of

4! executions. Fortunately, the notion of event indepen-

dence can be mapped to distributed system properties.

For example, MODIST specifies this reduction policy: a

message to be processed by a given node is independent

of other concurrent messages destined to other nodes

(based on vector clocks). Applying this policy to the ex-

ample in Figure 1 implies that a and b are dependent1 but

they are independent of c and d (and vice versa). Since

only dependent events need to be reordered, this reduc-

tion policy leads to only 4 executions (ab-cd, ab-dc, ba-

cd, ba-dc), giving a 6x speed-up (4!/4).

Although MODIST’s speed-up is significant, we find

that one scalability limitation of its DPOR application is

within its black-box approach; it only exploits general

properties of distributed systems to define message in-

dependence. It does not exploit any semantic informa-

tion from the target system to define more independent

events. We will discuss this issue later (§3.1).

Dynamic interface reduction (DIR) [25] is the next

advancement to MODIST. This work suggests that a

complete dmck must re-order not only messages (global

events) but also thread interleavings (local events). The

reduction intuition behind DIR is that different thread in-

terleavings often lead to the same global events (e.g., a

node sends the same messages regardless of how threads

are interleaved in that node). DIR records local explo-

1In model checking, “dependent” events mean that they must be

re-ordered. “Dependent” does not mean “causally dependent”.

402 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0
 1
 2
 3
 4
 5
 6

33
5

56
9

76
9

79
0

79
1

97
5

10
75

11
18

11
54

12
94

13
19

13
32

13
67

13
72

14
19

14
92

15
73

16
53

91
3

37
80

38
46

42
52

44
25

46
07

47
48

48
32

48
33

48
90

50
00

51
69

51
98

53
58

54
05

54
09

54
76

54
89

55
05

51
5

12
21

14
32

17
30

19
92

21
15

25
14

32
73

34
66

36
26

38
76

51
79

61
56

63
64

65
03

N
um

be
r o

f
C

ra
sh

es
/R

eb
oo

ts
#Crashes
#Restarts

ZooKeeper Bugs Hadoop MapReduce Bugs Cassandra Bugs

Figure 2: Deep Bugs. The figure lists deep bugs from our bug study and depicts how many crashes and reboots must happen

to reproduce the bugs. Failure events must happen in a specific order in a long sequence of events. These bugs came from many

protocols including ZooKeeper leader election and atomic broadcast, Hadoop MapReduce speculative execution, job/task trackers,

and resource/application managers, and Cassandra gossiper, anti-entropy, mutation, and hinted handoff. These bugs led to failed

jobs, node unavailability, data loss, inconsistency, and corruption. They were labeled as “major”, “critical”, or “blocker”. 12 of

these bugs happened within the last one year. The median response time (i.e., time to fix) is two weeks. There are few bugs that

involve 4+ reboots and 4+ crashes that we do not show here.

ration and replays future incoming messages without the

need for global exploration. In our work, SAMC fo-

cuses only on global exploration (message and failure

re-orderings). We believe DIR is orthogonal to SAMC,

similar to the way DIR is orthogonal to MODIST.

MODIST and DIR are examples of dmcks that employ

advanced systematic reduction policies. LMC [22] is

similar to DIR; it also decouples local and global explo-

ration. dBug [43] applies DPOR similarly to MODIST.

There are other dmcks such as MACEMC [34] and Crys-

talBall [50] that use basic exploration methods such as

depth first (DFS), weight-based, and random searches.

Other than the aforementioned methods, symme-

try is another foundational reduction policy [16, 45].

Symmetry-based methods exploit the architectural sym-

metry present in the target system. For example, in a ring

of nodes, one can rotate the ring without affecting the be-

havior of the system. Symmetry is powerful, but we find

no existing dmcks that adopt symmetry.

Besides dmcks, there exists sophisticated testing

frameworks for distributed systems (e.g., FATE [23],

PREFAIL [31], SETSUDO [30], OpenStack fault-

injector [32]). This set of work emphasizes the impor-

tance of multiple failures, but their major limitation is

that they are not a dmck. That is, they cannot systemati-

cally control and permute non-deterministic choices such

as message and failure reorderings.

2.3 Deep Bugs

To understand the unique reliability challenges faced by

cloud systems, we performed a study of reliability bugs

of three popular cloud systems: ZooKeeper [28], Hadoop

MapReduce [47], and Cassandra [35]. We scanned

through thousands of issues from their bug repositories.

We then tagged complex reliability bugs that can only be

caught by a dmck (i.e., bugs that can occur only on spe-

cific orderings of events). We found 94 dmck-catchable

bugs.1 Our major finding is that 50% of them are deep

bugs (require complex re-ordering of not only messages

but also crashes and reboots).

Figure 2 lists the deep bugs found from our bug study.

Many of them were induced by multiple crashes and re-

boots. Worse, to reproduce the bugs, crash and reboot

events must happen in a specific order within a long se-

quence of events (e.g., the example bug in §1). Deep bugs

lead to harmful consequences (e.g., failed jobs, node

unavailability, data loss, inconsistency, corruption), but

they are hard to find. We observe that since there is no

dmck that helps in this regard, deep bugs are typically

found in deployment (via logs) or manually, then they

get fixed in few weeks, but afterwards as code changes

continuously, new deep bugs tend to surface again.

2.4 Does State of the-Art Help?

We now combine our observations in the two previous

sections and describe why state-of-the-art dmcks do not

address present reliability challenges of cloud systems.

First, existing systematic reduction policies often can-

not find bugs quickly. Experiences from previous

dmck developments suggest that significant savings from

sound reduction policies do not always imply high bug-

finding effectiveness [25, 51]. To cover deep states and

find bugs, many dmcks revert to non-systematic meth-

ods such as randomness or manual checkpoints. For ex-

ample, MODIST combines DPOR with random walk to

“jump” faster to a different area of the state space (§4.5

of [51]). DIR developers find new bugs by manually set-

ting “interesting” checkpoints so that future state explo-

rations happen from the checkpoints (§5.3 of [25]). In

our work, although we use different target systems, we

are able to reproduce the same experiences above (§5.1).

1Since this is a manual effort, we might miss some bugs. We also do

not report “simple” bugs (e.g., error-code handling) that can be caught

by unit tests.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 403

Local
Message
Indep.

SAMC
Reduction
Policies

Crash
Message
Indep.

Crash
Recovery
Symmetry

Reboot
Sync.
Symmetry

DPOR DFS SymmetryBasic Mechanisms

Protocol-
Specific Rules

Leader
election

Atomic
broadcast

Cluster
Mgmt. ...Gossip

Figure 3: SAMC Architecture.

Second, existing dmcks do not scale with the inclusion

of failure events. Given the first problem above, exercis-

ing multiple failures will just exacerbate the state-space

explosion problem. Some frameworks that can explore

multiple failures such as MACEMC [34] only do so in a

random way; however, in our experience (§5.1), random-

ness many times cannot find deep bugs quickly. MODIST

also enabled only one failure. In reality, multiple failures

is a big reliability threat, and thus must be exercised.

We conclude that finding systematic (no ran-

dom/checkpoint) policies that can find deep bugs is still

an open dmck research problem. We believe without se-

mantic knowledge of the target system, dmck hits a scal-

ability wall (as also hinted by DIR authors; §8 of [25]).

In addition, as crashes and reboots need to be exercised,

we believe recovery semantics must be incorporated into

reduction policies. All of these observations led us to

SAMC, which we describe next.

3 SAMC

Semantic-aware model checking (SAMC) is a white-box

model checking approach that takes semantic knowledge

of how events (e.g., messages, crashes, and reboots) are

processed by the target system and incorporates that in-

formation in reduction policies. To show the intuition be-

hind SAMC, we first give an example of a simple leader

election protocol. Then, we present SAMC architecture

and our four reduction policies.

3.1 An Example

In a simple leader election protocol, every node broad-

casts its vote to reach a quorum and elect a leader.

Each node begins by voting for itself (e.g., N2 broadcasts

vote=2). Each node receives vote broadcasts from other

peers and processes every vote with this simplified code

segment below. As depicted in the code segment below,

if an incoming vote is less than the node’s current vote,

it is simply discarded. If it is larger, the node changes its

vote and broadcasts the new vote.

if (msg.vote < myVote) {discard;}
else {myVote = msg.vote; broadcast(myVote);}

Let’s assume N4 with vote=4 is receiving three concur-

rent messages with votes 1, 2, and 3 from its peers. Here,

a dmck with a black-box DPOR approach must perform

6 (3!) orderings (123, 132, and so on). This is because a

black-box DPOR does not know the message processing

semantic (i.e., how messages will be processed by the re-

ceiving node). Thus, a black-box DPOR must treat all

of them as dependent (§2.2); they must be re-ordered for

soundness. However, by knowing the processing logic

above, a dmck can soundly conclude that all orderings

will lead to the same state; all messages will be dis-

carded by N4 and its local state will not change. Thus,

a semantic-aware dmck can reduce the 6 redundant exe-

cutions to just 1 execution.

The example above shows a scalability limitation of

a black-box dmck. Fortunately, simple semantic knowl-

edge has a great potential in removing redundant execu-

tions. Furthermore, semantic knowledge can be incorpo-

rated on top of sound model checking foundations such

as DPOR and symmetry, as we describe next.

3.2 Architecture

Figure 3 depicts the three levels of SAMC: sound ex-

ploration mechanisms, reduction policies, and protocol-

specific rules. SAMC is built on top of sound model

checking foundations such as DPOR [17, 20] and

symmetry [9, 45]. We name these foundations as

mechanisms because a dmck must specify accordingly

what events are dependent/independentand symmetrical,

which in SAMC will be done by the reduction policies

and protocol-specific rules.

Our main contribution lies within our four novel

semantic-aware reduction policies: local-message inde-

pendence (LMI), crash-message independence (CMI),

crash recovery symmetry (CRS), and reboot synchro-

nization symmetry (RSS). To the best of our knowl-

edge, none of these approaches have been introduced in

the literature. At the heart of these policies are generic

event processing patterns (i.e., patterns of how messages,

crashes, and reboots are processed by distributed sys-

tems). Our policies and patterns are simple and pow-

erful; they can be applied to many different distributed

systems. Testers can extract the patterns from their tar-

get protocols (e.g., leader election, atomic broadcast) and

write protocol-specific rules in few lines of code.

In the next section, we first present our four reduction

policies along with the processing patterns. Later, we

will discuss ways to extract the patterns from target sys-

tems (§3.4) and then show the protocol-specific rules for

our target systems (§4.2).

404 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3.3 Semantic-Aware Reduction Policies

We now present four semantic-aware reduction poli-

cies that enable us to define fine-grained event depen-

dency/independency and symmetry beyond what black-

box approaches can do.

3.3.1 Local-Message Independence (LMI)

We define local messages as messages that are concur-

rently in flight to a given node (i.e., intra-node messages).

As shown in Figure 4a, a black-box DPOR treats the

message processing semantic inside the node as a black

box, and thus must declare the incoming messages as

dependent, leading to 4! permutation of abcd. On the

other hand, with white-box knowledge, local-message

independence (LMI) can define independency relation-

ship among local messages. For example, illustratively

in Figure 4b, given the node’s local state (ls) and the pro-

cessing semantic (embedded in the if statement), LMI is

able to define that a and b are dependent, c and d are de-

pendent, but the two groups are independent, which then

leads to only 4 re-orderings. This reduction illustration

is similar to the one in Section 2.2, but this time LMI

enables DPOR application on local messages.

LMI can be easily added to a dmck. A dmck server

typically has a complete view of the local states (§2.1).

What is needed is the message processing semantic: how

will a node (N) process an incoming message (m) given

the node’s current local state (ls)? The answer lies in

these four simple message processing patterns (discard,

increment, constant, and modify):

Discard: Increment:

if (pd(m,ls)) if (pi(m,ls))

(noop); ls++;

Constant: Modify:

if (pc(m,ls)) if (pm(m,ls))

ls = Const; ls = modify(m,ls);

In practice, ls and m contain many fields. For simplic-

ity, we treat them as integers. The functions with prefix

p are boolean read-only functions (predicates) that com-

pare an incoming message (m) with respect to the local

state (ls); for example, pd can return true if m<s. The first

pattern is a discard pattern where the message is simply

discarded if pd is true. This pattern is prevalent in dis-

tributed systems with votes/versions; old votes/versions

tend to be discarded (e.g., our example in §3.1). The in-

crement pattern performs an increment-by-one update if

pi is true, which is also quite common in many protocols

(e.g., counting commit acknowledgements). The con-

stant pattern changes the local state to a constant when-

ever pc is true. Finally, the modify pattern changes the

local state whenever pm is true.

Xa b c d

Black
box

ls:{..};
if(){..}

all dependent

a b c d

dep. dep.
(a)

L

F1

F2

F3

a,b
c,d

(b) (c)

Figure 4: LMI and CMI. The figures illustrate (a) a black-

box approach, (b) local-message independence with white-box

knowledge, and (c) crash-message independence.

Based on these patterns, we can apply LMI in the fol-

lowing ways. (1) m1 is independent of m2 if pd is true

on any of m1 and m2. That is, if m1 (or m2) will be dis-

carded, then it does not need to be re-ordered with other

messages. (2) m1 is independent of m2 if pi (or pc) is

true on both m1 and m2. That is, the re-orderings do not

matter because the local state is monotonically increas-

ing by one (or changed to the same constant). (3) m1 and

m2 are dependent if pm is true on m1 and pd is not true on

m2. That is, since both messages modify the local state in

unique ways, then the re-orderings can be “interesting”

and hence should be exercised. All these rules are contin-

uously evaluated before every event is enabled. If mul-

tiple cases are true, dependency has higher precedence

than independency.

Overall, LMI allows dmck to smartly skip redundant

re-orderings by leveraging simple patterns. The job of

the tester is to find the message processing patterns from

a target protocol and write protocol-specific rules (i.e.,

filling in the content of the four LMI predicate functions

(pd, pi, pc, and pm) specific to the target protocol). As an

example, for our simple leader election protocol (§3.1),

pd can be as simple as: return m.vote < ls.myVote.

3.3.2 Crash-Message Independence (CMI)

Figure 4c illustrates the motivation behind our next pol-

icy. The figure resembles an atomic broadcast protocol

where a leader (L) sends commit messages to the follow-

ers (Fs). Let’s assume commit messages ab to F1 and cd

to F2 are still in flight (i.e., currently outstanding in the

dmck; not shown). In addition, the dmck would like to

crash F3, which we label as a crash event X. The question

we raise is: how should X be re-ordered with respect to

other outstanding messages (a, b, c, and d)?

As we mentioned before, we find no single dmck that

incorporates crash semantics into reduction policies. As

an implication, in our example, the dmck must reorder

X with respect to other outstanding messages, generat-

ing executions Xabcd, aXbcd, abXcd, and so on. Worse,

when abcd are reordered, X will be reordered again. We

find this as one major fundamental problem why existing

dmcks do not scale with the inclusion of failures.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 405

To solve this, we introduce crash-message indepen-

dence (CMI) which defines independency relationship

between a to-be-injected crash and outstanding mes-

sages. The key lies in these two crash reaction patterns

(global vs. local impact) running on the surviving nodes

(e.g., the leader node in Figure 4c).

Global impact: Local impact:

if (pg(X,ls)) if (pl(X,ls))

modify(ls); modify(ls);

sendMsg();

The functions with prefix p are predicate functions

that compare the crash event X with respect to the sur-

viving node’s local state (e.g., the leader’s local state).

The pg predicate in the global-impact pattern defines that

the crash X during the local state ls will lead to a local

state change and new outgoing messages (e.g., to other

surviving nodes). Here, no reduction can be done be-

cause the new crash-induced outgoing messages must be

re-ordered with the current outstanding messages. On

the other hand, reduction opportunities exist within the

local-impact pattern, wherein the pl predicate specifies

that the crash will just lead to a local state change but

not new messages, which implies that the crash does not

need to be re-ordered.

Based on the two crash impact patterns, we apply CMI

in the following ways. Given a local state ls at node N, a

peer failure X, and outstanding messages (m1...mn) from N

to other surviving peers, CMI performs: (1) If pl is true,

then X and m1...mn are independent. (2) If pg is true, then

X and m1...mn are dependent. In Figure 4c for example, if

pl is true in node L, then X does not impact outstanding

messages to F1 and F2, and thus X is independent to abcd;

exercising Xabcd is sufficient.

An example of CMI application is a quorum-based

write protocol. If a follower crash occurs and quorum

is still established, the leader will just decrease the num-

ber of followers (local state change only). Here, for

the protocol-specific rules, the tester can specify pl with

#follower >= majority and pg with the reverse. Over-

all, CMI helps dmck scale with the inclusion of fail-

ures, specifically by skipping redundant re-orderings of

crashes with respect to outstanding messages.

3.3.3 Crash Recovery Symmetry (CRS)

Before we discuss our next reduction policy, we em-

phasize again the difference between message event and

crash/reboot event. Message events are generated by

the target system, and thus dmck can only reduce the

number of re-orderings (but it cannot reduce the events).

Contrary, crash events are generated by dmck, and thus

there exists opportunities to reduce the number of in-

jected crashes. For example, in Figure 4c, in addition

to crashing F3, the dmck can also crash F1 and F2 in dif-

ferent executions, but that might not be necessary.

To omit redundant crashes, we develop crash recov-

ery symmetry (CRS). The intuition is that some crashes

often lead to symmetrical recovery behaviors. For exam-

ple, let’s assume a 4-node system with node roles FFFL.

At this state, crashing the first or second or third node

perhaps lead to the same recovery since all of them are

followers, and thereby injecting one follower crash could

be enough. Further on, if the system enters a slightly dif-

ferent state, FFLF, crashing any of the followers might

give the same result as above. However, crashing the

leader in the two cases (N4 in the first case and N3 in the

second) should perhaps be treated differently because the

recovery might involve the dead leader ID. The goal of

CRS is to help dmck with crash decision.

The main question in implementing CRS is: how to in-

corporate crash recovery semantics into dmck? Our solu-

tion is to compute recovery abstract global state (rags),

a simple and concise representation of crash recovery.

CRS builds rags with the following steps:

First, we define that two recovery actions are symmet-

rical if they produce the same messages and change the

same local states in the same way.

Second, we extract recovery logic from the code by

flattening the predicate-recovery pairs (i.e., recovery-

related if blocks). Figure 5 shows a simple example.

Different recovery actions will be triggered based on

which recovery predicate (pr1, pr2, or pr3) is true. Each

predicate depends on the local state and the information

about the crashing node. Our key here is to map each

predicate-recovery pair to this formal pattern:

if (pri(ls, C.ls))

modify(ralsi);

(and/or)

sendMsg(ralsi);

Here, pri is the recovery predicate for the i-th recovery

action, and ralsi is the recovery abstract local state (i.e.,

a subset of all fields of the local state involved in recov-

ery). That is, each recovery predicate defines what recov-

ery abstract local state that matters (i.e., pri→{ralsi}).

For example, in Figure 5, if pr1 is true, then rals1 only

contains the follower variable; if pr3 is true, rals3 con-

tains role and leaderId variables.

Third, before we crash a node, we check which pri

will be true on each surviving node and then obtain the

ralsi. Next, we combine ralsi of all surviving nodes

and sort them into a recovery abstract global state (rags);

sorting rags helps us exploit topological symmetry (e.g.,

individual node IDs often do not matter).

Fourth, given a plan to crash a node, the algorithm

above gives us the rags that represents the correspond-

ing recovery action. We also maintain a history of rags

406 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

broadcast() sendMsgToAll(role, leaderId);

quorumOkay() return (follower > nodes / 2);

// pr1

if (role == L && C.role == F && quorumOkay())

follower--;

// pr2

if (role == L && C.role == F && !quorumOkay())

follower = 0;

role = S;

broadcast();

// pr3

if (role == F && C.role == L)

leaderId = myId;

broadcast();

Figure 5: Crash Recovery in Leader Election. The

figure shows a simplified example of crash recovery in a leader

election protocol. The code runs in every node. C implies the

crashing node; each node typically has a view of the states of

its peers. Three predicate-recovery pairs are shown (pr1, pr2,

and pr3). In the first, if quorum still exists, the leader simply

decrements the follower count. In the second, if quorum breaks,

the leader falls back to searching mode (S). In the third, if the

leader crashes, the node (as a follower) votes for itself and

broadcasts the vote to elect a new leader.

of previous injected crashes. If the rags already exists in

the history, then the crash is skipped because it will lead

to a symmetrical recovery of the past.

To recap with a concrete example, let’s go back to

the case of FFFL where we plan to enable crash(N1).

Based on the code in Figure 5, the rags is {*, ⊘, ⊘,

#follower=3}; * implies the crashing node, ⊘ means

there is no true predicate at the other two follower nodes,

and #follower=3 comes from rals1 of pr1 of N4 (the

leader). CRS will sort this and check the history, and

assuming no hit, then crash(N1) will be enabled. In an-

other execution, SAMC finds that crash(N2) at FFFL will

lead to rags:{⊘, *, ⊘, #follower=3}, which after sort-

ing will hit the history, and hence crash(N2) is skipped.

If the system enters a different state FFLF, no follower

crash will be injected, because the rags will be the same

as above. In terms of leader crash, crashing the leader

in the two cases will be treated differently because in a

leader crash, pr3 is true on followers and pr3 involves

leaderId which is different in the two cases.

In summary, the foundation of CRS is the computa-

tion of recovery abstract global state (rags) from the

crash recovery logic extracted from the target system

via the pri→{ralsi} pattern. We believe this extraction

method is simple because CRS does not need to know

the specifics of crash recovery; CRS just needs to know

what variables are involved in recovery (i.e., the rals) .

3.3.4 Reboot Synchronization Symmetry (RSS)

Reboots are also essential to exercise (§2.3), but if not

done carefully, will introduce more scalability problems.

Reboot reduction policy is needed to help dmck inject

reboots “smartly”. The intuition behind reboot synchro-

nization symmetry (RSS) is similar to that of CRS. When

a node reboots, it typically synchronizes itself with the

peers. However, a reboot will not lead to a new scenario

if the current state of the system is similar to the state

when the node crashed. To implement RSS, we extract

reboot-synchronization predicates and the corresponding

actions. Since the overall approach is similar to CRS, we

omit further details.

In our experience RSS is extremely powerful. For ex-

ample, it allows us to find deep bugs involving multi-

ple reboots in the ZooKeeper atomic broadcast (ZAB)

protocol. RSS works efficiently here because reboots in

ZAB are only interesting if the live nodes have seen new

commits (i.e., the dead node falls behind). In contrast, a

black-box dmck without RSS initiates reboots even when

the live nodes are in similar states as in before the crash,

prolonging the discovery of deep bugs.

3.4 Pattern Extraction

We have presented four general, simple, and powerful

semantic-aware reduction policies along with the generic

event processing patterns. With this, testers can write

protocol-specific rules by extracting the patterns from

their target systems. Given the patterns described in pre-

vious sections, a tester must perform what we call as “ex-

traction” phase. Here, the tester must extract the patterns

from the target system and write protocol-specific rules

specifically by filling in the predicates and abstractions

as defined in previous sections; in Section 4.2, we will

show a real extraction result (i.e., real rules). Currently,

the extraction phase is manual; we leave automated ap-

proaches as a future work (§6). Nevertheless, we believe

manual extraction is bearable for several reasons. First,

today is the era of DevOps [36] where developers are

testers and vice versa; testers know the internals of their

target systems. This is also largely true in cloud system

development. Second, the processing patterns only cover

high-level semantics; testers just fill in the predicates and

abstractions but no more details. In fact, simple seman-

tics are enough to significantly help dmck go faster to

deeper states.

4 Implementation and Integration

In this section, we first describe our SAMC prototype,

SAMPRO, which we built from scratch because existing

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 407

Local-Message Crash-Message Crash Recovery

Independence (LMI) Independence (CMI) Symmetry (CRS) RSS

bool pd : !newVote(m, s);

bool pm : newVote(m, s);

bool newVote(m, s) :

if (m.ep > s.ep)

ret 1;

else if (m.ep == s.ep)

if (m.tx > s.tx)

ret 1;

else if (m.tx == s.tx &&

m.lid > s.lid)

ret 1;

ret 0;

bool pg (s, X) :

if (s.rl == F && X.rl == L)

ret 1;

if (s.rl == L && X.rl == F

&& !quorumAfterX(s)

ret 1;

if (s.rl == S && X.rl == S)

ret 1;

bool pl (s, X) :

if (s.rl == L && X.rl == F

&& quorumAfterX(s))

ret 1;

bool quorumAfterX(s) :

ret ((s.fol-1) >=

s.all/2);

bool pr1(s,C):

if (s.rl == L && C.rl == F

&& quorumAfterX(s))

ret 1;

rals1:{rl,fol,all};

bool pr2(s,C):

if (s.rl == L && C.rl == F

&& !quorumAfterX(s))

ret 1;

rals2: {rl,fol,lid,ep,tx,clk}

bool pr3(s,C):

if (s.rl == F && c.rl == L)

ret 1;

rals3: {rl,fol,lid,ep,tx,clk}

bool pr4:

if (s.rl == S)

ret 1;

rals4: {rl,lid,ep,tx,clk}

(**)

See

caption

Table 1: Protocol-Specific Reduction Rules for ZLE. The code above shows the actual protocol-specific rules for ZLE

protocol. These rules are the inputs to the four reduction policies. The rule for ZLE’s RSS is not shown (it is similar to ZLE’s CRS)

and many variables are abbreviated (ep: epoch, tx: latest transaction ID, lid: leader ID, rl: role, fol: follower count, all: total

node count, clk: logical clock, L: leading, F: following, S: searching, X/C: crashing node). LMI pc and pi predicates are not used

for ZLE, but used for other protocols.

dmcks are either proprietary [51] or only work on re-

stricted high-level languages (e.g., Mace [34]). We will

then describe SAMPRO integration to three widely popu-

lar cloud systems, ZooKeeper [28], Hadoop/Yarn [47],

and Cassandra [35]. Prior to SAMPRO, there was no

available dmck for these systems; they are still tested via

unit tests, and the test code size is bigger than the main

code, but the tests are far from reaching deep bugs.

4.1 SAMPRO

SAMPRO is written in 10,886 lines of code in Java, which

includes all the components mentioned in Section 2.1

and Figure 1. The detailed anatomy of dmck has been

thoroughly explained in literature [22, 25, 34, 43, 51],

and therefore for brevity, we will not discuss many engi-

neering details. We will focus on SAMC-related parts.

We design SAMPRO to be highly portable; we do not

modify the target code base significantly as we leverage a

mature interposition technology, AspectJ, for interposing

network messages and timeouts. Our interposition layer

also sends local state information to the SAMPRO server.

SAMPRO is also equipped with crash and reboot scripts

specific to the target systems. The tester can specify a

budget of the maximum number of crashes and reboots

to inject per execution. SAMPRO employs basic reduc-

tion mechanisms and advanced reduction policies as de-

scribed before. We deploy safety checks at the server

(e.g., no two leaders). If a check is violated, the trace

that led to the bug is reported and can be deterministi-

cally replayed in SAMPRO. Overall, we have built all the

necessary features to show the case of SAMC. Other fea-

tures such as intra-node thread interleavings [25], scale-

out parallelism [44], and virtual clock for network de-

lay [51] can be integrated to SAMPRO as well.

4.2 Integration to Target Systems

In our work, the target systems are ZooKeeper, Hadoop

2.0/Yarn, and Cassandra. ZooKeeper [28] is a distributed

synchronization service acting as a backbone of many

distributed systems such as HBase and High-Availability

HDFS. Hadoop 2.0/Yarn [47] is the current generation

of Hadoop that separates cluster management and pro-

cessing components. Cassandra [35] is a distributed key-

value store derived from Amazon Dynamo [13].

In total, we have model checked 7 protocols:

ZooKeeper leader election (ZLE) and atomic broadcast

(ZAB), Hadoop cluster management (CM) and specu-

lative execution (SE), and Cassandra read/write (RW),

hinted handoff (HH) and gossiper (GS). These protocols

are highly asynchronous and thus susceptible to message

re-orderings and failures.

408 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Table 1 shows a real sample of protocol-specific rules

that we wrote. Rules are in general very short; we only

wrote 35 lines/protocol on average. This shows the sim-

plicity of SAMC’s integration to a wide variety of dis-

tributed system protocols.

5 Evaluation

We now evaluate SAMC by presenting experimental re-

sults that answer the following questions: (1) How fast is

SAMC in finding deep bugs compared to other state-of-

the-art techniques? (2) Can SAMC find new deep bugs?

(3) How much reduction ratio does SAMC provide?

To answer the first question, we show SAMC’s ef-

fectiveness in finding old bugs. For this, we have in-

tegrated SAMPRO to old versions of our target systems

that carry deep bugs: ZooKeeper v3.1.0, v3.3.2, v3.4.3,

and v3.4.5, Hadoop v2.0.3 and v2.2.0, and Cassandra

v1.0.1 and v1.0.6. To answer the second question, we

have integrated SAMPRO to two recent stable versions:

ZooKeeper v3.4.6 (released March 2014) and Hadoop

v2.4.0 (released April 2014). In total, we have integrated

SAMPRO to 10 versions, showing the high portability of

our prototype. Overall, our extensive evaluation exer-

cised more than 100,000 executions and used approxi-

mately 48 full machine days.

5.1 Speed in Finding Old Bugs

This section evaluates the speed of SAMC vs. state-of-

the-art techniques in finding old deep bugs. In total, we

have reproduced 12 old deep bugs (7 in ZooKeeper, 3

in Hadoop, and 2 in Cassandra). Figure 6 illustrates the

complexity of the deep bugs that we reproduced.

Table 2 shows the result of our comparison. We com-

pare SAMC with basic techniques (DFS and Random)

and advanced state-of-the-art techniques such as black-

box DPOR (“bDP”) and Random+bDP (“rDP”). Black-

box DPOR is the MODIST-style of DPOR (§2.2). We

include Random+DPOR to mimic the way MODIST au-

thors found bugs faster (§2.4). The table shows the num-

ber of executions to hit the bug. As a note, software

model checking with the inclusion of failures takes time

(back-and-forth communications between the target sys-

tem and the dmck server, killing and restarting system

processes multiple times, restarting the whole system

from a clean state, etc.). On average, each execution runs

for 40 seconds and involves a long sequence of 20-120

events including the necessary crashes and reboots to hit

the bug. We do not show the result of running DFS be-

cause it never hits most of the bugs.

Based on the result in Table 2, we make several con-

clusions. First, with SAMC, we prove that smart system-

MapReduce-5505: (1) A job finishes, (2) Application man-

ager (AM) sends a “remove-app” message to Resource

Manager (RM), (3) RM receives the message, (4) AM is

unregistering, (5) RM crashes before completely processes

the message, (6) AM finishes unregistering, (7) RM reboots

and reads the old state file, (8) RM thinks the job has never

started and runs the job again.

Cassandra-3395 (1) Three nodes N1-3 started and formed

a ring, (2) Client writes data, (3) N3 crashes, (4) Client up-

dates the data via N1; N3 misses the update, (5) N3 reboots,

(6) N1 begins the hinted handoff process, (7) Another client

reads the data with strong consistency via N1 as a coordi-

nator, (8) N1 and N2 provide the updated value, but N3

still provides the stale value, (9) The coordinator gets “con-

fused” and returns the stale value to the client!

Figure 6: Complexity of Deep Bugs. Above are two

sample deep bugs in Hadoop and Cassandra. A sample for

ZooKeeper was shown in the introduction (§1). Deep bugs are

complex to reproduce; crash and reboot events must happen

in a specific order within a long sequence of events (there are

more events behind the events we show in the bug descriptions

above). To see the high degree of complexity of other old bugs

that we reproduced, interested readers can click the issue num-

bers (hyperlinks) in Table 2.

atic approaches can reach to deep bugs quickly. We do

not need to revert to randomness or incorporate check-

points. As a note, we are able to reproduce every deep

bug that we picked; we did not skip any of them. (Hunt-

ing more deep bugs is possible, if needed).

Second, SAMC is one to two orders of magnitude

faster compared to state-of-the-art techniques. Our

speed-up is up to 271x (33x on average). But most im-

portantly, there are bugs that other techniques cannot

find even after 5000 executions (around 2 days). Here,

SAMC’s speed-up factor is potentially much higher (la-

beled with “⇑”). Again, in the context of dmck (a process

of hours/days), large speed-ups matter. In many cases,

state-of-the-art policies such as bDP and rDP cannot

reach the bugs even after very long executions. The rea-

sons are the two problems we mentioned earlier (§2.4).

Our micro-analysis (not shown) confirmed our hypothe-

sis that non-SAMC policies frequently make redundant

crash/reboot injections and event re-orderings that any-

way lead to insignificant state changes.

Third, Random is truly “random”. Although

many previous dmcks embrace randomness in finding

bugs [34, 51], when it comes to failure-induced bugs,

we have a different experience. Sometimes Random

is as competitive as SAMC (e.g., ZK-975), but some-

times Random is much slower (e.g., ZK-1419), or worse

Random sometimes did not hit the bug (e.g., ZK-1492,

MR-5505). We find that some bugs require crashes

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 409

#Executions Speed-up of SAMC vs.

Issue# Protocol E C R bDP RND rDP SAMC bDP RND rDP

ZooKeeper-335 ZAB 120 3 3 ↑5000 1057 ↑5000 117 ⇑43 9 ⇑43

ZooKeeper-790 ZLE 21 1 1 14 225 82 7 2 32 12

ZooKeeper-975 ZLE 21 1 1 967 71 163 53 18 1 3

ZooKeeper-1075 ZLE 25 3 2 1081 86 250 16 68 5 16

ZooKeeper-1419 ZLE 25 3 2 924 2514 987 100 9 25 10

ZooKeeper-1492 ZLE 31 1 0 ↑5000 ↑5000 ↑5000 576 ⇑9 ⇑9 ⇑9

ZooKeeper-1653 ZAB 60 1 1 945 3756 3462 11 86 341 315

MapReduce-4748 SE 25 1 0 22 6 6 4 6 2 2

MapReduce-5489 CM 20 2 1 ↑5000 ↑5000 ↑5000 53 ⇑94 ⇑94 ⇑94

MapReduce-5505 CM 40 1 1 1212 ↑5000 1210 40 30 ⇑125 30

Cassandra-3395 RW+HH 25 1 1 2552 191 550 104 25 2 5

Cassandra-3626 GS 15 2 1 ↑5000 ↑5000 ↑5000 96 ⇑52 ⇑52 ⇑52

Table 2: SAMC Speed in Finding Old Bugs. The first column shows old bug numbers in ZooKeeper, Hadoop, and

Cassandra that we reproduced. The bug numbers are clickable (contain hyperlinks). The protocol column lists where the deep bugs

were found; full protocol names are in §4.2. “E”, “C” and “R” represent the number of events, crashes, and reboots necessary

to hit the bug. The numbers in the middle four columns represent the number of executions to hit the bug across different policies.

“bDP”, “RND”, and “rDP” stand for black-box DPOR (in MODIST), random, and random + black-box DPOR respectively. The

SAMC column represents our reduction policies and rules. The last three columns represent the speed-ups of SAMC over the

other three techniques. We stop at 5000 executions (around 2 days) if the bug cannot be found; potentially many more executions

are required to hit the bug (labeled with “↑”). Thus, speed-up numbers marked with “⇑” are potentially much higher. In the

experiments above, the bugs are reproduced using 3-4 nodes. We also have run DFS but do not show the result because in most

cases DFS cannot hit the bugs. For model checking the SE protocol, “1C” means one straggler; we emulate a node slowdown as a

failure event by modifying the progress report of the “slow” node. SE involves 20+ events but most of them are synchronized stages

and cannot be re-ordered, which explains why the SE bug can be found quickly with all policies.

and/or reboots to happen at very specific points, which

is probabilistically hard to reach with randomness. With

SAMC, we show that being systematic and semantic

aware is consistently effective.

5.2 Ability of Finding New Bugs

The previous section was our main focus of evaluation.

In addition to this, we have integrated SAMPRO to recent

stable versions of ZooKeeper (v3.4.6, released March

2014) and Hadoop (v2.4.0, released April 2014). In just

hours of deployment, we found 1 new ZLE bug involving

2 crashes, 2 reboots, and 52 events, and 1 new Hadoop

speculative execution bug involving 2 failures and 32

events. These two new bugs are distributed data race

bugs. The ZLE bug causes the ZooKeeper cluster to cre-

ate two leaders at the same time. The Hadoop bug causes

a speculative attempt on a job that is wrongly moved to

a scheduled state, which then leads to an exception and a

failed job. We can deterministically reproduce the bugs

multiple times and we have reported the bugs to the de-

velopers. Currently, the bugs are still marked as major

and critical, the status is still open, and the resolution is

still unresolved.

We also note that in order to unearth more bugs, a

dmck must have several complete features: workload

generators that cover many protocols, sophisticated per-

turbations (e.g., message re-ordering, fault injections)

and detailed checks of specification violations. Further

discussions can be found in our previous work [23]. Cur-

rently, SAMPRO focuses on speeding up the perturbation

part. By deploying more workload generators and speci-

fication checks in SAMPRO, more deep bugs are likely to

be found. As an illustration, the 94 deep bugs we men-

tioned in Section 2.3 originated from various protocols

and violated a wide range of specifications.

5.3 Reduction Ratio

Table 3 compares the reduction ratio of SAMC over

black-box DPOR (bDP) with different budgets (#crashes

and #reboots). This evaluation is slightly different than

the bug-finding speed evaluation in Section 5.1. Here,

we measure how many executions in bDP are considered

redundant based on our reduction policies and protocol-

specific rules. Specifically, we run bDP for 3000 exe-

cutions and run SAMC policies on the side to mark the

redundant executions. The reduction ratio is then 3000

divided by the number of non-redundant executions. Ta-

ble 3 shows that SAMC provides between 37x-166x ex-

ecution reduction ratio in model checking ZLE and ZAB

protocols across different crash/reboot budgets.

Table 3b shows that with each policy the execution re-

duction ratio increases when the number of crashes and

410 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Execution Reduction Ratio in

C R ZLE ZAB

1 1 37 93

2 2 63 107

3 3 103 166

Execution Reduction Ratio in ZLE with

C R All LMI CMI CRS RSS

1 1 37 18 5 4 3

2 2 63 35 6 5 5

3 3 103 37 9 9 14

Table 3: SAMC Reduction Ratio. The first table shows

the execution reduction ratio of SAMC over black-box DPOR

(bDP) in checking ZLE and ZAB under different crash/reboot

budgets. “C” and “R” are the number of crashes and reboots.

The second table shows the execution reduction ratio in ZLE

with individiual policies over black-box DPOR (bDP).

reboots increases. With more crashes and reboots, the

ZLE protocol generates more messages and most of them

are independent, and thus the LMI policy has more op-

portunities to remove redundant message re-orderings.

Similary, the crash and reboot symmetry policies give

better benefits with more crashes and reboots. The table

also shows that LMI provides the most reduction. This

is because the number of message events is higher than

crash and reboot events (as also depicted in Table 2).

We now discuss our reduction ratio with that of

DIR [25]. As discussed earlier (§2.2), DIR records local

exploration (thread interleavings) and replays future in-

coming messages whenever possible, reducing the work

of global exploration. If the target system does not have

lots of thread interleavings, DIR’s reduction ratio is es-

timated to be between 101 to 103 (§5 of [25]). As we

described earlier (§2.2), DIR is orthogonal to SAMC.

Thus, the reduction ratios of SAMC and DIR are com-

plementary; when both methods are combined, there is

a potential for a higher reduction ratio. The DIR authors

also hinted that domain knowledge can guide dmcks (and

also help their work) to both scale and hit deep bugs (§8

of [25]). SAMC has successfully addressed such need.

Finally, we note that in evaluating SAMC, we use exe-

cution reduction ratio as a primary metric. Another clas-

sical metric to evaluate a model checker is state coverage

(e.g., a dmck that covers more states can be considered a

more powerful dmck). However, in our observation state

coverage is not a proper metric for evaluating optimiza-

tion heuristics such as SAMC policies. For example, if

there are three nodes ABC that have the same role (e.g.,

follower), a naive black-box dmck will crash each node

and covers three distinct states: *BC, A*C and AB*.

However, with a semantic-aware approach (e.g., symme-

try), we know that covering one of the states is sufficient.

Thus, less state coverage does not necessarily imply a

less powerful dmck.

6 Discussion

In this section, we discuss SAMC’s simplicity, general-

ity and soundness. We would like to emphasize that the

main goal of this paper is to show the power of SAMC in

finding deep bugs both quickly and systematically, and

thus we intentionally leave some subtasks (e.g., auto-

mated extraction, soundness proofs) for future work.

6.1 Simplicity

In previous sections, we mentioned that policies can be

written in few lines of code. Besides LOC, simplicity

can be measured by how much time is required to un-

derstand a protocol implementation, extract the patterns

and write the policies. This time metric is unfortunately

hard to quantify. In our experience, the bulk of our time

was spent in developing SAMPRO from scratch and in-

tegrating policies to dmck mechanisms (§2.1). However,

the process of understanding protocols and crafting poli-

cies requires a small effort (e.g., few days per protocol

to the point where we feel the policies are robust). We

believe that the actual developers will be able to perform

this process much faster than we did as they already have

deeper understandings of their code.

6.2 Generality

Our policies contain patterns that are common in dis-

tributed systems. One natural question to ask is: how

much semantic knowledge should we expose to dmck?

The ideal case is to expose as much information as pos-

sible as long as it is sound. Since proving soundness and

extracting patterns automatically are our future work, in

this paper we only propose exposing high-level process-

ing semantics. With advanced program analysis tools

that can analyze deep program logic, we believe more

semantic knowledge can be exposed to dmck in a sound

manner. For example, LMI can be extended to include

commutative modifications. This is possible if the pro-

gram analysis can verify that the individual modification

does not lead to other state changes. This will perhaps

be the point where symbolic execution and dmck blend

in the future (§7).

Nevertheless, we find that high-level semantics are

powerful enough. Beyond the three cloud systems we

target in this paper, we have been integrating SAMC to

MaceMC [34]. MACEMC already employs random ex-

ploration policies to model check Mace-based distributed

systems such as Mace-based Chord and Pastry. To in-

tegrate SAMC, we first must re-implement DPOR in

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 411

MaceMC (existing DPOR implementation in MaceMC

is proprietary [25]). Then, we have written 18 lines of

LMI protocol-specific rules for Chord and attain two or-

ders of magnitude of reduction in execution. This shows

the generality of SAMC to many distributed systems.

6.3 Soundness

SAMC policies only skip re-orderings and crash/reboot

events that are redundant by definition, however cur-

rently our version of SAMC is not sound; the unsound

phase is the manual extraction process. For example,

if the tester writes a wrong predicate definition (e.g.,

pd) that is inconsistent with what the target system de-

fines, then soundness (and correctness) is broken. Ad-

vanced program analysis tools can be developed to auto-

mate and verify this extraction process and make SAMC

sound. Currently, the fact that protocol-specific rules

tend to be short might also help in reducing human er-

rors. Our prototype, SAMPRO, is no different than other

testing/verification tools; full correctness requires that

such tools to be free of bugs and complete in checking

all specifications, which can be hard to achieve. Never-

theless, we want to bring up again the discussion in Sec-

tion 2.4 that dmck’s scalability and ability to find deep

bugs in complex distributed systems are sometimes more

important than soundness. We leave soundness proofs

for future work, but we view this as a small limitation,

mainly because we have successfully shown the power

of SAMC.

7 Related Work

We now briefly discuss more related work on dmck and

other approaches to systems verification and testing.

Formal model checking foundations such as partial or-

der reduction [17, 20], symmetry [9, 45], and abstrac-

tion [10], were established more than a decade ago. Here,

classical model checkers require system models and

mainly focus on state-space reduction. Implementation-

level model checkers on the other hand are expected to

find real bugs in addition to being efficient.

Symbolic execution is another powerful formal

method to verify systems correctness. Symbolic exe-

cution also faces an explosion problem, specifically the

path explosion problem. A huge body of work has

successfully addressed the problem and made symbolic

execution scale to large (non-distributed) software sys-

tems [3, 6, 8, 11, 55]. Symbolic execution and model

checking can formally be combined into a more power-

ful method [4], however this concept has not permeated

the world of distributed systems; it is challenging to track

symbolic values across distributed nodes.

Reliability bugs are often caused by incorrect han-

dling of failures [23, 24]. Fault-injection testing how-

ever is challenging due to the large number of possi-

ble failures to inject. This challenge led to the develop-

ment of efficient fault-injection testing frameworks. For

example, AFEX [1] and LFI [39] automatically priori-

tize “high-impact targets” (e.g., unchecked system calls).

These novel frameworks target non-distributed systems

and thus the techniques are different than ours.

Similarly, recent work highlights the importance

of testing faults in cloud systems (e.g., FATE [23],

SETSUDO [30], PREFAIL [31], and OpenStack fault-

injector [32]). As mentioned before (§2.2), these frame-

works are not a dmck; they cannot re-order concurrent

messages and failures and therefore cannot catch dis-

tributed concurrency bugs systematically.

The threat of multiple failures to systems reliability al-

ready existed since the P2P era; P2P systems are suscep-

tible to “churn”, the continuous process of node joining

and departing [42]. Many dmcks such as MACEMC [34]

and CrystalBall [50] evaluate their approaches on P2P

systems. Interestingly, we find that they mainly re-order

join messages. To our understanding, based on their pub-

lications, they did not inject and control node departures.

CrystalBall authors mentioned about running churns, but

only as part of their workloads, not as events that the

dmck can re-order. This illustrates the non-triviality of

incorporating failures in dmck.

The deep bugs we presented can be considered as con-

currency bugs (in distributed nature). For non-distributed

systems, there has been an abundance of innovations in

detecting, avoiding, and recovering from concurrency

bugs [29, 33, 38, 48]. They mainly target threads. For

dmck, we believe more advancements are needed to un-

earth distributed concurrency bugs that still linger in

cloud systems.

Finally, the journey in increasing cloud dependability

is ongoing; cloud systems face other issues such as bad

error handling code [54], performance failures [14], cor-

ruptions [15], and many others. Exacerbating the prob-

lem, cloud systems are becoming larger and geographi-

cally distributed [37, 46, 56]. We believe cloud systems

will observe more failures and message re-orderings, and

therefore our work and future dmck advancements with

the inclusion of failures will play an important role in

increasing the reliability of future cloud systems.

8 Conclusion

Cloud systems face complex failures and deep bugs still

linger in the cloud. To address present reliability chal-

lenges, dmcks must incorporate complex failures, but ex-

isting dmcks do not scale in this regard. We strongly be-

412 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

lieve that without semantic knowledge dmck hits a scal-

ability wall. In this paper, we show a strong case that

the SAMC principle can elegantly address this scalabil-

ity problem. SAMC is simple and powerful; with simple

semantic knowledge, we show that dmcks can scale sig-

nificantly. We presented four specific reduction policies,

but beyond this, we believe our work triggers the dis-

cussion of two important research questions: what other

semantic knowledge can scale dmck and how to extract

white-box information from the target system? We hope

(and believe) that the SAMC principle can trigger future

research in this space.

9 Acknowledgments

We thank Bryan Ford, our shepherd, and the anony-

mous reviewers for their tremendous feedback and com-

ments. We would also like to thank Yohanes Surya

and Teddy Mantoro for their support. This material

is based upon work supported by the NSF (grant Nos.

CCF-1321958 and CCF-1336580). The experiments in

this paper were performed in the Utah Emulab1 [49]

and NMC PRObE2 [19] testbeds, supported under NSF

grants Nos. CNS-1042537 and CNS-1042543.

References

[1] Radu Banabic and George Candea. Fast black-box

testing of system recovery code. In Proceedings of the

2012 EuroSys Conference (EuroSys), 2012.

[2] Ken Birman, Gregory Chockler, and Robbert van

Renesse. Towards a Cloud Computing Research Agenda.

ACM SIGACT News, 40(2):68–80, June 2009.

[3] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George

Candea. Parallel Symbolic Execution for Automated

Real-World Software Testing. In Proceedings of the

2011 EuroSys Conference (EuroSys), 2011.

[4] J. R. Burch, E. M. Clarke, K L. McMillan, D L. Dill, and

L J. Hwang. Symbolic model checking: 1020 states and

beyond. Information and Computation, 98(2):142–170,

June 1992.

[5] Mike Burrows. The Chubby lock service for

loosely-coupled distributed systems Export. In

Proceedings of the 7th Symposium on Operating Systems

Design and Implementation (OSDI), 2006.

[6] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.

KLEE: Unassisted and Automatic Generation of

High-Coverage Tests for Complex Systems Programs. In

Proceedings of the 8th Symposium on Operating Systems

Design and Implementation (OSDI), 2008.

1http://www.emulab.net
2http://www.nmc-probe.org

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Michael Burrows, Tushar

Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A

Distributed Storage System for Structured Data. In

Proceedings of the 7th Symposium on Operating Systems

Design and Implementation (OSDI), 2006.

[8] Vitaly Chipounov, Volodymyr Kuznetsov, and George

Candea. S2E: a platform for in-vivo multi-path analysis

of software systems. In Proceedings of the 16th

International Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), 2011.

[9] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and

A. Prasad Sistla. Symmetry reductions in model

checking. In 10th International Conference on Computer

Aided Verification (CAV), 1998.

[10] Edmund M. Clarke, Orna Grumberg, and David E. Long.

Model Checking and Abstraction. ACM Transactions on

Programming Languages and Systems, 1994.

[11] Heming Cui, Gang Hu Columbia, Jingyue Wu, and

Junfeng Yang. Verifying Systems Rules Using

Rule-Directed Symbolic Execution. In Proceedings of

the 17th International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), 2013.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters. In

Proceedings of the 6th Symposium on Operating Systems

Design and Implementation (OSDI), 2004.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex

Pilchin, Swami Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: Amazon’s Highly Available

Key-Value Store. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP),

2007.

[14] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out

Cloud Systems. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC), 2013.

[15] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S.

Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. HARDFS: Hardening HDFS with

Selective and Lightweight Versioning. In Proceedings of

the 11th USENIX Symposium on File and Storage

Technologies (FAST), 2013.

[16] E. Allen Emerson, Somesh Jha, and Doron Peled.

Combining Partial Order and Symmetry Reductions. In

3rd International Workshop on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), 1997.

[17] Cormac Flanagan and Patrice Godefroid. Dynamic

partial-order reduction for model checking software. In

The 33th SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2005.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 413

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google File System. In Proceedings of the

19th ACM Symposium on Operating Systems Principles

(SOSP), 2003.

[19] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt

Lloyd. Probe: A thousand-node experimental cluster for

computer systems research. USENIX ;login:, 38(3), June

2013.

[20] Patrice Godefroid. Partial-Order Methods for the

Verification of Concurrent Systems: An Approach to the

State-Explosion Problem. volume 1032, 1996.

[21] Patrice Godefroid. Model checking for programming

languages using verisoft. In Proceedings of the 24th

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 1997.

[22] Rachid Guerraoui and Maysam Yabandeh. Model

Checking a Networked System Without the Network. In

Proceedings of the 8th Symposium on Networked

Systems Design and Implementation (NSDI), 2011.

[23] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter

Alvaro, Joseph M. Hellerstein, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik

Sen, and Dhruba Borthakur. FATE and DESTINI: A

Framework for Cloud Recovery Testing. In Proceedings

of the 8th Symposium on Networked Systems Design and

Implementation (NSDI), 2011.

[24] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben

Liblit. EIO: Error Handling is Occasionally Correct. In

Proceedings of the 6th USENIX Symposium on File and

Storage Technologies (FAST), 2008.

[25] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu,

Junfeng Yang, and Lintao Zhang. Practical Software

Model Checking via Dynamic Interface Reduction. In

Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (SOSP), 2011.

[26] Alyssa Henry. Cloud Storage FUD: Failure and

Uncertainty and Durability. In Proceedings of the 7th

USENIX Symposium on File and Storage Technologies

(FAST), 2009.

[27] Benjamin Hindman, Andy Konwinski, Matei Zaharia,

Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott

Shenker, and Ion Stoica. Mesos: A Platform for

Fine-Grained Resource Sharing in the Data Center. In

Proceedings of the 8th Symposium on Networked

Systems Design and Implementation (NSDI), 2011.

[28] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and

Benjamin Reed. ZooKeeper: Wait-free coordination for

Internet-scale systems. In Proceedings of the 2010

USENIX Annual Technical Conference (ATC), 2010.

[29] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit,

and Shan Lu. Automated Concurrency-Bug Fixing. In

Proceedings of the 10th Symposium on Operating

Systems Design and Implementation (OSDI), 2012.

[30] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti

Gupta, and Nadia Papakonstantinou. SETSUDO :

Perturbation-based Testing Framework for Scalable

Distributed Systems. In Conference on Timely Results in

Operating Systems (TRIOS), 2013.

[31] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen.

PREFAIL: A Programmable Tool for Multiple-Failure

Injection. In Proceedings of the 26th Annual ACM

SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), 2011.

[32] Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong

Ryu, and Dilma Da Silva. On Fault Resilience of

OpenStack. In Proceedings of the 4th ACM Symposium

on Cloud Computing (SoCC), 2013.

[33] Baris Kasikci, Cristian Zamfir, and George Candea.

RaceMob: Crowdsourced Data Race Detection. In

Proceedings of the 24th ACM Symposium on Operating

Systems Principles (SOSP), 2013.

[34] Charles Killian, James Anderson, Ranjit Jhala, and Amin

Vahdat. Life, Death, and the Critical Transition: Finding

Liveness Bugs in Systems Code. In Proceedings of the

4th Symposium on Networked Systems Design and

Implementation (NSDI), 2007.

[35] Avinash Lakshman and Prashant Malik. Cassandra - a

decentralized structured storage system. In The 3rd ACM

SIGOPS International Workshop on Large Scale

Distributed Systems and Middleware (LADIS), 2009.

[36] Thomas A. Limoncelli and Doug Hughe. LISA ’11

Theme – DevOps: New Challenges, Proven Values.

USENIX ;login: Magazine, 36(4), August 2011.

[37] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,

and David G. Andersen. Don’t Settle for Eventual:

Scalable Causal Consistency for Wide-Area Storage with

COPS. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles (SOSP), 2011.

[38] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan

Zhou. Learning from Mistakes — A Comprehensive

Study on Real World Concurrency Bug Characteristics.

In Proceedings of the 13th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2008.

[39] Paul D. Marinescu, Radu Banabic, and George Candea.

An Extensible Technique for High-Precision Testing of

Recovery Code. In Proceedings of the 2010 USENIX

Annual Technical Conference (ATC), 2010.

[40] Derek G. Murray, Frank McSherry, Rebecca Isaacs,

Michael Isard, Paul Barham, and Martin Abadi. Naiad:

A Timely Dataflow System. In Proceedings of the 24th

ACM Symposium on Operating Systems Principles

(SOSP), 2013.

[41] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,

Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat

Datacenter Storage. In Proceedings of the 10th

Symposium on Operating Systems Design and

Implementation (OSDI), 2012.

414 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[42] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John

Kubiatowicz. Handling Churn in a DHT. In Proceedings

of the USENIX Annual Technical Conference (USENIX),

2004.

[43] Jiri Simsa, Randy Bryant, and Garth Gibson. dBug:

Systematic Evaluation of Distributed Systems. In 5th

International Workshop on Systems Software Verification

(SSV), 2010.

[44] Jiri Simsa, Randy Bryant, Garth A. Gibson, and Jason

Hickey. Scalable Dynamic Partial Order Reduction. In

the 3rd International Conference on Runtime Verification

(RV), 2012.

[45] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson.

SMC: a symmetry-based model checker for verification

of safety and liveness properties. ACM Transactions on

Software Engineering and Methodology, 2010.

[46] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna

Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and

Hussam Abu-Libdeh. Consistency-Based Service Level

Agreements for Cloud Storage. In Proceedings of the

24th ACM Symposium on Operating Systems Principles

(SOSP), 2013.

[47] Vinod Kumar Vavilapalli, Arun C Murthy, Chris

Douglas, Sharad Agarwal, Mahadev Konar, Robert

Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen

O’Malley, Sanjay Radia, Benjamin Reed, and Eric

Baldeschwieler. Apache Hadoop YARN: Yet Another

Resource Negotiator. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC), 2013.

[48] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and

Satish Narayanasamy. Detecting and Surviving Data

Races using Complementary Schedules. In Proceedings

of the 23rd ACM Symposium on Operating Systems

Principles (SOSP), 2011.

[49] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,

Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad

Barb, and Abhijeet Joglekar. An Integrated Experimental

Environment for Distributed Systems and Networks. In

Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI), 2002.

[50] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and

Viktor Kuncak. CrystalBall: Predicting and Preventing

Inconsistencies in Deployed. Distributed Systems. In

Proceedings of the 6th Symposium on Networked

Systems Design and Implementation (NSDI), 2009.

[51] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,

Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long,

Lintao Zhang, and Lidong Zhou. MODIST: Transparent

Model Checking of Unmodified Distributed Systems. In

Proceedings of the 6th Symposium on Networked

Systems Design and Implementation (NSDI), 2009.

[52] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:

A Lightweight, General System for Finding Serious

Storage System Errors. In Proceedings of the 7th

Symposium on Operating Systems Design and

Implementation (OSDI), 2006.

[53] Junfeng Yang, Paul Twohey, Dawson Engler, and

Madanlal Musuvathi. Using Model Checking to Find

Serious File System Errors. In Proceedings of the 6th

Symposium on Operating Systems Design and

Implementation (OSDI), 2004.

[54] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna

Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and

Michael Stumm. Simple Testing Can Prevent Most

Critical Failures: An Analysis of Production Failures in

Distributed Data-intensive Systems. In Proceedings of

the 11th Symposium on Operating Systems Design and

Implementation (OSDI), 2014.

[55] Cristian Zamfir and George Candea. Execution

Synthesis: A Technique for Automated Software

Debugging. In Proceedings of the 2010 EuroSys

Conference (EuroSys), 2010.

[56] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran,

Marcos K. Aguilera, and Jinyang Li. Transaction

Chains: Achieving Serializability with Low Latency in

Geo-Distributed Storage Systems. In Proceedings of the

24th ACM Symposium on Operating Systems Principles

(SOSP), 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 415

SKI: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration

Pedro Fonseca
Max Planck Institute for Software Systems

(MPI-SWS)

Rodrigo Rodrigues
NOVA University of Lisbon

(CITI/NOVA-LINCS)

Björn B. Brandenburg
Max Planck Institute for Software Systems

(MPI-SWS)

Abstract
Kernel concurrency bugs are notoriously difficult to

find during testing since they are only triggered under
certain instruction interleavings. Unfortunately, no tools
for systematically subjecting kernel code to concurrency
tests have been proposed to date. This gap in tool support
may be explained by the challenge of controlling pre-
cisely which kernel interleavings are executed without
modifying the kernel under test itself. Furthermore, to be
practical, prohibitive runtime overheads must be avoided
and tools must remain portable as the kernel evolves.

In this paper, we propose SKI, the first tool for the
systematic exploration of possible interleavings of kernel
code. SKI finds kernel bugs in unmodified kernels, and is
thus directly applicable to different kernels. To achieve
control over kernel interleavings in a portable way, SKI
uses an adapted virtual machine monitor that performs
an efficient analysis of the kernel execution on a virtual
multiprocessor platform. This enables SKI to determine
which kernel execution flows are eligible to run, and also
to selectively control which flows may proceed. In addi-
tion, we detail several essential optimizations that enable
SKI to scale to real-world concurrency bugs.

We reliably reproduced previously reported bugs by
applying SKI to different versions of the Linux kernel
and to the FreeBSD kernel. Our evaluation further shows
that SKI was able to discover, in widely used and already
heavily tested file systems (e.g., ext4, btrfs), several un-
known bugs, some of which pose the risk of data loss.

1 Introduction

In the current multi-core era, kernel developers are under
permanent pressure to continually increase the perfor-
mance of kernels through concurrency. Examples of such
efforts include reducing the granularity of locking [59],

rewriting subsystems to use parallel algorithms [26],
and using non-traditional and optimistic synchroniza-
tion primitives (such as RCU [52] and lock-free data
structures [67]). Unfortunately, previous experience has
shown that all these efforts are error-prone and can eas-
ily lead to kernel concurrency bugs — bugs that are only
exposed by a subset of the possible thread interleavings.

In practice, kernel developers find concurrency bugs
mostly through manual code inspection [39, 69] and
stress testing [14, 64] (i.e., applying intense workloads
to increase the chances of triggering concurrency bugs).
While useful, both approaches have significant short-
comings: code inspection is labor-intensive and requires
significant skill and experience, and stress testing, de-
spite having low overhead and being amenable to au-
tomation, offers no guarantees and can easily fail to un-
cover difficult to find concurrency bugs — i.e., edge
cases that are only triggered by a tiny subset of the inter-
leavings. It thus stands to reason that kernel developers
could benefit from tools without these limitations.

To this end, we propose a complementary testing
approach for automatically finding kernel concurrency
bugs. Our approach explores the kernel interleaving
space in a systematic way by taking full control over
the kernel thread interleavings. Similar approaches have
been explored for user-mode applications, yielding good
results [20, 53, 54], but have not yet been applied to
commodity kernels because achieving control over the
thread interleavings of kernels involves several chal-
lenges. First, to be practical, a concurrency testing tool
must be generally applicable, rather than being specific
to a particular kernel or kernel version, which precludes
kernel-specific modifications. Second, the kernel is the
software layer that implements its own thread scheduler,
as well as the thread abstraction itself, making the exter-
nal control of thread interleavings non-trivial. Finally, to

416 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

be effective, such a tool must be able to control kernel
interleavings while introducing a low overhead.

In this paper, we report on the design and an evalua-
tion of SKI1, the first tool for the systematic exploration
of kernel interleavings to overcome these challenges. To
achieve control over kernel interleavings in a portable
way, SKI uses an adapted virtual machine monitor that
(1) determines the status of the various threads of exe-
cution, in terms of being blocked or ready to run, to un-
derstand the scheduling restrictions, and (2) selectively
blocks a subset of these threads in order to enforce the
desired schedule. Notably, these key tasks are achieved
without any modification to the kernel and without spe-
cific knowledge of the semantics of the kernel’s inter-
nal synchronization primitives. Furthermore, we propose
several optimizations, both at the algorithmic and at the
implementation levels, that we found to be important for
scaling SKI to real-world concurrency bugs.

We evaluated SKI by testing several file systems in re-
cent versions of the Linux kernel and we found 11 previ-
ously unknown concurrency bugs. Of these, several con-
currency bugs can cause serious data loss in important
file systems (ext4 and btrfs). We also show how SKI can
be used to reproduce concurrency bugs that have been
previously reported in two different operating systems
(Linux and FreeBSD), and compare SKI’s performance
against the traditional stress testing approach.

We believe that SKI is an important step towards
increased kernel reliability on multicore platforms.
Nonetheless, there remains significant room for exploit-
ing domain- and kernel-specific knowledge. For in-
stance, in this paper we propose a scheduling algorithm
(for performing the schedule exploration) that is generic
in the sense that it makes no assumptions about the ker-
nel under test. However, based on the SKI infrastruc-
ture, other kernel-specific scheduling algorithms could
be implemented, for example, to restrict the interleavings
explored to those that affect specific kernel instructions,
such as code that was recently modified. Thus, we be-
lieve that SKI can provide benefits even beyond those de-
scribed in this paper, since it can serve as an experimen-
tation framework for different systematic techniques.

The rest of the paper is organized as follows. Section 2
motivates the need for better kernel testing tools. Sec-
tion 3 presents the design of SKI. Section 4 proposes
several optimizations to make SKI scale to real-world
concurrency bugs. Section 5 describes the details of our
implementation. Section 6 evaluates SKI and Section 7
discusses some of its limitations. In Section 8 we discuss
related work and finally we conclude in Section 9.

1Systematic Kernel Interleaving explorer

2 Systematic testing

A systematic exploration of the interleaving space, in
contrast with a stress testing approach, relies on judi-
ciously controlling the thread schedule for each execu-
tion of the software under test to maximize the coverage
of the interleaving space.

At a high level, systematic approaches increase the
effectiveness of testing by avoiding redundant interleav-
ings and prioritizing interleavings that are more likely to
expose bugs, e.g., those that differ more from interleav-
ings that have already been explored. It has been shown
both analytically and empirically that such methods offer
better results than traditional ad hoc approaches [20].

To achieve this level of control over interleavings, sys-
tematic approaches rely on a custom thread scheduler
that implements two basic mechanisms. The first mech-
anism infers thread liveness to understand which sched-
ules it can choose, which can be achieved by intercepting
and understanding the semantics of the synchronization
functions. The second mechanism overrides the regular
scheduler by allowing only a specifically chosen thread
to make progress at any point in time.

In the case of user-mode applications, both of these
two essential mechanisms can be easily implemented in
a proxy layer (e.g., through LD PRELOAD or ptrace) by
intercepting all relevant synchronization primitives to in-
fer and override the liveness state of each thread [20, 53,
54]. Unfortunately, a direct application of the user-mode
method to the kernel would require modifying the kernel
itself, which would suffer from several disadvantages:

• Lack of portability and API instability. Any de-
pendency on kernel-internal APIs would a priori
limit the portability of the envisioned testing tool,
preventing its seamless application across different
kernels and even across different versions of the
same kernel. In contrast to well-documented, stan-
dardized user-space interfaces (e.g., the pthreads
API), the internal API of most kernels is not guar-
anteed to be stable, and in fact typically changes
from version to version. In particular, given the cur-
rent trend towards increased hardware parallelism,
kernel synchronization has generally been an ac-
tive area of development in Linux and other ker-
nels [26, 52].

• Complexity of the internal interface. An addi-
tional problem with the internal API of the kernel,
also noted in previous work [32], is that the seman-
tics of in-kernel synchronization operations are par-
ticularly complex. Furthermore, the exact seman-
tics of such operations tend to differ from kernel to

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 417

kernel. This calls for solutions that do not require a
detailed understanding of these semantics.

• Other forms of concurrency. Interrupts are perva-
sive and critical to kernel code. However, exercising
fine-level control over their timing from within the
kernel itself would be particularly challenging, as
interrupts are scheduled by the hardware.2

• Intrusive testing. Requiring modifications to the
tested software goes against the principles of test-
ing [43] — testing modified versions of the software
can potentially introduce or elide bugs.

In the next section we explain how SKI overcomes
these challenges while enabling the systematic explo-
ration of kernel thread interleavings.

3 SKI: Exploring kernel interleavings

This section presents the design of SKI. We start by
providing an overview of our solution (Section 3.1), and
then we describe how SKI exercises control over thread
interleavings (Section 3.2) and how it gathers the nec-
essary liveness information (Section 3.3). We conclude
this section with a description of the scheduling algo-
rithms employed, i.e., the interleavings chosen for each
run (Section 3.4).

3.1 Overview
The inputs given to SKI are the initial state of the system
under test and the kernel input that is to be tested concur-
rently (i.e., two or more concurrent system calls). Given
these inputs, SKI carries out several test runs correspond-
ing to different concurrent executions, where each test
run is fully serialized, i.e., the tool enables only a single
thread to execute at each instant. This enables precise
control over which interleavings are executed, and allows
SKI’s scheduler to choose successive runs to improve the
interleaving space coverage. Either during or after each
test run, a bug detector is used to determine if the test has
flagged a possible bug. Such bug detectors can perform
simple, generic actions like detecting crashes, or com-
plex, application-specific actions like running a system
integrity check after the test run.

As mentioned in the previous section, for SKI’s sched-
uler to gain control over the interleavings executed by the
kernel, it must perform two key tasks: inferring thread

2While user-mode signals are similar to interrupts, many programs
do not use them and therefore existing user-mode tools do not handle
them [20, 53].

liveness and overriding the scheduler. To accomplish
both without modifying the OS kernel under test, we im-
plement the scheduler of SKI at the level of a modified
virtual machine monitor (VMM), taking as input a virtual
machine (VM) image that incorporates the initial state of
the kernel immediately before the system calls are in-
voked concurrently. Implementing the scheduler at the
VMM level enables it to both observe and control the
kernel under test.

This advantage comes, however, at the cost of making
it more difficult to implement the two aforementioned
key tasks. This is because, at the VMM level, the hy-
pervisor observes a stream of machine instructions to be
executed, and has direct access only to the physical re-
sources of the underlying hardware (such as registers or
memory contents). These low-level concepts are distant
from the abstractions that are implemented by the kernel
in software, such as threads and their respective contexts.
Furthermore, it would intuitively seem necessary to have
access to these abstractions for suspending the execution
of a thread and replacing it with another thread.

3.2 Exercising control over threads

To control the progress of threads, SKI relies on the ob-
servation that the most widely used kernels (e.g., Linux,
Windows, MacOS X, FreeBSD) include a mechanism
to allow applications to pin threads to individual CPUs
(i.e., to specify the thread affinity). This mechanism,
provided by kernels to user-mode applications for per-
formance reasons, can be exploited to create a 1:1 map-
ping between threads (a kernel abstraction) and virtual
CPUs (an ISA component, controllable by the VMM).
This mapping in turn allows SKI to block and resume
a thread execution by simply suspending and resuming
the corresponding virtual CPU’s execution of machine
instructions.

Apart from the user-space threads that invoke system
calls, operating systems have another type of threads,
which similarly execute kernel code, namely kernel
threads [7]. Kernel threads are used by the kernel to
asynchronously execute tasks. Despite not being associ-
ated with user-mode processes, some kernel threads can
be pinned to different CPUs from user-space. For ker-
nel threads that cannot be pinned to other CPUs for OS-
specific reasons, SKI is not able to explicitly control their
schedule and therefore lets the OS schedule them.

To implement the mapping between threads and
CPUs, SKI includes, in addition to the modified VMM,
a user-mode component that runs inside the VM and is-
sues system calls to pin threads to virtual CPUs (see Sec-

3

418 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tion 5.3). Note that for scalability reasons, each test gen-
erally involves only few threads, and hence it suffices to
configure a small number of virtual CPUs.

3.3 Inferring liveness

To explore the interleaving space, SKI requires infor-
mation about whether threads are blocked or able to
progress, analogously to what is required by the exist-
ing user-mode tools [20, 53, 54]. This requires SKI to be
able to identify constructs such as spin-locks or barriers,
where a CPU executes a tight loop, constantly check-
ing the value of a memory location for changes. SKI
would be impractical if it were not able to detect such
constructs, for several reasons. First, executions would
take longer because more instructions would be executed
(e.g., iterations of a spin loop). Second, because more in-
structions would be executed, the space of possible inter-
leavings would significantly increase, since the number
of possible interleavings is exponential in the length of
the test. Third, and most importantly, given the schedul-
ing algorithm that we describe in Section 3.4, two inter-
leavings could be considered different even when they
only differ in the number of iterations executed by the
polling loop of a spin lock. This would be detrimental to
the efficiency of SKI, since many of the explored sched-
ules would be effectively equivalent.

The difficulty in inferring thread liveness is that, from
the point of view of the VMM, CPUs are constantly ex-
ecuting instructions. As such, it is difficult to distinguish
the normal execution of a program from a polling loop.

One possible solution that we considered, but ulti-
mately rejected, relies on annotating the kernel by spec-
ifying the locations within the kernel code where the
CPU executes instructions without making any actual
progress, namely situations where the kernel is waiting
for some event external to the CPU (such as an action
performed by some other CPU or a device notification).
However, this approach would be laborious, error prone,
and non-portable.

Instead, we found several simple heuristics indepen-
dent of the kernel code that enable the VMM to infer
whether a CPU is making progress or not.

H1: Halt heuristic. The first heuristic flags the CPU
as non-live when it executes the halt instruction (HLT).3

According to the instruction set specification, HLT marks
the CPU as waiting for interrupts. This instruction is typ-
ically used by kernels to implement, in an energy effi-
cient way, the idle thread when the kernel scheduler has

3We focus on the ubiquitous x86 architecture in this paper; the pre-
sented ideas, however, can be similarly applied to other architectures.

no other threads to run. When the CPU subsequently re-
ceives an interrupt, it is marked as live again.

H2: Pause heuristic. The second heuristic relies on
the observation that kernels use the pause instruction
(PAUSE) to efficiently implement spin-locks. In the x86
architecture, the pause instruction has been introduced
to avoid wasting bandwidth on the memory bus when a
CPU goes into a tight polling loop, and therefore its ex-
ecution is a good indication that the CPU is spinning on
a lock. Thus, when our modified VMM detects the ex-
ecution of two nearby pause instructions, i.e., within an
instruction window of size h2, it considers the CPU to
be non-live and takes note of the memory read-set as-
sociated with the instructions executed between the two
pause instructions. Pause instructions in close proximity
are detected by the VMM by checking, at every pause in-
struction, whether another pause instruction was recently
executed. Later on, when another CPU changes one of
the addresses in the read-set, the non-live CPU is opti-
mistically marked as live again.

H3: Loop heuristic. The third heuristic detects situa-
tions where the CPU is waiting for some external event,
but that are not caught by the second heuristic. This
could happen if, for example, a spin-lock were imple-
mented without including the pause instruction. To de-
tect CPUs stuck in a polling loop, our modified VMM
maintains a window, of size h3, of the last few instruc-
tions executed by each CPU. If a CPU repeatedly exe-
cutes the same instructions (i.e., if it executes a loop),
and if an instruction in the loop repeatedly reads the same
value from the same memory address, the executing con-
text is flagged as non-live after a certain number of loop
iterations. Again, SKI takes note of the read-set of de-
tected polling loops to later re-enable the CPU.

H4: Starvation heuristic. As a last resort, in case the
above heuristics are not able to detect situations where
there is no progress, SKI keeps a count of the number of
instructions executed continuously by the current CPU,
and, if it exceeds a threshold (h4), it conservatively pre-
sumes that the CPU is no longer making progress. The
CPU is marked live again after a certain number of in-
structions have been executed by the other CPUs. This
heuristic ensures the detection, for example, of loops that
are missed by H3 if h3 is set smaller than the loop size.

We determined the values for the thresholds of these
heuristics, which remained constant throughout all our
tests, through simple experimentation. From our expe-
rience, these mechanisms were sufficient to ensure the
effectiveness of SKI for a wide range of kernel versions,
at both reproducing previously known bugs and at find-
ing unknown bugs.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 419

3.4 Scheduling algorithm

SKI executes a VM multiple times under different sched-
ules to ensure interleaving diversity across the runs. To
select and prioritize the interleavings that are to be ex-
plored SKI needs to implement a scheduling algorithm.

SKI uses an extension of the PCT algorithm [20], a
state-of-the-art algorithm originally developed for user-
mode applications, which has been shown to be effective
at uncovering user-mode concurrency bugs. SKI extends
PCT by supporting interrupts (Section 3.4.2), which is a
fundamental requirement for testing operating systems.

Nonetheless, we consider the proposed algorithm to
be just one instance from a range of possible algorithms
(albeit one that in our experience happens to work well),
and developers that make use of the tool might consider
adding other, more refined algorithms. For example, it
may be possible to develop effective scheduling algo-
rithms that exploit specific characteristics of kernel code.

Since the SKI scheduler must handle both threads and
interrupts, it schedules contexts instead of threads; we
will thus refer to contexts throughout this description.

3.4.1 Background: PCT algorithm

Conceptually the scheduler executes instructions sequen-
tially one by one; that is, at any point during the execu-
tion, only one of the live contexts is allowed to progress,
and the eligibility of the context to execute another in-
struction is re-evaluated after each instruction. Through
this process, the scheduler is able to effectively control
the chosen interleaving. In practice, however, our imple-
mentation optimizes this process by using a JIT compiler
and by only introducing checks as needed (Section 5).

A strawman design for the scheduler would be to use a
fixed ordering of the various contexts, and to run the first
context for the longest possible period until it is no longer
able to run. At this point, the scheduler chooses the sec-
ond context to run until either it is also no longer able to
run, or the first context becomes able to run again, and
so on. While this initial design suffices to create valid
schedules and allows tests to finish, it does not create a
diverse set of schedules.

To achieve a good diversity of schedules across differ-
ent runs, the scheduler uses two strategies. The first is
to randomly assign initial priorities to the contexts, and
use these priorities instead of a fixed order to determine
the context that should run at each instant – this is the
context with the highest priority among those that are
not blocked. The second strategy consists of reducing, at
random points during the execution of a test, the priority
of the context that is scheduled. If the priority decrease is

large enough, this will cause another context to become
the one with the highest priority, and therefore this other
context will be scheduled to run. By varying both the ini-
tial priorities and the location of such reschedule points
in a controlled way, the scheduler is able to control the
range of tested schedules.

The reschedule points are chosen prior to each run
by randomly selecting a set of offsets from the start of
the test (in terms of the total number of instructions ex-
ecuted) within a certain range. Then, during the exe-
cution, whenever the total number of instructions exe-
cuted reaches one of these offsets, the priority of the cur-
rently scheduled context is lowered so that it becomes the
lowest-priority context, and thus another runnable con-
text is selected for execution in the next step.

The set of reschedule points is determined according
to two parameters: the expected number of execution
steps k and the desired number of reschedule points p,
with the simple interpretation that there will be up to p
reschedules within the first k instructions of the execution
of the test (and none thereafter, should the test execute
for more than k instructions). That is, for a given k and
p, the set of p reschedule points is selected by choosing
uniformly at random p offsets from the range [0,k].

3.4.2 Handling interrupts

Given that SKI operates at the level of the virtual ma-
chine monitor, it does not have access to the thread ab-
straction that is used by schedulers for user-mode appli-
cations. Thus, instead of scheduling threads, our algo-
rithm schedules CPUs. In addition, another distinction
to user-mode schedulers is that the scheduler needs to
make decisions regarding when interrupts should be dis-
patched. Interrupts do not appear in the context of user-
mode programs, but we need to control their schedule
when testing the kernel for two different reasons. First,
concurrency bugs may depend on the interleaving of in-
terrupts, so our algorithm should be able to explore this
part of the interleaving space. Second, interrupts are in
some cases required for the successful completion of sys-
tem calls, and therefore interrupts need to be scheduled
to conclude the execution of the tests. For example, some
system calls are only able to finish if, during their execu-
tion, other CPUs handle the TLB flush interrupt.

As the scheduler needs to consider when interrupts
are handled, each CPU is tracked as being in one of
two different contexts: it may either execute in the con-
text of an interrupt handler (interrupt-context), or it may
execute outside of the context of any interrupt handlers
(CPU-context). Each interrupt-context is defined by the
CPU on which it arrived and by the interrupt number

5

420 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Schedule 1 Schedule 2
CPU1 INT1 CPU2 CPU1 INT1 CPU2

INST 1
INST 2
INST 3
INST 4
<end>

INST 1
INST 2
<end>

INST 1
INST 2
INST 3
<end>

INST 1
INST 2
<inv>

INST 1
INST 2
<end>

INST 1
INST 2
INST 3
<end>

INST 3
INST 4
<end>

Figure 1: Two examples illustrating schedules produced
by SKI. Each schedule involves three contexts, two CPU-
contexts and one interrupt-context. Both schedules start
with the same initial context priorities. However, Sched-
ule 2 differs from Schedule 1 because it contains one pri-
ority inversion (<inv>).

that it represents. From the point of view of the sched-
uler, interrupt-contexts are created, and therefore be-
come schedulable, when the corresponding interrupt ar-
rives on its specific CPU. These execution contexts are,
to our scheduler, the equivalent to threads for other sys-
tematic exploration algorithms, and as such they need
to be detected by the scheduling logic. SKI infers the
context by tracking the interrupt handler dispatches and
the IRET instruction invocations (which are used to re-
turn from interrupt handlers). Figure 1 shows exam-
ples of schedules involving two CPU-contexts and one
interrupt-context.

To achieve further control over the tests, SKI allows
the user to specify a set of execution contexts that are al-
lowed to run during the test. In particular, placing restric-
tions on the set of eligible execution contexts may be use-
ful in specific testing scenarios, to restrict the scheduling
space that is explored.

3.5 Discussion

The design of SKI ensures correctness, meaning that SKI
never causes the kernel to exhibit a behavior that could
not possibly occur during normal executions of the ker-
nel, because SKI exercises control over the kernel sched-
ule by temporarily suspending the execution of instruc-
tions on chosen CPUs. Correct kernels have to be able

to handle this mechanism because the hardware speci-
fication does not provide guarantees about the speed of
the CPUs. Furthermore, modern kernels are expected to
work well within virtual machines, where the apparent
speed of CPUs is not guaranteed to be regular simply be-
cause the host system might be under heavy load.

Despite this correctness guarantee, some bug detectors
may still produce false positives (e.g., data race detec-
tors). In such cases and regardless of how the interleav-
ing space is explored, the obtained results require further
analysis specific to the the employed bug detector.

4 Efficiency: Scaling to real code

The total number of possible schedules grows exponen-
tially with the length of the code under test. For most
programs, including the kernel, it is not practical to ex-
haustively explore all interleavings, and therefore it is
important for concurrency testing tools to include mech-
anisms for increased scalability.

The p parameter, used by the scheduling algorithm
(Section 3.4), constrains the schedules that may be ex-
plored and therefore improves scalability by bounding
the number of possible schedules. This is done with-
out much impact on the effectiveness of the testing tool,
given the observation that, in practice, most bugs can
be triggered with few reschedule points [20]. Similarly,
it has been shown that many concurrency bugs can be
triggered with a small number of threads [48] and with
a small number of concurrent requests [60]. Based on
these observations, we configured SKI in our tests to
use small values for these three dimensions (reschedule
points, number of CPUs, and number of system calls).

Despite these optimizations, we noticed in our initial
tests that SKI’s scalability was limited by the fact that
even a single system call can execute a large number of
instructions — typical system calls execute many thou-
sands or even millions of instructions. This implied that,
even if we limited SKI to p = 1, the number of runs that
would be required to explore all schedules were on the
same order of magnitude as the number of instructions.

To address this scalability issue, SKI relies on a tech-
nique first proposed by Godefroid [36] that exploits the
fact that some schedules are equivalent and thus redun-
dant, as illustrated in Figure 2. In particular, we rely
on the observations that (1) schedules that do not differ
in terms of the relative order of communication points
(where threads see the effects of each other) are obser-
vationally equivalent from the standpoint of the inter-
leaved threads, and that (2) most of the kernel instruc-
tions do not constitute communication points between

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 421

Schedule 1 Schedule 2 Schedule 3
CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

A=1
<inv>

A=0
D=A+1

B=1
C=B+A
PRINT C

A=1
B=1
<inv>

A=0
D=A+1

C=B+A
PRINT C

A=1
B=1
C=B+A
<inv>

A=0
D=A+1

PRINT C

Figure 2: Example showing two equivalent schedules
(Schedules 1 and 2) and one schedule that is not equiv-
alent to either of the others (Schedule 3). In this exam-
ple, only variable A is used for communication between
CPUs. Because variable B is accessed by only one CPU,
placing the priority inversion point (<inv>) immedi-
ately before (Schedule 1) or immediately after (Schedule
2) the statement B=1 does not change the result of the
execution.

CPUs. Taken together, these two observations allow us
to significantly improve SKI’s scalability by restricting
reschedules to occur only at communication points.

More precisely, we define a point of communication
as an instruction that accesses a memory location that is
also accessed by another CPU during the test, and where
at least one of the accesses is a write. Such concurrent
memory accesses can influence the final outcome of the
execution: in the case of two concurrent writes, the last
value to be written prevails, and in the case of a write
concurrent with a read, the value read may or may not
reflect the write, depending on the schedule. Prior tools
have also tried to avoid equivalent schedules, but rely
instead on identifying and preempting threads at either
possible data races or the invocation of synchronization
primitives [53].

SKI gathers the location of possible communication
points by monitoring memory accesses during the tests.
During each run, it tracks the locations of the memory
accesses, the CPU responsible for the accesses, and the
types of accesses (read or write). After each run, SKI
generates a set of program addresses that are potential
communication points, and merges this information with
an accumulated set of potential communication points
for that specific test case. Note that this process does not
rely on sample runs — every run monitors the memory
accesses and, therefore, potentially learns new commu-
nication points. As this accumulated set is constructed,
it is used in subsequent runs for the same test case to de-
cide which schedules are equivalent, thereby limiting the
set of instructions that qualify as reschedule points.

In our experiments, we observed that, as expected,
both data and synchronization accesses were identified
as communication points. To give some examples, data
accesses occur when both CPUs try to modify the same
field in a shared structure (e.g., a file reference count),
and synchronization accesses occur when both CPUs try
to acquire the same lock. An advantage of SKI’s dynamic
approach is that whether or not an instruction qualifies as
a reschedule point depends on the code that both CPUs
actually execute (e.g., the specific system calls or inter-
rupt handlers that are invoked). As a result, if two CPUs
acquire different locks unrelated to the tested functional-
ity, such accesses will not be considered communication
points (in the context of the current test case).

In practice, SKI estimates the expected number of
instructions, k (recall Section 3.4), based on previous
runs. With the communication points optimization, in-
stead of considering individual instructions when placing
reschedule points, we consider only communicating in-
structions, and thus let the algorithm take coarser-grained
steps in its exploration of the interleaving space. That is,
by limiting the set of reschedule point candidates, the
magnitude of the parameter k is effectively reduced. In
addition to these algorithmic optimizations, SKI includes
several optimizations, at the level of the implementation,
to ensure its effectiveness (Section 5.4).

5 Implementation

We implemented SKI by modifying QEMU, a mature
and open-source VMM, and its JIT compiler. In total,
our implementation added 13,542 lines of source code
to QEMU. We also built a user-mode testing framework
consisting of 674 lines of source code to help users write
test cases for SKI (Section 5.3). In addition, we imple-
mented various scripts to set up and automate tests and
also to analyze the gathered information.

5.1 Overview

SKI provides a helper tool to allow kernel developers
to specify the concurrent system calls, by building a
VM containing the corresponding test case (Section 5.3).
When executed under SKI, this VM first goes through
an initialization phase, performing test-specific actions
to configure the system, and then signals the beginning
of the test to the VMM using hypercalls (i.e., calls be-
tween the VM and the VMM). When all virtual CPUs
have received the signal, the SKI scheduler is activated.

SKI’s first action is to take a snapshot of the VM. The
VM snapshot includes the entire machine state (memory

7

422 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

state, disk state, CPU state, etc.) and thus allows SKI to
run multiple executions from an identical initial state.

Starting from this VM snapshot, SKI places resched-
ule points and assigns starting priorities as described in
Sections 3.4 and 4, and then resumes the execution of the
highest-priority context and enforces the chosen sched-
ule, thereby exploring different schedules on each run.

To mark the end of the test, the user-mode component
inside the VM issues a hypercall to the VMM. After-
wards, the VM is allowed to run normally (i.e., without
schedule restrictions) until the testing application asks to
terminate the execution. This last phase is useful to let
the user-mode component execute test-specific diagnos-
tics (such as a file system check) inside the VM.

5.2 Runnable contexts
The scheduler of SKI allows, at any point in time, only
the live and active context with the highest priority to
run. The liveness of a context is inferred by the VMM
according to the heuristics explained in Section 3.3; the
criteria for determining whether a context is active or not
depends on the type of context. A CPU-context is consid-
ered active if it has not reached the end of the test, which
is flagged by the user-mode component using a hyper-
call, as discussed above, whereas an interrupt-context is
considered active only after it has been triggered by the
respective hardware device and before the corresponding
IRET instruction has been executed.

5.3 Helper testing framework
We built a user-mode helper framework that allows users
to easily build a testing VM ready to be used by SKI.
It includes a user-mode application that runs inside the
testing VM for the purpose of setting up the kernel and
for providing the required test input (e.g., system calls).

The user-mode test framework automatically creates
the testing threads/processes, pins each thread/process to
a dedicated virtual CPU, issues the hypercalls to mark
the beginning of the test (right before the test function is
called) and the ending of the test (right after the test func-
tion returns), and finally requests the termination of the
VM (when all post-test functions have completed). This
framework can be used both to manually create test cases
(Section 6.3) or to adapt existing test suites to leverage
SKI for the interleaving exploration (Section 6.2).

We first implemented the framework targeting Linux
and subsequently ported it to FreeBSD, and have been
using it to conduct tests on both operating systems. The
helper framework itself was easily ported because only
few of the system/library calls it relies upon are not part

of the POSIX standard (namely the calls to pin thread-
s/processes, which have slightly different interfaces).

5.4 Optimizations and parallelization

In addition to the algorithmic optimizations described in
Section 4, we have implemented several other optimiza-
tions to improve the performance of SKI. One of our
main optimizations avoids resuming from a snapshot for
each tested execution, which can take a few seconds in
the original version of QEMU. Instead we have imple-
mented in SKI a multi-threaded forking mechanism to
take advantage of the copy-on-write semantics offered
by the host OS, amortizing the cost of resuming from
a snapshot over multiple executions. This benefit is not
limited to executions that test the same input because we
allow the testing application to receive, through a hyper-
call, a parameter that specifies the testing input. Thus,
from a single snapshot, SKI can explore different inputs
and different interleavings, making the overall cost of
creating and resuming from a snapshot negligible.

In addition, given that in our testing scenario after each
execution we discard most of the state of the VM (e.g.
VM RAM and disk contents), we optimized SKI by con-
verting several file system operations, performed by the
original QEMU on the host, into memory operations.

Given that our workload is parallelizable, SKI takes
advantage of multicore host machines by spawning mul-
tiple VMs to perform multiple concurrent tests. We have
also implemented a testing infrastructure to distribute the
workload across multiple machines, further increasing
the testing throughput.

5.5 Bug detectors

Section 3 presented the algorithms and mechanisms that
SKI employs to explore the thread interleaving space of
the kernel. However, to find concurrency bugs an orthog-
onal problem needs to be addressed — it is necessary to
identify which of these executions triggered bugs.

In Section 6 we show how SKI can be combined with
different types of bug detectors — we evaluate SKI us-
ing bug detectors to detect crashes, assertion violations,
data races and file system inconsistencies. Our imple-
mentation detects crashes and assertion violations by
monitoring the console output at the VMM level. The
detection of data races is also performed at the VMM
level by recording racing memory accesses, similarly to
DataCollider [32]. File system inconsistencies, in con-
trast, are detected by running existing file system check-
ers inside the VM itself after each test.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 423

5.6 Traces and bug diagnosis
To enable the implementation of external bug detectors
and to allow the diagnosis of bugs through manual in-
spection, SKI is able to produce detailed logs of the ex-
ecutions. These traces contain the exact ordering of in-
structions and the identity of the context responsible for
the instructions. In addition, SKI can be configured to
produce traces with all the memory accesses and the val-
ues of the main CPU registers.

We built some analysis tools that parse these traces
to provide useful information. One of our tools pro-
duces source code information by disassembling the in-
structions and by annotating the trace with the source
code that generated the instructions (assuming the ker-
nel is compiled with debugging symbols). We also im-
plemented another diagnosis tool that generates the call
graph for each execution. While none of these tools is
conceptually particularly challenging, in our experience,
they complement each other well and make the rich in-
formation collected by SKI much more accessible.

Apart from the traces produced by SKI, the bug de-
tectors we built are another important source of diagnos-
tic information. For example, the data race detector that
we implemented identifies the exact memory address as
well as the instruction addresses involved. As another
example, the crash reports produced by the Linux kernel
include a detailed stack trace that is very convenient for
developers to diagnose bugs.

6 Evaluation

This section evaluates the effectiveness of SKI in reveal-
ing real-world kernel concurrency bugs. After describing
the configuration that we employed in our experiments,
we report our experience in applying SKI to recent and
stable versions of the Linux kernel, which resulted in the
discovery of several previously unknown concurrency
bugs (Section 6.2). We then report on our experiments
using SKI to reproduce previously known bugs and com-
paring it with traditional approaches (Section 6.3).

6.1 Configuration
We conducted our experiments on host machines with
dual Intel Xeon X5650 processors and 48 GB of RAM
running Linux 3.2.48.1 as the host kernel. To increase the
testing throughput, we configured SKI to run 22 testing
executions in parallel on each machine and we ran our
experiments on up to 12 machines at a time.

For each test case reported in this paper, we configured
SKI to use p = 2 and we explored 200 schedules in the

large-scale experiments to find new bugs (Section 6.2)
and 50,000 schedules in the experiments to reproduce
known bugs (Section 6.3). SKI’s liveness heuristics used
h2 = 30, h3 = 20 and h4 = 500,000 (Section 3.3). We
tested several different versions of Linux, ranging from
2.6.28 to 3.13.5, depending on the experiment, and one
of the experiments tested FreeBSD, version 8.0. Impor-
tantly, the same configuration of SKI was used in all tests:
we did not have to modify any settings to adjust SKI to a
particular tested kernel version, and we also did not have
to modify the kernels under test.

6.2 Finding concurrency bugs
To demonstrate the effectiveness of SKI in finding real
world concurrency bugs, we tested several file systems
from recent versions of the Linux kernel.

To create the inputs that form the various tests, we
modified fsstress [44], adding calls to SKI’s hypercalls to
flag the beginning and the end of the tests, and we mod-
ified the test suite to issue concurrent system calls. For
convenience we also converted some of the debugging
messages to use SKI’s own debugging hypercalls. Be-
cause one of the file systems (btrfs) supports several op-
erations that were not supported by the original fsstress,
we also added support for twelve of those file system op-
erations (e.g., snapshot/sub-volume operations and dy-
namic addition/removal of devices). In total, we added
or modified 900 lines of code in fsstress, of which 700
lines are related to the btrfs operations.

6.2.1 Bug detectors

We ran SKI with three bug detectors. The first detec-
tor monitors the console output to detect crashes, asser-
tion violations and kernel warning messages. The sec-
ond detector uses file system checkers (fsck), which are
specific to each file system and are only supported/ma-
ture in the case of some file systems, to detect file sys-
tem corruption. This bug detector runs inside the VM,
in contrast with the others, which are implemented at the
VMM level. To limit the performance impact of running
fsck after each execution, we created small file systems
(300 MB) and we mounted the file system in memory
using loop + tmpfs (in addition to the optimizations de-
scribed in Section 5.4).

The third bug detector consists of a data race detec-
tor that we implemented, which analyzes all memory ac-
cesses, without sampling. Similarly to other data race de-
tectors [32], our detector finds racing memory accesses
without distinguishing whether those accesses are per-
formed by synchronization functions. The main chal-

9

424 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Bug Kernel FS Function Detector / Failure E FS Status
1 3.11.1 Btrfs btrfs find all root() Crash: Null-pointer 41 0.030 Fixed
2 3.11.1 Btrfs run clustered refs() Crash: Null-pointer + Warning 26 0.020 Fixed
3 3.11.1 Btrfs record one backref() Warning 74 0.030 Fixed
4 3.11.1 Btrfs NA Fsck: Refs. not found 11 0.200 Reported
5 3.12.2+p Btrfs btrfs find all root() Crash: Null pointer 61 0.060 Fixed
6 3.12.2 Btrfs inode tree add() Warning 53 0.010 Fixed
7 3.13.5 Logfs indirect write alias() Crash: Null pointer 31 0.065 Reported
8 3.13.5 Logfs btree write alias() Crash: Invalid paging 142 0.020 Reported
9 3.13.5 Jfs lbmIODone() Crash: Assertion 74 0.005 Reported
10 3.13.5 Ext4 ext4 do update inode() Data race 32 0.005 Fixed
11 3.13.5 VFS generic fillattr() Data race 125 0.005 Reported

Table 1: Bugs that have been discovered by SKI in recent versions of the Linux kernel and that we have reported to
developers. For the specific input that triggered each bug, we show the number of schedules that were required to
expose the bug (E) and the fraction of schedules that triggered the bug (FS). Eventually we found out that bug #3 had
previously been reported. A patched version of the kernel, expected to solve bug #1, was tested on request from the
developers but SKI revealed that the kernel could still crash in a different location of the same function (bug #5).

Reports
False data race 76

Data race
Benign 53

Under investigation 37
Harmful 24

Table 2: Types of race reports found during our exper-
iments. The numbers displayed refer to the number of
reports after associating related races. Note that a sin-
gle bug may be involved in multiple data races (e.g., if it
affects multiple variables).

lenge in this case is filtering out the false positives (false
data races and benign data races) [32, 51, 62, 78]. In
order to facilitate this manual process, our tool groups
together distinct pairs or racing instructions that were
found to race directly or transitively. Using this method,
we we were able to group together 3114 pairs of races
into 190 race reports. Filtering out race reports that were
not data races was straightforward, but the difficult part
was separating real data races into benign and harmful
ones. In some cases, this requires careful analysis of the
code and documentation and, ultimately, it may require
asking the developers – who may not even agree among
themselves. Heuristics could have been used to analyze
the results, but unfortunately these typically offer limited
help for the more complicated cases. Given this com-
plexity, we gathered some reports (not included in Ta-
ble 1) that may constitute bugs but are still under analy-
sis, and for which, in some cases, we are still waiting for
feedback from the developers. Table 2 shows the number
of race reports that we obtained in the file systems tests

Btrfs Ext4 Jfs Logfs
SKI 34.7 62.6 61.6 61.2
SKI+ DR 32.1 61.9 59.5 58.8
SKI+ Fsck 6.4 20.8 18.2 N/A
SKI+ Fsck + DR 6.1 20.6 17.9 N/A

Table 3: SKI’s throughput (for each machine) with dif-
ferent bug detectors. Throughput is given in thousands of
executions per hour. DR denotes the data race detector.
Fsck tests on logfs are absent due to the lack of compati-
ble mature checkers.

according to their type.

6.2.2 Results

The results in Figure 1 show that SKI was able to find
several unknown concurrency bugs in mature versions
of the Linux kernel. One of the bugs found affects the
widely used ext4 file system and six bugs affect the btrfs
file system – which is expected to soon become the de-
fault file system in some distributions [8]. We have re-
ported the 11 bugs listed in Table 1; of those, 6 have
already been fixed.

Furthermore, although FS related system calls tend to
be expensive, SKI was able to achieve a testing through-
put that reached 62 thousand executions per hour on each
machine (Table 3). Even though the current performance
of SKI proved to be effective, significant performance
improvements may still be achievable by using more ef-
ficient virtual machines monitors, possibly using hard-
ware acceleration, or even by building SKI using binary

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 425

Bug Kernel OS Component Failure E FS
A [4] Linux 2.6.28 Anonymous pipes Crash 28 0.00572
B [5] Linux 3.2 Inotify + FAT32 Crash 53 0.13770
C [9] Linux 3.6.1 Proc file system + Ext4 Semantic 51 0.01004
D [3] FreeBSD 8.0 Sockets Semantic 3519 0.00014

Table 4: Known bugs reproduced with SKI. The table shows the number of schedules that were required to expose the
bug (E) and the fraction of schedules that triggered the bug (FS). The table shows the kernel version under which we
reproduced the bug, the OS components involved and the type of failure that the bug causes.

instrumentation frameworks.
It is worth pointing out that many of the bugs found by

SKI are serious – six of the bugs cause the kernel to crash
and most of the bugs found cause persistent data loss.
For example, the ext4 bug, which is due to improper syn-
chronization while updating the inodes, causes the field
i disksize (containing information about the size of the
inodes) to become corrupted. To fix this bug, developers
applied patches that involved refactoring the code and the
introduction of additional synchronization.

6.3 Reproducing concurrency bugs

We also evaluated the effectiveness of SKI in reproduc-
ing previously reported kernel concurrency bugs. To
find typical bug reports, we searched the kernel Bugzilla
databases, the kernel development histories (i.e., the git
changelogs), and the mailing list archives. From these
sources, we selected four independently confirmed ker-
nel concurrency bugs. We opted for a diverse set of bugs
that were particularly well documented. Furthermore,
to enable a direct comparison, we considered only bug
reports that included instructions for triggering the re-
ported bugs through stress testing.

As listed in Table 4, the selected bugs exhibited dif-
ferent types of failures in various kernel components.
Bug A causes a memory access violation (an “Oops” in
Linux parlance) in the pipe communication mechanism,
which can occur during concurrent open and close calls
on anonymous pipes. Bug B also results in a memory
access violation and is triggered on some interleavings
when a FAT32-formatted partition is unmounted concur-
rently with the removal of an inotify watch4 associated
with the same partition. Bug C does not result in a crash,
but rather causes a read system call to return corrupted
values. Finally, bug D affects FreeBSD and is triggered
by concurrent calls on sockets that cause the kernel to
incorrectly return error values.

4Linux’s inotify interface allows processes to receive change notifi-
cations for file system objects such as files, directories, or mount points.

Based on these four bug reports, we determined the
system calls that would expose the bugs and produced
the corresponding SKI test cases, as described in Sec-
tion 5.3. For the bugs that had semantic manifestations,
i.e., system calls that returned wrong results, we imple-
mented bug-specific detectors, according to the informa-
tion provided in the bug reports.

SKI exposed bugs A and B by triggering the crash af-
ter exploring 28 and 53 schedules, respectively. Bugs C
and D were exposed after 51 and 3519 schedules, respec-
tively, causing wrong results to be returned. Given that
SKI requires few executions to trigger concurrency bugs,
with a suitable test suite (e.g. regression test suites [38]),
SKI’s throughput is sufficient to reproduce on the order
of hundreds of such concurrency bugs per hour (Table 5).

These experiments confirm that SKI is effective at re-
producing real-world concurrency bugs. Most impor-
tantly, it should be noted that the reproduced bugs stem
from two different OS code bases (FreeBSD and Linux)
and from a wide range of Linux kernel versions spanning
several years of intense development. In fact, even if we
ignore the cumulative number of lines changed (i.e., the
churn rate) and take into consideration only the increase
in the total number of lines of source code, the Linux ker-
nel grew by an impressive 60% from version 2.6.28 (10M
SLOC) to version 3.6.1 (16M SLOC). SKI handled the
different versions of the Linux kernel and the FreeBSD
kernel without requiring any changes to the VMM itself
or its configuration, which provides evidence for the con-
siderable versatility intrinsic to SKI’s design.

6.3.1 Comparison with stress testing

In the discussions that led to the resolution of these four
bugs, the kernel developers proposed non-systematic
methods to reproduce them. In particular, they provided
simple stress tests, which continuously execute the same
operations in a tight loop, waiting until a buggy inter-
leaving occurs. We executed the original stress tests pro-
posed by the developers to compare SKI to a traditional
approach. For this purpose, we ran the stress tests in an

11

426 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Bug Throughput
A 302.0
B 169.3
C 218.7
D 501.4

Table 5: SKI’s throughput for each machine. Throughput
is presented in thousand executions per hour.

unmodified VMM, i.e., without making use of SKI.
Note that without a deep knowledge of the kernel

code, in the general case, it is hard to generate stress tests
for the bugs that SKI discovered in Section 6.2. The rea-
son for this is that it is not straightforward to ensure that,
for every one of the various iterations of the stress test,
the state of the kernel is such that it can trigger the con-
currency bugs. (SKI avoids this problem because it auto-
matically restores the initial state through snapshotting).
Thus, to ensure a more objective comparison between the
two approaches, we chose to use stress tests produced by
the kernel developers themselves since these are the ones
offering better effectiveness guarantees.

As expected, and consistent with earlier comparisons
of systematic and unsystematic user-mode concurrency
testing approaches [20, 53], SKI proved to be much more
effective in reproducing concurrency bugs than the non-
systematic approaches. Despite the fact that we gave
each stress test up to 24 hours to complete, bug A and
bug D were not triggered at all by their corresponding
stress tests. While the stress tests for bugs B and C
did eventually trigger their corresponding bugs, they re-
quired significantly more executions (and time) than SKI:
the stress tests required more than 200,000 iterations (4
hours) to reproduce bug B and more than 800 iterations
(1 minute) to trigger bug C, compared to 53 and 51 iter-
ations (both a few seconds), respectively, under SKI.

Overall, the relative difficulty of reproducing bugs
with simple stress tests is not surprising given prior com-
parisons of systematic approaches and stress testing in
the context of user-mode applications [20]. Furthermore,
this difficulty was also reported by the kernel developers
themselves. For example, in the case of bug A (which the
stress test failed to reproduce in our experiments) the de-
veloper stated that the “failure window is quite small” [6]
and recommended introducing a carefully placed sleep
statement in the kernel to trigger the bug.

6.3.2 Liveness heuristics

We instrumented SKI to log the activation of SKI’s
heuristics. Using this data we calculated the percent-

Bug H1 H2 H3 H4 H*
A 1.72% 0.61% 5.71% 0.57% 7.97%
B 88.80% 49.70% 0.05% 13.73% 88.93%
C 1.50% 23.56% 0.00% 0.00% 25.06%
D 0.53% 2.66% 0.00% 0.00% 3.05%

Table 6: Percentage of schedules that triggered the live-
ness heuristics. H* refers to the percentage of schedules
that trigger any heuristic.

Bug H1 H2 H3 H4 H*
A 0.08 0.01 0.06 0.01 0.17
B 14.97 1.59 36.38 0.14 53.08
C 0.01 0.44 0.00 0.00 0.45
D 0.01 0.03 0.00 0.00 0.03

Table 7: Average number of times the liveness heuristics
were triggered per schedule. H* refers to the percentage
of schedules that trigger any heuristic.

age of schedules that triggered each of the heuristics (Ta-
ble 6) and the average number of times each heuristic
was triggered per schedule (Table 7).

The results show that some of the schedules do not
trigger heuristics. This is expected to happen when
SKI chooses schedules in which threads do not experi-
ence lock contention and is more likely to occur in op-
erating systems that are well optimized for scalability.
Even though not all of the tests activate all heuristics, all
heuristics were activated in at least one of the test cases.

In addition, we observed that in these tests the heuris-
tics were triggered at 167 distinct instruction addresses.
The large number of distinct addresses is indicative of the
challenges that would result from manually annotating
the kernel to infer thread liveness, as opposed to relying
on the four simple heuristics implemented by SKI.

6.3.3 Effectiveness of communication points

To evaluate the effectiveness of the optimization of keep-
ing track of communication points and allowing resched-
ules to occur only at these points (described in Section 4),
we calculated for each test case the average number of
instructions and the average number of communication
points executed per run. As shown in Table 8, this op-
timization reduced the number of potential reschedule
points by up to an order of magnitude in our experiments,
thereby avoiding the wasteful exploration of redundant,
effectively equivalent schedules. This shows the impor-
tance of this optimization to the scalability of SKI.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 427

Bug I CP I/CP
A 87673.5 12511.2 7.00
B 210693.0 23432.8 8.99
C 65126.9 6372.3 10.22
D 22641.3 6503.2 3.48

Table 8: Effectiveness of the communication points op-
timization described in Section 4. The table shows for
each reproduced bug the average number of instructions
executed per run (I) and the average communication
points executed per run (CP). The last column charac-
terizes the optimization’s effectiveness as the ratio of the
two metrics.

7 Discussion

SKI proposes a VMM-based scheduler. In this section,
we discuss some of the implications of this choice.

A limitation of relying on a VMM is that the kernel
running inside a virtual machine is limited to using the
hardware virtualized by the VMM. For a testing tool,
it means that it is not possible to reproduce bugs that
require hardware that is not virtualized by the VMM.
However, we believe this does not detract significantly
from SKI’s practical value because the size of the device-
independent kernel core is already considerable. Further,
it may be possible to overcome the VMM dependency by
building an equivalent tool based on kernel binary instru-
mentation, which is an active area of research [33].

The choice of a VMM-based approach has another im-
portant consequence. Because the VMM emulates one
instruction at a time, and propagates its effects to all other
CPUs immediately afterwards, concurrency bugs that
arise from wrongly assuming a strong memory model are
not necessarily exposed. This is because some CPUs of-
fer weaker memory models, which can have very com-
plex semantics, to the point where official specifications
have been found to not match the observed semantics of
hardware [11]. This is a complex problem — significant
effort has been directed at simply studying the seman-
tics of CPUs with relaxed memory models [61] — and
we believe that effectively diagnosing this type of con-
currency bug will likely require more specialized tools.
Such bugs are currently not the target of SKI.

8 Related Work

Schedule space exploration. The traditional way to test
applications for concurrency bugs relies on manually cre-
ated stress tests. To increase the chances of unmask-
ing concurrency bugs, researchers have proposed various

tools that rely on introducing sleeps in the code to disrupt
the scheduling of threads [14, 19, 32, 56, 63, 64]. The
common limitation to these approaches is that they do
not systematically explore the thread interleaving space.

To address these limitations, a different class of tools
has been proposed to test for concurrency bugs [20, 53,
54]. This approach relies on taking full control of the
scheduling of threads to avoid redundant interleavings
and therefore increases the effectiveness of testing [20].
A previous attempt [17] to systematically test kernel
code has focused on small-scale educational kernels and
relied on modifications to the tested kernels. SKI follows
the systematic approach, but distinguishes itself from ex-
isting tools by being applicable to kernel code and by
being scalable to real-world kernels.

Because the schedule space is extremely large, sys-
tematic tools take advantage of different techniques to
restrict the schedule exploration while still ensuring ef-
fectiveness. Examples used in the context of finding
user-mode concurrency bugs include preemption bound-
ing [53], reschedule bounding [20] and the elimination of
redundant schedules [36]. Other work has proposed lim-
iting the valid run-time schedules by reducing or elimi-
nating the schedule non-determinism [27–30, 46, 71, 75].
Restricting the kernel schedules by applying these tech-
niques could further increase the effectiveness of SKI.

Symbolic execution [21, 25] is an analysis technique
that systematically explores the application execution
path space by keeping track, during execution, of sym-
bolic values instead of concrete values. Symbolic execu-
tion has been applied to multi-threaded applications by
implementing a custom user-mode scheduler [41]. More
recently, SymDrive [57] has been successful at testing
kernel device drivers using symbolic execution, although
it requires modifications to the kernel and does not target
concurrency bugs. Similarly, SWIFT [22] uses symbolic
execution to test kernel file system checkers but does not
target concurrency bugs. By using SKI’s ability to instru-
ment kernel schedules, it may be possible to leverage the
symbolic execution approach in the context of testing the
kernel for concurrency bugs.

Similarly to shared-memory systems, which are the
focus of SKI, distributed systems are also prone to
schedule-dependent bugs [45, 47, 58] and the complex-
ity of distributed systems also requires dedicated tech-
niques to scale to real-world applications. For example,
CrystalBall [73] proposes model checking live systems
and steering their execution away from states that trigger
bugs. By exploring states based on snapshots of live sys-
tems, CrystalBall is able to explore states that are more
likely to be relevant to the current execution than con-

13

428 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ducting the entire exploration from a single initial state.
MoDist [74] also finds bugs in distributed systems but
does so transparently, without requiring implementations
to be written in special languages. MoDist is able to scale
to complex implementations by judiciously simulating
events that typically trigger bugs, such as the reordering
of messages and the expiration of timers.

Detecting concurrency bugs. Different types of
bug detectors have been proposed to detect at runtime
whether an execution is anomalous [2, 18, 32, 34, 35,
49, 51, 62, 68, 78]. Detecting anomalous executions is
a challenge complementary to the exploration of the in-
terleaving space. DataCollider [32] is a kernel data race
detector that randomly pauses CPUs, through the use of
hardware breakpoints, to cause non-systematic schedule
diversity. In Section 5.5 we show how we combined
DataCollider’s data race detection mechanism with SKI
to detect data races. RedFlag [66] is another example of
a concurrency bug detector for the kernel that combines a
block-based atomicity checker with a lockset based data
race detector. In Section 5.5, we describe in detail how
SKI leverages various bug detectors.

Deterministic replay. Determinism is valuable for di-
agnosing concurrency bugs [13, 15, 27, 28, 30, 46], but
ensuring determinism is orthogonal to the systematic in-
terleaving exploration problem. Given the same, fixed
input parameters, SKI, like its user-mode counterparts,
can deterministically re-execute the same schedule, pro-
vided the kernel is given identical input in each run. Cur-
rently, SKI does not ensure that the same hardware input
is provided to the kernel (e.g. low-granularity timer val-
ues). Input determinism could be achieved through the
use of another layer running below the VMM [46] or by
modifying the VMM [31, 72].

Input space exploration. Dynamic testing techniques
require running the tested software and providing it with
testing input. The traditional approach has relied on
manually writing test cases [38], but more sophisticated
approaches have been proposed to address this chal-
lenge. Such approaches include blackbox fuzzers [16],
semantically-aware fuzzers [1, 10] and symbolic execu-
tion techniques [21, 37, 42]. Because file systems have a
particularly large input space and are critical components
in the system, file system testing has been a particularly
active area of research [12, 22, 50, 76, 77]. Even though
the focus of SKI is on the exploration of the interleav-
ing space, to evaluate SKI we explored the kernel input
space with an existing file system test suite, fsstress [44].

Virtual machine introspection (VMI). Several
VMM mechanisms have been proposed to infer high-
level information of virtual machines [23]. In many cases

the purpose of these mechanisms is to increase perfor-
mance. Examples include improving the host memory
usage by inferring which guest memory is actively be-
ing used [24], improving IO performance by anticipating
IO requests [40] and improving the scalability of virtual
machine monitors by inferring whether the virtual ma-
chine is executing critical sections [65, 70]. In addition,
VMI techniques have been leveraged to gather informa-
tion about virtual machines in security contexts [55]. Us-
ing the introspection approach, SKI infers the liveness
of threads for the purpose of achieving fine-level control
over the threads schedules. For example, SKI leverages
the observation that the PAUSE instruction is typically
associated with spin-locks, as does the work of Wang et.
al [70] in the context of increasing VMM performance.

9 Conclusion

This paper introduces SKI, the first practical testing tool
to systematically explore the interleaving space of real-
world kernel code. SKI does not require any modifica-
tions to tested kernels, nor does it require knowledge of
the semantics of any kernel synchronization primitives.
We detailed key optimizations that make SKI scale to
real-world code, and we have shown that SKI is effective
at finding buggy schedules in both FreeBSD and various
versions of the Linux kernel, without changing or anno-
tating the tested kernel.

As future work, we plan to explore different bug de-
tectors and to leverage the control provided by SKI to
effectively explore the input space.

Acknowledgements

We thank the anonymous reviewers for their valuable
feedback and our shepherd, Junfeng Yang, for his help.
Pedro Fonseca was partially supported by a fellowship
from the Portuguese Foundation for Science and Tech-
nology (FCT). Rodrigo Rodrigues was funded by the Eu-
ropean Research Council under an ERC starting grant.

References
[1] A Linux System call fuzz tester. http://codemonkey.

org.uk/projects/trinity/.

[2] ANNOUNCE: Lock validator. http://lwn.net/
Articles/185605/.

[3] Bug 144061 - [socket] race on unix socket close.
https://bugs.freebsd.org/bugzilla/show_
bug.cgi?id=144061.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 429

[4] Bug 14416 - Null pointer dereference in fs/pipe.c . http://
bugzilla.kernel.org/show_bug.cgi?id=14416.

[5] Bug 22602 - Oops while unmounting an USB key with
a FAT filesystem. https://bugzilla.kernel.org/
show_bug.cgi?id=22602.

[6] FS: pipe.c null pointer dereference. https://
git.kernel.org/cgit/linux/kernel/git/
stable/stable-queue.git/tree/queue-2.6.
31/fs-pipe.c-null-pointer-dereference.
patch?id=36e97dec52821f76536a25b763e320eb
7434c2a5.

[7] Kernel threads made easy. http://lwn.net/Articles/
65178/.

[8] OpenSUSE News. https://news.opensuse.org/
2014/03/19/development-for-13-2-kicks-off/.

[9] Patch ”ext4: fix crash when accessing /proc/mounts
concurrently” has been added to the 3.6-stable tree.
http://www.mail-archive.com/stable@vger.
kernel.org/msg19380.html.

[10] AITEL, D. The advantages of block-based protocol analysis for
security testing. Tech. rep., Immunity, Inc., 2002.

[11] ALGLAVE, J., FOX, A., ISHTIAQ, S., MYREEN, M. O.,
SARKAR, S., SEWELL, P., AND NARDELLI, F. Z. The seman-
tics of POWER and ARM multiprocessor machine code. In Proc.
of Workshop on Declarative Aspects of Multicore Programming
(DAMP) (2008).

[12] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
BAIRAVASUNDARAM, L. N., DENEHY, T. E., POPOVICI, F. I.,
PRABHAKARAN, V., AND SIVATHANU, M. Semantically-smart
disk systems: Past, present, and future. SIGMETRICS Perform.
Eval. Rev. 33, 4 (Mar. 2006), 29–35.

[13] AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient
system-enforced deterministic parallelism. In Proc. of Operating
System Design and Implementation (OSDI) (2010).

[14] BEN-ASHER, Y., EYTANI, Y., FARCHI, E., AND UR, S. Noise
makers need to know where to be silent – Producing schedules
that find bugs. In Proc. of International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation
(ISoLA) (2006).

[15] BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G. Grace:
Safe multithreaded programming for C/C++. In Proc. of Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (2009).

[16] BIRD, D. L., AND MUNOZ, C. U. Automatic generation of ran-
dom self-checking test cases. IBM Syst. J. 22, 3 (Sept. 1983),
229–245.

[17] BLUM, B. Landslide: Systematic Dynamic Race Detection
in Kernel Space. MS thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, May 2012.
http://www.pdl.cmu.edu/PDL-FTP/associated/
CMU-CS-12-118.pdf.

[18] BOND, M. D., COONS, K. E., AND MCKINLEY, K. S. PACER:
Proportional detection of data races. In Proc. of Programming
Languages Design and Implementation (PLDI) (2010).

[19] BRON, A., FARCHI, E., MAGID, Y., NIR, Y., AND UR, S. Ap-
plications of synchronization coverage. In Proc. of Symposium
on Principles and Practice of Parallel Programming (PPoPP)
(2005).

[20] BURCKHARDT, S., KOTHARI, P., MUSUVATHI, M., AND NA-
GARAKATTE, S. A randomized scheduler with probabilistic
guarantees of finding bugs. In Proc. of International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS) (2010).

[21] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Proc. of Operating System Design and
Implementation (OSDI) (2008).

[22] CARREIRA, J. A., RODRIGUES, R., CANDEA, G., AND MA-
JUMDAR, R. Scalable testing of file system checkers. In Proc. of
European Conference on Computer Systems (EuroSys) (2012).

[23] CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In Proc. of Hot Topics in Operating Systems (HotOS) (2001).

[24] CHIANG, J.-H., LI, H.-L., AND CHIUEH, T.-C. Introspection-
based memory de-duplication and migration. In Proc. of Inter-
national Conference on Virtual Execution Environments (VEE)
(2013).

[25] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E:
A platform for in-vivo multi-path analysis of software systems.
In Proc. of International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2011).

[26] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.
RadixVM: Scalable address spaces for multithreaded applica-
tions. In Proc. of European Conference on Computer Systems
(EuroSys) (2013).

[27] CUI, H., SIMSA, J., LIN, Y.-H., LI, H., BLUM, B., XU, X.,
YANG, J., GIBSON, G. A., AND BRYANT, R. E. Parrot: A
practical runtime for deterministic, stable, and reliable threads.
In Proc. of Symposium on Operating System Principles (SOSP)
(2013).

[28] CUI, H., WU, J., GALLAGHER, J., GUO, H., AND YANG, J. Ef-
ficient deterministic multithreading through schedule relaxation.
In Proc. of Symposium on Operating System Principles (SOSP)
(2011).

[29] CUI, H., WU, J., TSAI, C.-C., AND YANG, J. Stable determin-
istic multithreading through schedule memoization. In Proc. of
Operating System Design and Implementation (OSDI) (2010).

[30] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. DMP:
Deterministic shared memory multiprocessing. In Proc. of Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2009).

[31] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A.,
AND CHEN, P. M. Execution replay of multiprocessor virtual
machines. In Proc. of International Conference on Virtual Exe-
cution Environments (VEE) (2008).

[32] ERICKSON, J., MUSUVATHI, M., BURCKHARDT, S., AND
OLYNYK, K. Effective data-race detection for the kernel. In
Proc. of Operating System Design and Implementation (OSDI)
(2010).

15

430 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[33] FEINER, P., BROWN, A. D., AND GOEL, A. Comprehensive
kernel instrumentation via dynamic binary translation. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2012).

[34] FLANAGAN, C., AND FREUND, S. N. Atomizer: A dy-
namic atomicity checker for multithreaded programs. In Proc.
of Symposium on Principles of Programming Languages (POPL)
(2004).

[35] FONSECA, P., LI, C., AND RODRIGUES, R. Finding complex
concurrency bugs in large multi-threaded applications. In Proc.
of European Conference on Computer Systems (EuroSys) (2011).

[36] GODEFROID, P. Model checking for programming languages
using VeriSoft. In Proc. of Symposium on Principles of Program-
ming Languages (POPL) (1997).

[37] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. SIGPLAN Not. 40, 6 (2005),
213–223.

[38] GRAVES, T. L., HARROLD, M. J., KIM, J.-M., PORTER, A.,
AND ROTHERMEL, G. An empirical study of regression test se-
lection techniques. ACM Trans. Softw. Eng. Methodol. 10, 2 (Apr.
2001), 184–208.

[39] HOLZMANN, G. J. Mars code. Commun. ACM 57, 2 (2014),
64–73.

[40] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Antfarm: Tracking processes in a virtual ma-
chine environment. In Proc. of Annual Technical Conference
(ATC) (2006).

[41] KASIKCI, B., ZAMFIR, C., AND CANDEA, G. Data races vs.
data race bugs: Telling the difference with portend. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2012).

[42] KING, J. C. Symbolic execution and program testing. Commun.
ACM 19, 7 (July 1976), 385–394.

[43] KOEHNEMANN, H., AND LINDQUIST, T. E. Towards target-
level testing and debugging tools for embedded software. In TRI-
Ada (1993).

[44] LARSON, P. Testing linux with linux test project. In Proc. of
Ottawa Linux Symposium (OLS) (2002).

[45] LI, S., ZHOU, H., LIN, H., XIAO, T., LIN, H., LIN, W., AND
XIE, T. A characteristic study on failures of production dis-
tributed data-parallel programs. In Proc. of International Con-
ference on Software Engineering (ICSE) (2013).

[46] LIU, T., CURTSINGER, C., AND BERGER, E. D. Dthreads: Ef-
ficient deterministic multithreading. In Proc. of Symposium on
Operating System Principles (SOSP) (2011).

[47] LIU, X. WiDS checker: Combating bugs in distributed sys-
tems. In Proc. of Networked Systems Design and Implementation
(NSDI) (2007).

[48] LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from
mistakes: A comprehensive study on real world concurrency bug
characteristics. In Proc. of International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (2008).

[49] LU, S., TUCEK, J., QIN, F., AND ZHOU, Y. AVIO: detecting
atomicity violations via access interleaving invariants. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2006).

[50] MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Ffsck: The fast file system checker.

[51] MARINO, D., MUSUVATHI, M., AND NARAYANASAMY, S. Lit-
eRace: Effective sampling for lightweight data-race detection.
In Proc. of Programming Languages Design and Implementation
(PLDI) (2009).

[52] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Proc.
of International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS) (1998).

[53] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing
heisenbugs in concurrent programs. In Proc. of Operating Sys-
tem Design and Implementation (OSDI) (2008).

[54] NAGARAKATTE, S., BURCKHARDT, S., MARTIN, M. M., AND
MUSUVATHI, M. Multicore acceleration of priority-based sched-
ulers for concurrency bug detection. In Proc. of Programming
Languages Design and Implementation (PLDI) (2012).

[55] NANCE, K., BISHOP, M., AND HAY, B. Virtual machine in-
trospection: Observation or interference? IEEE Security and
Privacy 6, 5 (Sept. 2008), 32–37.

[56] PARK, S., LU, S., AND ZHOU, Y. CTrigger: Exposing atom-
icity violation bugs from their hiding places. In Proc. of Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2009).

[57] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
Drive: Testing drivers without devices. In Proc. of Operating
System Design and Implementation (OSDI) (2012).

[58] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In Proc. of Networked Systems Design and
Implementation (NSDI) (2006).

[59] RUSSELL, P. R. Unreliable Guide To Locking. http://
kernelbook.sourceforge.net/kernel-locking.
pdf.

[60] SAHOO, S. K., CRISWELL, J., AND ADVE, V. S. An empirical
study of reported bugs in server software with implications for
automated bug diagnosis. Tech. Report 2142/13697, University
of Illinois, 2009.

[61] SARKAR, S., SEWELL, P., NARDELLI, F. Z., OWENS, S.,
RIDGE, T., BRAIBANT, T., MYREEN, M. O., AND ALGLAVE,
J. The semantics of x86-CC multiprocessor machine code. In
Proc. of Symposium on Principles of Programming Languages
(POPL) (2009).

[62] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. Eraser: A dynamic data race detector for
multi-threaded programs. In Proc. of Symposium on Operating
System Principles (SOSP) (1997).

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 431

[63] SEN, K. Race directed random testing of concurrent programs.
In Proc. of Programming Languages Design and Implementation
(PLDI) (2008).

[64] STOLLER, S. D. Testing concurrent Java programs using ran-
domized scheduling. In Proc. of Workshop on Runtime Verifica-
tion (RV) (2002).

[65] UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DAN-
NOWSKI, U. Towards scalable multiprocessor virtual machines.
In Proc. of Conference on Virtual Machine Research And Tech-
nology Symposium (VM) (2004).

[66] URTEAGA, I. N., BARNHART, K., AND HAN, Q. REDFLAG: A
run-time, distributed, flexible, lightweight, and generic fault de-
tection service for data-driven wireless sensor applications. Per-
vasive Mob. Comput. 5 (October 2009), 432–446.

[67] VALOIS, J. D. Implementing lock-free queues. In Proc. of Inter-
national Conference on Parallel and Distributed Computing and
Systems (PDCS) (1994).

[68] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND
NARAYANASAMY, S. Detecting and surviving data races using
complementary schedules. In Proc. of Symposium on Operating
System Principles (SOSP) (2011).

[69] WAGNER, S., JÜRJENS, J., KOLLER, C., AND TRISCHBERGER,
P. Comparing bug finding tools with reviews and tests. In Pro-
ceedings of the 17th IFIP TC6/WG 6.1 International Conference
on Testing of Communicating Systems (Testcom) (2005).

[70] WANG, Z., LIU, R., CHEN, Y., WU, X., CHEN, H., ZHANG,
W., AND ZANG, B. COREMU: A scalable and portable parallel
full-system emulator. In Proc. of Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2011).

[71] WU, J., TANG, Y., HU, G., CUI, H., AND YANG, J. Sound
and precise analysis of parallel programs through schedule spe-
cialization. In Proc. of Programming Languages Design and Im-
plementation (PLDI) (2012).

[72] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM,
G., AND WEISSMAN, B. Retrace: Collecting execution trace
with virtual machine deterministic replay. In Proc. of Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS)
(2007).

[73] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. CrystalBall: Predicting and preventing inconsistencies in de-
ployed distributed systems. In Proc. of Networked Systems De-
sign and Implementation (NSDI) (2009).

[74] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:
Transparent model checking of unmodified distributed systems.
In Proc. of Networked Systems Design and Implementation
(NSDI) (2009).

[75] YANG, J., CUI, H., WU, J., TANG, Y., AND HU, G. Determin-
ism is not enough: Making parallel programs reliable with stable
multithreading. Communications of the ACM (2014).

[76] YANG, J., SAR, C., AND ENGLER, D. EXPLODE: a
lightweight, general system for finding serious storage system er-
rors. In Proc. of Operating System Design and Implementation
(OSDI) (2006).

[77] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. In Proc.
of Operating System Design and Implementation (OSDI) (2004).

[78] YU, Y., RODEHEFFER, T., AND CHEN, W. RaceTrack: Efficient
detection of data race conditions via adaptive tracking. In Proc.
of Symposium on Operating System Principles (SOSP) (2005).

17

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 433

All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Applications

Thanumalayan Sankaranarayana Pillai Vijay Chidambaram Ramnatthan Alagappan
Samer Al-Kiswany Andrea C. Arpaci-Dusseau

University of Wisconsin-Madison
Remzi H. Arpaci-Dusseau

Abstract
We present the first comprehensive study of application-
level crash-consistency protocols built atop modern file
systems. We find that applications use complex update
protocols to persist state, and that the correctness of
these protocols is highly dependent on subtle behaviors
of the underlying file system, which we term persistence
properties. We develop a tool named BOB that empir-
ically tests persistence properties, and use it to demon-
strate that these properties vary widely among six pop-
ular Linux file systems. We build a framework named
ALICE that analyzes application update protocols and
finds crash vulnerabilities, i.e., update protocol code that
requires specific persistence properties to hold for cor-
rectness. Using ALICE, we analyze eleven widely-used
systems (including databases, key-value stores, version
control systems, distributed systems, and virtualization
software) and find a total of 60 vulnerabilities, many of
which lead to severe consequences. We also show that
ALICE can be used to evaluate the effect of new file-
system designs on application-level consistency.

1 Introduction
Crash recovery is a fundamental problem in systems
research [8, 21, 34, 38], particularly in database man-
agement systems, key-value stores, and file systems.
Crash recovery is hard to get right; as evidence, con-
sider the ten-year gap between the release of commercial
database products (e.g., System R [7, 8] and DB2 [34])
and the development of a working crash recovery algo-
rithm (ARIES [33]). Even after ARIES was invented, an-
other five years passed before the algorithm was proven
correct [24, 29].

The file-systems community has developed a standard
set of techniques to provide file-system metadata consis-
tency in the face of crashes [4]: logging [5, 9, 21, 37, 45,
51], copy-on-write [22,30,38,44], soft updates [18], and
other similar approaches [10, 16]. While bugs remain in
the file systems that implement these methods [28], the
core techniques are heavily tested and well understood.

Many important applications, including databases
such as SQLite [43] and key-value stores such as Lev-
elDB [20], are currently implemented on top of these
file systems instead of directly on raw disks. Such data-
management applications must also be crash consistent,

but achieving this goal atop modern file systems is chal-
lenging for two fundamental reasons.

The first challenge is that the exact guarantees pro-
vided by file systems are unclear and underspecified.
Applications communicate with file systems through the
POSIX system-call interface [48], and ideally, a well-
written application using this interface would be crash-
consistent on any file system that implements POSIX.
Unfortunately, while the POSIX standard specifies the
effect of a system call in memory, specifications of how
disk state is mutated in the event of a crash are widely
misunderstood and debated [1]. As a result, each file sys-
tem persists application data slightly differently, leaving
developers guessing.

To add to this complexity, most file systems provide
a multitude of configuration options that subtly affect
their behavior; for example, Linux ext3 provides numer-
ous journaling modes, each with different performance
and robustness properties [51]. While these configura-
tions are useful, they complicate reasoning about exact
file system behavior in the presence of crashes.

The second challenge is that building a high-
performance application-level crash-consistency proto-
col is not straightforward. Maintaining application con-
sistency would be relatively simple (though not trivial)
if all state were mutated synchronously. However, such
an approach is prohibitively slow, and thus most appli-
cations implement complex update protocols to remain
crash-consistent while still achieving high performance.
Similar to early file system and database schemes, it is
difficult to ensure that applications recover correctly af-
ter a crash [41, 47]. The protocols must handle a wide
range of corner cases, which are executed rarely, rela-
tively untested, and (perhaps unsurprisingly) error-prone.

In this paper, we address these two challenges directly,
by answering two important questions. The first question
is: what are the behaviors exhibited by modern file sys-
tems that are relevant to building crash-consistent appli-
cations? We label these behaviors persistence properties
(§2). They break down into two global categories: the
atomicity of operations (e.g., does the file system ensure
that rename() is atomic [32]?), and the ordering of oper-
ations (e.g., does the file system ensure that file creations
are persisted in the same order they were issued?).

To analyze file system persistence properties, we de-

1

434 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 1: Git Crash Vulnerability. The figure shows part of
the Git update protocol. The arrows represent ordering dependencies:
if the appends are not persisted before the rename, any further commits
to the repository fail. We find that, whether the protocol is vulnerable
or not varies even between configurations of the same file system.

velop a simple tool, known as the Block Order Breaker
(BOB). BOB collects block-level traces underneath a file
system and re-orders them to explore possible on-disk
crash states that may arise. With this simple approach,
BOB can find which persistence properties do not hold
for a given system. We use BOB to study six Linux file
systems (ext2, ext3, ext4, reiserfs, btrfs, and xfs) in var-
ious configurations. We find that persistence properties
vary widely among the tested file systems. For example,
appends to file A are persisted before a later rename of
file B in the ordered journaling mode of ext3, but not in
the same mode of ext4, unless a special option is enabled.

The second question is: do modern applications im-
plement crash consistency protocols correctly? An-
swering this question requires understanding update pro-
tocols, no easy task since update protocols are com-
plex [47] and spread across multiple files in the source
code. To analyze applications, we develop ALICE, a
novel framework that enables us to systematically study
application-level crash consistency (§3). ALICE takes ad-
vantage of the fact that, no matter how complex the ap-
plication source code, the update protocol boils down to
a sequence of file-system related system calls. By an-
alyzing permutations of the system-call trace of work-
loads, ALICE produces protocol diagrams: rich annotated
graphs of update protocols that abstract away low-level
details to clearly present the underlying logic. ALICE

determines the exact persistence properties assumed by
applications as well as flaws in their design.

Figure 1 shows an example of ALICE in action. The
figure shows a part of the update protocol of Git [26].
ALICE detected that the appends need to be persisted be-
fore the rename; if not, any future commits to the repos-
itory fail. This behavior varies widely among file sys-
tems: a number of file-system features such as delayed
allocation and journaling mode determine whether file
systems exhibit this behavior. Some common configura-
tions like ext3 ordered mode persist these operations in
order, providing a false sense of security to the developer.

We use ALICE to study and analyze the up-
date protocols of eleven important applications: Lev-
elDB [20], GDBM [19], LMDB [46], SQLite [43],
PostgreSQL [49], HSQLDB [23], Git [26], Mercu-
rial [31]), HDFS [40], ZooKeeper [3], and VMWare

Player [52]. These applications represent software from
different domains and at varying levels of maturity. The
study focuses on file-system behavior that affects users,
rather than on strictly verifying application correctness.
We hence consider typical usage scenarios, sometimes
checking for additional consistency guarantees beyond
those promised in the application documentation. Our
study takes a pessimistic view of file-system behavior;
for example, we even consider the case where renames
are not atomic on a system crash.

Overall, we find that application-level consistency in
these applications is highly sensitive to the specific per-
sistence properties of the underlying file system. In gen-
eral, if application correctness depends on a specific file-
system persistence property, we say the application con-
tains a crash vulnerability; running the application on a
different file system could result in incorrect behavior.
We find a total of 60 vulnerabilities across the applica-
tions we studied; several vulnerabilities have severe con-
sequences such as data loss or application unavailability.
Using ALICE, we also show that many of these vulner-
abilities (roughly half) manifest on current file systems
such as Linux ext3, ext4, and btrfs.

We find that many applications implicitly expect or-
dering among system calls (e.g., that writes, even to dif-
ferent files, are persisted in order); when such ordering
is not maintained, 7 of the 11 tested applications have
trouble properly recovering from a crash. We also find
that 10 of the 11 applications expect atomicity of file-
system updates. In some cases, such a requirement is
reasonable (e.g., a single 512-byte write or file rename
operation are guaranteed to be atomic by many current
file systems when running on a hard-disk drive); in other
situations (e.g., with file appends), it is less so. We also
note that some of these atomicity assumptions are not fu-
ture proof; for example, new storage technology may be
atomic only at a smaller granularity than 512-bytes (e.g.,
eight-byte PCM [12]). Finally, for 7 of the 11 applica-
tions, durability guarantees users likely expect are not
met, often due to directory operations not being flushed.

ALICE also enables us to determine whether new file-
system designs will help or harm application protocols.
We use ALICE to show the benefits of an ext3 variant
we propose (ext3-fast), which retains much of the pos-
itive ordering and atomicity properties of ext3 in data
journaling mode, without the high cost. Such verifica-
tion would have been useful in the past; when delayed
allocation was introduced in Linux ext4, it broke several
applications, resulting in bug reports, extensive mailing-
list discussions, widespread data loss, and finally, file-
system changes [14]. With ALICE, testing the impact of
changing persistence properties can become part of the
file-system design process.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 435

Figure 2: Crash States. The figure shows the initial, final, and
some of the intermediate crash states possible for the workload de-
scribed in Section 2.1 . X represents garbage data in the files. Interme-
diate states #A and #B represent different kinds of atomicity violations,
while intermediate state #C represents an ordering violation.

2 Persistence Properties
In this section, we study the persistence properties of
modern file systems. These properties determine which
possible post-crash file system states are possible for a
given file system; as we will see, different file systems
provide subtly different guarantees, making the chal-
lenge of building correct application protocols atop such
systems more vexing.

We begin with an example, and then describe our
methodology: to explore possible on-disk states by re-
ordering the I/O block stream, and then examine pos-
sible resulting states. Our testing is not complete, but
finds persistence properties that do not hold for a file-
system implementation. We then discuss our findings for
six widely-used Linux file systems: ext2 [6], ext3 [51],
ext4 [50], btrfs [30], xfs [45], and reiserfs [37].

Application-level crash consistency depends strongly
upon these persistence properties, yet there are currently
no standards. We believe that defining and studying per-
sistence properties is the first step towards standardizing
them across file systems.

2.1 An Example
All application update protocols boil down to a sequence
of I/O-related system calls which modify on-disk state.
Two broad properties of system calls affect how they are
persisted. The first is atomicity: does the update from the
call happen all at once, or are there possible intermediate
states that might arise due to an untimely crash? The
second is ordering: can this system call be persisted after
a later system call? We now explain these properties with
an example.
We consider the following pseudo-code snippet:
write(f1, "pp");
write(f2, "qq");

In this example, the application first appends the string
pp to file descriptor f1 and then appends the string qq to
file descriptor f2. Note that we will sometimes refer to
such a write() as an append() for simplicity.

Figure 2 shows a few possible crash states that can
result. If the append is not atomic, for example, it would
be possible for the size of the file to be updated without
the new data reflected to disk; in this case, the files could
contain garbage, as shown in State A in the diagram. We

refer to this as size-atomicity. A lack of atomicity could
also be realized with only part of a write reaching disk, as
shown in State B. We refer to this as content-atomicity.

If the file system persists the calls out of order, another
outcome is possible (State C). In this case, the second
write reaches the disk first, and as a result only the second
file is updated. Various combinations of these states are
also possible.

As we will see when we study application update pro-
tocols, modern applications expect different atomicity
and ordering properties from underlying file systems. We
now study such properties in detail.

2.2 Study and Results
We study the persistence properties of six Linux file sys-
tems: ext2, ext3, ext4, btrfs, xfs, and reiserfs. A large
number of applications have been written targeting these
file systems. Many of these file systems also provide
multiple configurations that make different trade-offs be-
tween performance and consistency: for instance, the
data journaling mode of ext3 provides the highest level of
consistency, but often results in poor performance [35].
Between file systems and their various configurations, it
is challenging to know or reason about which persistence
properties are provided. Therefore, we examine different
configurations of the file systems we study (a total of 16).

To study persistence properties, we built a tool, known
as the Block Order Breaker (BOB), to empirically find
cases where various persistence properties do not hold
for a given file system. BOB first runs a simple user-
supplied workload designed to stress the persistence
property tested (e.g., a number of writes of a specific size
to test overwrite atomicity). BOB collects the block I/O
generated by the workload, and then re-orders the col-
lected blocks, selectively writing some of them to disk to
generate a new legal disk state (disk barriers are obeyed).
In this manner, BOB generates a number of unique disk
images corresponding to possible on-disk states after a
system crash. BOB then runs file-system recovery on
each resulting disk image, and checks whether various
persistence properties hold (e.g., if writes were atomic).
If BOB finds even a single disk image where the checker
fails, then we know that the property does not hold on
the file system. Proving the converse (that a property
holds in all situations) is not possible using BOB; cur-
rently, only simple block re-orderings and all prefixes of
the block trace are tested.

Note that different system calls (e.g., writev(),
write()) lead to the same file-system output. We group
such calls together into a generic file-system update we
term an operation. We have found that grouping all op-
erations into three major categories is sufficient for our
purposes here: file overwrite, file append, and directory
operations (including rename, link, unlink, mkdir, etc.).

3

436 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Persistence Property File system

ex
t2

ex
t2

-s
yn

c
ex

t3
-w

ri
te

ba
ck

ex
t3

-o
rd

er
ed

ex
t3

-d
at

aj
ou

rn
al

ex
t4

-w
ri

te
ba

ck
ex

t4
-o

rd
er

ed
ex

t4
-n

od
el

al
lo

c
ex

t4
-d

at
aj

ou
rn

al
bt

rf
s

xf
s

xf
s-

w
sy

nc
re

is
er

fs
-n

ol
og

re
is

er
fs

-w
ri

te
ba

ck
re

is
er

fs
-o

rd
er

ed
re

is
er

fs
-d

at
aj

ou
rn

al

Atomicity
Single sector overwrite
Single sector append × × × ×
Single block overwrite ×××× ××× ×× ×××
Single block append ××× × ××
Multi-block append/writes ××××××××××××××××
Multi-block prefix append ××× × ××
Directory op ×× ×
Ordering
Overwrite → Any op × ×× ××× ×××××
[Append, rename]→ Any op × × × ××
O TRUNC Append → Any op × × × ××
Append → Append (same file) × × × ××
Append → Any op × × ×× ×× ××
Dir op → Any op × × ×

Table 1: Persistence Properties. The table shows atomic-
ity and ordering persistence properties that we empirically determined
for different configurations of file systems. X → Y indicates that X is
persisted before Y. [X,Y] → Z indicates that Y follows X in program
order, and both become durable before Z. A × indicates that we have a
reproducible test case where the property fails in that file system.

Table 1 lists the results of our study. The table shows,
for each file system (and specific configuration) whether
a particular persistence property has been found to not
hold; such cases are marked with an ×.

The size and alignment of an overwrite or append af-
fects its atomicity. Hence, we show results for single sec-
tor, single block, and multi-block overwrite and append
operations. For ordering, we show whether given prop-
erties hold assuming different orderings of overwrite, ap-
pend, and directory operations; the append operation has
some interesting special cases relating to delayed alloca-
tion (as found in Linux ext4) – we show these separately.

2.2.1 Atomicity
We observe that all tested file systems seemingly pro-
vide atomic single-sector overwrites: in some cases (e.g.,
ext3-ordered), this property arises because the underly-
ing disk provides atomic sector writes. Note that if such
file systems are run on top of new technologies (such as
PCM) that provide only byte-level atomicity [12], single-
sector overwrites will not be atomic.

Providing atomic appends requires the update of two
locations (file inode, data block) atomically. Doing so re-
quires file-system machinery, and is not provided by ext2
or writeback configurations of ext3, ext4, and reiserfs.

Overwriting an entire block atomically requires data
journaling or copy-on-write techniques; atomically ap-
pending an entire block can be done using ordered mode
journaling, since the file system only needs to ensure the

entire block is persisted before adding a pointer to it.
Current file systems do not provide atomic multi-block

appends; appends can be broken down into multiple op-
erations. However, most file systems seemingly guaran-
tee that some prefix of the data written (e.g., the first 10
blocks of a larger append) will be appended atomically.

Directory operations such as rename() and link()

are seemingly atomic on all file systems that use tech-
niques like journaling or copy-on-write for consistency.

2.2.2 Ordering
We observe that ext3, ext4, and reiserfs in data journal-
ing mode, and ext2 in sync mode, persist all tested op-
erations in order. Note that these modes often result in
poor performance on many workloads [35].

The append operation has interesting special cases. On
file systems with the delayed allocation feature, it may
be persisted after other operations. A special exception
to this rule is when a file is appended, and then renamed.
Since this idiom is commonly used to atomically update
files [14], many file systems recognize it and allocate
blocks immediately. A similar special case is append-
ing to files that have been opened with O TRUNC. Even
with delayed allocation, successive appends to the same
file are persisted in order. Linux ext2 and btrfs freely re-
order directory operations (especially operations on dif-
ferent directories [11]) to increase performance.

2.3 Summary
From Table 1, we observe that persistence properties
vary widely among file systems, and even among differ-
ent configurations of the same file system. The order of
persistence of system calls depends upon small details
like whether the calls are to the same file or whether the
file was renamed. From the viewpoint of an application
developer, it is risky to assume that any particular prop-
erty will be supported by all file systems.

3 The Application-Level Intelligent
Crash Explorer (ALICE)

We have now seen that file systems provide different per-
sistence properties. However, some important questions
remain: How do current applications update their on-disk
structures? What do they assume about the underlying
file systems? Do such update protocols have vulnerabil-
ities? To address these questions, we developed ALICE

(Application-Level Intelligent Crash Explorer). ALICE

constructs different on-disk file states that may result due
to a crash, and then verifies application correctness on
each created state.

Unlike other approaches [53, 54] that simply test an
application atop a given storage stack, ALICE finds the
generic persistence properties required for application
correctness, without being restricted to only a specified

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 437

Figure 3: ALICE Overview. The figure shows how ALICE
converts user inputs into crash states and finally into crash vulnerabil-
ities. Black boxes are user inputs. Grey boxes are optional inputs.

file system. ALICE associates discovered vulnerabili-
ties directly with source lines, and targets specific states
that are prone to reveal crash vulnerabilities in different
source lines. ALICE achieves this by constructing file
states directly from the system-call trace of an applica-
tion workload. The states to be explored and verified can
be described purely in terms of system calls: the actual
storage stack is not involved. ALICE can also be used to
abstractly test the safety of new file systems.

We first describe how ALICE is used (§3.1). We then
describe how ALICE calculates states possible during
a system crash, using an Abstract Persistence Model
(APM) (§3.2). Next, we describe how these states are
selectively explored so as to discover application require-
ments in terms of persistence properties (§3.3), and how
discovered vulnerabilities are reported associated with
source code lines (§3.4). Finally, we describe our im-
plementation (§3.5) and its limitations (§3.6).

3.1 Usage
ALICE is simple to use. The user first supplies ALICE

with an initial snapshot of the files used by the applica-
tion (typically an entire directory), and a workload script
that exercises the application (such as performing a trans-
action). The user also supplies a checker script corre-
sponding to the workload that verifies whether invariants
of the workload are maintained (such as atomicity of the
transaction). ALICE runs the checker atop different crash
states, i.e., the state of files after rebooting from a system
crash that can occur during the workload. ALICE then
produces a logical representation of the update protocol
executed during the workload, vulnerabilities in the pro-
tocol and their associated source lines, and persistence
properties required for correctness.

Workload

Opening database
db = gdbm.open(’mydb’)

Inserting key-value
db[’x’] = ’foo’
db.sync()

print ’Done’

Checker

db = gdbm.open(’mydb’)
c = len(db.keys())
if alice.printed(’Done’):
..assert c == 1
else:
..assert c == 0 or c == 1
if c == 1:
..assert db[’x’] == ’foo’

Listing 1: Workload and Checker. Simplified form of python
workload and checker for GDBM (a key-value store).

The exact crash states possible for a workload varies
with the file system. For example, depending on the file
system, appending to a file can result in the file con-
taining either a prefix of the data persisted, with ran-
dom data intermixed with file data, or various combi-
nations thereof. ALICE uses file-system Abstract Per-
sistence Models (APMs) to define the exact crash states
possible in a given file system. By default, ALICE uses an
APM with few restrictions on the possible crash states, so
as to find generic persistence properties required for ap-
plication correctness. However, ALICE can be restricted
to find vulnerabilities occurring only on a specific file
system, by supplying the APM of that file system.

Listing 1 shows example workload and checker scripts
for GDBM, a key-value store, written in Python. We dis-
cuss how APMs are specified in the next subsection.

3.2 Crash States and APMs
Figure 3 shows an overview of the steps ALICE follows
to find crash vulnerabilities. The user-supplied workload
is first run, and a system-call trace obtained; the trace
represents an execution of the application’s update pro-
tocol. The trace is converted into a sequence of logical
operations by ALICE. The sequence of logical opera-
tions, along with an APM, is used to calculate the dif-
ferent crash states that are possible from the initial state.
These steps are now explained in detail.

3.2.1 Logical Operations
ALICE first converts the trace of system calls in the ap-
plication workload to logical operations. Logical opera-
tions abstract away details such as current read and write
offsets, file descriptors, and transform a large set of sys-
tem calls and other I/O producing behavior into a small
set of file-system operations. For example, write(),
pwrite(), writev(), pwritev(), and mmap()-writes
are all translated into overwrite or append logical op-
erations. Logical operations also associate a conceptual
inode to each file or directory involved.

3.2.2 Abstract Persistence Models
An APM specifies all constraints on the atomicity and or-
dering of logical operations for a given file system, thus
defining which crash states are possible.

APMs represent crash states as consisting of two log-
ical entities: file inodes containing data and a file size,

5

438 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Logical Operation Micro-operations
overwrite N× write block(data)
append change file size

write block(random)
write block(data)

{N×

truncate change file size
write block(random)
write block(zeroes)

{N×

link create dir entry
unlink delete dir entry + truncate if last link
rename delete dir entry(dest) + truncate if last link

create dir entry(dest)
delete dir entry(source)

print stdout
(a) Atomicity Constraints.

Description Constraint
sync-ops [any-opi(A) ... fsyncj (A)]→any-opk ∀ i < j < k

stdout stdouti()→any-opj ∀ i < j
(b) Ordering Constraints.

Table 2: Default APM Constraints. (a) shows atomicity
constraints; N indicates a logical operation being divided into many
micro-ops. (b) shows ordering constraints. Xi is the ith operation, and
any-op(A) is an operation on the file or directory A.

and directories containing directory entries. Each logical
operation operates on one or more of these entities. An
infinite number of instances of each logical entity exist,
and they are never allocated or de-allocated, but rather
simply changed. Additionally, each crash state also in-
cludes any output printed to the terminal during the time
of the crash as a separate entity.

To capture intermediate crash states, APMs break log-
ical operations into micro-operations, i.e., the smallest
atomic modification that can be performed upon each
logical entity. There are five micro-ops:

• write block: A write of size block to a file. Two spe-
cial arguments to write block are zeroes and random:
zeroes indicates the file system initializing a newly
allocated block to zero; random indicates an unini-
tialized block. Writes beyond the end of a file cause
data to be stored without changing file size.

• change file size: Changes the size of a file inode.
• create dir entry: Creates a directory entry in a direc-

tory, and associates a file inode or directory with it.
• delete dir entry: Deletes a directory entry.
• stdout: Adds messages to the terminal output.

The APM specifies atomicity constraints by defining
how logical operations are translated into micro-ops. The
APM specifies ordering constraints by defining which
micro-ops can reach the disk before other micro-ops.

In most cases, we utilize a default APM to find the
greatest number of vulnerabilities in application update
protocols. The atomicity constraints followed by this de-
fault file system are shown in Table 2(a), which specifi-
cally shows how each logical operation is broken down
into micro-ops. The ordering constraints imposed by the
default APM are quite simple, as seen in Table 2(b): all
micro-ops followed by a sync on a file A are ordered after

open(path="/x2VC") = 10
Micro-ops: None
Ordered after: None

pwrite(fd=10, offset=0, size=1024)
Micro-ops: #1 write block(inode=8, offset=0, size=512)
Micro-ops: #2 write block(inode=8, offset=512, size=512)
Ordered after: None

fsync(10)
Micro-ops: None
Ordered after: None

pwrite(fd=10, offset=1024, size=1024)
Micro-ops: #3 write block(inode=8, offset=1024, size=512)
Micro-ops: #4 write block(inode=8, offset=1536, size=512)
Ordered after: #1, #2

link(oldpath="/x2VC", newpath="/file")
Micro-ops: #5 create dir entry(dir=2, entry=‘file’, inode=8)
Ordered after: #1, #2

write(fd=1, data="Writes recorded", size=15)
Micro-ops: #6 stdout(”Writes recorded”)
Ordered after: #1, #2

Listing 2: Annotated Update Protocol Example. Micro-
operations generated for each system call are shown along with their
dependencies. The inode number of x2VC is 8, and for the root
directory is 2. Some details of listed system calls have been omitted.

writes to A that precede the sync. Similar ordering also
applies to stdout, and additionally, all operations follow-
ing an stdout must be ordered after it.

ALICE can also model the behavior of real file systems
when configured with other APMs. As an example, for
the ext3 file system under the data=journal mode, the
ordering constraint is simply that each micro-op depends
on all previous micro-ops. Atomicity constraints for ext3
are mostly simple: all operations are atomic, except file
writes and truncates, which are split at block-granularity.
Atomic renames are imposed by a circular ordering de-
pendency between the micro-ops of each rename.

3.2.3 Constructing crash states.
As explained, using the APM, ALICE can translate the
system-call trace into micro-ops and calculate ordering
dependencies amongst them. Listing 2 shows an example
system-call trace, and the resulting micro-ops and order-
ing constraints. ALICE also represents the initial snapshot
of files used by the application as logical entities.

ALICE then selects different sets of the translated
micro-ops that obey the ordering constraints. A new
crash state is constructed by sequentially applying the
micro-ops in a selected set to the initial state (represented
as logical entities). For each crash state, ALICE then con-
verts the logical entities back into actual files, and sup-
plies them to the checker. The user-supplied checker thus
verifies the crash state.

3.3 Finding Application Requirements
By default, ALICE targets specific crash states that con-
cern the ordering and atomicity of each individual system
call. The explored states thus relate to basic persistence
properties like those discussed in Section 2, making it

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 439

straightforward to determine application requirements.
We now briefly describe the crash states explored.

Atomicity across System Calls. The application up-
date protocol may require multiple system calls to be
persisted together atomically. This property is easy to
check: if the protocol has N system calls, ALICE con-
structs one crash state for each prefix (i.e., the first X
system calls, ∀ 1 < X < N) applied. In the sequence
of crash states generated in this manner, the first crash
state to have an application invariant violated indicates
the start of an atomic group. The invariant will hold
once again in crash states where all the system calls in
the atomic group are applied. If ALICE determines that a
system call X is part of an atomic group, it does not test
whether the protocol is vulnerable to X being persisted
out of order, or being partially persisted.

System-Call Atomicity. The protocol may require a
single system call to be persisted atomically. ALICE tests
this for each system call by applying all previous sys-
tem calls to the crash state, and then generating crash
states corresponding to different intermediate states of
the system call and checking if application invariants are
violated. The intermediate states for file-system oper-
ations depend upon the APM, as shown (for example)
in Table 2. Some interesting cases include how ALICE
handles appends and how it explores the atomicity of
writes. For appends, we introduce intermediate states
where blocks are filled with random data; this models
the update of the size of a file reaching disk before the
data has been written. We split overwrites and appends
in two ways: into block-sized micro-operations, and into
three parts regardless of size. Though not exhaustive, we
have found our exploration of append and write atomic-
ity useful in finding application vulnerabilities.

Ordering Dependency among System Calls. The
protocol requires system call A to be persisted before B
if a crash state with B applied (and not A) violates appli-
cation invariants. ALICE tests this for each pair of system
calls in the update protocol by applying every system call
from the beginning of the protocol until B except for A.

3.4 Static Vulnerabilities
ALICE must be careful in how it associates problems
found in a system-call trace with source code. For exam-
ple, consider an application issuing ten writes in a loop.
The update protocol would then contain ten write()

system calls. If each write is required to be atomic for
application correctness, ALICE detects that each system
call is involved in a vulnerability; we term these as dy-
namic vulnerabilities. However, the cause of all these
vulnerabilities is a single source line. ALICE uses stack
trace information to correlate all 10 system calls to the
line, and reports it as a single static vulnerability. In the
rest of this paper, we only discuss static vulnerabilities.

3.5 Implementation
ALICE consists of around 4000 lines of Python code, and
also traces memory-mapped writes in addition to system
calls. It employs a number of optimizations.

First, ALICE caches crash states, and constructs a new
crash state by incrementally applying micro-operations
onto a cached crash state. We also found that the time
required to check a crash state was much higher than
the time required to incrementally construct a crash state.
Hence, ALICE constructs crash states sequentially, but in-
vokes checkers concurrently in multiple threads.

Different micro-op sequences can lead to the same
crash state. For example, different micro-op sequences
may write to different parts of a file, but if the file is un-
linked at the end of sequence, the resulting disk state is
the same. Therefore, ALICE hashes crash states and only
checks the crash state if it is new.

We found that many applications write to debug logs
and other files that do not affect application invariants.
ALICE filters out system calls involved with these files.

3.6 Limitations
ALICE is not complete, in that there may be vulnerabil-
ities that are not detected by ALICE. It also requires the
user to write application workloads and checkers; we be-
lieve workload automation is orthogonal to the goal of
ALICE, and various model-checking techniques can be
used to augment ALICE. For workloads that use multiple
threads to interact with the file system, ALICE serializes
system calls in the order they were issued; in most cases,
this does not affect vulnerabilities as the application uses
some form of locking to synchronize between threads.
ALICE currently does not handle file attributes; it would
be straight-forward to extend ALICE to do so.

4 Application Vulnerabilities
We study 11 widely used applications to find whether
file-system behavior significantly affects application
users, which file-system behaviors are thus important,
and whether testing using ALICE is worthwhile in gen-
eral. One of ALICE’s unique advantages, of being able
to find targeted vulnerabilities under an abstract file sys-
tem and reporting them in terms of a persistence prop-
erty violated, is thus integral to the study. The ap-
plications each represent different domains, and range
in maturity from a few years-old to decades-old. We
study three key-value stores (LevelDB [20], GDBM [19],
LMDB [46]), three relational databases (SQLite [43],
PostgreSQL [49], HSQLDB [23]), two version control
systems (Git [26], Mercurial [31]), two distributed sys-
tems (HDFS [40], ZooKeeper [3]), and a virtualization
software (VMWare Player [52]). We study two versions
of LevelDB (1.10, 1.15), since they vary considerably in
their update-protocol implementation.

7

440 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Aiming towards the stated goal of the study, we try to
consider typical user expectations and deployment sce-
narios for applications, rather than only the guarantees
listed in their documentation. Indeed, for some applica-
tions (Git, Mercurial), we could not find any documented
guarantees. We also consider file-system behaviors that
may not be common now, but may become prevalent in
the future (especially with new classes of I/O devices).
Moreover, the number of vulnerabilities we report (in
each application) only relates to the number of source
code lines depending on file-system behavior. Note that,
due to these reasons, the study is not suitable for com-
paring the correctness between different applications, or
towards strictly verifying application correctness.

We first describe the workloads and checkers used
in detecting vulnerabilities (§4.1). We then present an
overview of the protocols and vulnerabilities found in
different applications (§4.2). We discuss the importance
of the discovered vulnerabilities (§4.3), interesting pat-
terns observable among the vulnerabilities (§4.4), and
whether vulnerabilities are exposed on current file sys-
tems (§4.5). We also evaluate whether ALICE can vali-
date new file-system designs (§4.6).

4.1 Workloads and Checkers
Most applications have configuration options that change
the update protocol or application crash guarantees. Our
workloads test a total of 34 such configuration options
across the 11 applications. Our checkers are conceptu-
ally simple: they do read operations to verify workload
invariants for that particular configuration, and then try
writes to the datastore. However, some applications have
complex invariants, and recovery procedures that they
expect users to carry out (such as removing a leftover
lock file). Our checkers are hence complex (e.g., about
500 LOC for Git), invoking all recovery procedures we
are aware of that are expected of normal users.

We now discuss the workloads and checkers for
each application class. Where applicable, we also
present the guarantees we believe each application makes
to users, information garnered from documentation,
mailing-list discussions, interaction with developers, and
other relevant sources.

Key-value Stores and Relational Databases. Each
workload tests different parts of the protocol, typically
opening a database, and inserting enough data to trigger
checkpoints. The checkers check for atomicity, ordering,
and durability of transactions. We note here that GDBM
does not provide any crash guarantees, though we be-
lieve lay users will be affected by any loss of integrity.
Similarly, SQLite does not provide durability under the
default journal-mode (we became aware of this only af-
ter interacting with developers), but its documentation
seems misleading. We enable checksums on LevelDB.

Version Control Systems. Git’s crash guarantees are
fuzzy; mailing-list discussions suggest that Git expects a
fully-ordered file system [27]. Mercurial does not pro-
vide any guarantees, but does provide a plethora of man-
ual recovery techniques. Our workloads add two files to
the repository and then commit them. The checker uses
commands like git-log, git-fsck, and git-commit

to verify repository state, checking the integrity of the
repository and the durability of the workload commands.
The checkers remove any leftover lock files, and perform
recovery techniques that do not discard committed data
or require previous backups.

Virtualization and Distributed Systems. The
VMWare Player workload issues writes and flushes from
within the guest; the checker repairs the virtual disk
and verifies that flushed writes are durable. HDFS is
configured with replicated metadata and restore enabled.
HDFS and ZooKeeper workloads create a new directory
hierarchy; the checker tests that files created before the
crash exist. In ZooKeeper, the checker also verifies that
quota and ACL modifications are consistent.

If ALICE finds a vulnerability related to a system call,
it does not search for other vulnerabilities related to the
same call. If the system call is involved in multiple, log-
ically separate vulnerabilities, this has the effect of hid-
ing some of the vulnerabilities. Most tested applications,
however, have distinct, independent sets of failures (e.g.,
dirstate and repository corruption in Mercurial, consis-
tency and durability violation in other applications). We
use different checkers for each type of failure, and report
vulnerabilities for each checker separately.

Summary. If application invariants for the tested con-
figuration are explicitly and conspicuously documented,
we consider violating those invariants as failure; other-
wise, our checkers consider violating a lay user’s expec-
tations as failure. We are careful about any recovery
procedures that need to be followed on a system crash.
Space constraints here limit exact descriptions of the
checkers; we provide more details in our webpage [2].

4.2 Overview
We now discuss the logical protocols of the applications
examined. Figure 4 visually represents the update proto-
cols, showing the logical operations in the protocol (or-
ganized as modules) and discovered vulnerabilities.

4.2.1 Databases and Key-Value Stores
Most databases use a variant of write-ahead logging.
First, the new data is written to a log. Then, the log is
checkpointed or compacted, i.e., the actual database is
usually overwritten, and the log is deleted.

Figure 4(A) shows the protocol used by LevelDB-
1.15. LevelDB adds inserted key-value pairs to the log
until it reaches a threshold, and then switches to a new

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 441

creat(x.ldb)

N x append(x.ldb)

fdatasync(x.ldb)

creat(new.log)

creat(mani-new)

[N x append(mani-new)]
fsync(parent-dir)

fdatasync(mani-new)

creat(tmp)

append(tmp)

fdatasync(tmp)

[rename(tmp, current)]
unlink(mani-old)

unlink(old.log)

{? x

{? x

(A)(i) LevelDB compaction

creat(new.log)

[N x append(new.log)]
? x fdatasync(new.log)

stdout(done)

(A)(ii) LevelDB insert

write(mdb file)

append(mdb file)

fdatasync(mdb file)

[write(mdb file)]
file sync range(mdb file)

(B) LMDB

creat(db)

N x append(db)

fsync(db)

N x append(db)

N x write(db)

? x fsync(db)

stdout(done)

(C) GDBM create
and insert

creat(tmp)0
append(tmp)1
fsync(tmp)2

[unlink(props)]3
rename(tmp, props)4

(D)(i) HSQLDB
update props

[append(log)]
N x fsync(log)

creat(stmp)

append(stmp)

fsync(stmp)

(i) update props

unlink(log)

unlink(script)

[rename(stmp, script)]
(i) update props

i(4
)*

i(4)* (i)
4

(i)
3

(i)3

(D)(ii) HSQLDB
shutdown

write(pg xlog)

fdatasync(pg xlog)

write(pg clog)

fdatasync(pg clog)
....

[write(pg control)]
fsync(pg control)

(E) Postgres
checkpoint

creat(journal)

N x append(journal)

fsync(journal)

fsync(parent-dir)

write(journal)

fsync(journal)

write(db)

fsync(db)

unlink(journal)

stdout(done)

(F) SQLite

mkdir(o/x)0
creat(o/x/tmp y)1

N x append(o/x/tmp y)2
fsync(o/x/tmp y)3

link(o/x/tmp y, o/x/y)4
unlink(o/x/tmp y)5

(G)(i) Git store object

creat(index.lock)

N x (i) store object

append(index.lock)

[rename(index.lock, index)]
stdout(finished add)

N x (i) store object

creat(branch.lock)

append(branch.lock)

append(branch.lock)

append(logs/branch)

append(logs/HEAD)

rename(branch.lock, x/branch)

stdout(finished commit)

(i)0,(i)4
(i)0,(i)4

(i)
0,

(i)
4

(G)(ii) Git add commit

creat(tmp)

append(tmp)

[rename(tmp, dirstate)]
(H)(i) Mercurial update dirstate

...
creat(journal)

creat(filelog)

[append(journal)]
N x append(filelog)

...
[append(journal)]
[append(manifest)]
[append(journal)]
append(changelog)

rename(journal, undo)
...

creat(tmp)

append(tmp)

[rename(tmp, fncache)]...
update dirstate

...

{N x

(H)(ii) Mercurial commit

creat(tmp)

append(tmp)

fsync(tmp)

[rename(tmp, x.vmdk)]
write(x-split1)

fsync region(x-split1){N x

(I) VMWare write-flush

....
creat(tmp)

append(tmp)

[rename(tmp, seen txid)]
creat(ckpt)

append(ckpt)

fsync(ckpt)

creat(md5.tmp)

N x append(md5.tmp)

fsync(md5.tmp)

rename(md5.tmp, md5)

rename(ckpt, fsimage)
....

(J) HDFS update

mkdir(v)

creat(v/log)

append(v/log)

trunc(v/log)

append(v/log)

[write(v/log)]
? x write(v/log)

? x write(v/log)

fdatasync(v/log)

stdout(done)

’’

{? x

(K) ZooKeeper

Legend
Safe flush, rename

Other ordering

Atomicity[]

Figure 4: Protocol Diagrams. The diagram shows the modularized update protocol for all applications. For applications with more than
one configuration (or versions), only a single configuration is shown (SQLite: Rollback, LevelDB: 1.15). Uninteresting parts of the protocol and
a few vulnerabilities (similar to those already shown) are omitted. Repeated operations in a protocol are shown as ‘N ×’ next to the operation,
and portions of the protocol executed conditionally are shown as ‘? ×’. Blue-colored text simply highlights such annotations and sync calls.
Ordering and durability dependencies are indicated with arrows, and dependencies between modules are indicated by the numbers on the arrows,
corresponding to line numbers in modules. Durability dependency arrows end in an stdout micro-op; additionally, the two dependencies marked
with * in HSQLDB are also durability dependencies. Dotted arrows correspond to safe rename or safe file flush vulnerabilities discussed in
Section 4.4. Operations inside brackets must be persisted together atomically.

9

442 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

log; during the switch, a background thread starts com-
pacting the old log file. Figure 4(A)(i) shows the com-
paction; Figure 4(A)(ii) shows the appends to the log file.
During compaction, LevelDB first writes data to a new
ldb file, updates pointers to point to the new file (by ap-
pending to a manifest), and then deletes the old log file.

In LevelDB, we find vulnerabilities occurring while
appending to the log file. A crash can result in the ap-
pended portion of the file containing garbage; LevelDB’s
recovery code does not properly handle this situation,
and the user gets an error if trying to access the inserted
key-value pair (which should not exist in the database).
We also find some vulnerabilities occurring during com-
paction. For example, LevelDB does not explicitly per-
sist the directory entries of ldb files; a crash might cause
the files to vanish, resulting in unavailability.

Some databases follow protocols that are radically dif-
ferent from write-ahead logging. For example, LMDB
uses shadow-paging (copy-on-write). LMDB requires
that the final pointer update (106 bytes) in the copy-on-
write tree to be atomic. HSQLDB uses a combination of
write-ahead logging and update-via-rename, on the same
files, to maintain consistency. The update-via-rename
is performed by first separately unlinking the destina-
tion file, and then renaming; out-of-order persistence of
rename(), unlink(), or log creation causes problems.

4.2.2 Version Control Systems
Git and Mercurial maintain meta-information about their
repository in the form of logs. The Git protocol is il-
lustrated in Figure 4(G). Git stores information in the
form of object files, which are never modified; they are
created as temporary files, and then linked to their per-
manent file names. Git also maintains pointers in sepa-
rate files, which point to both the meta-information log
and the object files, and are updated using update-via-
rename. Mercurial, on the other hand, uses a journal to
maintain consistency, using update-via-rename only for
a few unimportant pieces of information.

We find many ordering dependencies in the Git proto-
col, as shown in Figure 4(G). This result is not surpris-
ing, since mailing-list discussions suggest Git developers
expect total ordering from the file system. We also find
a Git vulnerability involving atomicity across multiple
system calls; a pointer file being updated (via an append)
has to be persisted atomically with another file getting
updated (via an update-via-rename). In Mercurial, we
find many ordering vulnerabilities for the same reason,
not being designed to tolerate out-of-order persistence.

4.2.3 Virtualization and Distributed Systems
VMWare Player’s protocol is simple. VMWare main-
tains a static, constant mapping between blocks in the
virtual disk, and in the VMDK file (even for dynami-
cally allocated VMDK files); directly overwriting the VMDK

file maintains consistency (though VMWare does use
update-via-rename for some small files). Both HDFS and
ZooKeeper use write-ahead logging. Figure 4(K) shows
the ZooKeeper logging module. We find that ZooKeeper
does not explicitly persist directory entries of log files,
which can lead to lost data. ZooKeeper also requires
some log writes to be atomic.

4.3 Vulnerabilities Found
ALICE finds 60 static vulnerabilities in total, correspond-
ing to 156 dynamic vulnerabilities. Altogether, applica-
tions failed in more than 4000 crash states. Table 3(a)
shows the vulnerabilities classified by the affected per-
sistence property, and 3(b) shows the vulnerabilities clas-
sified by failure consequence. Table 3(b) also separates
out those vulnerabilities related only to user expectations
and not to documented guarantees, with an asterik (∗);
many of these correspond to applications for which we
could not find any documentation of guarantees.

The different journal-mode configurations provided by
SQLite use different protocols, and the different versions
of LevelDB differ on whether their protocols are de-
signed around the mmap() interface. Tables 3(a) and 3(b)
hence show these configurations of SQLite and LevelDB
separately. All other configurations (in all applications)
do not change the basic protocol, but vary on the appli-
cation invariants; among different configurations of the
same update protocol, all vulnerabilities are revealed in
the safest configuration. Table 3 and the rest of the paper
only show vulnerabilities we find in the safest configura-
tion, i.e., we do not count separately the same vulnerabil-
ities from different configurations of the same protocol.

We find many vulnerabilities have severe conse-
quences such as silent errors or data loss. Seven applica-
tions are affected by data loss, while two (both LevelDB
versions and HSQLDB) are affected by silent errors. The
cannot open failures include failure to start the server in
HDFS and ZooKeeper, while the failed reads and writes
include basic commands (e.g., git-log, git-commit)
failing in Git and Mercurial. A few cannot open fail-
ures and failed reads and writes might be solvable by
application experts, but we believe lay users would have
difficulty recovering from such failures (our checkers in-
voke standard recovery techniques). We also checked
if any discovered vulnerabilities are previously known,
or considered inconsequential. The single PostgreSQL
vulnerability is documented; it can be solved with non-
standard (although simple) recovery techniques. The sin-
gle LMDB vulnerability is discussed in a mailing list,
though there is no available workaround. All these pre-
viously known vulnerabilities are separated out in Ta-
ble 3(b) (†). The five dirstate fail vulnerabilities in Mer-
curial are shown separately, since they are less harmful
than other vulnerabilities (though frustrating to the lay

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 443

Application
Types

U
ni

qu
e

st
at

ic
vu

ln
er

ab
ili

tie
s

A
cr

os
s-

sy
sc

al
ls

at
om

ic
ity Atomicity Ordering Durability

A
pp

en
ds

an
d

tr
un

ca
te

s
Si

ng
le

-b
lo

ck
ov

er
w

ri
te

s
R

en
am

es
an

d
un

lin
ks

Sa
fe

fil
e

flu
sh

Sa
fe

re
na

m
es

O
th

er

Sa
fe

fil
e

flu
sh

O
th

er

Leveldb1.10 1‡ 1 1 2 1 3 1 10
Leveldb1.15 1 1 1 1 2 6
LMDB 1 1
GDBM 1 1 1 2 5
HSQLDB 1 2 1 3 2 1 10
Sqlite-Roll 1 1
Sqlite-WAL 0
PostgreSQL 1 1
Git 1 1 2 1 3 1 9
Mercurial 2 1 1 1 4 2 10
VMWare 1 1
HDFS 1 1 2
ZooKeeper 1 1 2 4
Total 6 4 3 9 6 3 18 5 7 60

(a) Types.

Application Si
le

nt
er

ro
rs

D
at

a
lo

ss
C

an
no

to
pe

n
Fa

ile
d

re
ad

sa
nd

w
ri

te
s

Other
Leveldb1.10 1 1 5 4
Leveldb1.15 2 2 2
LMDB read-only open†

GDBM 2∗ 3∗

HSQLDB 2 3 5
Sqlite-Roll 1∗

Sqlite-WAL
PostgreSQL 1†

Git 1∗ 3∗ 5∗ 3#∗

Mercurial 2∗ 1∗ 6∗ 5 dirstate fail∗

VMWare 1∗

HDFS 2∗

ZooKeeper 2∗ 2∗

Total 5 12 25 17 9
(b) Failure Consequences.

Application ext3-w ext3-o ext3-j ext4-o btrfs
Leveldb1.10 3 1 1 2 4
Leveldb1.15 2 1 1 2 3
LMDB
GDBM 3 3 2 3 4
HSQLDB 4
Sqlite-Roll 1 1 1 1 1
Sqlite-WAL
PostgreSQL
Git 2 2 2 2 5
Mercurial 4 3 3 6 8
VMWare
HDFS 1
ZooKeeper 1 1 1 1
Total 16 12 10 17 31

(c) Under Current File Systems.

Ordering DOAGCA
ext3-w Dir ops and file-sizes ordered among

themselves, before sync operations.
� 4K ×

ext3-o Dir ops, appends, truncates ordered
among themselves. Overwrites be-
fore non-overwrites, all before sync.

� 4K �

ext3-j All operations are ordered. � 4K �
ext4-o Safe rename, safe file flush, dir ops

ordered among themselves
� 4K �

btrfs Safe rename, safe file flush � 4K �
(d) APMs considered.

Table 3: Vulnerabilities. (a) shows the discovered static vulnerabilities categorized by the type of persistence property. The number of
unique vulnerabilities for an application can be different from the sum of the categorized vulnerabilities, since the same source code lines can
exhibit different behavior. ‡ The atomicity vulnerability in Leveldb1.10 corresponds to multiple mmap() writes. (b) shows the number of static
vulnerabilities resulting in each type of failure. † Previously known failures, documented or discussed in mailing lists. ∗ Vulnerabilities relating
to unclear documentation or typical user expectations beyond application guarantees. # There are 2 fsck-only and 1 reflog-only errors in Git. (c)
shows the number of vulnerabilities that occur on current file systems (all applications are vulnerable under future file systems). (d) shows APMs
used for calculating Table (c). Legend: DO: directory operations atomicity. AG: granularity of size-atomicity. CA: Content-Atomicity.

user). Git’s fsck-only and reflog-only errors are poten-
tially dangerous, but do not seem to affect normal usage.

We interacted with the developers of eight applica-
tions, reporting a subset of the vulnerabilities we find.
Our interactions convince us that the vulnerabilities will
affect users if they are exposed. The other applications
(GDBM, Git, and Mercurial) were not designed to pro-
vide crash guarantees, although we believe their users
will be affected by the vulnerabilities found should an
untimely crash occur. Thus, the vulnerabilities will not
surprise a developer of these applications, and we did not
report them. We also did not report vulnerabilities con-
cerning partial renames (usually dismissed since they are
not commonly exposed), or documented vulnerabilities.

Developers have acted on five of the vulnerabilities
we find: one (LevelDB-1.10) is now fixed, another
(LevelDB-1.15) was fixed parallel to our discovery, and
three (HDFS, and two in ZooKeeper) are under consider-
ation. We have found that developers often dismiss other
vulnerabilities which do not (or are widely believed to
not) get exposed in current file systems, especially relat-
ing to out-of-order persistence of directory operations.
The fact that only certain operating systems allow an
fsync() on a directory is frequently referred to; both
HDFS and ZooKeeper respondents lament that such an
fsync() is not easily achievable with Java. The devel-
opers suggest the SQLite vulnerability is actually not a

behavior guaranteed by SQLite (specifically, that dura-
bility cannot be achieved under rollback journaling);
we believe the documentation is misleading.

Of the five acted-on vulnerabilities, three relate to not
explicitly issuing an fsync() on the parent directory af-
ter creating and calling fsync() on a file. However, not
issuing such an fsync() is perhaps more safe in mod-
ern file systems than out-of-order persistence of directory
operations. We believe the developers’ interest in fixing
this problem arises from the Linux documentation ex-
plicitly recommending an fsync() after creating a file.

Summary. ALICE detects 60 vulnerabilities in total,
with 5 resulting in silent failures, 12 in loss of durability,
25 leading to inaccessible applications, and 17 returning
errors while accessing certain data. ALICE is also able to
detect previously known vulnerabilities.

4.4 Common Patterns
We now examine vulnerabilities related with different
persistence properties. Since durability vulnerabilities
show a separate pattern, we consider them separately.

4.4.1 Atomicity across System Calls
Four applications (including both versions of LevelDB)
require atomicity across system calls. For three applica-
tions, the consequences seem minor: inaccessibility dur-
ing database creation in GDBM, dirstate corruption in
Mercurial, and an erratic reflog in Git. LevelDB’s vul-

11

444 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

nerability has a non-minor consequence, but was fixed
immediately after introducing LevelDB-1.15 (when Lev-
elDB started using read()-write() instead of mmap()).

In general, we observe that this class of vulnerabilities
seems to affect applications less than other classes. This
result may arise because these vulnerabilities are easily
tested: they are exposed independent of the file system
(i.e, via process crashes), and are easier to reproduce.

4.4.2 Atomicity within System Calls
Append atomicity. Surprisingly, three applications re-
quire appends to be content-atomic: the appended por-
tion should contain actual data. The failure consequences
are severe, such as corrupted reads (HSQLDB), failed
reads (LevelDB-1.15) and repository corruption (Mercu-
rial). Filling the appended portion with zeros instead of
garbage still causes failure; only the current implemen-
tation of delayed allocation (where file size does not in-
crease until actual content is persisted) works. Most ap-
pends seemingly do not need to be block-atomic; only
Mercurial is affected, and the affected append also re-
quires content-atomicity.

Overwrite atomicity. LMDB, PostgreSQL, and
ZooKeeper require small writes (< 200 bytes) to be
atomic. Both the LMDB and PostgreSQL vulnerabilities
are previously known.

We do not find any multi-block overwrite vulnerabil-
ities, and even single-block overwrite requirements are
typically documented. This finding is in stark contrast
with append atomicity; some of the difference can be
attributed to the default APM (overwrites are content-
atomic), and to some workloads simply not using over-
writes. However, the major cause seems to be the basic
mechanism behind application update protocols: mod-
ifications are first logged, in some form, via appends;
logged data is then used to overwrite the actual data. Ap-
plications have careful mechanisms to detect and repair
failures in the actual data, but overlook the presence of
garbage content in the log.

Directory operation atomicity. Given that most file
systems provide atomic directory operations (§2.2), one
would expect that most applications would be vulnera-
ble to such operations not being atomic. However, we
do not find this to be the case for certain classes of ap-
plications. Databases and key-value stores do not em-
ploy atomic renames extensively; consequently, we ob-
serve non-atomic renames affecting only three of these
applications (GDBM, HSQLDB, LevelDB). Non-atomic
unlinks seemingly affect only HSQLDB (which uses un-
links for logically performing renames), and we did not
find any application affected by non-atomic truncates.

4.4.3 Ordering between System Calls
Applications are extremely vulnerable to system calls be-
ing persisted out of order; we find 27 vulnerabilities.

Safe renames. On file systems with delayed alloca-
tion, a common heuristic to prevent data loss is to persist
all data (including appends and truncates) of a file before
subsequent renames of the file [14]. We find that this
heuristic only matches (and thus fixes) three discovered
vulnerabilities, one each in Git, Mercurial, and LevelDB-
1.10. A related heuristic, where updating existing files
by opening them with O TRUNC flushes the updated data
while issuing a close(), does not affect any of the vul-
nerabilities we discovered. Also, the effect of the heuris-
tics varies with minor details: if the safe-rename heuris-
tic does not persist file truncates, only two vulnerabilities
will be fixed; if the O TRUNC heuristic also acts on new
files, an additional vulnerability will be fixed.

Safe file flush. An fsync() on a file does not guaran-
tee that the file’s directory entry is also persisted. Most
file systems, however, persist directory entries that the
file is dependent on (e,g., directory entries of the file and
its parent). We found that this behavior is required by
three applications for maintaining basic consistency.

4.4.4 Durability
We find vulnerabilities in seven applications resulting in
durability loss. Of these, only two applications (GDBM
and Mercurial) are affected because an fsync() is not
called on a file. Six applications require fsync() calls
on directories: three are affected by safe file flush dis-
cussed previously, while four (HSQLDB, SQLite, Git,
and Mercurial) require other fsync() calls on directo-
ries. As a special case, with HSQLDB, previously com-
mitted data is lost, rather than data that was being com-
mitted during the time of the workload. In all, only
four out of the twelve vulnerabilities are exposed when
full ordering is promised: many applications do issue an
fsync() call before durability is essential, but do not
fsync() all the required information.

4.4.5 Summary
We believe our study offers several insights for file-
system designers. Future file systems should consider
providing ordering between system calls, and atomic-
ity within a system call in specific cases. Vulnerabili-
ties involving atomicity of multiple system calls seem to
have minor consequences. Requiring applications to sep-
arately flush the directory entry of a created and flushed
file can often result in application failures. For durability,
most applications seem to explicitly flush some, but not
all, of the required information; thus, providing ordering
among system calls can also help durability.

4.5 Impact on Current File Systems
Our study thus far has utilized an abstract (and weak) file
system model (i.e., APM) in order to discover the broad-
est number of vulnerabilities. We now utilize specific
file-system APMs to understand how modern protocols

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 445

would function atop a range of modern file systems and
configurations. Specifically, we focus on Linux ext3 (in-
cluding writeback, ordered, and data-journaling mode),
Linux ext4, and btrfs. The considered APMs are based
on our understanding of file systems from Section 2.

Table 3(c) shows the vulnerabilities reported by
ALICE, while 3(d) shows the considered APMs. We
make a number of observations based on Table 3(c).
First, a significant number of vulnerabilities are exposed
on all examined file systems. Second, ext3 with jour-
naled data is the safest: the only vulnerabilities exposed
relate to atomicity across system calls, and a few dura-
bility vulnerabilities. Third, a large number of vulner-
abilities are exposed on btrfs as it aggressively persists
operations out of order [11]. Fourth, some applications
show no vulnerabilities on any considered APM; thus,
the flaws we found in such applications do not manifest
on today’s file systems (but may do so on future systems).

Summary. Application vulnerabilities are exposed on
many current file systems. The vulnerabilities exposed
vary based on the file system, and thus testing applica-
tions on only a few file systems does not work.

4.6 Evaluating New File-System Designs
File-system modifications for improving performance
have introduced wide-spread data loss in the past [14],
because of changes to the file-system persistence proper-
ties. ALICE can be used to test whether such modifica-
tions break correctness of existing applications. We now
describe how we use ALICE to evaluate a hypothetical
variant of ext3 (data-journaling mode), ext3-fast.

Our study shows that ext3 (data-journaling mode) is
the safest file system; however, it offers poor perfor-
mance for many workloads [35]. Specifically, fsync()
latency is extremely high as ext3 persists all previous op-
erations on fsync(). One way to reduce fsync() la-
tency would be to modify ext3 to persist only the synced
file. However, other file systems (e.g,. btrfs) that have
attempted to reduce fsync() latency [13] have resulted
in increased vulnerabilities. Our study suggests a way to
reduce latency without exposing more vulnerabilities.

Based on our study, we hypothesize that data that is
not synced need not be persisted before explicitly synced
data for correctness; such data must only be persisted
in-order amongst itself. We design ext3-fast to reflect
this: fsync() on a file A persists only A, while other
dirty data and files are still persisted in-order.

We modeled ext3-fast in ALICE by slightly changing
the APM of ext3 data journaling mode, so that synced
directories, files, and their data, depend only on previous
syncs and operations necessary for the file to exist (i.e.,
safe file flush is obeyed). The operations on a synced file
are also ordered among themselves.

We test our hypothesis with ALICE; the observed or-

dering vulnerabilities (of the studied applications) are not
exposed under ext3-fast. The design was not meant to fix
durability or atomicity across system calls vulnerabili-
ties, so those vulnerabilities are still reported by ALICE.

We estimate the performance gain of ext3-fast using
the following experiment: we first write 250 MB to
file A, then append a byte to file B and fsync() B.
When both files are on the same ext3-ordered file system,
fsync() takes about four seconds. If the files belong to
different partitions on the same disk, mimicking the be-
havior of ext3-fast, the fsync() takes only 40 ms. The
first case is 100 times slower because 250 MB of data is
ordered before the single byte that needs to be persistent.

Summary. The ext3-fast file system (derived from in-
ferences provided by ALICE) seems interesting for appli-
cation safety, though further investigation is required into
the validity of its design. We believe that the ease of use
offered by ALICE will allow it to be incorporated into the
design process of new file systems.

4.7 Discussion
We now consider why crash vulnerabilities occur com-
monly even among widely used applications. We find
that application update protocols are complex and hard to
isolate and understand. Many protocols are layered and
spread over multiple files. Modules are also associated
with other complex functionality (e.g., ensuring thread
isolation). This complexity leads to issues that are obvi-
ous with a bird’s eye view of the protocol: for example,
HSQLDB’s protocol has 3 consecutive fsync() calls to
the same file (increasing latency). ALICE helps solve this
problem by making it easy to obtain logical representa-
tions of update protocols as shown in Figure 4.

Another factor contributing to crash vulnerabilities is
poorly written, untested recovery code. In LevelDB, we
find vulnerabilities that should be prevented by correct
implementations of the documented update protocols.
Some recovery code is non-optimal: potentially recover-
able data is lost in several applications (e.g., HSQLDB,
Git). Mercurial and LevelDB provide utilities to verify
or recover application data; we find these utilities hard to
configure and error-prone. For example, an user invok-
ing LevelDB’s recovery command can unintentionally
end up further corrupting the datastore, and be affected
by (seemingly) unrelated configuration options (para-
noid checksums). We believe these problems are a direct
consequence of the recovery code being infrequently ex-
ecuted and insufficiently tested. With ALICE, recovery
code can be tested on many corner cases.

Convincing developers about crash vulnerabilities is
sometimes hard: there is a general mistrust surrounding
such bug reports. Usually, developers are suspicious that
the underlying storage stack might not respect fsync()
calls [36], or that the drive might be corrupt. We hence

13

446 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

believe that most vulnerabilities that occur in the wild are
associated with an incorrect root cause, or go unreported.
ALICE can be used to easily reproduce vulnerabilities.

Unclear documentation of application guarantees con-
tributes to the confusion about crash vulnerabilities. Dur-
ing discussions with developers about durability vulner-
abilities, we found that SQLite, which proclaims itself
as fully ACID-complaint, does not provide durability
(even optionally) with the default storage engine, though
the documentation suggests it does. Similarly, GDBM’s
GDBM SYNC flag does not ensure durability. Users can
employ ALICE to determine guarantees directly from the
code, bypassing the problem of bad documentation.

5 Related Work
Our previous workshop paper [47] identifies the prob-
lem of application-level consistency depending upon file-
system behavior, but is limited to two applications and
does not use automated testing frameworks. Since we
use ALICE to obtain results, our current study includes a
greater number and variety of applications.

This paper adapts ideas from past work on dynamic
program analysis and model checking. EXPLODE [53]
has a similar flavor to our work: the authors use in-
situ model checking to find crash vulnerabilities on dif-
ferent storage stacks. ALICE differs from EXPLODE in
four significant ways. First, EXPLODE requires the target
storage stack to be fully implemented; ALICE only re-
quires a model of the target storage stack, and can there-
fore be used to evaluate application-level consistency on
top of proposed storage stacks, while they are still at
the design stage. Second, EXPLODE requires the user to
carefully annotate complex file systems using choose()
calls; ALICE requires the user to only specify a high-
level APM. Third, EXPLODE reconstructs crash states by
tracking I/O as it moves from the application to the stor-
age. Although it is possible to use EXPLODE to deter-
mine the root cause of a vulnerability, we believe it is
easier to do so using ALICE since ALICE checks for vi-
olation of specific persistence properties. Fourth, EX-
PLODE stops at finding crash vulnerabilities; by helping
produce protocol diagrams, ALICE contributes to under-
standing the protocol itself. Like BOB, EXPLODE can be
used to test persistence properties; however, while BOB

only re-orders block I/O, EXPLODE can test re-orderings
caused at different layers in the storage stack.

Zheng et al. [54] find crash vulnerabilities in
databases. They contribute a standard set of workloads
that stress databases (particularly, with multiple threads),
and check ACID properties; the workloads and checkers
can be used with ALICE. Unlike our work, Zheng et al.
do not systematically explore vulnerabilities of each sys-
tem call; they are limited by the re-orderings and non-
atomicity exhibited by a particular (implemented) file

system during a single workload execution. Thus, their
work is more suited for finding those vulnerabilities that
are commonly exposed under a given file system.

Woodpecker [15] can be used to find crash vulnerabil-
ities when supplied with suspicious source code patterns
to guide symbolic execution. Our work is fundamentally
different to this approach, as ALICE does not require prior
knowledge of patterns in checked applications.

Our work is influenced by SQLite’s internal testing
tool [43]. The tool works at an internal wrapper layer
within SQLite, and is not helpful for generic testing.

RACEPRO [25], a testing tool for concurrency bugs,
records system calls and replays them by splitting them
into small operations, but does not test crash consistency.

OptFS [9], Featherstitch [16], and transactional file
systems [17, 39, 42], discuss new file-system interfaces
that will affect vulnerabilities. Our study can help inform
the design of new interfaces by providing clear insights
into what is missing in today’s interfaces.

6 Conclusion
In this paper, we show how application-level consistency
is dangerously dependent upon file system persistence
properties, i.e., how file systems persist system calls.
We develop BOB, a tool to test persistence properties
and show that such properties vary widely among file
systems. We build ALICE, a framework that analyzes
application-level protocols and detects crash vulnerabil-
ities. We analyze 11 applications, and find 60 vulner-
abilities, some of which result in severe consequences
like corruption or data loss. We present several insights
derived from our study. The ALICE tool, and detailed de-
scriptions of the vulnerabilities found in our study, can
be obtained from our webpage [2].

Acknowledgments
We thank Lorenzo Alvisi (our shepherd) and the anony-
mous reviewers for their insightful comments. We
thank members of ADSL, application developers and
users, and file system developers, for valuable discus-
sions. This material is based upon work supported by
the NSF under CNS-1421033, CNS-1319405, and CNS-
1218405 as well as donations from EMC, Facebook,
Fusion-io, Google, Huawei, Microsoft, NetApp, Sam-
sung, Sony, and VMware. Vijay Chidambaram and
Samer Al-Kiswany are supported by the Microsoft Re-
search PhD Fellowship and the NSERC Postdoctoral Fel-
lowship, respectively. Any opinions, findings, and con-
clusions, or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of
the NSF or other institutions.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 447

References
[1] Necessary step(s) to synchronize filename operations on disk.

http://austingroupbugs.net/view.php?id=672.
[2] Tool and Results: Application Crash Vulnerabilities.

http://research.cs.wisc.edu/adsl/Software/alice/.
[3] Apache. Apache Zookeeper. http://zookeeper.apache.

org/.
[4] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Op-

erating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.8
edition, 2014.

[5] Steve Best. JFS Overview. http://jfs.sourceforge.
net/project/pub/jfs.pdf, 2000.

[6] Remy Card, Theodore Ts’o, and Stephen Tweedie. Design and
Implementation of the Second Extended Filesystem. In First
Dutch International Symposium on Linux, Amsterdam, Nether-
lands, December 1994.

[7] Donald D Chamberlin, Morton M Astrahan, Michael W Blasgen,
James N Gray, W Frank King, Bruce G Lindsay, Raymond Lo-
rie, James W Mehl, Thomas G Price, Franco Putzolu, et al. A
history and evaluation of system r. Communications of the ACM,
24(10):632–646, 1981.

[8] Donald D Chamberlin, Arthur M Gilbert, and Robert A Yost. A
history of system r and sql/data system. In VLDB, pages 456–464,
1981.

[9] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Opti-
mistic Crash Consistency. In Proceedings of the 24th ACM Sym-
posium on Operating Systems Principles (SOSP ’13), Nemacolin
Woodlands Resort, Farmington, Pennsylvania, October 2013.

[10] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Consistency Without Ordering. In
Proceedings of the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), pages 101–116, San Jose, California,
February 2012.

[11] Chris Mason. Btrfs Mailing List. Re: Ordering of direc-
tory operations maintained across system crashes in Btrfs?
http://www.spinics.net/lists/linux-btrfs/
msg32215.html, 2014.

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better
I/O Through Byte-addressable, Persistent Memory. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP ’09), Big Sky, Montana, October 2009.

[13] Jonathan Corbet. Solving the Ext3 Latency Problem. http:
//lwn.net/Articles/328363/, 2009.

[14] Jonathan Corbet. That massive filesystem thread. http://
lwn.net/Articles/326471/, March 2009.

[15] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. Veri-
fying systems rules using rule-directed symbolic execution. In
Proceedings of the eighteenth international conference on Archi-
tectural support for programming languages and operating sys-
tems, pages 329–342. ACM, 2013.

[16] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew
de los Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei
Zhang. Generalized File System Dependencies. In Proceed-
ings of the 21st ACM Symposium on Operating Systems Princi-
ples (SOSP ’07), pages 307–320, Stevenson, Washington, Octo-
ber 2007.

[17] Bill Gallagher, Dean Jacobs, and Anno Langen. A High-
performance, Transactional Filestore for Application Servers. In
Proceedings of the 2005 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’05), pages 868–872,
Baltimore, Maryland, June 2005.

[18] Gregory R. Ganger and Yale N. Patt. Metadata Update Perfor-
mance in File Systems. In Proceedings of the 1st Symposium
on Operating Systems Design and Implementation (OSDI ’94),
pages 49–60, Monterey, California, November 1994.

[19] GNU. GNU Database Manager (GDBM). http://www.gnu.
org.ua/software/gdbm/gdbm.html, 1979.

[20] Google. LevelDB. https://code.google.com/p/
leveldb/, 2011.

[21] Robert Hagmann. Reimplementing the Cedar File System Using
Logging and Group Commit. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles (SOSP ’87), Austin,
Texas, November 1987.

[22] Dave Hitz, James Lau, and Michael Malcolm. File System De-
sign for an NFS File Server Appliance. In Proceedings of the
USENIX Winter Technical Conference (USENIX Winter ’94), San
Francisco, California, January 1994.

[23] HyperSQL. HSQLDB. http://www.hsqldb.org/.
[24] Dean Kuo. Model and verification of a data manager based on

aries. ACM Trans. Database Syst., 21(4):427–479, December
1996.

[25] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Jun-
feng Yang, , and Jason Nieh. Pervasive Detection of Process
Races in Deployed Systems. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP ’11), Cas-
cais, Portugal, October 2011.

[26] Linus Torvalds. Git. http://git-scm.com/, 2005.
[27] Linus Torvalds. Git Mailing List. Re: what’s the current wisdom

on git over NFS/CIFS? http://marc.info/?l=git&m=
124839484917965&w=2, 2009.

[28] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Shan Lu. A Study of Linux File System Evolu-
tion. In Proceedings of the 11th USENIX Symposium on File and
Storage Technologies (FAST ’13), San Jose, California, February
2013.

[29] Cris Pedregal Martin and Krithi Ramamritham. Toward formaliz-
ing recovery of (advanced) transactions. In Advanced Transaction
Models and Architectures, pages 213–234. Springer, 1997.

[30] Chris Mason. The Btrfs Filesystem. oss.oracle.
com/projects/btrfs/dist/documentation/
btrfs-ukuug.pdf, September 2007.

[31] Matt Mackall. Mercurial. http://mercurial.selenic.
com/, 2005.

[32] Marshall K. McKusick, William N. Joy, Sam J. Leffler, and
Robert S. Fabry. A Fast File System for UNIX. ACM Trans-
actions on Computer Systems, 2(3):181–197, August 1984.

[33] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 17(1):94–
162, March 1992.

[34] C Mohan, Bruce Lindsay, and Ron Obermarck. Transaction
management in the r* distributed database management system.
ACM Transactions on Database Systems (TODS), 11(4):378–
396, 1986.

[35] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Analysis and Evolution of Journaling File Sys-
tems. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ’05), pages 105–120, Anaheim, California, April
2005.

[36] Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Co-
erced Cache Eviction and Discreet-Mode Journaling: Dealing
with Misbehaving Disks. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN ’11),
Hong Kong, China, June 2011.

[37] Hans Reiser. ReiserFS. www.namesys.com, 2004.
[38] Mendel Rosenblum and John Ousterhout. The Design and Imple-

mentation of a Log-Structured File System. ACM Transactions
on Computer Systems, 10(1):26–52, February 1992.

[39] Frank Schmuck and Jim Wylie. Experience with transactions in
quicksilver. In ACM SIGOPS Operating Systems Review, vol-
ume 25, pages 239–253. ACM, 1991.

[40] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings
of the 26th IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST ’10), Incline Village, Nevada, May 2010.

[41] Stewart Smith. Eat My Data: How everybody gets file I/O wrong.
In OSCON, Portland, Oregon, July 2008.

[42] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and
M. Chinni. Enabling transactional file access via lightweight ker-
nel extensions. In Proceedings of the Seventh USENIX Confer-
ence on File and Storage Technologies (FAST ’09), pages 29–42,
San Francisco, CA, February 2009. USENIX Association.

[43] SQLite. SQLite transactional SQL database engine. http://
www.sqlite.org/.

[44] Sun Microsystems. ZFS: The last word in file systems. www.
sun.com/2004-0914/feature/, 2006.

15

448 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[45] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike
Nishimoto, and Geoff Peck. Scalability in the XFS File Sys-
tem. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’96), San Diego, California, January 1996.

[46] Symas. Lightning Memory-Mapped Database (LMDB). http:
//symas.com/mdb/, 2011.

[47] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Joo-
young Hwang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau. Towards Efficient, Portable Application-Level Con-
sistency. In Proceedings of the 9th Workshop on Hot Topics in
Dependable Systems (HotDep ’13), Farmington, PA, November
2013.

[48] The Open Group. POSIX.1-2008 IEEE Std 1003.1. http://
pubs.opengroup.org/onlinepubs/9699919799/,
2013.

[49] The PostgreSQL Global Development Group. PostgreSQL.
http://www.postgresql.org/.

[50] Theodore Ts’o and Stephen Tweedie. Future Directions for the
Ext2/3 Filesystem. In Proceedings of the USENIX Annual Tech-
nical Conference (FREENIX Track), Monterey, California, June
2002.

[51] Stephen C. Tweedie. Journaling the Linux ext2fs File System. In
The Fourth Annual Linux Expo, Durham, North Carolina, May
1998.

[52] VMWare. VMWare Player. http://www.vmware.com/
products/player.

[53] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A
Lightweight, General System for Finding Serious Storage Sys-
tem Errors. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), Seattle, Wash-
ington, November 2006.

[54] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lil-
libridge, Elizabeth S Yang, Bill W Zhao, and Shashank Singh.
Torturing Databases for Fun and Profit. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 449

Torturing Databases for Fun and Profit

Mai Zheng† Joseph Tucek‡ Dachuan Huang† Feng Qin † Mark Lillibridge‡

Elizabeth S. Yang‡ Bill W. Zhao‡ Shashank Singh†

† The Ohio State University ‡ HP Labs

Abstract

Programmers use databases when they want a high level

of reliability. Specifically, they want the sophisticated

ACID (atomicity, consistency, isolation, and durabil-

ity) protection modern databases provide. However, the

ACID properties are far from trivial to provide, partic-

ularly when high performance must be achieved. This

leads to complex and error-prone code—even at a low

defect rate of one bug per thousand lines, the millions of

lines of code in a commercial OLTP database can harbor

thousands of bugs.

Here we propose a method to expose and diagnose

violations of the ACID properties. We focus on an os-

tensibly easy case: power faults. Our framework in-

cludes workloads to exercise the ACID guarantees, a

record/replay subsystem to allow the controlled injec-

tion of simulated power faults, a ranking algorithm to

prioritize where to fault based on our experience, and

a multi-layer tracer to diagnose root causes. Using our

framework, we study 8 widely-used databases, ranging

from open-source key-value stores to high-end commer-

cial OLTP servers. Surprisingly, all 8 databases exhibit

erroneous behavior. For the open-source databases, we

are able to diagnose the root causes using our tracer, and

for the proprietary commercial databases we can repro-

ducibly induce data loss.

1 Introduction

Storage system failures are extremely damaging—if your

browser crashes you sigh, but when your family photos

disappear you cry. Few people use process-pairs or n-

versioning, but many use RAID.

Among storage systems, databases provide the

strongest reliability guarantees. The atomicity, con-

sistency, isolation, and durability (ACID) properties

databases provide make it easy for application develop-

ers to create highly reliable applications. However, these

properties come at a cost in complexity. Even the rel-

atively simple SQLite database has more than 91 mil-

lion lines of test code (including the repetition of param-

eterized tests with different parameters), which is over

a thousand times the size of the core library itself [11].

Checking for the ACID properties under failure is noto-

riously hard since a failure scenario may not be conve-

niently reproducible.

In this paper, we propose a method to expose and di-

agnose ACID violations by databases under clean power

faults. Unexpected loss of power is a particularly inter-

esting fault, since it happens in daily life [31] and is a

threat even for sophisticated data centers [24, 25, 27, 28,

29, 30, 41, 42] and well-prepared important events [18].

Further, unlike the crash model in previous studies (e.g.,

RIO [16] and EXPLODE [44]) where memory-page cor-

ruption can propagate to disk, and unlike the unclean

power losses some poorly behaved devices suffer [46],

a clean loss of power causes the termination of the I/O

operation stream, which is the most idealized failure sce-

nario and is expected to be tolerated by well-written stor-

age software.

We develop four workloads for evaluating databases

under this easy power fault model. Each workload has

self-checking logic allowing the ACID properties to be

checked for in a post-fault database image. Unlike ran-

dom testing, our specifically designed workloads stress

all four properties, and allow the easy identification of

incorrect database states.

Given our workloads, we built a framework to effi-

ciently test the behavior of databases under fault. Using a

modified iSCSI driver we record a high-fidelity block I/O

trace. Then, each time we want to simulate a fault during

that run, we take the collected trace and apply the fault

model to it, generating a new synthetic trace. We create a

new disk image representative of what the disk state may

be after a real power fault by replaying the synthetic trace

against the original image. After restarting the database

on the new image, we run the consistency checker for the

1

450 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

workload and database under test.

This record-and-replay feature allows us to systemati-

cally inject faults at every possible point during a work-

load. However, not all fault points are equally likely

to produce failures. User-space applications including

databases often have assumptions about what the OS, file

system, and block device can do; violations of these as-

sumptions typically induce incorrect behavior. By study-

ing the errors observed in our early experiments, we

identify five low-level I/O patterns that are especially

vulnerable. Based on these patterns, we create a rank-

ing algorithm that prioritizes the points where injecting

power faults is most likely to cause errors; this priori-

tization can find violations about 20 times faster while

achieving the same coverage.

Simply triggering errors is not enough. Given the huge

code base and the complexity of databases, diagnosing

the root cause of an error could be even more challeng-

ing. To help in diagnosing and fixing the discovered

bugs, we collect detailed traces during the working and

recording phases, including function calls, system calls,

SCSI commands, accessed files, and accessed blocks.

These multi-layer traces, which span everything from the

block-level accesses to the workloads’ high-level behav-

ior, facilitate much better diagnosis of root causes.

Using our framework, we evaluate 8 common

databases, ranging from simple open-source key-value

stores such as Tokyo Cabinet and SQLite up to com-

mercial OLTP databases. Because the file system could

be a factor in the failure behavior, we test the databases

on multiple file systems (ext3, XFS, and NTFS) as ap-

plicable. We test each combination with an extensive

selection—exhaustively in some cases—of power-fault

points. We can do this because our framework does not

require the time-consuming process of running the entire

workload for every fault, allowing us to emulate thou-

sands of power faults per hour.

To our surprise, all 8 databases exhibit erroneous

behavior, with 7 of the 8 clearly violating the ACID

properties. In some cases, only a few records are cor-

rupted, while in others the entire table is lost. Although

advanced recovery techniques (often requiring intimate

knowledge of the database and poorly documented op-

tions) may reduce the problem, not a single database we

test can be trusted to keep all of the data it promises to

store. By using the detailed multi-layer traces, we are

able to pinpoint the root causes of the errors for those

systems we have the source code to; we are confident that

the architects of the commercial systems could quickly

correct their defects given similar information.

In summary, our contributions are:

• Carefully designed workloads and checkers to

test the ACID properties of databases. Despite

extensive test suites, existing databases still contain

bugs. It is a non-trivial task to verify if a database

run is correct after fault injection. Our 4 workloads

are carefully designed to stress different aspects of

a database, and further are designed for easy valida-

tion of correctness.

• A cross-platform method for exposing reliability

issues in storage systems under power fault. By

intercepting in the iSCSI layer, our framework can

test databases on different operating systems. By

recording SCSI commands (which are what disks

actually see), we can inject faults with high fidelity.

Further, SCSI tracing allows systemic fault injec-

tion and ease of repeating any error that is found.

Although we focus here on databases, this method

is applicable to any software running on top of a

block device.

• A pattern-based ranking algorithm to identify

the points most likely to cause problems when

power faulted in database operations. We iden-

tify 5 low-level patterns that indicate the most vul-

nerable points in database operations from a power-

fault perspective. Further analysis of the root causes

verifies that these patterns are closely related to in-

correct assumptions on the part of database imple-

menters. Using these patterns to prioritize, we can

accelerate testing by 20 times compared to exhaus-

tive testing while achieving nearly the same cover-

age.

• A multi-layer tracing system for diagnosing root

causes of ACID violations under fault. We com-

bine the high-level semantics of databases with the

low-level I/O traffic by tracing the function calls,

system calls, SCSI commands, files, and I/O blocks.

This correlated multi-layer trace allows quick diag-

nosis of complicated root causes.

• Experimental results against 8 popular

databases. We apply our framework to a wide

range of databases, including 4 open-source and 4

commercial systems. All 8 databases exhibit some

sort of erroneous behavior. With the help of the

multi-layer tracer, we are able to quickly pinpoint

the root causes for the open-source ones.

2 Design Overview

2.1 Fault Model

We study the reliability of databases under a simple fault

model: clean power fault. Specifically, we model loss of

power as the potential loss of any block-level operations

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 451

Figure 1: Overall Workflow

that have not been acknowledged as committed to persis-

tent storage, with the proviso that if we drop an opera-

tion, we must drop any operations that explicitly depend

on it as well. Although our system can induce the more

complex faults of other fault models [16, 44, 46], which

consider more complex data corruption and inconsistent

behavior, we focus here on the simplest case. Such cor-

ruption and reordering/dropping of operations seem un-

reasonable to expect databases to tolerate, given that they

so badly violate the API contract of the lower-level stor-

age system.

The specifics of our fault model are as follows: a fault

can occur at any point, the size of data written to media

is always an integer block multiple (512 bytes or 4 KB),

the device keeps all promises of durable commit of op-

erations (e.g., completed syncs are honored as are write

barriers), blocks are written (or not) without corruption,

and interrupted or dropped operations have no effect. We

believe this is the most idealized scenario under power

failure, and we expect databases to honor their ACID

guarantees under such faults.

2.2 Overall Workflow

Our testing framework injects simulated power faults by

intercepting iSCSI [4] commands. iSCSI is a standard

allowing one machine (the initiator) to access the block

storage of another machine (the target) through the net-

work. To everything above the block driver on the initia-

tor, iSCSI is completely transparent, making it an ideal

place to intercept disk activity. Further, the iSCSI tar-

get daemon can be implemented in user space [6], which

greatly increases the flexibility of fault injection com-

pared to a more complex kernel-level failure emulation

layer. Finally, iSCSI interception allows a single fault in-

jection implementation to test databases running on any

operating system having an iSCSI initiator (aka all mod-

ern OSes).

Figure 1 shows an overview of our framework. There

are three main components: the worker and checker, a

record and replayer, and a multi-layer tracer. The over-

all workflow goes as follows: First, the worker applies

a workload to stress a database starting from a known

disk image. Rather than simply randomly writing to the

database, the workloads are carefully designed so that the

checker can verify the ACID properties of the post-fault

image. Second, the record and replayer monitors the disk

activities via the iSCSI layer. All blocks in the data trans-

fer commands are recorded. Third, with the recorded

block trace, the replayer simulates a power fault by par-

tially replaying the block operations based on fault injec-

tion policies against a copy of the starting image, creating

a post-fault disk image. Fourth, the checker opens the

database on the post-fault image and verifies the ACID

properties of the recovered database. During each of the

above steps, the multi-layer tracer traces database func-

tion calls, system calls, SCSI commands, accessed files,

and accessed blocks to provide unified information to di-

agnose the root cause of any ACID violations.

3 Worker and Checker

We developed four workloads with different complexi-

ties to check if a database provides ACID properties even

when under fault. In particular, we check (1) atomicity,

which means a transaction is committed “all or nothing”;

(2) consistency, which means the database and applica-

tion invariants always hold between transactions; (3) iso-

lation, which means the intermediate states of a trans-

action are not visible outside of that transaction; and (4)

durability, which means a committed transaction remains

so, even after a power failure or system crash.

Each workload stresses one or more aspects of the

databases including large transactions, concurrency han-

dling, and multi-row consistency. Each workload has

self-checking properties (e.g., known values and orders

for writes) that its associated checker uses to check the

ACID properties. For simplicity, we present pseudo code

for a key-value store; the equivalent SQL code is straight-

forward. We further log timestamps of critical operations

to a separate store to aid in checking.

Workload 1: A single thread performs one transaction

that creates txn size (a tunable parameter) rows:

Begin Transaction

for i = 1 to txn_size do

key = "k-" + str(i)

value = "v-" + str(i)

put(key, value)

end

before_commit = get_timestamp()

Commit Transaction

after_commit = get_timestamp()

We use this workload to see whether large transactions

(e.g., larger than one block) trigger errors. The two

timestamps before commit and after commit record

the time boundaries of the commit. The checker for this

workload is straightforward: if the fault was after the

commit (i.e., later than after commit), check that all

3

452 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

txn size rows are present; otherwise, check that none

of the rows are present. If only some rows are present,

this is an atomicity violation. Being a single-threaded

workload, isolation is not a concern. For consistency

checking, we validate that a range scan gives the same

result as explicitly requesting each key individually in

point queries. Moreover, each retrievable key-value pair

should be matching; that is, key N should always be as-

sociated with value N.

We report a durability error if the fault was clearly af-

ter the commit and the rows are absent. A corner case

here is if the fault time lies between before commit and

after commit. The ACID guarantees are silent as to

what durability properties an in-flight commit has (the

other properties are clear) so we do not report durabil-

ity errors in such cases. We do find that some databases

may change back and forth between having and not hav-

ing a transaction as the point we fault advances during a

commit.

Workload 2: This is a multi-threaded version of work-

load 1, with each thread including its thread ID in the

key. Since we do not have concurrent transactions op-

erating on overlapping rows, we do not expect isolation

errors. We do, however, expect the concurrency handling

of the database to be stressed. For example, one thread

may call msync and force state from another thread to

disk unexpectedly.

Workload 3: This workload tests single-threaded

multi-row consistency by simulating concurrent, non-

overlapping banking transactions. It performs txn num

transactions sequentially, each of which moves money

among a different set of txn size accounts. Each ac-

count starts with some money and half of the money in

each even numbered account is moved to the next higher

numbered account (i.e., half of k-t-2i’s money is moved

to k-t-(2i+1) where t is the transaction ID):

for t = 1 to txn_num do

key_prefix = "k-" + str(t) + "-"

Begin Transaction

for i in 1 to txn_size/2 do

k1 = key_prefix + str(2*i)

k2 = key_prefix + str(2*i+1)

tmp1 = get(k1)

put(k1, tmp1 - tmp1/2)

tmp2 = get(k2)

put(k2, tmp2 + tmp1/2)

end

before_commit[t] = get_timestamp()

Commit Transaction

after_commit[t] = get_timestamp()

end

As with workload 1, we check that each transaction

Figure 2: An example workload 4 output table.

is all-or-nothing, that transactions committed before the

fault are present (and those after are not), and that the

results for range-scans and point-queries match. Further,

since none of the transactions change the total amount of

money, the checker tests every pair of rows with keys

of the form k-t-2i, k-t-(2i+1) to see whether their

amounts sum to the same value as in the initial state.

Workload 4: This is the most stressful (and time-

consuming) workload. It has multiple threads, each

performing multiple transactions, and each transaction

writes to multiple keys. Moreover, transactions from the

same or different threads may update the same key, fully

exercising database concurrency control.

Figure 2 shows an example output table gener-

ated by workload 4. In this example, there are two

threads (THR-1 and THR-2), each thread contains two

transactions (TXN-1 and TXN-2), and each transaction

updates two work-row keys (e.g., k-2 and k-5 for

THR-1-TXN-1). The table has two parts: the first 4 rows

(meta rows) keep themetadata about each transaction, in-

cluding the non-meta keys written in that transaction and

a timestamp taken immediately before the commit. The

next 8 rows (work rows) are the working region shared

by the transactions. Each transaction randomly selects

two keys within the working region, and updates their

values with its thread ID and transaction ID. For exam-

ple, the value v-THR-1-TXN-1 of the key k-2means the

transaction 1 in thread 1 updated the key k-2. All rows

start with initial values (e.g., v-init-1) to give a known

starting state.

The following pseudo-code shows the working logic

of the first transaction of thread one; the runtime values

in the comments are the ones used to generate Figure 2:

me = "THR-1-TXN-1"

Begin Transaction

// update two work rows:

key1 = get_random_key() //k-2

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 453

put(key1, "v-" + me)

key2 = get_random_key() //k-5

put(key2, "v-" + me)

// update my meta row:

before_commit = get_timestamp() //TS-00:01

v = key1 + "-" + key2 + "-"

+ str(before_commit) //k-2-k-5-TS-00:01

put(me, v)

Commit Transaction

after_commit[me] = get_timestamp()

Each transaction involvesmultiple rows (onemeta row

and multiple work rows) and stores a large amount of

self-description (i.e., the meta row records the work rows

updated and the work rows specify which meta row is

associated with their last updates). The after commit

timestamps allow greater precision in identifying dura-

bility, but are not strictly necessary.

As with workloads 1–3, we validate that range and

point queries match. In addition, since the table contains

initial values (e.g., k-1 = v-init-1) before the work-

load starts, we expect the table should at least maintain

the original values in the absence of updates—if any of

the initial rows are missing, we report a durability er-

ror. A further quick check verifies that the format of

each work row is either in the initial state (e.g., k-1 =

v-init-1), or was written by a valid transaction (e.g.,

k-2 = v-THR-1-TXN-1). Any violation of the format-

ting rules is a consistency error.

Another check involves multiple rows within each

transaction. Specifically, the work rows and meta rows

we observe need to match. When we observe at least one

row (either a work or a meta row) updated by a transac-

tion Ta and there is a missing row update from Ta, we

classify the potential errors based on the missing row

update: If that row is corrupted (unreadable), then we

report a durability error. If furthermore the transaction

Ta definitely committed after the fault point (i.e., Ta’s

before commit is after the fault injection time), we also

report an isolation error because the transaction’s uncom-

mitted data became visible.

Alternatively, if the row missing the update (from

transaction Ta) contains either the initial value or the

value from a transaction Tb known to occur earlier (i.e.,

transaction Tb’s after commit is before transaction Ta’s

before commit), then we report an atomicity error

since partial updates from transaction Ta are observed. If

furthermore transaction Ta definitely committed before

the fault point, we also report a durability error, and if

it definitely committed after the fault point we report an

isolation error.

Note that because each transaction saves timestamps,

we can determine if a work row might have been legiti-

mately overwritten by another transaction. As shown in

Figure 2, the first transaction of thread 2 (THR-2-TXN-1)

writes to k-7 and k-6, but the two rows are overwrit-

ten by THR-2-TXN-2 and THR-1-TXN-2, respectively.

Based on the timestamp bounds of the commits, we

can determine if these overwritten records are legitimate.

One last check is for transactions that definitely commit-

ted but do not leave any update; we report this as a dura-

bility error.

4 Record and Replay

The record-and-replay component records the I/O traffic

generated by theWorker under the workload, and replays

the I/O trace with injected power faults. As mentioned in

Section 2.2, the component is built on the iSCSI layer.

This design choice gives fine-grained and high-fidelity

control over the I/O blocks, and allows us to transpar-

ently test databases across different OSes.

4.1 Record

Figure 3(a) shows the workflow for the record phase. The

Worker exercises the database, which generates filesys-

tem operations, which in turn generate iSCSI requests

that reach the backing store. By monitoring the iSCSI

target daemon, we collect detailed block I/O operations

at the SCSI command level. More specifically, for ev-

ery SCSI command issued to the backing store, the SCSI

Parser examines its command descriptor block (CDB)

and determines the command type. If the command

causes data transfer from the initiator to the target de-

vice (e.g., WRITE and its variants), the parser records the

timestamp of the command and further extracts the log-

ical block address (LBA) and the transfer length from

the CDB, then invokes the Block Tracer. The Block

Tracer fetches the blocks to be transferred from the dae-

mon’s buffer and records it in an internal data log. The

command timestamp, the LBA, the transfer length, and

the offset of the blocks within the data log are further

recorded in an index log for easy retrieval. In this way,

we obtain a sequence of block updates (i.e., the Worker’s

block trace) that can be used to generate a disk image

representative of the state after a power fault.

The block trace collected from SCSI commands is

enough to generate simulated power faults. However,

given the huge number of low-level block accesses in a

trace, how to inject power faults efficiently is challeng-

ing. Moreover, the block I/Os themselves are too low-

level to infer the high-level operations of the database

under testing, which are essential for understanding why

an ACID violation happens and how to fix it. To address

these challenges, we design a multi-layer tracer, which

correlates the low-level block accesses with various high-

level semantics.

5

454 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 3: (a) Record phase (b) Replay for testing

In particular, we collect three more types of traces

in the record phase. First, our op2cmd mapper (inside

the Block Tracer, not shown) maps each block operation

(512 B or 4 KB) to the specific SCSI command it is part

of (a single SCSI command can cover over a megabyte);

the resulting mapping (i.e., op2cmd mapping) lets us in-

fer which operations the file system (or database) treated

as one logical unit and thus may be correlated.

Second, the File Tracer connects the blocks being up-

dated to the higher-level files and directories they store.

For a given file system, the meaning of each block is

well-defined (e.g., for ext3 the location of the inode

bitmap is fixed after formatting, and the blocks belong-

ing to a particular file are defined via the corresponding

inode block). The File Tracer first identifies the inode

number for each file (including regular files, directories,

and the filesystem journal). Then, it extracts the cor-

responding data block numbers for each inode. In this

way, the File Tracer generates a mapping (the blk2file

mapping) that identifies the ownership of each block in

the file system. Because each database file usually has a

well-defined functionality (e.g., UNDO/REDO log files),

the blk2file mapping lets us identify which I/O requests

are modifying, say, the UNDO log versus the main index

file. We can also identify which updates are to filesystem

metadata and which are to the filesystem journal. This

trace, together with the op2cmdmapping above, gives us

an excellent picture of the behavior of the database at the

I/O level.

The third type of trace is generated by the Call Tracer,

which instruments the workload and the database and

records all function calls and system calls invoked. Each

call is recorded with an invoke timestamp, a return times-

tamp, and its thread ID. This information not only di-

rectly reveals the semantics of the databases, but also

helps in understanding the lower-level I/O traffic. For ex-

ample, it allows us to tell if a particular I/O was explicitly

requested by the database (e.g., by correlating fsync and

msync calls with their respective files) or if it was initi-

ated by the file system (e.g., dirty blocks from another

file or ordinary dirty block write back).

Finally, all of the traces, including the block trace,

op2cmd mapping, blk2file mapping, and the call trace,

are supplied to the Trace Combiner. The block trace

and call trace are combined based on the timestamps

associated with each entry. For example, based on the

timestamps when a fsync call started and finished, and

the timestamp when a SCSI WRITE command is re-

ceived in between, we associate the blocks transferred

in the WRITE command with the fsync call. Note that

in a multi-threaded environment, the calls from differ-

ent threads (which can be identified by the associated

thread IDs) are usually interleaved. However, for each

synchronous I/O request (e.g., fsync), the blocks trans-

ferred are normally grouped together without interfer-

ence from other requests via a write barrier. So in prac-

tice we can always associate the blocks with the cor-

responding synchronous calls. Besides combining the

block trace and the call trace, the op2cmd mapping and

the blk2file mapping are further combined into the final

trace based on the LBA of the blocks. In this way, we

generate a multi-layer trace that spans everything from

the highest-level semantics to the lowest-level block ac-

cesses, which greatly facilitates analysis and diagno-

sis. We show examples of the multi-layer traces in Sec-

tion 5.1.

4.2 Replay for Testing

After the record phase, the replayer leverages the iSCSI

layer to replay the collected I/O block trace with injected

faults, tests whether the database can preserve the ACID-

properties, and helps to further diagnose the root causes

if a violation is found.

4.2.1 Block Replayer

Figure 3(b) shows the workflow of the replay-for-testing

phase. Although our replayer can inject worse errors

(e.g., corruption, flying writes, illegally dropped writes),

we focus on a “clean loss of power” fault model. Un-

der this fault model, all data blocks transferred before

the power cut are successfully committed to the media,

while others are lost. The Replayer first chooses a fault

point based on the injection policy (see Section 4.2.2).

By starting with a RAM disk image of the block device

at the beginning of the workload, we produce a post-fault

image by selectively replaying the operations recorded in

the Worker’s block trace. This post-fault image can then

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 455

Figure 4: Five patterns of vulnerable points based on real traces: (a) repetitive LBA, (b) jumping LBA, (c) head of

command, (d) transition between files, and (e) unintended update to mmap’ed block. op# means the sequence number

of the transfer operation for a data block, cmd# means the SCSI command’s sequence number, x.db is a blinded

database file name, x.log is a blinded database log file name, and fs-j means filesystem journal. The red italic lines

mean a power fault injected immediately after that operation may result in failures (a–d), or a fault injected after later

operations may result in failures (e). For simplicity, only relevant tracing fields are shown.

be mounted for the Checker to search for ACID viola-

tions. Because our power faults are simulated, we can

reliably replay the same block trace and fault determin-

istically as many times as needed.

4.2.2 Fault Injection Policy

For effective testing, we design two fault injection poli-

cies that specify where to inject power faults given a

workload’s block trace.

Policy 1: Exhaustive. Under our fault model, each

block transfer operation is atomic, although multi-block

SCSI operations are not. The exhaustive policy injects a

fault after every block transfer operation, systematically

testing all possible power-fault scenarios for a workload.

Although exhaustive testing is thorough, for compli-

cated workloads it may take days to complete. Randomly

sampling the fault injection points may help to reduce the

testing time, but also reduce the fault coverage. Hence

we propose a more principled policy to select the most

vulnerable points to inject faults.

Policy 2: Pattern-based ranking. By studying the

multi-layer traces of two databases (TokyoCabinet and

MariaDB) with exhaustive fault injection, we extracted

five vulnerable patterns where a power fault occurring

likely leads to ACID violations. In particular, we first

identify the correlation between the fault injection points

and the ACID violations observed. Then, for each fault

point leading to a violation, we analyze the context infor-

mation recorded in the trace around the fault point and

summarize the patterns of vulnerable injection points.

Figure 4 shows examples of the five patterns based on

the real violations observed in our early experiments:

Pattern A: repetitive LBA (Prep). For example, in Fig-

ure 4(a) op#35 and op#49 both write to LBA 1038, which

implies that 1038 may be a fixed location of important

metadata. The parameter for this pattern is the repetition

threshold.

Pattern B: jumping LBA sequence (Pjump). In Fig-

ure 4(b), the operations before op#63 access a large con-

tiguous region (e.g., op#62 , op#61, and earlier oper-

ations which are not shown), and the operations after

op#64 are also contiguous. The LBAs of op#63 and

op#64 are far away from that of the neighbor operations

and are jumping forward (e.g., from 2081 to 5191) or

backward (e.g., from 5191 to 1025). This may imply

switching operation or complex data structure updates

(e.g., after appending new nodes, update the metadata

of a B+ tree stored at the head of a file). The parameters

of this pattern include jumping distance and jumping di-

rection.

Pattern C: head of a SCSI command (Phead). Each

SCSI command may transfer multiple blocks. For exam-

ple, in Figure 4(c), op#153–156 all belong to cmd#43.

If the fault is injected after op#153, 154, or 155, the er-

ror will be triggered. The reason may be that the blocks

transferred in that SCSI command need to be written

atomically, which is blocked by these fault points. The

parameter of this pattern is the minimal length of the

head command.

Pattern D: transition between files (Ptran). In Fig-

ure 4(d), the transition is between a database file (x.db)

and the filesystem journal (fs-j). This pattern may im-

ply an interaction between database and file system (e.g.,

delete a log file after commit) that requires special cod-

ing. The pattern also includes transitions among database

files because each database file usually has a specific

function (e.g., UNDO/REDO logs) and the transition

may imply some complex operations involving multiple

files.

Pattern E: unintended update to mmap’ed blocks

(Pmmap). mmapmaps the I/O buffers for a portion of a file

7

456 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: Replay for diagnosis

into the application’s address space and thus allows the

application to write to the file cache directly. This mech-

anism is attractive to database systems because it allows

the database to circumvent double-buffering of the file

cache when running on top of a file system [22]. As

shown in Figure 4(e), x.db is a mmap’ed file, and LBA

1012 is in the mmap’ed region. Based on the system call

trace, we find that op#331 is caused by calling msync on

the memory map of x.db, which is an explicit request of

the database. On the other hand, op#463, which also up-

dates LBA 1012, is unintended because it happens when

calling fsync on another file (x.log). Other causes for

such implicit updates could be the periodic write back

of dirty pages or dirty page write back due to memory

pressure. In the real trace, injecting a fault immediately

after the implicit update (i.e., op#463 in this case) may

not necessarily cause ACID violations. Instead, injecting

faults later may cause failures. So the pattern considers

all operations between the implicit update and the next

explicit update, and uses sampling to select fault injec-

tion points within the range. The parameter of this pat-

tern is the sampling rate.

In summary, we extract the five block-level patterns

from the real failure logs of two databases. Three of them

(Prep, Pjump, and Phead) are independent of file systems

and OSes, two (Ptran and Pmmap) require knowledge of the

filesystem structure, and Pmmap is further associated with

system calls. Intuitively, these patterns capture the criti-

cal points in the I/O traffic (e.g., updates to some fixed lo-

cation of metadata or transition betweenmajor functions)

so we use them to guide fault injection. Specifically, af-

ter obtaining the traces from the record phase, we check

them against the patterns. For each fault injection point,

we see if it matches any of the five patterns, and score

each injection point based on how many of the patterns it

matches. Because a fault is always injected after a block

is transferred, we use the corresponding transfer oper-

ation to name the fault injection point. For example, in

Figure 4(a) op#35 and op#49 match the repetitive pattern

(assuming the repetition threshold is 2), so each of them

has the score of 1, while op#36 and op#37 remain 0. An

operation can gain a score of more than 1 if it matches

multiple patterns. For example, an operation may be si-

multaneously a repetitive operation (Prep), the first op-

eration of a command (Phead), and represent a transition

between files (Ptran), yielding a score of 3. After scoring

the operations, the framework injects power faults at the

operations with the highest score. By skipping injection

points with low scores, pattern-based ranking reduces the

number of fault injection rounds needed to uncover fail-

ures. We show real examples of the patterns and the ef-

fectiveness and efficiency of this fault injection policy in

Section 5.

4.3 Replay for Diagnosis

Although identifying that a database has a bug is use-

ful, diagnosing the underlying root cause is necessary in

order to fix it. Figure 5 shows the workflow of our diag-

nosis phase. Similar to the steps in replay for testing, the

replayer replays the Worker’s block trace up to the fault

point (identified in the replay for testing phase) that lead

to the ACID failure. Again, the Checker connects to the

database and verifies the database’s state. However, for

diagnosis we activate the full multi-layer tracing. More-

over, the blocks read by the database in this phase are

also collected because they are closely related to the re-

covery activity. The Checker’s block trace, blocks-to-

files mapping (collected during the record phase), and

the function calls and system calls trace are further com-

bined into Checker’s multi-layer trace. Together with the

check log of the integrity checker itself, these make iden-

tifying the root cause of the failure much easier. Further

exploring the behavior of the system for close-by fault

points that do not lead to failure [45] can also help. We

discuss diagnosis based on the multi-layer traces in more

detail in Section 5.1.

5 Evaluation

We built our prototype based on the Linux SCSI target

framework [6]. The Call Tracer is implemented using

PIN [8]. The File Tracer is built on e2fsprogs [3] and

XFS utilities [12]. We use RHEL 61as both the iSCSI tar-

get and initiator to run the databases, except that we use

Windows 7 Enterprise to run the databases using NTFS.

We apply the prototype to eight widely-used

databases, including three open-source embedded

1 All results were verified with Debian 6, and per time constraints a

subset were verified with Ubuntu 12.04 LTS.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 457

databases (TokyoCabinet, LightningDB, and SQLite),

one open-source OLTP SQL server (MariaDB), one pro-

prietary licensed2 key-value store (KVS-A), and three

proprietary licensed OLTP SQL databases (SQL-A,

SQL-B, and SQL-C). All run on Linux except SQL-C,

which runs on NTFS.

Since none of the tested databases fully support raw

block device access,3 the file system could be another

factor in the failure behavior. Hence for our Linux ex-

periments, we tested the databases on two different file

systems: the well-understood and commonly deployed

ext3, and the more robust XFS. We have not yet fully

implemented the Call Tracer and the File Tracer for Win-

dows systems but there are no core technical obstacles in

implementing these components using Windows-based

tooling [7, 9]. Also, for the proprietary databases with-

out debugging symbols, we supply limited support for

diagnosis (but full support for testing).

5.1 Case Studies

In this subsection, we discuss three real ACID-violation

cases found in three databases, and show how the multi-

layer traces helped us quickly diagnose their root causes.

5.1.1 TokyoCabinet

When testing TokyoCabinet under Workload 4, the

Checker detects the violations of atomicity (a transaction

is partially committed), durability (some rows are irre-

trievable), and consistency (the retrievable rows by the

two query methods are different). These violations are

non-deterministic—they may or may not manifest them-

selves under the same workload—and the failure symp-

toms vary depending on the fault injection point, mak-

ing diagnosis challenging. The patterns applicable to this

case include Pjump, Phead , Ptran, and Pmmap.

For a failing run, we collect the Checker’s multi-

layer trace (Figure 6(b)). For comparison purposes, we

also collect the Checker’s trace for a bug-free run (Fig-

ure 6(a)). By comparing the two traces, we can easily see

that tchdbwalrestore is not invoked in the failing run.

In the parent function (tchdbopenimpl) there is a read

of 256 bytes from the database file x.tcb in both traces,

but the content read is different by one bit (i.e., 108 vs.

118 in op#1). Further study of the data structures defined

in the source code reveals that the first 256 bytes con-

tain a flag (hdb->flags), which determines whether to

2 Due to the litigious nature of many database vendors (see

“The DeWitt Clause” [1]), we are unable to identify the commercial

databases by name. We assure readers that we tested well recognized,

well regarded, and mainstream software.
3 Nearly all modern databases run through the file system. Of the

major commercial OLTP vendors, Oracle has removed support for raw

storage devices [33], IBM has deprecated it for DB2 [23], and Mi-

crosoft strongly discourages raw partitioning for SQL Server [26].

Figure 6: Example of multi-layer traces adapted from the

real traces of TokyoCabinet. (a) Checker’s trace when no

violations were found. (b) Checker’s trace when ACID

violations were found. (c) Worker’s trace around the

power fault points leading to ACID violations. LBA, and

address) are reduced and only relevant fields and lines

are shown.

invoke tchdbwalrestoreon startup. The one bit differ-

ence in op#1 implies that some write to the beginning of

x.tcb during the workload causes this ACID violation.

We then look at the Worker’s multi-layer trace near

the power-fault injection points that manifest this failure

(Figure 6(c)). The majority of the faults within op#30–98

cause ACID violations, while power losses after op#99

do not cause any trouble. So the first clue is op#99

changes the behavior. Examining the trace, we notice

that the beginning of x.tcb is mmap’ed, and that op#99 is

caused by an explicit msync on x.tcb and sets the con-

tent to 118. By further examining the writes to x.tcb

before op#30–98, we find that op#29 also updates x.tcb

by setting the content to 108. However, this block up-

date is unintended: an fsync on the write-ahead log

x.tcb.wal triggers the OS to also write out the dirty

block of x.tcb.

The whole picture becomes more clear with the

collected trace of high-level function calls. It

turns out that at the beginning of each trans-

action (tchdbtranbegin(), not shown), the flag

(hdb->flags) is set to 0 (tchdbsetflag(0)), and then

set to 1 (tchdbsetflag(1)) after syncing the initial

x.tcb.wal to disk (fsync(6)). If the synchronization

of x.tcb.wal with disk is successful, the flag 0 should

be invisible to disk. In rare cases, however, the fsync on

x.tcb.wal causes an unintended flush of the flag 0 to

x.tcb on disk (as captured by op#29). In this scenario, if

9

458 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 7: Examples of multi-layer traces adapted from real traces of LightningDB (a–d) and SQLite (e): (a) Light-

ningDB Checker’s trace, (b) Worker’s trace around the bug-triggering fault point (op#401), (c) Checker’s check log

showing the size of data.mdb after op#342–401, (d) Checker’s check log showing the size of data.mdb after op#402,

and (e) SQLite Worker’s trace around the fault points (op#56–64) that cause durability violations.

a power fault is injected at the points between op#29 and

99, it will interrupt the transaction and the post-fault disk

image has the flag set to 0. Upon the recovery from the

post-fault disk image, the database will mistakenly think

x.tcb.wal has not been initialized (because the on-disk

flag is 0), and skip the tchdbwalrestore() procedure.

Consequently, an incomplete transaction is exposed to

the user.

The unintended updates to the mmap’ed file could be

caused for two reasons. One is the flushing of dirty pages

by kernel threads due to memory pressure or timer ex-

piry (e.g., dirty writeback centisecs), the other is

the internal dirty page flushing routines of file systems.

Since we can see the fsync call that causes the unin-

tended update, it is clear that the fact that ext3 and XFS

are aggressive in flushing blocks when there is a sync is

to blame. However, regardless if it is due to the kernel

or the file system, the programmer’s incorrect assump-

tion that a change to a mmap’ed files will not be asyn-

chronously written back is the underlying root cause.

One solution to this problem is using failure-atomic

msync [34], which prevents the non-explicit write back

to the mmap’ed file.

5.1.2 LightningDB

When testing LightningDB on ext3 under Workload 4,

the Checker, which links the database library into its ad-

dress space, crashes on certain queries. The applicable

patterns include Prep, Phead , and Ptran.

The Checker’s multi-layer trace (Figure 7(a)) shows

that before the crash there are two pread64s (the 2nd

one is omitted in the figure) from the head (LBA 6056) of

the database file data.mdb; also, data.mdb is mmap’ed

into memory. The size of the mapping is 1,048,576 bytes

(256 4 KB-pages), which exceeds the actual length of

the file. The last function logged before the crash is

mdb page get, which returns the address of a page. The

LightningDB documents [5] and source code reveal that

the first two pages of this file are metapages, which main-

tain the valid page information of the internal B+ tree,

and that the mapping is 256 pages by default for perfor-

mance reasons. Given this information, we suspect that

the crash is caused by referencing a mmap’ed page that is

valid based on the metapages but lies beyond the end of

the backing file.

The Worker’s trace (Figure 7(b)) and the Checker’s

check logs ((c) and (d)) verify our hypothesis. In this

example, a power fault after op#401 leads to the crash,

while a fault any other time (e.g., after op#342–400 and

op#402) causes no problem. As shown in (b), op#401 is

an update to the head (LBA 6056) of data.mdb, which

maintains the valid page information. However, after ap-

plying op#401, the size of data.mdb did not get updated

in the file system (Figure 7 (c)). Only after op#402,

which is an update to the filesystem metadata, is the

length of the file increased to 667,648 bytes (Figure 7

(d)), and thememory-mapping is safe to access from then

on.

Based on the traces we can further infer that op#399,

400, and 402 form a filesystem journal transaction that

updates the length metadata for data.mdb. The content

of op#399 (i.e., “98...01”, which is 98393bc001 in the

real trace) matches the magic number of the ext3 journal

and tells us that it is the first block (i.e., the descriptor

block) of the journal transaction. op#402 (with content

“98...02”) is the last block (i.e., the commit block) of the

journal transaction. op#400 is a journaled length update

that matches the format of the inode, the superblock, the

group descriptor, and the data block bitmap, all of which

need to be updated when new blocks are allocated to

lengthen a file. This is why the length update is invisible

in the file system until after op#402: without the com-

mit block, the journal transaction is incomplete and will

never be checkpointed into the main file system.

Note that op#401 itself does not increase the file size

since it is written to the head of the file. Instead, the

file is extended by op#342–398, which are caused by ap-

pending B+ tree pages in the memory (via lseeks and

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 459

pwrites before the mdb env sync call) and then calling

fdatasync on data.mdb. On ext3 with the default “or-

dered” journaling mode, the file data is forced directly

out to the main file system prior to its metadata being

committed to the journal. This is why we observe the

journaling of the length update (op#399, 400, and 402)

after the file data updates(op#342–398).

The fact that the journal commit block (op#402) is

flushed with the next pwrite64 in the same thread

means fdatasync on ext3 does not wait for the comple-

tion of journaling (similar behavior has been observed

on ext4). LightningDB’s aggressive mmap’ing and ref-

erencing pages without verifying the backing file fi-

nally trigger the bug. We have verified that chang-

ing fdatasync to fsync fixes the problem. Another

platform-independent solution is checking the consis-

tency between the metapage and the actual size of the

file before accessing.

Because we wanted to measure how effective our sys-

tem is in an unbiased manner, we waited to look at Light-

ningDB until after we had finalized and integrated all

of our components. It took 3 hours to learn the Light-

ningDB APIs and port the workloads to it, and once we

had the results of testing, it took another 3 hours to di-

agnose and understand the root cause. As discussed in

more detail in Section 5.3, it takes a bit under 8 hours

to do exhaustive testing for LightningDB, and less than

21 minutes for pattern-based testing. Given that we had

no experience with LightningDB before starting, we feel

this shows that our system is very effective in finding and

diagnosing bugs in databases.

5.1.3 SQLite

When testing SQLite under any of the four workloads,

the Checker finds that a transaction committed before a

power fault is lost in the recovered database. The appli-

cable patterns include Prep, Phead , and Ptran.

Figure 7(e) shows the Worker’s multi-layer trace. At

the end of a transaction (TXN-1), the database closes and

unlinks the log file (x.db-journal), and returns to the

user immediately as implied by the “after commit” mes-

sage. However, the unlink system call only modifies the

in-memory data structures of the file system. This behav-

ior is correctly captured in the trace—i.e., no I/O traffic

was recorded after unlink. The in-memorymodification

caused by unlink remains volatile until after completing

the first fsync system call in the next transaction, which

flushes all in-memory updates to the disk. The SQLite

documents [10] indicate that SQLite uses an UNDO log

by default. As a result, when a power fault occurs after

returning from a transaction but before completing the

next fsync (i.e., before op#65), the UNDO log of the

transaction remains visible on the disk (instead of being

unlinked). When restarting the database, the committed

transaction is rolled back unnecessarily, which makes the

transaction non-durable.

One solution for this case is to insert an additional

fsync system call immediately after the unlink, and do

not return to the user until the fsync completes. Note

that this case was manifested when we ran our experi-

ments under the default DELETE mode of SQLite. The

potential non-durable behavior is, surprisingly, known to

the developers [2]. We ran a few additional experiments

under the WAL mode as suggested by the developers,

and found an unknown error leading to atomicity viola-

tion. We do not include the atomicity violation in Table 1

(Section 5.2) since we can reproduce it even without in-

jecting a power fault.

5.2 Result Summary

Table 1 summarizes the ACID violations observed un-

der workloads 1–3 (W-1 through W-3) and three differ-

ent configurations of workload 4 (W-4.1 throughW-4.3).

W-4.1 uses 2 threads, 10 transactions per thread, each

transaction writes to 10 work rows, and the total number

of work rows is 1,000. W-4.2 increases the number of

threads to 10, the number of work rows being written per

transaction to 20, and the total number of work rows to

4,000. W-4.3 further increases the number of work rows

written per transaction to 80.

Table 1 shows that 12 out of 15 database/filesystem

combinations experienced at least one type of ACID

violation under injected power faults. Under rela-

tively simple workloads (i.e., W-1, W-2, and W-3),

11 database/filesystem combinations experienced one or

two types of ACID violations. For example, SQL-B vi-

olated the C and D properties under workload 3 on both

file systems. On the other hand, some databases can han-

dle the power faults better than others. For example,

LightningDB does not show any failures under power

faults with the first three workloads. Another interesting

observation is that power faulting KVS-A causes hangs,

preventing the Checker from further execution in a few

cases. We cannot access the data and so cannot clearly

identify which sort of ACID violation this should be cat-

egorized as.

Under the most stressful workload more violations

were found. For example, TokyoCabinet violates the

atomicity, consistency, and durability properties, and

LightningDB violates durability under the most stressful

configuration (W-4.3).

The last four columns of Table 1 show for each type of

ACID violation the percentage of power faults that cause

that violation among all power faults injected under the

exhaustive policy, averaged over all workloads. An in-

teresting observation is that the percentage of violations

for XFS is always smaller than that for ext3 (except for

SQL-B, which shows a similar percentage on both file

11

460 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

DB FS W-1 W-2 W-3 W-4.1 W-4.2 W-4.3 A C I D

TokyoCabinet ext3 D D D A C D A C D A C D 0.15 0.14 0 16.05

XFS — D D A C D D A C D <0.01 0.01 0 4.38

MariaDB ext3 D D D D D D 0 0 0 1.36

XFS D D D D D D 0 0 0 0.49

LightningDB ext3 — — — — — D 0 0 0 0.05

XFS — — — — — — 0 0 0 0

SQLite ext3 D D — D D D 0 0 0 19.15

XFS — — D D D D 0 0 0 10.60

KVS-A ext3 — — Hang* — — — 0 0 0 0

XFS — — — — — — 0 0 0 0

SQL-A ext3 D D D D D D 0 0 0 3.31

XFS D D D D D D 0 0 0 0.92

SQL-B ext3 D D C D C D C D C D 0 8.96 0 3.24

XFS C D D C D C D C D C D 0 7.77 0 3.90

SQL-C NTFS D D D D D D 0 0 0 8.08

Table 1: ACID violations observed under workloads 1–3 (W-1 through W-3) and three configurations of workload

4 (W-4.1 through W-4.3). “—” means no failure was observed. The last four columns show for each type of ACID

violation the percentage of power faults that cause that violation among all power faults injected under the exhaustive

policy, averaged over all workloads. *The checker never reported errors for KVS-A, but in some cases power loss

caused a hang in the database code during recovery afterwards. This could potentially be categorized as either an I or

a D error; regardless the database is not usable.

systems). This may indicate that XFS is more robust for

databases compared to ext3.

Some violations are difficult to trigger. For example,

LightningDB violates durability under only 0.05% of the

power faults injected under the exhaustive policy. Here

the exhaustive approach is not very efficient, and a ran-

dom sampling approachwould be likely to miss the error.

Overall, violation of durability is the most prevalent

failure, being found in 7 out of the 8 tested databases

and ranging from 0.05% up to 19.15% among all power

faults injected. A common type of durability violation

is a transaction committed before the power fault being

missing after recovery. TokyoCabinet, SQLite, and SQL-

B have this failure behavior.

Another common type of durability violation is partial

table corruption. Examples include non-retrievable rows,

rows retrievable but with corrupted data, or a database

crash when touching certain rows. TokyoCabinet, Light-

ningDB, and SQL-B exhibit such failures.

The third type of durability violation is failing to con-

nect to the database upon restart from the post-fault disk

image. As a result, the whole table was non-durable.

MariaDB, SQL-A, SQL-B, and SQL-C have demon-

strated this failure behavior. Our best efforts at manu-

ally recovering from this condition failed, except that for

MariaDB there is an additional recovery procedure that

can allow full recovery. This suggests that for MariaDB

the data is likely intact, but the default recovery proce-

dure failed to recognize it upon restart. Although that

may be a reasonable strategy for arbitrary image corrup-

tion, we do not feel this is completely acceptable behav-

ior under the easy fault model we apply.

5.3 Effectiveness of Patterns

We now evaluate the effectiveness of our pattern-based

ranking algorithm at identifying the most vulnerable

fault injection points. The five patterns we use (see

Section 4.2.2) were extracted based on the ACID vi-

olations observed in TokyoCabinet and MariaDB with

the exhaustive policy, and we apply them to all 8 tested

databases. For SQL-C, we apply only the filesystem-

independent and OS-independent patterns (i.e., Prep,

Pjump, and Phead).

Table 2 compares the pattern-based policy with the

exhaustive policy under W-4.1 and W-4.3 on ext3 (the

results on XFS and under other workloads are similar).

Overall, the pattern-based policy is very effective. In-

jecting power faults at points with scores exceeding 2 can

manifest all the types of ACID violations detected by ex-

haustive testing, except in one or two cases per configu-

ration. For SQL-A, the points with scores exceeding 2 do

not suffice; using the score 2 points in addition, however,

does suffice to manifest the ACID violations.

The patterns we identified using analysis from only 2

of the databases generalized well to the other 6. Espe-

cially for LightningDB, we performed all of the work-

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 461

DB W-4.1 W-4.3

match? top? match? top?

TokyoCabinet Y Y Y* Y

MariaDB Y Y Y Y

LightningDB — — Y Y

SQLite Y Y Y Y

KVS-A — — — —

SQL-A Y N Y N

SQL-B Y N Y* Y

SQL-C Y Y Y Y

Table 2: Comparison of exhaustive and pattern-based

fault injection policies. Y in the match? column means

injecting faults at the operations identified by the pattern

policy can expose the same types of ACID violations as

exposed under the exhaustive policy. Y in the top? col-

umn means that power faults need to be injected only at

the score 3 or higher points. “—” means no error is de-

tected under both polices. *Extrapolated from a partial

run, given the long time frame.

loads, testing, and diagnosis presented in Section 5.1.2

without any further iteration on the framework. Yet we

were still able to catch a bug that occurs in only 0.05%

of the runs.

5.4 Efficiency of Patterns

We further evaluate the efficiency of our pattern-based

policy in terms of the number of fault injection points

and the execution time for testing databases with the

power faults injected at these points. Table 3 compares

the number of fault injection points under the exhaustive

and pattern-based policies for W-4.3 on ext3 (the results

for the other cases are similar). Under this setting only

the points with scores exceeding 2 are needed to manifest

the same types of ACID violations as the exhaustive pol-

icy (except for SQL-A, which requires points with scores

exceeding 1). Compared to the exhaustive policy, the

pattern-based policy reduces the number of fault injec-

tion points greatly, with an average 21x reduction, while

manifesting the same types of ACID violations.

Table 4 further compares the two policies in terms of

the execution time required in the replay for testing. Note

that the pattern-based policy is very efficient, with an av-

erage 19x reduction in execution time compared to the

exhaustive policy. For example, we estimate (based on

letting it run for 3 days) that exhaustive testing of SQL-B

would take over 2 months, while with the pattern-based

policy, the testing completed in about 2 days.

DB Exhaustive Pattern %

TokyoCabinet 41,625 7,084 17.0%

MariaDB 1,013 14 1.4%

LightningDB 5,570 171 3.1%

SQLite 438 23 5.3%

KVS-A 4,193 69 1.7%

SQL-A 1,082 53* 4.9%

SQL-B 20,200 936 4.6%

SQL-C 313 2 0.6%

Average — — 4.8%

Table 3: Comparison of our two policies in terms of

the number of fault injection points under W-4.3. The

pattern-based policy includes only points with scores ex-

ceeding 2 *except for SQL-A, which includes points

with scores exceeding 1.

DB Exhaustive Pattern %

TokyoCabinet 12d 1h* 2d 0h 16.6%

MariaDB 3h 27m 3m 2s 1.5%

LightningDB 7h 56m 20m 44s 4.4%

SQLite 13m 12s 0m 42s 5.3%

KVS-A 5h 17m 5m 32s 1.7%

SQL-A 3h 33m 10m 37s 5.0%

SQL-B 71d 1h* 2d 9h 3.4%

SQL-C 3h 23m 2m 34s 5.1%

Average — — 5.4%

Table 4: Comparison of our two policies in terms of re-

play for testing time under W-4.3. *Estimated based on

progress from a 3-day run.

6 Comparison to EXPLODE

EXPLODE [44] is most closely related to our work. It

uses ingenious in situmodel checking to exhaust the state

of storage systems to expose bugs, mostly in file systems.

Part of our framework is similar: we also use a RAM

disk to emulate a block device, and record the result-

ing trace. However, our fault models are different. EX-

PLODE simulates a crash model where data may be cor-

rupted before being propagated to disk, and where buffer

writes are aggressively reordered. This is quite harsh to

upper-level software. Our fault model focuses on faults

where the blame more squarely lies on the higher-level

software (e.g., databases) rather than on the OS kernel

or hardware device. Besides, unlike EXPLODE, we pro-

vide explicit suggestions for workloads that are likely to

uncover issues in databases, and explicit tracing support

to pin found errors to underlying bugs.

When applied to our problem—i.e., testing and di-

agnosing databases under power fault—EXPLODE has

13

462 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

some limitations. First, the number of manually-defined

choice points is limited. The size of the current write

set between two choices could be huge, which is espe-

cially likely under heavy database transactions. It would

be prohibitively expensive, if not impossible, for a model

checking tool to exhaust every subset or permutation of

the write set on every path. As is, EXPLODE has such a

large set of states to explore that in practice it terminates

when the user loses patience [44]. Meanwhile, many of

the simulated crash images could contain harsh corrup-

tion that is unrealistic under power fault. Second, EX-

PLODE enforces deterministic thread scheduling. This

factor, together with the coarse-grained choices, may

hide certain types of bugs involving concurrent transac-

tions, a common case in databases. For instance, in a

database using mmap, the pages maintained in the write

set in EXPLODE is likely different from a native run.

Specifically, a thread T1 may call fsync (which causes

the write set to shrink) in its transaction, but due to the

enforced scheduling, thread T2 may lose its chance to

update the pages before the shrink. Since EXPLODE

generates crash images whenever the write set shrinks, it

cannot generate an image (and manifest a bug) that re-

quires updates from both T1 and T2. Third, even if a

bug is triggered, pinpointing the root cause in a database

is still challenging given the code size and complexity.

Finally, EXPLODE is built on the Linux kernel, which

does not allow testing Windows databases.

On the other hand, by exploring the state space, EX-

PLODE could exercise different code paths and make

corner cases appear as often as common ones, which is a

merit of model checking. Thus, we view EXPLODE-like

approaches as complementary.

7 Related Work

Testing databases Previous work mostly focuses on

functional testing of databases rather than on resilience

to external faults. Slutz [38] generates millions of valid

SQL queries, and then compares the results from mul-

tiple databases; if one database disagrees then that in-

dicates a probable bug. Chays et al. [14] proposes

a set of tools that automatically generate schema-

compliant queries for testing. To improve test coverage,

Bati et al. [13] propose a genetic approach for generating

random test cases for database engines. All of these ap-

proaches focus on database bugs in fault-free operation,

rather than when power is lost.

Subramanian et al. [39] examines the effects of disk

corruption on MySQL. Unlike [39], we study the effects

of power faults on a range of databases, including closed-

source ones, and assume an easy, “perfect” block device

under power fault.

Reliability analysis of storage software Similar to

EXPLODE [44], MODIST [43] applies model checking

to distributed systems and evaluates replicated Berkeley

DB. RapiLog [21] analyzes the durability of databases

and simplifies the logging by leveraging a formally-

verified kernel and synthesized driver. Again, we

view these formal methods as complementary. Thanu-

malayan et al. [35] proposes an abstract persistent model

(APM) of filesystem properties and studies the effects on

application consistency after simulating crashes in the

filesystem model. Unlike their modeling approach, we

test databases running on real file systems and do not in-

tentionally manipulate the order or content of the blocks.

The NoFS [17] shows how a file system can be designed

to maintain consistency in the face of crashes; we pre-

sume that a database written using the NoFS techniques

would be more resilient than those we tested. The IRON

file system [36] implements additional redundancy and

recovery methods in order to better survive various fail-

ures. Again, similar ideas could be applied to databases,

although a direct mapping from concepts such as inodes

and superblocks to their database equivalents may be

nontrivial.

Reliability analysis of storage hardware Several

studies have looked at the failure behavior of storage

hardware, from spinning magnetic disks [15, 32, 37]

to flash memory [19, 20, 40, 46]. Schroeder et al. [37]

considers in-the-wild failure probabilities, while

Chen et al. [15] considers how RAID improves the

durability and reliability of storage systems. Nightin-

gale et al. [32] analyzes hardware failures on PCs

including disk subsystem failures. However, none

of these studies looks at how the software using the

hardware actually responds to faults.

8 Conclusions

We have shown that even ostensibly well-tested

databases can lose data. This should be a wake-up call

for any author of storage systems software: undirected

testing is not enough. Thorough testing requires purpose-

built workloads designed to highlight failures, as well as

fault injection targeted at those situations in which stor-

age system designers are likely to make mistakes. We

can offer no panacea; creating failure-proof storage soft-

ware is hard. But unless careful attention is paid to cor-

rectness, we will continue to cluck our tongues and sigh,

while users will continue to cry.

9 Acknowledgments

The authors would like to thank Terrence Kelly, David

Andersen (their shepherd), and the anonymous review-

ers for their invaluable feedback. This research is par-

tially supported by NSF grants #CCF-0953759 (CA-

REERAward), #CCF-1218358, and #CCF-1319705, and

by a gift from HP.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 463

References

[1] DeWitt Clause. http://en.wikipedia.org/wiki/David DeWitt.

[2] Discussion on a potential bug on SQLite forum. http://sqlite.

1065341.n5.nabble.com/Potential-bug-in-crash-recovery-code-

unlink-and-friends-are-not-synchronous-td68885.html.

[3] E2fsprogs: Ext2/3/4 filesystems utilities. http://e2fsprogs.

sourceforge.net.

[4] iSCSI wiki. https://en.wikipedia.org/wiki/ISCSI.

[5] LightningDB documents. http://symas.com/mdb/#docs.

[6] Linux SCSI target framework (tgt). http://stgt.sourceforge.net/.

[7] NFI: NTFS file sector information utility. http://support.

microsoft.com/kb/253066/en-us/.

[8] PIN — a dynamic binary instrumentation tool. https://software.

intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-

tool/.

[9] PIN for windows. https://software.intel.com/en-us/articles/

pintool-downloads/.

[10] SQLite documents. http://www.sqlite.org/docs.html.

[11] SQLite testing website. http://www.sqlite.org/testing.html.

[12] XFS file system utilities. https://access.redhat.com/

documentation/en-US/Red Hat Enterprise Linux/6/html/

Storage Administration Guide/xfsothers.html.

[13] BATI, H., GIAKOUMAKIS, L., HERBERT, S., AND SURNA, A.

A genetic approach for random testing of database systems. In

Proceedings of the 33rd international conference on Very large

data bases (2007), VLDB ’07, VLDB Endowment, pp. 1243–

1251.

[14] CHAYS, D., DENG, Y., FRANKL, P. G., DAN, S., VOKOLOS,

F. I., AND WEYUKER, E. J. An agenda for testing relational

database applications. In Proceedings of Software Testing, Verifi-

cation and Reliability (March 2004), pp. 17–44.

[15] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND

PATTERSON, D. A. RAID: high-performance, reliable secondary

storage. ACM Comput. Surv. 26, 2 (June 1994), 145–185.

[16] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-

JAMANI, G., AND LOWELL, D. The Rio file cache: Surviving

operating system crashes. In Proceedings of the Seventh Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (New York, NY, USA, 1996),

ASPLOS VII, ACM, pp. 74–83.

[17] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,

AND ARPACI-DUSSEAU, R. H. Consistency Without Ordering.

In Proceedings of the 10th Conference on File and Storage Tech-

nologies (FAST’12) (San Jose, California, February 2012).

[18] CNN. Manufacturer blames super bowl outage on incorrect

setting. http://www.cnn.com/2013/02/08/us/superdome-power-

outage/, 2013.

[19] GABRYS, R., YAAKOBI, E., GRUPP, L. M., SWANSON, S.,

AND DOLECEK, L. Tackling intracell variability in TLC flash

through tensor product codes. In ISIT’12 (2012), pp. 1000–1004.

[20] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,

S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Character-

izing flash memory: anomalies, observations, and applications. In

Proceedings of the 42nd Annual IEEE/ACM International Sym-

posium on Microarchitecture (New York, NY, USA, 2009), MI-

CRO 42, ACM, pp. 24–33.

[21] HEISER, G., LE SUEUR, E., DANIS, A., BUDZYNOWSKI, A.,

SALOMIE, T.-L., AND ALONSO, G. RapiLog: Reducing Sys-

tem Complexity Through Verification. In Proceedings of the 8th

ACM European Conference on Computer Systems (New York,

NY, USA, 2013), EuroSys ’13, ACM, pp. 323–336.

[22] HELLERSTEIN, J. M., STONEBRAKER, M., AND HAMILTON,

J. Architecture of a database system. Foundations and Trends in

Databases 1, 2 (2007), 141–259.

[23] IBM. Database logging using raw devices is deprecated. http://

publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.

db2.udb.rn.doc/doc/c0023086.htm, 2006.

[24] LEACH, A. Level 3’s UPS burnout sends websites down

in flames. http://www.theregister.co.uk/2012/07/10/data centre

power cut/, 2012.

[25] MCMILLAN, R. Amazon blames generators for blackout that

crushed Netflix. http://www.wired.com/wiredenterprise/2012/07/

amazon explains/, 2012.

[26] MICROSOFT. NTFS vs. FAT vs. raw partitions. http://technet.

microsoft.com/en-us/library/cc966414.aspx, 2007.

[27] MILLER, R. Human error cited in hosting.com out-

age. http://www.datacenterknowledge.com/archives/2012/07/28/

human-error-cited-hosting-com-outage/, 2012.

[28] MILLER, R. Power outage hits London data center. http://www.

datacenterknowledge.com/archives/2012/07/10/power-outage-

hits-london-data-center/, 2012.

[29] MILLER, R. Data center outage cited in visa downtime across

canada. http://www.datacenterknowledge.com/archives/2013/01/

28/data-center-outage-cited- in-visa-downtime-across-canada/,

2013.

[30] MILLER, R. Power outage knocks DreamHost customers of-

fline. http://www.datacenterknowledge.com/archives/2013/03/

20/power-outage-knocks-dreamhost-customers-offline/, 2013.

[31] NBC. Power outage affects thousands, including columbus

hospital. http://columbus.gotnewswire.com/news/power-outage-

affects- thousands-including-columbus-hospital, 2014.

[32] NIGHTINGALE, E. B., DOUCEUR, J. R., AND ORGOVAN, V.

Cycles, cells and platters: An empirical analysis of hardware fail-

ures on a million consumer PCs. In Proceedings of the Sixth

Conference on Computer Systems (New York, NY, USA, 2011),

EuroSys ’11, ACM, pp. 343–356.

[33] ORACLE. Desupport raw storage device. http://docs.oracle.com/

cd/E16655 01/server.121/e17642/deprecated.htm, 2013.

[34] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic msync():

A simple and efficient mechanism for preserving the integrity of

durable data. In Proceedings of the 8th ACM European Confer-

ence on Computer Systems (NewYork, NY, USA, 2013), EuroSys

’13, ACM, pp. 225–238.

[35] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-

KISWANY, S., ARPACI-DUSSEAU, A. C., AND ARPACI-

DUSSEAU, R. H. All file systems are not created equal: On

the complexity of crafting crash-consistent applications. In Pro-

ceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’14) (October 2014).

[36] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N., AGRAWAL,

N., GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-

DUSSEAU, R. H. IRON File Systems. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles (SOSP’05)

(Brighton, United Kingdom, October 2005), pp. 206–220.

[37] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real

world: What does an MTTF of 1,000,000 hours mean to you? In

Proceedings of the 5th USENIX Conference on File and Storage

Technologies (FAST’07) (2007).

[38] SLUTZ, D. R. Massive stochastic testing of SQL. In Proceedings

of the 24rd International Conference on Very Large Data Bases

(San Francisco, CA, USA, 1998), VLDB ’98, Morgan Kaufmann

Publishers Inc., pp. 618–622.

15

464 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[39] SUBRAMANIAN, S., ZHANG, Y., VAIDYANATHAN, R., GU-

NAWI, H. S., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,

R. H., AND NAUGHTON, J. F. Impact of disk corruption on

open-source DBMS. In Data Engineering (ICDE), 2010 IEEE

26th International Conference on (2010), IEEE, pp. 509–520.

[40] TSENG, H.-W., GRUPP, L. M., AND SWANSON, S. Understand-

ing the impact of power loss on flash memory. In Proceedings of

the 48th Design Automation Conference (DAC’11) (2011).

[41] VERGE, J. Internap data center outage takes down Livestream

and StackExchange. http://www.datacenterknowledge.com/

archives/2014/05/16/internap-data-center-outage- takes-

livestream-stackexchange/, 2014.

[42] WOLFFRADT, R. S. V. Fire in your data center: No power, no

access, now what? http://www.govtech.com/state/Fire-in-your-

Data-Center-No-Power-No-Access-Now-What.html, 2014.

[43] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,

YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:

Transparent model checking of unmodified distributed systems.

In Proceedings of the 6th USENIX Symposium on Networked Sys-

tems Design and Implementation (Berkeley, CA, USA, 2009),

NSDI’09, pp. 213–228.

[44] YANG, J., SAR, C., AND ENGLER, D. EXPLODE: a

lightweight, general system for finding serious storage system er-

rors. In Proceedings of the Seventh Symposium on Operating Sys-

tems Design and Implementation (OSDI ’06) (November 2006),

pp. 131–146.

[45] ZELLER, A. Isolating cause-effect chains from computer pro-

grams. In Proceedings of the 10th ACM SIGSOFT Symposium

on Foundations of Software Engineering (New York, NY, USA,

2002), SIGSOFT ’02/FSE-10, ACM, pp. 1–10.

[46] ZHENG, M., TUCEK, J., QIN, F., AND LILLIBRIDGE, M. Un-

derstanding the robustness of SSDs under power fault. In Pro-

ceedings of the 11th USENIX Conference on File and Storage

Technologies (FAST’13) (2013).

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 465

Fast Databases with Fast Durability and Recovery
Through Multicore Parallelism

Wenting Zheng, MIT* Stephen Tu, MIT*
Eddie Kohler, Harvard University Barbara Liskov, MIT

Abstract
Multicore in-memory databases for modern machines
can support extraordinarily high transaction rates for on-
line transaction processing workloads. A potential weak-
ness, however, is recovery from crash failures. Can clas-
sical techniques, such as checkpoints, be made both ef-
ficient enough to keep up with current systems’ mem-
ory sizes and transaction rates, and smart enough to
avoid additional contention? Starting from an efficient
multicore database system, we show that naive logging
and checkpoints make normal-case execution slower, but
that frequent disk synchronization allows us to keep
up with many workloads with only a modest reduction
in throughput. We design throughout for parallelism:
during logging, during checkpointing, and during re-
covery. The result is fast. Given appropriate hardware
(three SSDs and a RAID), a 32-core system can recover
a 43.2 GB key-value database in 106 seconds, and a
> 70 GB TPC-C database in 211 seconds.

1 Introduction
In-memory databases on modern multicore ma-
chines [10] can handle complex, large transactions at
millions to tens of millions of transactions per second,
depending on transaction size. A potential weakness
of such databases is robustness to crashes and power
failures. Replication can allow one site to step in for
another, but even replicated databases must write data
to persistent storage to survive correlated failures, and
performance matters for both persistence and recovery.

Crash resistance mechanisms, such as logging and
checkpointing, can enormously slow transaction execu-
tion if implemented naively. Modern fast in-memory
databases running tens of millions of small transactions
per second can generate more than 50 GB of log data
per minute when logging either values or operations. In
terms of both transaction rates and log sizes, this is up
to several orders of magnitude more than the values re-
ported in previous studies of in-memory-database dura-
bility [2, 14, 24]. Logging to disk or flash is at least theo-
retically fast, since log writes are sequential, but sequen-
tial log replay is not fast on a modern multicore machine.
Checkpoints are also required, since without them, logs
would grow without bound, but checkpoints require a

*Currently at University of California, Berkeley.

walk over the entire database, which can cause data
movement and cache pollution that reduce concurrent
transaction performance. Recovery of a multi-gigabyte
database using a single core could take more than 90
minutes on today’s machines, which is a long time even
in a replicated system.

Our goal in this work was to develop an in-memory
database with full persistence at relatively low cost to
transaction throughput, and with fast recovery, mean-
ing we hoped to be able to recover a large database to
a transactionally-consistent state in just a few minutes
without replication. Starting from Silo [27], a very fast
in-memory database system, we built SiloR, which adds
logging, checkpointing, and recovery. Using a combina-
tion of logging and checkpointing, we are able to re-
cover a 43.2 GB YCSB key-value-style database to a
transactionally-consistent snapshot in 106 seconds, and
a more complex > 70 GB TPC-C database with many
tables and secondary indexes in 211 seconds.

Perhaps more interesting than our raw performance is
the way that performance was achieved. We used con-
currency in all parts of the system. The log is written
concurrently to several disks, and a checkpoint is taken
by several concurrent threads that also write to multi-
ple disks. Concurrency was crucial for recovery, and we
found that the needs of recovery drove many of our de-
sign decisions. The key to fast recovery is using all of
the machine’s resources, which, on a modern machine,
means using all cores. But some designs tempting on the
logging side, such as operation logging (that is, logging
transaction types and arguments rather than logging val-
ues), are difficult to recover in parallel. This drive for
fast parallel recovery affected many aspects of our log-
ging and checkpointing designs.

Starting with an extremely fast in-memory database,
we show:

• All the important durability mechanisms can and
should be made parallel.

• Checkpointing can be fast without hurting normal
transaction execution. The fastest checkpoints in-
troduce undesired spikes and crashes into concur-
rent throughput, but through good engineering and
by pacing checkpoint production, this variability
can be reduced enormously.

466 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

• Even when checkpoints are taken frequently, a
high-throughput database will have to recover from
a very large log. In our experiments, log recovery
is the bottleneck; for example, to recover a 35 GB
TPC-C database, we recover 16 GB from a check-
point and 180 GB from the log, and log recovery ac-
counts for 90% of recovery time. Our design allows
us to accomplish log replay at roughly the maxi-
mum speed of I/O.

• The system built on these ideas can recover a rela-
tively large database quite quickly.

2 Silo overview
We build on Silo, a fast in-memory relational database
that provides tables of typed records. Clients issue one-
shot requests: all parameters are available when a re-
quest begins, and the request does not interact with its
caller until it completes. A request is dispatched to a sin-
gle database worker thread, which carries it out to com-
pletion (commit or abort) without blocking. Each worker
thread is pinned to a physical core of the server machine.
Most cores run workers, but SiloR reserves several cores
for logging and checkpointing tasks.

Silo tables are stored in efficient, cache-friendly con-
current B-trees [15]. Each table uses one primary tree
and zero or more secondary trees for secondary indexes.
Key data is embedded in tree structures, and values are
stored in separately-allocated records. All structures are
stored in shared memory, so any worker can access the
entire database.

Silo uses a variant of optimistic concurrency control
(OCC) [11] to serialize transactions. Concurrency con-
trol centers on transaction IDs (TIDs). Each record con-
tains the TID of the transaction that most recently mod-
ified it. As a worker runs a transaction, it maintains a
read-set containing the old TID of each read or written
record, and a write-set containing the new state of each
written record. On transaction completion, a worker de-
termines whether the transaction can commit. First it
locks the records in the write-set (in a global order to
avoid deadlock). Then it computes the transaction’s TID;
this is the serialization point. Next it compares the TIDs
of records in the read-set with those records’ current
TIDs, and aborts if any TIDs have changed or any record
is locked by a different transaction. Otherwise it com-
mits and overwrites the write-set records with their new
values and the new TID.

2.1 Epochs
Silo transaction IDs differ in an important way from
those in other systems, and this difference impacts the
way SiloR does logging and recovery. Classical OCC

obtains the TID for a committing transaction by effec-
tively incrementing a global counter. On modern multi-
core hardware, though, any global counter can become
a source of performance-limiting contention. Silo elim-
inates this contention using time periods called epochs
that are embedded in TIDs. A global epoch number E
is visible to all threads. A designated thread advances it
periodically (every 40 ms). Worker threads use E during
the commit procedure to compute the new TID. Specif-
ically, the new TID is (a) greater than any TID in the
read-set, (b) greater than the last TID committed by this
worker, and (c) in epoch E.

This avoids false contention on a global TID, but
fundamentally changes the relationship between TIDs
and the serial order. Consider concurrent transactions
T1 and T2 where T1 reads a key that T2 then over-
writes. The relationship between T1 and T2 is called
an anti-dependency: T1 must be ordered before T2 be-
cause T1 depends on the absence of T2. In conventional
OCC, whose TIDs capture anti-dependencies, our ex-
ample would always have TID(T1) < TID(T2). But in
Silo, there is no communication whatsoever from T1 to
T2, and we could find TID(T1) > TID(T2)! This means
that replaying a Silo database’s committed transactions
in TID order might recover the wrong database.

Epochs provide the key to correct replay. On total-
store-order (TSO) architectures like x86-64, the desig-
nated thread’s update of E becomes visible at all workers
simultaneously. Because workers read the current epoch
at the serialization point, the ordering of TIDs with dif-
ferent epochs is always compatible with the serial or-
der, even in the case of anti-dependencies. Epochs allow
for a form of group commit: SiloR persists and recovers
in units of epochs. We describe below how this impacts
logging, checkpointing, and recovery.

3 Logging
This section explains how SiloR logs transaction modifi-
cations for persistence. Our design builds on Silo, which
included logging but did not consider recovery, log trun-
cation, or checkpoints. The SiloR logging subsystem
adds log truncation, makes changes related to liveness,
and allows more parallelism on replay.

3.1 Basic logging
The responsibility for logging in SiloR is split between
workers, which run transactions, and separate logging
threads (“loggers”), which handle only logging, check-
pointing, and other housekeeping tasks. Workers gener-
ate log records as they commit transactions; they pass
these records to loggers, which commit the logs to disk.
When a set of logs is committed to disk via fsync, the
loggers inform the workers. This allows workers to send
transaction results to clients.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 467

A log record comprises a committed transaction’s TID
plus the table, key, and value information for all records
modified by that transaction. Each worker constructs
log records in disk format and stores them in a mem-
ory buffer taken from a per-worker buffer pool. When a
buffer fills, or at an epoch boundary, the worker passes
the buffer to the logger over a shared-memory queue.

3.2 Value logging vs. operation logging
SiloR uses value logging, not operation or transaction
logging. This means that SiloR logs contain each trans-
action’s output keys and values, rather than the identity
of the executed operation and its parameters.

The choice of value logging is an example of re-
covery parallelism driving the normal-case logging de-
sign. Value logging has an apparent disadvantage rela-
tive to operation logging: for many workloads (such as
TPC-C) it logs more data, and therefore might unnec-
essarily slow transaction execution. However, from the
point of view of recovery parallelism, the advantages of
value logging outweigh its disadvantages. Value logging
is easy to replay in parallel—the largest TID per value
wins. This works in SiloR because TIDs reflect depen-
dencies, i.e., the order of writes, and because we recover
in units of epochs, ensuring that anti-dependencies are
not a problem. Operation logging, in contrast, requires
that transactions be replayed in their original serial or-
der. This is always hard to parallelize, but in Silo, it
would additionally require logging read-sets (keys and
TIDs) to ensure anti-dependencies were obeyed. Op-
eration logging also requires that the initial pre-replay
database state be a transactionally consistent snapshot,
which value logging does not; and for small transactions
value and operation logs are about the same size. These
considerations led us to prefer value logging in SiloR.
We solve the problem of value logging I/O by adding
hardware until logging is not a bottleneck, and then us-
ing that hardware wisely.

3.3 Workers and loggers
Loggers have little CPU work to do. They collect logs
from workers, write them to disk, and await durability
notification from the kernel via the fsync/fdatasync sys-
tem call. Workers, of course, have a lot of CPU work to
do. A SiloR deployment therefore contains many worker
threads and few logger threads. We allocate enough log-
ger threads per disk to keep that disk busy, one per disk
in our evaluation system.

But how should worker threads map to logger
threads? One possibility is to assign each logger a par-
tition of the database. This might reduce the data writ-
ten by loggers (for example, it could improve the ef-
ficacy of compression), and it might speed up replay.
We rejected this design because of its effect on normal-
case transaction execution. Workers would have to do

more work to analyze transactions and split their up-
dates appropriately. More fundamentally, every worker
might have to communicate with every logger. Though
log records are written in batches (so the communica-
tion would not likely introduce contention), this design
would inevitably introduce remote writes or reads: phys-
ical memory located on one socket would be accessed,
either for writes or reads, by a thread running on a dif-
ferent socket. Remote accesses are expensive and should
be avoided when possible.

Our final design divides workers into disjoint subsets,
and assigns each subset to exactly one logger. Core pin-
ning is used to ensure that a logger and its workers run
on the same socket, making it likely that log buffers al-
located on a socket are only accessed by that socket.

3.4 Buffer management
Although loggers should not normally limit transaction
execution, loggers must be able to apply backpressure
to workers, so that workers don’t generate indefinite
amounts of log data. This backpressure is implemented
by buffer management. Loggers allocate a maximum
number of log buffers per worker core. Buffers circu-
late between loggers and workers as transactions exe-
cute, and a worker blocks when it needs a new log buffer
and one is not available. A worker flushes a buffer to
its logger when either the buffer is full or a new epoch
begins, whichever comes first. It is important to flush
buffers on epoch changes, whether or not those buffers
are full, because SiloR cannot mark an epoch as persis-
tent until it has durably logged all transactions that hap-
pened in that epoch. Each log buffer is 512 KB. This
is big enough to obtain some benefit from batching, but
small enough to avoid wasting much space when a par-
tial buffer is flushed.

We found that log-buffer backpressure in Silo trig-
gered unnecessarily often because it was linked with
fsync times. Loggers amplified file system hiccups, such
as those caused by concurrent checkpoints, into major
dips in transaction rates. SiloR’s loggers instead recircu-
late log buffers back to workers as soon as possible—
after a write, rather than after the following epoch
change and fsync. We also increased the number of log
buffers available to workers, setting this to about 10% of
the machine’s memory. The result was much less noise
in transaction execution rates.

3.5 File management
Each SiloR logger stores its log in a collection of files
in a single directory. New entries are written to a file
called data.log, the current log file. Periodically (cur-
rently every 100 epochs) the logger renames this file to
old_data.e, where e is the largest epoch the file contains,
then starts a new data.log. Using multiple files simpli-
fies the process of log truncation and, in our measure-

468 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ments, didn’t slow logging relative to Silo’s more prim-
itive single-file design.

Log files do not contain transactions in serial order. A
log file contains concatenated log buffers from several
workers. These buffers are copied into the log without
rearrangement; in fact, to reduce data movement, SiloR
logger threads don’t examine log data at all. A log file
can even contain epochs out of order: a worker that de-
lays its release of the previous epoch’s buffer will not
prevent other workers from producing buffers in the new
epoch. All we know is that a file old_data.e contains no
records with epochs > e. And, of course, a full log com-
prises multiple log directories stored independently by
multiple loggers writing to distinct disks. Thus, no single
log contains enough information for recovery to produce
a correct database state. It would be possible to extract
this information from all logs, but instead SiloR uses
a distinguished logger thread to maintain another file,
pepoch, that contains the current persistent epoch. The
logger system guarantees that all transactions in epochs
≤ pepoch are durably stored in some log. This epoch is
calculated as follows:

1. Each worker w advertises its current epoch, ew, and
guarantees that all future transactions it sends to its
logger will have epoch ≥ ew. It updates ew by set-
ting ew ← E after flushing its current log buffer to
its logger.

2. Each logger l reads log buffers from workers and
writes them to log files.

3. Each logger regularly decides to make its writes
durable. At that point, it calculates the minimum of
the ew for each of its workers and the epoch number
of any log buffer it owns that remains to be written.
This is the logger’s current epoch, el . The logger
then synchronizes all its writes to disk.

4. After this synchronization completes, the logger
publishes el . This guarantees that all associated
transactions with epoch < el have been durably
stored for this logger’s workers.

5. The distinguished logger thread periodically com-
putes a persistence epoch ep as min{el}− 1 over
all loggers. It writes ep to the pepoch file and then
synchronizes that write to disk.

6. Once pepoch is durably stored, the distinguished
logger thread publishes ep to a global variable. At
that point all transactions with epochs ≤ ep have be-
come durable and workers can release their results
to clients.

This protocol provides a form of group commit. It en-
sures that the logs contain all information about trans-

actions in epochs ≤ ep, and that no results from trans-
actions with epoch > ep were released to clients. There-
fore it is safe for recovery to recover all transactions with
epochs ≤ ep, and also necessary since those results may
have been released to clients. It has one important dis-
advantage, namely that the critical path for transaction
commit contains two fsyncs (one for the log file and one
for pepoch) rather than one. This somewhat increases
latency.

4 Checkpoints
Although logs suffice to recover a database, they do
not suffice to recover a database in bounded time. In-
memory databases must take periodic checkpoints of
their state to allow recovery to complete quickly, and to
support log truncation. This section describes how SiloR
takes checkpoints.

4.1 Overview
Our main goal in checkpoint production is to produce
checkpoints as quickly as possible without disrupting
worker throughput. Checkpoint speed matters because
it limits the amount of log data that will need to be re-
played at recovery. The smaller the distance between
checkpoints, the less log data needs to be replayed, and
we found the size of the log to be the major recovery ex-
pense. Thus, as with log production, checkpointing uses
multiple threads and multiple disks.

Checkpoints are written by checkpointer threads, one
per checkpoint disk. In our current implementation
checkpoints are stored on the same disks as logs, and
loggers and checkpointers execute on the same cores
(which are separate from the worker cores that exe-
cute transactions). Different checkpointers are responsi-
ble for different slices of the database; a distinguished
checkpoint manager assigns slices to checkpointers.
Each checkpointer’s slices amount to roughly 1/n th of
the database, where n is the number of disks. A check-
point is associated with a range of epochs [el ,eh], where
each checkpointer started its work during or after el and
finished its work during or before eh.

Each checkpointer walks over its assigned database
slices in key order, writing records as it goes. Since
OCC installs modifications at commit time, all records
seen by checkpointers are committed. This means that
full ARIES-style undo and redo logging is unnecessary;
the log can continue to contain only “redo” records for
committed transactions. However, concurrent transac-
tions continue to execute during the checkpoint period,
and they do not coordinate with checkpointers except
via per-record locks. If a concurrent transaction commits
multiple modifications, there is no guarantee the check-
pointers will see them all. SiloR checkpoints are thus in-
consistent or “fuzzy”: the checkpoint is not necessarily

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 469

a consistent snapshot of the database as of a particular
point in the serial order. To recover a consistent snap-
shot, it is always necessary both to restore a checkpoint
and to replay at least a portion of the log.

We chose to produce an inconsistent checkpoint be-
cause it’s less costly in terms of memory usage than
a consistent checkpoint. Silo could produce consis-
tent checkpoints using its support for snapshot trans-
actions [27]. However, checkpoints of large databases
take a long time to write (multiple tens of seconds),
which is enough time for all database records to be over-
written. The memory expense associated with preserv-
ing the snapshot for this period, and especially the al-
location expense associated with storing new updates
in newly-allocated records (rather than overwriting old
records), reduces normal-case transaction throughput by
10% or so. We prefer better normal-case throughput.
Our choice of inconsistent checkpoints further neces-
sitates our choice of value logging; it is impossible to
recover from an inconsistent checkpoint without either
value logging or some sort of ARIES-style undo log-
ging.

Another possible design for checkpoints is to avoid
writing information about keys whose records haven’t
changed since the previous checkpoint, for example, de-
signing a disk format that would allow a new check-
point to elide unmodified key ranges. We rejected this
approach because ours is simpler, and also because chal-
lenging workloads, such as uniform updates, can cause
any design to effectively write a complete checkpoint ev-
ery time a checkpoint is required. We wanted to under-
stand the performance limits caused by these workloads.

In an important optimization, checkpointer threads
skip any records with current epoch ≥ el . Thus, the
checkpoint contains those keys written in epochs < el
that were not overwritten in epochs ≥ el . It is not nec-
essary to write such records because, given any incon-
sistent checkpoint started in el , it is always necessary to
replay the log starting at epoch el . Specifically, the log
must be complete over a range of epochs [el ,ex], where
ex ≥ eh, for recovery of a consistent snapshot to be pos-
sible. There’s no need to store a record in the checkpoint
that will be replayed by the log. This optimization re-
duces our checkpoint sizes by 20% or more.

4.2 Writing the checkpoint
Checkpointers walk over index trees to produce the
checkpoint. Since we want each checkpointer to be re-
sponsible for approximately the same amount of work,
yet tables differ in size, we have all checkpointers walk
over all tables. To make the walk efficient, we partition
the keys of each table into n subranges, one per check-
pointer. This way each checkpointer can take advantage
of the locality for keys in the tree.

The checkpoint is organized to enable efficient recov-
ery. During recovery, all cores are available, so we de-
signed the checkpoint to facilitate using those cores.

For each table, each checkpointer divides its assigned
key range into m files, where m is the number of cores
that would be used during recovery for that key range.
Each of a checkpointer’s m files are stored on the same
disk. As the checkpointer walks over its range of the ta-
ble, it writes blocks of keys to these m files. Each block
contains a contiguous range of records, but blocks are
assigned to files in round-robin order. There is a tension
here between two aspects of fast recovery. On the one
hand, recovery is more efficient when a recovery worker
is given a continuous range of records, but on the other
hand, recovery resources are more effectively used when
the recovery workload is evenly distributed (each of the
m files contain about the same amount of work). Calcu-
lating a perfect partition of an index range into equal-
size subranges is somewhat expensive, since to do this
requires tree walks. We chose a point on this tradeoff
where indexes are coarsely divided among checkpoint-
ers into roughly-equal subranges, but round-robin as-
signment of blocks to files evens the workload at the file
level.

The checkpoint manager thread starts a new check-
point every C seconds. It picks the partition for each ta-
ble and writes this information into a shared array. It then
records el , the checkpoint’s starting epoch, and starts up
n checkpointer threads, one per disk. For each table, each
thread creates the corresponding checkpoint files and
walks over its assigned partition using a range scan on
the index tree. As it walks, it constructs a block of record
data, where each record is stored as a key/TID/value tu-
ple. When its block fills up, the checkpointer writes that
block to one of the checkpoint files and continues. The
next full block is written to the next file in round-robin
order.

Each time a checkpointer’s outstanding writes exceed
32 MB, it syncs them to disk. These intermediate syncs
turned out to be important for performance, as we dis-
cuss in §6.2.

When a checkpointer has processed all tables, it does
a final sync to disk. It then reads the current epoch E
and reports this information to the manager. When all
checkpointers have reported, the manager computes eh;
this is the maximum epoch reported by the checkpoint-
ers, and thus is the largest epoch that might have updates
reflected in the checkpoint. Although, thanks to our re-
duced checkpoint strategy, new tuples created during eh
are not stored in the checkpoint, tuples removed or over-
written during eh are also not stored in the checkpoint,
so the checkpoint can’t be recovered correctly without
complete logs up to and including eh. Thus, the man-
ager waits until eh ≤ ep, where ep is the persistence

470 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

epoch computed by the loggers (§3.5). Once this point is
reached, the manager installs the checkpoint on disk by
writing a final record to a special checkpoint file. This
file records el and eh, as well as checkpoint metadata,
such as the names of the database tables and the names
of the checkpoint files.

4.3 Cleanup
After the checkpoint is complete, SiloR removes old
files that are no longer needed. This includes any previ-
ous checkpoints and any log files that contain only trans-
actions with epochs < el . Recall that each log comprises
a current file and a number of earlier files with names
like old_data.e. Any file with e < el can be deleted.

The next checkpoint is begun roughly 10 seconds af-
ter the previous checkpoint completed. Log replay is far
more expensive than checkpoint recovery, so we aim to
minimize log replay by taking frequent checkpoints. In
future work, we would like to investigate a more flexi-
ble scheme that, for example, could delay a checkpoint
if the log isn’t growing too fast.

5 Recovery
SiloR performs recovery by loading the most recent
checkpoint, then correcting it using information in the
log. In both cases we use many concurrent threads to
process the data and we overlap processing and I/O.

5.1 Checkpoint recovery
To start recovery, a recovery manager thread reads the
latest checkpoint metadata file. This file contains infor-
mation about what tables are in the system and el , the
epoch in which the checkpoint started. The manager cre-
ates an in-memory representation for each of the T index
trees mentioned in the checkpoint metadata. In addition
it deletes any checkpoint files from earlier or later check-
points and removes all log files from epochs before el .

The checkpoint is recovered concurrently by many
threads. Recall that the checkpoint consists of many files
per database table. Each table is recorded on all n disks,
partitioned so that on each disk there are m files for
each table. Recovery is carried out by n × m threads.
Each thread reads from one disk, and is responsible for
reading and processing T files from that disk (one file
per index tree). Processing is straightforward: for each
key/value/TID in the file, the key is inserted in the index
tree identified by the file name, with the given value and
TID. Since the files contain different key ranges, check-
point recovery threads are able to reconstruct the tree in
parallel with little interference; additionally they benefit
from locality when processing a subrange of keys in a
particular table.

5.2 Log recovery
After all threads have finished their assigned checkpoint
recovery tasks, the system moves on to log recovery. As
mentioned in §3, there was no attempt at organizing the
log records at runtime (e.g. partitioning the log records
based on what tables were being modified). Instead it is
likely that each log file is a jumble of modifications to
various index trees. This situation is quite different than
it was for the checkpoint, which was organized so that
concurrent threads could work on disjoint partitions of
the database. However, SiloR uses value logging, which
has the property that the logs can be processed in any
order. All we require is that at the end of processing, ev-
ery key has an associated value corresponding to the last
modification made up through the most recent persistent
epoch prior to the failure. If there are several modifi-
cations to a particular key k, these will have associated
TIDs T1, T2, and so on. Only the entry with the largest
of these TIDs matters; whether we happen to find this
entry early or late in the log recovery step does not.

We take advantage of this property to process the log
in parallel, and to avoid unnecessary allocations, copies,
and work. First the manager thread reads the pepoch
file to obtain ep, the number of the most recent persis-
tent epoch. All log records for transactions with TIDs
for later epochs are ignored during recovery. This is im-
portant for correctness since group commit has not fin-
ished for those later epochs; if we processed records for
epochs after ep we could not guarantee that the resulting
database corresponded to a prefix of the serial order.

The manager reads the directory for each disk, and
creates a variable per disk, Ld , that is used to track which
log files from that disk have been processed. Initially
this variable is set to the number of relevant log files for
that disk, which, in our experiments, is in the hundreds.
Then the manager starts up g log processor threads for
each disk. We use all threads during log recovery. For in-
stance, on a machine with N cores and n disks, we have
g= �N/n�. This can produce more recovery threads than
there are cores. We experimented with the alternative
m = �N/n�, but this leaves some cores idle during re-
covery, and we observed worse recovery times than with
oversubscription.

A log processor thread proceeds as follows. First it
reads, decrements, and updates Ld for its disk. This up-
date is done atomically: this way it learns what file it
should process, and updates the variable so that the next
log processor for its disk will process a different file.
If the value it reads from Ld is ≤ 0, the log processor
thread has no more work to do. It communicates this to
the manager and stops. Otherwise the processor thread
reads the next file, which is the newest file that has not
yet been processed. In other words, we process the files
in the opposite order than they were written. The proces-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 471

sor thread on disk d that first reads Ld processes the cur-
rent log file data.log; after this files are read in reverse
order by the epoch numbers contained in their names.
The files are large enough that, when reading them, we
get good throughput from the disk; there’s little harm in
reading the files out of order (i.e., in an order different
from the order they were written).

The processor thread reads the entries in the file se-
quentially. Recall that each entry contains a TID t and a
set of table/key/value tuples. If t contains an epoch num-
ber that is < el or > ep, the thread skips the entry. Oth-
erwise, the thread inserts a record into the table if its key
isn’t there yet; when a version of the record is already in
the table, the thread overwrites only if the log record has
a larger TID.

Value logging replay has the same result no matter
what order files are processed. We use reverse order for
reading log files because it uses the CPU more efficiently
than forward order when keys are written multiple times.
When files are processed in strictly forward order, ev-
ery log record will likely require overwriting some value
in the tree. When files are processed in roughly reverse
order, and keys are modified multiple times, then many
log records don’t require overwriting: the tree’s current
value for the key, which came from a later log file, is
often newer than the log record.

5.3 Correctness
Our recovery strategy is correct because it restores the
database to the state it had at the end of the last persis-
tent epoch ep. The state of the database after processing
the checkpoint is definitely not correct: it is inconsis-
tent, and it is also missing modifications of persistent
transactions that ran after it finished. All these problems
are corrected by processing the log. The log contains all
modifications made by transactions that ran in epochs in
el up through ep. Therefore it contains what is needed to
rectify the checkpoint. Furthermore, the logic used to do
the rectification leads to each record holding the modifi-
cation of the last transaction to modify it through epoch
ep, because we make this decision based on TIDs. And,
importantly, we ignore log entries for transactions from
epochs after ep.

It’s interesting to note that value logging works with-
out having to know the exact serial order. All that is re-
quired is enough information so that we can figure out
the most recent modification. That is, log record “version
numbers” must capture dependencies, but need not cap-
ture anti-dependencies. Silo TIDs meet this requirement.
And because TID comparison is a simple commutative
test, log processing can take place in any order. In addi-
tion, of course, we require the group commit mechanism
provided by epochs to ensure that anti-dependencies are
also preserved.

6 Evaluation
In this section, we evaluate the effectiveness of the tech-
niques in SiloR, confirming the following performance
hypotheses:

• SiloR’s checkpointer has only a modest effect on
both the latency and throughput of transactions on
a challenging write-heavy key-value workload and a
typical online transaction processing workload.

• SiloR recovers 40–70 GB databases within minutes,
even when crashes are timed to maximize log replay.

6.1 Experimental setup
All of our experiments were run on a single machine
with four 8-core Intel Xeon E7-4830 processors clocked
at 2.1 GHz, yielding a total of 32 physical cores. Each
core has a private 32 KB L1 cache and a private 256 KB
L2 cache. The eight cores on a single processor share a
24 MB L3 cache. The machine has 256 GB of DRAM
with 64 GB of DRAM attached to each socket, and runs
64-bit Linux 3.2.0. We run our experiments without net-
worked clients; each database worker thread runs with
an integrated workload generator. We do not take advan-
tage of our machine’s NUMA-aware memory allocator,
a decision discussed in §6.5.

We use three separate Fusion ioDrive2 flash drives
and one RAID-5 disk array. Each disk is used for both
logging and checkpointing. Each drive has a dedicated
logger thread and checkpointer thread, both of which
run on the same core. Within a drive, the log and check-
point information reside in separate files. Each logger or
checkpointer writes to a series of files on a single disk.

We measure three related databases, SiloR, LogSilo,
and MemSilo. These systems have identical in-memory
database structures. SiloR is the full system described
here, including logging and checkpointing. LogSilo is
a version of SiloR that only logs data: there are no
checkpointer threads or checkpoints. MemSilo is Silo
run without persistence, and is a later version of the sys-
tem of Tu et al. [27] Unless otherwise noted, we run
SiloR and LogSilo with 28 worker threads and MemSilo
with 32 worker threads.

6.2 Key-value workload
To demonstrate that SiloR can log and checkpoint with
low overhead, we run SiloR on a variant of YCSB
workload mix A. YCSB is a popular key-value bench-
mark from Yahoo [4]. We modified YCSB-A to have
a read/write (get/put) ratio of 70/30 (not 50/50), and a
record size of 100 bytes (not 1000). This workload mix
was originally designed for MemSilo to stress database
internals rather than memory allocation; though the
read/write ratio is somewhat less than standard YCSB-
A, it is still quite high compared to most workloads.
Our read and write transactions sample keys uniformly.

472 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 1: Throughput and latency of SiloR, and
throughput of LogSilo and MemSilo, on our mod-
ified YCSB benchmark. Average throughput was
8.76 Mtxn/s, 9.01 Mtxn/s, and 10.83 Mtxn/s, respec-
tively. Average SiloR latency was 90 ms/txn. Database
size was 43.2 GB. Grey regions show those times
when the SiloR experiment was writing a checkpoint.

Figure 2: Throughput of MemSilo on YCSB with
32 and 28 workers. Average throughput was
10.83 Mtxn/s and 9.77 Mtxn/s, respectively.

There are 400M keys for a total database size of roughly
43.2 GB (3.2 GB of key data, 40 GB of value data).

Figure 1 shows the results over a 10-minute exper-
iment. Checkpointing can be done concurrently with
logging without greatly affecting transaction through-
put. The graph shows, over the length of the experi-
ment, rolling averages of throughput and latency with
a 0.5-second averaging window. For SiloR and LogSilo,
throughput and latency are measured to transaction per-
sistence (i.e., latency is from the time a transaction is
submitted to the time SiloR learns the transaction’s ef-
fects are persistent). Intervals during which the check-
pointer is running are shown in gray. Figure 1’s results
are typical of our experimental runs; Figure 6 in the ap-
pendix shows two more runs.

SiloR is able to run multiple checkpoints and al-
most match LogSilo’s throughput. Its throughput is also
close to that of MemSilo, although MemSilo does no
logging or checkpointing whatsoever: SiloR achieves

Figure 3: Throughput and latency of SiloR on
YCSB with 32 workers. Average throughput was
9.14 Mtxn/s and average latency 153 ms.

8.76 Mtxn/s, 80% the average throughput of MemSilo
(10.83 Mtxn/s). Average latency is affected by logging
and checkpointing somewhat more significantly; it is
90 ms/transaction.1 Some of this latency is inherent in
Silo’s epoch design. Since the epoch advances every
40 ms, average latency cannot be less than 20 ms. The
rest is due to a combination of accumulated batching de-
lays (workers batch transactions in log buffers, loggers
batch updates to synchronizations) and delays in the per-
sistent storage itself (i.e., the two fsyncs in the critical
path each take 10–20 ms, and sometimes more). Never-
theless, we believe this latency is not high for a system
involving persistent storage.

During the experiment, SiloR generates approxi-
mately 298 MB/s of IO per disk. The raw bandwidth of
our Fusion IO drives is reported as 590 MB/s/disk; we
are achieving roughly half of this.

SiloR and LogSilo’s throughput is less than Mem-
Silo’s for several reasons, but as Figure 2 shows, an im-
portant factor is simply that MemSilo has more workers
available to run transactions. SiloR and LogSilo require
extra threads to act as loggers and checkpointers; we
run four fewer workers to leave cores available for those
threads. If we run MemSilo with 28 workers, its through-
put is reduced by roughly 10% to 9.77 Mtxn/s, making
up more than half the gap with SiloR. We also ran SiloR
with 32 workers. This bettered the average throughput
to 9.13 Mtxn/s, but CPU oversubscription caused wide
variability in throughput and latency (Figure 3).

As we expect, the extensive use of group commit in
LogSilo and SiloR make throughput, and particularly la-
tency, more variable than in MemSilo. Relative to Mem-

1Due to a technical limitation in SiloR’s logger implementation, the
latency shown in the figure is the (running) average latency for write
transactions only; we believe these numbers to be a converative upper
bound on the actual latency of the system.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 473

(a) 1 fsync (b) 1 fsync, 600ms sleeps (c) Regular fsyncs (SiloR)

Figure 4: Importance of regular disk synchronization. In (a), one fsync call synchronizes the checkpoint;
throughput and latency are extremely bursty (note the latency axis tops out at 2 sec). In (b), regular sleep
calls in the checkpoint threads reduce burstiness, but do not eliminate it. In (c), SiloR, regular calls to fsync
almost entirely eliminate burstiness. Here we run the modified YCSB benchmark.

Silo with 28 cores, LogSilo’s performance is more vari-
able, and SiloR’s more variable still. The spike in latency
visible in Figure 1, which happened at one time or an-
other in most of our runs, is discussed below in §6.5.

Importance of regular synchronization. A check-
point is useless until it is complete, so the obvious dura-
bility strategy for a checkpointer thread is to call fsync
once, after writing all checkpoint data and before report-
ing completion to the manager. But SiloR checkpoint-
ers call fsync far more frequently—once per 32 MB of
data written. Figure 4 shows why this matters: the naive
strategy, (a), is very unstable on our Linux system, in-
ducing wild throughput swings and extremely high la-
tency. Slowing down checkpointer threads through the
occasional introduction of sleep() calls, (b), reduces the
problem, but does not eliminate it. We believe that, with
the single fsync, the kernel flushed old checkpoint pages
only when it had to—when the buffer cache became
full—placing undue stress on the rest of the system. Fre-
quent synchronization, (c), produces far more stable re-
sults; it also can produce a checkpoint more quickly than
can the version with occasional sleeps.

Compression. We also experimented with compress-
ing the database checkpoints via lz4 before writing to
disk. This didn’t help either latency or throughput, and it
actually slowed down the time it took to checkpoint. Our
storage is fast enough that the cost of checkpoint com-
pression outweighed the benefits of writing less data.

6.3 On-line transaction processing workload
YCSB-A, though challenging, is a well-behaved work-
load: all records are in one table, there are no secondary
indexes, accesses are uniform, all writes are overwrites
(no inserts or deletes), all transactions are small. In this
section, we evaluate SiloR on a more complex work-
load, the popular TPC-C benchmark for online trans-
action processing [26]. TPC-C transactions involve cus-

tomers assigned to a set of districts within a local ware-
house, placing orders in those districts. There are ten pri-
mary tables plus two secondary indexes (SiloR treats pri-
mary tables and secondary indexes identically). We do
not model client “think” time, and we run the standard
workload mix. This contains 45% “new-order” transac-
tions, which contain 8–18 inserts and 5–15 overwrites
each. Also write-heavy are “delivery” transactions (4%
of the mix), which contain up to 150 overwrites and 10
removes each.2 Unmodified TPC-C is not a great fit for
an in-memory database: very few records are removed,
so the database grows without bound. During our 10-
minute experiments, database record size (not includ-
ing keys) grows from 2 GB to 94 GB. Nevertheless, the
workload is well understood and challenging for our sys-
tem.

Figure 5 shows the results. TPC-C transactions are
challenging enough for Silo’s in-memory structures that
the addition of persistence has little effect on throughput:
SiloR’s throughput is about 93% that of MemSilo. The
MemSilo graph also shows that this workload is more
inherently variable than YCSB-A. We use 28 workers
for MemSilo, rather than 32, because 32-worker runs
actually have lower average throughput, as well as far
more variability (see Figure 7 in the appendix: our 28-
worker runs achieved 587–596 Mtxn/s, our 32-worker
runs 565–583 Mtxn/s). As with YCSB-A, the addition
of persistence increases this variability, both by batching
transactions and by further stressing the machine. (Fig-
ure 7 in the appendix shows that, for example, check-
points can happen at quite different times.) Throughput
degrades over time in the same way for all configura-
tions. This is because the database grows over time, and
Silo tables are stored in trees with height proportional
to the log of the table size. The time to take a check-

2It is common in the literature to report TPC-C results for the stan-
dard mix as “new order transactions per minute.” Following Silo, we
report transactions per second for all transactions.

474 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) SiloR (b) LogSilo (c) MemSilo

Figure 5: Throughput and latency of SiloR and LogSilo, and throughput of MemSilo, on a modified TPC-C
benchmark. Average throughput is 548 Ktxn/s, 575 Ktxn/s, and 592 Ktxn/s, respectively. Average SiloR latency
is 110 ms/txn; average LogSilo latency is 97 ms/txn. The database initially contains 2 GB of record data, and
grows to 94 GB by the end of the experiment. All experiments run 28 workers.

point also grows with database size (3.5 s or so per GB
of record data). Latency, which is 110 ms/txn average
for SiloR, is higher than in YCSB-A, but not by much,
even though TPC-C transactions are far more complex.
In summary, SiloR can handle more complex workloads
with larger transactions as well as it can handle simple
workloads with small transactions.

6.4 Recovery
We now show that SiloR checkpoints allow for fast re-
covery. We run YCSB-A and TPC-C benchmarks, and
in each case, crash the database immediately before a
checkpoint completes. This maximizes the length of the
log that must be recovered to restore a transactionally-
correct state. We use 6 threads per disk (24 threads to-
tal) to restore the checkpoint, and 8 threads per disk (32
threads total) to recover the log.

For YCSB-A, SiloR must recover 36 GB of check-
point and 64 GB of log to recreate a 43.2 GB database.
Recovery takes 106 s, or about 1.06 s/GB of recovery
data. 31% of this time (33 s) is spent on the check-
point and the rest (73 s) on the log. The TPC-C database
grows over time, so checkpoints have different sizes.
We stop a SiloR run of TPC-C immediately before its
fourth checkpoint completes, at about 465 s into the ex-
periment, when the database contains about 72.2 GB
of record data (not including keys). SiloR must recover
15.7 GB of checkpoint and 180 GB of log to recreate this
database. Recovery takes 211 s, or about 1.08 s/GB of re-
covery data. 8% of this time (17 s) is spent on the check-
point and the rest (194 s) on the log. Thus, recovery time
is proportional to the amount of data that must be read to
recover, and log replay is the limiting factor in recovery,
justifying our decision to checkpoint frequently.

6.5 Discussion
This work’s motivation was to explore the performance
limits afforded by modern hardware. However, there are

other limits that SiloR would encounter in a real deploy-
ment. At the rates we are writing, our expensive flash
drives would reach their maximum endurance in a bit
more than a year!

In contrast with the evaluation of Silo, we disable the
NUMA-aware allocator in our tests. When enabled, this
allocator improves average throughput by around 25%
on YCSB (to 10.91 Mtxn/s for SiloR) and 20% on TPC-
C (to 644 Ktxn/s for SiloR). The cost—which we de-
cided was not worth paying, at least for TPC-C—was
performance instability and dramatically worse latency.
Our TPC-C runs saw sustained latencies of over a second
in their initial 40 s so, and frequent latency spikes later
on, caused by fsync calls and writes that took more than
1 s to complete. These slow file system operations ap-
pear unrelated to our storage hardware: they occur only
when two or more disks are being written simultane-
ously; they occur at medium write rates as well as high
rates; they occur whether or not our log and checkpoint
files are preallocated; and they occur occasionally on
each of our disks (both Fusion and RAID). Turning off
NUMA-aware allocation greatly reduces the problem,
but traces of it remain: the occasional latency spikes visi-
ble in our figures have the same cause. NUMA-aware al-
location is fragile, particularly in older versions of Linux
like ours;3 it is possible that a newer kernel would miti-
gate this problem.

7 Related work
SiloR is based on Silo, a very fast in-memory database
for multicore machines [27]. We began with the publicly
available Silo distribution, but significantly adapted the
logging implementation and added checkpointing and
recovery. Silo draws from a range of work in databases

3For instance, to get good results with the NUMA allocator, we
had to pre-fault our memory pools to skirt kernel scalability issues;
this step could take up to 30 minutes per run!

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 475

and in multicore and transactional memory systems
more generally [1, 3, 6–9, 11, 12, 15, 18, 19, 21].

Checkpointing and recovery for in-memory databases
has long been an active area of research [5, 20, 22–24].
Salem et al. [24] survey many checkpointing and recov-
ery techniques, covering the range from fuzzy check-
points (that is, inconsistent partial checkpoints) with
value logging to variants of consistent checkpoints with
operation logging. In those terms, SiloR combines an
action-consistent checkpoint (the transaction might con-
tain some, but not all, of an overlapping transaction’s
effects) with value logging. Salem et al. report this as a
relatively slow combination. However, the details of our
logging and checkpointing differ from any of the sys-
tems they describe, and in our measurements we found
that those details matter. In Salem et al. action-consistent
checkpoints either write to all records (to paint them), or
copy concurrently modified records; our checkpointers
avoid all writes to global data. More fundamentally, we
are dealing with database sizes and speeds many orders
of magnitude higher, and technology tradeoffs may have
changed.

H-Store and its successor, VoltDB, are good represen-
tatives of modern fast in-memory databases [10, 13, 25].
Like SiloR, VoltDB achieves durability by a combina-
tion of checkpointing and logging [14], but it makes
different design choices. First, VoltDB uses command
logging (a variant of operation logging), in contrast to
SiloR’s value logging. Since VoltDB, unlike Silo, par-
titions data among cores, it can recover command logs
somewhat in parallel (different partitions’ logs can pro-
ceed in parallel). Command logging in turn requires that
VoltDB’s checkpoints be transactionally consistent; it
takes a checkpoint by marking every database record
as copy-on-write, an expense we deem unacceptable.
Malviya et al. also evaluate a variant of VoltDB that
does “physiological logging” (value logging). Although
their command logging recovers transactions not much
faster than it can execute them—whereas physiological
logging can recover transactions 5x faster—during nor-
mal execution command logging performs much better
than value logging, achieving 1.5x higher throughput
on TPC-C. This differs from the results we observed,
where value logging was just 10% slower than a sys-
tem with persistence entirely turned off. Our raw per-
formance results also differ from those of Malviya et al.
For command logging on 8 cores, they report roughly
1.3 Ktxn/s/core for new-order transactions, using a vari-
ant of TPC-C that entirely lacks cross-warehouse trans-
actions. (Cross-warehouse transactions are particularly
expensive in the partitioned VoltDB architecture.) Our
TPC-C throughput with value logging, on a mix includ-
ing cross-warehouse transactions and similar hardware,
is roughly 8.8 Ktxn/s/core for new-order transactions. Of

course, VoltDB is more full-featured than SiloR.

Cao et al. [2] describe a design for frequent consis-
tent checkpoints in an in-memory database. Their re-
quirements align with ours—fast recovery without slow-
ing normal transaction execution or introducing latency
spikes—but for much smaller databases. Like Malviya et
al., they use “logical logging” (command/operation log-
ging) to avoid the expense of value logging. The focus
of Cao et al.’s work is two clever algorithms for preserv-
ing the in-memory state required for a consistent check-
point. These algorithms, Wait-Free ZigZag and Wait-
Free Ping-Pong, effectively preserve 2 copies of the
database in memory, a current version and a snapshot
version; but they use a bitvector to mark on a per-record
basis which version is current. During a checkpoint, up-
dates are directed to the noncurrent version, leaving the
snapshot version untouched. This requires enough mem-
ory for at least 2, and possibly 3, copies of the database,
which for the system’s target databases is realistic (they
measure a maximum of 1.6 GB). As we also observe, the
slowest part of recovery is log replay, so Cao et al. aim
to shorten recovery by checkpointing every couple sec-
onds. This is only possible for relatively small databases.
Writing as fast as spec sheets promise, it would take at
least 10 seconds for us to write a 43 GB checkpoint in
parallel to 3 fast disks, and that is assuming there is no
concurrent log activity, and thus that normal transaction
processing has halted.

The gold standard for database logging and check-
pointing is agreed to be ARIES [16], which combines
undo and redo logging to recover inconsistent check-
points. Undo logging is necessary because ARIES might
flush uncommitted data to the equivalent of a check-
point; since SiloR uses OCC, uncommitted data never
occurs in a checkpoint, and redo logging suffices.

The fastest recovery times possible can be obtained
through hot backups and replication [14, 17]. RAM-
Cloud, in particular, replicates a key-value store node’s
memory across nearby disks, and can recover more than
64 GB of data to service in just 1 or 2 seconds. However,
RAMCloud is not a database: it does not support trans-
actions that involve multiple keys. Furthermore, RAM-
Cloud achieves its fast recovery by fragmenting failed
partitions across many machines. This fragmentation is
undesirable in a database context because increased par-
titioning requires more cross-machine coordination to
run transactions (e.g., some form of two-phase commit).
Nevertheless, 1 or 2 seconds is far faster than SiloR can
provide. Replication is orthogonal to our system and an
interesting design point we hope to explore in future
work.

476 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

8 Conclusions
We have presented SiloR, a logging, checkpointing, and
recovery subsystem for a very fast in-memory database.
What distinguishes SiloR is its focus on performance
for extremely challenging workloads. SiloR writes logs
and checkpoints at gigabytes-per-second rates without
greatly affecting normal transaction throughput, and can
recover > 70 GB databases in minutes.

For future work, we would like to investigate check-
pointers that cycle through logical partitions of the
database. We believe this approach will allow us to sub-
stantially reduce the amount of log data that needs to be
replayed after a crash. Another possibility is to investi-
gate a RAMCloud-like recovery approach in which data
is fragmented during recovery, allowing quick resump-
tion of service at degraded rates, but then reassembled at
a single server to recover good performance.

Acknowledgements
We thank the anonymous reviewers and our shepherd,
Allen Clement, for helpful comments and patience. This
work was supported by the NSF under grants 1302359,
1065219, and 0704424, and by Google and a Microsoft
Research New Faculty Fellowship.

References
[1] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A

practical concurrent binary search tree. In Proc. PPoPP
’10, Jan. 2010.

[2] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers,
J. Gehrke, and W. White. Fast checkpoint recovery al-
gorithms for frequently consistent applications. In Proc.
ACM SIGMOD 2011, June 2011.

[3] S. K. Cha, S. Hwang, K. Kim, and K. Kwon. Cache-
conscious concurrency control of main-memory indexes
on shared-memory multiprocessor systems. In Proc.
VLDB ’01, Sept. 2001.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In Proc. ACM Symp. on Cloud Computing, June
2010.

[5] D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stone-
braker, and D. Wood. Implementation techniques for
main memory database systems. In Proc. SIGMOD ’84,
June 1984.

[6] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mit-
tal, R. Stonecipher, N. Verma, and M. Zwilling. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Proc.
SIGMOD 2013, June 2013.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking
II. In Proc. DISC ’06, Sept. 2006.

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11), 1976.

[9] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for
the multicore era. In Proc. 12th Conf. on Extending
Database Tech., Mar. 2009.

[10] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: a high-
performance, distributed main memory transaction pro-
cessing system. Proc. VLDB Endow., 1:1496–1499,
2008.

[11] H. T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM TODS, 6(2), 1981.

[12] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc.
VLDB Endow., 5(4), 2011.

[13] A.-P. Liedes and A. Wolski. SIREN: a memory-
conserving, snapshot-consistent checkpoint algorithm
for in-memory databases. In Proc. ICDE ’06, Apr. 2006.

[14] N. Malviya, A. Weisberg, S. Madden, and M. Stone-
braker. Rethinking main memory OLTP recovery. In
Proc. ICDE ’14, Mar. 2014.

[15] Y. Mao, E. Kohler, and R. Morris. Cache craftiness for
fast multicore key-value storage. In Proc. EuroSys ’12,
Apr. 2012.

[16] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Trans. on Database Sys.,
17(1):94–162, 1992.

[17] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast crash recovery in RAMCloud.
In Proc. SOSP 2011, Oct. 2011.

[18] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. Proc. VLDB En-
dow., 3(1-2), 2010.

[19] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP:
Page latch-free shared-everything OLTP. Proc. VLDB
Endow., 4(10), 2011.

[20] C. Pu. On-the-fly, incremental, consistent reading of en-
tire databases. Algorithmica, 1:271–287, 1986.

[21] K. Ren, A. Thomson, and D. J. Abadi. Lightweight lock-
ing for main memory database systems. Proc. VLDB En-
dow., 6(2), 2012.

[22] D. Rosenkrantz. Dynamic database dumping. In Proc.
SIGMOD ’78, May 1978.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 477

Appendix

Figure 6: Performance of SiloR, LogSilo, and MemSilo on our modified YCSB benchmark: additional runs.

Figure 7: Performance of SiloR, LogSilo, and MemSilo (with 32 and 28 workers) on our modified TPC-C bench-
mark: additional runs.

[23] K. Salem and H. Garcia-Molina. Checkpointing
memory-resident databases. In Proc. ICDE ’89, Feb.
1989.

[24] K. Salem and H. Garcia-Molina. System M: A transac-
tion processing testbed for memory resident data. IEEE
Trans. Knowledge and Data Eng., 2(1), Mar. 1990.

[25] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopou-
los, N. Hachem, and P. Helland. The end of an archi-

tectural era: (it’s time for a complete rewrite). In Proc.
VLDB ’07, Sept. 2007.

[26] The Transaction Processing Council. TPC-C Benchmark
(Revision 5.9.0). http://www.tpc.org/tpcc/, June 2007.

[27] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proc. SOSP ’13, Nov. 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 479

Extracting More Concurrency from Distributed Transactions

Shuai Mu†‡, Yang Cui‡, Yang Zhang‡, Wyatt Lloyd��, Jinyang Li‡
†Tsinghua University*, ‡New York University, �University of Southern California, �Facebook

Abstract
Distributed storage systems run transactions across ma-
chines to ensure serializability. Traditional protocols for
distributed transactions are based on two-phase locking
(2PL) or optimistic concurrency control (OCC). 2PL se-
rializes transactions as soon as they conflict and OCC
resorts to aborts, leaving many opportunities for concur-
rency on the table. This paper presents ROCOCO, a novel
concurrency control protocol for distributed transactions
that outperforms 2PL and OCC by allowing more con-
currency. ROCOCO executes a transaction as a collec-
tion of atomic pieces, each of which commonly involves
only a single server. Servers first track dependencies be-
tween concurrent transactions without actually executing
them. At commit time, a transaction’s dependency infor-
mation is sent to all servers so they can re-order conflict-
ing pieces and execute them in a serializable order.

We compare ROCOCO to OCC and 2PL using a scaled
TPC-C benchmark. ROCOCO outperforms 2PL and OCC
in workloads with varying degrees of contention. When
the contention is high, ROCOCO’s throughput is 130%
and 347% higher than that of 2PL and OCC.

1 Introduction
Many large-scale Web services, such as Amazon, rely
on a distributed online transaction processing (OLTP)
system as their storage backend. OLTP systems re-
quire concurrency control to guarantee strict serializabil-
ity [12, 13], so that websites running on top of them can
function correctly. Without strong concurrency control,
sites could sell items that are out of stock, deliver items
to customers twice, double-charge a customer for a sale,
or indicate to a customer they did not purchase an item
they actually did.

While concurrency control is a well-studied field, tra-
ditional protocols such as two-phase locking (2PL) [12]
and optimistic concurrency control (OCC) [36] perform
poorly when workloads exhibit a non-trivial amount of

*The full name is Tsinghua National Laboratory for Information
Science and Technology (TNLIST), Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China

contention [8, 30]. The performance drop is particu-
larly pronounced when running these protocols in a dis-
tributed setting. When there are many conflicting concur-
rent transactions, 2PL and OCC abort and retry many of
them, leading to low throughput and high latency. In our
evaluation in § 5, the throughput of 2PL and OCC drops
to less than 10% of its maximum as contention increases.

Unfortunately, contention is not rare in large-scale
OLTP applications. For example, consider a transaction
where a customer purchases a few items from a shopping
website. Concurrent purchases by different customers
on the same item create conflicts. Moreover, as the sys-
tem scales—i.e., the site becomes more popular and has
more customers, but maintains a relatively stable set of
items—concurrent purchases to the same item are more
likely to happen, leading to a greater contention rate.

In this paper we presents ROCOCO (ReOrdering COn-
flicts for COncurrency), a distributed concurrency con-
trol protocol that extracts more concurrency under con-
tended workload than previous approaches. ROCOCO
achieves safe interleavings without aborting or blocking
transactions using two key techniques: 1) deferred and
reordered execution using dependency tracking [38, 46];
and 2) offline safety checking based on the theory of
transaction chopping [50, 49, 57].

ROCOCO is a two round protocol that executes trans-
actions that have been structured into a collection of
atomic pieces, each typically involving data access on
a single server. A set of coordinators run the protocol on
behalf of clients. The first phase distributes the pieces
to the appropriate servers and establishes a provisional
order of execution on each server. Servers typically de-
fer execution of the pieces until the second round so they
can be reordered if necessary. Servers complete the first
phase by replying to the coordinator with dependency in-
formation that indicates the order of arrival for conflict-
ing pieces of different transactions.

The coordinator aggregates this dependency informa-
tion and distributes it to all involved servers. Servers use
the aggregated dependency information to recognize if
the pieces of concurrent transactions arrived at servers in
a strictly serializable order in the first phase. If so, they
execute pieces in that order in the second phase. If not,
servers reorder the pieces deterministically and then exe-

1

480 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

cute them. In both cases, ROCOCO is able to avoid aborts
and commits all transactions.

Dependencies are usually exchanged only between
servers and coordinators in the two round protocol. But,
when conflicting transactions have overlapping but non-
identical sets of servers, ROCOCO occasionally requires
additional server-to-server communication to ensure a
deterministic order.

Not all transaction pieces can have their execution de-
ferred to the second round, e.g., a piece that reads a value
to determine what data item to access next. Such pieces
must be executed immediately in ROCOCO’s first phase,
which can result in un-serializable interleavings. To en-
sure that a strictly serializable reordering is always pos-
sible during runtime, ROCOCO performs an offline check
on the transaction workload prior to starting the transac-
tions. The offline checker identifies and categorizes po-
tential conflicts. If some pieces of a transaction are found
to have unsafe interleaving that cannot be reordered, RO-
COCO merges those pieces into a single atomic piece.
While a traditional concurrency control protocol is used
to execute a merged piece across servers atomically, the
ROCOCO protocol is used to execute multiple merged
pieces within a transaction.

We implemented ROCOCO and evaluated its perfor-
mance using a scaled TPC-C benchmark [5]. RO-
COCO supports the TPC-C workload without requiring
any merged pieces and avoids ever aborting. ROCOCO
outperforms 2PL and OCC in workloads with varying
degrees of contention. When the contention is high, RO-
COCO’s throughput is 130% and 347% higher than that of
2PL and OCC. As the system scales across TPC-C ware-
house districts and contention increases, the throughput
of ROCOCO continues to grow while the throughput of
OCC drops to almost zero and 2PL does not scale.

2 Overview

ROCOCO targets OLTP workloads in large-scale dis-
tributed database systems, e.g., the backend of e-
commerce sites like Amazon. For scalability, database
tables are sharded row-wise across multiple servers, with
each server holding a subset of certain tables. Thus, a
transaction accessing different table rows typically needs
to contact more than one server and requires a distributed
concurrency control protocol.

For performance, we assume a setup where transac-
tions are executed as stored procedures, as in earlier
work [34, 52, 26, 28, 41, 56, 55]. Specifically, a dis-
tributed transaction consists of a set of stored proce-
dures called pieces. Each piece accesses one or more
data items stored on a single server using user-defined
logic. Thus, each piece can be executed atomically with

transaction new_order_fragment:
#simplified new-order "buys" 1 of itema,itemb
input: itema, itemb
begin

...
p1: # reduce stock level of itema

R(tab="Stock", key=itema) → stock
if (stock > 1):

W(tab="Stock", key=itema) ← stock - 1
...

p2: # reduce stock level of itemb
R(tab="Stock", key=itemb) → stock
if (stock > 1):

W(tab="Stock", key=itemb) ← stock - 1
...

end

Figure 1: A fragment of TPC-C new-order transac-
tion containing two pieces.

respect to other concurrent pieces by employing proper
local concurrency control. We assume stored procedures
are distributed to all servers apriori because they have a
minimal storage costs.

2.1 Traditional Approaches Abort Conflicts

Application programmers prefer the strongest isolation
level, strict serializability [12, 31], to simplify the rea-
soning of correctness in the face of concurrent trans-
actions. To guarantee strict serializability, a distributed
storage system typically runs standard concurrency con-
trol schemes such as two-phase locking (2PL) or opti-
mistic concurrency control (OCC), combined with two-
phase commit (2PC) [19].

2PL and OCC perform poorly for contended work-
load with many conflicting transactions. As an example,
consider a simplified fragment of the TPC-C new-order
transaction which simulates a customer purchasing two
items from a store (Figure 1). The transaction contains
two stored procedure pieces, p1 and p2, each of which
reduces the stock level of a different item. Although
each piece can be executed atomically on its server, dis-
tributed concurrency control is required to prevent non-
serializable interleaving of pieces across servers. For in-
stance, suppose a merchant keeps the same stock level for
item a (e.g., a xbox) and item b (e.g., a xbox controller)
and always sells the two items as bundles. Without dis-
tributed concurrency control, one customer could receive
an item a, but not item b, while another customer could
receive item b but not item a.

We first examine the behavior of OCC with two trans-
actions, T1 and T2. Both purchase the same two items, a
and b, that are stored on different servers. Any interleav-
ing of T1 and T2’s pieces during execution causes aborts
when performing OCC validation during 2PC. For exam-
ple, if T2 reads the stock level of a after T1 reads it, but

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 481

S1

S2

T1

T2

ABORTED

item b

item a

FAILED

FAILED

T1→T2

S1

S2

T1

T2

T2→T1

COMMITTED
item b

item a

T1→T2

T2→T1

T1↔T2

T1↔T2

ABORTED

Execute
Commit

(via 2PC)
Start

(delay execution)

COMMITTED

Commit
(reorder & execute)

(a) OCC

S1

S2

T1

T2

ABORTED

item b

item a

FAILED

FAILED

T1→T2

S1

S2

T1

T2

T2→T1

COMMITTED
item b

item a

T1→T2

T2→T1

T1↔T2

T1↔T2

ABORTED

Execute
Commit

(via 2PC)
Start

(execution is deferred)

COMMITTED

Commit
(reorder & execute)

(b) ROCOCO
Figure 2: A possible interleaving of two concurrent new-order transaction fragments. In the left figure (OCC),
both transactions fail to validate and abort. In the right figure (ROCOCO), the interference is captured by
dependencies and the transactions are reordered to a strictly serializable order before execution.

before T1 commits its update to a, then T2 will later fail
to validate and abort. Figure 2a shows another example
where both T1 and T2 are aborted during 2PC because
their corresponding 2PC prepare messages are handled
by servers in different orders.

2PL outperforms OCC under contention but is still far
from satisfactory. 2PL acquires locks for each data ac-
cess, which serializes the execution of transactions as
soon as they perform a conflicting operation. In the new-
order example, as soon as T1 modifies the stock level
of a, T2 is blocked until T1 completes all of its pieces
and commits. In addition to blocking, 2PL also resorts
to aborts to prevent deadlocks [19]. As the amount of
contention increases, so does the probability of having
a deadlock. Furthermore, efficient deadlock prevention
mechanisms such as wound-wait [48] have many false
positives, thereby causing a large number of aborts even
when there is no real deadlock.

2.2 ROCOCO Reorders Conflicts to Commit

Given conditions discussed later, our new concurrency
control protocol, ROCOCO, avoids aborting or blocking
under contention by identifying and then avoiding inter-
ference between transactions. Two transactions interfere
when executing their constituent pieces in their arrival
order at each server would result in a non-serializable
execution. For example, T1 and T2 interfere in Figure 2b
because their pieces arrive in different orders on servers
S1 and S2. If both pieces of T1 arrived before both pieces
of T2 they would not interfere.

ROCOCO tracks potential interference using depen-
dency information between pieces of transactions that
are generated when pieces conflict on a server, i.e., both
access the same data location and at least one of them
writes to it. Servers use dependency information to de-
tect if transactions interfere and deterministically reorder
their pieces so they are executed in the same order on all
involved servers and, thus, no longer interfere.

ROCOCO is able to change the order of execution of
pieces because it uses two rounds of messages to com-
mit them. The first round starts with a transaction coor-
dinator running on behalf of a client disseminating the
pieces of a transaction to the appropriate servers. The
servers do not yet execute the pieces and instead return
dependency information to the coordinator to complete
the first round. The coordinator then combines all the de-
pendency information and distributes it to all the servers
in the second round. The servers then reorder pieces of
the transaction, if necessary, before executing them.

Figure 2b shows an example of ROCOCO in action. S1
observes T1→T2, reflecting the arrival order of the con-
flicting pieces it has received from T1 and T2. Similarly,
S2 observes T2→T1. The coordinator collects T1↔T2 and
sends this dependency information to both servers. The
servers recognize the cycle of interference and determin-
istically order the involved transactions and thus their
constituent pieces before executing them. The ordering
of the two transactions can be any deterministic order,
e.g., the order of their globally unique transactions ids,
which in the example would execute T1 and then T2. With
ROCOCO, T1 and T2 both commit and neither has to abort
or wait for the other.

By reordering interfering transactions instead of abort-
ing them, ROCOCO can achieve significant performance
improvement when there is a non-trivial amount of con-
tention, which is often the case with OLTP workloads.
For example, a complete TPC-C new order transaction
updates a highly contended order-id data field as well as
10 purchased items on average. As the number of con-
current requests rises, the probability of contending on a
purchased item also increases. Moreover, the power-law
distribution often seen in real-world workloads results in
even higher contention on “hot” items.

3

482 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3 Design

The design of ROCOCO includes an offline checker and
a runtime protocol. The offline checker determines if the
pieces of a collection of transactions can be reordered
correctly at runtime. The runtime protocol tracks the de-
pendencies between pieces and reorders their execution
if necessary for correctness.

In this section, we explain ROCOCO’s offline check
(§ 3.1), runtime protocol (§ 3.2), and sketch its correct-
ness (§ 3.3). We then discuss an important optimization
(§ 3.4) and the fault tolerance mechanism (§ 3.5).

3.1 Checking When Reordering is Viable

Reordering the execution of pieces of interfering transac-
tion is only possible under certain, common, conditions.
This subsection explains the difference between immedi-
ate pieces of a transaction that cannot be reordered and
deferrable pieces that can. Then it explains how RO-
COCO’s offline checker uses transaction profiles includ-
ing immediate/deferrable information to check for the
necessary conditions.

Immediate and deferrable pieces. A piece of a transac-
tion is either immediate or deferrable depending on the
stored procedure it executes. If the output of a piece p
can serve as the input to another piece p′, then p is an
immediate piece because it must be executed before its
parent transaction can move on to its subsequent pieces.
Conversely, a piece is deferrable if its output is not re-
quired by any other piece. A server can postpone the
execution of a deferrable piece until the commit time of
a transaction.

Once executed, immediate pieces cannot be reordered,
which can result in a non-serializable interleaving. As an
example, suppose p1 and p2 in Figure 1 are both im-
mediate instead of deferrable pieces. Then Figure 2’s
message interleaving makes a total ordering of the trans-
actions impossible. In particular, S1 executes piece p1
of T1 before that of T2, fixing T1→T2 in the total order.
However, the execution on S2 fixes T2→T1 in the total
order, a contradiction.

If at least one of the pieces is deferrable, however, a to-
tal order can be achieved. For example, instead suppose
p1 is immediate and p2 is deferrable, then the interleav-
ing can be reordered at S2 so that p2 of T1 is executed
before that of T2, i.e., T1→T2, which is consistent with
the execution at S1 and thus a total order. ROCOCO’s of-
fline checker ensures that there exists such a deferrable
piece for all sets of possibly interfering transactions.

The offline checker. In order to ensure that a serializable
reordering of conflicting pieces is always possible at run-
time, ROCOCO relies on an offline checker that analyzes

the conflict profile of all transactions to be executed. For-
tunately, OLTP workloads typically have a fixed set of
transactions that are known apriori [52], making such an
offline checker practical.

To build ROCOCO’s offline checker, we extend the the-
ory of transaction chopping [50, 57]. For each piece p,
we assume the checker knows whether p is an immediate
or deferrable piece and the database tables and columns
p reads or writes. We do not assume the checker knows
which rows p accesses. In our current implementation,
programmers explicitly write each transaction as a set
of pieces and manually annotate each piece’s type and
database accesses.

The checker works in several steps. First, it constructs
a SC-graph, similar to earlier uses of transaction chop-
ping [50, 57]. Each transaction appears as two instances
in the graph where each piece is a vertex and pieces from
the same transaction instance are connected by S(ibling)-
edges. If two pieces access the same database table and
at least one of the accesses is a write, they are connected
by a C(onflict)-edge. If a cycle in the graph contains both
S- and C-edges, it is a SC-cycle. Each SC-cycle signals a
potential conflict that can lead to non-serializable execu-
tion [50, 57].

Next, the checker tags each vertex as either an
I(mmediate) or D(eferrable) piece. The checker virally
propagates immediacy across C-edge by changing the tag
of any piece with a C-edge to an I piece to also be I until
there are no C-edges between pieces with different I/D
tags. We refer to a C-edge as I-I (or D-D) if both end
points are I (or D) pieces. There are no I-D edges.

Finally, the checker examines if there exists an unre-
orderable SC-cycle where all C-edges are I-I edges. If
there are none, ROCOCO’s basic protocol can safely re-
order all conflicts to ensure serializability at runtime. In-
tuitively, SC-cycles represent potential non-serializable
interleavings [49]. However, if an SC-cycle contains at
least one D-D edge, ROCOCO can reorder the execu-
tion of the D-D edge’s pieces to break the cycle, thereby
ensuring serializability. For an unreorderable SC-cycle
with all I-I C-edges, the checker proposes to merge those
pieces in the cycle belonging to the same transaction into
a larger atomic piece. In the later section § 4.2, we ex-
plain how ROCOCO relies on traditional distributed con-
currency control methods such as 2PL or OCC to execute
merged pieces.

Figure 3 shows a more complete version of the TPC-
C new-order transaction that includes two new pieces in
addition to the stock-level-reduction piece discussed ear-
lier. p1 reads the next order id (next oid), increments
it, and writes it back. p2 modifies the stock level of the
purchased item. There may be many instances of p2,
depending on how many items the customer buys, de-
noted p′2, p′′2, etc. p3 records the order information in the

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 483

transaction simplified_new_order:
input: [itema, itemb, ...], district d
begin

...
p1: #pick the next order id

R(tab="District",col="next_oid",key=d)→ oid
W(tab="District",col="next_oid",key=d)← oid+1

p2: #reduce the stock level of each item
#(one piece for each item)
R(tab="Stock", key=item)→ stock
if (stock > 1):

W(tab="Stock", key=item)← stock-1
...

p3: #add orderline info for each item
#(one piece for each item)
W(tab="OrderLine", key=item+oid) ← ...
...
end

Figure 3: A simplified TPC-C new-order transaction

p1 p2 p2’

p1 p2 p2’

T2

T1

p3

p3

p3’

p3’

Figure 4: SC-graph of the TPC-C new-order sample
transaction. Gray circles represent immediate pieces;
white circles represent deferrable pieces. Solid lines
represent S-edges; dotted lines represent C-edges.
ROCOCO can safely execute this transaction work-
load because all SC-cycles include at least one D-D
edge.

database using the order id output by p1. There may also
be multiple instances of p3, denoted p′3, p′′3, etc. p1 is an
immediate piece because p3 reads from it while p2 and
p3 are deferrable pieces. Figure 4 shows the SC-graph
of a workload that only contains concurrent new-order
transactions that buy two items. ROCOCO can safely ex-
ecute this workload because all SC-cycles in the graph
have a D-D edge.

User-initiated aborts. Previous systems based on trans-
action chopping [50, 57] sequentially execute pieces and
allow user-initiated aborts only in the first piece. RO-
COCO, in contrast, executes pieces in parallel so there is
no natural “first” piece. For simplicity, we disallow all
user-initiated aborts. 1

3.2 Basic Protocol

ROCOCO’s runtime protocol executes a collection of

1 User-initiated aborts are important if the transaction needs to ter-
minate after it has written to the database, which means all writes need
rollback. If the aborts happen before any writes, it can be replaced with
simple termination.

transactions deemed safe for reordering by the offline
checker. Clients delegates the responsibility of coor-
dinating their transactions to separate coordinator pro-
cesses. There can be many coordinators and a typical
deployment co-locates coordinators with servers.

Once a coordinator receives a client’s transaction re-
quest, it processes the transaction in two phases: start and
commit. In the start phase, the coordinator sends pieces
to servers and collects the returned dependency informa-
tion. In the commit phase, the coordinate disseminates
the aggregated dependency information to all participat-
ing servers who reach a deterministic serializable order
to execute conflicting transactions.

Figure 5 shows a typical message flow for ROCOCO.

The start phase. The start phase of a transaction dis-
tributes its pieces, sets a provisional order for them on
servers, executes immediate pieces, and collects depen-
dency information.

The start phase begins when the coordinator sends out
requests for all pieces of a transaction together with their
inputs to the appropriate servers—i.e., the servers that
store the items read or written by those pieces. If a piece
p is immediate, the server will execute p immediately
and return its output so that the coordinator can proceed
to issue other pieces whose inputs are based on p’s out-
put. If p is deferrable, the server buffers it for later ex-
ecution. The coordinator also parallelizes the issuing of
requests when possible, only blocking a request if its in-
puts are not yet available.

In addition to executing immediate pieces and buffer-
ing deferrable ones, each server maintains a dependency
graph, dep. Each vertex in dep represents a transaction
and its known status, which can be any one in the or-
dered set {STARTED, COMMITTING, DECIDED}. In ad-
dition, for each transaction T involving server S, S keeps
a boolean flag T. f inished to indicate whether server S
has finished committing T . Each edge represents the
order of conflicting pieces between two transactions as
observed by the server. For example, if a server re-
ceives p1 that writes to data item x. Then, upon receiv-
ing p2 that also accesses x, the server adds a direct edge
p1.owner→p2.owner to dep, where p.owner denotes p’s
corresponding transaction. Moreover, each edge is la-
beled depending on the types of p1 and p2 as immediate
or deferred. If both pieces are immediate, the edge is la-
beled as i→; if both are deferrable, the edge is d→. There
cannot be an edge between an immediate and deferrable
piece because the offline checker eliminated such scenar-
ios when it virally propagated immediacy over C-edges.

Figure 10 summarizes how a server processes a start
request in pseudocode. The server returns its updated
dep graph and the piece’s execution output if the piece
is immediate to the coordinator. The coordinator sim-

5

484 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Client

Coord.

Server 1

Server 2

Server 3

start commit

finished

request

① the output of p1 contains the input
 of p3

② receive replies to start requests
 of all pieces

③ the servers may exchange dep-
 endencies to reach a determin-
 istic serializable order

④ all pieces have finished executing
 and all outputs are ready

①

②

③

p3

p1

p2

T

reply

stock

next_oid

order

④

Figure 5: A typical ROCOCO message flow.

function Server S::start_req(p):
S.dep[p.owner].status = STARTED
foreach p’ received by S that conflicts with p

if p.immediate == true

add p’.owner
i→ p.owner to S.dep

else
add p’.owner

d→ p.owner to S.dep
if p.immediate == true

output = execute(p)
return (S.dep, output)

Figure 6: How a server processes a start request.

ply aggregates the returned dependency graphs from all
involved servers (not shown in psuedocode).

The commit phase. The commit phase of a transac-
tion distributes dependency information for all pieces,
ensures each server can safely decide if a piece must
be reordered, deterministically reorders pieces on each
server if necessary, executes deferred pieces, and com-
mits a transaction.

The coordinator begins the commit phase once it has
sent out all start requests and collected their responses.
For each participating server, the coordinator sends a
commit request containing the aggregated dep graph.
When aggregating a set of dependency graphs, one takes
the union of vertexes/edges and sets each vertex’s status
to be the highest one in those graphs.

Figure 7 summarizes how a server handles a commit
request in psuedocode. Upon receiving a commit re-
quest for transaction T , server S updates the status of
T to COMMITTING in its dependency graph, if T.status
is lower than COMMITTING. Server S also aggregates
the dependency information in the commit request into
S.dep.

Next, server S ensures it can safely decide if its piece
of T should be reordered by collecting the transitive clo-
sure of T ’s conflicting transactions’ in S.dep. To do this,
it examines S.dep to find all T ′ that are ancestors of T
and waits for the status of those T ′ to become COMMIT-
TING or DECIDED. In the common case when T ′ involves

server S and S will eventually receive the commit request
of T ′ so it simply waits; in the uncommon case when T ′

does not involve S, it issues a status request for T ′ to a
server S′ involved in T ′. S′ replies with its dependency
graph after S′ has received the commit request of T ′. S
aggregates the received graph with its own.

Next, server S calculates the strongly connected com-
ponent (SCC) of T in S.dep, denoted T SCC, which typi-
cally includes only T . 2 The server then sets the status
of all transactions in T SCC to DECIDED. Next, the server
waits for all ancestors of the T SCC to become DECIDED.
Furthermore, for each ancestor T ′ involving server S, S
also waits for T ′. f inished to become true.

Next, to decide the right execution order for T , server
S topologically sorts T SCC according to i→ edges. To en-
sure that different servers reach a single sorting order,
sorting is done deterministically. This topological sort is
possible if and only if there are no cycles in T SCC con-
nected by only i→ edges. ROCOCO’s offline checker en-
sures this will always be the case by eliminating any SC-
cycle whose C-edges all have the I-I type. We elaborate
this argument further in § 3.3.

Finally, server S executes the deferred pieces of each
transaction T in T SCC that involves S in the sorted order.
Upon finishing executing T , server S sets T. f inished to
be true and returns the results to T ’s coordinator.

When a coordinator has collected the responses from
all participating servers, the transaction is considered
committed and the output is returned to the client.

3.3 Correctness
This subsection presents a proof sketch of correctness. A
more rigorous version of the proof is available in a tech-
nical report [47]. Specifically, we prove that ROCOCO

2 We use the Tarjan algorithm [53] for SCC computation. In the
best case, only those nodes and edges in the SCC need to be visited; In
the worst case, all nodes and edges in the graph need to be visited and
the complexity is O(V+E).

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 485

function Server S::commit_req(T, dep):

S.dep
∪
= dep

S.dep[T].status
∪
= COMMITTING

foreach T’ � T in dep
if T’ does not involve S and

S.dep[T’].status == STARTED
contact S’ involved in T’ and

wait until S.dep[T’].status ≥ COMMITTING
TSCC = find_SCC(T, S.dep)
foreach T’ not in TSCC and T’ � TSCC

wait until S.dep[T’].status == DECIDED
if T’ involves S

wait until T’.finished == true
deterministic_topological_sort(TSCC)
foreach T’ in TSCC # including T

S.dep[T’].status = DECIDED
if T’ involves S and

T’.finished == false
foreach deferred p’ of T’

p’.output = execute(p’)

T’.output
∪
= p’.output

T’.finished = true
return T.output

Figure 7: How a server processes a commit request.

guarantees strict serializability:
Serializability: [12] The committed transactions have

an equivalent serial schedule, such that all conflicting op-
erations in the actual schedule are ordered in the same
way as in the equivalent serial schedule.

Strict-serializability: [12, 31] The above serial sched-
ule preserves the real-time order, i.e., if transactions T1
commits before T2 starts in real time, T1 appears before
T2 in the equivalent serial schedule.

The proof involves arguments on the serialization
graph, which is a directed graph where each vertex rep-
resents a transaction and each edge represents an ordered
conflict. Suppose transactions T1 and T2 have conflicting
accesses (at least one is a write) to the same data item x.
If T1 accesses x before T2 does, the serialization graph
contains a T1→T2. To prove ROCOCO is serializable,
we must show that any serialization graph it generates
is acyclic [13].

First, we show that all relations in the serialization
graph are captured in the dependency information col-
lected by servers.

Lemma 1. For any transactions T1 and T2, if T1→T2 is in
the serialization graph, then T1→T2 must be included in
the commit request of T2.
Proof Sketch. By definition, T1→T2 in the serialization
graph implies that a pair of conflicting pieces, p1 of T1
and p2 of T2, exist and that p1 executes before p2 on
a corresponding server S. Because the offline checker
has eliminated all I-D conflicts, p1 and p2 are either 1)
both immediate pieces, or 2) both deferrable pieces. In
scenario 1), T1→T2 in the serialization graph means p1
executes before p2 in the start phase and server S adds

T1→T2 to S.dep. By the ROCOCO protocol, this depen-
dency will be sent back to the coordinator, aggregated
with other dependencies, and then appear in T2’s commit
requests. In scenario 2), if p1 executes before p2, then T1
has arrived before T2 at some server S′ in the start phase,
resulting in T1→T2 in S′.dep. Again, by the ROCOCO
protocol, this dependency will be included in T2’s com-
mit request.

Next, we argue that ROCOCO never generates a cycle in
the serialization graph, due to a combination of servers
breaking SCCs with deferred execution and the offline
checker eliminating unreorderable SC-cycles.

Proposition 1. The serialization graph is acyclic.
Proof Sketch. For proof by contradiction, we assume
there exists such a cycle (δ) of transactions in the serial-
ization graph. First, we observe that each server involved
in δ has δ in its dependency graph prior to executing
any transaction in δ in the commit phase. The proof for
this observation is in [47] and is based on Lemma 1 and
the specification of ROCOCO that ensures each involved
server transitively capture conflicting transactions in one
SCC. Next, we note that the cycle δ must contain at least
one pair of deferrable pieces. If all the pieces in δ are
immediate, then δ corresponds to a SC-cycle involving
only I-pieces, which would have been detected and elim-
inated by the offline checker. Last, we obtain a contradic-
tion from the specification of ROCOCO that would have
reordered the deferrable pieces to break δ .

Proposition 2. For any transactions T1 and T2, if T2 starts
after T1 has finished, the serialization graph does not con-
tain a path from T2 to T1, T2�T1.
Proof Sketch. To prove by contraction, we assume
T2�T1 exists in the serialization graph. For any Ti→Tj in
the serialization graph, in order for Tj to become COM-
MITTING on any server S, ROCOCO requires S to have
waited for Ti to become COMMITTING. Therefore, given
a path T2→Ti→Tj→..→T1 in the serialization graph, we
can follow the path in reverse and deduce that T2 has a
status of COMMITTING at some server before T1 becomes
COMMITTING. This implies that T2 has begun its commit
phase before T1 has finished at all servers, which contra-
dicts the fact that T2 has not started.

Proposition 1 implies serializability. Proposition 2 ad-
ditionally shows strict-serializability.

3.4 Reducing Dependency Graphs
In the basic protocol, a server’s dependency graph is ver-
bose and grows without bound over time. We now ex-
plain how to more efficiently store and transmit depen-
dency information.

To reduce the number of edges in S.dep, server S only
adds the nearest dependencies of T in the graph upon

7

486 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

receiving T ’s start phase. The nearest dependencies of
T have the longest path of one hop to T . However, in
contrast to previous work that also tracked the nearest
dependencies [42, 43], ROCOCO has two types of edges
and paths. If a path contains at least one i→ edge, it is
called an i-path. If a path consists of only d→ edges, it is
called a d-path. An i-path is a stronger type than d-path.
A path is longest only if there are no other longer paths
with the same or a stronger type.

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(a)

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(b)

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(c)
Figure 8: Nearest dependencies and longest paths are
shown with solid arrows. T1

d→T3 is not a longest path
in the left and middle figures and thus is safely remov-
able. T1

i→T3 is a longest path in the right figure and
cannot be omitted.

For example, suppose that server S has T1
d→T2 in

S.dep. When S receives a deferrable piece of T3 that
conflicts with both T1 and T2, instead of adding {T1

d→T3,

T2
d→T3} to S.dep, S only adds {T2

d→T3}. Skipping

T1
d→T3 is acceptable because the dependency is still

tracked by T1
d→T2 and T2

d→T3 (Figure 8a). As another
example, suppose that S.dep contains {T1

d→T2} and a

new transaction T3 attempts to add {T1
i→T3, T2

d→T3}. In
this case, edge T1

i→T3 cannot be skipped, because the
path T1

d→T2
d→T3 does not capture the stronger ordering

constraint of T1
i→T3 (Figure 8c).

In practice, ROCOCO tracks one-hop dependencies, a
slightly larger superset of nearest dependencies. When
server S receives a new piece p, it finds only the most re-
cent conflicting piece p′ for each of p’s conflicts and adds
T ′→T to dep. Therefore, if the number of items a piece
accesses is constant, then the time and space complexity
of handling a new piece is O(1).

In the basic protocol, server S returns the full graph
S.dep to the coordinator in the start phase. This is unnec-
essary. In particular, the coordinator only needs to learn
of T ’s ancestors that are not yet DECIDED. Therefore,
server S only computes the subgraph of S.dep containing
T ’s ancestors whose status is lower than DECIDED. Also,
in its reply to a status request for T , a server only needs
to include every undecided ancestors of T if T is not yet
decided; if T is already DECIDED, the server replies with
T SCC.

A transaction is considered committed if the coordina-
tor has received commit replies from all involved servers.
It is tempting to simply remove all committed transac-
tions from a server’s dep. However, it is not correct to do
so because the server may receive a status request for its
committed transaction from another server. To garbage
collect, ROCOCO uses an epoch mechanism similar to
previous work [55, 32]. Each server keeps an epoch num-
ber that slowly increases. A transaction is tagged with an
epoch number when it starts at a server. The epoch num-
ber on a server increases only after all transactions in the
last epoch are all committed, and no other server falls be-
hind or has ongoing transactions at one or more epochs
ago. Dependencies from two epochs ago can be safely
discarded.

3.5 Fault Tolerance

To tolerate failure, each server and the coordinator need
to persist its transaction log to disks and preferably also
replicates it across machines using a Paxos-based repli-
cation system [39, 15]. In ROCOCO, the coordinator logs
the transaction request before starting the transaction, in
case it fails during execution. Each server logs each start
request following its arriving order, including its type and
input. It does not need to log its output, because the
output is deterministic once the order of start requests
is fixed.

If a coordinator fails, after it recovers it will send the
start requests again to all involved servers. For a server
receiving the request, it first examines whether it has re-
ceived this start request before. If so, it returns the same
execution result and dependency graph; If not, it handles
this request normally.

If a server fails, when it recovers it needs to replay all
the start requests before it responds to other requests. In
order to commit these transactions during recovery, the
server asks other servers about the corresponding com-
mit requests. In corner cases, such as all servers crash-
ing, the servers should let the coordinator restart the af-
fected transactions. To accelerate the recovery process,
the server can also log when a transaction commits (i.e.
its finished flag becomes true), but this is off the critical
path of a transaction.

4 Extension

We describe two extensions to the basic design of § 3.
§ 4.1 shows how to optimize read-only transactions.
§ 4.2 explains how ROCOCO copes with merged pieces
that internally rely on traditional distributed concurrency
control.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 487

function Coordinator C::do_ro_txn(T):
chop the transaction into pieces.
for a piece pi, inputi is its input,
si is its server
foreach pi in T

wait until inputi is ready
outputi = si.ro req(T, pi, inputi)

repeat
save the result of the last round read,
and issue another round.
output’ = output
reset(input)
foreach pi in T
wait until inputi is ready
outputi = si.ro req(T, pi, input’i)

succeed if the two rounds return the same
until output = output’
return output

Figure 9: Coordinator read-only transaction

4.1 Read-Only Transactions
Read-only transactions often make up a significant frac-
tion of OLTP workloads. Moreover, they often contain
many immediate reads that increase the likelihood of SC-
cycles without a D-D edge. To avoid this increase we
provide a separate solution to execute read-only transac-
tions that allows the offline checker to exclude read-only
transactions from the constructed SC-graph.

To process a read-only transaction, the coordinator
sends a round of read requests to each involved server.
When a server receives the request it waits for all con-
flicting transactions to become FINISHED and then it ex-
ecutes the read and returns the result. After the coordi-
nator finishes this round, it issues a second round of re-
quests which are identical to the first round, i.e., they also
wait for all conflicting transactions to become FINISHED.
The transaction is considered successful if both rounds
return the same results. If the results do not match, the
coordinator simply re-starts the transaction.

Waiting for all conflicting transaction to finish is the
key to ensuring the combination of this read-only trans-
action algorithm with the rest of ROCOCO is still strictly
serializable. When one server waits for a transaction to
finish it is forcing that transaction to at least start on all
other involved servers. Then, if a first round read hap-
pened on a different server before that transaction, its
corresponding second round read will at least encounter
the transaction in the start phase. The second round read
will wait for it to finish before executing, which ensures
it will see a different result from the first round and force
another round of reads.

4.2 Merged Pieces
In § 3, we assume that the offline checker finds only re-
orderable SC-cycles so that each piece only involves one

function Server S::ro_req(T, p, input):
foreach T’ in S.dep and T’ involves S

and T’ conflicts with piece p
wait until T’.finished is true

output = execute(p)
return output

Figure 10: Server read-only transaction

server at runtime. When the offline checker discovers un-
reorderable SC-cycles, it combines the pieces in the cycle
that belong to the same transaction into a single merged
piece. In contrast with the simple pieces discussed above
that execute on a single server, a merged piece can be dis-
tributed across multiple servers. ROCOCO relies on tra-
ditional distributed concurrency control to execute each
merged piece atomically across servers.

Fortunately, merged pieces are simple to integrate into
the overall design of ROCOCO. A merged piece contains
only immediate simple pieces, otherwise, it would not
have contributed to an unreorderable SC-cycle. This al-
lows the coordinator to use an OCC-based protocol to ex-
ecute the sub-pieces of a merged piece in the start phase.
Each server returns its dependency information in the
normal way.

For example, suppose piece p2 in Figure 4 is an imme-
diate piece. As a result, p1 and p2 and their counterparts
in the other new-order instance lead to an unreorderable
SC-cycle. To eliminate this unreorderable SC-cycle, RO-
COCO must execute p1 and p2 as a single merged piece.
In the start phase, the coordinator executes p1 and p2 us-
ing a three-phase OCC+2PC (execute-prepare-commit).
If OCC+2PC aborts the coordinator retries until it suc-
ceeds. In the commit phase of OCC+2PC, each server
will then add appropriate edges and vertexes to its dep
graph, and reply with all undecided ancestor transactions
in dep, as in the normal start phase of ROCOCO.

In our experience, simple workloads such as RUBiS[3]
and Retwis[2] do not require merged pieces. TPC-C is
much more complex. However, with the support of read-
only transactions, there are no unreorderable SC-cycles
in TPC-C and therefore no merged pieces.

5 Evaluation
Our evaluation explores two key questions:

1. How does the throughput and latency of ROCOCO
compare to that of traditional approaches under
varying levels of contention?

2. Can ROCOCO scale out with OLTP workloads?

This section will show that ROCOCO has higher
throughput and lower latency than OCC and 2PL under
all levels of contention and that as contention increases

9

488 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ROCOCO’s advantage increases. It will also show that
ROCOCO scales near linearly in a complex workload,
where contention rate grows as the system scales.

5.1 Implementation

We implemented a distributed in-memory key-value
store with transactional support using ROCOCO. Our
prototype contains over 20 000 lines of C++ code, of
which 10 000 are for concurrency control. It uses a cus-
tom RPC library implemented by one of the authors for
communication [4]. It adopts the simple threading model
of H-Store [52] that uses a single worker thread on each
server (core) to sequentially process the server’s transac-
tion pieces. The worker thread performs all blocking op-
erations asynchronously. Currently, stored procedure—
i.e., a piece of a transaction—is written as a C++ function
that is loaded into the server binary at launch time.

2PL and OCC implementation. Our prototype also
implements 2PL+2PC or OCC+2PC. Both protocols in-
clude an execute phase in which the coordinator instructs
each involved server to execute a transaction piece and
then a commit phase based on 2PC.

For 2PL, servers acquire locks during the execute
phase. Subsequently, in the 2PC prepare phase, the co-
ordinator instructs each involved server to durably log
its buffered writes and lock acquisitions. In 2PC’s com-
mit phase, servers release locks and make writes visi-
ble. We use the wound-wait strategy [48], also used in
Spanner[19], to avoid deadlocks.

For OCC, servers return the versions of data items read
to the coordinator during the execute phase. In 2PC’s
prepare phase, each involved server acquires write locks,
acquires read locks to validate the freshness of reads, and
durably logs its writes and vote decisions. In 2PC’s com-
mit phase, servers release locks and make writes visible.

5.2 Experimental Setup

Unless otherwise mentioned, all experiments are con-
ducted on the Kodiak testbed [1]. Each machine has a
single-core 2.6GHz AMD Opteron 252 CPU with 8GB
RAM and Gigabit Ethernet. Most experiments are bot-
tlenecked on the server CPU. We have achieved much
higher throughput when running on a local testbed with
faster CPUs.

In all experiments, clients and servers run on differ-
ent machines. Each client machine runs 1-30 single-
threaded client processes while each server machine runs
a single server process. Each data point in the graphs rep-
resents the median of at least five trials. Each trial is run
for over 60s with the first and last quarter of each trial
elided to avoid start up and cool down artifacts.

Figure 11: Throughput of baseline operations in-
volving 3 servers. The transaction workload for
OCC/2PL/ROCOCO has no contention.

Logging is turned off for all experiments because the
Kodiak testbed does not include SSDs. We explore the
overhead of logging to SSDs in our local testbed in Sec-
tion 5.7. Logging always amplifies the throughput ad-
vantage of ROCOCO over 2PL and OCC. Logging some-
times increases the latency of ROCOCO over 2PL and
OCC, but this is at most a few ms.

5.3 Micro-Benchmarks

To understand the base performance of our implementa-
tion, we ran a series of micro-benchmarks in a workload
with no contention. The experiment uses three servers
and its workload is a simple transaction that updates
three counters, one on each server.

Figure 11 shows the throughput for a few baseline op-
erations, from left to right, a null RPC to one of the
servers (1 RPC), an RPC performing a database up-
date at one of the servers (1 RPC+DB), three parallel
RPCs each doing a database update at a different server
(3 RPC+DB), and the simple transaction performing 3
database updates using OCC, 2PL, or ROCOCO.

Each server is able to handle ~75k null RPCs per
second and is bottlenecked on CPU. The 1 RPC+DB
throughput is slightly lower and is also bottlenecked on
CPU, suggesting that the cost of a database access is rel-
atively small compared to the cost of RPC. OCC and 2PL
have similar throughput, roughly 1/3 of 3 RPC+DB, be-
cause they both require three rounds of RPCs to commit.
ROCOCO requires two rounds of RPCs but incurs higher
CPU cost to process dependency information, resulting
in similar throughput to 2PL/OCC.

5.4 Scaled TPC-C Workload Overview

We evaluate ROCOCO’s performance under contention
using a scaled out version of the popular TPC-C [5]
benchmark. This subsection explains how we scaled out
TPC-C and how this differs from prior work.

Partition Strategy. Prior work partitioned the TPC-
C database by warehouse [20, 54, 33, 55], with each

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 489

w1 w2 w10000 …

…

w1

d1-d10 d11-d20
…

…

d990-d1000

w2

d1-d10 d11-d20
…

…

d990-d1000

…

…

w100

d1-d10 d11-d20
…

…

d990-d1000

Figure 12: TPC-C sharding and scaling strategy. The left figure is the conventional strategy of scaling by
increasing the number of warehouses. The right figure is our strategy of scaling inside a warehouse. w stands
for warehouse, d stands for district.

server holding all data (including stock level and cus-
tomer orders) related to a warehouse. This partition-by-
warehouse strategy has two downsides. First, because
only a single server handles each warehouse’s data and
requests, there is no performance scaling within a ware-
house. This is acceptable in stock TPC-C that dictates
a relatively low customer-to-warehouse ratio of 30K:1.
However, in practice, a warehouse might need to handle
a much larger population of users. For example, Amazon
has >300 million customers served by ~100 warehouses.
In these scenarios, the throughput of a single warehouse
must scale beyond a single machine. Second, partition-
by-warehouse does not stress the performance of dis-
tributed transactions, because only a minority (<15%)
of all transactions involve more than one server.

To allow scaling within a warehouse, we partition the
database by item or by district, of which there are many
within a warehouse. Tables storing district related infor-
mation are sharded according to warehouse id and
district id (Figure 12). The stock level table is
sharded by warehouse id and item id. We remove
the w ytd field that keeps track of the total value of pur-
chases within a warehouse. To obtain the same informa-
tion, we use a read-only transaction that reads the d ytd
value for each district and sums them up. This strategy
avoids w ytd from becoming a bottleneck for all new-
orders within a warehouse. The original TPC-C bench-
mark uses a ratio of 30K:10:1 between customer, district
and warehouse. We change it to 3M:1K:1 so that our
ratio of customer-to-district remains the same as in the
original TPC-C.

5~15 5~15 5~15 5~15

5~15 5~15 5~15 5~15

New Order

Delivery Payment

Figure 13: SC-graph for the TPC-C benchmark

Transaction pieces and the SC-graph. The TPC-
C benchmark consists of five transactions: new order,
payment, delivery, order status, and stock level. Or-
der status, and stock level are read-only transactions.
Figure 13 shows the SC-graph for the remaining three
transactions. The new order transaction contains five
kinds of pieces, four of which occur 5 to 15 times, de-
pending on how many items the transaction touches.

Table 1 shows the percentage of each transaction type
in a random trial with ROCOCO, which matches the spec-
ified mix for TPC-C, and the average number of pieces
included in each transaction.

new-order payment order-status delivery stock-level

type rw rw ro rw ro
ratio 44.97% 43.00% 4.03% 4.00% 4.00%

pieces 40.97 4 3 40 210.93

Table 1: TPC-C commit transaction mix ratio in
a ROCOCO trial. rw stands for general read-write
transactions and ro stands for read-only.

5.5 Contention

We ran the scaled TPC-C benchmark to explore how
2PL, OCC, and ROCOCO perform under varying levels
of contention. Figure 14 shows the results of this ex-
periment. Figure 14a shows the throughput; Figure 14b
shows the median, 90th percentile, and 99th percentile
latency; and Figure 14c shows the commit rate.

Experimental Parameters. We ran the contention ex-
periment with 8 servers that each served 10 districts. All
80 districts belong to 1 warehouse. We vary the clients
per server from 1 to 100 with each client issuing a mix-
ture of TPC-C transactions according to the specification
in a closed loop. When the number of clients is higher,
there are more requests per server and thus higher con-
tention.

The contention level is also affected by the number of
districts per server. If a core serves too few districts—
e.g., 1 district per server—OCC and 2PL are unable to
saturate the server’s CPU under low contention. This is
because a core needs at least four clients to saturate its

11

490 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Throughput (b) Latency (c) Commit rates

Figure 14: New-order transaction characteristics in TPC-C mixed workload benchmark, with 8 servers.
In the latency graph, the line shows the 90th percentile, and bars show the median and 99th percentile.

CPU, but four clients on a single district causes many
conflicts. If a core serves too many districts—e.g., 100
districts per server—a large number of clients are needed
to generate even moderate levels of contention. In or-
der to explore varying levels of contention, we configure
each core to serve 10 districts.

Minimal Contention. When the number of concurrent
requests per server is fewer than 10, there is almost no
contention in the system. OCC reaches its maximum
throughput, 5916 new-orders/s, with ~7 clients per server
(Figure 14a) when each server’s CPU is saturated. 2PL
performs similarly, but has a lower maximum through-
put, 4781 new-orders/s, because of the overhead of main-
taining the read/write lock queues. ROCOCO has the
highest maximum throughput, 6197 new-orders/s, be-
cause of computational savings from its one fewer round
of RPCs, which outweighs the computational cost of the
graph computations it performs.

Low Contention. When the number of concurrent re-
quests increases from 10 to 20 per server, the contention
level increases from minimal to low. OCC is very sen-
sitive to this increase in contention with a large perfor-
mance drop to only half of its peak throughput. This
drop in throughput comes from repeated aborts and re-
tries in OCC as evidenced by the drop in its commit rate
to ~60%. 2PL is less sensitive to the increase in con-
tention because it always allows the oldest transaction to
commit, which guarantees progress and limits the num-
ber of retries for a transaction. This is also observable
from the commit rate, which drops by only ~10%. The
median latency of 2PL and OCC both increase to about
20ms, due to the abort/retry. The performance of RO-
COCO is relatively unaffected because it does not abort
on read-write transactions. The median latency of RO-
COCO increase to 10ms, due primarily to more transac-
tion requests waiting in the message queue.

Moderate Contention. When the number of concur-
rent requests increases from 20 to 40 per server, the
contention increases from low to moderate. OCC con-

tinues to be very sensitive to this continued increase in
contention. With 40 concurrent requests per server, the
throughput of OCC is 1774 new-orders/s, one third of
its peak, and its 99th percentile latency is over 67ms.
The performance of 2PL also starts to drop quickly un-
der moderate contention. Its throughput drops to 2950
new-orders/s, half of its peak, and its 99th percentile la-
tency increases to 38ms. ROCOCO is also affected by the
increase to moderate contention, though it is less sensi-
tive than OCC and 2PL because it avoids aborting and
retrying transactions. Its throughput drops by 24%, and
its 99th percentile latency increases to 12ms.

High Contention. When the number of concurrent re-
quests increases to over 40 per server, the benchmark re-
flects a high-level of contention. In the worst case, the
throughput of OCC drops to a few hundred, due to large
amounts of aborts and retries, with its commit rate drop-
ping to 16%. 2PL has better performance than OCC, es-
pecially as measured by latency, because its wound-wait
strategy ensures progress. But, 2PL’s throughput and
commit rate decrease significantly because of the large
number of aborts. ROCOCO demonstrates the best per-
formance with high contention. Its throughput drops to
only 2584 new-orders/s, which is 130% higher than 2PL
and 347% higher than OCC. More importantly, because
ROCOCO avoids aborting and retrying, its latency is only
10%-40% of that of OCC and 2PL.

5.6 Scalability

We evaluate the scalability of ROCOCO in two different
ways. The first is conventional TPC-C scaling by in-
creasing the number of warehouses with a fixed number
of districts per warehouse. In this case all protocols scale
linearly (not shown) because each added warehouse is al-
most entirely independent of the existing warehouses and
the contention rate—i.e., how frequently different trans-
actions interact—remains constant.

The second, and more representative, experiment is
scaling inside a warehouse from 10 districts on 1 server

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 491

(a) 10 clients per server. (b) 20 clients per server. (c) 40 clients per server.

Figure 15: Scaling across districts

to 1000 districts on 100 servers. Scaling the number
of districts increases the contention rate, which we be-
lieve is meaningful because as a system scale it is more
likely that transactions will interact. For instance, in an
e-commerce site, as the site becomes more popular it is
likely to gain many more new customers than new items.
In addition, a small set of items tend to be very popular
and becomes more and more likely than have different
customer try to concurrently purchase them, which is a
source of contention in TPC-C new order transactions.

Our experiments use three levels of contention; low
contention with 10 clients per server, shown in Fig-
ure 15a; moderate contention with 20 clients per server,
shown in Figure 15b; and high contention with 40 clients
per server, shown in Figure 15c.

ROCOCO scales near linearly when contention is low,
with its throughput increasing from 7519 new-orders/s
with 10 servers, to 13971 with 20 server, 25671 with 40
servers, and 47787 with 80 servers. The throughput of
OCC and 2PL are far lower. OCC peaks at 9611 new-
orders/s with 20 servers and 2PL peaks at 17521 with
60 servers. OCC and 2PL do not scale well because the
increasing contention rate leads to more aborts.

ROCOCO also scales near linearly when contention
is moderate, with its throughput increasing from 6921
new-orders/s with 10 servers, to 12736 with 20 server,
23117 with 40 servers, and 39853 with 80 servers. The
higher levels of contention quickly lead to high abort rate
for OCC and 2PL, which peak at 3816 and 10005 new-
orders/s respectively.

When contention is high with 40 clients per server,
ROCOCO still scales well, though this scaling is no
longer near linear. The scaling is not linear because at
this high level of contention ROCOCO propagates and
processes much larger dependency graphs.

5.7 Logging to SSDs

This subsection explores the effect of synchronous log-
ging in 2PL, OCC, and ROCOCO. This experiment
is conducted in our local cluster that is equipped with
SSDs, all other experiments were performed on the Ko-

diak cluster. To ensure that the log is safely persisted we
turned off caching in the operating system and disks. We
call fsync and wait for its return before we consider
the log to be successfully written. We use a batch time of
~1ms before each fsync, which increases throughput
significantly at the cost of slightly higher latency.

Table 2 shows the performance with 8 servers and 20
concurrent clients per server. 2PL and ROCOCO both
have about 20% throughput drop and a latency increase
of 2-3ms. The performance of OCC is more severely im-
pacted as the batched logging resulting in requests hold-
ing their locks for longer in the prepare phase, which in-
creases the likelihood of aborts. This effect is evident in
the decreased commit rate for OCC.

Throughput Commit Latency(ms)
(new-orders/s) Rate (%) 50% 90% 99%

OCC
no log 4109 63.82 8.49 11.35 13.60
logging 2748 54.28 12.17 18.35 22.79

2PL
no log 4944 88.52 8.63 10.20 11.29
logging 4038 88.76 10.89 13.01 14.48

ROCOCO
no log 6464 100 6.52 7.12 7.33
logging 5382 100 8.78 9.62 9.94

Table 2: Effect of logging in our local cluster

6 Related Work
General transactions with 2PL and OCC. Many
seminal distributed databases such as Gamma [22],
Bubba [16], and R* [45] use forms of 2PL. Spanner [19]
is Google’s linearizable global-scale database that uses
2PL for read-write transactions and a separate timestamp
based protocol from read-only transactions. Replicated
Commit optimizes the across site latency in Spanner’s
commit protocol [44].

OCC is also used in several recent systems, such as
H-Store [33] and VoltDB [6]. MDCC [35] uses OCC
for geo-replicated storage. Percolator uses OCC to pro-

13

492 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

vide snapshot isolation [14]. Adya et al. [7] use loosely
synchronized clocks and timestamps in the validation of
OCC.

Observations have been made that OCC and 2PL be-
have well with no contention, but the performance will
drop quickly as contention increases [8, 30]. This is also
what we have observed in our evaluation.

Concurrency control with limited transactions. A
recent trend is to improve performance by supporting
limited types of distributed transactions. For example,
MegaStore [10] only provides serializable transactions
within a data partition. Other systems, such as Gra-
nola [20], Calvin [54] and Sinfonia [9] propose concur-
rency control protocols for transactions with known read-
/write keys.

Sinfonia’s protocol is based on OCC and 2PC. Gra-
nola achieves a deterministic serial order of conflicting
transactions by exchanging timestamp between servers
while Calvin achieves this by using a separate sequenc-
ing layer that assigns all transactions to a deterministic
locking order to ensure isolation at each participating
server. None of these systems supports key-dependent
transactions: the read/write sets must be known apriori.
In contrast, ROCOCO does support such transactions with
immediate pieces.

Dependency and interference. Our work is moti-
vated by recent efforts on consensus protocols such as
Generalized-Paxos [38] and EPaxos [46], which uses de-
pendency to reorder interfering commands in state ma-
chine replication (SMR). Paxos addresses consistent data
replication and is used as a black-box module to provide
replication in databases. However, consensus protocols
bear some resemblance to distributed transaction proto-
cols because reaching consensus is similar to committing
a write-only transactions between several replicas of the
same item [29].

COPS/Eiger [42, 43] track dependency between oper-
ations to provide causal+ consistency in geo-replicated
key-value stores. Dependencies are also used to provide
read-only/write-only transaction support. Warp [24] is a
transaction layer on top of HyperDex [23] and its proto-
col also performs dependency tracking.

A major difference between ROCOCO and the above
dependency-tracking systems is that ROCOCO can avoid
aborts for transactions that require intermediate results
between pieces. ROCOCO pushes this boundary using
offline checking to eliminate possible unreorderable in-
terleavings and by tracking finer grained dependencies to
break dependency cycles in a serializable way.

Transaction decomposition and offline checking.
The database community has explored various aspects
of decomposing a transaction into smaller pieces for im-
proved performance. [27, 11, 17, 25] Shasha et al. [50,

49] propose the theory of transaction chopping which
uses SC-cycles to analyze possible conflicts that may
lead to non-serializable execution. Lynx [57] uses trans-
action chopping and chain execution to achieve seri-
alizability and low latency simultaneously in a geo-
distributed system. It uses commutative operations and
origin ordering to ensure SC-cycles in web applications
are safe. Compared to Lynx, ROCOCO distinguishes re-
orderable SC-cycles from unreorderable ones, executes
pieces in parallel, and supports the strict form of serial-
izability.

Geo-distributed systems with weaker semantics.
Geo-distributed systems face a tradeoff between strong
semantics and low latency. Systems such as Dy-
namo [21] and Cassandra [37] embrace latency and of-
fer eventual consistency without transactional support.
PNUTS [18] offers per-record timeline consistency. Wal-
ter provides parallel snapshot isolation [51] and Gemini
provides Red/Blue consistency [40]. ROCOCO supports
transactions with the strongest semantics (i.e. strict se-
rializability) and thus will incur cross-datacenter latency
when running in a geo-distributed setting.

7 Conclusion
This paper presented ROCOCO, a novel concurrency con-
trol protocol for distributed transactions. With the help
of offline checking, ROCOCO reorders pieces of interfer-
ing transactions into a strict-serializable order and avoids
aborts. In a scaled TPC-C benchmark ROCOCO outper-
formed conventional protocols and showed stable perfor-
mance with increasing contention.

Acknowledgement
This work is supported in part by the National Science
Foundation under award CNS-1218117. We also thank
Garth Gibson and the PRObE team for the testbed (NSF
awards CNS-1042537 and CNS-1042543).

Shuai Mu’s work is also supported by the China Schol-
arship Council.

References
[1] Kodiak testbeds. http://portal.nmc-probe.org/.
[2] Retwis. http://retwis.antirez.com/.
[3] RUBiS. http://rubis.ow2.org/.
[4] Simple RPC in C++.

https://github.com/santazhang/simple-rpc.
[5] TPC-C Benchmark. http://www.tpc.org/tpcc/.
[6] VoltDB. http://www.voltdb.com/.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 493

[7] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Ef-
ficient optimistic concurrency control using loosely syn-
chronized clocks. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’95, pages 23–34, New York, NY, USA, 1995.
ACM.

[8] R. Agrawal, M. J. Carey, and M. Livny. Concurrency
control performance modeling: alternatives and implica-
tions. ACM Transactions on Database Systems (TODS),
12(4):609–654, 1987.

[9] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In ACM SIGOPS Operating
Systems Review, volume 41, pages 159–174. ACM, 2007.

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Storage
for Interactive Services. In CIDR, volume 11, pages 223–
234, 2011.

[11] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Concur-
rency control for step-decomposed transactions. Informa-
tion Systems, 24(8):673–698, 1999.

[12] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys
(CSUR), 13(2):185–221, 1981.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems, volume
370. Addison-wesley New York, 1987.

[14] P. Bhatotia, A. Wieder, İ. E. Akkuş, R. Rodrigues, and
U. A. Acar. Large-scale incremental data processing with
change propagation. In Proceedings of the 3rd USENIX
conference on Hot topics in cloud computing, pages 18–
18. USENIX Association, 2011.

[15] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters,
and P. Li. Paxos replicated state machines as the ba-
sis of a high-performance data store. In Proceedings of
the 8th USENIX conference on Networked systems design
and implementation, pages 11–11. USENIX Association,
2011.

[16] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Dan-
forth, M. Franklin, B. Hart, M. Smith, and P. Valduriez.
Prototyping Bubba, a highly parallel database system.
Knowledge and Data Engineering, IEEE Transactions
on, 2(1):4–24, 1990.

[17] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of multidatabase transaction management. The
VLDB Journal, 1(2):181–239, 1992.

[18] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serv-
ing platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Googles globally dis-
tributed database. ACM Transactions on Computer Sys-
tems (TOCS), 31(3):8, 2013.

[20] J. Cowling and B. Liskov. Granola: low-overhead dis-
tributed transaction coordination. In Proceedings of the
2012 USENIX conference on Annual Technical Confer-
ence, pages 21–21. USENIX Association, 2012.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA,
2007. ACM.

[22] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
database machine project. Knowledge and Data Engi-
neering, IEEE Transactions on, 2(1):44–62, 1990.

[23] R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: A dis-
tributed, searchable key-value store. In Proceedings of
the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, pages 25–36, New
York, NY, USA, 2012. ACM.

[24] R. Escriva, B. Wong, and E. G. Sirer. Warp: Lightweight
Multi-Key Transactions for Key-Value Stores. Technical
report, 2014.

[25] H. Garcia-Molina. Using semantic knowledge for trans-
action processing in a distributed database. ACM Trans-
actions on Database Systems (TODS), 8(2):186–213,
1983.

[26] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A mas-
sive memory machine. Computers, IEEE Transactions
on, 100(5):391–399, 1984.

[27] H. Garcia-Molina and K. Salem. Sagas. In Proceed-
ings of the 1987 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’87, pages 249–259,
New York, NY, USA, 1987. ACM.

[28] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. Knowledge and Data Engineer-
ing, IEEE Transactions on, 4(6):509–516, 1992.

[29] J. Gray and L. Lamport. Consensus on transaction com-
mit. ACM Transactions on Database Systems (TODS),
31(1):133–160, 2006.

[30] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stone-
braker. OLTP through the looking glass, and what we
found there. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages
981–992. ACM, 2008.

[31] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, volume 8, pages
11–11, 2010.

[33] E. P. Jones, D. J. Abadi, and S. Madden. Low over-

15

494 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

head concurrency control for partitioned main memory
databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages
603–614. ACM, 2010.

[34] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. Proceed-
ings of the VLDB Endowment, 1(2):1496–1499, 2008.

[35] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data center consistency. In Pro-
ceedings of the 8th ACM European Conference on Com-
puter Systems, pages 113–126. ACM, 2013.

[36] H.-T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM Transactions on Database
Systems (TODS), 6(2):213–226, 1981.

[37] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Sys-
tems Review, 44(2):35–40, 2010.

[38] L. Lamport. Generalized consensus and paxos.
[39] L. Lamport. Paxos made simple. ACM Sigact News,

32(4):18–25, 2001.
[40] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and

R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In Proceedings USENIX
Symposium on Operating System Design and Implemen-
tation (OSDI), 2012.

[41] K. Li and J. F. Naughton. Multiprocessor main mem-
ory transaction processing. In Proceedings of the first in-
ternational symposium on Databases in parallel and dis-
tributed systems, pages 177–187. IEEE Computer Society
Press, 2000.

[42] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: scalable causal consis-
tency for wide-area storage with COPS. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 401–416. ACM, 2011.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Symposium on Networked Systems Design and
Implementation, 2013.

[44] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases
using replicated commit. Proceedings of the VLDB En-
dowment, 6(9):661–672, 2013.

[45] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system. ACM Transactions on Database Systems (TODS),
11(4):378–396, 1986.

[46] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in Egalitarian parliaments. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 358–372. ACM, 2013.

[47] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
More Concurrency from Distribted Transactions. Tech-
nical Report TR2014-970, New York University, Courant

Institute of Mathematical Sciences, 2014.
[48] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II.

System level concurrency control for distributed database
systems. ACM Transactions on Database Systems
(TODS), 3(2):178–198, 1978.

[49] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Trans-
action chopping: Algorithms and performance stud-
ies. ACM Transactions on Database Systems (TODS),
20(3):325–363, 1995.

[50] D. Shasha, E. Simon, and P. Valduriez. Simple rational
guidance for chopping up transactions. In ACM SIGMOD
Record, volume 21, pages 298–307. ACM, 1992.

[51] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, pages 385–400. ACM, 2011.

[52] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopou-
los, N. Hachem, and P. Helland. The end of an architec-
tural era:(it’s time for a complete rewrite). In Proceedings
of the 33rd international conference on Very large data
bases, pages 1150–1160. VLDB Endowment, 2007.

[53] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM journal on computing, 1(2):146–160, 1972.

[54] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In Proceedings of the
2012 ACM SIGMOD International Conference on Man-
agement of Data, pages 1–12. ACM, 2012.

[55] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 18–32,
New York, NY, USA, 2013. ACM.

[56] A. Whitney, D. Shasha, and S. Apter. High volume trans-
action processing without concurrency control, two phase
commit, sql or C++. In Seventh International Work-
shop on High Performance Transaction Systems, Asilo-
mar, 1997.

[57] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguil-
era, and J. Li. Transaction chains: achieving serializabil-
ity with low latency in geo-distributed storage systems.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 276–291. ACM,
2013.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 495

Salt: Combining ACID and BASE in a Distributed Database

Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,
Navid Yaghmazadeh, Lorenzo Alvisi, Prince Mahajan

The University of Texas at Austin

Abstract: This paper presents Salt, a distributed
database that allows developers to improve the perfor-
mance and scalability of their ACID applications through
the incremental adoption of the BASE approach. Salt’s
motivation is rooted in the Pareto principle: for many ap-
plications, the transactions that actually test the perfor-
mance limits of ACID are few. To leverage this insight,
Salt introduces BASE transactions, a new abstraction
that encapsulates the workflow of performance-critical
transactions. BASE transactions retain desirable proper-
ties like atomicity and durability, but, through the new
mechanism of Salt Isolation, control which granularity
of isolation they offer to other transactions, depending
on whether they are BASE or ACID. This flexibility al-
lows BASE transactions to reap the performance benefits
of the BASE paradigm without compromising the guar-
antees enjoyed by the remaining ACID transactions. For
example, in our MySQL Cluster-based implementation
of Salt, BASE-ifying just one out of 11 transactions in the
open source ticketing application Fusion Ticket yields a
6.5x increase over the throughput obtained with an ACID
implementation.

1 Introduction

This paper presents Salt, a distributed database that, for
the first time, allows developers to reap the complemen-
tary benefits of both the ACID and BASE paradigms
within a single application. In particular, Salt aims to dis-
pel the false dichotomy between performance and ease of
programming that fuels the ACID vs. BASE argument.

The terms of this debate are well known [28, 30, 37].
In one corner are ACID transactions [7–9, 12–14, 36]:
through their guarantees of Atomicity, Consistency, Iso-
lation, and Durability, they offer an elegant and power-
ful abstraction for structuring applications and reason-
ing about concurrency, while ensuring the consistency of
the database despite failures. Such ease of programming,
however, comes at a significant cost to performance and
availability. For example, if the database is distributed,
enforcing the ACID guarantees typically requires run-
ning a distributed commit protocol [31] for each trans-
action while holding an exclusive lock on all the records
modified during the transaction’s entire execution.

In the other corner is the BASE approach (Basically-
Available, Soft state, Eventually consistent) [28, 32, 37],

recently popularized by several NoSQL systems [1, 15,
20, 21, 27, 34]. Unlike ACID, BASE offers more of a set
of programming guidelines (such as the use of parti-
tion local transactions [32, 37]) than a set of rigorously
specified properties and its instantiations take a vari-
ety of application-specific forms. Common among them,
however, is a programming style that avoids distributed
transactions to eliminate the performance and availabil-
ity costs of the associated distributed commit protocol.
Embracing the BASE paradigm, however, exacts its own
heavy price: once one renounces ACID guarantees, it is
up to developers to explictly code in their applications
the logic necessary to ensure consistency in the presence
of concurrency and faults. The complexity of this task
has sparked a recent backlash against the early enthusi-
asm for BASE [22, 38]—as Shute et al. put it “Designing
applications to cope with concurrency anomalies in their
data is very error-prone, time-consuming, and ultimately
not worth the performance gains” [38].

Salt aims to reclaim most of those performance gains
while keeping complexity in check. The approach that
we propose to resolve this tension is rooted in the Pareto
principle [35]. When an application outgrows the per-
formance of an ACID implementation, it is often be-
cause of the needs of only a handful of transactions:
most transactions never test the limits of what ACID
can offer. Numerous applications [2, 4, 5, 10, 11] demon-
strate this familiar lopsided pattern: few transactions
are performance-critical, while many others are either
lightweight or infrequent; e.g. administrative transac-
tions. Our experience confirms this pattern. For example,
running the TPC-C benchmark [23] on a MySQL cluster,
we found that, as the load increases, only two transac-
tions take much longer to complete—a symptom of high
contention; other transactions are unaffected. Similarly,
we found that the ACID throughput of Fusion Ticket [6],
a popular open source online ticketing application that
uses MySQL as its backend database, is limited by the
performance of just one transaction out of 11. It is tempt-
ing to increase the concurrency of those transactions by
splitting them into smaller ones. Doing so, however, ex-
poses fundamental limitations of the ACID paradigm.

One of the main attractions of the ACID paradigm is
to pack in a single abstraction (the ACID transaction) the
four properties that give ACID its name. This tight cou-

1

496 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

pling of all four properties, however, comes at the cost
of little flexibility. In particular, offering atomicity and
isolation at the same granularity is the very reason why
ACID transactions are ill-equipped to manage effectively
the tradeoff between performance and ease of program-
ming. First, splitting an ACID transaction into several
smaller transactions to increase concurrency would of
course result in the loss of the all-or-nothing atomicity
guarantees of the original transaction. But even more dis-
turbing would be the resulting loss in isolation, not only
for the split transaction, but for all transactions in the sys-
tem: any transaction would be able to indiscriminately
access what used to be intermediate database states pro-
tected by the guarantees of isolation, making it much
harder to reason about correctness. Nonetheless, this is,
in essence, the strategy adopted by the BASE approach,
which for good measure also gives up consistency and
durability in the bargain.

Motivated by these insights, our vision for Salt is sim-
ple: to create a database where the ACID and BASE
paradigms can safely coexist within the same applica-
tion. In particular, Salt enables ACID applications that
struggle to meet their growing performance demands to
improve their availability and scalability by incremen-
tally “BASE-ifying” only the few ACID transactions
that are performance-critical, without compromising the
ACID guarantees enjoyed by the remaining transactions.

Of course, naively BASE-ifying selected ACID trans-
actions may void their atomicity guarantees, compromise
isolation by exposing intermediate database states that
were previously unobservable, and violate the consis-
tency invariants expected by the transactions that have
not been BASE-ified. To enable mutually beneficial co-
existence between the ACID and BASE paradigms, Salt
introduces a new abstraction: BASE transactions.

BASE transactions loosen the tight coupling between
atomicity and isolation enforced by the ACID paradigm
to offer a unique combination of features: the perfor-
mance and availability benefits of BASE-style partition-
local transactions together with the ability to express and
enforce atomicity at the granularity called for by the ap-
plication semantics.

Key to this unprecedented combination is Salt Iso-
lation, a new isolation property that regulates the in-
teractions between ACID and BASE transactions. For
performance, Salt Isolation allows concurrently execut-
ing BASE transactions to observe, at well-defined spots,
one another’s internal states, but, for correctness, it com-
pletely prevents ACID transactions from doing the same.

We have built a Salt prototype by modifying an ACID
system, the MySQL Cluster distributed database [9], to
support BASE transactions and Salt Isolation. Our ini-
tial evaluation confirms that BASE transactions and Salt
Isolation together allow Salt to break new ground in bal-

ancing performance and ease of programming.
In summary, we make the following contributions:

• We introduce a new abstraction, BASE transactions,
that loosens the tight coupling between atomicity and
isolation to reap the performance of BASE-style appli-
cations, while at the same time limiting the complexity
typically associated with the BASE paradigm.

• We present a novel isolation property, Salt Isolation,
that controls how ACID and BASE transactions inter-
act. Salt Isolation allows BASE transactions to achieve
high concurrency by observing each other’s internal
states, without affecting the isolation guarantees of
ACID transactions.

• We present an evaluation of the Salt prototype, that
supports the view that combining the ACID and BASE
paradigms can yield high performance with modest
programming effort. For example, our experiments
show that, by BASE-ifying just one out of 11 trans-
actions in the open source ticketing application Fusion
Ticket, Salt’s performance is 6.5x higher than that of
an ACID implementation.

The rest of the paper proceeds as follows. Section 2 sheds
more light on the ACID vs. BASE debate, and the unfor-
tunate tradeoff it imposes on developers, while Section 3
proposes a new alternative, Salt, that sidesteps this trade-
off. Section 4 introduces the notion of BASE transactions
and Section 5 presents the novel notion of Salt Isolation,
which allows ACID and BASE transactions to safely co-
exist within the same application. Section 6 discusses the
implementation of our Salt prototype, Section 7 shows an
example of programming in Salt, and Section 8 presents
the results of our experimental evaluation. Section 9 dis-
cusses related work and Section 10 concludes the paper.

2 A stark choice

The evolution of many successful database applications
follows a common narrative. In the beginning, they typ-
ically rely on an ACID implementation to dramatically
simplify and shorten code development and substantially
improve the application’s robustness. All is well, until
success-disaster strikes: the application becomes wildly
popular. As the performance of their original ACID im-
plementation increasingly proves inadequate, develop-
ers are faced with a Butch Cassidy moment [33]: hold-
ing their current ground is untenable, but jumping off
the cliff to the only alternative—a complete redesign
of their application following the BASE programming
paradigm—is profoundly troubling. Performance may
soar, but so will complexity, as all the subtle issues that
ACID handled automatically, including error handling,
concurrency control, and the logic needed for consis-
tency enforcement, now need to be coded explicitly.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 497

1 // ACID transfer transaction
2 begin transaction
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal −= amt where id = sndr
6 Update accnts set bal += amt where id = rcvr
7 commit

9 // ACID total−balance transaction
10 begin transaction
11 Select sum(bal) from accnts
12 commit

(a) The ACID approach.

1 // transfer using the BASE approach
2 begin local−transaction
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal −= amt where id = sndr
6 // To enforce atomicity, we use queues to communicate
7 // between partitions
8 Queue message(sndr, rcvr, amt) for partition(accnts, rcvr)
9 end local−transaction

11 // Background thread to transfer messages to other partitions
12 begin transaction // distributed transaction to transfer queued msgs
13 <transfer messages to rcvr>
14 end transaction

16 // A background thread at each partition processes
17 // the received messages
18 begin local−transaction
19 Dequeue message(sndr, rcvr, amt)
20 Select id into @id from accnts where id = rcvr
21 if (@id �= /0) // if rcvr’s account exists in database
22 Update accnts set bal += amt where id = rcvr
23 else // rollback by sending the amt back to the original sender
24 Queue message(rcvr, sndr, amt) for partition(accnts, sndr)
25 end local−transaction

27 // total−balance using the BASE approach
28 // The following two lines are needed to ensure correctness of
29 // the total−balance ACID transaction
30 <notify all partitions to stop accepting new transfers>
31 <wait for existing transfers to complete>
32 begin transaction
33 Select sum(bal) from accnts
34 end transaction
35 <notify all partitions to resume accepting new transfers>

(b) The BASE approach.

Fig. 1: A simple banking application with two implementa-
tions: (a) ACID and (b) BASE

Figure 1 illustrates the complexity involved in transi-
tioning a simple application from ACID to BASE. The
application consists of only two transactions, transfer
and total-balance, accessing the accnts relation. In
the original ACID implementation, the transfer either
commits or is rolled-back automatically despite failures
or invalid inputs (such as an invalid rcvr id), and it is
easy to add constraints (such as bal ≥ amt) to ensure
consistency invariants. In the BASE implementation, it
is instead up to the application to ensure consistency
and atomicity despite failures that occur between the first
and second transaction. And while the level of isolation
(the property that specifies how and when changes to
the database performed by one transaction become vis-
ible to transactions that are executing concurrently) of-
fered by ACID transactions ensures that total-balance
will compute accurately the sum of balances in accnts,

in BASE the code needs to prevent explicitly (lines 30
and 31 of Figure 1(b)) total-balance from observing
the intermediate state after the sndr account has been
charged but before the rcvr’s has been credited.

It speaks to the severity of the performance limita-
tions of the ACID approach that application developers
are willing to take on such complexity.

The ACID/BASE dichotomy may appear as yet an-
other illustration of the “no free lunch” adage: if
you want performance, you must give something up.
Indeed—but BASE gives virtually everything up: the en-
tire application needs to be rewritten, with no automatic
support for either atomicity, consistency, or durability,
and with isolation limited only to partition-local trans-
actions. Can’t we aim for a more reasonable bill?

3 A grain of Salt

One ray of hope comes, as we noted in the Introduc-
tion, from the familiar Pareto principle: even in appli-
cations that outgrow the performance achievable with
ACID solutions, not all transactions are equally demand-
ing. While a few transactions require high performance,
many others never test the limits of what ACID can of-
fer. This raises an intriguing possibility: could one iden-
tify those few performance-critical transactions (either at
application-design time or through profiling, if an ACID
implementation of the application already exists) and
somehow only need to go through the effort of BASE-
ifying those transactions in order to get most of the per-
formance benefits that come from adopting the BASE
paradigm?

Realizing this vision is not straightforward. For ex-
ample, BASE-ifying only the transfer transaction in
the simple banking application of Figure 1 would al-
low total-balance to observe a state in which sndr has
been charged but rcvr’s has not yet been credited, causing
it to compute incorrectly the bank’s holdings. The cen-
tral issue is that BASE-ifying transactions, even if only
a few, can make suddenly accessible to all transactions
what previously were invisible intermediate database
states. Protecting developers from having to worry about
such intermediate states despite failures and concurrency,
however, is at the core of the ease of programming of-
fered by the transactional programming paradigm. In-
deed, quite naturally, isolation (which regulates which
states can be accessed when transactions execute concur-
rently) and atomicity (which frees from worrying about
intermediate states during failures) are typically offered
at the same granularity—that of the ACID transaction.

We submit that while this tight coupling of atomic-
ity and isolation makes ACID transactions both powerful
and attractively easy to program with, it also limits their
ability to continue to deliver ease of programming when

3

498 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

performance demands increase. For example, splitting
an ACID transaction into smaller transactions can im-
prove performance, but at the cost of shrinking the orig-
inal transaction’s guarantees in terms of both atomicity
and isolation: the all-or-nothing guarantee of the original
transaction is unenforceable on the set of smaller transac-
tions, and what were previously intermediate states can
suddenly be accessed indiscriminately by all other trans-
actions, making it much harder to reason about the cor-
rectness of one’s application.

The approach that we propose to move beyond to-
day’s stark choices is based on two propositions: first,
that the coupling between atomicity and isolation should
be loosened, so that providing isolation at a fine granu-
larity does not necessarily result in shattering atomicity;
and second, that the choice between either enduring poor
performance or allowing indiscriminate access to inter-
mediate states by all transactions is a false one: instead,
complexity can be tamed by giving developers control
over who is allowed to access these intermediate states,
and when.

To enact these propositions, the Salt distributed
database introduces a new abstraction: BASE transac-
tions. The design of BASE transactions borrows from
nested transactions [41], an abstraction originally intro-
duced to offer, for long-running transactions, atomicity
at a finer granularity than isolation. In particular, while
most nested transaction implementations define isolation
at the granularity of the parent ACID transaction,1 they
tune the mechanism for enforcing atomicity so that er-
rors that occur within a nested subtransaction do not re-
quire undoing the entire parent transaction, but only the
affected subtransaction.

Our purpose in introducing BASE transactions is sim-
ilar in spirit to that of traditional nested transactions:
both abstractions aim at gently loosening the coupling
between atomicity and isolation. The issue that BASE
transactions address, however, is the flip side of the one
tackled by nested transactions: this time, the challenge is
to provide isolation at a finer granularity, without either
drastically escalating the complexity of reasoning about
the application, or shattering atomicity.

4 BASE transactions

Syntactically, a BASE transaction is delimited by
the familiar begin BASE transaction and end BASE
transaction statements. Inside, a BASE transaction
contains a sequence of alkaline subtransactions—nested

1Nested top-level transactions are a type of nested transactions that
instead commit or abort independently of their parent transaction. They
are seldom used, however, precisely because they violate the isolation
of the parent transaction, making it hard to reason about consistency
invariants.

transactions that owe their name to the novel way in
which they straddle the ACID/BASE divide.

When it comes to the granularity of atomicity, as we
will see in more detail below, a BASE transaction pro-
vides the same flexibility of a traditional nested transac-
tion: it can limit the effects of a failure within a single
alkaline subtransaction, while at the same time it can en-
sure that the set of actions performed by all the alkaline
subtransactions it includes is executed atomically. Where
a BASE transaction fundamentally differs from a tradi-
tional nested transaction is in offering Salt Isolation, a
new isolation property that, by supporting multiple gran-
ularities of isolation, makes it possible to control which
internal states of a BASE transaction are externally ac-
cessible, and by whom. Despite this unprecedented flexi-
bility, Salt guarantees that, when BASE and ACID trans-
actions execute concurrently, ACID transactions retain,
with respect to all other transactions (whether BASE, al-
kaline, or ACID), the same isolation guarantees they used
to enjoy in a purely ACID environment. The topic of how
Salt isolation supports ACID transactions across all lev-
els of isolation defined in the ANSI/ISO SQL standard is
actually interesting enough that we will devote the entire
next section to it. To prevent generality from obfuscating
intuition, however, the discussion in the rest of this sec-
tion assumes ACID transactions that provide the popular
read-committed isolation level.

Independent of the isolation provided by ACID trans-
actions, a BASE transaction’s basic unit of isolation are
the alkaline subtransactions it contains. Alkaline sub-
transactions retain the properties of ACID transactions:
in particular, when it comes to isolation, no transaction
(whether ACID, BASE or alkaline) can observe interme-
diate states produced by an uncommitted alkaline sub-
transaction. When it comes to observing the state pro-
duced by a committed alkaline subtransaction, however,
the guarantees differ depending on the potential observer.
• The committed state of an alkaline subtransaction is

observable by other BASE or alkaline subtransac-
tions. By leveraging this finer granularity of isolation,
BASE transactions can achieve levels of performance
and availability that elude ACID transactions. At the
same time, because alkaline subtransactions are iso-
lated from each other, this design limits the new inter-
leavings that programmers need to worry about when
reasoning about the correctness of their programs: the
only internal states of BASE transactions that become
observable are those at the boundaries between its
nested alkaline subtransactions.

• The committed state of an alkaline subtransaction is
not observable by other ACID transactions until the
parent BASE transaction commits. The internal state
of a BASE transaction is then completely opaque to
ACID transactions: to them, a BASE transaction looks

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 499

1 // BASE transaction: transfer
2 begin BASE transaction
3 try
4 begin alkaline−subtransaction
5 Select bal into @bal from accnts where id = sndr
6 if (@bal >= amt)
7 Update accnts set bal −= amt where id = sndr
8 end alkaline−subtransaction
9 catch (Exception e) return // do nothing

10 if (@bal < amt) return // constraint violation
11 try
12 begin alkaline−subtransaction
13 Update accnts set bal += amt where id = rcvr
14 end alkaline−subtransaction
15 catch (Exception e) //rollback if rcvr not found or timeout occurs
16 begin alkaline−subtransaction
17 Update accnts set bal += amt where id = sndr
18 end alkaline−subtransaction
19 end BASE transaction

21 // ACID transaction: total−balance (unmodified)
22 begin transaction
23 Select sum(bal) from accnts
24 commit

Fig. 2: A Salt implementation of the simple banking application

just like an ordinary ACID transaction, leaving their
correctness unaffected.
To maximize performance, we expect that alkaline

subtransactions will typically be partition-local transac-
tions, but application developers are free, if necessary to
enforce critical consistency conditions, to create alkaline
subtransactions that touch multiple partitions and require
a distributed commit.

Figure 2 shows how the simple banking application
of Figure 1 might look when programmed in Salt. The
first thing to note is what has not changed from the sim-
ple ACID implementation of Figure 1(a): Salt does not
require any modification to the ACID total-balance
transaction; only the performance-critical transfer op-
eration is expressed as a new BASE transaction. While
the complexity reduction may appear small in this simple
example, our current experience with more realistic ap-
plications (such as Fusion Ticket, discussed in Section 8)
suggests that Salt can achieve significant performance
gains while leaving untouched most ACID transactions.
Figure 2 also shows another feature of alkaline subtrans-
actions: each is associated with an exception, which is
caught by an application-specific handler in case an er-
ror is detected. As we will discuss in more detail shortly,
Salt leverages the exceptions associated with alkaline
subtransactions to guarantee the atomicity of the BASE
transactions that enclose them.

There are two important events in the life of a BASE
transaction: accept and commit. In the spirit of the BASE
paradigm, BASE transactions, as in Lynx [44], are ac-
cepted as soon as their first alkaline subtransaction com-
mits. The atomicity property of BASE transactions en-
sures that, once accepted, a BASE transaction will even-
tually commit, i.e., all of its operations will have success-
fully executed (or bypassed because of some exception)
and their results will be persistently recorded.

To clarify further our vision for the abstraction that
BASE transactions provide, it helps to compare their
guarantees with those provided by ACID transactions
Atomicity Just like ACID transactions, BASE transac-
tions guarantee that either all the operations they contain
will occur, or none will. In particular, atomicity guaran-
tees that all accepted BASE transactions will eventually
commit. Unlike ACID transactions, BASE transactions
can be aborted only if they encounter an error (such as
a constraint violation or a node crash) before the trans-
action is accepted. Errors that occur after the transaction
has been accepted do not trigger an automatic rollback:
instead, they are handled using exceptions. The details
of our Salt’s implementation of atomicity are discussed
in Section 6.
Consistency Chasing higher performance by splitting
ACID transactions can increase exponentially the num-
ber of interleavings that must be considered when try-
ing to enforce integrity constraints. Salt drastically re-
duces this complexity in two ways. First, Salt does not
require all ACID transactions to be dismembered: non-
performance-critical ACID transactions can be left un-
changed. Second, Salt does not allow ACID transactions
to observe states inside BASE transactions, cutting down
significantly the number of possible interleavings.
Isolation Here, BASE and ACID transactions depart, as
BASE transactions provide the novel Salt Isolation prop-
erty, which we discuss in full detail in the next section.
Appealingly, Salt Isolation on the one hand allows BASE
transactions to respect the isolation property offered by
the ACID transactions they may execute concurrently
with, while on the other yields the opportunity for signifi-
cant performance improvements. In particular, under Salt
Isolation a BASE transaction BT appears to an ACID
transaction just like another ACID transaction, but other
BASE transactions can observe the internal states that ex-
ist at the boundaries between adjacent alkaline subtrans-
actions in BT .
Durability BASE transactions provide the same durabil-
ity property of ACID transactions and of many existing
NoSQL systems: Accepted BASE transactions are guar-
anteed to be durable. Hence, developers need not worry
about losing the state of accepted BASE transactions.

5 Salt isolation

Intuitively, our goal for Salt isolation is to allow BASE
transactions to achieve high degrees of concurrency,
while ensuring that ACID transactions enjoy well-
defined isolation guarantees. Before taking on this chal-
lenge in earnest, however, we had to take two important
preliminary steps.

The first, and the easiest, was to pick the concur-
rency control mechanism on which to implement Salt

5

500 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Isolation level L S
read-uncommitted W W

read-committed W R,W
repeatable-read R,W R,W

serializable R,RR,W R,RR,W

Table 1: Conflicting type sets L and S for each
of the four ANSI isolation levels. R = Read,
RR = Range Read, W = Write.

ACID-R ACID-W alka-R alka-W saline-R saline-W
ACID-R � � � � � �

ACID-W � � � � � �

alka-R � � � � � �

alka-W � � � � � �

saline-R � � � � � �

saline-W � � � � � �

Table 2: Conflict table for ACID, alkaline, and saline locks.

isolation. Our current design focuses on lock-based im-
plementations rather than, say, optimistic concurrency
control, because locks are typically used in applications
that experience high contention and can therefore more
readily benefit from Salt; also, for simplicity, we do
not currently support multiversion concurrency control
and hence snapshot isolation. However, there is nothing
about Salt isolation that fundamentally prevents us from
applying it to other mechanisms beyond locks.

The second step proved much harder. We had to
crisply characterize what are exactly the isolation guar-
antees that we want our ACID transactions to provide.
This may seem straightforward, given that the ANSI/ISO
SQL standard already defines the relevant four isolation
levels for lock-based concurrency: read-uncommitted,
read-committed, repeatable read, and serializable. Each
level offers stronger isolation than the previous one, pre-
venting an increasingly larger prefix of the following se-
quence of undesirable phenomena: dirty write, dirty read,
non-repeatable read, and phantom [18].

Where the challenge lies, however, is in preventing
this diversity from forcing us to define four distinct no-
tions of Salt isolation, one for each of the four ACID
isolation levels. Ideally, we would like to arrive at a sin-
gle, concise characterization of isolation in ACID sys-
tems that somehow captures all four levels, which we can
then use to specify the guarantees of Salt isolation.

The key observation that ultimately allowed us to do
so is that all four isolation levels can be reduced to a sim-
ple requirement: if two operations in different transac-
tions2 conflict, then the temporal dependency that exists
between the earlier and the later of these operations must
extend to the entire transaction to which the earlier op-
eration belongs. Formally:

Isolation. Let Q be the set of operation types {read,
range-read, write} and let L and S be subsets of Q . Fur-
ther, let o1 in txn1 and o2 in txn2, be two operations, re-
spectively of type T1 ∈L and T2 ∈ S , that access the same
object in a conflicting (i.e. non read-read) manner. If o1
completes before o2 starts, then txn1 must decide before
o2 starts.

With this single and concise formulation, each of the

2Here the term transactions refers to both ACID and BASE trans-
actions, as well as alkaline subtransactions.

ACID isolation levels can be expressed by simply instan-
tiating appropriately L and S . For example, L = {write}
and S = {read,write} yields read-committed isolation.
Table 1 shows the conflicting sets of operation types for
all four ANSI isolation levels. For a given L and S ,
we will henceforth say that two transactions are isolated
from each other when Isolation holds between them.

Having expressed the isolation guarantees of ACID
transactions, we are ready to tackle the core technical
challenge ahead of us: defining an isolation property for
BASE transactions that allows them to harmoniously co-
exist with ACID transactions. At the outset, their mu-
tual affinity may appear dubious: to deliver higher per-
formance, BASE transactions need to expose intermedi-
ate uncommitted states to other transactions, potentially
harming Isolation. Indeed, the key to Salt isolation lies
in controlling which, among BASE, ACID, and alkaline
subtransactions, should be exposed to what.

5.1 The many grains of Salt isolation
Our formulation of Salt isolation leverages the concise-
ness of the Isolation property to express its guarantees in
a way that applies to all four levels of ACID isolation.

Salt Isolation. The Isolation property holds as long as
(a) at least one of txn1 and txn2 is an ACID transaction
or (b) both txn1 and txn2 are alkaline subtransactions.

Informally, Salt isolation enforces the following con-
straint gradation:
• ACID transactions are isolated from all other transac-

tions.

• Alkaline subtransactions are isolated from other ACID
and alkaline subtransactions.

• BASE transactions expose their intermediate states
(i.e. states produced at the boundaries of their alkaline
subtransactions) to every other BASE transaction.
Hence, despite its succinctness, Salt isolation must

handle quite a diverse set of requirements. To accomplish
this, it uses a single mechanism—locks—but equips each
type of transaction with its own type of lock: ACID and
alkaline locks, which share the name of their respective
transactions, and saline locks, which are used by BASE
transactions.
ACID locks work as in traditional ACID systems. There
are ACID locks for both read and write operations; reads

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 501

(a) BASE waits until ACID commits. (b) BASE2 waits only for alkaline1. . . (c) . . . but ACID must wait all of BASE out.

Fig. 3: Examples of concurrent executions of ACID and BASE transactions in Salt.

conflict with writes, while writes conflict with both reads
and writes (see the dark-shaded area of Table 2). The du-
ration for which an ACID lock is held depends on the op-
eration type and the chosen isolation level. Operations in
L require long-term locks, which are acquired at the start
of the operation and are maintained until the end of the
transaction. Operations in S \L require short-term locks,
which are only held for the duration of the operation.
Alkaline locks keep alkaline subtransactions isolated
from other ACID and alkaline subtransactions. As a re-
sult, as Table 2 (light-and-dark shaded subtable) shows,
only read-read accesses are considered non-conflicting
for any combination of ACID and alkaline locks. Similar
to ACID locks, alkaline locks can be either long-term or
short-term, depending on the operation type; long-term
alkaline locks, however, are only held until the end of
the current alkaline subtransaction, and not for the entire
duration of the parent BASE transaction: their purpose
is solely to isolate the alkaline subtransaction containing
the operation that acquired the lock.
Saline locks owe their name to their delicate charge: iso-
lating ACID transactions from BASE transactions, while
at the same time allowing for increased concurrency by
exposing intermediate states of BASE transactions to
other BASE transactions. To that end, (see Table 2) saline
locks conflict with ACID locks for non read-read ac-
cesses, but never conflict with either alkaline or saline
locks. Once again, there are long-term and short-term
saline locks: short-term saline locks are released after the
operation completes, while long-term locks are held un-
til the end of the current BASE transaction. In practice,
since alkaline locks supersede saline locks, we acquire
only an alkaline lock at the start of the operation and,
if the lock is longterm, “downgrade” it at the end of the
alkaline subtransaction to a saline lock, to be held until
after the end of the BASE transaction.

Figure 3 shows three simple examples that illus-
trate how ACID and BASE transactions interact. In Fig-
ure 3(a), an ACID transaction holds an ACID lock on
x, which causes the BASE transaction to wait until the
ACID transaction has committed, before it can acquire
the lock on x. In Figure 3(b), instead, transaction BASE2
need only wait until the end of alkaline1, before acquir-
ing the lock on x. Finally, Figure 3(c) illustrates the use
of saline locks. When alkaline1 commits, it downgrades

its lock on x to a saline lock that is kept until the end of
the parent BASE transaction, ensuring that the ACID and
BASE transactions remain isolated.

Indirect dirty reads In an ACID system the Isolation
property holds among any two transactions, making it
quite natural to consider only direct interactions between
pairs of transactions when defining the undesirable phe-
nomena prevented by the four ANSI isolation levels. In
a system that uses Salt isolation, however, the Isolation
property covers only some pairs of transactions: pairs of
BASE transactions are exempt. Losing Isolation’s uni-
versal coverage has the insidious effect of introducing
indirect instances of those undesirable phenomena.

The example in Figure 4 illustrates what can go wrong
if Salt Isolation is enforced naively. For concreteness, as-
sume that ACID transactions require a read-committed
isolation level. Since Isolation is not enforced between
BASE1 and BASE2, w(y) may reflect the value of x that
was written by BASE1. Although Isolation is enforced
between ACID1 and BASE2, ACID1 ends up reading x’s
uncommitted value, which violates that transaction’s iso-
lation guarantees.

The culprit for such violations is easy to find: dirty
reads can indirectly relate two transactions (BASE1 and
ACID1 in Figure 4) without generating a direct conflict
between them. Fortunately, none of the other three phe-
nomena that ACID isolation levels try to avoid can do
the same: for such phenomena to create an indirect rela-
tion between two transactions, the transactions at the two
ends of the chain must be in direct conflict.

Our task is then simple: we must prevent indirect dirty
reads.3 Salt avoids them by restricting the order in which
saline locks are released, in the following two ways:

Read-after-write across transactions A BASE trans-
action Br that reads a value x, which has been writ-
ten by another BASE transaction Bw, cannot release
its saline lock on x until Bw has released its own
saline lock on x.

Write-after-read within a transaction An operation
ow that writes a value x cannot release its saline

3Of course, indirect dirty reads are allowed if ACID transactions re-
quire the read-uncommitted isolation level, which does not try to pre-
vent dirty-reads.

7

502 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Fig. 4: ACID1 indirectly reads the uncommitted value of x. Fig. 5: How Salt prevents indirect dirty reads.

lock on x until all previous read operations within
the same BASE transaction have released their
saline locks on their respective objects.4

The combination of these two restrictions ensures
that, as long as a write remains uncommitted (i.e. its
saline lock has not been released) subsequent read opera-
tions that observe that written value and subsequent write
operations that are affected by that written value will not
release their own saline locks. This, in turn, guarantees
that an ACID transaction cannot observe an uncommitted
write, since saline locks are designed to be mutually ex-
clusive with ACID locks. Figure 5 illustrates how enforc-
ing these two rules prevents the indirect dirty read of Fig-
ure 4. Observe that transaction BASE2 cannot release its
saline lock on x until BASE1 commits (read-after-write
across transactions) and BASE2 cannot release its saline
lock on y before releasing its saline lock on x (write-after-
read within a transaction).

We can now prove [43] the following Theorem for any
system composed of ACID and BASE transactions that
enforces Salt Isolation.

Theorem 1. [Correctness] Given isolation level A , all
ACID transactions are protected (both directly and,
where applicable, indirectly) from all the undesirable
phenomena prevented by A .

Clarifying serializability The strongest ANSI lock-
based isolation level, locking-serializable [18], not only
prevents the four undesirable phenomena we mentioned
earlier, but, in ACID-only systems, also implies the fa-
miliar definition of serializability, which requires the out-
come of a serializable transaction schedule to be equal to
the outcome of a serial execution of those transactions.

This implication, however, holds only if all transac-
tions are isolated from all other transactions [18]; this is
not desirable in a Salt database, since it would require
isolating BASE transactions from each other, impeding
Salt’s performance goals.

Nonetheless, a Salt database remains true to the
essence of the locking-serializable isolation level: it con-

4A write can indirectly depend on any previous read within the same
transaction, through the use of transaction-local variables.

tinues to protect its ACID transactions from all four un-
desirable phenomena, with respect to both BASE trans-
actions and other ACID transactions. In other words,
even though the presence of BASE transactions prevents
the familiar notion of serializability to “emerge” from
universal pairwise locking-serializability, ACID transac-
tions enjoy in Salt the same kind of “perfect isolation”
they enjoy in a traditional ACID system.

6 Implementation

We implemented a Salt prototype by modifying MySQL
Cluster [9], a popular distributed database, to support
BASE transactions and enforce Salt Isolation. MySQL
Cluster follows a standard approach among distributed
databases: the database is split into a number of parti-
tions and each partition uses a master-slave protocol to
maintain consistency among its replicas, which are or-
ganized in a chain. To provide fairness, MySQL Cluster
places operations that try to acquire locks on objects in a
per-object queue in lock-acquisition order; Salt leverages
this mechanism to further ensure that BASE transactions
cannot cause ACID transactions to starve.

We modified the locking module of MySQL Cluster
to add support for alkaline and saline locks. These modi-
fications include support for (a) managing lock conflicts
(see Table 2), (b) controlling when each type of lock
should be acquired and released, as well as (c) a queu-
ing mechanism that enforces the order in which saline
locks are released, to avoid indirect dirty reads. Our cur-
rent prototype uses the read-committed isolation level, as
it is the only isolation level supported by MySQL Clus-
ter. The rest of this section discusses the implementation
choices we made with regard to availability, durability
and consistency, as well as an important optimization we
implemented in our prototype.

6.1 Early commit for availability

To reduce latency and improve availability, Salt supports
early commit [44] for BASE transactions: a client that
issues a BASE transaction is notified that the transac-
tion has committed when its first alkaline subtransaction
commits. To ensure both atomicity and durability despite

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 503

failures, Salt logs the logic for the entire BASE transac-
tion before its first transaction commits. If a failure oc-
curs before the BASE transaction has finished executing,
the system uses the log to ensure that the entire BASE
transaction will be executed eventually.

6.2 Failure recovery

Logging the transaction logic before the first alkaline
subtransaction commits has the additional benefit of
avoiding the need for managing cascading rollbacks of
other committed transactions in the case of failures.
Since the committed state of an alkaline subtransac-
tion is exposed to other BASE transactions, rolling back
an uncommitted BASE transaction would also require
rolling back any BASE transaction that may have ob-
served rolled back state. Instead, early logging allows
Salt to roll uncommitted transactions forward.

The recovery protocol has two phases: redo and roll
forward. In the first phase, Salt replays its redo log,
which is populated, as in ACID systems, by logging
asynchronously to disk every operation after it com-
pletes. Salt’s redo log differs from an ACID redo log in
two ways. First, Salt logs both read and write operations,
so that transactions with write operations that depend on
previous reads can be rolled forward. Second, Salt re-
plays also operations that belong to partially executed
BASE transactions, unlike ACID systems that only re-
play operations of committed transactions. During this
phase, Salt maintains a context hash table with all the re-
played operations and returned values (if any), to ensure
that they are not re-executed during the second phase.

During the second phase of recovery, Salt rolls for-
ward any partially executed BASE transactions. Using
the logged transaction logic, Salt regenerates the trans-
action’s query plan and reissues the corresponding op-
erations. Of course, some of those operations may have
already been performed during the first phase: the con-
text hash table allows Salt to avoid re-executing any of
these operations and nonetheless have access to the re-
turn values of any read operation among them.

6.3 Transitive dependencies

As we discussed in Section 5.1, Salt needs to moni-
tor transitive dependencies that can cause indirect dirty
reads. To minimize bookkeeping, our prototype does not
explicitly track such dependencies. Instead it only tracks
direct dependencies among transactions and uses this in-
formation to infer the order in which locks should be re-
leased.

As we mentioned earlier, MySQL Cluster maintains
a per-object queue of the operations that try to acquire
locks on an object. Salt adds for each saline lock a pointer
to the most recent non-ACID lock on the queue. Before
releasing a saline lock, Salt simply checks whether the

1 begin BASE transaction
2 Check whether all items exist. Exit otherwise.
3 Select w tax into @w tax from warehouse where w id = : w id;
4 begin alkaline−subtransaction
5 Select d tax into @d tax, next order id into @o id from

district where w id = : w id and d id = : d id;
6 Update district set next order id = o id + 1 where w id =

: w id AND d id = : d id;
7 end alkaline−subtransaction
8 Select discount into @discount, last name into @name, credit

into @credit where w id = : w id and d id = : d id and
c id = : c id

9 Insert into orders values (: w id, : d id, @o id, ...);
10 Insert into new orders values (: w id, : d id, o id);
11 For each ordered item, insert an order line, update stock level, and

calculate order total
12 end BASE transaction

Fig. 6: A Salt implementation of the new-order transaction in
TPC-C. The lines introduced in Salt are shaded.

pointer points to a held lock—an O(1) operation.

6.4 Local transactions

Converting an ACID transaction into a BASE transaction
can have significant impact on performance, beyond the
increased concurrency achieved by enforcing isolation at
a finer granularity. In practice, we find that although most
of the performance gains in Salt come from fine-grain
isolation, a significant fraction is due to a practical reason
that compounds those gains: alkaline subtransactions in
Salt tend to be small, often containing a single operation.

Salt’s local-transaction optimization, inspired by sim-
ilar optimizations used in BASE storage systems, lever-
ages this observation to significantly decrease the du-
ration that locks are being held in Salt. When an al-
kaline subtransaction consists of a single operation,
each partition replica can locally decide to commit
the transaction—and release the corresponding locks—
immediately after the operation completes. While in
principle a similar optimization could be applied also
to single-operation ACID transactions, in practice ACID
transactions typically consist of many operations that af-
fect multiple database partitions. Reaching a decision,
which is a precondition for lock release, typically takes
much longer in such transactions: locks must be kept
while each transaction operation is propagated along
the entire chain of replicas of each of the partitions
touched by the transaction and during the ensuing two-
phase commit protocol among the partitions. The sav-
ings from this optimization can be substantial: single-
operation transactions release their locks about one-to-
two orders of magnitude faster than non-optimized trans-
actions.5 Interestingly, these benefits can extend beyond
single operation transactions—it is easy to extend the
local-transaction optimization to cover also transactions
where all operations touch the same object.

5This optimization applies only to ACID and alkaline locks. To
enforce isolation between ACID and BASE transactions, saline locks
must still be kept until the end of the BASE transaction.

9

504 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000 12000

La
te

nc
y

(m
s)

Throughput (transactions/sec)

TPC-C

ACID Salt

Fig. 7: Performance of ACID and Salt for TPC-C.

7 Case Study: BASE-ifying new-order

We started this project to create a distributed database
where performance and ease of programming could go
hand-in-hand. How close does Salt come to that vision?
We will address this question quantitatively in the next
section, but some qualitative insight can be gained by
looking at an actual example of Salt programming.

Figure 6 shows, in pseudocode, the BASE-ified ver-
sion of new-order, one of the most heavily run transac-
tions in the TPC-C benchmark (more about TPC-C in the
next section). We chose new-order because, although its
logic is simple, it includes all the features that give Salt
its edge.

The first thing to note is that BASE-ifying this trans-
action in Salt required only minimal code modifications
(the highlighted lines 2, 4, and 7). The reason, of course,
is Salt isolation: the intermediate states of new-order
are isolated from all ACID transactions, freeing the pro-
grammer from having to reason about all possible inter-
leavings. For example, TPC-C also contains the deliver
transaction, which assumes the following invariant: if an
order is placed (lines 9-10), then all order lines must be
appropriately filled (line 11). Salt does not require any
change to deliver, relying on Salt isolation to ensure that
deliver will never see an intermediate state of new-order
in which lines 9-10 are executed but line 11 is not.

At the same time, using a finer granularity of isola-
tion between BASE transactions greatly increases con-
currency. Consider lines 5-6, for example. They need to
be isolated from other instances of new-order to guar-
antee that order ids are unique, but this need for isola-
tion does not extend to the following operations of the
transaction. In an ACID system, however, there can be
no such distinction; once the operations in lines 5-6 ac-
quire a lock, they cannot release it until the end of the
transaction, preventing lines 8-11 from benefiting from
concurrent execution.

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000

La
te

nc
y

(m
s)

Throughput (transactions/sec)

Fusion Ticket

ACID Salt

Fig. 8: Performance of ACID and Salt for Fusion Ticket.

8 Evaluation

To gain a quantitative understanding of the benefits of
Salt with respect to both ease of programming and per-
formance, we applied the ideas of Salt to two applica-
tions: the TPC-C benchmark [23] and Fusion Ticket [6].
TPC-C is a popular database benchmark that models on-
line transaction processing. It consists of five types of
transactions: new-order and payment (each responsible
for 43.5% of the total number of transactions in TPC-C),
as well as stock-level, order-status, and delivery (each
accounting for 4.35% of the total).
Fusion Ticket is an open source ticketing solution used
by more than 80 companies and organizations [3]. It is
written in PHP and uses MySQL as its backend database.

Unlike TPC-C, which focuses mostly on performance
and includes only a representative set of transactions,
a real application like Fusion Ticket includes several
transactions—from frequently used ones such as create-
order and payment, to infrequent administrative trans-
actions such as publishing and deleting-event—that are
critical for providing the required functionality of a fully
fledged online ticketing application and, therefore, offers
a more accurate view of the programming effort required
to BASE-ify entire applications in practice.

Our evaluation tries to answer three questions:
• What is the performance gain of Salt compared to the

traditional ACID approach?

• How much programming effort is required to achieve
performance comparable to that of a pure BASE im-
plementation?

• How is Salt’s performance affected by various work-
load characteristics, such as contention ratio?

We use TPC-C and Fusion Ticket to address the first two
questions. To address the third one, we run a microbench-
mark and tune the appropriate workload parameters.

Experimental setup In our experiments, we configure
Fusion Ticket with a single event, two categories of tick-

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 505

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

0 (ACID) 1 2 3 4 5Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Number of BASE-ified Transactions

TPC-C

Fig. 9: Incremental BASE-ification of TPC-C.

ets, and 10,000 seats in each category. Our experiments
emulate a number of clients that book tickets through the
Fusion Ticket application. Our workload consists of the
11 transactions that implement the business logic nec-
essary to book a ticket, including a single administra-
tive transaction, delete-order. We do not execute addi-
tional administrative transactions, because they are many
orders of magnitude less frequent than customer trans-
actions and have no significant effect on performance.
Note, however, that executing more administrative trans-
actions would have incurred no additional programming
effort, since Salt allows unmodified ACID transactions to
safely execute side-by-side the few performance-critical
transactions that need to be BASE-ified. In contrast, in
a pure BASE system, one would have to BASE-ify all
transactions, administrative ones included: the additional
performance benefits would be minimal, but the pro-
gramming effort required to guarantee correctness would
grow exponentially.

In our TPC-C and Fusion Ticket experiments, data is
split across ten partitions and each partition is three-way
replicated. Due to resource limitations, our microbench-
mark experiments use only two partitions. In addition
to the server-side machines, our experiments include
enough clients to saturate the system.

All of our experiments are carried out in an Emulab
cluster [16, 42] with 62 Dell PowerEdge R710 machines.
Each machine is equipped with a 64-bit quad-core Xeon
E5530 processor, 12GB of memory, two 7200 RPM local
disks, and a Gigabit Ethernet port.

8.1 Performance of Salt

Our first set of experiments aims at comparing the perfor-
mance gain of Salt to that of a traditional ACID imple-
mentation to test our hypothesis that BASE-ifying only a
few transactions can yield significant performance gains.

Our methodology for identifying which transactions
should be BASE-ified is based on a simple observation:
since Salt targets performance bottlenecks caused by
contention, transactions that are good targets for BASE-
ification are large and highly-contented. To identify suit-

 0

 2000

 4000

 6000

 8000

 10000

0 (ACID) 1 2 3 RAW OPSTh
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Number of BASE-ified Transactions

Fusion Ticket

Fig. 10: Incremental BASE-ification of Fusion Ticket.

able candidates, we simply increase the system load and
observe which transactions experience a disproportion-
ate increase in latency.

Following this methodology, for the TPC-C bench-
mark we BASE-ified two transactions: new-order and
payment. As shown in Figure 7, the ACID implemen-
tation of TPC-C achieves a peak throughput of 1464
transactions/sec. By BASE-ifying these two transactions,
our Salt implementation achieves a throughput of 9721
transactions/sec—6.6x higher than the ACID throughput.

For the Fusion Ticket benchmark, we only BASE-ify
one transaction, create-order. This transaction is the key
to the performance of Fusion Ticket, because distinct in-
stances of create-order heavily contend with each other.
As Figure 8 shows, the ACID implementation of Fu-
sion Ticket achieves a throughput of 1088 transaction-
s/sec, while Salt achieves a throughput of 7090 transac-
tions/sec, 6.5x higher than the ACID throughput. By just
BASE-ifying create-order, Salt can significantly reduce
how long locks are held, greatly increasing concurrency.

In both the TPC-C and Fusion Ticket experiments
Salt’s latency under low load is higher than that of ACID.
The reason for this disparity lies in how requests are
made durable. The original MySQL Cluster implemen-
tation returns to the client before the request is logged
to disk, providing no durability guarantees. Salt, instead,
requires that all BASE transactions be durable before re-
turning to the client, increasing latency. This increase is
exacerbated by the fact that we are using MySQL Clus-
ter’s logging mechanism, which—having been designed
for asynchronous logging—is not optimized for low la-
tency. Of course, this phenomenon only manifests when
the system is under low load; as the load increases, Salt’s
performance benefits quickly materialize: Salt outper-
forms ACID despite providing durability guarantees.

8.2 Programming effort vs Throughput

While Salt’s performance over ACID is encouraging, it
is only one piece of the puzzle. We would like to further
understand how much programming effort is required to
achieve performance comparable to that of a pure BASE

11

506 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 100

 1000

 10000

 100000

0 0.0001 0.001 0.01 0.1

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Contention Ratio (1/#Rows)

Salt

Salt w/o optimization

ACID

Fig. 11: Effect of contention ratio on throughput.

implementation—i.e. where all transactions are BASE-
ified. To that end, we BASE-ified as many transactions as
possible in both the TPC-C and Fusion Ticket codebases,
and we measured the performance they achieve as we
increase the number of BASE-ified transactions.

Figure 9 shows the result of incrementally BASE-
ifying TPC-C. Even with only two BASE-ified transac-
tions, Salt achieves 80% of the maximum throughput of
a pure BASE implementation; BASE-ifying three trans-
actions actually reaches that throughput. In other words,
there is no reason to BASE-ify the remaining two trans-
actions. In practice, this simplifies a developer’s task sig-
nificantly, since the number of state interleavings to be
considered increases exponentially with each additional
transactions that need to be BASE-ified. Further, real ap-
plications are likely to have proportionally fewer perfor-
mance-critical transactions than TPC-C, which, being a
performance benchmark, is by design packed with them.

To put this expectation to the test, we further ex-
perimented with incrementally BASE-ifying the Fu-
sion Ticket application. Figure 10 shows the results
of those experiments. BASE-fying one transaction was
quite manageable: it took about 15 man-hours—without
prior familiarity with the code—and required changing
55 lines of code, out of a total of 180,000. BASE-ifying
this first transaction yields a benefit of 6.5x over ACID,
while BASE-ifying the next one or two transactions with
the highest contention does not produce any additional
performance benefit.

What if we BASE-ify more transactions? This is
where the aforementioned exponential increase in state
interleavings caught up with us: BASE-ifying a fourth or
fifth transaction appeared already quite hard, and seven
more transactions were waiting behind them in the Fu-
sion Ticket codebase! To avoid this complexity and still
test our hypothesis, we adopted a different approach: we
broke down all 11 transactions into raw operations. The
resulting system does not provide, of course, any correct-
ness guarantees, but at least, by enabling the maximum
degree of concurrency, it lets us measure the maximum
throughput achievable by Fusion Ticket. The result of

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Operations after contention

Salt

Salt w/o optimization

ACID

Fig. 12: Effect of contention position on throughput.

 1000

 10000

 100000

 0 20 40 60 80 100
Th

ro
ug

hp
ut

 (t
ra

ns
ac

tio
ns

/s
ec

)
Write Ratio (%)

Salt

ACID

Salt w/o optimization

Fig. 13: Effect of read-write ratio on throughput.

this experiment is labeled RAW OPS in Figure 10. We
find it promising that, even by BASE-ifying only one
transaction, Salt is within 10% of the upper bound of
what is achievable with a BASE approach.

8.3 Contention

To help us understand how contention affects the perfor-
mance of Salt, we designed three microbenchmarks to
compare Salt, with and without the local-transaction op-
timization, to an ACID implementation.

In the first microbenchmark, each transaction up-
dates five rows, randomly chosen from a collection of
N rows. By tuning N, we can control the amount of
contention in our workload. Our Salt implementation
uses BASE transactions that consist of five alkaline
subtransactions—one for each update.

Figure 11 shows the result of this experiment. When
there is no contention, the throughput of Salt is some-
what lower than that of ACID, because of the additional
bookkeeping overhead of Salt (e.g., logging the logic of
the entire BASE transaction). As expected, however, the
throughput of ACID transactions quickly decreases as
the contention ratio increases, since contending transac-
tions cannot execute in parallel. The non-optimized ver-
sion of Salt suffers from this degradation, too, albeit to a
lesser degree; its throughput is up to an order of magni-
tude higher than that of ACID when the contention ratio
is high. The reason for this increase is that BASE transac-
tions contend on alkaline locks, which are only held for
the duration of the current alkaline subtransactions and

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 507

are thus released faster than ACID locks. The optimized
version of Salt achieves further performance improve-
ment by releasing locks immediately after the operation
completes, without having to wait for the operation to
propagate to all replicas or wait for a distributed commit
protocol to complete. This leads to a significant reduc-
tion in contention; so much so, that the contention ratio
appears to have negligible impact on the performance of
Salt.

The goal of the second microbenchmark is to help
us understand the effect of the relative position of con-
tending operations within a transaction on the system
throughput. This factor can impact performance signif-
icantly, as it affects how long the corresponding locks
must be held. In this experiment, each transaction up-
dates ten rows, but only one of those updates contends
with other transactions by writing to one row, randomly
chosen from a collection of ten shared rows. We tune the
number of operations that follow the contending opera-
tion within the transaction, and measure the effect on the
system throughput.

As Figure 12 shows, ACID throughput steadily de-
creases as the operations that follow the contending op-
eration increase, because ACID holds an exclusive lock
until the transaction ends. The throughput of Salt, how-
ever, is not affected by the position of contending op-
erations because BASE transactions hold the exclusive
locks—alkaline locks—only until the end of the current
alkaline subtransaction. Once again, the local-transaction
optimization further reduces the contention time for Salt
by releasing locks as soon as the operation completes.

The third microbenchmark helps us understand the
performance of Salt under various read-write ratios.
The read-write ratio affects the system throughput in
two ways: (i) increasing writes creates more contention
among transactions; and (ii) increasing reads increases
the overhead introduced by Salt over traditional ACID
systems, since Salt must log read operations, as discussed
in Section 6. In this experiment each transaction either
reads five rows or writes five rows, randomly chosen
from a collection of 100 rows. We tune the percentage
of read-only transactions and measure the effect on the
system throughput.

As Figure 13 shows, the throughput of ACID de-
creases quickly as the fraction of writes increases. This
is expected: write-heavy workloads incur a lot of con-
tention, and when transactions hold exclusive locks for
long periods of time, concurrency is drastically reduced.
The performance of Salt, instead, is only mildly affected
by such contention, as its exclusive locks are held for
much shorter intervals. It is worth noting that, despite
Salt’s overhead of logging read operations, Salt outper-
forms ACID even when 95% of the transactions are read-
only transactions.

In summary, our evaluation suggests that, by holding
locks for shorter times, Salt can reduce contention and
offer significant performance improvements over a tradi-
tional ACID approach, without compromising the isola-
tion guarantees of ACID transactions.

9 Related Work

ACID Traditional databases rely on ACID’s strong
guarantees to greatly simplify the development of appli-
cations [7–9, 12–14, 22, 36]. As we noted, however, these
guarantees come with severe performance limitations,
because of both the coarse granularity of lock acquisi-
tions and the need for performing a two-phase commit
(2PC) protocol at commit time.

Several approaches have been proposed to improve
the performance of distributed ACID transactions by
eliminating 2PC whenever possible. H-Store [39], Gra-
nola [24], and F1 [38] make the observation that 2PC
can be avoided for transactions with certain proper-
ties (e.g. partition-local transactions). Sagas [29] and
Lynx [44] remark that certain large transactions can be
broken down into smaller ones without affecting appli-
cation semantics. Lynx uses static analysis to identify
eligible transactions automatically. Our experience with
TPC-C and Fusion Ticket, however, suggests that perfor-
mance critical transactions are typically complex, mak-
ing them unlikely to be eligible for such optimizations.
Calvin [40] avoids using 2PC by predefining the order in
which transactions should execute at each partition. To
determine this order, however, one must be able to pre-
dict which partitions a transaction will access before the
transaction is executed, which is very difficult for com-
plex transactions. Additionally, using a predefined order
prevents the entire system from making progress when
any partition becomes unavailable.

BASE To achieve higher performance and availabil-
ity, many recent systems have adopted the BASE ap-
proach [1, 15, 20, 21, 27, 34]. These systems offer a lim-
ited form of transactions that only access a single item.

To mitigate somewhat the complexity of program-
ming in BASE, several solutions have been proposed
to provide stronger semantics. ElasTraS [25], Megas-
tore [17], G-Store [26], and Microsoft’s Cloud SQL
Server [19] provide ACID guarantees within a single par-
tition or key group. G-Store and ElasTraS further allow
dynamic modification of such key groups. These sys-
tems, however, offer no atomicity or isolation guarantees
across partitions. Megastore further provides the option
of using ACID transactions, but in an all-or-nothing man-
ner: either all transactions are ACID or none of them are.

13

508 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

10 Conclusion

The ACID/BASE dualism has to date forced develop-
ers to choose between ease of programming and perfor-
mance. Salt shows that this choice is a false one. Using
the new abstraction of BASE transactions and a mech-
anism to properly isolate them from their ACID coun-
terparts, Salt enables for the first time a tenable middle
ground between the ACID and BASE paradigms; a mid-
dle ground where performance can be incrementally at-
tained by gradually increasing the programming effort
required. Our experience applying Salt to real applica-
tions matches the time-tested intuition of Pareto’s law: a
modest effort is usually enough to yield a significant per-
formance benefit, offering a drama-free path to growth
for companies whose business depends on transactional
applications.

Acknowledgements

Many thanks to our shepherd Willy Zwaenepoel and to
the anonymous reviewers for their insightful comments.
Lidong Zhou, Mike Dahlin, and Keith Marzullo provided
invaluable feedback on early drafts of this paper, which
would not have happened without the patience and sup-
port of the Utah Emulab team throughout our experimen-
tal evaluation. This material is based in part upon work
supported by a Google Faculty Research Award and by
the National Science Foundation under Grant Number
CNS-1409555. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References
[1] Apache HBase. http://hbase.apache.org/.
[2] AuctionMark. http://hstore.cs.brown.edu/projects/

auctionmark/.
[3] Current users of Fusion Ticket. http://www.fusionticket.

com/hosting/our-customers.
[4] Dolibarr. http://www.dolibarr.org/.
[5] E-venement. http://www.e-venement.org/.
[6] Fusion Ticket. http://www.fusionticket.org.
[7] MemSQL. http://www.memsql.com/.
[8] Microsoft SQL Server. http://www.microsoft.com/

sqlserver/.
[9] MySQL Cluster. http://www.mysql.com/products/

cluster/.
[10] Ofbiz. http://ofbiz.apache.org/.
[11] Openbravo. http://www.openbravo.com/.
[12] Oracle Database. http://www.oracle.com/database/.
[13] Postgres SQL. http://www.postgresql.org/.
[14] SAP Hana. http://www.saphana.com/.
[15] SimpleDB. http://aws.amazon.com/simpledb/.
[16] Utah Emulab. http://www.emulab.net/.
[17] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey

Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander
Lloyd, and Vadim Yushprakh. Megastore: Providing Scalable,
Highly Available Storage for Interactive Services. In Proceedings

of the Conference on Innovative Data system Research (CIDR),
pages 223–234, 2011.

[18] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A Critique of ANSI SQL Isolation
Levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’95, pages 1–10,
New York, NY, USA, 1995. ACM.

[19] Philip A Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay
Kalhan, Gopal Kakivaya, David B Lomet, Ramesh Manne, Lev
Novik, and Tomas Talius. Adapting Microsoft SQL Server for
Cloud Computing. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 1255–1263. IEEE, 2011.

[20] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: a distributed storage sys-
tem for structured data. In Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementation - Vol-
ume 7, OSDI ’06, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[21] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

[22] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey
Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,
Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. Span-
ner: Google’s Globally-distributed Database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley, CA, USA,
2012. USENIX Association.

[23] Transaction Processing Performance Council. TPC benchmark
C, Standard Specification Version 5.11, 2010.

[24] James Cowling and Barbara Liskov. Granola: Low-Overhead
Distributed Transaction Coordination. In Proceedings of the 2012
USENIX Annual Technical Conference, Boston, MA, USA, June
2012. USENIX.

[25] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS:
an elastic transactional data store in the cloud. In Proceedings
of the 2009 conference on Hot topics in cloud computing, Hot-
Cloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[26] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a
scalable data store for transactional multi key access in the cloud.
In Proceedings of the 1st ACM symposium on Cloud computing,
pages 163–174. ACM, 2010.

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: amazon’s highly available key-value store. In Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, SOSP ’07, pages 205–220, New York, NY, USA,
2007. ACM.

[28] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable network ser-
vices. In Proceedings of the sixteenth ACM symposium on Oper-
ating systems principles, SOSP ’97, pages 78–91, New York, NY,
USA, 1997. ACM.

[29] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, 1987.

[30] Seth Gilbert and Nancy Ann Lynch. Perspectives on the CAP
Theorem. Institute of Electrical and Electronics Engineers, 2012.

[31] James N Gray. Notes on data base operating systems. Springer,
1978.

[32] Pat Helland. Life beyond Distributed Transactions: an Apostate’s

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 509

Opinion. In Third Biennial Conference on Innovative Data Sys-
tems Research, pages 132–141, 2007.

[33] George Roy Hill and William Goldman. Butch Cassidy and the
Sundance Kid. Clip at https://www.youtube.com/watch?v=
1IbStIb9XXw, October 1969.

[34] Avinash Lakshman and Prashant Malik. Cassandra: a decentral-
ized structured storage system. ACM SIGOPS Operating Systems
Review, 44:35–40, April 2010.

[35] Michael McLure. Vilfredo Pareto, 1906 Manuale di Economia
Politica, Edizione Critica, Aldo Montesano, Alberto Zanni and
Luigino Bruni (eds). Journal of the History of Economic Thought,
30(01):137–140, 2008.

[36] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley
DB. In USENIX Annual Technical Conference, FREENIX Track,
pages 183–191, 1999.

[37] Dan Pritchett. BASE: An Acid Alternative. Queue, 6:48–55, May
2008.

[38] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric
Rollins, Bart Samwel, Radek Vingralek, Chad Whipkey, Xin
Chen, Beat Jegerlehner, Kyle Littleeld, and Phoenix Tong. F1
- The Fault-Tolerant Distributed RDBMS Supporting Google’s
Ad Business. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, pages 777–778.
ACM, 2012.

[39] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros
Harizopoulos, Nabil Hachem, and Pat Helland. The end of an ar-
chitectural era: (it’s time for a complete rewrite). In Proceedings
of the 33rd international conference on Very large data bases,
VLDB ’07, pages 1150–1160. VLDB Endowment, 2007.

[40] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun
Ren, Philip Shao, and Daniel J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[41] Gerhard Weikum and Gottfried Vossen. Transactional Informa-
tion Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2002.

[42] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhi-
jeet Joglekar. An Integrated Experimental Environment for Dis-
tributed Systems and Networks. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, pages
255–270, Boston, MA, December 2002. USENIX Association.

[43] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid
Yaghmazadeh, Lorenzo Alvisi, and Prince Mahajan. Salt: Com-
bining ACID and BASE in a Distributed Database (extended ver-
sion). Technical Report TR-14-10, Department of Computer Sci-
ence, The University of Texas at Austin, September 2014.

[44] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K
Aguilera, and Jinyang Li. Transaction chains: achieving serializ-
ability with low latency in geo-distributed storage systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, pages 276–291. ACM, 2013.

15

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 511

Phase Reconciliation for Contended In-Memory Transactions

Neha Narula, Cody Cutler, Eddie Kohler†, and Robert Morris

MIT CSAIL and †Harvard University

Abstract
Multicore main-memory database performance can col-
lapse when many transactions contend on the same data.
Contending transactions are executed serially—either by
locks or by optimistic concurrency control aborts—in
order to ensure that they have serializable effects. This
leaves many cores idle and performance poor. We intro-
duce a new concurrency control technique, phase recon-
ciliation, that solves this problem for many important
workloads. Doppel, our phase reconciliation database,
repeatedly cycles through joined, split, and reconcilia-
tion phases. Joined phases use traditional concurrency
control and allow any transaction to execute. When
workload contention causes unnecessary serial execu-
tion, Doppel switches to a split phase. There, updates
to contended items modify per-core state, and thus pro-
ceed in parallel on different cores. Not all transactions
can execute in a split phase; for example, all modifica-
tions to a contended item must commute. A reconcilia-
tion phase merges these per-core states into the global
store, producing a complete database ready for joined-
phase transactions. A key aspect of this design is deter-
mining which items to split, and which operations to al-
low on split items.

Phase reconciliation helps most when there are many
updates to a few popular database records. Its through-
put is up to 38× higher than conventional concurrency
control protocols on microbenchmarks, and up to 3× on
a larger application, at the cost of increased latency for
some transactions.

1 Introduction
The key to good multicore performance and scalability
is the elimination of serial execution. Cores should make
progress in parallel whenever possible; the implementa-
tion should not force cores to wait for one another.

But serial execution sometimes appears to be an in-
herent feature of a problem. Most databases, for exam-
ple, guarantee serializable results: the effect of executing
a set of transactions in parallel should equal the effect
of the same transactions executed in some serial order.
This requires care when concurrent transactions conflict,
which happens when one of them writes a record that
the other either reads or writes. Database concurrency
control protocols—mostly variants of two-phase lock-

ing (2PL) or optimistic concurrency control (OCC)—
enforce serializability on conflicting transactions by ex-
ecuting them serially: one transaction will wait for the
other, either by spinning on a lock (2PL) or by aborting
and retrying (OCC).

Unfortunately, conflicts are common in some impor-
tant real-world database workloads. For instance, con-
sider an auction web site with skewed item popularity.
As a popular item’s auction time approaches, and users
strive to win the auction, a large fraction of concurrent
transactions might update the item’s current highest bid.
Modern multicore databases will execute these transac-
tions serially, causing huge reductions in throughput.

We present phase reconciliation, a new concurrency
control technique that can execute some highly conflict-
ing workloads efficiently in parallel, while still guar-
anteeing serializability; and Doppel, a new in-memory
database based on phase reconciliation.

Our basic technique is to split logical values across
cores. We were inspired by efficient multicore counter
designs, such as for packet counters, which partition a
logical value into n counters, one per core. To increment
the logical counter, a core updates its per-core value; to
read it, a core reconciles these per-core values into one
correct value by adding them together. This design is less
contentious than a single global counter as long as writes
greatly outnumber reads. But simple value splitting is too
restrictive for general database use; splitting every item
in the database would explode transaction overhead, and
reconciling values on every read is costly. Instead, we dy-
namically shift data between split and reconciled states,
based on observed contention.

A key design decision was to amortize the impact of
value reconciliation over many transactions by execut-
ing different transactions in different phases. In joined
phases, the database’s structures are accessed using
OCC. There are no per-core values and any transaction
can execute (albeit with potentially high contention). In
split phases, in contrast, updates are applied when pos-
sible to split per-core values rather than the global store.
This greatly reduces contention on split data, but for cor-
rectness not all transactions may execute. Inappropriate
uses of split data cause a transaction to block. Finally,
short reconciliation phases reconcile these per-core val-
ues into the global store. When a reconciliation phase
ends, blocked transactions resume and the next joined

512 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

phase begins. Thus, conflicting writes operate efficiently
in the split phase, reads of frequently-updated data op-
erate efficiently in the joined phase, and the system can
achieve high overall performance even for challenging
conflicting workloads.

The workloads that work best with phase reconcilia-
tion are ones with frequently-updated data items where
contentious updates are commutative (they have the same
overall effect regardless of order). Commutativity allows
different cores to update their per-core values without co-
ordination. Applicable situations include maintenance of
the highest bids in the auction example, counts of votes
on popular items, and maintenance of “top-k” lists for
news aggregators such as Reddit [2].

The contributions of this work are the phase reconcil-
iation technique and an implementation of phase recon-
ciliation in Doppel. We show that phase reconciliation
improves the overall throughput of various contentious
workloads by up to 38× over OCC and 19× over 2PL,
and has read throughput comparable to OCC. We port an
auction website, RUBiS, to use Doppel and show Dop-
pel improves bidding throughput with popular auctions
by up to 3× over OCC.

2 Related Work
The idea of phase reconciliation is related to ideas in
transactional memory, executing fast transactions on in-
memory databases, and exploiting commutativity to rec-
oncile divergent values, particularly in multicore operat-
ing systems and distributed systems.

Transactional memory. In designing Doppel we were
inspired by some novel uses of transactional memory.
Several designs have been proposed dividing transac-
tions into phases, or rescheduling transactions to avoid
aborts. Lev et al. propose the idea of using phases to sup-
port executing transactions both on best-effort hardware
transactional memory and software transactional mem-
ory [21]. We leverage a similar idea to run transactions
in different modes which are optimized for the types of
transactions in those modes. Sync-Phase splits transac-
tions up into computation and commit phases [25]. We
do not split a transaction across phases, but assign trans-
actions to different phases, based on the type of data they
access and the operations they perform.

Transactional memory has been used directly for
database transactions [20]. These transactions are of-
ten too large to use hardware transactional memory in
a straightforward manner, so this work develops tech-
niques to split transactions and apply them using times-
tamp ordering [8]. Still, spurious aborts are common in
TM implementations of databases, since some memory
writes to index data structures (which abort TM trans-
actions) are irrelevant to database conflicts. One tech-
nique for addressing this problem on multicore architec-

tures is rescheduling conflicting operations after detec-
tion to avoid continuous retries [7]. On contentious work-
loads with many conflicting writes, transactional mem-
ory would still be forced to abort or run the transactions
one at a time. Our techniques would help in this situation.

Main-memory database concurrency control. Con-
ventional wisdom is that when requests in the work-
load frequently conflict, they must serialize for correct-
ness [16]. Given that, most related work has focused on
improving scalability in the database engine for work-
loads which do not inherently conflict. Several databases
try to leverage multiple cores by partitioning the data
and running one partition per core. Systems like H-
store/VoltDB [28, 29], HyPer [17], and Dora [23] all em-
ploy this technique. It is reasonable when the data is per-
fectly partitionable, but the overhead of cross-partition
transactions in these systems is significant, and finding a
good partitioning can be difficult. In our problem space
(data contention) partitioning won’t necessarily help; a
single popular record with many writes wouldn’t be able
to utilize multiple cores. Hyder [9] uses a technique
called meld [10], which lets individual servers or cores
operate on a snapshot of the database and submit requests
for commits to a central log. Each server processes the
log and determines commit or abort decisions determin-
istically. Doppel also processes on local data copies but
by restricting transaction execution to phases, can com-
mit without global communication.

Multimed [24] also replicates data per core, but does
so for read availability instead of write performance as in
Doppel. The central write manager in Multimed is a bot-
tleneck. Doppel partitions local copies of data amongst
cores for writes and provides a way to re-merge the data
for access by other cores.

Doppel uses optimistic concurrency control, of which
there have been many variants [4, 8, 10, 18, 19, 30].
We use the algorithm in Silo [30], which is very effec-
tive at reducing contention in the commit protocol, but
does not reduce contention caused by conflicting data
writes. Larson et al. [19] explore optimistic and pes-
simistic multiversion concurrency control algorithms for
main-memory databases, and this work is implemented
in Microsoft’s Hekaton [14]. This work presents ideas
to eliminate contention due to locking and latches; we
go further to address the problem of contention caused
by conflicting writes to data. In future work we would
like to implement a version of Doppel using pessimistic
concurrency control. Doppel’s split phase techniques are
related to ideas which take advantage of commutativity
and abstract data types in concurrency control [15, 31].

Multicore scalability. Linux developers have put a
lot of effort into achieving parallel performance on
multiprocessor systems. Doppel adopts ideas from the
multicore scalability community, including the use of

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 513

commutativity to remove scalability bottlenecks [13].
OpLog [11] uses the idea of per-core data structures
on contentious write workloads to increase parallelism,
and Refcache [12] uses per-core counters, deltas, and
epochs. This work tends to shift the performance burden
from writes onto reads, which reconcile the per-core data
structures whenever they execute. Doppel also shifts the
burden onto reads, but phase reconciliation aims to re-
duce this performance burden in absolute terms by amor-
tizing the effect of reconciliation over many transactions.
Our contribution is making these ideas work in a larger
transaction system.

Distributed consistency. Some work in distributed
systems has explored the idea of using commutativity
to reduce concurrency control, usually forgoing serial-
izability. RedBlue consistency [22] uses the idea of blue,
eventually consistent local operations which do not re-
quire coordination and red, consistent operations which
do. Blue phase operations are analagous to Doppel’s op-
erations in the split phase. Walter [27] uses the idea of
counting sets to avoid conflicts. Doppel could use any
Conflict-Free Replicated Data Type (CRDT) [26] with
its update operations in the split phase, but does not limit
data items to specific operations outside the split phase.

One way of thinking about phase reconciliation is
that by restricting operations only during phases but not
between them, we support both scalable (per-core) im-
plementations of commutative operations and efficient
implementations of non-commutative operations on the
same data items.

3 System model
We implemented phase reconciliation in a multicore, in-
memory database called Doppel. Doppel has a low-level
key/value store interface, and clients submit transactions
in the form of procedures. Doppel provides serializable
transactions.

Doppel transactions are one-shot: once begun, a trans-
action runs to completion without communication or disk
I/O. Combined with an in-memory database, this means
threads will not block due to user or disk stalls. One-
shot transactions are used extensively in online transac-
tion processing workloads [5, 28]. Worker threads, one
per core, run transactions.

Our implementation of Doppel does not currently
provide durability. Existing work suggests that asyn-
chronous batched logging could be added to Doppel
without becoming a bottleneck [19, 30].

Doppel records have typed values, and each type sup-
ports one or more operations. Transactions interact with
the database via calls to operations. For example, the
Max(k,n) operation looks up an integer record with key
k, and sets its value to the maximum of its current value
and n. Some operations return values—Get(k), for ex-

ample, returns the value of key k—and others do not;
some operations modify the database and others do not.
Each operation accesses exactly one database record.
This isn’t a functional restriction: users can build multi-
record operations from single-record ones using transac-
tions.

4 Split operations
A phase reconciliation database, such as Doppel, detects
contended database records and, during split and recon-
ciliation phases, marks them as split. For such records,
operations that would normally contend can proceed in
parallel.

1. At the beginning of each split phase, Doppel initial-
izes per-core slices for each split record. There is
one slice per contended record per core.

2. During the split phase, all operations on split
records are applied to their per-core slices.

3. During the reconciliation phase, the per-core slices
are merged back into the global store.

The combination of applying the operation to a slice and
the merge step should have the same effect as the opera-
tion would normally. However, the code required to up-
date a slice may be quite different from the code required
to update a normal record.

To ensure good performance, per-core slices must be
quick to initialize, and operations on slices must be
fast. Most critically, the merging step, where per-core
slices are merged into the global store, must take O(J)
time where J is the number of cores, instead of O(N)
time where N is the number of operations applied. This
precludes some designs. For instance, one might think
that split-phase execution could log updates to per-core
slices, with the reconciliation phase applying the logged
updates in time order; but this would cause those updates
to execute serially, exactly the performance problem we
want to avoid.

To ensure correctness, Doppel must ensure serializ-
ability. Executing transactions concurrently in a split
phase must have the same effects as executing those same
transactions in some serial order. Specifically, consider
the set of transactions that commit in some split phase.
Then there must exist a serial order of those transactions
that satisfies:

1. The result of merging per-core slices with the global
store is the same as if the transactions had executed,
in the serial order, against the global store.

2. Every operation executed on a split record gets the
same return value as if it had executed, in the serial
order, against the global store.

514 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3. Every operation executed on the global store gets
the same return value as it would in the serial order.

An example of an operation that meets these require-
ments is Max(k,n) on integer records, which assigns
v[k] ← max{v[k],n} and returns nothing. When Dop-
pel detects contention on Max(k,n) operations for some
key k, it marks k as split for Max. When entering the
next split phase, Doppel initializes per-core slices c j[k]
with the global value v[k]. When a transaction on core
j commits an operation Max(k,n), Doppel sets c j[k]←
max{c j[k],n}. Key k is temporarily reserved for Max op-
erations; a transaction that tries to execute another kind
of operation on k will block until the following joined
phase. When the split phase is over, Doppel merges the
per-core slices by setting v[k]←max j c j[k].

This implementation of Max is efficient because per-
core slices are fast to initialize, fast to update, and fast
to merge. If many concurrent transactions call Max(k,n)
during a split phase, Doppel executes them in parallel on
multiple cores with no coordination, getting good par-
allel speedup over the serial execution of conventional
OCC or locking. Another reason for efficiency is that
Doppel avoids expensive cache line transfers relating to
contended data; these can make OCC and locking on
many cores slower than serial execution on a single core.

Doppel’s implementation is also correct. The main
reason is that Max commutes with itself: the effect of a
set of Max(k,n) operations on v[k] is independent of their
order. When operations do not commute, Doppel must
enforce a serial order on those operations using global
coordination. Per-core slices, which avoid coordination
by design, thus work only for commutative operations.
It’s also important that Doppel restricts key k during the
split phase to accept Max operations only. This means
that all split-phase operations on k commute, and it’s
safe to apply them to the per-core slices (even though
the slices suppress information about the global execu-
tion order). Finally, Max returns nothing, which is triv-
ially the same as it would return when executed against
the global store. We extend this argument in §5.6.

Doppel supports several splittable operations beyond
Max. We ensure these operations are both fast and cor-
rect by following some simple guidelines; a more com-
plex implementation could relax these guidelines some-
what, as long as it still achieved the properties above.

1. Every splittable operation must commute with it-
self.

2. Every splittable operation must return nothing.

3. The system selects one splittable operation per split
record per split phase. The selected operation can
change between phases—for example, the operation

operation for key k might be Min in one split phase,
and Max in the next—but within a given phase, any
operation but the selected operation causes the con-
taining transaction to abort (and retry in the next
joined phase).

4. The size of a per-core slice is independent of the
number of operations that executed on that slice.

Doppel’s current splittable operations are as follows.

• Max(k,n) and Min(k,n) replace k’s integer value
with the maximum/minimum of it and n.

• Add(k,n) adds n to k’s integer value.

• OPut(k,o, x) is an operation on ordered tuples. An
ordered tuple is a 3-tuple (o, j, x) where o, the order,
is a number (or several numbers in lexicographic or-
der); j is the ID of the core that wrote the tuple; and
x is an arbitrary byte string. If k’s current value is
(o, j, x) and OPut(k,o′, x′) is executed by core j′,
then k’s value is replaced by (o′, j′, x′) if o′ > o,
or if o′ = o and j′ > j. Absent records are treated
as having o = −∞. The order and core ID compo-
nents make OPut commutative. Doppel also sup-
ports the usual Put(k, x) operation for any type, but
this doesn’t commute and thus cannot be split.

• TopKInsert(k,o, x) is an operation on top-K sets. A
top-K set is like a bounded set of ordered tuples:
it contains at most K items, where each item is a
3-tuple (o, j, x) of order, core ID, and byte string.
When core j′ executes TopKInsert(k,o′, x′), Dop-
pel inserts the tuple (o′, j′, x′) into the relevant top-
K set. At most one tuple per order value is allowed:
in case of duplicate order, the record with the high-
est core ID is chosen. If the top-K contains more
than K tuples, the system then drops the tuple with
the smallest order. Again, the order and core ID
components make TopKInsert commutative.

More operations could easily be added (for instance,
multiply).

5 Design
This section describes phase reconciliation in the context
of Doppel. First, we describe the three phases of phase
reconciliation. Second, we describe how updates are rec-
onciled and how records are marked as either split or rec-
onciled. Next, we describe how the system transitions be-
tween phases. We close with a brief argument that Dop-
pel’s implementation produces serializable results.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 515

Joined Phase!

Core	 0	

Split Phase!

Read	 and	 write	 sets	

Conflict!	

R	 W

Core	 1	

R	 W

Core	 0	

No	 reads	

R

Core	 1	

PW	 W	 R PW	 W	

Figure 1: Concurrent transactions executing on different cores, shown in the joined phase and split phase. In the split phase certain data is split so
that writes don’t conflict.

Data: read set R, write set W

// Part 1
for record, operation in sorted(W) do

lock(record);
commit-tid← generate-tid()
// Part 2
for record, read-tid in R do

if record.tid � read-tid
or (record.locked and record �W)

then abort();

// Part 3
for record, operation in W do

apply(operation, record, commit-tid);
unlock(record);

Figure 2: Doppel’s joined phase commit protocol. Fences are elided.

5.1 Joined phase execution
A joined phase can execute any transaction. All records
are reconciled—there is no notion of split data and there
are no per-core slices—so the protocol treats all records
the same.

Joined-phase execution could use any concurrency
control protocol. However, some designs make more
sense for overall performance than others. If all is work-
ing according to plan, the joined phase will have few con-
flicts; transactions that conflict should execute in the split
phase. This is why Doppel’s joined phase uses optimistic
concurrency control (OCC), which performs better than
locking when conflicts are rare.

The left side of Figure 1 shows two transactions exe-
cuting on different cores in a joined phase, and Figure 2
shows the joined-phase commit protocol, which is based
on that of Silo [30]. Records have transaction IDs (TIDs);
these indicate the ID of the last transaction to write the
non-split record, and help detect conflicts. A read set and
a write set are maintained for each executing transac-
tion. During execution, a transaction buffers its writes
and records the TIDs for all values read or written in

its read set. At commit time, the transaction locks the
records in its write set (in a global order to prevent dead-
lock) and aborts if any are locked; obtains a TID; vali-
dates its read set, aborting if any values in the read set
have changed since they were read, or are concurrently
locked by other transactions; and finally writes the new
values and TIDs to the shared store.

To avoid overhead and contention on TID assignment,
our implementation assigns TIDs locally, using per-core
information and the TIDs in the read set. The resulting
commit protocol is serializable, but the TID order might
diverge from the serial order.

Each transaction executes within a single phase. Any
transaction that commits in a joined phase executed com-
pletely within that joined phase. Doppel thus cannot
leave a joined phase for the following split phase until
all current transactions commit or abort. As we see be-
low, this requires coordination across threads.

5.2 Split phase execution
A split phase can execute in parallel some transactions
that would normally contend. Accesses to reconciled
data proceed much as in a joined phase, using OCC,
but split-data operations execute on per-core slices. Split
phases cannot execute all transactions, however. As we
saw in §4, Doppel selects one operation per split record
per split phase. A transaction that invokes an unselected
operation on a split record will be aborted and stashed
for restart during the next joined phase.

The right side of Figure 1 shows a split phase, with
each transaction writing to per-core slices. For example,
a transaction that executed an Add(k,10) operation on a
split numeric record might add 10 to the local core’s slice
for that record.

When a split phase transaction commits, Doppel uses
the algorithm in Figure 3. It is similar to the algorithm in
Figure 2 with a few important differences. The write set
W contains only un-split data, while SW buffers updates
to split data. The commit protocol applies the SW updates
to the per-core slices. Since these slices are inherently

516 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Data: read set R, reconciled write set W, split
write set SW

// Part 1
for record, operation in sorted(W) do

lock(record);
commit-tid← generate-tid()
// Part 2
for record, read-tid in R do

if record.tid � read-tid
or (record.locked and record �W)

then abort();

// Part 3
for record, operation in W do

apply(operation, record, commit-tid);
unlock(record);

for slice, operation in SW do
slice-apply(operation, slice, commit-tid);

Figure 3: Doppel’s split phase commit protocol.

Data: per-core slices S for core j

for record, operation, slice in S do
lock(record);
merge-apply(operation, slice, record);
unlock(record);

S ← ∅
Figure 4: Doppel’s per-core reconciliation phase protocol.

invisible to concurrently running transactions, there is no
need to lock them or check their version numbers. (Any
concurrent transaction must be running on another core,
since each core runs transactions to completion one at a
time.)

Any transaction that commits in a split phase executed
completely within that split phase; Doppel does not en-
ter the following joined phase until all of the split-phase
transactions commit or abort.

5.3 Reconciliation phase execution
During a reconciliation phase, each core stops process-
ing transactions and merges its per-core slices with the
global store. For example, for a split record that used
Max, each core locks the global record, sets its value to
the maximum of the previous value and its per-core slice,
and unlocks the record. This involves serial processing of
the per-core slices, but the expense is amortized over all
the transactions that executed in the split phase. The per-
core slices are then cleared and the database enters the
next joined phase.

5.4 Phase transitions
Transitions between phases are managed by a coordina-
tor thread and apply globally, across the entire database.
To initiate a transition from a joined phase to the

next split phase, the coordinator begins by publishing
the phase change in a global variable. Workers check
this variable between transactions; when they notice a
change, they stop processing new transactions, acknowl-
edge the change, and wait for permission to proceed.
When all workers have acknowledged the change, the
coordinator releases them, and workers start executing
transactions in split mode. A similar process transitions
from a split phase to the next reconciliation phase. When
a split-phase worker notices a transition to the recon-
ciliation phase, it stops processing transactions, merges
its per-core slices with the global store, and then ac-
knowledges the phase transition and waits for permis-
sion to proceed. Once all workers have acknowledged the
change, the coordinator releases them to the next joined
phase; each worker restarts any transactions it stashed in
the split phase and starts accepting new transactions. It
is safe for reconciliation to proceed in parallel with other
cores’ split-phase transactions since reconciliation modi-
fies the global versions of split records, while split-phase
transactions access per-core slices. No transactions will
start joined phase operations on formerly split data un-
til the coordinator has received acknowledgements from
all workers for the phase transition, meaning they all fin-
ished their merge.

The Doppel coordinator usually starts a phase change
every 20 milliseconds, but feedback mechanisms allow it
to flexibly adjust to the workload. If, in a joined phase, no
records appear contended—or they contend on unsplit-
table operations—the coordinator delays the next split
phase. A worker can also delay a split phase by refusing
to acknowledge it, and our workers delay acknowledg-
ing a split phase until they have committed or aborted
all previously-stashed transactions. Finally, if, in a split
phase, workers have to abort and stash too many transac-
tions, the coordinator hurries the next joined phase.

5.5 Classification
Doppel automatically decides how records should be
split. During joined execution, Doppel samples transac-
tions’ conflicting record accesses, and keeps a count of
which records are most conflicted (are causing the most
aborts) and by which operations. During the transition
to the split phase, a coordinator thread examines these
counts and marks the most conflicted records as split
data for the next phase. Each core reads this list before
the start of the next split phase in order to know which
records are restricted. Doppel also samples which trans-
actions are stashed due to incompatible operations on
split data during the split phase, and uses this to con-
sider whether to move a split record back to reconciled
or change its assigned operation. Since split records in
the split phase will not cause conficts, Doppel uses write
sampling to estimate if a split record might still be con-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 517

tended.
Doppel also supports manual data labeling (“this

record should be split for this operation”), but we only
use automatic detection in our experiments.

5.6 Serializability
This section sketches an argument that Doppel transac-
tions are serializable.

Since transactions don’t cross phases—any commit-
ted transaction executes entirely within a single phase—
we can consider phases as units. Joined phases are
clearly serializable since they just implement OCC, but
to show that split and reconciliation phases are serial-
izable, we must consider per-core slices. So consider
a split–reconciliation phase pair that commits a set of
transactions. We will show that there is a serial exe-
cution of those transactions against the global store—
without using per-core slices—that produces the same
output global store and the same operation results as the
concurrent execution. Since the operations produce iden-
tical results, any conditional logic inside the transactions
will make identical decisions in concurrent execution as
in the serial order, so the transactions as a whole will be-
have identically.

Consider the transactions that commit in a split phase.
These transactions can access both split records and
non-split records. The non-split records use OCC, so
the transactions are serializable with respect to non-split
records. It remains to be shown that at least one serial
order valid for non-split records is valid for split records
as well. We show that, in fact, any serial order that works
for non-split records also works for split records. Con-
sider a split record r with currently selected operation Op.
(We can consider one record at a time because each op-
eration affects only one record.) Since it is splittable, Op
commutes with itself and returns nothing. All commit-
ted split-phase operations on r must use Op, since Dop-
pel aborts transactions that use non-selected operations.
So these operations trivially return the same results in
any serial order as in the concurrent execution: Op al-
ways returns nothing! Commutativity shows that the fi-
nal value produced by applying the Op operations to the
global store is the same regardless of the serial order cho-
sen. This value also equals the outcome of applying the
Ops to per-core slices and then merging those slices into
the global store, though the reasons why depend on the
operation. This concludes the argument.

6 Implementation
Doppel is implemented as a multithreaded server written
in Go. Go made thread management and RPC easy, but
caused problems with scaling to many cores, particular-
ity in the Go runtime’s scheduling and memory manage-
ment. In our experiments we carefully managed memory

func max-merge(key Key) {
val := local-get(key)

g-val := global-get(key)

global-set(key, max(g-val, val))

}

func oput-merge(key Key,
phase TID) {

order, coreid, val := local-get(key)

// note that coreid == system.MyCoreID()

g-order, g-coreid, g-val := global-get(key)

if order > g-order ||
(order == g-order && coreid > g-coreid) {

global-set(key, (order, coreid, val))

}

}

Figure 5: Doppel Max and OPut merge functions.

allocation to avoid this contention at high core counts.
Doppel runs one worker thread per core, and one

coordinator thread which is responsible for changing
phases and synchronizing workers when progressing to
a new phase. Doppel uses channels to synchronize phase
changes and acknowledgements between the coordina-
tor and workers. It briefly pauses processing transac-
tions while moving between phases; we found that this
affected throughput at high core counts. Another de-
sign could execute transactions that do not read or write
past or future split data while the system is transitioning
phases.

Workers read and write to a shared store, which is a
set of key/value maps, using per-key locks. The maps are
implemented as hash tables. Clients submit transactions
written in Go to any worker, indicating the transaction
to execute along with arguments. Doppel supports RPC
from remote clients over TCP, but we do not measure
this in §8. All workers have per-core slices for the split
phases.

Developers write transactions in Go with no knowl-
edge of reconciled data, split data, per-core slices, or
phases. They access data using a key/value get and set
interface or using the operations mentioned in §4.

7 Application Experience
We implemented two test applications: a feature of a so-
cial networking site where users can like pages, and a
version of the RUBiS auction site benchmark.

The LIKE application simulates a set of users “liking”
profile pages. Each update transaction writes a record in-
serting the user’s like of a page, and then increments a
per-page sum of likes. Each read transaction reads the
user’s last like and reads the total number of likes for
some page. With a high level of skew, this application

518 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

func StoreBid(bidder, item, amt) (*Bid, TID) {
bidkey := NewKey()

bid := Bid {

Item: item,

Bidder: bidder,

Price: amt,

}

Put(bidkey, bid)

highest := Get(MaxBidKey(item))

if amt > highest {
Put(MaxBidKey(item), amt)

Put(MaxBidderKey(item), bidder)

}

numBids := Get(NumBidsKey(item))

Put(NumBidsKey(item), numBids+1)

tid := Commit() // applies writes or aborts

return &bid, tid
}

Figure 6: Original RUBiS StoreBid transaction.

explores the case where there are many users but only a
few popular pages; thus the increments often conflict, but
the inserts of individual records recording user likes do
not. We expect the per-page sums for the popular page
records to be marked as split data in the split phase, for
use with the Add operation.

We used RUBiS [6], an auction website modeled af-
ter eBay, to evaluate Doppel on a realistic application.
RUBiS users can register items for auction, place bids,
make comments, and browse listings. RUBiS has 7 ta-
bles (users, items, categories, regions, bids, buy now,
and comments) and 26 interactions based on 17 database
transactions. We ported a RUBiS implementation to Go
for use with Doppel.

There are a few notable transactions in the RU-
BiS workload for which Doppel is particularly suited:
StoreBid, which inserts a user’s bid and updates auc-
tion metadata for an item, and StoreComment, which
publishes a user’s comment on an item and updates the
rating for the auction owner. RUBiS materializes the
maxBid, maxBidder, and numBids per auction, and a
userRating per user based on comments on an owning
user’s auction items. We show RUBiS’s StoreBid trans-
action in Figure 6.

If an auction is very popular, there is a greater chance
two users are bidding or commenting on it at the same
time, and that their transactions will issue conflicting
writes. At first glance it might not seem like Doppel
could help with the StoreBid transaction; the auction
metadata is contended and could potentially be split, but
each StoreBid transaction requires reading the current
bid to see if it should be updated, and reading the current
number of bids to add one. Recall that split data cannot

func StoreBid(bidder, item, amt) (&Bid, TID) {
bidkey := NewKey()

bid := Bid {

Item: item,

Bidder: bidder,

Price: amt,

}

Put(bidkey, bid)

Max(MaxBidKey(item), amt)

OPut(MaxBidderKey(item),

([amt, GetTimestamp()], MyCoreID(), bidder))

Add(NumBidsKey(item), 1)

TopKInsert(BidsPerItemIndexKey(item),

amt, bidkey)

tid := Commit() // applies writes or aborts

return &bid, tid
}

Figure 7: Doppel StoreBid transaction.

be read during a split phase, so as written in Figure 6 the
transaction would have to execute in a joined phase, and
would not benefit from local per-core operations.

But note that the StoreBid transaction does not re-
turn the current winner, value of the highest bid, or num-
ber of bids to the caller, and the only reason it needs
to read those values is to perform commutative Max
and Add operations. Figure 7 shows the Doppel version
of the transaction that exploits these observations. The
new version uses the maximum bid in OPut to choose
the correct core’s maxBidder value (the logic here says
the highest bid should determine the value of that key).
This changes the semantics of StoreBid slightly. In the
original StoreBid if two concurrent transactions bid the
same highest value for an auction, the first to commit is
the one that wins. In Figure 7, if two concurrent trans-
actions bid the same highest value for an auction at the
same coarse-grained timestamp, the one with the highest
core ID will win. Doppel can execute Figure 7 in the split
phase.

Using the top-K set record type, Doppel can sup-
port inserts to contended lists. The original RUBiS
benchmark does not specify indexes, but we use top-
K sets to make browsing queries faster. We modify
StoreItem to insert new items into top-K set indexes
on category and region, and we modify StoreBid
to insert new bids on an item into a top-K set index per
item, bidsPerItemIndex. SearchItemsByCategory,
SearchItemsByRegion, and ViewBidHistory read
from these records. Finally, we modify StoreComment
to use Add on the userRating.

These examples show how Doppel’s commutative op-
erations allow seemingly conflicting transactions to be
re-cast in a way that allows concurrent execution. This

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 519

pattern apppears in many other Web applications. For
example, Reddit [2] also materializes vote counts, com-
ment counts, and links per subreddit [3]. Twitter [1] ma-
terializes follower/following counts and ordered lists of
tweets for users’ timelines.

8 Evaluation
This section presents measurements of Doppel’s perfor-
mance, supporting the following hypotheses:

• Doppel increases throughput for transactions with
conflicting writes to split data (§8.2).
• Doppel can cope with changes in which records are

contended (§8.3).
• Doppel makes good decisions about which records

to split when key popularity follows a smooth dis-
tribution (§8.4).
• Doppel can help workloads with a mix of read and

write transactions on split data (§8.5).
• Doppel transactions which read split data have high

latency (§8.6).
• Doppel increases throughput for a realistic applica-

tion (§8.8).

8.1 Setup
All experiments are executed on an 80-core Intel ma-
chine with 8 2.4Ghz 10-core Intel chips and 256 GB of
RAM, running 64-bit Linux 3.12.9. In the scalability ex-
periments, after the first socket, we add cores an entire
socket at a time. We run most fixed-core experiments on
20 cores.

The worker thread on each core both generates trans-
actions as if it were a client, and executes those transac-
tions. If a transaction aborts, the thread saves the transac-
tion to try at a later time, chosen with exponential back-
off, and generates a new transaction. backoff, and gener-
ates a new transaction. Throughput is measured as the
total number of transactions completed divided by to-
tal running time; at some point we stop generating new
transactions and then measure total running time as the
latest time that any existing transaction completes (ignor-
ing saved transactions). Each point is the mean of three
consecutive 20-second runs, with error bars showing the
min and max.

The Doppel coordinator changes the phase every 20
milliseconds. Doppel uses the technique described in
§5.5 to determine which data to split. The benchmarks
omit many costs associated with a real database; for ex-
ample we pre-allocate all the records and do not incur
any costs related to network, RPC, or disk.

In most experiments we measure phase reconciliation
(Doppel), optimistic concurrency control (OCC), and
two-phase locking (2PL). Doppel and OCC transactions
abort and later retry when they see a locked item; 2PL

0M

5M

10M

15M

20M

25M

30M

35M

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

% of transactions with hot key

Doppel
OCC
2PL

Atomic

Figure 8: Total throughput for INCR1 as a function of the percentage
of transactions that increment the single hot key. 20 cores. The vertical
line indicates when Doppel starts splitting the hot key.

uses Go’s read-write mutexes. Both OCC and 2PL are
implemented in the same framework as Doppel.

8.2 Parallelism versus Conflicts
This section shows that Doppel improves performance
on a workload with many conflicting writes, using the
following microbenchmark:

INCR1 microbenchmark. There are 1M 16-byte
keys, and each transaction increments the value of a
single key. There is a single popular key and we vary
the percentage of transactions which increment that key;
each other transaction randomly chooses from the not-
popular keys.

This experiment compares Doppel with OCC, 2PL,
and a system called Atomic. Doppel without split keys
and OCC read the value of a key, compute the new value,
and try to lock the key and validate that it hasn’t changed
since it was first read. If the key is locked or its version
has changed, both abort the transaction and save it to try
again later. 2PL waits for a write lock on the key, reads it,
and then writes the new value. 2PL never aborts. Atomic
uses an atomic increment instruction with no other con-
currency control. Atomic represents an upper bound for
locking schemes.

Figure 8 shows the throughputs of these schemes with
INCR1 as a function of the percentage of transactions
that write the single hot key.

At the extreme left of Figure 8, when there is little con-
flict, Doppel does not split the hot key, causing it to be-
have and perform similarly to OCC. With few conflicts,
all of the schemes benefit from the 20 cores available.

As one moves to the right in Figure 8, OCC, 2PL, and
Atomic provide decreasing total throughput. The high-
level reason is that they must execute operations on the
hot key serially, on only one core at a time. Thus their
throughputs ultimately drop by roughly a factor of 20,
as they move from exploiting 20 cores to doing useful

520 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0M

1M

2M

3M

4M

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
/c

o
re

)

number of cores

Doppel
OCC
2PL

Atomic

Figure 9: Throughput per core for INCR1 when all transactions incre-
ment a single hot key. The y-axis shows per-core throughput, so perfect
scalability would result in a horizontal line.

work on only one core. The differences in throughput
among the three schemes stem from differences in con-
currency control efficiency: Atomic uses the hardware
locking provided by the cache coherence and interlocked
instruction machinery; 2PL uses Go mutexes which yield
the CPU; while OCC saves and re-starts aborted transac-
tions. The drop-off starts at an x value of about 5%; this
is roughly the point at which the probability of more than
one of the 20 cores using the hot item starts to be signif-
icant.

Doppel has the highest throughput for most of Figure 8
because once it splits the key, it continues to get paral-
lel speedup from the 20 cores as more transactions use
the hot key. Towards the left in Figure 8, Doppel obtains
parallel speedup from operations on different keys; to-
wards the right, from split operations on the one hot key.
The vertical line indicates where Doppel starts splitting
the hot key. Doppel throughput gradually increases as a
smaller fraction of operations apply to non-popular keys,
and thus a smaller fraction incur the DRAM latency re-
quired to fetch such keys from memory. When 100% of
transactions increment the one hot key, Doppel performs
6.2× better than Atomic, 19× better than 2PL, and 38×
better than OCC.

We also ran the INCR1 benchmark on Silo to com-
pare Doppel’s performance to an existing system. Silo
has lower performance than our OCC implementation at
all points in Figure 8, in part because it implements more
features. When the transactions choose keys uniformly,
Silo finishes 11.8M transactions per second on 20 cores.
Its performance drops to 102K transactions per second
when 100% of transactions write the hot key.

To illustrate the part of Doppel’s advantage that is due
to parallel speedup, Figure 9 shows multi-core scaling
when all transactions increment the same key. The y-
axis shows transactions/sec/core, so perfect scalability
(perfect parallel speedup) would result in a horizontal

0M

5M

10M

15M

20M

25M

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

time (seconds)

Doppel
OCC
2PL

Figure 10: Throughput over time on INCR1 when 10% of transactions
increment a hot key, and that hot key changes every 5 seconds.

line. Doppel falls short of perfect speedup, but neverthe-
less yields significant additional throughput for each core
added. The lines for the other schemes are close to 1/x
(additional cores add nothing to the total throughput),
consistent with essentially serial execution. The Doppel
line decreases because phase changes take longer with
more cores; phase change must wait for all cores to fin-
ish their current transaction.

In summary, Figure 8 shows that when even a small
fraction of transactions write the same key, Doppel can
help performance. It does so by parallelizing update op-
erations on the popular key.

8.3 Changing Workloads
Data popularity may change over time. Figure 10 shows
the throughput over time for the INCR1 benchmark with
10% of transactions writing the hot key, with the iden-
tity of the one hot key changing every 5 seconds. Dop-
pel throughput drops every time the popular key changes
and a new key starts gathering conflicts. Once Doppel
has measured enough conflict on the new popular key, it
marks it as split. The adverse effect on Doppel’s through-
put is small since it adjusts quickly to each change.

8.4 Deciding What to Split
Doppel must decide whether to split each key. At the ex-
tremes, the decision is easy: splitting a key that causes
few aborts is not worth the overhead, while splitting a
key that causes many aborts may greatly increase par-
allelism. Section 8.2 explored this spectrum for a single
popular key. This section explores a harder set of situa-
tions, ones in which there is a smooth falloff in the dis-
tribution of key popularity. That is, there is no clear dis-
tinction between hot keys and non-hot keys. The main
question is whether Doppel chooses the right number (if
any) of most-popular keys to split.

This experiment uses a Zipfian distribution of popu-
larity, in which the kth most popular item is accessed in

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 521

0M

5M

10M

15M

20M

25M

30M

35M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

α

Doppel
OCC
2PL

Atomic

Figure 11: Total throughput for INCRZ as a function of α (the Zipfian
distribution parameter). The skewness of the popularity distribution in-
creases to the right. 20 cores. The vertical line indicates when Doppel
starts splitting keys.

proportion to 1/kα. We vary α to explore different skews
in the popularity distribution, using INCRZ:

INCRZ microbenchmark. There are 1M 16-byte
keys. Each transaction increments the value of one key,
chosen with a Zipfian distribution of popularity.

Figure 11 shows total throughput as a function of α. At
the far left of the graph, key access is uniform. Atomic
performs better than Doppel and OCC, and both better
than 2PL, for the same reasons that govern the left-hand
extreme of Figure 8.

As the skew in key popularity grows—for α values up
to about 0.8—all schemes provide increasing through-
put. The reason is that they all enjoy better cache locality
as a set of popular keys emerge. Doppel does not split
any keys in this region, and hence provides throughput
similar to that of OCC.

Figure 11 shows that Doppel starts to display an ad-
vantage once α is greater than 0.8, because it starts split-
ting. These larger α values cause a significant fraction
of transactions to involve the most popular few keys; Ta-
ble 1 shows some example popularities. Table 2 shows
how many keys Doppel splits for each α. As α increases
to 2.0, Doppel splits the 2nd, 3rd, and 4th-most popular
keys as well, since a significant fraction of the transac-
tions modify them. Though the graph doesn’t show this
region, with even larger α values Doppel would return to
splitting just one key.

In summary, for this workload Doppel does a good job
of identifying which and how many keys are worth split-
ting, despite the gradual transition from popular to un-
popular keys.

8.5 Mixed Workloads
This section shows how Doppel behaves when workloads
both read and write popular keys. The best situation for
Doppel is when there are lots of update operations to the
contended key, and no other operations. If there are other

α 1st 2nd 10th 100th

0.0 .0001% .0001% .0001% .0001%
0.2 .0013% .0011% .0008% .0005%
0.4 .0151% .0114% .0060% .0024%
0.6 .1597% .1054% .0401% .0101%
0.8 1.337% .7678% .2119% .0336%
1.0 6.953% 3.476% .6951% .0695%
1.2 18.95% 8.250% 1.196% .0755%
1.4 32.30% 12.24% 1.286% .0512%
1.6 43.76% 14.43% 1.099% .0276%
1.8 53.13% 15.26% .8420% .0133%
2.0 60.80% 15.20% .6079% .0061%

Table 1: The percentage of writes to the first, second, 10th, and 100th
most popular keys in Zipfian distributions for different values of α, 1M
keys.

α # Moved % Reqs

< 1 0 0.0
1.0 2 10.5
1.2 4 35.9
1.4 4 56.1
1.6 4 70.5
1.8 4 80.1
2.0 3 82.7

Table 2: The number of keys Doppel moves for different values of α in
the INCRZ benchmark.

operations on a split key, such as reads, Doppel’s phases
essentially batch writes into the split phases, and reads
into the joined phases; this segregation and batching in-
creases parallelism, but incurs the expense of stashing
the read transactions during the split phase. In addition,
the presence of the non-update operations makes it less
clear to Doppel’s algorithms whether it is a good idea to
split the hot key. To evaluate Doppel’s performance on a
more challenging, but still understandable, workload, we
use the LIKE benchmark from §7 that simulates users
“liking” pages on a social networking site.

LIKE. The database contains a row for each user and
a row for each page. Each transaction involves a user and
a page. The user is always chosen uniformly at random.
A write transaction chooses a page from a Zipfian distri-
bution, increments the page’s count of likes, and updates
the user’s row; the user’s row is rarely contended, but
the page’s count might be. A read transaction chooses a
page using the same Zipfian distribution, and reads the
page’s count and the user’s row. There are 1M users and
1M pages, and unless specified otherwise the transaction
mix is 50% reads and 50% writes.

Figure 12 shows throughput for Doppel, OCC, and
2PL with LIKE on 20 cores as a function of the frac-
tion of transactions that write, with α = 1.4. This setup
causes the most popular page key to be used in 32% of
transactions.

522 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

% of transactions that write

Doppel
OCC
2PL

Figure 12: Throughput of the LIKE benchmark with 20 cores as a func-
tion of the fraction of transactions that write, α = 1.4.

We would expect OCC to perform the best on a read-
mostly workload, which it does. Until 30% writes Dop-
pel does not split, and as a result performs about the same
as OCC.

Doppel starts splitting data when there are 30% write
transactions. This situation is tricky for Doppel because
the split keys are read even more than they are written,
so many read transactions have to be stashed. Figure 12
shows that Doppel nevertheless gets the highest through-
put for all subsequent write percentages.

This example shows that Doppel’s batching of transac-
tions into phases allows it to extract parallel performance
from contended writes even when there are many reads
to the contended data.

8.6 Latency
Doppel stashes transactions which read split data in the
split phase. This increases latency, because such trans-
actions have to wait up to 20 milliseconds for the next
joined phase. We use the LIKE benchmark to explore la-
tency on two workloads (uniform popularity and skewed
popularity with Zipf parameter α = 1.4), separating la-
tencies for read-only transactions and transactions that
write. To measure latency, we measure the difference be-
tween the time each transaction is first submitted and
when it commits. The workload is half read and half
write transactions.

Table 3 shows the results. Doppel and OCC perform
similarly with the uniform workload because Doppel
does not split any data. In the skewed workload Doppel’s
write latency is the lowest because it splits the four most
popular page records, so that write transactions that up-
date those records do not need to wait for serial access to
the data. Doppel’s read latencies are high because reads
of hot data during split mode have to wait up to 20 mil-
liseconds for the next joined phase. This delay is the price
Doppel pays for achieving almost twice the throughput
of OCC.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

µ
s
)

phase length (ms)

Uniform
Skewed

Skewed Write Heavy

Figure 13: Average read transaction latencies in Doppel with the LIKE
benchmark, varying phase length. A uniform workload, a skewed work-
load with 50% reads and 50% writes, and a skewed workload with 10%
reads and 90% writes. 20 cores.

8.7 Phase Length
When a transaction tries to read split data during a split
phase, its expected latency is determined by the phase
length; a shorter phase length results in less latency, but
potentially lowered throughput. Figures 13 and 14 show
how phase length affects read latency and throughput on
three LIKE workloads. “Uniform” uses uniform key pop-
ularity and has 50% read transactions; nothing is split.
“Skewed” has Zipfian popularity with α = 1.4 and 50%
read transactions; once the phase length is > 2ms, which
is long enough to accumulate conflicts, Doppel moves
either 4 or 5 keys to split data. “Skewed Write Heavy”
has Zipfian popularity with α = 1.4 and 10% read trans-
actions; Doppel moves 20 keys to split data.

Figure 13 shows that the phase length directly deter-
mines the latency of transactions that read hot data and
have to be stashed. Shorter phases are better for latency,
but too short reduces throughput. The throughputs are
low to the extreme left in Figure 14 because phase change
takes about half a millisecond (waiting for all cores to
finish split phase), so phase change overhead dominates
throughput at very short phase lengths. For these work-
loads, the measurements suggest that the smallest phase
length consistent with good throughput is five millisec-
onds.

8.8 RUBiS
Do Doppel’s techniques help in a complete application?
We measure RUBiS [6], an auction Web site implemen-
tation, to answer this question.

Section 7 describes our RUBiS port to Doppel.
We modify six transactions to use Doppel opera-
tions; StoreBid, StoreComment, and StoreItem
to use Max, Add, OPut, and TopKInsert, and
SearchItemsByCategory, SearchItemsByRegion,
and ViewBidHistory to read from top-K set records
as indexes. This means Doppel can potentially mark

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 523

Uniform workload Skewed workload
Mean latency 99% latency Txn/s Mean latency 99% latency Txn/s

Doppel 1µs R / 1µs W 1µs R / 2µs W 11.8M 1262µs R / 4µs W 20804µs R / 2µs W 10.3M
OCC 1µs R / 1µs W 1µs R / 2µs W 11.9M 26µs R / 1069µs W 22µs R / 1229µs W 5.6M
2PL 1µs R / 1µs W 2µs R / 2µs W 9.5M 1µs R / 8µs W 3µs R / 215µs W 3.7M

Table 3: Average and 99% read and write latencies for Doppel, OCC, and 2PL on two LIKE workloads: a uniform workload and a skewed workload
with α = 1.4. Times are in microseconds. OCC never finishes 156 read transactions and 8871 write transactions in the skewed workload. 20 cores.

0M

2M

4M

6M

8M

10M

12M

14M

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

phase length (ms)

Uniform
Contentious

Contentious Write Heavy

Figure 14: Throughput in Doppel with the LIKE benchmark, vary-
ing phase length. A uniform workload, a skewed workload with 50%
reads and 50% writes, and a skewed workload with 10% reads and 90%
writes. 20 cores.

RUBiS-B RUBiS-C
Doppel 3.4 3.3
OCC 3.5 1.1
2PL 2.2 0.5

Table 4: The throughput of Doppel, OCC, and 2PL on RUBiS-B and
on RUBiS-C with Zipfian parameter α= 1.8, in millions of transactions
per second. 20 cores.

auction metadata as split data. The implementation
includes only the database transactions; there are no web
servers or browsers.

We measured the throughput of two RUBiS work-
loads. One is the Bidding workload specified in the RU-
BiS benchmark, which consists of 15% read-write trans-
actions and 85% read-only transactions; this ends up pro-
ducing 7% total writes and 93% total reads. We call this
RUBiS-B. In RUBiS-B most users are browsing listings
and viewing items without placing a bid. There are 1M
users bidding on 33K auctions, and access is uniform, so
when bidding, most users are doing so on different auc-
tions. This workload has few conflicts and is read-heavy.

We also created a higher-contention workload called
RUBiS-C. 50% of its transactions are bids on items cho-
sen with a Zipfian distribution and varying α. This ap-
proximates very popular auctions nearing their close.
The workload executes non-bid transactions in corre-
spondingly reduced proportions.

Table 4 shows how Doppel’s throughput compares
to OCC and 2PL. The RUBiS-C column uses a some-

0M

1M

2M

3M

4M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

α

Doppel
OCC
2PL

Figure 15: The RUBiS-C benchmark, varying α on the x-axis. The
skewness of the popularity distribution increases to the right. 20 cores.

what arbitrary α = 1.8. As expected, Doppel provides
no advantage on uniform workloads, but is significantly
faster than OCC and 2PL when updates are applied with
skewed record popularity.

Figure 15 explores the relationship between RUBiS-C
record popularity skew and Doppel’s ability to beat OCC
and 2PL. Doppel gets close to the same throughput up to
α = 1. Afterwards, Doppel gets higher performance than
OCC. When α = 1.8 Doppel gets approximately 3× the
performance of OCC and 6× the performance of 2PL.

Doppel’s techniques make the most difference for the
StoreBid transaction, shown in Figures 6 and 7. Doppel
marks the number of bids, max bid, max bidder, and the
list of bids per item of popular products as split data. It’s
important that the programmer wrote the transaction in a
way that Doppel can split all of these data items; if the
update for any one of the items had been programmed
in a non-splittable way (e.g., with explicit read and write
operations) Doppel would execute the transactions seri-
ally and get far less parallel speedup.

In Figure 15 with α = 1.8, OCC spends roughly 67%
of its time running StoreBid; much of this time is con-
sumed by retrying aborted transactions. Doppel elimi-
nates almost all of this 67% by running the transactions
in parallel, which is why Doppel gets three times as much
throughput as OCC with α = 1.8.

These RUBiS measurements show that Doppel is able
to parallelize substantial transactions with updates to
multiple records and, skew permitting, significantly out-
perform OCC.

524 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

9 Conclusion
Doppel is an in-memory transactional database which
uses phase reconciliation to increase throughput. The key
idea is to execute certain types of conflicting operations
on local per-core data, in parallel, and to reconcile the
per-core states periodically. On workloads with many
writes to a small number of popular records, Doppel can
increase throughput by a factor related to the number of
available cores.

Acknowledgments
We thank the anonymous reviewers, and our shepherd
Allen Clement, for their helpful feedback. This re-
search was supported by NSF awards 1065114, 1302359,
1301934, 0964106, 0915164, by Quanta, and by Google.

References
[1] Cassandra @ Twitter: An interview with Ryan King.
http://nosql.mypopescu.com/post/407159447/

cassandra-twitter-an-interview-with-ryan-king.

[2] Reddit. http://reddit.com.

[3] Reddit codebase. https://github.com/reddit/reddit.

[4] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient op-
timistic concurrency control using loosely synchronized clocks.
ACM SIGMOD Record, 24(2):23–34, 1995.

[5] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-
manolis. Sinfonia: a new paradigm for building scalable dis-
tributed systems. In ACM SIGOPS Operating Systems Review,
volume 41, pages 159–174. ACM, 2007.

[6] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K. Raja-
mani, W. Zwaenepoel, E. Cecchet, and J. Marguerite. Specifi-
cation and implementation of dynamic web site benchmarks. In
International Workshop on Workload Characterization, pages 3–
13. IEEE, 2002.

[7] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and
I. Watson. Steal-on-abort: Improving transactional memory per-
formance through dynamic transaction reordering. In High Per-
formance Embedded Architectures and Compilers, pages 4–18.
Springer, 2009.

[8] P. A. Bernstein and N. Goodman. Concurrency control in dis-
tributed database systems. ACM Computing Surveys, 13(2):185–
221, 1981.

[9] P. A. Bernstein, C. W. Reid, and S. Das. Hyder—a transactional
record manager for shared flash. In CIDR, volume 11, pages 9–
20, 2011.

[10] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimistic
concurrency control by melding trees. PVLDB, 4(11):944–955,
2011.

[11] S. Boyd-Wickizer. Optimizing Communication Bottlenecks in
Multiprocessor Operating System Kernels. PhD thesis, Mas-
sachusetts Institute of Technology, 2013.

[12] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM:
Scalable address spaces for multithreaded applications. In Eu-
rosys, pages 211–224. ACM, 2013.

[13] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler. The scalable commutativity rule: designing scalable
software for multicore processors. In SOSP, pages 1–17. ACM,
2013.

[14] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
server’s memory-optimized OLTP engine. In SIGMOD, pages
1243–1254. ACM, 2013.

[15] H. Garcia-Molina. Using semantic knowledge for transaction
processing in a distributed database. ACM Transactions on
Database Systems, 8(2):186–213, 1983.

[16] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating unscalable
communication in transaction processing. PVLDB, 23(1):1–23,
2014.

[17] A. Kemper and T. Neumann. HyPer: A hybrid OLTP and OLAP
main memory database system based on virtual memory snap-
shots. In ICDE, pages 195–206. IEEE, 2011.

[18] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[19] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling. High-performance concurrency control mecha-
nisms for main-memory databases. PVLDB, 5(4):298–309, 2011.

[20] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware trans-
actional memory in main-memory databases. In ICDE, 2014.

[21] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional
memory. In Workshop on Transactional Computing, 2007.

[22] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Ro-
drigues. Making geo-replicated systems fast as possible, consis-
tent when necessary. In OSDI, pages 265–278. USENIX Associ-
ation, 2012.

[23] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-
oriented transaction execution. PVLDB, 3(1-2):928–939, 2010.

[24] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso. Database
engines on multicores, why parallelize when you can distribute?
In Eurosys, pages 17–30. ACM, 2011.

[25] J. Schneider, F. Landau, and R. Wattenhofer. Synchronization
phases (to speed up transactional memory). Technical report, July
2011.

[26] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In Stabilization, Safety, and Security of
Distributed Systems, pages 386–400. Springer, 2011.

[27] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, pages 385–400.
ACM, 2011.

[28] M. Stonebraker, S. Madden, J. D. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era: (it’s
time for a complete rewrite). In VLDB, pages 1150–1160, 2007.

[29] M. Stonebraker and A. Weisberg. The VoltDB main memory
DBMS. IEEE Data Engineering Bulletin, 36(2), 2013.

[30] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP, pages
18–32. ACM, 2013.

[31] W. Weihl. Commutativity-based concurrency control for abstract
data types. IEEE Transactions on Computers, 37(12):1488–1505,
1988.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 525

Eidetic Systems

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen
University of Michigan

Abstract
The vast majority of state produced by a typical com-

puter is generated, consumed, then lost forever. We ar-
gue that a computer system should instead provide the
ability to recall any past state that existed on the com-
puter, and further, that it should be able to provide the lin-
eage of any byte in a current or past state. We call a sys-
tem with this ability an eidetic computer system. To pre-
serve all prior state efficiently, we observe and leverage
the synergy between deterministic replay and informa-
tion flow. By dividing the system into groups of replaying
processes and tracking dependencies among groups, we
enable the analysis of information flow among groups,
make it possible for one group to regenerate the data
needed by another, and permit the replay of subsets of
processes rather than of the entire system. We use model-
based compression and deduplicated file recording to re-
duce the space overhead of deterministic replay. We also
develop a variety of linkage functions to analyze the lin-
eage of state, and we apply these functions via retrospec-
tive binary analysis. In this paper we present Arnold, the
first practical eidetic computing platform. Preliminary
data from several weeks of continuous use on our work-
stations shows that Arnold’s storage requirements for 4
or more years of usage can be satisfied by adding a 4 TB
hard drive to the system.1 Further, the performance over-
head on almost all workloads we measured was under
8%. We show that Arnold can reconstruct prior state and
answer lineage queries, including backward queries (on
what did this item depend?) and forward queries (what
other state did this item affect?).

1 Introduction

The vast majority of state produced by a typical computer
is generated, consumed, then lost forever. Lost state in-
cludes process address spaces, deleted files, interprocess

1Currently, a 4 TB drive can be purchased for approximately $150.

communication, and input received from the network.
With lost state comes lost value: users cannot recover de-
tailed information about past computations that would be
useful for auditing, forensics, debugging, error tracking,
and many other purposes.

Prior approaches try to retain some of this informa-
tion via a variety of techniques, such as file backup,
packet logging, and process checkpointing, but these ap-
proaches preserve only the subset of information that
someone anticipates may be useful. A more comprehen-
sive approach is needed: one that preserves the values
and lineage of all state that has ever existed on the sys-
tem. We call such a system an eidetic computer system.

An eidetic computer system can recall any past state
that existed on that computer, including all versions of all
files, the memory and register state of processes, inter-
process communication, and network input. Further, an
eidetic computer system can explain the lineage of each
byte of current and past state.

Lineage describes how state was derived. With such
information, the user of an eidetic system can often in-
fer why the data was derived. For instance, a colleague
might point out to a user that a citation in a paper draft
is incorrect. Using an eidetic system, the user could trace
back from the binary document through all the steps used
to create that document and recreate the browser screen
displaying the Web page from which the data was de-
rived. On seeing that Web page, the user would realize
that he cited the wrong paper from a conference session.
The user could then trace forward from that mistake and
reveal all current documents and data that reflect the mis-
take, as well as any external output (e.g., e-mail) contain-
ing mistaken information.

Or consider an example in which someone runs a
malicious application on a shared computer. The ma-
licious program exploits a privilege escalation vulnera-
bility, gives itself privileged access, and installs a back-
door for future access. An eidetic system could trace for-
ward from the malicious program, trace through the priv-

526 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ilege escalation vulnerability, and determine that the ma-
licious software installed a backdoor. The system could
then trace any future executions of the vulnerable pro-
gram and determine if the backdoor was ever used, and
exactly what was done by the attacker during the vulner-
able window. In these and similar examples, recall and
lineage are tightly coupled; they are useful in isolation
but much more powerful when combined.

In this paper, we describe an eidetic system called
Arnold that provides the above properties for personal
computers and workstations with reasonable storage re-
quirements and runtime overheads. The key technologies
that enable Arnold to provide the properties of an ei-
detic system efficiently are deterministic record and re-
play [10], model-based compression, deduplicated file
recording, operating system tracking of information flow
between processes [23], and retrospective binary analy-
sis of information flow within processes [11, 35].

Arnold uses deterministic record and replay to effi-
ciently reproduce past computations. Reproducing past
computations enables Arnold to recall any state and to
track the lineage of that state within a replaying en-
tity. Arnold uses numerous optimizations to reduce the
amount of data that must be recorded. As a result, the log
data required for years of operation of a personal com-
puter or workstation can fit on a commodity hard drive.

To avoid the need to replay the entire system to re-
cover any state, Arnold divides the system into units,
called replay groups, that can be replayed indepen-
dently. To track information flow between replay groups,
Arnold records dependency information for each com-
munication between replay groups, forming a depen-
dency graph. In addition to enabling information flow to
be tracked across groups, the dependency graph also al-
lows Arnold to treat as a cache the log of data sent be-
tween groups. To conserve space, Arnold can discard this
data and regenerate it later by replaying the group that
produced it, a technique we call cooperative replay.

To analyze lineage within a replay group, Arnold
uses retrospective binary analysis, in which it determin-
istically reexecutes the processes within the group and
tracks the relationships between inputs and outputs. Dif-
ferent linkage functions may be used to define depen-
dencies according to how the lineage analysis will be
used. Arnold defers the choice of linkage function to the
time of the query. This preserves flexibility and enables
it to answer lineage queries that were not anticipated dur-
ing the original execution. It also moves the overhead of
analysis from original execution to the time of query.

Putting these pieces together, Arnold can answer both
backward queries (where did this particular state come
from?) and forward queries (what outputs and current
state are derived from this prior state?). It does so by
following the dependency graph, reexecuting the process

groups to learn how their inputs map to their outputs, and
querying the graph to learn how group outputs map to the
inputs of other groups.

Underlying Arnold’s design is the observation that de-
terministic replay and information flow are synergistic.
Recording information flow among processes saves stor-
age space by eliminating the need to record the data sent
between processes. Deterministic replay makes it possi-
ble to reproduce any transient state of a prior process ex-
ecution. This makes it possible to perform information
flow queries over that state that were not imagined at the
time the process executed. It also provides the ability to
defer the work of tracking information flow within pro-
cesses until the results are needed.

We have run Arnold continuously on our workstations
for several weeks. Our results show that its storage re-
quirements for 4 or more years of operation could be sat-
isfied by adding a $150 4 TB hard drive. On almost all
benchmarks we ran, Arnold’s performance overhead is
less than 8%. We also report on several case studies in
which we use Arnold to reproduce past state and trace
lineage over many applications and workflows.

2 Related work

Arnold draws upon prior research from many areas.
Many systems have sought to save some prior state in a
system. For example, versioning file systems [39, 44, 49]
store regular snapshots of file state; process checkpoint-
ing systems [40] store snapshots of running processes;
and systems like DejaView snapshot both processes and
files [24]. These systems store only a subset of the state
in a system, and they take checkpoints only at coarse-
grained points in time to reduce storage usage. Check-
points are insufficient to reproduce computation or to
track intra-process lineage. In contrast, Arnold can repro-
duce all state and computation in a system at the granu-
larity of individual instructions.

Arnold uses deterministic record and replay to repro-
duce all state and computation in a system. Deterministic
replay for uniprocessors is a mature technology, and im-
plementations exist in both software [54, 10, 14, 17, 36,
43, 46] and hardware [6, 34, 53, 21, 30, 33, 51]. Mak-
ing deterministic replay efficient on multi-processors is
an ongoing research challenge [15, 25, 50, 3, 38, 52, 55,
12, 26], as is making execution on multiprocessors deter-
ministic [8, 9, 13, 28, 37]. We deterministically replay a
multiprocessor system by recording synchronization op-
erations and instrumenting races, but this is not a focus
of this research. Instead, we focus on applying determin-
istic record and replay to build an eidetic system and on
reducing the storage overhead for long-term use through
techniques such as model-based compression.

Checkpointing and rollback-recovery have often been

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 527

used to restore past state [16]. However, the focus of most
prior work has been to tolerate failures by reproducing
the latest correct state, rather than to restore any past state
as in eidetic systems.

Prior research has examined how to track the lin-
eage of data, either within a process [35] or between
processes [23, 22, 18]. Provenance-aware storage sys-
tems [31, 32] annotate file data with causal history to
capture the relationship between processes and files.
Arnold tracks lineage within a process, between pro-
cesses, and between files and processes. Unlike prior sys-
tems, Arnold tracks comprehensive lineage for arbitrary
executables and non-deterministic programs.

Other projects have examined how to index and query
prior system state. DejaView [24] indexes and pro-
vides a query interface for prior information that is dis-
played on the screen or available through the accessibil-
ity API. Tralfamadore traces the execution of a system
and provides mechanisms and components to analyze
that trace [27]. Arnold provides the ability to reproduce
all state and track its lineage across arbitrary computa-
tions.

Our technique to regenerate inter-group communica-
tion via replay trades storage for recomputation. Other
projects have made a similar tradeoff in different do-
mains [19, 2, 7, 47]. For example, Nectar [19] trades stor-
age for computation in data-parallel cloud environments
and supports recomputation of storage results from in-
puts and memoization of partial and full computations.
While Nectar is restricted to DryadLINQ applications,
which are both deterministic and functional, Arnold pro-
vides these and other benefits for general-purpose com-
putation.

3 Design goals

The design of Arnold was guided by several goals.
First, we wanted to support the widest possible range
of queries about user-level state and the lineage of that
state. Arnold reproduces and tracks the lineage of state
of all user-level processes at the level of the instruction
set architecture. We wanted to support queries (Section
4.8) about backward lineage (what influenced this data?)
and forward lineage (what did this data influence?) both
within a replay group (Section 4.6) and between replay
groups (Section 4.5). We also wanted to support queries
not anticipated at the time of recording, which we ac-
complish via retrospective binary analysis (Section 4.6).

Second, we wanted to minimize the time and space
overhead of recording, since we intend for Arnold to con-
tinuously record computer usage. We wanted the time
overhead of recording to be low enough to support in-
teractive workloads and the space overhead to be small
enough to record several years of execution of worksta-

tions and personal computers on a commodity hard drive.
We reduce the time overhead of recording through deter-
ministic record and replay (Section 4.1) and retrospec-
tive binary analysis (Section 4.6). We reduce space over-
head through techniques such as model-based compres-
sion (Section 4.2), deduplicated file recording (Section
4.3), and cooperative replay (Section 4.4).

Third, we wanted to reduce the cost of answering
queries by not requiring the reexecution of processes un-
related to the state being queried. We accomplish this by
dividing the system into multiple replay groups, each of
which can be replayed independently. To preserve lin-
eage between replay groups, we track the dependencies
cause by inter-group communication in a dependency
graph (Section 4.5).

4 Design and implementation

4.1 Record and replay
Deterministic record and replay enables two impor-

tant features of Arnold. First, it allows Arnold to effi-
ciently reproduce the complete architectural state (regis-
ter and address space) of user-level processes. Second, it
allows Arnold to defer the work needed to track lineage
from the time of execution to the time of querying [11].

To enable reproduction of all architectural state,
Arnold records and replays execution at the level of pro-
cesses. Our modified Linux kernel records all nondeter-
ministic data that enters a process: the order, return val-
ues, and memory addresses modified by a system call;
the timing and values of received signals; and the results
of querying the system time.

Dealing with multiple threads/processes that write-
share memory requires special care. Record and re-
playing individual threads/processes would shrink the
scope of replay needed to answer a query, but this
would require Arnold to record all nondeterministic
reads of shared memory. Instead, Arnold records all
threads/processes that share memory as a single replay
group, then seeks to replay the interleavings of events
from the replay group deterministically.

To enable deterministic replay of a replay group,
Arnold records all synchronization operations and
atomic hardware instructions (such as atomic inc, or
atomic dec and test). A modified version of libc

logs the order and memory addresses of synchronization
operations between threads, including low-level atomic
instructions and high-level synchronization operations
such as pthread lock. Such logging inserts an addi-
tional two atomic instructions for each event logged (to
order the start and end of the operation). In the absence
of data races, this information is sufficient to faithfully
replay the recorded execution of a replay group involv-

528 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ing multiple threads or processes—each replayed thread
will execute the same sequence of instructions and sys-
tem calls, observe the same values read, and produce the
same results as during recording [42].

In the presence of data races, the replayed execution
may diverge from the recorded one. We deal with pro-
grams with data races by identifying the races and adding
additional instrumentation to eliminate them on subse-
quent runs. Veeraraghavan et al. [48] observed a synergy
between deterministic replay and data race detection: if
the only reason that a replayed execution may diverge
from a recorded execution is the presence of a data race,
then the replay system can act as a very efficient data-
race detector. Arnold supports the ability to instrument
and observe the execution of replayed recordings (Sec-
tion 4.6), and we use this to run a standard vector-clock
data race detector [41] when a replay divergence is de-
tected. This is guaranteed to detect at least the first pair of
racing instructions (it may also detect subsequent pairs).
We then either statically instrument the code to record
the outcome of the data race, or dynamically instrument
the binary when it runs to cause the racing pair of in-
structions to trap to the kernel (via an INT 3 instruc-
tion), where we record the order of the racing instruc-
tions. Static instrumentation is preferred since it is more
efficient, but dynamic instrumentation allows us to sup-
port applications for which we do not have source code.

In practice, we have detected few data races that affect
replay in the programs we run on our workstations. It has
been relatively simple for a small team of users to add
the necessary instrumentation to record these instances.
Interestingly, many of the races we found were already
documented, for example by developers who ran Thread-
Sanitizer [45] or similar tools. Since races are very infre-
quent, we suspect that it should usually be possible to
search through all possible interleavings of the racing in-
structions to find an interleaving that is indistinguishable
from the recorded execution [3, 38].

When a process executes the exec system call,
Arnold creates a new replay group (with a unique 64-
bit identifier) consisting solely of that process. Arnold
also saves a small checkpoint for the new group, which
allows replay to begin from the creation of that process.
The checkpoint consists of the arguments and environ-
ment variables passed to exec, other nondeterministic
information used during the system call (e.g., seeds used
to randomize address spaces), and a reference to the file
containing the executable image—the image usually re-
sides in a deduplicated file store described in Section 4.3.

Arnold creates new replay groups on exec rather than
on fork because the initial address space at exec is more
amenable to deduplication than the address space at the
time of fork. It stores a split record that contains the
unique identifier of the new replay group in the log of

the replay group that performed the exec. Infrequently,
two replay groups need to be merged (e.g., because they
establish a write-shared memory segment). In such in-
stances, Arnold merges the processes from one group
into the other and inserts a merge record into their logs.

Arnold replays recorded execution on a per-group ba-
sis. It creates a new process from the group’s checkpoint
and deterministically reexecutes the process by supply-
ing values from the group’s log in lieu of performing any
nondeterministic action. As additional threads and pro-
cesses are created within the replay group, Arnold also
replays those entities. Each process executes until it exits
or the execution reaches a split record. Arnold can re-
play multiple groups concurrently—this allows it to par-
allelize lineage queries that span groups.

4.2 Reducing storage utilization
Arnold uses several optimizations to reduce the size

of its replay logs. The first optimization is model-based
compression. The order and results of many of the sys-
tem calls and synchronization operations that Arnold
logs are highly predictable. For instance, many system
calls usually return zero (success); the write system call
usually returns the number of bytes in the input buffer;
and pthread cond lock usually returns a value speci-
fying that the lock has been obtained. Arnold constructs
a model for predictable operations and records only in-
stances in which the returned data differs from the model.
Thus, the log size used for each type of operation is pro-
portional to the number of deviations, which can be much
less than the number of executed operations.

Some operations such as poll exhibit considerable
locality in the data they return (e.g., the set of ready file
descriptors is often the same from call to call within a
short window). For these operations, Arnold caches the
most recent 8 values returned on both record and replay
and replaces the actual values in the log with a small
cache index (when the value hits in the cache) in order
to save space. Arnold also uses model-based compres-
sion to reduce the amount of ordering information in the
log. It predicts that there are no ordering constraints and
no signals delivered between two successive logged op-
erations, and records only when the execution deviates
from the model.

After applying model-based compression, we deter-
mined that the most significant source of log usage on
our systems was messages sent from the X server to ap-
plications. A small fraction of this data comes from user
events (button presses, mouse movements, etc.). Most
data consisted of responses to application requests. Since
such responses included nondeterministic data such as
identifiers and window properties, the responses needed
to be recorded to faithfully replay each application.

We observed, however, that with the exception of ac-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 529

tual user input, the behavior of the X server is mostly
deterministic. Arnold avoids logging most data from the
X server by using the X server to help regenerate data
during replay. We insert a proxy between applications
and the X server that records only a small subset of
the data sent from the X server, such as identifiers and
window properties generated nondeterministically by the
X server. During replay, the application again connects
to an X server via the proxy. The proxy translates the
nondeterministic values, and the replay process gener-
ates GUI state using the live X server, but on a sep-
arate display. The proxy also inserts the recorded user
events at the appropriate point in the stream. In combina-
tion with the proxy translation, the X server produces the
same sequence of responses during the replayed execu-
tion as during recording. With deterministic X recording,
Arnold can make the display of X windows visible dur-
ing replay. As we will describe, this is useful for show-
ing users application displays that correspond to the re-
sults of lineage queries and for allowing users to specify
queries by clicking on recreations of windows displaying
data they observed in the past. By recording only nonde-
terministic response values and user input, the proxy sub-
stantially reduces the amount of information in the logs
of GUI applications.

After applying the above optimizations, we noticed
that time queries constituted a substantial portion of
the remaining log size. To reduce the amount of non-
determinism that needs to be logged, Arnold uses a
semi-deterministic clock. The value returned by a semi-
deterministic clock is guaranteed to be less than the
real-time clock for the system, and within a specified
delta. The default delta is 10 ms; it may be overrid-
den by applications that need more accuracy. A replay
group’s semi-deterministic clock is incremented deter-
ministically based on the number and type of logged op-
erations (which is the same during both recording and
replay). When the time is queried, Arnold reads the ac-
tual real-time clock. If the semi-deterministic clock is
greater than or more than delta behind the real-time
clock, Arnold returns the real-time clock value, sets the
semi-deterministic clock equal to the real-time clock, and
records the new value in the log. Thus, the amount of
time query data in the log is proportional to the num-
ber of such resets rather than the total number of time
queries; if Arnold usually predicts the clock value cor-
rectly, the amount of logged time data can be quite small.

Arnold ensures that observed semi-deterministic
clock values are externally consistent. It is for this rea-
son that the semi-deterministic clock must always be less
than the real-time clock. If a recorded process sends a
message to a non-recorded process, the receiver will al-
ways observe that the message arrived after it was sent.
Further, if a recorded process receives data from or sends

data to an entity outside the replay group, the group’s
semi-deterministic clock is set to match the real-time
clock. Thus, the observed clock values are causally con-
sistent both across all processes on the computer system
and with respect to external entities.

Finally, Arnold compresses all log data with gzip.
This is very effective in compressing some input, such as
text. It also helps to compress applications that perform
repetitive operations with similar results.

4.3 Copy-on-RAW file cache
Arnold records the file data read by a process so

that data can be redelivered to the process during re-
play. Recording this data can take a substantial amount
of log space, so Arnold optimizes how the read file data
is stored by deduplicating it. This works particularly well
when a file is read multiple times before being modified.

To deduplicate the read file data, Arnold saves a ver-
sion of a file only on the first read after the file is written.
Subsequent reads log only a reference to the saved ver-
sion, along with the read offset and return code. We refer
to this as copy-on-RAW (read-after-write) recording.

If another process opens the file for writing while a
reading process is running, the reading process reverts
back to recording the read values instead of the reference
to the stored version (several optimizations are possible
here, such as recording the file version on each read in-
stead of open, or reexecuting reads and writes to files
shared among processes in the same replay group.)

Arnold also uses the copy-on-RAW store for file mmap
operations by mapping the stored file version into the
process space on replay. If the mapped region is writable,
Arnold creates a private temporary copy of the file ver-
sion on replay; this allows the replayed process to change
the file contents without affecting other replayed pro-
cesses that reference the same file version.

Note that, with this design, the current version of all
files is stored in the default file system (ext4 on our
Ubuntu workstations). We chose this operation for ef-
ficiency; recording processes (the common usage case)
go through the well-optimized file system and receive
the best performance. Copy-on-RAW population of the
file store can proceed asynchronously and not slow down
the recording process too much unless large amounts of
data being read exert memory pressure. The cost of this
implementation is some double-buffering of current file
data, which we could reduce in the future.

We were initially surprised because the size of
Arnold’s file store grew more slowly than expected on
our workstations. On investigation, we realized this was
due to an important difference between Arnold’s file
store and a versioning file system: Arnold’s file store
does not have to store data that is written but never read.
Since Arnold is an eidetic system, it can, of course, recre-

530 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ate this file data; however, it does so by replaying the pro-
cess(es) that produced the data rather than by retrieving
the data from the file system. In contrast, a versioning
file system needs to store all file versions even if they are
overwritten or deleted without being read.

Since Arnold can reproduce any current or past file
version via replay, it is the logs of nondeterminism that
are Arnold’s truly persistent store [16]. We can thus treat
Arnold’s copy-on-RAW file store as a cache. The copy-
on-RAW file store (and, in fact, all file system data) is
simply a performance optimization that contains check-
points of data that could be produced by replay. This rea-
soning led us to develop cooperative replay.

4.4 Cooperative replay

We normally think of replay groups as independent
entities: we log their nondeterministic inputs during
recording and reinsert these inputs during replay. Coop-
erative replay provides another option, which is to use
one replay group to regenerate the data read by another.
Cooperative replay allows us to treat the log of all in-
terprocess communication (files, pipes, etc.) as a cache,
whose records can be evicted when the cache is full and
recovered when needed during replay.

Arnold uses cooperative replay to regenerate data read
from files. During replay, if the requested data exists in
the file system (because it is the current version of the
file) or in the copy-on-RAW file cache, Arnold reads
the data from one of those locations. If not, Arnold re-
generates the data by replaying the replay group(s) that
produced the data. Arnold stores information about the
source of all file data in each read record—this includes
the identifier of the replay group(s) and the system call(s)
executed by the group(s) that produced the file data (Sec-
tion 4.5). To regenerate the data, Arnold suspends the re-
play group requesting the data, replays the producing re-
play group(s), repopulates any data evicted from the file
cache, and finally resumes the requesting replay group.

Cooperative replay may recurse in a depth-first man-
ner. When replaying replay group A, Arnold may need
to replay another replay group B to regenerate file data
read by replay group A, and this may trigger the replay
of a third replay group C, and so forth. The recursion will
stop when a group can be replayed without depending on
any other replay group.

As data flows forward, it creates a directed acyclic
graph. While no cycles exist between nodes in the graph,
Arnold may encounter a scenario where two replay
groups depend on outputs of each other. In this scenario
Arnold will alternate replaying each group until all de-
pendencies are met.

4.5 Dependency graph
To support cooperative replay and track lineage across

replay groups, Arnold maintains a logical graph of the
data-flow dependencies between groups, which we re-
fer to as the dependency graph. Nodes in the graph are
<replay group id, system call id> tuples, where the sec-
ond part of the tuple uniquely identifies a particular sys-
tem call executed by a process in the replay group. Each
edge in the graph is a bidirectional link between the sys-
tem call that produced data and the set of one or more
system calls that consumed that data. Thus, Arnold can
determine the lineage of data across replay groups by
tracing backward in time through the dependency graph,
and it can determine what downstream values were influ-
enced by particular data by tracing the lineage forward.

We first describe the operation of the dependency
graph for file data. When a recorded process writes to
a file, Arnold records which bytes were modified, along
with the <replay group id, system call id> in a per-file
B-tree indexed by the file offset. The root of each per-file
B-tree is in turn indexed in a B-tree of all files; we refer to
this collection of B-trees as the filemap. Arnold allocates
a separate region on disk for the filemap; it reads pages
on demand into a kernel cache in physical memory and
evicts pages using an LRU algorithm. Pages are flushed
asynchronously using the journal mechanisms of the un-
derlying file system (ext4 in our current implementation).
Thus, the filemap contains the lineage information for all
current file data in the file system.

When a recorded process reads from a file, Arnold
searches through the filemap to find which system call(s)
wrote the bytes being read. It copies the tuples out of
the filemap into the replay log of the reading process.
Thus, the log contains sufficient data to answer backward
lineage queries (how was the data read by this process
produced?). In order to answer forward lineage queries,
Arnold generates an index over the reverse linkages and
stores it in a sqlite database. A daemon process asyn-
chronously generates the index by incrementally scan-
ning recent replay logs (replay is unnecessary because
the data needed to generate the index is in the logs).

Arnold uses a similar process to record the lineage of
other forms of IPC. For pipes and sockets, it keeps meta-
data for bytes written but not yet consumed in the kernel.
For most pipes and sockets, there is a single writing pro-
cess and a single reading process, and bytes are read in
the order they are written. In this common case, Arnold
reduces log size by only logging the identifier of the writ-
ing replay group. On a query, Arnold identifies the sys-
tem call(s) that generated data by scanning the log of the
writing record group. If there is more than one reader or
writer, Arnold tracks the reads and writes on the pipe or
socket in the same manner as for file system data.

Arnold also tracks lineage of the data passed from the

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 531

parent process to the child process during exec. This in-
cludes arguments, environment variables, and some mis-
cellaneous data used during the exec system call.

Arnold does not record the lineage of data passed
among processes via shared memory. Instead, Arnold
tracks this lineage at query time by instrumenting the
memory read and write instructions as described in the
next section.

4.6 Intra-process lineage
Arnold uses Pin [29] binary instrumentation to ana-

lyze replayed executions and track the lineage of data
within a replay group. We chose Pin because it is a
flexible and well-documented tool; however, Pin can
be slow, partially because it dynamically, rather than
statically, inserts instrumentation into running binaries.
Arnold avoids overhead during recording by only using
Pin and analyzing intra-process lineage during replay.

While analysis tools such as Pin are typically invis-
ible to the program they instrument, they are not trans-
parent to the operating system: such tools insert new sys-
tem calls, allocate additional memory, catch signals, etc.
Without special care, these extra actions to support anal-
ysis will cause the replayed execution to diverge from
the recorded execution. Arnold uses techniques from X-
ray [4] to compensate for the divergences caused by anal-
ysis; for instance, it prevents Pin from allocating memory
that will conflict with the replayed execution and it iden-
tifies system calls generated by Pin and executes them
live rather than trying to supply nondeterministic values
from the group’s log.

Arnold traces lineage within a group by restoring the
group’s checkpoint and replaying the processes within
the group with Pin dynamic analysis enabled. Pin tools
determine which inputs to the group influenced which
outputs according to a customizable linkage function.

There are many possible ways of defining lineage: one
can say that an input influences an output only if the out-
put is derived from the input via a series of copies, or one
can consider other forms of data flow, or control flow, etc.
The linkage function defines, for each type of proces-
sor instruction, which outputs of the instruction are in-
fluenced by which inputs. Each linkage is implemented
as a Pin tool. Arnold provides several common linkage
functions (and applications may define their own):

• Copy. An input of an instruction influences an out-
put only if the instruction copies the value of the
input to the output location (e.g., via a move in-
struction).

• Data flow. An input of an instruction influences an
output if the instruction uses the input to calculate
the value of the output (e.g., via an add instruction).

• Index. An input influences an output if the input is
used to calculate the output or if the input is used

as an index to load a value used to calculate the
output (e.g., via an array or lookup table index).

• Control flow. This includes, in addition to index
and data flow influence, the influence propagated
via control flow as tracked using the algorithms de-
veloped by ConfAid [5].

The lineage data returned by each linkage function
above is a superset of the preceding linkage functions.
For example, if a group input and output are related via
the data flow linkage, they are also related via the index
and control flow linkages.

A lineage query for a group specifies a set of inputs,
a set of outputs, and a linkage function. Inputs may be
specified as a set of <system call id, byte range> tuples,
where each tuple denotes a unique system call performed
by the recorded group and the subset of input bytes to
track for that call. Alternatively, the input may be speci-
fied as a class of input (e.g., all file data or all GUI events
from the X server), or the query may simply track all in-
puts. Output is specified similarly.

Arnold uses taint tracking to derive intra-group lin-
eage. When it sees a system call matching the input spec-
ification, it taints the requested bytes with unique iden-
tifiers as they are read into the process address space.
As instructions execute, the Pin lineage tool propagates
that taint among memory addresses and registers accord-
ing to the linkage function. When Arnold sees an output
matching the specification, it writes the taint of each out-
put byte to a results file. Of course, each byte may be
influenced by zero to many inputs.

4.7 User-propagated lineage
For interactive workflows, lineage may pass through

the user of the system. For instance, she might view a
Web page in a browser, then type text from that page
into an editor. Arnold tracks such lineage by first identi-
fying inputs and outputs that occurred at approximately
the same time, then using fuzzy string matching to look
for contextual linkages among those inputs and outputs.

Arnold identifies user-generated inputs with a Pin tool
that runs on a replayed execution. The tool identifies
channels corresponding to user input: sockets used to
communicate with the X server (for GUI input), the ter-
minal device (for text input), and network sockets con-
necting to well-known ports associated with user input
(e.g., the sshd port). It generates a temporary file con-
taining the stream of data read from every such chan-
nel read by the replay group. The tool performs channel-
specific parsing: for instance, it decodes the X messages
to read the corresponding key press events, and it inter-
cepts data returned from functions such as SSL read to
retrieve the unencrypted data from ssh sockets. The chan-
nel input stream file therefore contains textual data that
corresponds to the input.

532 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Arnold follows a similar strategy to generate output
stream files for a replay group. Understanding GUI out-
put turned out to be tricky, however, because most pro-
grams we looked at did not send text to the X server, but
instead sent binary glyphs generated by translating the
output characters into a particular font. Arnold identifies
these glyphs as they are passed to standard X and graphi-
cal library functions. It traces the lineage backward from
these glyphs using one of the above linkages (e.g., the
index linkage). These values are typically influenced by
either or both of (a) textual input to the process being re-
executed, or (b) standard font files. By tracing glyphs to
either location, Arnold recovers the characters associated
with those glyphs. If the lineage is traced to a font file
Arnold must determine the font character from the font
file. This requires Arnold to understand font file formats
(of which there are relatively few). Thus, it translates the
sequence of glyph outputs to the underlying text they de-
pict.

4.8 Query Execution
Arnold queries allow users to recall prior state and

lineage information. There are three types of queries:
• State queries retrieve past transient state, persis-

tent state, inputs, or outputs of the computer sys-
tem.

• Backward lineage queries start at any current or
past state, input, or output and trace the lineage of
the bytes comprising that state backward in time
according to a specified linkage function. A back-
ward query answers the question: How was this
state derived?

• Forward lineage queries start at a past state, in-
put, or output and trace the lineage forward in time
according to a specified linkage function to return
current and past state and outputs derived from that
state. A forward query answers the question: What
did this state influence and how was that influence
propagated?

4.8.1 State queries
Arnold can recover past file versions, transient pro-

cess state, inputs, and output. If a specified file version
does not already exist in its cache, Arnold uses coopera-
tive replay to regenerate the contents of the file. Arnold
reexecutes the specified replay group to regenerate both
transient process state and output. Inputs (with the excep-
tion of file data) are logged, so no reexecution is needed
to retrieve them.

Arnold also provides an interactive state query to al-
low users to inspect GUI output. During replay, X server
output is displayed on the current screen, allowing the
user to observe the display as it was manipulated during
recording. Via a separate console, the user can fast for-

ward to a particular output (i.e., the display is updated at
replay speed without the original think time, I/O delays,
etc.) or pause the replay at a particular point in the execu-
tion. By delaying a specified amount after each X output,
Arnold can also display a slow-motion execution.
4.8.2 Backward lineage queries

A backward query starts from a specified piece of cur-
rent or past state. The first step in processing this query
is to translate the starting state into a set of <replay
group,system call,byte range> tuples, where the system
call is a specific call executed by a process in the replay
group, and the byte offset is a range of bytes returned by
that call. There are many possible types of starting state.
For instance, the starting state may be data in a current
file specified as a <filename,starting offset,length> tu-
ple. Arnold looks up the lineage of these bytes in the cur-
rent filemap, which contains the <replay group,system
call,byte offset> tuple of the system call that produced
each byte.

The starting state may also be process inputs (e.g.,
data read from a socket, pipe, or terminal). The user can
specify a replay group and a specific type of input (e.g.,
network data) or a specific input channel (e.g., the termi-
nal device), as well as a regular expression over the in-
puts of that type or sent over the channel. In this case,
Arnold uses the user-interface tools described in Sec-
tion 4.7 to return a set of <replay group,system call,byte
range> tuples that match the specification.

The starting state may also be process outputs, which
are specified in a similar fashion and translated to tu-
ples via replay of the group and application of the user-
interface tools described in Section 4.7. Past file versions
can be used as starting state by either specifying the out-
put or input of the file data.

For X output, the user may use the GUI replay de-
scribed previously to regenerate past GUI output, pause
the replay, and click on the display to specify an <x,y>
coordinate. Arnold identifies the most recent X output
generated by the group at an area surrounding the <x,y>
coordinate. The starting state is the bytes passed to the
system calls or library functions generating that output.

Finally, the starting state can be arbitrary process state
in the replayed group. Custom state must be specified
via a Pin tool. For instance, we describe a case study
in Section 6.4.3 in which we determine what data was
leaked by the Heartbleed vulnerability. The Pin tool in-
spects program state at the faulty instructions and deter-
mines whether any bytes were sent over the network in-
correctly. If so, those bytes are specified as starting state
for a backward lineage query to determine what specific
data was leaked.

Given one or more of the above starting states, Arnold
translates that state into a set of <replay group,system
call,byte range> tuples. It executes a deterministic re-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 533

play for each unique replay group in the set. If the user
specifies a specific linkage function as part of the query,
Arnold uses the Pin tool associated with that linkage. The
linkage taints all inputs to that process group during re-
play by assigning a unique identifier for each <system
call,byte> read from an input source. When an output
matching one of the target tuples is generated, Arnold
outputs the set of taint identifiers (if any) associated with
the target bytes.

If the user declines to specify a linkage function,
Arnold runs multiple replays, stating with the most re-
strictive linkage and proceeding to less restrictive ones as
long as no target output is influenced by any input. Thus,
if the copy linkage returns no values, the data linkage is
run, then the index linkage, etc.

When inputs are found to influence target outputs,
Arnold checks the source of those inputs. If the input is
from an external source (e.g., bytes read from a network
socket), lineage can be traced no further. If the input is
from an IPC system call or file read, Arnold determines
the replay groups that generated the data from the re-
play group log. It then recursively replays those groups
to trace lineage back one more step. If the input is from
a file, Arnold also reads from the log the system call and
byte offsets that wrote the data. Otherwise, such infor-
mation can be obtained by replaying the specified group.

Finally, if Arnold traces lineage back to a user input
from the GUI or keyboard, it attempts to infer a link-
age between the data entered by the user and any infor-
mation recently seen by the user. It searches through the
output of applications currently displaying output at the
time the input was entered using the user-interface tool
of Section 4.7. It performs a fuzzy string matching to de-
termine whether the output likely influenced the input.
If a match is found, it reports this as a human linkage
and continues to trace the lineage back from the system
calls that generated the matching output. Because human
linkages are imperfect and may report both false posi-
tives and false negatives, Arnold treats human linkages
as the weakest form of linkage, giving them the lowest
priority with respect to matching inputs to outputs.

In summary, a backward query proceeds in a tree-like
search, fanning out from one or more target states. The
search continues until it is stopped by the user or all state
has been traced back to external system inputs. As the
search fans out, Arnold replays multiple replay groups in
parallel. In addition, if no lineage is specified, it may test
multiple linkages for the same group in parallel, termi-
nating less restrictive searches if a more restrictive search
finds a linkage.
4.8.3 Forward Queries

Forward queries start from some past state and return
the values influenced by that state according to a spec-
ified linkage function. As with backward queries, the

starting state may consists of current or past file state,
process inputs or outputs, and/or specific bytes in an ad-
dress space identified by a Pin tool.

Tracing intra-process lineage for forward queries is
much more efficient than for backward queries because
only those bytes corresponding to the target input need to
be tainted. This results in much less overhead in tracking
information flow within each process.

The lineage tool returns a set of outputs that are in-
fluenced by the target inputs. Arnold uses the reverse
index described in Section 4.5 to determine which re-
play groups subsequently consumed that output. Thus,
the query fans out recursively from the initial state to
replay the groups that were influenced by that data. As
with backward queries, human linkages from user-visible
output to user-generated input are also traced as part of
the query. Further, as the query fans out, multiple replay
groups are reexecuted in parallel.

The forward query returns the set of all current state
and system outputs influenced by the starting state. It also
contains the specific chain (processes executed, inputs,
and outputs) that propagated that influence.

5 Privacy

One concern with eidetic systems is the potential expo-
sure of private data. Arnold’s log can be used to recreate
any state on the system and thus must be protected to
the same or greater degree that one would protect other
private memory and file system state.

A related concern is preserving a user’s ability to ex-
clude data from recording. For example, Arnold as de-
scribed here would preserve all state from a user’s “pri-
vate” browsing session. However, Arnold could provide
the ability to remove sensitive portions of the process
graph by sanitizing and replacing portions of the log.
For instance, Arnold could remove sensitive information
contained in a process’s address space by replacing that
process’s execution with a simple stub program that pro-
duces the same output.

A user who wants to remove sensitive information
may actually benefit from Arnold’s ability to track lin-
eage. The user could identify the sensitive information or
portions of execution, then ask Arnold to identify points
in the process graph that depend upon this information.
The user could then replace those parts of the graph with
stubs that jump over the sensitive portions. Of course,
once data is removed from Arnold, all lineage informa-
tion and ability to query the execution are also lost.

6 Evaluation

Our evaluation answers the following questions:

534 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

User Days Groups Storage utilization (MB) per day

per day RAW
file cache

Logs Filemap Total

A 25 995 475 267 36 779
B 24 475 1095 936 339 2064
C 21 26122 869 350 690 1910
D 16 3339 1675 82 838 2594

Table 1: Storage utilization during multi-week trial

• What is Arnold’s performance overhead?
• What are Arnold’s storage requirements?
• What types of queries can Arnold answer?

6.1 Storage overhead
We first consider the storage overhead of running

an eidetic system. To measure this overhead, the au-
thors of the paper continuously recorded activity on their
workstations for several weeks. The recorded activity in-
cluded all user-level processes started from a terminal
or launched from the GUI. It did not include several
system-level processes, such as the X server (which is
not recorded per the design in Section 4.2), processes
that directly manipulate the replay data (e.g., indexing
tools), and the sshd server (since we sometimes needed
to log in without replay enabled for testing and main-
tenance). With the above exceptions, the vast majority
of user activity was recorded. No files were evicted from
the copy-on-RAW file cache since storage utilization was
reasonable.

Table 1 summarizes the storage cost of our eidetic sys-
tem. The third column shows the average number of re-
play groups created per day; note that there may be many
threads and processes within a single group. The number
of groups created varies widely depending on workload;
some users have a few long-running applications; oth-
ers have workflows (e.g., compilation) that create many
short-lived groups. The next columns show average stor-
age utilization per day, broken down to show the individ-
ual storage utilization of the copy-on-RAW file cache,
the replay log storage, and the filemap. Process check-
points are included in the total but not shown separately,
since they account for less than 2 MB per day of storage.
Executables and shared libraries referenced by check-
points are included in the copy-on-RAW file cache.

While we cannot make comprehensive claims about
storage utilization without a wider user study, this pre-
liminary data is very encouraging. All users require less
than 2.6 GB of storage per day; a 4 TB drive would suf-
fice for 4–14 years.

6.2 Benefits of compression
Next, we quantify the benefits of Arnold’s storage op-

timizations. Table 2 shows results for several workloads.
The Firefox workload measures a half-hour brows-

ing session consisting of 15 minutes of active browsing
across 8 complex Web sites (e.g., Facebook and stack
overflow), followed by 15 minutes of idle usage with
Gmail windows open (triggering periodic JavaScript ex-
ecution). The evince, gedit, gpaint, LibreOffice
spreadsheet, and LibreOffice presentation workloads
use those applications intensely for 3 minutes. The
latex workload builds a prior OSDI paper, and the make
workload builds the libelf-0.8.9 library. In these and sub-
sequent experiments, we ensure repeatable results by
automating all GUI workloads with the Linux Desktop
Testing Project library [1], which captures and emulates
GUI events.

The first row in the table shows storage usage when
all nondeterministic inputs are logged without any com-
pression. The subsequent rows show the effect of cu-
mulatively applying model-based compression, copy-
on-RAW file caching, the deterministic X proxy, semi-
deterministic time, and gzip compression. The final row
shows the compression ratio compared to baseline due to
all of Arnold’s optimizations.

Arnold averages a 411:1 compression ratio compared
to the baseline. For comparison, simply applying gzip to
the baseline averages only a 6:1 compression ratio. At
36:1, LibreOffice presentation sees the lowest com-
pression ratio; this is due to the recording of temporary
files written and read by the application. In the future,
Arnold could omit such data since the files are never read
by other replay groups and Arnold could regenerate the
file contents during replay.

6.3 Performance overhead
Next, we measure Arnold’s performance overhead

during recording (i.e., the overhead that would normally
be experienced by a user). All tests were run on a com-
puter running Ubuntu 12.04LTS with an 8 core Xeon
E5620 2.4 GHz processor, 6 GB memory, and a 1 TB
7200 RPM hard drive. We measured several terminal and
GUI applications, and one server workload (apache):

• kernel copy – cp -a of the 3.5.0 Linux source.
• cvs checkout – check out Arnold’s kernel source

(589 MB, 52730 files) from a repository accessible
via a local, 1 Gb local network connection.

• make – compile the libelf-0.8.9 library.
• latex – build a prior OSDI paper with
latex/bibtex.

• apache – run the apache benchmark on an apache
2.2.22 server, configured with mpm prefork with
256 workers, and a client connected via a 1 Gb lo-
cal network connection (5000 requests for a 34 KB
page with 50 concurrent requests at a time.)

• gedit – open a 15,000 line C file and find/replace
on a commonly occurring string.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 535

Storage utilization (MB)
Firefox evince gedit gpaint spreadsheet presentation latex make

Baseline 4517.63 194.51 764.34 95.29 4362.49 455.10 20.05 86.69
Model-based compression 308.93 7.07 12.50 36.12 41.16 31.07 7.19 81.52
Copy-on-RAW file cache 283.37 2.63 8.41 34.77 22.63 23.83 0.25 6.13

X compression 173.74 2.61 8.29 1.08 22.55 15.94 0.25 6.13
Semi-deterministic time 127.72 2.11 6.51 0.94 19.23 15.39 0.29 6.12

Gzip 24.87 0.11 0.50 0.08 3.33 12.71 0.05 1.15
Compression ratio 182:1 1752:1 1530:1 1217:1 1311:1 36:1 393:1 75:1

Table 2: Reduction in storage utilization via incremental application of optimizations

• facebook – load the White House’s public Face-
book page in Firefox version 23.0 (the comple-
tion time is measured by the onLoad event.)

• spreadsheet – Open a 704 KB csv spreadsheet in
LibreOffice 3.5 and convert it to an xml docu-
ment.

Figure 1 shows the performance of Arnold on a vari-
ety of desktop workloads, normalized to the performance
of an uninstrumented system. The middle bar for each
workload shows the performance during recording; this
is the overhead the user will experience during normal
operation. The third bar shows the performance during
recording when Arnold uses a second hard drive for log-
ging, which minimizes interference with normal file sys-
tem writes.

Arnold’s overall performance impact is small: over-
head is under 12% with a single disk for all but two
workloads. The cvs checkout has approximately 100%
overhead with a single disk because it saves all checked-
out data twice: once as nondeterministic network input
and again when cvs writes the data to the file system.
Adding a second logging disk reduces the overhead for
cvs to 15%.

The higher overhead seen by kernel copy is caused by
saving filemap entries. This workload is disk-bound and
creates many small files. For each file created, Arnold
must create a B-tree to record lineage data—this is effec-
tively a worst-case for saving filemap entries. A separate
logging disk reduces the overhead to 1.7%.

The Facebook tests contained some outliers due to ex-
ternal network and servers. We eliminated gross outliers
(500% or more above the median) from our measure-
ments (both for baseline and for Arnold); doing so did
not help Arnold disproportionately.

We also evaluate the scalability of Arnold on several
Splash 2 benchmarks, shown in Figure 2. While scalabil-
ity was not a focus of our work, Arnold has low overhead
for all these benchmarks up to 8 threads. We attribute this
to two factors. First, Arnold requires programs to be race-
free, so it only has to check and log inter-thread synchro-
nization operations rather than all shared-memory oper-
ations. Second, Arnold’s model-based compression re-
duces the instrumentation overhead per synchronization

 0

 0.5

 1

 1.5

 2

 2.5

kernel copy

cvs checkout

m
ake

latex
apache

facebook

spreadsheet

gedit

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Baseline
Arnold
Arnold with 2nd Disk

Figure 1: Arnold performance overhead normalized to
unmodified Linux. Error bars are 95% confidence inter-
vals.

operation to only two atomic instructions in the common
case.

In summary, Arnold adds modest overheads of less
than 12% with a single disk on all but 2 workloads over
a wide range of desktop and interactive applications.
Adding a second hard drive reduces the overhead to un-
der 8% on all but one workload. In practice, even on
single hard drive configurations, we noticed virtually no
difference between our recorded applications and non-
recorded applications. In fact, we needed to add a util-
ity to our shell interface simply to determine whether
recording was currently enabled or disabled.

6.4 Case studies
Finally, we look at a series of case studies of queries

that we expect to be typical of Arnold’s usage.

6.4.1 Backward Query
Our first case study is a typical backward query. In

this scenario, a colleague points out to the user that he
has cited the wrong paper in a conference submission.
The user runs a backward query to determine how the
incorrect citation was produced and what the correct ci-
tation should be.

We executed this query by opening a binary document
with xdvi, scrolling to the bibliography, and clicking on
a screen location to specify the incorrect citation as the

536 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

fft raytrace

w
ater-nsquared

lu ocean

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Benchmarks

1 thread
2 threads
4 threads
8 threads

Figure 2: Arnold’s scaling, normalized to unmodified
Linux, on Splash2 benchmarks. Error bars are 95% con-
fidence intervals.

starting state for the query. We did not specify a link-
age, so Arnold ran the query with multiple linkage func-
tions (the various linkage functions are analyzed in paral-
lel via concurrent replay). For each step, Arnold chooses
the most restrictive linkage function that produces some
result (shown below in parentheses).

The query returned the following results:
• The specified output of xdvi came from the input

file “paper.dvi” (index linkage).
• The incorrect citation in “paper.dvi” was generated

by latex with data coming from the input file “pa-
per.bbl” (data linkage).

• The data in “paper.bbl” was generated by bibtex

with data from “full.bib” (copy linkage).
• The data in “full.bib” was generated by vim with

data from the terminal device (copy linkage).
• A human linkage (described in section 4.7) reveals

a fuzzy substring match between data coming from
the terminal and Firefox output.

• The output displayed by Firefox came from a
conference Web site (data linkage).

• The query also reports four false positives: a latex
format file, a font file, libc.so and libXt.so.

Using Arnold, the user fast-forwards a Firefox re-
play to the point indicated by the query result. On view-
ing the recreated GUI, he realizes that the paper that he
meant to cite was the next paper in the session after the
incorrect citation.

As shown in the first row in Table 3, the query takes
209 seconds to execute, whereas the cumulative execu-
tion time of the recorded processes was only 96 seconds.
Replay of the processes with zero instrumentation takes
only 2 seconds because all user think time and most I/O
delays are eliminated or replaced with a sequential disk
read from the log. Simply attaching Pin to the replayed

processes and inserting a very minimal instrumentation
tool (which counts the number of system calls executed)
increases the replay time to 70 seconds—this is the lower
bound for any Pin tool on this workload.

The time it takes Arnold to perform the queries in ta-
ble 3 is dominated by the Pin tool instrumentation and
analysis, and not the actual replay system. Consequently,
Arnold’s query times are dictated by the number of in-
structions analyzed and the amount of taint information
in the address space.

This query demonstrates that Arnold can successfully
follow a long chain of applications to trace the lineage
of data back to external inputs. The chain contains both
binary and text data, as well as several types of linkages
(intra-process, file, and human). Note that simply search-
ing over inputs and outputs cannot reveal this whole
chain (e.g., incoming Web data is encrypted, text input to
vim includes backspaces and various keyboard macros,
etc.) Lineage queries, however, can uncover linkages to
such inputs because they directly observe the transforma-
tion of bytes in the process address space.

6.4.2 Forward Query
The second case study is a typical forward query. Our

user now wishes to determine what other data and output
has been affected by the faulty citation.

We executed this query by specifying the starting state
as the incorrect citation in “full.bib.” We also specified
the index linkage function.

The forward query returns a list of external outputs
and current files that the incorrect citation affected. Some
key points of the result are:

• All subsequent versions of “full.bib” contain the
incorrect citation. This is a shared bibliography file
that is used to generate citations in several other
papers on the user’s computer. The forward query
tracks the incorrect citation through the entire
paper compilation process (e.g., though bibtex,
latex, dvips, and ps2pdf).

• The query flags all files produced during the paper
compilation process that include the specified cita-
tion (e.g., “paper.bbl”, “paper.dvi”, “paper.ps”, and
“paper.pdf.”)

• The query does not return false positives. The user
also has several papers that use the bibliography
file “full.bib”, but those papers do not cite the
incorrect citation. Even though “full.bib” is read
when those papers are compiled, Arnold correctly
reports that no output file is affected by the incor-
rect citation.

• The query shows that the user had copied and
pasted the incorrect citation from “full.bib” to an-
other file, “paper.bib”, using vim. The query also
returns subsequent compilations and output files of

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 537

Case Study Record Time Replay Time Replay & Pin Query Time
Case Study 1: Backward Query 96.1s 2.2s 70.0s 209.5s
Case Study 2: Forward Query 30.3s 1.6s 80.4s 110.7s

Case Study 3: Forward Heartbleed Query 114.1s 0.1s 6.9s 19.7s
Case Study 3: Backward Heartbleed Query 230.3s 0.4s 139.5s 235.1s

Table 3: Summary of case studies

those compilations that reference the incorrect ci-
tation in “paper.bib”.

• The query detects that the user ran a python script
to produce a file with more succinct version of the
citations, “small.bib”, from “full.bib”. It detects
the incorrect citation in “small.bib” and in paper
compilations that reference the incorrect citation
from that file.

• The query detects that the user e-mailed a paper
with the incorrect citation. This shows up as a net-
work output of sendmail.

• The query returned no false positives.

The second row of Table 3 shows that the forward
query required 111 seconds to execute, whereas simply
replaying all processes with the simple Pin tool require
80 seconds. Thus, the relative overhead of the forward
query instrumentation, is (as expected) much less than
that for a backward query.

6.4.3 Heartbleed

Our third case study is motivated by the 2014 Heart-
bleed attack. One reason this attack caused such concern
is that service providers were unable to determine what
(if any) data was leaked. We show how Arnold is able to
help an administrator determine whether sensitive data
was leaked from a low-volume Web server, which hosts
and stores a key-value database.

First, the administrator runs a forward query to see if
the server’s private key was leaked. This query requires
a custom definition of output, so she creates a Pin tool.
Heartbleed exploited a missing bounds check, so the Pin
tool simply emulates the missing bounds check when the
target instruction is reached and flags as output any data
in excess of what the bounds check would have rejected.
Her forward query specifies a starting state of the private
key file, an output definition of only those bytes returned
by the Pin tool, and the index linkage function.

We emulated this scenario by recording 100 GET and
POST requests to Nginx 1.4.7 with OpenSSL version
1.0.1f (run times scale roughly linearly with the num-
ber of requests). This query took 20 seconds to perform
and returned no outputs, showing that the private key was
not leaked). We confirmed the correctness of this result
manually.

Next, the administrator asks: was any data leaked, and
if so what data? We constructed a backward query to an-

swer that question. We used the custom Pin tool to de-
fine as starting state any data incorrectly sent due to the
Heartbleed exploit and specified the index linkage. The
backward query determined that:

• The Web server, Nginx, serviced a heartbeat re-
quest that leaked process memory.

• The leaked bytes came from a UNIX socket writ-
ten by FastCGI, which is responsible for dynamic
Web content.

• FastCGI received these bytes from a pipe written
by a python script that it spawned.

• The script read the bytes from a database file.
• The bytes read from the database file came from

POST requests that inserted those key-value pairs.
This is determined by following the bytes back
through a python script, FastCGI, and Nginx.

In summary, Arnold reveals both the leaked content
and the origin of that data. Further queries could reveal
the specific users who had their content leaked (e.g., by
using a Pin tool to extract the userid from the connec-
tions that wrote the leaked data). The total query time
was 235 seconds, roughly double the cost of replay and
Pin instrumentation alone.

This case study shows the value of not limiting a pri-
ori the types of lineage that an eidetic system can track.
For example, prior tools for intrusion recovery focus on
inter-process lineage but cannot track intra-process lin-
eage [23, 18, 22]. Upon learning of the vulnerability, the
user can write new tools that detect data flows she had not
anticipated at the time the system was being recorded,
then use these tools on executions that were recorded be-
fore the tools existed.

7 Conclusions and future work

Arnold is a prototype of an eidetic system, targeted at
personal computers and workstations. Arnold can re-
call any past user-level state, and it can trace the lin-
eage of any byte in a current or prior state. This pa-
per shows that the overheads of providing such func-
tionality are reasonable: our results shows that adding
a commodity hard drive can satisfy 4 or more years of
storage needs with most runtime overheads under 8%.
We have made the source code for Arnold available at
https://github.com/endplay/omniplay.

538 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Our case studies show the power of an eidetic system
by recovering past state and tracing the lineage of data
through a wide variety of applications and user interac-
tions. The precision of combining operating system trac-
ing of inter-process information flow with retrospective
analysis of intra-process information flow yields accurate
and informative query results.

We plan to explore several new aspects of eidetic sys-
tems. First, while Arnold can track all computation on a
single machine, it cannot connect computation between
multiple machines. One direction for future work is how
to efficiently achieve Arnold’s lineage tracking within
large distributed systems. A second direction of future
work is how to enable users to retroactively remove data
from Arnold’s log in order to preserve privacy. A com-
plementary direction of future work is how to prevent or
detect tampering with Arnold’s log [20].

8 Acknowledgments

We thank the reviewers and our shepherd, Lorenzo
Alvisi, for their thoughtful comments. This material
is based upon work supported by the National Sci-
ence Foundation under grants number CNS-0905149 and
CNS-1017148. Yihe Huang created data race tools that
we adapted for this work. Any opinions, findings, con-
clusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References

[1] Linux Desktop Testing Project. http://ldtp.

freedesktop.org.

[2] ADAMS, I. F., LONG, D. D. E., MILLER, E. L., PASU-
PATHY, S., AND STORER, M. W. Maximizing efficiency
by trading storage for computation. In Proceedings of
the Workshop on Hot Topics in Cloud Computing (June
2009).

[3] ALTEKAR, G., AND STOICA, I. ODR: Output-
deterministic replay for multicore debugging. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems
Principles (October 2009), pp. 193–206.

[4] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-
tomating root-cause diagnosis of performance anomalies
in production software. In Proceedings of the 10th Sym-
posium on Operating Systems Design and Implementa-
tion (Hollywood, CA, October 2012).

[5] ATTARIYAN, M., AND FLINN, J. Automating configura-
tion troubleshooting with dynamic information flow anal-
ysis. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (Vancouver, BC, Oc-
tober 2010).

[6] BACON, D. F., AND GOLDSTEIN, S. C. Hardware as-
sisted replay of multiprocessor programs. In Proceedings
of the 1991 ACM/ONR Workshop on Parallel and Dis-
tributed Debugging (1991), ACM Press, pp. 194–206.

[7] BENT, J., THAIN, D., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., AND LIVNY, M. Explicit
control in a batch-aware distributed file system. In Pro-
ceedings of the 1st USENIX Symposium on Networked
Systems Design and Implementation (March 2004).

[8] BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G.
Grace: Safe multithreaded programming for C/C++. In
Proceedings of the International Conference on Object
Oriented Programming Systems, Languages, and Appli-
cations (Orlando, FL, October 2009), pp. 81–96.

[9] BOCCHINO, JR., R. L., ADVE, V. S., DIG, D., ADVE,
S. V., HEUMANN, S., KOMURAVELLI, R., OVERBEY,
J., SIMMONS, P., SUNG, H., AND VAKILIAN, M. A
type and effect system for deterministic parallel Java. In
Proceedings of the International Conference on Object
Oriented Programming Systems, Languages, and Appli-
cations (Orlando, FL, October 2009), pp. 97–116.

[10] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-
based fault tolerance. ACM Transactions on Computer
Systems 14, 1 (February 1996), 80–107.

[11] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decou-
pling dynamic program analysis from execution in virtual
environments. In Proceedings of the 2008 USENIX An-
nual Technical Conference (June 2008), pp. 1–14.

[12] CUI, H., WU, J., GALLAGHER, J., GUO, H., AND

YANG, J. Efficient deterministic multithreading through
schedule relaxation. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (2011),
pp. 337–351.

[13] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M.
DMP: Deterministic shared memory multiprocessing. In
Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (March 2009), pp. 85–96.

[14] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI,
M. A., AND CHEN, P. M. ReVirt: Enabling intrusion
analysis through virtual-machine logging and replay. In
Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (Boston, MA, Decem-
ber 2002), pp. 211–224.

[15] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M.,
AND CHEN, P. M. Execution replay on multiprocessor
virtual machines. In Proceedings of the 2008 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Exe-
cution Environments (VEE) (March 2008), pp. 121–130.

[16] ELNOZAHY, E. N., ALVISI, L., WANG, Y.-M., AND

JOHNSON, D. B. A survey of rollback-recovery proto-
cols in message-passing systems. ACM Computing Sur-
veys 34, 3 (September 2002), 375–408.

[17] FELDMAN, S. I., AND BROWN, C. B. IGOR: A sys-
tem for program debugging via reversible execution. In

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 539

PADD ’88: Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debug-
ging (1988), pp. 112–123.

[18] GOEL, A., PO, K., FARHADI, K., LI, Z., AND

DE LARA, E. The Taser intrusion recovery system. In
Proceedings of the 2005 Symposium on Operating Sys-
tems Principles (October 2005).

[19] GUNDA, P. K., RAVINDRANATH, L., THEKKATH,
C. A., YU, Y., AND ZHUANG, L. Nectar: Automatic
management of data and computation in datacenters. In
Proceedings of the 9th Symposium on Operating Sys-
tems Design and Implementation (Vancouver, BC, Octo-
ber 2010).

[20] HAEBERLEN, A., ADITYA, P., RODRIGUES, R., AND

DRUSCHEL, P. Accountable virtual machines. In Pro-
ceedings of the 9th Symposium on Operating Systems De-
sign and Implementation (Vancouver, BC, October 2010).

[21] HOWER, D. R., AND HILL, M. D. Rerun: Exploiting
episodes for lightweight memory race recording. In Pro-
ceedings of the 35th International Symposium on Com-
puter Architecture (June 2008), pp. 265–276.

[22] KIM, T., WANG, X., ZELDOVICH, N., AND

KAASHOEK, M. F. Intrusion recovery using selec-
tive re-execution. In Proceedings of the 9th Symposium
on Operating Systems Design and Implementation
(Vancouver, BC, October 2010).

[23] KING, S. T., AND CHEN, P. M. Backtracking intrusions.
In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (Bolton Landing, NY, October 2003),
pp. 223–236.

[24] LAADAN, O., BARATTO, R., PHUNG, D., POTTER, S.,
AND NIEH, J. DejaView: A personal virtual computer
recorder. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (Stevenson, WA, Oct
2007), pp. 279–292.

[25] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity
multiprocessor operating systems. In International Con-
ference on Measurements and Modeling of Computer Sys-
tems (SIGMETRICS) (June 2010), pp. 155–166.

[26] LEE, D., CHEN, P. M., FLINN, J., AND

NARAYANASAMY, S. Chimera: Hybrid program
analysis for determinism. In Proceedings of the ACM
SIGPLAN 2012 Conference on Programming Language
Design and Implementation (Beijing, China, June 2012).

[27] LEFEBVRE, G., CULLY, B., HEAD, C., SPEAR, M.,
HUTCHINSON, N., FEELEY, M., AND WARFIELD, A.
Execution Mining. In Proceedings of the 2012 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Exe-
cution Environments (VEE) (March 2012).

[28] LIU, T., CURTSINGER, C., AND BERGER, E. D.
Dthreads: efficient deterministic multithreading. In Pro-
ceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles (2011), pp. 327–336.

[29] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI,
V. J., AND HAZELWOOD, K. Pin: Building customized
program analysis tools with dynamic instrumentation.
In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation
(Chicago, IL, June 2005), pp. 190–200.

[30] MONTESINOS, P., CEZE, L., AND TORRELLAS, J.
DeLorean: Recording and deterministically replaying
shared-memory multiprocessor execution efficiently. In
Proceedings of the 35th International Symposium on
Computer Architecture (June 2008), pp. 289–300.

[31] MUNISWAMY-REDDY, K.-K., AND HOLLAND, D. A.
Causality-based versioning. In Proceedings of the 7th
USENIX Conference on File and Storage Technologies
(San Francisco, CA, February 2009).

[32] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A.,
BRAUN, U., AND SELTZER, M. Provenance-aware
storage systems. In Proceedings of the 2006 USENIX
Annual Technical Conference (Boston, MA, May/June
2006), pp. 43–56.

[33] NARAYANASAMY, S., PEREIRA, C., AND CALDER, B.
Recording shared memory dependencies using Strata. In
Proceedings of the 12th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (2006), pp. 229–240.

[34] NETZER, R. H. B. Optimal tracing and replay for debug-
ging shared-memory parallel programs. In Proceedings
of the ACM/ONR Workshop on Parallel and Distributed
Debugging (1993), pp. 1–11.

[35] NEWSOME, J., AND SONG, D. Dynamic taint analysis:
Automatic detection, analysis, and signature generation
of exploit attacks on commodity software. In Proceed-
ings of the 12th Annual Network and Distributed System
Security Symposium (February 2005).

[36] NIGHTINGALE, E. B., PEEK, D., CHEN, P. M., AND

FLINN, J. Parallelizing security checks on commod-
ity hardware. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems (Seattle, WA, March
2008), pp. 308–318.

[37] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S.
Kendo: efficient deterministic multithreading in software.
In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems (March 2009), pp. 97–108.

[38] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK,
R., LEE, K. H., AND LU, S. PRES: Probabilistic replay
with execution sketching on multiprocessors. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems
Principles (October 2009), pp. 177–191.

[39] PETERSON, Z. N. J., AND BURNS, R. Ext3cow: A
time-shifting file system for regulatory compliance. ACM
Transacations on Storage 1, 2 (2005), 190–212.

540 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[40] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K.
Libckpt: Transparent checkpointing under Unix. In Pro-
ceedings of the 1995 Winter USENIX Conference (Jan-
uary 1995), pp. 213–223.

[41] POZNIANSKY, E., AND SCHUSTER, A. Efficient on-the-
fly data race detection in multithreaded C++ programs. In
PPOPP03 (San Diego, CA, June 2003), pp. 179–190.

[42] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: A fully
integrated practical record/replay system. ACM Transac-
tions on Computer Systems 17, 2 (May 1999), 133–152.

[43] RUSSINOVICH, M., AND COGSWELL, B. Replay
for concurrent non-deterministic shared-memory applica-
tions. In Proceedings of the ACM SIGPLAN 1996 Confer-
ence on Programming Language Design and Implemen-
tation (1996), pp. 258–266.

[44] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C.,
VEITCH, A. C., CARTON, R. W., AND OFIR, J. Decid-
ing when to forget in the Elephant file system. SIGOPS
Operating Systems Review 33, 5 (1999), 110–123.

[45] SEREBRYANY, K., AND ISKHODZHANOV, T. Thread-
Sanitizer: Data race detection in practice. In Proceedings
of the Workshop on Binary Instrumentation and Applica-
tions (December 2009).

[46] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND

ZHOU, Y. Flashback: A light-weight extension for roll-
back and deterministic replay for software debugging. In
Proceedings of the 2004 USENIX Annual Technical Con-
ference (Boston, MA, June 2004), pp. 29–44.

[47] VAHDAT, A., AND ANDERSON, T. Transparent result
caching. In Proceedings of the 1998 USENIX Annual
Technical Conference (June 1998).

[48] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND

NARAYANASAMY, S. Detecting and surviving data races
using complementary schedules. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(Cascais, Portugal, October 2011).

[49] VEERARAGHAVAN, K., FLINN, J., NIGHTINGALE,
E. B., AND NOBLE, B. quFiles: The right file at the right
time. In Proceedings of the 8th USENIX Conference on
File and Storage Technologies (San Jose, CA, February
2010), pp. 1–14.

[50] VEERARAGHAVAN, K., LEE, D., WESTER, B.,
OUYANG, J., CHEN, P. M., FLINN, J., AND

NARAYANASAMY, S. DoublePlay: Parallelizing se-
quential logging and replay. In Proceedings of the 16th
International Conference on Architectural Support for
Programming Languages and Operating Systems (Long
Beach, CA, March 2011).

[51] VLACHOS, E., GOODSTEIN, M. L., KOZUCH, M. A.,
CHEN, S., FALSAFI, B., GIBBONS, P. B., AND MOWRY,
T. C. ParaLog: Enabling and accelerating online parallel
monitoring of multithreaded applications. In Proceed-
ings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (Pittsburgh, PA, March 2010), pp. 271–284.

[52] WEERATUNGE, D., ZHANG, X., AND JAGANNATHAN,
S. Analyzing multicore dumps to facilitate concurrency
bug reproduction. In Proceedings of the 15th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (March 2010),
pp. 155–166.

[53] XU, M., BODIK, R., AND HILL, M. D. A “flight data
recorder” for enabling full-system multiprocessor deter-
ministic replay. In Proceedings of the 30th Interna-
tional Symposium on Computer Architecture (June 2003),
pp. 122–135.

[54] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHA-
LAM, G., AND WEISSMAN, B. ReTrace: Collecting exe-
cution trace with virtual machine deterministic replay. In
MOBS07 (June 2007).

[55] ZAMFIR, C., AND CANDEA, G. Execution synthesis: A
technique for automated software debugging. In Proceed-
ings of the 5th ACM European Conference on Computer
Systems (April 2010), pp. 321–334.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 541

Detecting Covert Timing Channels with Time-Deterministic Replay

Ang Chen
University of Pennsylvania

W. Brad Moore
Georgetown University

Hanjun Xiao
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Linh Thi Xuan Phan
University of Pennsylvania

Micah Sherr
Georgetown University

Wenchao Zhou
Georgetown University

Abstract

This paper presents a mechanism called time-
deterministic replay (TDR) that can reproduce the
execution of a program, including its precise timing.
Without TDR, reproducing the timing of an execution
is difficult because there are many sources of timing
variability – such as preemptions, hardware interrupts,
cache effects, scheduling decisions, etc. TDR uses
a combination of techniques to either mitigate or
eliminate most of these sources of variability. Using
a prototype implementation of TDR in a Java Virtual
Machine, we show that it is possible to reproduce the
timing to within 1.85% of the original execution, even
on commodity hardware.

The paper discusses several potential applications of
TDR, and studies one of them in detail: the detection of
a covert timing channel. Timing channels can be used
to exfiltrate information from a compromised machine;
they work by subtly varying the timing of the machine’s
outputs, and it is this variation that can be detected with
TDR. Unlike prior solutions, which generally look for a
specific type of timing channel, our approach can detect
a wide variety of channels with high accuracy.

1 Introduction

When running software on a remote machine, it is com-
mon for users to care not only about the correctness of
the results, but also about the time at which they arrive.
Suppose, for instance, that Bob is a customer of a cloud
computing platform that is run by Alice, and suppose
Alice offers several machine types with different speeds,
for which she charges different prices. If Bob chooses
one of the faster machines to run his software but finds
that the results arrive later than expected, he might wish
to verify whether he is getting the service he is paying
for. Conversely, if an angry Bob calls Alice’s service
hotline to complain, Alice might wish to convince Bob
that he is in fact getting the promised service, and that
the low performance is due to Bob’s software.

A closely related problem has been studied in com-
puter security. Suppose Charlie is a system administra-
tor, and suppose one of his machines has been compro-
mised by an adversary who wants to exfiltrate some data
from the machine without raising Charlie’s suspicion.
In this case, the adversary might create a covert timing
channel [31]—that is, he might cause the machine to
subtly vary the timing of the network messages it sends,
based on the data it is supposed to leak. As in the previ-
ous scenario, the outputs of the machine (in this case, the
transmitted messages) are perfectly correct; the problem
can only be detected by looking at the timing.

Although the two problems appear very different at
first, they are in fact both instances of a more funda-
mental problem: checking whether the timing of a se-
quence of outputs from a machine M is consistent with
an execution of some particular software S on M. The
difference is in the part of the system that is being ques-
tioned. In the first scenario, it is the machine M: Bob
suspects that Alice has given him a slower machine than
the one he is paying for. In the second scenario, it is
the software S: Charlie suspects that the adversary may
have tampered with the software to vary the timing of
the outputs. Thus, a solution for the underlying problem
could benefit both of the scenarios we have motivated.

One possible approach would be to try to infer the
“correct” timing of running the software S on the ma-
chine M, e.g., by carefully analyzing the timing of the
various subroutines of S. But there are many factors that
can affect the timing of a program’s execution – cache
effects, hardware interrupts, inputs at runtime, preemp-
tions by the kernel or by other programs, I/O latencies,
and many more – and their combined effect is extremely
difficult to predict. Even inferring an upper bound can
be very difficult, as the extensive literature on worst-
case execution time (WCET) analysis [50] in the real-
time systems domain can attest – and even an excellent
WCET would still not be sufficient to solve our problem
because we would need to know the specific runtime,
not just an upper bound.

1

542 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In this paper, we explore an alternative approach to
this problem. Our key insight is that it is not necessary
to predict the timing of S on M in advance – it is suffi-
cient to reproduce the timing after the fact. If Bob had
access to another machine M′ of the same type and could
reproduce the precise timing of S on that machine, he
could simply compare the timing of the outputs during
the reproduced execution to the timing of the messages
he actually observed. If M was of the correct type and
was indeed running S, the two should be identical; if
they are not, either M must have had a different type, or
S must have been modified or compromised. The poten-
tial advantage of this approach is that there is no need
to analytically understand the complex timing behavior
of, e.g., caches or interrupt handlers: if the two execu-
tions unfold in exactly the same way, the cache contents
during the executions should be very similar as well.

Deterministic replay [19] provides a partial solution
in that it can reproduce the functional behavior of a pro-
gram by carefully recording all nondeterministic events
(such as external inputs or random decisions) in a log,
and by replaying the exact same events during replay.
This ensures that the program produces the same outputs
in the same order. However, it is not sufficient to repro-
duce the program’s temporal behavior: as we will show
experimentally, the replayed execution can take substan-
tially more – or less – time than the original execution,
and the outputs can appear at very different points in
both executions. There are two key reasons for this.
First, existing replay systems reproduce only factors that
control a program’s control or data flow; they do not re-
produce factors that affect timing because the latter is
not necessary for functional replay. Second, and more
fundamentally, play and replay involve very different
operations (e.g., writing vs. reading, and capturing vs.
injecting) that have different timing behavior, and these
differences affect the program’s overall timing.

We propose to address these challenges using a mech-
anism we call time-deterministic replay (TDR). A TDR
system naturally provides deterministic replay, but it ad-
ditionally reproduces events that have nondeterministic
timing, and it carefully aligns its own operations during
play and replay so that they affect the program’s tim-
ing in a similar way. On an ideal TDR implementation,
replay would take exactly the same time as play, but in
practice, TDR is limited by the presence of time noise on
the platform on which it runs: for instance, many CPUs
speculatively execute instructions, and we do not know
a way to reproduce this behavior exactly. Nevertheless,
we show that it is possible to mitigate or eliminate many
large sources of time noise, and that the timing of com-
plex programs can be reliably reproduced on a commod-
ity machine with an error of 1.85% or less.

We also describe the design of Sanity1, a practical
TDR system for the Java Virtual Machine, and we show
how Sanity can be used in one of our target applica-
tions: the detection of covert timing channels. De-
tecting such channels is known to be a hard problem
that has been studied for years. The best known solu-
tions [15, 22, 23, 40] work by inspecting some high-
level statistic (such as the entropy) of the network traf-
fic, and by looking for specific patterns; thus, it is not
difficult for an adversary to circumvent them by varying
the timing in a slightly different way. To our knowl-
edge, TDR offers the first truly general approach: it can
in principle detect timing modifications to even a single
packet, and it does not require prior knowledge of the
encoding that the adversary will use. In summary, we
make the following five contributions:

• The TDR concept itself (Section 2);
• The design of Sanity, a system that provides TDR

for the Java Virtual Machine (Section 3);
• A prototype implementation of Sanity (Section 4);
• An application of TDR to the detection of covert

timing channels (Section 5); and
• An experimental evaluation of Sanity (Section 6).

2 Overview

In this section, we give a more precise problem state-
ment, and we explain some of the key challenges.

2.1 Problem statement
Figure 1 illustrates two variants of the scenario we con-
sider in this paper. In the variant in Figure 1(a), Alice
has promised Bob that she would run some software S
on a (virtual or physical) machine of type T ; Bob can
connect to S over the network, but he does not have
physical access to it. (This scenario commonly occurs
on today’s cloud platforms.) If the performance of S
does not meet Bob’s expectations, Bob might wonder
whether Alice has really provisioned a machine of type
T , or perhaps a less powerful type T ′.

Figure 1(b) shows a different variant in which Char-
lie runs S on a machine he controls directly. Even if
S appears to be working normally, Charlie might won-
der whether the machine has been compromised by a
remote adversary who has altered S and is now trying to
leak secrets over the network by subtly altering the tim-
ing of the messages S sends. The key difference to the
first scenario is that the machine is known to be of type
T (perhaps Charlie can physically inspect it), and that
Charlie is questioning the integrity of S instead.

1The name Sanity is a play on the definition of insanity, often at-
tributed to Albert Einstein, as the exact repetition of a process while
expecting a different outcome.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 543

Is Alice giving me
a or a ?Bob's

software S

Is that machine really
running program ?

d f d fModified software

Alice BobAlice's Cloud Adversary Charlie

(a) (b)

Figure 1: Two scenarios that benefit from TDR: (a) Bob
wishes to verify that his software is running on the ex-
pected type of machine in Alice’s cloud, and (b) Charlie
wishes to verify that his machine is correctly executing
his program.

In both scenarios, it seems reasonable to assume that
Bob and Charlie have a way to observe the messages
m1,m2, . . . that S sends and receives, as well as the ap-
proximate transmission or arrival time t1, t2, . . . of each
message. The problem, then, is to decide whether a se-
quence (mi,ti) of messages and message timings is con-
sistent with an execution of a software S on a machine
of type T .

2.2 Why not use prediction?
If Bob and Charlie had a way to precisely predict how
long an execution of S on T was going to take, they
could solve the problem simply by comparing the ob-
served message timings ti to his predictions. However,
the execution time depends on an enormous number of
factors, such as the inputs the program receives, the state
of the CPU’s caches and TLBs, the number of hardware
interrupts, the scheduling decisions of the kernel, and
the duration of I/O operations, to name just a few. Be-
cause of this, predicting the execution time of any non-
trivial program is known to be extremely difficult.

This problem has been extensively studied in the real-
time systems community, and a variety of powerful tim-
ing analyses are now available (cf. [7] and [50] for an
overview). But these analyses typically produce bounds
– the worst-case execution time (WCET) and the best-
case execution time (BCET) – and not the exact execu-
tion time. Moreover, the WCET (BCET) is typically
much higher (lower) than the actual execution time [49].
Such bounds are useful if the goal is to guarantee time-
liness, i.e., the execution completes before a particular
point in time; however, it is usually not precise enough
for the problem we consider here.

2.3 Approach: Reproducible timing
The solution we present in this paper is based on the
key insight that it is not actually necessary to predict
a priori how long an execution of S on T is going to
take – it would be sufficient to reproduce the timing of
an execution after the fact. This is a much easier prob-

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Variance (% of fastest execution)

(1) User, noisy
(2) User, quiet

(3) Kernel, noisy
(4) Kernel, quiet

Figure 2: Timing variance of a simple program that ze-
roes out a 4 MB array, in four different scenarios.

lem because it does not require an analysis of the many
complex factors that could affect the execution time; we
“merely” need to ensure that these factors affect the re-
produced execution in the same way. For instance, to
predict the impact of the caches on the execution time,
it would be necessary to predict the exact sequence of
memory accesses that S is going to perform; to repro-
duce the impact, we can simply reproduce the same se-
quence of memory accesses.

Reproducible timing would solve the problem from
Section 2.1 because it would enable a form of auditing:
if Bob and Charlie locally have another machine of type
T available, they can reproduce the execution of S on
that machine and compare the timing to the timing they
have observed on the remote machine. If the two are
similar, this suggests that the remote machine is indeed
of type T ; if the timings are dissimilar, this is evidence
that the machine is of a different type, or that it is not
running the unmodified software S.

2.4 Challenge #1: Time noise
To highlight some of the key challenges of reproducible
timing, we first consider two simple strawman solutions.
The first is to simply reproduce the remote execution us-
ing deterministic replay, i.e., to ask the remote machine
to record all nondeterministic inputs (such as messages,
interrupts, etc.) along with the precise point in the pro-
gram where each of them occurred, and to inject these
inputs at the same points during replay. Deterministic
replay is a well-established technique for which several
mature solutions exist [3, 13, 19, 20, 39, 52, 53].

However, although this approach faithfully repro-
duces the control flow and the outputs of the original
execution, it usually does not reproduce the timing. To
illustrate this, we performed a simple experiment in
which we measured the time it took to zero out a 4 MB
array. Figure 2 shows a CDF of the completion times,
normalized to the fastest time we observed. We show
results for four different scenarios: (1) user level with
GUI and network turned on; (2) user level in single-

3

544 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

user mode, running from a RAM disk; (3) kernel mode;
and (4) kernel mode with IRQ turned off, cache flushed,
TLB flushed, and execution pinned to a specific core.
Ideally, all the executions would take the same amount
of time and thus have a variance of zero, but in prac-
tice, some take considerably more time than others – the
largest variance we observed was 189% in scenario (1),
which corresponds to nearly 3x the time of the fastest
execution in that scenario. Because of this variability,
which we will refer to as time noise in the rest of this
paper, it is extremely difficult to compare the timing of
different executions, even for very simple programs.

However, Figure 2 also contains a hopeful message:
as the environment becomes more and more controlled,
the timing becomes more and more consistent. Hence, a
major focus of this paper is on identifying and removing
sources of time noise. If there were a way to completely
eliminate all sources, the timing of the original and the
repeated execution would be identical.
Where does the time noise come from? Commod-
ity hardware and software have not been designed with
repeatable timing in mind, and therefore contain many
sources of time noise, including:

• Memory: Different memory accesses during play
and replay and/or different memory layouts can in-
crease or decrease the number of cache misses at
all levels, and/or affect their timing;

• CPU: The processor can speculatively execute in-
structions or prefetch data, e.g., based on branch
target predictions;

• I/O: Input/output operations can take a variable
amount of time, particularly when HDDs are in-
volved (due to seek/rotational latency);

• IRQs: Interrupts can occur at different points in
the program; the handlers can cause delays and dis-
place part of the working set from the cache; and

• Kernel/VMM: The kernel can preempt the pro-
gram to schedule other tasks, or to take care of in-
ternal housekeeping. Also, system calls can take a
variable amount of time.

Some of these sources can be completely eliminated;
others can at least be considerably reduced by carefully
designing the kernel or VMM. For instance, we can
eliminate the variability from the address space layout
by giving the program the same physical frames dur-
ing play and replay, and we can reduce the interference
from hardware interrupts by enabling them only at cer-
tain points in the execution.

2.5 Challenge #2: Play/replay asymmetry
Even if the timing of the program and the underlying
hardware were completely deterministic, there is still a

 0

 40

 80

 120

 160

 200

 240

 0 20 40 60 80 100 120 140 160

E
la

p
s
e

d
 t

im
e

 d
u

ri
n

g
 p

la
y

(s
e

c
o

n
d

s
)

Elapsed time during replay (seconds)

Ideal behavior
Median realized behavior

Figure 3: In existing VMMs, the timing during replay
can differ substantially from the timing during play.

need to record its inputs so that its execution can be re-
produced on another machine. This gives rise to another
challenge: record and replay are fundamentally different
operations that typically involve different code, different
I/O operations, and different memory accesses. Thus,
they will typically affect the timing in a different way.

To illustrate this point, we performed the following
simple experiment. We recorded the execution of a sim-
ple Linux VM using XenTT [13], a replay-enabled vari-
ant of the Xen hypervisor, and we directed some web
requests towards an HTTP server that was running in
the VM. To get a sense of the timing of the events in the
VM, we instrumented XenTT to also record, for each
event e, the wall-clock time Tp(e). We then replayed the
log and measured, for each event e, the wall-clock time
Tr(e) at which e was replayed. By comparing Tp and
Tr, we can get a sense of the relative speed of play and
replay.

Figure 3 shows a plot in which Tp is on the vertical
axis and Tr on the horizontal axis; each point repre-
sents one event in the log. With fully time-deterministic
replay, this graph would show a straight line, but the
actual graph is far from it. There are some phases in
which replay is faster than play, e.g., the interval from
Tp(e) = 183 to Tp(e) = 196, in which the VMM was
waiting for inputs; XenTT simply skips this phase dur-
ing replay. In other phases, play is faster than replay,
e.g., during the kernel boot phase, when Linux calibrates
its internal clock.

This simple experiment shows that, to achieve re-
peatable timing, removing sources of time noise is not
enough – the VMM also needs to “balance” play and
replay in such a way that they affect the timing in ap-
proximately the same way.

3 Sanity Design

In this section, we describe the design of Sanity, a
virtual-machine monitor (VMM) that provides highly
repeatable timing. Sanity is a clean-slate VMM design
that implements the Java Virtual Machine (JVM).

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 545

Noise source Mitigation technique(s) used Effect Section
Divergence Deterministic replay [19] Eliminated 3.2
Randomness Avoid or log random decisions Eliminated 3.2
Scheduler Deterministic multithreading [38] Eliminated 3.2
Interrupts Handle interrupts on a separate core Reduced 3.3+3.4
Play vs. replay Align JVM’s control flow and memory accesses during play and replay Eliminated 3.5
Caches Flush caches at the beginning; use the same physical frames Reduced 3.6
Paging All memory is pinned and managed by JVM Eliminated 3.6
I/O Pad variable-time operations; use SSDs instead of HDDs Reduced 3.7
Preemption Run in kernel mode; do not share core with other apps Eliminated 4.2
CPU features Disable timing-relevant CPU features, such as frequency scaling Reduced 4.2

Table 1: Sources of time noise that Sanity mitigates or eliminates, as well as the corresponding techniques.

3.1 Why a clean-slate design?

It is natural to ask why we have chosen to redesign
Sanity from scratch instead of simply extending one of
the many excellent open-source VMM implementations
that are already available. The reason is that existing
implementations were not built with time-determinism
in mind and thus tend to contain a variety of sources of
time noise, such as randomized data structures, system
calls, various types of speculation, and so on. Finding
these sources would be difficult because their effects are
not necessarily local: for instance, a function A might
invoke a system call, and in the process of handling it,
the kernel might access different memory locations, de-
pending on its current state; this might then add cache
misses to the execution of a completely different and un-
related function B that runs several milliseconds later.

By building our VMM from scratch, we gained the
ability to control every aspect of its design, and to care-
fully avoid introducing time noise at each step along the
way. Since our resources were limited, we chose the
Java Virtual Machine (JVM), which is relatively simple
– it has only 202 instructions, no interrupts, and does
not include legacy features like the x86 string instruc-
tions – and for which there is a large amount of exist-
ing software. However, even state-of-the-art JVMs are
very complex; for instance, the HotSpot JVM consists
of almost 250,000 lines of code. Hence, we necessar-
ily had to focus on the core features and omit others,
such as just-in-time (JIT) compilation, which obviously
limits Sanity’s performance. We accept this limitation
because it is not inherent: given enough time and a large
enough team, it should be perfectly feasible to build a
time-deterministic JIT compiler, as well as all the other
features we were unable to include in our prototype.

Sanity provides deterministic replay (Section 3.2),
and it includes a combination of several techniques that
reduce or eliminate time noise (Sections 3.3–3.7). Ta-
ble 1 provides an overview of the sources of time noise
we focused on, and the technique(s) we used to mitigate
or eliminate each of them.

3.2 Deterministic replay
Our implementation of deterministic replay in Sanity re-
lies mostly on standard techniques from other replay-
enabled JVM implementations [2, 16]: during the origi-
nal execution (“play”), we record all nondeterministic
events in a log, and during the reproduced execution
(“replay”), we inject the same events at the same points.
For the JVM, this is much easier than for the x86-based
replay implementations that many readers will be famil-
iar with (e.g., ReVirt [19]). This is because the latter
must record asynchronous events, such as hardware in-
terrupts, that can strike at any point during the execution
– even in the middle of CISC instructions such as rep
movsb – which requires complex logic for injecting the
event at exactly the same point during replay. The JVM,
in contrast, does not have a notion of interrupts, and a
simple global instruction counter is sufficient to identify
any point in the execution.

To reduce the number of events that must be recorded,
we implement a simple form of deterministic multi-
threading [38] in Sanity: threads are scheduled round-
robin, and each runnable thread is given a fixed budget
of Java instructions it may execute before it is forced to
yield. Since the execution of the individual threads is
already deterministic, there is no need to record infor-
mation about context switches in the log, since they will
occur at exactly the same points during replay.

If Sanity is used for long-running services – perhaps
a web server, which can run for months or even years
– it is important to enable auditors to reproduce smaller
segments of the execution individually. Like other de-
terministic replay systems, Sanity could provide check-
pointing for this purpose, and thus enable the auditor to
replay any segment that starts at a checkpoint.

3.3 Timed core and supporting core
Although the JVM itself does not have asynchronous
events, the platform on which it runs (e.g., an x86 ma-
chine) will usually have them. To prevent these events
from interfering with the timing of the JVM’s execu-

5

546 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tion, Sanity confines them to a separate core. Thus, even
though Sanity implements a single-core JVM, it requires
a platform with at least two cores: a timed core (TC) that
executes the JVM itself, and a supporting core (SC) that
handles interrupts and I/O on the TC’s behalf.

The TC-SC separation shields the TC from most ef-
fects of asynchronous events, but, on most platforms
(with the exception of certain NUMAs), it cannot shield
it entirely, since the two cores share the same memory
bus. Even if the SC’s program fits entirely into the SC
cache, DMAs from devices must still traverse the mem-
ory bus, where they can sometimes compete with the
TC’s accesses.

3.4 Communication between TC and SC
The TC and SC communicate by means of two in-
memory ring buffers: the S-T buffer and the T-S buffer.
The SC receives asynchronous inputs, such as incom-
ing network messages, and writes them to the S-T
buffer; the TC inspects this buffer at regular intervals,
or when an explicit read operation is invoked (such as
DatagramChannel.read). Conversely, when the
TC produces outputs (e.g., outgoing network messages),
it writes them to the T-S buffer. The SC periodically in-
spects this buffer and forwards any outputs it contains.

The purpose of this arrangement is to make play and
replay look identical from the perspective of the TC –
in both cases, the TC reads inputs from the S-T buffer
and writes outputs to the T-S buffer. The SC, of course,
acts differently during replay: it reads the inputs in the
S-T buffer from the log rather than from a device, and
it discards the outputs in the T-S buffer. But the control
flow on the TC, which is crucial for repeatable timing, is
identical. (See Section 3.5 for an important exception.)

3.5 Symmetric read/writes
If both the TC’s sequence of memory accesses and its
control flow are to be exactly the same during play and
replay, there are two special cases that need to be han-
dled. The first concerns the T-S buffer. Suppose, for
instance, that the VM invokes System.nanoTime to
read the current wallclock time. This event must be
logged, along with the value that Sanity returns, so that
the call can have the same result during replay. A naı̈ve
implementation might check a “replay flag” and then
write the time to the T-S buffer if the flag is clear, and
read from it if the flag is set. However, this would cause
both different memory accesses (a dirty cache line dur-
ing play, and a clean one during replay) and different
control flow (perhaps a branch taken during play and
not taken during replay, which would pollute the BTB).

To produce the exact same control flow and memory
accesses during play and replay, we use the approach

void accessInt(int *value, int *buf) {
int temp = (*value) & playMask;
temp = temp | (*buf & ∼playMask);
*value = *buf = temp;

}

Figure 4: Algorithm for symmetric reads/writes.

shown in Figure 4 to access events in the T-S buffer.
(The figure shows, as an example, how we access an in-
teger.) playMask is a bit mask that is set to 111 . . .11
during play, and to 0 during replay. When an event oc-
curs, Sanity invokes the algorithm with *value set to
the value that would need to be recorded if this were the
play phase (e.g., the current wallclock time). The algo-
rithm then reads from the T-S buffer the data *buf that
would need to be returned if this were the replay phase.
It then computes the value temp to be either the for-
mer (during play) or the latter (during replay). Finally,
it writes temp to the T-S buffer and returns it to the
caller; the caller then proceeds with the returned value
(e.g., returns it from System.nanoTime). The over-
all effect is that the value is written to the buffer during
play and read from the buffer during replay; the memory
accesses are identical, and no branches are taken.

A related case concerns the S-T buffer. When the
TC checks the buffer during play and finds a new en-
try there (e.g., a received network packet), it must write
the JVM’s instruction counter to the entry as a virtual
“timestamp” so it can be injected at the same point dur-
ing replay. During replay, the TC must check this times-
tamp to avoid processing entries before the instruction
counter reaches that value again. We handle this case
similarly to the first one (the TC always reads, checks,
and writes the timestamp), but with an additional twist:
during play, the SC always adds a “fake” entry with a
timestamp of infinity at the end of the buffer, so that the
TC’s next-entry checks will always fail. When the SC
appends a new entry, it overwrites the previous “fake”
entry (but adds a new one at the end), and it sets the
timestamp to zero, so the TC’s check is guaranteed to
succeed. The TC can recognize this special value and
replaces it with the current instruction count.

3.6 Initialization and quiescence
To maximize the similarity between play and replay tim-
ing, Sanity must ensure that the machine is in the same
state when the execution begins. This not only involves
CPU state, but also memory contents, stable storage, and
key devices.

On the TC, Sanity flushes all the caches it can control,
including the data caches, the TLB, and any instruction
caches. This entails a certain performance penalty be-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 547

cause the caches must all be repopulated, but recall that
the caches remain enabled during the execution, so it
is a one-time cost. We note that some CPUs perform
cache flushes asynchronously (such as the wbinvd in-
struction on IA-32). To account for this, the TC adds a
brief quiescence period before it begins the execution;
this allows the cache flush to complete, and it can also
be used to let hardware devices (such as the NIC) finish
any operations that are still in progress. If the instruction
stream on the TC is exactly the same and the caches have
a deterministic replacement policy (such as the popular
LRU), this is almost sufficient to reproduce the evolution
of cache states on the TC. The missing piece is virtual
memory: even if the TC has the same virtual memory
layout during play and replay, the pages could still be
backed by different physical frames, which could lead
to different conflicts in physically-indexed caches. To
prevent this, Sanity deterministically chooses the frames
that will be mapped to the TC’s address space, so they
are the same during play and replay.

During execution, no memory pages are allocated or
released on the TC; the JVM performs its own memory
management via garbage collection. Garbage collection
is not a source of time noise, as long as it is itself deter-
ministic.

3.7 I/O handling
Sanity uses the SC to perform all I/O operations. For
streaming-type devices, such as the NIC or the terminal,
this is relatively straightforward: whenever the TC has
an output to send (such as a network packet, or a termi-
nal output), it writes the data to the T-S buffer; whenever
the SC receives an input, it writes it to the S-T buffer,
which the TC checks at regular intervals.

Storage devices are more challenging because the la-
tency between the point where the VM issues a read re-
quest and the point where the data is available can be
difficult to reproduce. A common way to address this
(cf. [5]) is to pad all requests to their maximal duration.
This approach is expensive for HDDs because of their
high rotational latency, which can be several millisec-
onds, but it is more practical for the increasingly com-
mon SSDs, which are roughly three orders of magnitude
faster, and far more predictable.

3.8 What Sanity does not do
We emphasize that Sanity does not run with caches dis-
abled, and that it does not prevent the JVM from per-
forming I/O or from communicating with the outside
world. Although the effects of these features on exe-
cution time are hard to predict, we argue – and we will
demonstrate in Section 6 – that it is possible to repro-
duce them with relatively high accuracy, to a degree that

becomes useful for interesting new applications (more
about this in Section 5). Ensuring reproducibility is far
from trivial, but can be accomplished with careful de-
sign choices, such as the ones we have described here.

4 Sanity Implementation

Next, we describe a prototype of Sanity that we have
built for our experiments.

4.1 Java Virtual Machine
For our prototype, we implemented a Java Virtual Ma-
chine from the ground up. This includes support for
the JVM’s instructions, dynamic memory management,
a mark-and-sweep garbage collector, class loading, ex-
ception handling, etc. However, we designed our
JVM to be compatible with Oracle’s Java class library
(rt.jar), so we did not need to re-implement the stan-
dard classes in the java.lang package. The class li-
brary interacts with the JVM by calling native functions
at certain points, e.g., to perform I/O. For our experi-
ments, we implemented only a subset of these functions;
for instance, we did not add support for a GUI because
none of our example applications require one.

Our current prototype does not support just-in-time
compilation or Java reflection. As discussed in Sec-
tion 3.1, we decided against implementing these because
both are major sources of complexity, and neither is
likely to be a major source of time noise. Since Ora-
cle’s class library invokes reflection at some surprising
points (e.g., when instantiating a HashMap), we made
some small additions to the class library that can replace
the relevant classes without using reflection.

Altogether, our prototype consists of 9,061 lines of
C/C++ code; our additions to the class library contribute
another 1,150 lines of Java code.

4.2 Isolating the timed core
Recall from Section 3.3 that the timed core must be iso-
lated, to the extent possible, from sources of time noise
in the rest of the system. One way to accomplish this
would be to run the JVM as a standalone kernel; how-
ever, we decided against this because of the need for
driver support. Instead, we implemented our prototype
as a Linux kernel module with two threads. The TC
thread runs on one core with interrupts and the NMI
disabled; the SC thread runs on a different core and in-
teracts with the TC as discussed in Section 3.4. The
SC thread can access the kernel’s device drivers, e.g.,
to send and receive network packets. On NUMA plat-
forms, the two cores should be chosen to be far apart, so
they share as little as possible.

7

548 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To improve the repeatability of cache effects, our pro-
totype uses the same physical memory frames for each
execution. We use a separate kernel module for this pur-
pose that is loaded during startup and that reserves a cer-
tain range of frames for later use by the TC/SC module.

To reduce the time noise from the CPU itself, we
disable timing-relevant features such as frequency scal-
ing and TurboBoost in the BIOS (and, in the case of
the latter, again during boot, since Linux surreptitiously
re-enables it). Disabling dynamic hardware-level opti-
mizations has a certain performance cost, but it seems
unavoidable, since the effect of these optimizations is
unpredictable and – at least on current hardware – they
cannot be fully controlled by the software. To further
reduce the time noise from the CPU, we carefully flush
all caches before the execution starts; specifically, we
toggle CR4.PCIDE to flush all TLB entries (including
global ones) and we use the wbinvd instruction to flush
the caches.

4.3 Limitations

Since our Sanity prototype is built on commodity hard-
ware and a commodity kernel, it cannot guarantee time-
determinism, since we cannot rule out the possibility
that there is a source of time noise that we have missed.
It should be possible to achieve such a guarantee by en-
forcing time-determinism at each layer – e.g., by starting
with a precision-timed system such as PRET [21] and
by adding a kernel that is built using the principles from
Section 3 – but this is beyond the scope of this paper.

Our Sanity design assumes that play and replay will
be performed on machines of the same type. It may be
possible to correct for small differences, e.g., by using
frequency scaling during replay to match a lower clock
speed during play, or by disabling extra cores or memory
banks that were not available during play. However we
are not aware of any efficient technique that could pre-
cisely reproduce the timing of an execution on a com-
pletely different architecture.

Two final limitations result from the fact that our de-
sign uses exactly two cores, one TC and one SC. First,
the SC is mostly idle because its only purpose is to iso-
late the TC; thus, the second core is mostly overhead.
Second, multithreaded Java programs must be executed
entirely on the TC and cannot take advantage of addi-
tional cores. These are limitations of our Sanity proto-
type, and not of TDR: the TC/SC division, and thus the
need for a second core, could be avoided in a TDR sys-
tem that runs directly on the hardware, and the restric-
tion to a single TC could be removed by adapting tech-
niques from existing multi-core replay systems, such as
SMP-ReVirt [20], perhaps in combination with novel
hardware features, as in QuickRec [41].

L LS S S
1 0 0 0 1

1 0 0 0 1

se
nd

er
re
ce
iv
er

L LS S S

… ...

… …

Figure 5: An example covert timing channel that en-
codes the bitstring 10001.

5 Application: Covert Timing Channels

Next, we present a concrete example application for
TDR: the detection of covert timing channels that ex-
filtrate information from a compromised machine.

A covert channel is an unauthorized channel that al-
lows the surreptitious communication of information.
Covert channels have become a pervasive security threat
in distributed systems, and have produced an arms race
between methods for achieving covertness and tech-
niques for detecting such channels (see Section 8). Here,
we focus on a class of covert channels called covert tim-
ing channels in which a compromised host manipulates
the timing of network activities to directly embed covert
information into inter-packet delays (IPDs). By observ-
ing the timing of packets, the receiver can reconstruct
the covert message.

Figure 5 illustrates a simple covert timing channel.
The sender manipulates the delays between sending two
consecutive packets to encode a covert message, where
bit 1 (resp. 0) is encoded by adding a large (resp. small)
IPD, indicated as ‘L’ (resp. ‘S’) in the Figure. Upon re-
ceiving the network flow, the receiver can then recover
the covert message by observing the IPDs between con-
secutive packets.

5.1 Examples of timing channels
Since Lampson first proposed covert timing channels in
the 1970s [31], a number of practical channels have been
demonstrated in the literature (cf. [4, 11, 12, 14, 15, 45–
47]), broadly falling into the following categories:
IP covert timing channel (IPCTC). Like most early
timing channels, IPCTC is based on a simple idea: the
sender transmits bit 1 by sending a packet within a pre-
determined time interval, and transmits 0 by remaining
silent in that interval. Due to their unique traffic signa-
tures, IPCTCs are straightforward to detect.
Traffic replay covert timing channel (TRCTC).
TRCTC tries to confuse detectors by replaying the IPDs
from legitimate traffic (without covert channels). It cat-
egorizes IPDs in the legitimate traffic stream into two

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 549

bins (B0 and B1 for small and large IPDs, respectively).
It then transmits a 0 by choosing a delay from B0 and a
1 by choosing a delay from B1. However, since the en-
coding scheme is constant, TRCTC exhibits more regu-
lar patterns than a legitimate traffic stream, the latter of
which usually has high variability (e.g., burstiness).
Model-based covert timing channel (MBCTC).
MBCTC generates IPDs to mimic the statistical prop-
erties of legitimate traffic. It periodically fits samples of
a legitimate traffic to several models and picks the best
fit. Gianvecchio et al. [24] have shown that the shape
of the MBCTC traffic is almost the same as the one of
legitimate traffic. However, as there is no correlation
between consecutive IPDs, MBCTC is highly regular.

There are multiple types of defenses against covert
timing channels; for instance, it is possible to disrupt
them or to reduce their bandwidth [5, 28, 30, 32], and
certain types can even be eliminated with language-
based techniques [1] (albeit at the expense of limiting
expressiveness). However, recent work has begun to fo-
cus more on detection, typically based on traffic statis-
tics. It is this work that is most relevant here.

5.2 State of the art in detection
Next, we briefly describe four state-of-the-art detection
techniques for covert timing channels.
Shape test [15]. The shape test checks only flow-level
statistics; it assumes that the covert channel traffic could
be differentiated from legitimate traffic using only first-
order statistics, such as the mean and variance of IPDs.
While the shape test detects IPCTCs, it is often insuffi-
cient to detect more advanced timing channels.
Kolmogorov-Smirnov test (KS-test) [40]. The KS-test
assumes that the legitimate traffic and the covert chan-
nel traffic are drawn from two different distributions.
The KS-test calculates the distance between the empir-
ical distributions of the test sample and training sample
(from legitimate traffic). If the distance is above a pre-
determined threshold, the test distribution is considered
to contain a covert timing channel.
Regularity test (RT-test) [15]. The RT-test is based on
the observation that the variance of IPDs in legitimate
traffic varies over time, while a covert channel mani-
fests a relatively constant variance due to its constant
encoding scheme. RT-test groups the traffic into sets of
w packets, and compares the standard deviation of pair-
wise differences between each set. RT-test has the dis-
advantage that it exhibits a high false positive rate when
the legitimate traffic is highly variant.
Corrected conditional entropy (CCE) [22]. The CCE
metric extends the notion of the regularity test. It uses a
high-order entropy rate to recognize the repeated pattern
that is formed by the covert timing channel.

5.3 Detecting timing channels with TDR

Existing statistic-based detection techniques rely on the
availability of a sufficient amount of legitimate traffic
to construct accurate models and tune cut-off thresh-
olds. This greatly reduces the effectiveness of these
techniques when such information is not available. In
addition, statistic-based techniques are effective when
covert timing channels transmit information at a high
rate; it is much more difficult to detect slow-rate covert
timing channels in which traffic patterns are almost in-
distinguishable from legitimate ones.

To address these limitations, we propose a novel
detection technique for covert timing channels that is
based on TDR. Our approach differs fundamentally
from the existing ones in Section 5.2 in that we do not
look for the presence or absence of specific patterns in
the observed traffic; rather, we use TDR to reconstruct
what the timing of the packets ought to have been. Con-
cretely, each machine would be required to record its in-
puts in a log; this log could then be audited periodically,
perhaps authenticated with an accountability technique
like PeerReview [25], and then replayed with TDR on a
different machine, using a known-good implementation
of the audited machine’s software. In the absence of
timing channels, the packet timing during replay should
match any observations during play (e.g., from traffic
traces); any significant deviation would be a strong sign
that a channel is present.

Note that this approach does not require knowledge
of a specific encoding, and that it can in principle de-
tect even a delay of a single packet. The adversary’s
only way to avoid detection would be to make very small
changes to the timing, so that they stay below TDR’s re-
play accuracy; however, if the accuracy is high enough,
the adversary may no longer be able to distinguish the
timing changes from network jitter, which effectively
renders the channel unusable.

6 Evaluation

Next, we report results from our experimental evalua-
tion of Sanity. We focus on three key questions: 1) How
accurately does Sanity reproduce the timing of the origi-
nal execution?, 2) What are the costs of running Sanity?,
and 3) Is Sanity effective in detecting a variety of covert
timing channels?

6.1 Experimental setup

For our experiments, we deployed Sanity on a Dell Opti-
plex 9020 workstation, which has a 3.40 Ghz Intel Core
i7-4770 CPU, 16 GB of RAM, an 128 GB Vector ZDO
SSD, and a 1 Gbps network card. We installed Ubuntu

9

550 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Benchmark Sanity Oracle-INT Oracle-JIT
SOR 7.4211 1 0.2634
SMM 1.0674 1 1.1200
MC 4.0890 1 0.0305
FFT 8.4068 1 0.1590
LU 0.2555 1 0.0353

Table 2: SciMark2 performance of Sanity and Oracle’s
JVM, normalized to Oracle’s JVM in interpreted mode.

13.12 as the host OS, and we configured it with a RAM
disk for storing the logs and the files for the NFS server.

We also installed the 32-bit version of Oracle’s Java
SE 7u51 JVM, so we can compare the performance
of Sanity to that of a state-of-the-art JVM. However,
Oracle’s JVM supports just-in-time (JIT) compilation,
whereas Sanity does not; hence, to enable meaningful
comparisons, we report two sets of results for the Oracle
JVM: one with the default settings, and another in which
the -Xint flag is set. The latter forces the JVM to inter-
pret the Java bytecode rather than compiling it, just like
Sanity. We refer to these configurations as Oracle-JIT
and Oracle-INT, respectively.

6.2 Speed

The first question we examine is whether the presence
of TDR imposes a major performance penalty. Ide-
ally, we would simply “enable” and “disable” TDR in
the same codebase, but this is hard to do because TDR
is a design feature. However, we can at least obtain
some qualitative results by comparing the results from
a computation-intensive benchmark.

As a workload, we chose NIST’s SciMark 2.0 [42]
Java benchmark that consists of five computational ker-
nels: a fast Fourier transform (FFT), a Jacobi succes-
sive over-relaxation (SOR), a Monte Carlo integration
(MC), a sparse matrix multiply (SMM) and a lower-
upper factorization (LU). We ran each benchmark in
each of our three configurations (Sanity, Oracle-JIT, and
Oracle-INT), and we measured the completion time.

Table 2 shows our results. Since Sanity lacks a JIT
compiler, it cannot match the performance of Oracle’s
JVM with JIT compilation enabled. However, the com-
parison with the Oracle JVM in interpreted mode is
more mixed; sometimes one JVM is faster, and some-
times the other. We note that Sanity has some advan-
tages over the Oracle JVM, such as the second core
and the privilege of running in kernel mode with pinned
memory and IRQs disabled, so this is not a completely
fair comparison. Nevertheless, at the very least, these
results suggest that TDR is not impractical.

 0

 20

 40

 60

 80

SOR SMM MC LU FFT

V
a
ri
a
n
c
e
 (

%
)

Benchmark

79

15

.3

51

16

1.2

32

17

.09

32

15

.08

44

14

1.2

Dirty
Clean
Sanity

Figure 6: Timing variance for SciMark2, using either
Sanity or the Oracle JVM in the “dirty” and “clean” con-
figurations (see text).

6.3 Timing stability
A key requirement for any TDR implementation is tim-
ing stability: two executions of the same program with
the same inputs and the same initial state must take a
very similar amount of time. To quantify the stability of
Sanity’s timing, we again use the SciMark benchmark
because it takes no external inputs, so it is easy to re-
produce the same execution even without deterministic
replay. We ran each benchmark on Sanity 50 times, and
we calculated the difference between the longest and the
shortest execution. For comparison, we performed the
same experiment on two variants of the Oracle-INT con-
figuration: a “dirty” variant, in which the machine is in
multi-user mode, with a GUI and with networking en-
abled, and a “clean” variant in which the machine is in
single-user mode and the JVM is the only program run-
ning. The latter approximates the closest one can get to
timing stability with an out-of-the-box Oracle JVM.

Figure 6 shows our results. Not surprisingly, timing in
the “dirty” configuration can vary considerably, in some
cases by 79%; this is because of the many sources of
time noise (such as preemptions and concurrent back-
ground tasks) that are present in this configuration. In
the “clean” configuration, the variability is more than an
order of magnitude lower; Sanity can reduce it by an-
other order of magnitude or more, to the point where all
execution times are within 0.08%–1.22% of each other
(the corresponding bars in Figure 6 are there, but are
hard to see). This suggests that Sanity effectively miti-
gates or eliminates the major sources of time noise.

6.4 Replay accuracy
Next, we examine how well Sanity can fulfill its promise
of repeatable timing. For this purpose, we use an I/O-
intensive benchmark because I/O is a major source of
time noise; also, this allows us to easily collect many
traces with different inputs and thus different timing
behavior. We chose nfsj [37], an open-source NFS
server that is written in Java. We made some small mod-

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 551

 6

 6.5

 7

 7.5

 8

 8.5

 9

 6 6.5 7 7.5 8 8.5 9

IP
D

 d
u
ri
n
g
 r

e
p
la

y
 (

m
s
)

IPD during play (ms)

Data points
Perfect accuracy
1.85% accuracy

Figure 7: Comparison of inter-packet delays during play
and replay, for the NFS traces.

ifications to nfsj to adapt it to our Java runtime, mostly
to constructs that require reflection, which Sanity does
not yet support.

We gathered 100 one-minute traces of the NFS server
while it was handling requests, and we then replayed
each of the traces. As a first sanity check, we com-
pared the original execution time of each trace to the
execution times of its replay. We found that 97% of the
replays were within 1% of the original execution time;
the largest difference we observed was 1.85%. Recall
that deterministic replay requires very different opera-
tions in the VMM during play and replay, so this result
is far more remarkable than the stability we have shown
in Section 6.3: it is a result of the careful alignment of
play and replay in Sanity’s design.

To examine these results in more detail, we also
recorded the timing of each individual message the NFS
server transmitted during each play and replay. We then
took each pair of consecutive messages (mi

j,m
i
j+1) in

each replayed trace Ti and calculated the difference be-
tween a) the transmission times of these messages dur-
ing replay, and b) the transmission times of the corre-
sponding messages during play, shown respectively on
the y- and x-axes of Figure 7. If Sanity had reproduced
the timing exactly, the two differences would be identi-
cal, and the graph would show a straight line; in prac-
tice, there is some remaining variability due to remain-
ing sources of time noise. However, all the differences
are within 1.85%.

6.5 Log size
An important source of overhead in Sanity is the log of
nondeterministic events that the SC must write to stable
storage during the execution. To quantify this, we exam-
ined our NFS traces from Section 6.4 and found that the
logs grew at a rate of approximately 20 kB/minute. Not
surprisingly, the logs mostly contained incoming net-
work packets (84% in our trace); recall that these must
be recorded in their entirety, so that they can be injected
again during replay. (In contrast, packets that the NFS

server transmits need not be recorded because the re-
played execution will produce an exact copy.) A small
fraction of the log consisted of other entries, e.g., en-
tries that record the wall-clock time during play when
the VM invokes System.nanoTime.

We note that Sanity requires no additional log entries
specifically for TDR, so its logs should generally be no
larger (or smaller) than those of previous implementa-
tions of deterministic replay. For instance, Dunlap et
al. [19], which describes a replay system for IA-32, re-
ported a log growth rate of 1.4 GB/day for SPECweb99,
and 0.2 GB/day for a desktop machine in day-to-day
use. We expect that Sanity’s logs would have a simi-
lar size, so, given today’s inexpensive storage, keeping
the logs for a few days should be perfectly feasible.

6.6 Covert-channel experiments

In the rest of this section, we report results from our
covert-channel experiments. For these experiments, we
implemented the IPCTC, TRCTC, and MBCTC covert
channels from Section 5.1 in our nfsj-based NFS file
server. The channels add delays using a special JVM
primitive that we can enable or disable at runtime; this
allows us to easily collect traces with and without timing
channels, without making changes to the server code.

In a real attack – e.g., in the cloud computing sce-
nario – the server’s messages would need to traverse a
wide-area network and thus incur additional time noise
that must be considered by the sender of a covert timing
channel. To represent this in our experiments, we locate
the NFS client and server at two different universities
on the U.S. East coast. The RTT between the two was
approximately 10 ms, and (based on 1000 ICMP ping
measurements) the 50th, 90th, and 99th percentile jitter
was 0.18 ms, 0.80 ms, and 3.91 ms, respectively. Since
the content of the files on the NFS server is irrelevant,
we simply used a workload of 30 files with sizes be-
tween 1kB and 30kB; the client reads all of these files
one after the other.

To compare Sanity against the timing detectors de-
scribed in Section 5.1 – shape test, KS-test, regularity
test (RT-Test), and corrected conditional entropy (CCE-
Test) – we ran experiments with each detector-channel
combination. During each experiment, we gathered a
packet trace on the server itself; this eliminates detection
errors due to network jitter, and it approximates a sce-
nario where the detector is very close to the server (for
instance, it might be run by the network administrator).
The traces were available to detectors; our Sanity-based
detector additionally had access to the server’s log and
(for replay) to a non-compromised nfsj binary.

11

552 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (1.000)
KS test (1.000)
RT test (1.000)

CCE test (1.000)
Sanity (1.000)

(a) IPCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.457)
KS test (0.833)
RT test (0.726)

CCE test (1.000)
Sanity (1.000)

(b) TRCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.223)
KS test (0.412)
RT test (0.527)

CCE test (0.885)
Sanity (1.000)

(c) MBCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.751)
KS test (0.813)
RT test (0.532)

CCE test (0.638)
Sanity (1.000)

(d) Needle

Figure 8: ROC curves for our four covert channels and five detectors. Area under the curve (AUC) is shown in
parentheses in the legends.

6.7 Detection performance: Haystacks
To make comparisons amongst the detectors, we vary
the discrimination threshold of each detection tech-
nique. For the Sanity-based detector, this is the mini-
mum difference between an observed IPD and the corre-
sponding IPD during replay that will cause the detector
to report the presence of a channel; the other detectors
have similar thresholds. For each setting, we obtain a
true-positive and a false-positive rate, and we plot these
in a graph to obtain each detector’s receiver operating
characteristic (ROC) curve. An ideal detector would ex-
hibit perfect recall (a true positive rate of 1.0) and speci-
ficity (a false positive rate of 0), and is depicted in a
ROC curve as an upside-down L. We also measure the
area under the curve (AUC) of each ROC curve, which
correspondingly ranges from 0 (poor classification) to 1
(an ideal classifier).

Figures 8a–c show the resulting ROC curves for the
IPCTC, TRCTC, and MBCTC channels. As expected,
the simplistic IPCTC technique is detected by all tests,
confirming earlier results [15]. The other channels more
successfully evade detection when pitted against a mis-
matched detection technique; for instance, TRCTC does
well against shape tests but is detectable by more ad-
vanced detection techniques; it preserves first-order traf-
fic statistic but produces a distribution of IPDs that sig-
nificantly differs from that of normal traffic. As ex-
pected, our Sanity-based detector offered perfect detec-
tion (AUC=1), which confirms that it can match or ex-
ceed the performance of existing detectors.

6.8 Detection performance: Needles
Next, we consider our fourth covert timing channel,
which differs from all the other channels in that it is
short-lived. This represents a more realistic scenario in
which the sender (the NFS server) wishes to exfiltrate
a small secret—for example, a password or private key.
To minimize the risk of detection, the sender toggles its
use of the covert channel, transmitting a single bit once

every 100 packets. Thus, the channel does not change
high-level traffic statistics very much, which makes it
very difficult to detect with existing methods.

Figure 8d shows the ROC curves for this channel.
As expected, all the existing detectors failed to reliably
detect the channel; in contrast, our Sanity-based detec-
tor still provided perfect accuracy. This is expected be-
cause, unlike existing detectors, Sanity does not rely on
statistical tests that must be carefully tuned to balance
the risks of under- and over-detection; instead, TDR-
based detectors can potentially find any significant tim-
ing variation, even if it affects only a single packet.

6.9 Time noise vs. jitter
As discussed in Section 3 and empirically measured in
Sections 6.3 and 6.4, TDR does not completely elimi-
nate all sources of time noise. For example, contention
between the SC and the TC on the memory bus might
affect different executions in slightly different ways. In
theory, an adversary could exploit this remaining time
noise to construct a covert channel that avoids detec-
tion: if the differences between log and replay due to
the covert channel are within the range of normal time
noise, then Sanity will fail to detect the channel.

However, such a strategy is infeasible in practice due
to the vast asymmetry between time noise allowed by
Sanity and time noise due to the network (i.e., network
jitter). Figure 7 demonstrated that the timing noise al-
lowed by Sanity is under 1.85% of the original IPDs,
that is, 0.14 ms for a median IPD of 7.4 ms. On the
other hand, the measured median jitter is 0.18 ms, which
is 129% of the allowed noise. Note that the jitter is mea-
sured between two well-provisioned universities; it is a
very conservative estimation of the jitter that the traffic
of a covert timing channel would encounter. For exam-
ple, the median jitter of broadband connection has been
measured to be approximately 2.5 ms [18]. To avoid de-
tection, the adversary would need to accept an extremely
low accuracy of reception, making such an avoidance
strategy impractical.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 553

6.10 Summary
Our results confirm that it is possible to reproduce ex-
ecution times with high accuracy, even on commodity
hardware. Our prototype currently cannot match the
performance of a state-of-the-art JVM, but, as discussed
in Section 3.1 it should be possible to get better per-
formance by adding features such as JIT. As an exam-
ple of an interesting new application that TDR enables,
we have demonstrated a novel, TDR-based detector for
covert timing channels that outperforms existing detec-
tors both in terms of accuracy and in terms of general-
ity. To avoid triggering this detector, an adversary would
need to use extremely small timing variations that would
most likely be lost in the jitter of a wide-area network.

7 Discussion

Multi-tenancy: Although Sanity currently supports
only a single VM per machine, it should be possible
to provide TDR on machines that are running multiple
VMs. The key challenge would be isolation: the extra
VMs would introduce additional time noise into each
other’s execution, e.g., via the shared memory bus. We
speculate that recent work in the real-time domain [51]
could mitigate the “cross-talk” between different VMs;
techniques such as [33] could be used to partition the
memory and the cache. If the partitions are equivalent,
it may even be possible to replay an execution in a dif-
ferent partition from the one in which it was recorded,
which would remove the need to have the same physical
pages available during play and replay.
Accountability: Although TDR can detect inconsisten-
cies between the timing of messages and the machine
configuration that supposedly produced them, it cannot
directly prove such inconsistencies to a third party. This
capability could be added by combining TDR with ac-
countability techniques, such as accountable virtual ma-
chines [26]. However, the latter are designed for asyn-
chronous systems, so a key challenge would be to extend
them with some form of “evidence of time”.

8 Related Work

Covert timing channels. We have already discussed
prior work on timing channel detection in Sections 5.1
and 5.2. Briefly, TDR is different in two ways: 1)
it looks at the timing of individual packets rather than
high-level traffic statistics, which gives it the ability to
detect even low-rate, sporadic channels, and 2) it does
not look for specific anomalies but rather for deviations
from the expected timing, which enables the detection of
novel channels. We know of only one other work, Liu et
al. [34] that uses a VM-based detector, but [34] simply
replicates incoming traffic to two VMs on the same ma-

chine and compares the timing of the outputs. Moreover,
without determinism the two VMs would soon diverge
and cause a large number of false positives.
Deterministic replay. There is a large body of work on
enabling deterministic replay at various levels, e.g., at
the hardware level [27] or the OS level [3, 6, 8–10, 17,
36, 38, 39]. However, these solutions reproduce only the
functional behavior of the program. To our knowledge,
TDR is the first primitive that can accurately reproduce
the temporal behavior as well.
Real-time systems. Timing stability has also been a
design goal of precision-timed (PRET) machines [21].
The PRET machines reduce variances in the execution
time using deadline instructions [29], thread-interleaved
pipeline [35], and scratchpad-based memory hierar-
chy [35, 43]. These machines can potentially achieve
a very stable timing, although they do require new pro-
cessor designs. There also exist time-predictable archi-
tectures for real-time systems that can indirectly enable
stable timing, such as MCGREP [48] and JOP [44], by
making the execution time more deterministic. How-
ever, we are not aware of any existing work that provides
both repeatable timing and deterministic replay.

9 Conclusion

This paper introduces time-deterministic replay (TDR),
a mechanism for reproducing both the execution and the
timing of a program. TDR is well-suited for a number
of system administrator and developer tasks, including
debugging, forensics, and attack detection.

TDR presents a number of design and engineering
challenges—modern commodity processors and operat-
ing systems are tailored for performance, not for pre-
cise and identical repetition of processes. We eliminate
or mitigate many sources of “time noise” and demon-
strate the feasibility of TDR by implementing a proof-
of-concept TDR-capable JVM that we call Sanity. Our
benchmarking experiments reveal that Sanity can repro-
duce the timing of an execution to within 1.85% of the
original. We additionally demonstrate the practicality
of TDR by using Sanity to detect a variety of classes
of covert timing channels. Our results are encourag-
ing: Sanity is able to detect even extremely subtle and
low-bandwidth timing channels that fail to be detected
using standard shape- and statistical-based detection ap-
proaches.

Acknowledgments: We thank our shepherd Peter Chen
and the anonymous reviewers for their comments and
suggestions. This work was supported by NSF grants
CNS-1065130, CNS-1054229, CNS-1149832, CNS-
1064986, CNS-1117185, and CNS-1040672, as well as
DARPA contract FA8650-11-C-7189.

13

554 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

References
[1] J. Agat. Transforming out timing leaks. In Proc. POPL, Jan.

2000.
[2] B. Alpern, T. Ngo, J.-D. Choi, and M. Sridharan. DejaVu: De-

terministic Java Replay Debugger for Jalapeño Java Virtual Ma-
chine. In OOPSLA Addendum, Oct. 2000.

[3] G. Altekar and I. Stoica. ODR: Output-deterministic replay for
multicore debugging. In Proc. SOSP, Oct. 2009.

[4] S. Arimoto. An algorithm for computing the capacity of arbi-
trary discrete memoryless channels. IEEE Trans. Inf. Theor., 18
(1):14–20, Sept. 2006.

[5] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box
mitigation of timing channels. In Proc. CCS, Oct. 2010.

[6] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proc. OSDI, Oct. 2010.

[7] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan,
B. Jonsson, P. Marwedel, J. Reineke, C. Rochange, M. Sebas-
tian, R. von Hanxleden, R. Wilhelm, and W. Yi. Building tim-
ing predictable embedded systems. ACM TECS, 13(4):82:1–37,
2014.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
Coredet: A compiler and runtime system for deterministic mul-
tithreaded execution. In Proc. ASPLOS, Mar. 2010.

[9] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In Proc. OSDI, Oct. 2010.

[10] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In Proc. OOPSLA, Oct. 2009.

[11] V. Berk, A. Giani, and G. Cybenko. Detection of covert channel
encoding in network packet delays. Technical Report TR2005-
536, Dartmouth College.

[12] R. Blahut. Computation of channel capacity and rate-distortion
functions. IEEE Trans. Inf. Theor., 18(4):460–473, 1972.

[13] A. Burtsev. Xen deterministic time-travel (XenTT). http://
www.cs.utah.edu/˜aburtsev/xen-tt-doc/.

[14] S. Cabuk. Network Covert Channels: Design, Analysis, Detec-
tion, and Elimination. PhD thesis, Purdue Univ., Dec. 2006.

[15] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing chan-
nels: Design and detection. In Proc. CCS, Oct. 2004.

[16] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Mul-
tithreaded Applications. In Proc. SPDT, Aug. 1998.

[17] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Determin-
istic shared memory multiprocessing. In Proc. ASPLOS, Mar.
2009.

[18] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. In Proc. IMC,
Oct. 2007.

[19] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proc. OSDI, Dec. 2002.

[20] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman. Exe-
cution replay for multiprocessor virtual machines. In Proc. VEE,
Mar. 2008.

[21] S. A. Edwards and E. A. Lee. The case for the precision timed
(PRET) machine. In Proc. DAC, June 2007.

[22] S. Gianvecchio and H. Wang. Detecting covert timing channels:
An entropy-based approach. In Proc. CCS, Oct. 2007.

[23] S. Gianvecchio and H. Wang. An Entropy-Based Approach to
Detecting Covert Timing Channels. IEEE Transactions on De-
pendable and Secure Computing, 8(6):785–797, Nov 2011.

[24] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia. Model-
based covert timing channels: Automated modeling and evasion.
In Proc. RAID, Sept. 2008.

[25] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. In Proc. SOSP, Oct.
2007.

[26] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Ac-
countable virtual machines. In Proc. OSDI, Oct. 2010.

[27] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
Deterministic or not? free will to choose. In Proc. HPCA, 2011.

[28] W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE
Symposium on Security and Privacy, May 1991.

[29] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-
accurate real-time software. In Proc. EUC, Aug. 2006.

[30] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump.
IEEE Trans. Softw. Eng., 22:329–338, May 1996.

[31] B. W. Lampson. A note on the confinement problem. Commu-
nications of the ACM, 16:613–615, Oct. 1973.

[32] P. Li, D. Gao, and M. K. Reiter. Mitigating access-driven timing
channels in clouds using StopWatch. In Proc. DSN, June 2013.

[33] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache
predictability for real-time systems. In Proc. RTAS, June 1997.

[34] A. Liu, J. Chen, and H. Wechsler. Real-time covert timing chan-
nel detection in networked virtual environments. In Proc. Inter-
national Conference on Digital Forensics. Jan. 2013.

[35] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee. A
PRET microarchitecture implementation with repeatable timing
and competitive performance. In Proc. ICCD, Sept. 2012.

[36] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient
deterministic multithreading. In Proc. SOSP, Oct. 2011.

[37] nfsj. https://code.google.com/p/nfsj/.
[38] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient

deterministic multithreading in software. In Proc. ASPLOS, Mar.
2009.

[39] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic replay with execution sketching on
multiprocessors. In Proc. SOSP, Oct. 2009.

[40] P. Peng, P. Ning, and D. Reeves. On the secrecy of timing-based
active watermarking trace-back techniques. In Proc. IEEE Secu-
rity and Privacy, May 2006.

[41] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and
J. Torrellas. QuickRec: Prototyping an Intel architecture exten-
sion for record and replay of multithreaded programs. In Proc.
ISCA, June 2013.

[42] R. Pozo and B. Miller. SciMark 2.0. http://math.nist.
gov/scimark2/.

[43] J. Reineke, I. Liu, H. Patel, S. Kim, and E. A. Lee. Pret dram
controller: Bank privatization for predictability and temporal
isolation. In Proc. CODES+ISSS, Oct. 2011.

[44] M. Schoeberl. A java processor architecture for embedded real-
time systems. J. Syst. Archit., 54(1-2):265–286, Jan. 2008.

[45] G. Shah, A. Molina, and M. Blaze. Keyboards and covert chan-
nels. In Proc. USENIX Security, July 2006.

[46] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of inter-
packet delays. In Proc. CCS, Oct. 2003.

[47] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous peer-to-
peer VoIP calls on the internet. In Proc. CCS, Nov. 2005.

[48] J. Whitham and N. Audsley. MCGREP–A predictable architec-
ture for embedded real-time systems. In Proc. RTSS, Dec. 2006.

[49] R. Wilhelm. Determining bounds on execution times. In R. Zu-
rawski, editor, Handbook on Embedded Syst. CRC Press, 2005.

[50] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem–overview of methods
and survey of tools. ACM TECS, 7(3):36:1–36:53, May 2008.

[51] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of
DRAM latency in multi-requestor systems. In Proc. RTSS, Dec.
2013.

[52] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. ReTrace: Collecting execution trace with virtual
machine deterministic replay. In Proc. MoBS, June 2007.

[53] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER:
Object centRic DEterministic Replay for Java. In Proc. USENIX
ATC, June 2011.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 555

Identifying information disclosure in web applications
with retroactive auditing

Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek
MIT CSAIL

Abstract
Rail is a framework for building web applications that
can precisely identify inappropriately disclosed data after
a vulnerability is discovered. To do so, Rail introduces
retroactive disclosure auditing: re-running the applica-
tion with previous inputs once the vulnerability is fixed,
to determine what data should have been disclosed. A
key challenge for Rail is to reconcile state divergence
between the original and replay executions, so that the
differences between executions precisely correspond to
inappropriately disclosed data. Rail provides applica-
tion developers with APIs to address this challenge, by
identifying sensitive data, assigning semantic names to
non-deterministic inputs, and tracking dependencies.

Results from a prototype of Rail built on top of the Me-
teor framework show that Rail can quickly and precisely
identify data disclosure from complex attacks, including
programming bugs, administrative mistakes, and stolen
passwords. Rail incurs up to 22% throughput overhead
and 0.5 KB storage overhead per request. Porting three
existing web applications required fewer than 25 lines of
code changes per application.

1 Introduction
Unintentional disclosure of sensitive information is a
common problem, despite improvements in security tech-
niques and widespread use of best practices. Newspapers
frequently report such leaks at companies, hospitals, uni-
versities, government institutions, etc. This paper is based
on the premise that disclosures will remain common, since
even if the best security mechanism and practices are used,
humans will make mistakes: a programmer may introduce
a bug, a user may choose a weak password, or a system
administrator may misconfigure the access control policy.
Even if a state-of-the-art security system is in place, hu-
man operators can still overlook alerts [13], inadvertently
disclosing confidential data.

Dealing with data leaks can be expensive because in-
stitutions are often required by law to inform their users
of the security breach. For example, the University of
Maryland suffered a compromise and paid for one year of
credit monitoring for 309,079 potentially affected users,
since it was unable to immediately pinpoint which of the
users were actually affected [15]. However, a subsequent
manual audit, which took about a month, revealed that
only a handful of users’ information was disclosed, and

that the bulk of the cost was unnecessary. This example is
typical of the challenges administrators face after a leak.

The usual approach for identifying data disclosures is
to maintain access logs and to analyze those logs after a
security breach, in an attempt to identify who accessed
what data, and to separate out the legitimate accesses
from the illegal ones. Although there are challenges in
maintaining access logs (see, for example, Keypad [6]),
the hard problem is deciding whether data accesses were
legitimate or not. Manually auditing all accesses is labor-
intensive and imprecise, as illustrated by the University
of Maryland example.

To reduce the cost of handling leaks, this paper explores
a different, automated approach for deciding which ac-
cesses were legitimate or not, based on record and replay.
In particular, the paper describes the design of a new sys-
tem, named Rail (Retroactive Auditing for Information
Leakage), that can precisely identify whose information
was leaked in the context of web applications, such as
a health care application that collects patients’ personal
health information or a class submission web site for as-
signments and grades.

Rail’s main contribution is to apply record and replay
to identifying improper disclosures. Record and replay
has been used for many integrity applications, from ana-
lyzing attacks [9] to detecting past intrusions [8, 14] and
recovering integrity [2, 3, 7], but prior work did not ad-
dress the problem of dealing with past data disclosures.
During regular operation, Rail records sufficient infor-
mation so that it can faithfully replay an application’s
requests later. Once a vulnerability has been identified,
an administrator repairs the underlying cause in the appli-
cation (e.g., fixing a bug in the application’s source code,
or changing an access control list), and then asks Rail to
replay requests. If Rail notices a difference between data
sent to users in the original run and the replay run, it will
report that data as having been inappropriately disclosed.
For example, if one user’s account was compromised,
Rail will report only the portion of that user’s data that
was inappropriately accessed by an adversary.

Precisely detecting data disclosures using record and
replay is challenging for several reasons. The core chal-
lenge is that the application may behave differently during
replay due to non-determinism. For example, a homework
submission system might randomly assign students to one
another for code review. If during replay some of the stu-

556 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

dents are missing (e.g., because they were the attackers),
the system might produce an entirely different assignment
for code review. As a result, the replay will send different
homework submissions to each student, and Rail might
report all previous homeworks as having been inappropri-
ately disclosed. Previous record and replay systems do
not have adequate solutions to this problem; they take a
best-effort approach, and any final state is acceptable in
the end, as long as all effects of the attack are gone [2, 7].
In contrast, Rail’s goal is to minimize divergence between
normal execution and replay, in order to precisely identify
illegal data disclosures.

A second challenge lies in identifying what represents a
data item in the first place. For example, in the homework
submission system, what is the unit of data disclosure that
should be reported to the administrator?

A third challenge lies in tracking dependencies in ap-
plication code at a fine granularity (e.g., individual func-
tions). Previous systems either tracked code dependencies
at a coarse granularity (e.g., source files loaded by the
application [2]), or made extensive changes to the inter-
preter to record fine-grained dependencies [8]. However,
neither approach is ideal in practice.

Finally, a fourth challenge is making replay fast so that
an administrator can quickly audit for data disclosures
over long periods of time. One month of requests must
not take a month replay.

Rail addresses these challenges by providing an ex-
plicit API for developers to help administrators record
and replay applications. For instance, in the homework
submission system, the programmer uses Rail’s API to as-
sign semantic names to random pairings between students
(see §7.2), enabling the system to preserve assignments
during replay, even if some students are gone. The API in-
cludes annotations to identify data, assign semantic names
to non-deterministic inputs, and record dependencies on
state for selective replay.

We implemented the Rail API in the context of Me-
teor [11], a framework for building web applications. The
API’s design is not limited to Meteor. We chose Meteor
because it cleanly separates data items and web interfaces
via asynchronous messages. Because of this property
(which is common in modern web frameworks), we were
able to implement much of Rail inside of Meteor, greatly
reducing the need for application changes. In fact, we
were able to port existing, deployed Meteor applications
(e.g., a health survey application, a homework submission
application, and a social news application) to Rail with
few changes to the application code.

We evaluated Rail using these applications and several
synthetic attacks, based on common vulnerabilities (e.g.,
code bugs and user mistakes) that result in direct data
disclosures or back doors that leak data indirectly. Our
results show that Rail is precise, efficient, and practical:

Rail accurately flags all inappropriate disclosures with
few false reports and minimal re-execution; the through-
put and storage overhead of Rail during recording is 22%
and 0.5 KB per request, respectively; and porting several
web applications to use Rail’s API required fewer than
25 lines of code changes per application.

Rail cannot identify all data leaks. For example, at-
tacks that copy the database from the server through some
external mechanism (e.g., an NSA employee with access
to the server) are outside of the scope of Rail. In general,
Rail does not handle attacks by system administrators, or
covert channels; Rail focuses on data disclosed through
the web application’s normal interface.

The rest of the paper is organized as follows. §2 dis-
cusses previous related work. §3 shows how to use Rail
from the perspective of site administrators and appli-
cation developers. §4 summarizes Rail’s assumptions
and requirements. §5 describes the high-level design of
Rail. §6 presents Rail’s uniform interface for managing
shared objects. §7 details the replay and handling of non-
determinism. §8 describes our prototype implementation
of Rail. §9 evaluates Rail’s effectiveness. §10 discusses
our experience of with Rail. §11 concludes.

2 Related work
Rail is the first practical system for precisely auditing
unauthorized data disclosures. Much of the previous work
on auditing has focused on logging all accesses to confi-
dential data. For example, Keypad [6] and Pasture [10]
use either cryptography or trusted hardware to maintain
a centralized audit log of data accesses, while allowing
low-overhead access to this data across many distributed
devices. While this model is a good one for auditing unau-
thorized access when a user’s device is stolen, it cannot
distinguish legitimate from unauthorized accesses if there
is a mistake in the access control policy.

Information flow control and taint tracking systems,
such as TaintDroid [5] and TightLip [16], try to prevent
disclosure of confidential data in the first place. However,
we believe such systems cannot be 100% effective, and
disclosures will still happen. For example, a system ad-
ministrator may misconfigure labels, or a user’s password
may be guessed by an attacker. Unlike these systems,
Rail does not try to prevent any data leaks; rather, it can
detect the leak after the fact without a priori knowledge
about which data is sensitive. Moreover, although Rail
and TightLip [16] share the common idea of comparing
execution outputs, Rail addresses the unique challenge
of reconciling state divergence, which improves auditing
accuracy and performance.

Similarly, encryption is often used to prevent data dis-
closure in the face of a compromised server, such as in the
Mylar web framework [12]. However, encryption does
not protect against all disclosures, such as when an ad-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 557

1 var Users = App.getDBCollection(’users’);
2 var Homeworks = App.getDBCollection(’hws’);
3 var Answers = App.getDBCollection(’answers’);
4 App.publish(’pub_ans’, function (userid) {
5 - var uid = userid;
6 + var uid = App.getSessionUserId();
7 var u = Users.findOne({_id: uid});
8 if (u && u.profile.type === ’staff’)
9 return Answers.findAll();

10 return Answers.find({user: uid});
11 });
12 App.method(’submit’, function(hw_id, answer) {
13 var uid = App.getSessionUserId();
14 var hw = Homework.findOne({_id: hw_id});
15 var ctx = Rail.inputContext(hw_id, uid);
16 if (!uid || !hw || hw.dueDate < ctx.date())
17 throw new Error(’Submission failed’);
18 Answers.insert({_id: ctx.random(),
19 hw: hw_id, user: uid, answer: answer});
20 });

Figure 1: Part of the server-side code from a homework submission
application as our running example. Invocations of built-in framework
APIs are prefixed with App; Rail-specific API are prefixed with Rail.

ministrator misconfigures a system or when programmers
make mistakes in the application logic.

Rail uses many ideas from prior work on record and re-
play, such as the action history graph and selective replay
from Retro [7], and the comparison of normal execution
and replay from Rad [14] and Poirot [8]. Rail’s key con-
tribution lies in providing an API that programmers can
use to minimize divergence during replay. Prior replay
systems were focused on restoring integrity, and reduc-
ing divergence was not a priority, resulting in heuristic
solutions that attempted to match up replay with normal
execution but did not offer strong guarantees. For ex-
ample, Retro matches non-deterministic system calls in
sequential order [7], which might not make sense in our
homework submission system’s code review assignments.
Poirot [8] stops replay when it detects the entry point of
an attack, and reports only the initial problematic request;
Rail identifies leaked data in all future requests that are
indirectly affected by the attack, and reports precisely
which data items were disclosed.

Brown’s undoable mail server [1] proposes structuring
server software around a verb API to handle replay after
state changes. However, Brown’s API is not designed to
identify data items that may be disclosed.

3 Using Rail
Using Railwith an application involves three main phases.
First, the application developer modifies their applica-
tion’s source code to invoke the Rail API. Second, during
normal operation, Rail records inputs to the web applica-
tion, along with other information specified through the
Rail API, to a log. Third, when an administrator detects
that there was a problem, she can describe the problem
to Rail (e.g., supply a patch or fix an access control list,

database

Web Client

method handler
for "submit"

publish handler
for "pub_ans"

Application code

subscribe("pub_ans")

call("submit", ...)

updated("pub_ans", ...)

Web Server

1 2

3

4 5

6

Figure 2: Typical workflow for the running example. 1) The client
sends an RPC request to subscribe to the “pub_ans” dataset. 2) The
corresponding publish handler is executed, which returns a query. 3)
The server runs the query and sends the initial dataset to the client
via “updated” messages. 4) The client calls the RPC method “submit”
to hand in an answer to a homework. 5) The server runs the method
handler, which updates the database. 6) The server reruns published
queries affected by the update, and pushes updates to all clients that
subscribed to it, via several “updated” messages.

and pinpoint the time when the problem first arose). Rail
will replay requests from the start of the problem, detect
which data items may have been inappropriately disclosed
as a result, and report them to the administrator.

To understand how this works, consider an example
application: a website for submitting homework assign-
ments. Figure 1 shows the server-side code of this appli-
cation, written in the Meteor framework [11], along with
changes that the developer would make to use the Rail
API. Figure 2 illustrates a typical workflow for the code.
The application defines an RPC method “submit” (line
12), which allows students to submit their answers to a
homework. The framework does not explicitly send data
to the clients, but adopts a publish–subscribe pattern: the
server publishes a database query with a name (line 4);
when the results of the query might change, the server
reruns the query and pushes any updates to all clients
that subscribed to it. As we can see from lines 7–10, the
publish code returns different queries based on the user’s
account profile: course staff members are permitted to see
all submissions, but students can see only their own.

Suppose the application developer made a mistake
checking permissions; as can be seen on lines 5–6, the
mistake allows the client to supply the current user ID
as an argument to the pub_ans subscription, instead of
using the App.getSessionUserId method, which returns
the currently authenticated user ID; such a mistake was
discovered in the Telescope social news application [4].
This mistake could have been exploited by an adversary
to view all students’ submissions, by supplying the user
ID of a staff member when subscribing to pub_ans.

After running the application with Rail for a while, the
site administrator discovers the vulnerability. She wants
to know if an adversary exploited the bug, and whose
homework submissions were disclosed as a result. To do
so, she first applies a patch that fixes the bug (lines 5–6),

558 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Leaked data for session RuZw9cCaDMJLdsj8G:
Login: evil_student @ 4/24/2014 3:14:15 PM
IP: 192.168.0.10
- answers/fNKXudhNDF7 fields: answer, grade, ...
- answers/jxT5w7jRJpm fields: answer, grade, ...

...

Figure 3: An example report from Rail indicating that several home-
work submissions were inappropriately disclosed.

and specifies a time before any possible disclosures (e.g.,
the time of the first submission). Then she launches the
web application again in replay mode. Rail re-executes
all subsequent events which might be affected by the
patch. Finally, Rail compares the new data items sent to
each client with those from the original execution, and
generates a disclosure report that details any differences.
For example, Figure 3 shows a possible report for this
example, indicating that several homework submissions
were inappropriately disclosed to a client at a particular
IP address.

In order to precisely identify disclosed data, Rail
requires application developers to use Rail APIs to
name and access shared objects and to annotate non-
deterministic inputs in their code. These names, known
as context identifiers, help Rail match up semantically
equivalent operations between the original execution and
re-execution. For example, on line 15 of Figure 1, the
code creates an input context with an identifier composed
of the homework ID and user ID, and uses the context
to generate dates and random numbers (lines 16 and 18).
As long as the identifier remains unchanged during re-
execution, Rail will reproduce the same date and random
number from the context. Rail also relies on context
identifiers to track dependencies, as we describe in §6.

All non-deterministic inputs and shared objects, in-
cluding current date and time, random numbers, session
variables, database records, and top-level functions, must
be accessed via a Rail wrapper to preserve access seman-
tics during replay. In principle, this could be a burden
for the programmer, but in our experience, most of the
wrapping can be confined to the web framework itself,
requiring little additional per-application effort from the
developer. In the example application from Figure 1, the
developer uses standard APIs from the underlying web
framework to retrieve the currently logged-in user (lines
6 and 13), and access the database (lines 7, 9, 10, 14, and
18). Behind the scenes, the web framework itself contains
calls to the Rail APIs that wrap these objects, taking care
of object naming and dependency tracking.

4 Assumptions
Rail relies on the following assumptions to work properly.
First, the developer should correctly use Rail APIs to
access shared objects, read non-deterministic inputs, and
generate outputs. Developers should also name context

identifiers appropriately so that states can be matched up
during re-execution.

Second, Rail assumes that the inputs from clients’ web
browsers remain the same during replay. In general, this
might not be true if the user reacts differently to changes
in the UI (e.g., some buttons might have changed during
replay), but in all of the examples that we have considered,
the user’s interaction with the application is unchanged.
In cases when the administrator knows about client-side
changes that must be accounted for, Rail allows the ad-
ministrator to supply a script to update the client inputs.

Third, Rail assumes that the mistakes leading to dis-
closures, either administrative or programming, are dis-
covered before Rail’s log rolls over.

Fourth, Rail deals only with data leaked through the
web application. It cannot detect data revealed through
other channels, such as an attacker directly querying the
database or accessing the file system. Rail also cannot
detect timing attacks, such as an attacker inferring a secret
based on how long a response took.

Finally, Rail assumes that the software stack on the
server is not compromised, which includes the operating
system, system libraries, the web server, framework, and
Rail itself. The adversary can, however, take advantage
of vulnerabilities in the web application code.

5 System overview
At its core, Rail is a record and replay system. Rail views
an application’s execution as a stream of actions. Each ac-
tion can read and write objects, such as database contents,
session state, output, and non-deterministic inputs. This
fine-grained view of an application’s execution enables
Rail to precisely track dependencies between actions and
objects. This, in turn, allows Rail to replay a subset of
actions when auditing, if it can determine that certain
actions were not affected by a mistake. To maintain this
dependency information, Rail records dependencies in a
log during normal operation, and Rail’s replay controller
uses this log to decide what actions to replay for auditing.

Figures 4 and 5 summarize Rail’s architecture and API,
which we will outline in the rest of this section.

Action APIs. All application code in Rail is executed
in the context of some action. Actions are the unit of
dependency tracking and the unit of replay in Rail. Rail
assumes that all application code runs in response to some
event, such as an RPC request or a periodic timer event;
there are no long-running threads. The web framework
maintains a mapping between events and handlers for
those events. For example, in Figure 1, the application reg-
isters two handlers: one for pub_ans subscription events,
and one for submit RPC events. The handler for each
event, stored by the web framework, is actually a named
Rail object representing the code for that handler. The ex-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 559

Web framework

action args

handler entry

input context

session states

code

database docsoutput view

action

output
channel

date / time

randomness

timer

event
dispatcher

Action APIs

Object APIs

database

requests

responses

global
variables

application
code

custom objects

Action
History
Graph

Replay
Controller

logLogs

Figure 4: The architecture of Rail. Strong shading indicates compo-
nents introduced by Rail. Rail’s object API constructs shadow objects
for most of the shared state, inputs, and outputs in the web framework;
these relationships are shown as dashed lines.

isting APIs provided by the web framework create these
named object wrappers on the application’s behalf; for
example, both App.publish and App.method create such
wrappers in Figure 1.

When the web framework receives an event, it retrieves
the appropriate handler from its own tables, creates a new
action to represent the execution of this event’s handler,
and invokes the handler in the context of this action, with
the event as an argument. The last two steps are performed
using the doAction API, as shown in Figure 5. In the
example in Figure 1, the publish handler (lines 4–11)
will run in a new action in response to each subscription
request, and the submitmethod handler (lines 12–20) will
run in a new action for every submit RPC request.

Each action has a timestamp, the time at which the
action is triggered. Since the handler is a wrapper object,
as described above, when the web framework invokes
the handler, the handler first records a dependency from
the handler object’s name to the current action, and then
runs the code wrapped by the object. This helps Rail
determine which actions need to re-execute when some
code object changes.

Object APIs. Every shared object in Rail, such as a
database record, a function (code) object, or a session
variable, is identified by a globally unique name. For each
shared object, Rail maintains two things: first, a set of
dependencies between actions and objects, used to track
down the set of actions that accessed an object during
recording, and second, multiple versions of the object’s
state at different points in time, used during replay to
implement rollback and to check for equivalence.

Rail assumes that all application code uses object ac-
cessors to read and write shared objects, so that Rail can
track the input and output dependencies of actions, and

can checkpoint the state of an object at different times.
Rail wraps existing framework objects using accessors,
so that in most cases there is no need for the application
developer to change the application code. For instance,
on lines 6 and 13 of Figure 1, the application code uses
the web framework’s interface to access the user ID for
the current session, which is session-level shared state.

Rail provides an API for naming and accessing shared
objects, which is used both by application code and by
web framework code. The findObject() function returns
a shared object given its unique name. Applications can
perform two kinds of operations on a shared object: they
can either read it, using getValue(), which registers a
dependency from the object to the current action, or they
can modify it, using an object-specific mutator, which
registers a dependency to the object from the current
action, and also records a checkpoint of the object’s value.

This object API is used to handle dependencies for
different kinds of objects, as we describe in more detail
in §6.1. Some Rail shared objects actually hold the state
represented by the object. For example, this is the case for
session state objects (accessed by the getSessionUserId
method in Figure 1). In such situations, Rail takes care
of checkpointing, rollback, etc. In other cases, the Rail
shared object is just a placeholder, and the actual value
is stored elsewhere. For example, this is the case for
objects representing database state (where checkpointing
and rollback takes place in the database, as opposed to in
Rail’s log). This is also the case for code objects, since it
is difficult to store a JavaScript closure in a log and restore
it later on. Each object type defines its own mutators,
using the defineMutator function; we will discuss these
in more detail in §6.2.

Logs and dependency graph. Rail’s dependency graph
is an action history graph [7] that connects action and
object nodes. An edge from object o to action a means
o is a’s input (o→ a, or a reads o). Conversely, an edge
from a to o means o is a’s output (a→ o, or a writes o).

Since an object’s state can change over time, depen-
dencies in the action history graph refer to an object at a
particular time. More precisely, o → a indicates that a
depends on o’s state right before time ta, where ta is a’s
timestamp. Here, Rail assumes that actions are atomic,
since all dependencies to and from an action effectively
take place at a single instant in time. This is a reasonable
assumption if the web framework provides serializabil-
ity, which is true in the Meteor framework that our Rail
prototype is built on.

During an action’s execution, Rail connects edges from
and to the current action’s node as the action accesses
objects. When the action completes, Rail appends an
entry to its persistent log, which contains the action’s
timestamp, its arguments (from the event), and the names

560 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Return type API Description

Public APIs for web framework and application developers
– doAction(args, func) Allocate a new action and run func within its context.

action getCurrentAction() Return the current running action.
object findObject(id) Create or return the Rail object identified by id.
<any> object.getValue() Accessor. Return the object’s current state and update dependency.

function defineMutator(func) Return a mutator function based on func, which alters the binding
object’s state and updates dependency.

– registerObjectType(type, proto) Register a custom object type using template object proto.
function registerCode(id, func) Shortcut for creating a code object with the given id; returns a wrapper

function that takes care of dependency tracking.
object inputContext(args, ...) Shortcut for creating an input context object identified by args.

Private APIs for the replay controller
number action.timestamp ta, the timestamp when action starts. Also used to identify the action.

list<object> action.reads List of objects that the action depends on (inputs).
list<object> action.writes List of objects that depend on the action (outputs).

object action.args Return the argument object associated with the action.
– replayAction(action) Re-execute the given action based on its args.

string object.type The type name of the object.
number object.time The timestamp of the object’s current state during replay.

list<action> object.actions List of actions that read or write the object.
boolean equiv(object, ts) Check if the object’s current state is semantically equivalent to its state

at time ts during original execution.
– rollback(object, ts) Revert object’s current state to its state at time ts during original run.

Figure 5: List of Rail APIs.

of its input and output objects. The action history graph
can be reconstructed from the log during replay. Rail also
logs every object mutation, so that during replay it can
reconstruct the object’s state at any instant. Objects that
do not store actual state in the Rail’s shared object must
maintain their own versioning outside of Rail’s log.

Replay controller. During auditing, the site’s adminis-
trator initiates replay through the replay controller, by
supplying either a code patch (e.g., fixing a software vul-
nerability), or a short JavaScript program that fixes the
state of the system (e.g., correcting a mistake in an ac-
cess control list). The administrator can also manipulate
the action history graph and the versioned database state
through JavaScript APIs, if necessary. The replay con-
troller, in turn, reconstructs the action history graph from
the log, and replays the relevant actions that were affected
by the administrator’s change, as we describe in §7.1. The
replay controller computes the view of each session dur-
ing replay, which represents the set of data objects sent
to that client, and compares the views during replay with
those during the original execution. Data objects that no
longer show up in the view during replay are reported as
inappropriate data disclosures.

6 Shared objects
To simplify dependency tracking and replay, Rail defines
a uniform API for managing different shared objects.

Object type Naming convention

Action argument args/<action id>

Code code/<identifier>

Handler table entry handler/<table>/<key>

Database document db/<collection>/<doc id>

Session user ID userid/<session id>

Session subscriptions subs/<session id>

Session output view view/<session id>

Input context input/<action id>/<context id>

Figure 6: List of built-in object types.

6.1 Object types
Rail identifies objects by globally unique names in
the form of “object_type/path_name”. There are sev-
eral predefined object types in Rail, as shown in Fig-
ure 6. These types represent most of the abstractions
exposed by the web framework. When needed, the de-
veloper can also define their own object types using the
registerObjectType API. In the rest of this subsection,
we will describe what each object type represents.

Action argument. Every action depends on an argument
object associated with it. If the action is triggered by a
client request, for example, the argument contains the
request message. Argument objects are immutable during
replay, but the administrator can alter them before replay
so as to force certain actions to be re-executed. For exam-
ple, to cancel a request that creates a malicious account,

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 561

the administrator can change the corresponding action
argument object to a null request.

Code object. Rail must be able to determine which ac-
tions executed a given piece of code, so that if the code
turns out to be buggy, Rail can replay just the actions
that may have been affected by that bug. To do this, Rail
uses a code object for every piece of application code,
and records a dependency between an action and the code
object when the action invokes the code.

Rail creates code objects at function granularity, be-
cause it is easy to interpose on function invocation through
a wrapper. The wrapper, created by the registerCode
API function, records a dependency on the unique identi-
fier of the function’s code object, and then executes the
function. This ensures that even if an action invokes many
functions, the action history graph will contain dependen-
cies to all functions invoked by that action.

Rail automatically wraps global functions, and names
the corresponding objects code/filename/funcname. For
anonymous functions supplied as callbacks, the devel-
oper must assign a name to the anonymous callback in
the function that accepts the callback argument. For ex-
ample, in Figure 1, the App.publish function assigns
the name code/publish/pub_ans to its anonymous call-
back, and the App.method function assigns the name
code/method/submit to its anonymous callback.

During replay, Rail’s replay controller checks if any of
the code objects have changed by comparing the textual
representation of the new code object to the original tex-
tual representation of the code object as recorded in the
log. If any of the code objects have been modified, the
replay controller marks all of the actions that executed
that code for replay. The textual representation of a func-
tion is insufficient to compare closures—e.g., references
to variables in outer scopes are not well-defined in the
textual representation. However, this is not a problem in
JavaScript, because the only way to create an outer scope
is to define another function, and if the outer scope of a
function changes, the textual representation of that outer
scope’s function will be different, and will be flagged for
replay by Rail.

Handler table. In addition to tracking dependencies on
functions, Rail also needs to keep track of dependencies
on the handler for a given type of event. For example,
in Figure 1, the application developer may register a dif-
ferent, non-anonymous function as the handler for the
submit RPC method. In this case, if the handler for the
submit RPC method changes during replay, Rail must
detect this and replay all subsequent submit RPC invoca-
tions. To do this, the Rail web framework creates a han-
dler table object for every kind of handler registered in the
web framework. For example, in Figure 1, App.publish
records a dependency to the handler/publish/pub_ans

object, and App.method records a dependency to the
handler/method/submit object. The handler table ob-
ject’s value contains the function that will be invoked for
that event (which, in practice, is likely to be a code object
wrapper).

Database documents. Rail assumes that the web appli-
cation uses a key-value store as its persistent storage.
Each data item, namely a document, has a unique identi-
fier and other mutable fields. However, Rail’s approach
is general enough so that it is also applicable to other stor-
age models, including SQL databases and file systems.
In particular, every database document is represented by
an object named db/collection/docid . For efficiency,
the Rail web framework does not store the actual data
in the Rail database object; instead, the Rail object is a
placeholder for dependency tracking, and the actual data
is stored, versioned, and rolled back in the database.

Output channel view. Rail models a view of each ses-
sion (i.e., the set of data items sent to that client) as a
separate view object. View objects accumulate all data
items disclosed through the corresponding output channel.
By adding a data object, such as a database document, to
the view, the application or framework code records that
it sent the current state of the object through the output
channel associated with the view. The Rail web frame-
work implements two types of view objects: a session
view object, which represents all documents sent to a web
browser, and an email view object, which represents all
documents sent to a particular email address. Application
developers can define new view objects for other types of
output channels.

Other shared state. Accesses to in-memory global state,
either application-level or session-level, should also go
through the object API. Currently, Rail defines two types
of session state objects: current user ID objects and sub-
scription objects. The current user ID object stores the
logged-in user’s identifier for each session. Subscription
objects are necessary for interactive web applications that
adopt a publish–subscribe pattern. They store a list of
database queries that a session is interested in, so that
whenever the results of any of these queries change, the
web framework can notify the client about the updates.

Input context. Input context objects handle non-
deterministic inputs requested by an action, such as cur-
rent date and random numbers. They are important for
stable re-execution, as we will discuss in §7.2.

6.2 Accessors and mutators
Every object has an accessor and a few mutators. Mu-
tators vary with object types. For example, session
user ID (userid) objects have two mutating methods:

562 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

login(userid) assigns the given user ID to the object’s
current state, and logout() resets its current state to null.

During normal execution, the accessor connects the
object to the current action in the action history graph,
and returns the current state of the object. Similarly, mu-
tators connect the current action to the object, and change
the current state of the object accordingly. In addition,
mutators also log the mutating operation, so that by re-
playing the log during re-execution, Rail can reconstruct
checkpoints for all history states of the object.

During re-execution, accessors and mutators behave
differently than during normal execution. If an object
has been rolled back, the accessor returns the object’s
latest state; otherwise it returns the checkpoint state right
before the current action. Mutators do not log changes
during re-execution, but roll back the object before updat-
ing the object (see TryRollback in Figure 7). Since two
executions are not identical, replay can introduce new de-
pendencies that did not show up in the original execution.
Rail must keep updating the action history graph during
replay to capture the new dependencies.

For performance reasons, accessors and mutators for
database document objects are handled differently. Rail
employs a time-travel database [2] to keep every version
that ever existed for each document in the database. Dif-
ferent versions of the same document are distinguished
by two additional fields, start_ts and end_ts, which in-
dicate the time interval within which the version is valid.
Application code uses the web framework’s database API
to access the database as before. Rail interposes on query
processing and cursor accesses such that only the desired
version is returned or updated. Rail also performs de-
pendency bookkeeping for the corresponding placeholder
object of each affected document.

7 Replay
In order to determine what data was inappropriately dis-
closed, Rail must re-compute the view objects for every
session, and if it detects any session whose new view ob-
ject is not a superset of the old view object, it reports the
difference as a leak. Note that new data disclosed during
replay does not result in a report.

Rail recomputes the view objects by replaying previ-
ously recorded events and re-executing the corresponding
actions. There are two challenges in doing so. First, for
efficiency, Rail should not re-execute every action; to
this end, Rail implements selective re-execution (§7.1).
Second, for precision, Rail should minimize divergence
between replay and the original execution; to do this, Rail
uses context-based matching (§7.2).

7.1 Selective re-execution
Figure 7 shows the pseudo-code for Rail’s selective replay
algorithm, inspired by Retro [7]. The algorithm relies

1: procedure InitializeReplay
2: objects← LoadLogs()
3: for all o ∈ objects do
4: � Admin might change code or argument objects
5: if o.type ∈ { “code”, “args” } then o.time← 0
6: else o.time← ∞
7: return objects
8: procedure NextAction(objs)
9: acts← {a | ∀o ∈ objs (a ∈ o.actions ∧ ta > o.time)}

10: if acts = ∅ then return nil
11: return argmina{ta | a ∈ acts}
12: procedure TryRollback(o, t)
13: if o.time > t then
14: Rollback(o, t)
15: o.time← t
16: procedure MoveForward(o, t)
17: if Equiv(o, t + 1) then
18: Rollback(o,∞)
19: o.time← ∞
20: else o.time← t
21: procedure SelectiveReplay
22: objects← InitializeReplay()
23: a← NextAction(objects)
24: while a � nil do
25: Cin ← ∃o ∈ a.reads (o.time < ∞∧ ¬Equiv(o, ta))
26: Cout ← ∃o ∈ a.writes (o.time < ta)
27: � Replay if either inputs or outputs are changed
28: if Cin ∨Cout then
29: for all o ∈ a.writes do TryRollback(o, ta)
30: ReplayAction(a)
31: for all o ∈ a.writes do MoveForward(o, ta)
32: for all o ∈ a.reads do o.time← max(o.time, ta)
33: a← NextAction(objects)

Figure 7: The selective replay algorithm. The algorithm uses private
Rail APIs listed in Figure 5.

on the time variable of each object, which indicates the
timestamp of an object’s current state and controls the
progress of the re-execution.

Initially, every object is in its latest state (time = ∞),
except for code and action argument objects, which the
administrator could change to kick off replay.

In each round, Rail picks the first action (action with
the minimal timestamp) from a set of candidate actions to
replay. Candidate actions are actions that read or wrote an
object, and whose timestamps are bigger than the object’s
current time, meaning that they happen after the object’s
current state. Then, Rail checks if the picked action
needs re-execution. If any of its inputs have changed
(Cin is true), Rail must rerun it to generate new outputs;
similarly, if any output has been rolled back to a state
before the action took place (Cout is true), Railmust rerun
the action to reconstruct the output. Otherwise, Rail can
skip the action, and advance the timestamps for all of its
inputs, so that the same action will not be selected again.

To replay an action, Rail first rolls back all of the
action’s output objects recorded during the original execu-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 563

tion to the state right before the action. This is important
because the replayed action might not update the same
objects as original. Then Rail reruns the action and up-
dates the timestamps for the action’s output objects. Note
that during replay, mutators might roll back other output
objects which were not captured in the original execution.
As an optimization, if after replaying an action, an ob-
ject’s state is equivalent to its next state in the original
execution, Rail will directly roll forward the object to its
latest state to avoid considering actions that access the
object in the future.

The selective re-execution algorithm is guaranteed to
terminate because Rail always chooses the earliest avail-
able action. After each iteration, every relevant object
will have a timestamp which is no smaller than the chosen
action’s. Therefore the timestamp of the picked action in
each iteration monotonically increases.

Because of Rail’s precise dependency tracking, the
selective re-execution algorithm can minimize the num-
ber of actions replayed to just those that may have been
affected by the mistake that triggered the audit. In our
experience, selective re-execution replays only a small
fraction of the total number of recorded actions.

One concern of selective re-execution is dealing with
patches that significantly alter the control flow of an ap-
plication. Rail works in this scenario because its unit of
replay is an individual action (e.g., a client RPC request),
and Rail’s report is based on the set of objects that end up
in a session’s view. As long as the original and patched
code add the same objects to the view, no disclosures will
be reported regardless of code changes. In the case that
the new code accesses many different shared objects, such
as by issuing new database queries, Rail will replay more
actions due to additional dependencies.

7.2 Context matching
Rail’s goal is to precisely identify inappropriately dis-
closed data. Since Rail computes the set of disclosed
data items as the difference between the original and the
replayed view objects, Rail will report a data object as
inappropriately disclosed if it fails to show up in the re-
played view. This is desirable if the data item fails to show
up in the replay view due to a fixed vulnerability. How-
ever, this is undesirable if it is a result of non-determinism,
and some other choice of non-deterministic inputs could
have led to the data not being flagged as disclosed.

This problem is made more complicated by the fact that
some inputs to an action may have changed during replay.
To minimize false reports, programmers must ensure that
during replay, the behavior of non-deterministic code in
the application remains as close as possible to that of
the original execution, even in the face of input changes.
We refer to this property as application stability. To
help application writers to achieve this property, Rail

1 App.method(’populate_admins’, function() {
2 - var admins = [’Alice’, ’Mallory’, ’Bob’];
3 + var admins = [’Alice’, ’Bob’];
4 for (var i = 0; i < admins.length; ++i) {
5 var pwd = Math.random();
6 /* BETTER: var pwd = Rail.inputContext(
7 ’populate’, admins[i]).random(); */
8 Users.insert({name: admins[i], passwd: pwd});
9 }

10 });

Figure 8: Example code demonstrating the necessity of using context
identifiers to retrieve non-deterministic inputs.

provides helpful APIs. In some cases, using these APIs,
it is easy for the application writers to achieve application
stability, while in other cases it requires some thought. We
provide a few examples to illustrate the issues in achieving
application stability. Note that if an application does not
achieve application stability, Rail will work correctly, but
may generate false reports.

For some application functions, it is relatively easy to
make them stable. For example, in Figure 1, the submit
RPC handler checks the current time (to see if the submis-
sion is late), and assigns a random ID to the submission.
To ensure stability for this code, the programmer creates
an input context object on line 15, which instructs Rail to
reuse that same randomness during replay.

As a more complex case, consider the code fragment
and patch shown in Figure 8. The code is intended to
populate the database with a few predefined administrator
accounts. Suppose that the site administrator later found
out that Mallory was not supposed to have administra-
tive privileges, and she wanted to see what information
may have been disclosed as a result of this mistake. She
does this by running Rail in auditing mode with Mallory
removed from the list (see the change on lines 2–3 in
Figure 8). Since Mallory was in the middle of the list, a
simple heuristic that returns non-deterministic outputs in
the same order as they were requested in the original run
would reuse Mallory’s password (the second invocation
of Math.random()) for Bob during replay (since it is now
the second invocation of Math.random()). Thus Bob’s
recorded login requests will fail during replay, causing
many data items to be flagged as leaks. Prior systems
such as Retro [7] and Warp [2] use this heuristic.

Rail tackles this problem by asking the programmer
to assign stable context identifiers to non-deterministic
inputs. During replay, Rail supplies non-deterministic
values from the same context ID. Moreover, the current
action’s timestamp is also considered part of any context
ID, so that all non-deterministic inputs are local to each
action. Non-deterministic values with the same context
ID are supposed to be semantically equivalent, therefore
the programmer should make sure that the identifiers they
choose are semantically stable. As an example, in the
comments in lines 6–7 of Figure 8, we use the account

564 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 function pair_reviews(ids) {
2 var seeds = [];
3 for (var i = 0; i < ids.length; i++) {
4 var ctx = Rail.inputContext(’seed’, ids[i]);
5 seeds[i] = { sid: ids[i], rnd: ctx.random() };
6 }
7 var shuffle = _.sortBy(seeds, function (e) {
8 return e.rnd;
9 });

10 for (var i = 0; i < ids.length; i++) {
11 var reviewer = shuffle[i].sid;
12 var reviewee = shuffle[(i+1) % ids.length].sid;
13 var ctx = Rail.inputContext(’pair’, reviewer);
14 Pairings.insert({ _id: ctx.random(),
15 reviewer: reviewer, reviewee: reviewee });
16 }
17 }

Figure 9: Illustration of a stable pairing algorithm.

name as part of the context identifier, which effectively
ensures that the same account name will get the same
password during replay, even if the list order has changed.
In contrast, including the loop iterator i in the context ID
is a bad idea, because it does not preserve semantics.

In some cases, making a function stable is an even
more difficult problem. Consider the problem of pairing
up students in a homework submission system for peer
review. If one of the students is removed during replay,
the set of pairwise assignments produced by most pairing
algorithms would be quite different. To solve this prob-
lem, the programmer must devise a stable algorithm using
context identifiers. Figure 9 illustrates such an algorithm
that we designed for the homework submission applica-
tion. The algorithm works by assigning every student a
random pairing order, and then sorting the students by
this pairing order. The pairing order is chosen through a
context identifier tied to the user’s username. This ensures
that if students are added or removed, the overall sorted
order is largely the same. Students are then paired up with
other students next to them in this sort order. As a result,
if a student is added or removed, this results in only a
small number of changes to the overall pairings.

8 Implementation
We implemented a prototype of Rail on top of the Meteor
web framework. Meteor has a clean interface for exchang-
ing data between browser and server, which allows Rail
to clearly identify data items. The core of the prototype is
a standalone package that implements Rail’s action APIs
and object APIs.

The core package also maintains the action history
graph and on-disk logs in two B-tree-like data structures—
one stores actions (indexed by timestamps) and the other
stores objects (indexed by object identifiers). Edges be-
tween actions and objects are stored twice (in both B-
trees). During replay, Rail reconstructs the graph pro-
gressively without scanning the entire log. The prototype

caches recently used B-tree blocks in memory and writes
back dirty blocks in the background.

The prototype changes a few built-in packages in Me-
teor, so that accesses to standard Meteor abstractions are
wrapped using Rail APIs. These abstractions include
session user IDs, RPC dispatchers, session subscriptions,
and MongoDB documents. Application developers can
use standard interfaces to access these objects as before.

The prototype also includes a code rewriter, which auto-
matically names and wraps top-level JavaScript functions
using Rail’s code objects when the application is loaded.

Our prototype consists of about 3,800 lines of
JavaScript code, of which 2,987 lines are in the core pack-
age, 422 lines are for Meteor integration, and another 358
lines are for the code rewriter and command line tools.

9 Evaluation
We evaluate the Rail prototype with three real-world ap-
plications under synthetic attack workloads. Our evalua-
tion aims to answer the following questions:

• What is the effort to port applications to Rail? (§9.1)

• What attack scenarios can Rail handle? (§9.2)

• How precise are Rail’s data disclosure reports? (§9.3)

• What are Rail’s performance and storage overheads
during recording? (§9.4)

• How do the techniques described in §7 improve Rail’s
accuracy and performance for auditing? (§9.5)

9.1 Applications and developer effort
We ported three real-world web applications to Rail. Two
of them are privacy-sensitive: one is Submit, a website
that manages homework and grades, written by course
staff from our department; the other is EndoApp, a medi-
cal survey application. Both applications run in produc-
tion and have dozens to hundreds of users. We also ported
Telescope, a widely used open-source social news appli-
cation, to see how well Rail can support a full-fledged
application with a relatively large code base.

Figure 10 summarizes the effort for porting these ap-
plications to Rail APIs. We had to modify fewer than 25
lines of code for each application. Most of the changes are
related to non-deterministic inputs: programmers must
provide context identifiers when generating date and ran-
dom numbers in the application.

For Submit, modifications of two staff-only method
handlers were necessary to ensure auditing correctness.
First, the getGrades method summarizes grades of each
assignment for all students, and returns a grid of grades
directly to the client (not using the standard publish–
subscribe mechanism). We rewrote the code using Rail’s
object API to explicitly add revealed data items to the
current session’s view object. Second, we modified the
pairing function, as described in §7.2.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 565

Appliation Description
LoC (in JavaScript)

changed server client

Submit homework grading 24 769 891
EndoApp medical survey 2 599 900
Telescope social news 20 1,169 1,781

Figure 10: Real-world web applications used in our evaluation, and the
developer effort to port them to Rail APIs. We do not count HTML/CSS
and third-party library code. Only server-side code is modified.

9.2 Attack case study
To evaluate whether Rail can identify disclosures after an
attack, we chose the following common mistakes that can
lead to data breaches in real-world settings.

Access control list error. In Submit, a course staffmem-
ber erroneously grants “staff” privileges when creating a
student account. The student logs in with this account and
sees other students’ homework solutions and grades. The
staff later realizes the mistake, rectifies the initial request
that created the account, and wants to know what unin-
tended information has been revealed to the student. Rail
identifies the leaks because during re-execution, the stu-
dent’s subscription request will be rejected by the server
given the correct user privilege.

Stolen password. In EndoApp, a careless surgeon
chooses a weak password, which is obtained by an outside
attacker. Managing to stay concealed, the attacker creates
another surgeon account, and logs in to the new account
several times to retrieve sensitive patient profiles. After
the administrator discovers the breach, presumably by
looking for logins from unintended IP addresses, she can-
cels the suspicious login request to the careless surgeon’s
account, and wants to know what has been disclosed as
a result of the suspicious login. Rail reports all breaches
from both accounts, because without the initial login, all
subscriptions and the account creation request would fail.
All subsequent logins to the new account would also be
denied since that bad account no longer exists.

Code bugs. This attack is based on a real bug in Tele-
scope’s commit history [4], in which the application per-
forms permission checks according to a client-supplied
current user ID, and publishes sensitive user emails for all
accounts based on the flawed security check. An attacker
can exploit the bug by executing JavaScript code with a
chosen user ID from the browser console. After patch-
ing the code, the administrator wants to know if anyone
exploited the bug, and whose emails were leaked. Rail de-
tects the code change and reruns all subscription requests
that depend on the code. The malicious request will be
rejected during re-execution, while the legitimate ones
(where the supplied user ID is the same as the session
user ID) will return the same result as before. Therefore

Rail can precisely identify leaked data from sessions that
truly exploited the bug.

9.3 Auditing precision
To see if Rail can precisely report leaked data, we run
the three attack workloads in parallel with other benign
workloads in the background as noise. For each attack
workload we consider two traces: a short trace in which
background workloads stop soon after the attack, and a
longer trace where benign accesses continue for several
minutes. We compare the total number of data items ac-
cessed during the trace with the number reported by Rail.
We manually inspect the report to count false reports (le-
gitimate disclosures flagged by Rail as inappropriate) and
missed ones (inappropriate disclosures according to our
knowledge of the workload not reported by Rail). The
result is shown in the last group of columns in Figure 11.

The number in the “accessed” column simulates what
an access log based system, like Keypad, would report.
As we can see, Rail precisely differentiates disclosures to
the attacker from disclosures to legitimate users, resulting
in fewer reports. Rail’s report is stable: the duration of
the trace and when the attack begins in the trace do not
lead to more false reports.

After changing applications to use the Rail APIs, as de-
scribed in §9.1, we do not observe any missed disclosures
in our experiment. There is a single false report, however,
for EndoApp workload. The reported database item is the
malicious surgeon account added by the attacker, which
is an expected disclosure for other legitimate surgeons
logged in after the attack, because surgeons automatically
subscribe to all user accounts upon login. But Rail flags
it because the malicious surgeon does not appear in the
re-execution anymore. We believe this false report is ac-
ceptable since it is related to the attack, and also helps the
system administrator to identify the vulnerability.

9.4 Performance and overhead
We measure the performance of Rail using two machines
running recent versions of Debian Linux. The server
has an Intel Core i7 3.3 GHz processor and 24 GB of
RAM; the client has eight 10-core Intel Xeon E7-8870
2.4 GHz processors with 256 GB of RAM. The client
and the server are connected via a 1 Gbps network. To
get a stable result, we pin the web server process to a
single core of the server machine. The client machine
is significantly more powerful to allow us to run enough
browser instances to saturate the server. We use Splinter
to drive PhantomJS browsers for all experiments.

Performance during normal execution. We compare
the performance of Rail during normal execution to the
performance of an unchanged version of Meteor, using
Submit as the benchmark. In the “browse” workload, each

566 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Attack workload Trace
Number of requests Running time (seconds) Number of data items

total attacker replayed original replay exec. other accessed reported false missed

ACL error Submit.short 2,972 45 16 161.0 1.6 0.9 0.7 1,142 193 0 0
Submit.long 12,366 45 16 664.0 3.2 2.0 1.2 1,121 193 0 0

Stolen password EndoApp.short 2,967 25 42 149.0 0.9 0.6 0.3 1,871 137 1 0
EndoApp.long 8,597 25 270 640.0 10.0 3.1 6.9 3,521 197 1 0

Code bugs Telescope.short 1,426 14 20 113.0 1.2 0.9 0.3 23 10 0 0
Telescope.long 7,763 14 833 603.0 61.2 25.9 35.3 23 10 0 0

Figure 11: Replay performance and auditing precision under various workloads. “attacker” counts requests from the attacker’s session. “original” is
the duration for recording the trace. Replay time is broken down into two parts: “exec.” shows the time for re-executing actions; “other” shows the
time spent in other parts of the replay loop (all except line 30 of Figure 7). “reported” counts distinct data items flagged by Rail, out of all data items
accessed by the trace.

10

20

30

40

50

16 32 48 64 80 96 112 128 144

T
hr

ou
gh

pu
t(

re
q/

se
c)

Number of clients

without Rail
with Rail

Figure 12: Server throughput when running Submit with the “browse”
workload with an increasing number of concurrent clients. Circles mark
the points where the server’s average CPU usages exceeds 90%.

client repeatedly logs in using a random student account,
browses the account’s grades, and then logs out.

With a single client, the average latency for handling
an individual request increases by 34% (from 15.0 to 20.1
msec). Profiling shows that executing wrappers, updating
logs, and handling time-travel database queries contribute
to the majority of the overhead.

To see how Rail performs under heavy workloads, we
stress the server with an increasing number of clients,
which send RPC requests as fast as possible. We mea-
sure the server’s throughput and average CPU usage. As
shown in Figure 12, the stock Meteor saturates at about
80 concurrent clients, while Rail saturates at 64 clients.
For an under-loaded server (under 48 clients), Rail incurs
less than 5% throughput overhead; for an over-loaded
server (112 clients), the overhead is about 22%.

We also measure the throughput overhead for work-
loads with different write ratios. In the “upload” work-
load, there is a 20% probability that the user will submit
a new answer to a homework after logging in (based on
our historical logs), which leads to more write requests.
Figure 13 shows the result: increasing the write ratio
has a small impact for the overall performance, with the
overhead going up from 16.9% to 17.9%.

Storage overhead. Figure 13 also shows the storage
overhead. Rail’s storage overhead consists of two parts:
the compressed log, which contains the action history
graph and the objects’ mutation history, and the time-

Workload
Throughput (reqs/sec) Storage (KB/req)

w/o Rail Rail overhead logs DB total

Browse 45.14 37.52 16.9% 0.34 0.12 0.46
Upload 45.50 37.36 17.9% 0.35 0.14 0.49

Figure 13: Performance and storage overhead during normal execution.
Numbers are from a fully utilized server running Submit and serving
80 concurrent clients, which send requests as fast as possible. Two
workloads with different write ratios are shown.

traveling database, which preserves all history versions of
database records. The average overhead is 0.46 KB per re-
quest for the “browse” workload, and 0.49 KB per request
for the “upload” workload. Note that login and logout
also write to the database, updating login timestamps and
tokens; this is why the numbers for the two workloads are
close. With this overhead, a 500 GB disk can store 1 year
worth of logs even for a fully utilized server. The time
span is sufficient for most disclosure auditing tasks.

Replay performance. We measure Rail’s replay perfor-
mance using the traces shown in Figure 11. We consider
two metrics: the number of replayed requests versus total
number of requests, and the time to finish the replay, as
shown in the first two groups of columns in Figure 11.

In Submit and EndoApp, Rail replays only a small
fraction of all requests—just those related to the attack.
For Submit, the number is even smaller than the total
number of requests from the attacker’s session, indicating
that Rail’s selective replay algorithm can effectively pick
out just the relevant actions. In the Telescope workload,
because the patched code is in the publish handler, Rail
has to rerun subscription requests from all sessions, which
causes each session’s view object to be rolled back, and
in turn triggers more replays. All of the re-executions are
necessary to ensure that Rail captures all undesired leaks.

The “original” column shows the time to record each
trace, which represents a typically loaded web server
incurring about 20%–30% of CPU overhead. As we can
see, Rail can replay lengthy traces in a small amount of
time, and can report data leaks with high precision.

To understand what the performance bottleneck is dur-
ing replay, we break down the replay time into two parts:

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 567

Technique
of requests # of leaked data

total replayed reported false

Rail 103 5 2 0
w/o selective replay 103 93 2 0
w/o context matching 103 13 16 14

Figure 14: Impact of disabling each of Rail’s techniques.

the time to re-execute actions (column “exec.” in Fig-
ure 11), and the time spent in other parts of the replay
loop (“other” in Figure 11), which comprises the over-
heads of the replay algorithm (including selecting actions,
checking object equivalence, and updating object states).
Both times increase as the number of replayed requests
increases. For the “EndoApp.long” and “Telescope.long”
workloads, the “other” time is higher than the “exec” time
of re-executing actions. The “other” time, however, is
time well spent: it is the overhead paid for avoiding re-
execution of irrelevant actions.

9.5 Technique effectiveness
To demonstrate the value of selective re-execution and
context identifiers, we use Submit with a setup of 30 stu-
dents and one staff account. The staffmember first creates
a new account for a malicious student; then she initiates
pairing, assigning each student (including the malicious
one) two random reviewees using an algorithm similar
to Figure 9. After five students log in and browse the
reviews for their code, the staff runs Rail in replay mode
after canceling the creation of the malicious account.

Figure 14 shows the result. Rail flags exactly two data
items: one is the malicious user and the other is the pairing
record for the user. Out of 103 requests, Rail replayed
only five, which includes the pairing request and four
requests from students paired with the malicious account.

Without selective re-execution, Rail reruns 93 requests
in total, including all requests that follow the account
creation. Disabling context matching introduces 14 false
reports: as pairings change, most students see homework
answers from different peers during replay; the IDs of
pairing records will also be different, constituting the rest
of the false reports. This demonstrates the importance of
Rail’s selective re-execution and context matching.

10 Discussion
This section discusses our experience with Rail.

10.1 Supporting Rail in other frameworks
Our Rail prototype demonstrates that by utilizing the
rich semantics available in the web framework, one can
achieve fine-grained information tracking at low cost. Al-
though our prototype is based on a specific framework
(Meteor), the design of Rail’s core API is framework-
independent. Rail’s techniques can be applied to other
web frameworks as long as they meet a few assumptions.

First, the framework should force developers to use the
framework’s abstractions and APIs to access web objects,
such as requests, responses, sessions, databases, and files.
Bypassing these interfaces should be considered rare or
prohibited entirely. This helps Rail interpose on accesses
to these objects at a level where useful semantics are
preserved. Adopting Rail to another framework involves
wrapping the framework’s object APIs with Rail APIs.

Second, the framework should provide a mechanism
that separates data items from their web representation.
Meteor attains the separation by sending data items di-
rectly over the wire, and constructing web pages purely on
the client side. Other commonly used frameworks, such
as Ruby and Django, do not share this paradigm. How-
ever, they do adopt the model-view-controller (MVC)
pattern using server-side template rendering systems that
clearly separate data and views. The major difference
in porting Rail to these frameworks lies in how to track
responses: one could wrap the template rendering system
(as opposed to the publish system in Meteor) with Rail’s
output view object API to capture revealed data.

Third, the framework should maintain as little global
state as possible. To correctly support selective re-
execution, Rail must interpose on accesses to all global
objects in order to track dependencies and make con-
tinuous checkpoints. Excessive use of global state can
introduce false dependencies among requests and increase
space overhead. Fortunately, most web frameworks do
not maintain global state other than the persistent storage
(e.g., the database) and a simple session store in their core
packages. External packages, however, might keep their
own shared state. As an example, Meteor’s account pack-
age does not reuse Meteor’s session store, but keeps per-
session authentication tokens on its own. When porting
Rail to a new framework, one must also examine external
packages to ensure that all package-defined global objects
are properly wrapped.

Finally, Rail’s current design has a simplified API that
assumes action serializability. We believe this captures
an important class of real-world web applications: for
instance, Node.js applications fall into this sequential exe-
cution model. Nevertheless, Rail’s API could be extended
to support concurrent action execution. This would re-
quire finer-grained dependency tracking and replay at a
lower level. For instance, one could treat each access
to a shared object (e.g., database query) as atomic, and
record dependencies between such operations. During
replay, each action might be interleaved with the replay
of other actions. This is similar to how multi-threaded
record-replay systems work, and to how Retro [7] dealt
with record-replay of concurrent processes.

568 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

10.2 Porting applications
Porting an application to Rail is easy, because the frame-
work wrappers do most of the work, such as wrapping
and trapping accesses to global objects. In rare cases, if
an application defines its own class of global objects, the
programmer must wrap accesses to these objects using
the Rail API.

For most applications, no matter how large the code
size is, the majority of changes will be for handling non-
deterministic input. Since application stability must ex-
ploit high-level knowledge unavailable in the code, it can-
not be implemented without help from developers. For
example, no one knows better than the developer what
the context identifier should be for a non-deterministic
value. Identifying non-determinism in the code could be
a potential challenge when porting applications.

Fortunately, there are only a handful of sources of non-
deterministic input that have to be handled—for most
cases they are date, time, and random numbers. These val-
ues usually come from the language’s library calls, such
as now() and random(). Simply hiding these library inter-
faces from developers could help them identify sources of
non-determinism and force them to use Rail’s wrappers.

Simple program analysis can also help identify these
sources of non-determinism, and can be used to suggest
context identifiers, as we will discuss next.

10.3 Choosing context identifiers
The goal of context IDs is to preserve application stability.
As a general guideline, the context ID usually contains the
primary key of the data item tied to the non-deterministic
value, plus an optional string describing the purpose of
the value. In this subsection, we illustrate this rule with
examples we encountered in benchmark applications.

The most common use of context IDs is to generate
random identifiers for new data items. For example,
when generating a document ID for a new homework
submission in Figure 1, the context ID should be the
pair (homework_ID, student_ID), which uniquely iden-
tifies a homework submission. Similarly, when adding
a comment in Telescope, the context ID should contain
the topic ID and the user ID. If multiple random values
are requested using the same primary key within a sin-
gle action, one can add descriptive strings to distinguish
different invocations, like on lines 4 and 13 of Figure 8.
In practice, this process could be automated by a simple
analysis of the database schema.

Another common use is to generate dates and time-
stamps. For instance, when a student adds a homework
submission, the application needs to check the current
date against the homework’s deadline. Since the current
date is not tied to any data item, we simply supply a
constant string “checkdeadline” as the context identifier.
The descriptive string helps distinguish this date query

from others in the same action, if any. Often, the calling
function’s name and signature can be used as the descrip-
tive string when requesting the current date.

Context IDs also play an important role in preserving
cryptographic randomness. For example, Meteor’s ac-
count package uses the SRP protocol to authenticate user
logins. Internally, SRP generates random values, and if
they are not preserved, login will not replay correctly. In
this case, we use the encrypted password as the context ID
when generating the random SRP verifier, so that the same
login password yields the same verifier during replay.

10.4 Misuse of Rail APIs
Inadvertent misuses of RailAPIs might affect Rail’s accu-
racy. Rail requires the developer to use the framework’s
standard interface to access global objects, such as the
database. If the developer forgets to wrap application-
defined global state with Rail APIs, Rail will miss the de-
pendency, omitting relevant actions from selective replay.
This will leave the replayed application in an inconsistent
state, and likely lead to false negatives.

If the developer does not use Rail’s wrappers to retrieve
non-deterministic values, or inappropriately chooses con-
text IDs, Rail will produce a different value during re-
play. Consequently, requests that depend on these non-
deterministic inputs (such as logins) will behave differ-
ently. The divergence will cause more actions to be re-
played, and introduce false positives and false negatives.

Note that the worst outcome of API misuse is unnec-
essary re-execution and inaccurate reports. The entire
replay process is guaranteed to terminate.

11 Conclusion
Rail is the first system for precisely auditing past data
disclosures in web applications. Based on rollback and
replay, Rail introduces an explicit API that application
developers must use to identify data items, track depen-
dencies, and match up states. The API helps Rail mini-
mize state divergence and unnecessary re-execution, pro-
viding fast and precise auditing. Measurements with a
Rail prototype show that Rail can precisely distinguish
legitimate data disclosures from illegal ones caused by
human mistakes. Rail requires only minor changes to
web applications and incurs a moderate performance
overhead. Rail’s source code is publicly available at
https://github.com/haogang/rail.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Landon Cox, for their feedback. This research was par-
tially supported by the DARPA Clean-slate design of Re-
silient, Adaptive, Secure Hosts (CRASH) program under
contract #N66001-10-2-4089, and by NSF award CNS-
1053143.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 569

References
[1] A. B. Brown and D. A. Patterson. Undo for oper-

ators: Building an undoable e-mail store. In Pro-
ceedings of the 2003 USENIX Annual Technical
Conference, pages 1–14, San Antonio, TX, June
2003.

[2] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-
dovich. Intrusion recovery for database-backed web
applications. In Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP),
pages 101–114, Cascais, Portugal, Oct. 2011.

[3] R. Chandra, T. Kim, and N. Zeldovich. Asyn-
chronous intrusion recovery for interconnected web
services. In Proceedings of the 24th ACM Sym-
posium on Operating Systems Principles (SOSP),
pages 213–227, Farmington, PA, Nov. 2013.

[4] M. DeBergalis. Use this.userId() in publish rather
than an arg, Sept. 2012. https://github.com/
TelescopeJS/Telescope/pull/6.

[5] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In Proceedings
of the 9th Symposium on Operating Systems Design
and Implementation (OSDI), Vancouver, Canada,
Oct. 2010.

[6] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno,
and H. M. Levy. Keypad: An auditing file system
for theft-prone devices. In Proceedings of the ACM
EuroSys Conference, pages 1–16, Salzburg, Austria,
Apr. 2011.

[7] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Intrusion recovery using selective re-execution. In
Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI), pages
89–104, Vancouver, Canada, Oct. 2010.

[8] T. Kim, R. Chandra, and N. Zeldovich. Efficient
patch-based auditing for web application vulnerabil-
ities. In Proceedings of the 10th Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 193–206, Hollywood, CA, Oct. 2012.

[9] S. T. King and P. M. Chen. Backtracking intrusions.
ACM Transactions on Computer Systems, 23(1):51–
76, Feb. 2005.

[10] R. Kotla, T. Rodeheffer, I. Roy, P. Stuedi, and
B. Wester. Pasture: Secure offline data access using
commodity trusted hardware. In Proceedings of the
10th Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[11] Meteor Development Group. Meteor: A better way
to build apps. https://www.meteor.com/.

[12] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-
dovich, M. F. Kaashoek, and H. Balakrishnan. Build-
ing web applications on top of encrypted data us-
ing Mylar. In Proceedings of the 11th Symposium
on Networked Systems Design and Implementation
(NSDI), pages 157–172, Seattle, WA, Apr. 2014.

[13] M. Rile, B. Elgin, D. Lawrence, and C. Mat-
lack. Missed alarms and 40 million stolen
credit card numbers: How Target blew it.
Bloomberg Businessweek, Mar. 2013. http:
//www.businessweek.com/articles/2014-
03-13/target-missed-alarms-in-epic-
hack-of-credit-card-data.

[14] X. Wang, N. Zeldovich, and M. F. Kaashoek.
Retroactive auditing. In Proceedings of the 2nd
Asia-Pacific Workshop on Systems, Shanghai, China,
July 2011.

[15] A. G. Wylie. University of Maryland: Data
breach, Mar. 2014. http://www.umd.edu/
datasecurity/.

[16] A. R. Yumerefendi, B. Mickle, and L. P. Cox.
TightLip: Keeping applications from spilling the
beans. In Proceedings of the 4th Symposium on Net-
worked Systems Design and Implementation (NSDI),
Cambridge, MA, Apr. 2007.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 571

Project Adam: Building an Efficient and Scalable Deep
Learning Training System

Trishul Chilimbi Yutaka Suzue Johnson Apacible Karthik Kalyanaraman
Microsoft Research

ABSTRACT
Large deep neural network models have recently
demonstrated state-of-the-art accuracy on hard visual
recognition tasks. Unfortunately such models are
extremely time consuming to train and require large
amount of compute cycles. We describe the design and
implementation of a distributed system called Adam
comprised of commodity server machines to train such
models that exhibits world-class performance, scaling
and task accuracy on visual recognition tasks. Adam
achieves high efficiency and scalability through whole
system co-design that optimizes and balances
workload computation and communication. We exploit
asynchrony throughout the system to improve
performance and show that it additionally improves the
accuracy of trained models. Adam is significantly
more efficient and scalable than was previously
thought possible and used 30x fewer machines to train
a large 2 billion connection model to 2x higher
accuracy in comparable time on the ImageNet 22,000
category image classification task than the system that
previously held the record for this benchmark. We also
show that task accuracy improves with larger models.
Our results provide compelling evidence that a
distributed systems-driven approach to deep learning
using current training algorithms is worth pursuing.

1. INTRODUCTION
Traditional statistical machine learning operates with a
table of data and a prediction goal. The rows of the
table correspond to independent observations and the
columns correspond to hand crafted features of the
underlying data set. Then a variety of machine learning
algorithms can be applied to learn a model that maps
each data row to a prediction. More importantly, the
trained model will also make good predictions for
unseen test data that is drawn from a similar
distribution as the training data. Figure 1 illustrates this
process.

This approach works well for many problems such as
recommendation systems where a human domain
expert can easily construct a good set of features.
Unfortunately it fails for hard AI tasks such as speech
recognition or visual object classification where it is
extremely hard to construct appropriate features over
the input data. Deep learning attempts to address this
shortcoming by additionally learning hierarchical

features from the raw input data and then using these
features to make predictions as illustrated in Figure 2
[1]. While there are a variety of deep models we focus
on deep neural networks (DNNs) in this paper.

Deep learning has recently enjoyed success on speech
recognition and visual object recognition tasks
primarily because of advances in computing capability
for training these models [14, 17, 18]. This is because
it is much harder to learn hierarchical features than
optimize models for prediction and consequently this
process requires significantly more training data and
computing power to be successful. While there have
been some advances in training deep learning systems,
the core algorithms and models are mostly unchanged
from the eighties and nineties [2, 9, 11, 19, 25].

Complex tasks require deep models with a large
number of parameters that have to be trained. Such
large models require significant amount of data for
successful training to prevent over-fitting on the

Figure 1. Machine Learning.

Training
Data

Humans

Hand-crafted
features Classifier

Objective Function

Prediction

Error

Test
Data

Trained
Classifier

Prediction

Figure 2. Deep networks learn complex representations.

Input

Low-level features

Mid-level features

High-level features

Desired outputs
Label

The network learns complex
intermediate
representations from data
without explicit labels

Pembroke Welsh Corgi

Image

572 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

training data which leads to poor generalization
performance on unseen test data. Figure 3 illustrates
the impact of larger DNNs and more training data on
the accuracy of a visual image recognition task.
Unfortunately, increasing model size and training data,
which is necessary for good prediction accuracy on
complex tasks, requires significant amount of
computing cycles proportional to the product of model
size and training data volume as illustrated in Figure 4.

Due to the computational requirements of deep
learning almost all deep models are trained on GPUs
[5, 17, 27]. While this works well when the model fits
within 2-4 GPU cards attached to a single server, it
limits the size of models that can be trained. To
address this, researchers recently built a large-scale
distributed system comprised of commodity servers to
train extremely large models to world record accuracy
on a hard visual object recognition task—classifying
images into one of 22 thousand distinct categories
using only raw pixel information [7, 18]. Unfortunately
their system scales poorly and is not a viable cost-
effective option for training large DNNs [7].

This paper addresses the problem by describing the
design and implementation of a scalable distributed
deep learning training system called Adam comprised
of commodity servers. The main contributions include:

 Optimizing and balancing both computation
and communication for this application
through whole system co-design. We partition
large models across machines so as to
minimize memory bandwidth and cross-
machine communication requirements. We
restructure the computation across machines
to reduce communication requirements.

 Achieving high performance and scalability
by exploiting the ability of machine learning
training to tolerate inconsistencies well. We
use a variety of techniques including multi-
threaded model parameter updates without
locks, asynchronous batched parameter
updates that take advantage of weight updates

being associative and commutative, and
permit computation over stale parameter
values. Surprisingly, it appears that
asynchronous training also improves model
accuracy.

 Demonstrating that system efficiency, scaling,
and asynchrony all contribute to
improvements in trained model accuracy.
Adam uses 30x fewer machines to train a
large 2 billion connection model to 2x higher
accuracy in comparable time on the ImageNet
22,000 category image classification task than
the system that previously held the record for
this benchmark. We also show that task
accuracy improves with model size and
Adam’s efficiency enables training larger
models with the same amount of resources.

Our results suggest an opportunity for a distributed-
systems driven approach to large-scale deep learning
where prediction accuracy is increased by training
larger models on vast amounts of data using efficient
and scalable compute clusters rather than relying solely
on algorithmic breakthroughs from the machine
learning community.

 The rest of the paper is organized as follows. Section
2 covers background material on training deep neural
networks for vision tasks and provides a brief
overview of large-scale distributed training. Section 3
describes the Adam design and implementation
focusing on the computation and communication
optimizations, and use of asynchrony, that improve
system efficiency and scaling. Section 4 evaluates the
efficiency and scalability of Adam as well as the
accuracy of the models that it trains. Finally, Section 5
covers related work.

2. BACKGROUND
2.1 Deep Neural Networks for Vision
Artificial neural networks consist of large numbers of
homogeneous computing units called neurons with
multiple inputs and a single output. These are typically
connected in a layer-wise manner with the output of
neurons in layer l-1 connected to all neurons in layer l
as in Figure 2. Deep neural networks have multiple
layers that enable hierarchical feature learning.

Figure 3. Accuracy improvement with larger models and

more data.

0

5

10

15

20

25

0 50000 100000 150000

To
p

 1
 A

cc
u

ra
cy

 (%
)

Data size

0

5

10

15

20

25

0 5E+09 1E+10 1.5E+10

To
p

 1
 A

cc
u

ra
cy

 (%
)

Model size

Figure 4. Deep Learning Computational Requirements.

Complexity of task Complexity of task

Si
ze

 o
f

m
o

d
e

l

Size of model

A
m

o
u

n
t

o
f

(w
e

ak
ly

 la
b

e
le

d
)

d
at

a

C
o

m
p

u
ta

ti
o

n

re
q

u
ir

e
d

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 573

The output of a neuron i in layer l, called the
activation, is computed as a function of its inputs as
follows:

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi)

where wij is the weight associated with the connection
between neurons i and j and bi is a bias term associated
with neuron i. The weights and bias terms constitute
the parameters of the network that must be learned to
accomplish the specified task. The activation function,
F, associated with all neurons in the network is a pre-
defined non-linear function, typically sigmoid or
hyperbolic tangent.

Convolutional neural networks are a class of neural
networks that are biologically inspired by early work
on the visual cortex [15, 19]. Neurons in a layer are
only connected to spatially local neurons in the next
layer modeling local visual receptive fields. In
addition, these connections share weights which allows
for feature detection regardless of position in the visual
field. The weight sharing also reduces the number of
free parameters that must be learned and consequently
these models are easier to train compared to similar
size networks where neurons in a layer are fully
connected to all neuron in the next layer. A
convolutional layer is often followed by a max-pooling
layer that performs a type of nonlinear down-sampling
by outputting the maximum value from non-
overlapping sub-regions. This provides the network
with robustness to small translations in the input as the
max-pooling layer will produce the same value.

The last layer of a neural network that performs
multiclass classification often implements the softmax
function. This function transforms an n-dimensional
vector of arbitrary real values to an n-dimensional
vector of values in the range between zero and one
such that these component values sum to one.

We focus on visual tasks because these likely require
the largest scale neural networks given that roughly
one third of the human cortex is devoted to vision.
Recent work has demonstrated that deep neural
networks comprised of 5 convolutional layers for
learning visual features followed by 3 fully connected
layers for combining these learned features to make a
classification decision achieves state-of-the-art
performance on visual object recognition tasks [17,
27].

2.2 Neural Network Training
Neural networks are typically trained by back-
propagation using gradient descent. Stochastic gradient
descent is a variant that is often used for scalable
training as it requires less cross-machine
communication [2]. In stochastic gradient descent the

training inputs are processed in a random order. The
inputs are processed one at a time with the following
steps performed for each input to update the model
weights.

Feed-forward evaluation:

The output of each neuron i in a layer l, called its
activation, a, is computed as a function of its k inputs
from neurons in the preceding layer l-1 (or input data
for the first layer). If wij(l-1,l) is the weight associated
with a connection between neuron j in layer l-1 and
neuron i in layer l:

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi)

where b is a bias term for the neuron.

Back-propagation:

Error terms, , are computed for each neuron, i, in the
output layer, ln, first as follows:

i(ln) = (ti(ln) – ai(ln))*F’(ai(ln))

where t(x) is the true value of the output and F’(x) is
the derivative of F(x).

These error terms are then back-propagated for each
neuron i in layer l connected to m neurons in layer l+1
as follows:

i(l) = (j=1..m j(l+1)*wji(l,l+1))*F’(ai(l))

Weight updates:

These error terms are used to update the weights (and
biases similarly) as follows:

wij(l-1,l) = *i(l)*aj(l-1) for j = 1 .. k

where is the learning rate parameter. This process is
repeated for each input until the entire training dataset

has been processed, which constitutes a training epoch.
At the end of a training epoch, the model prediction
error is computed on a held out validation set.
Typically, training continues for multiple epochs,
reprocessing the training data set each time, until the
validation set error converges to a desired (low) value.

Figure 5. Distributed Training System Architecture.

.

Global Model Parameter Store

Model
Workers

Data Shards

Model
Replica W W

574 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

The trained model is then evaluated on (unseen) test
data.

2.3 Distributed Deep Learning Training
Recently, Dean et al. described a large-scale
distributed system comprised of tens of thousands of
CPU cores for training large deep neural networks [7].
The system architecture they used (shown in Figure 5)
is based on the Multi-Spert system and exploits both
model and data parallelism [9]. Large models are
partitioned across multiple model worker machines
enabling the model computation to proceed in parallel.
Large models require significant amounts of data for
training so the systems allows multiple replicas of the
same model to be trained in parallel on different
partitions of the training data set. All the model
replicas share a common set of parameters that is
stored on a global parameter server. For speed of
operation each model replica operates in parallel and
asynchronously publishes model weight updates to and
receives updated parameter weights from the
parameter server. While these asynchronous updates
result in inconsistencies in the shared model
parameters, neural networks are a resilient learning
architecture and they demonstrated successful training
of large models to world-record accuracy on a visual
object recognition task [18].

3. ADAM SYSTEM ARCHITECTURE
Our high-level system architecture is also based on the
Multi-Spert system and consists of data serving
machines that provide training input to model training
machines organized as multiple replicas that
asynchronously update a shared model via a global
parameter server. While describing the design and
implementation of Adam we focus on the computation
and communication optimizations that improve system
efficiency and scaling. These optimizations were
motivated by our past experience building large-scale
distributed systems and by profiling and iteratively
improving the Adam system. In addition, the system is
built from the ground up to support asynchronous
training.

While we focus on vision tasks in this paper, the Adam
system is general-purpose as stochastic gradient
descent is a generic training algorithm that can train
any DNN via back-propagation. In addition, Adam
supports training any combination of stacked
convolutional and fully-connected network layers and
can be used to train models on tasks such as speech
recognition and text processing.

3.1 Fast Data Serving
Training large DNNs requires vast quantities of
training data (10-100 TBs). Even with large quantities
of training data these DNNs require data

transformations to avoid over-fitting when iterating
through the data set multiple times. We configure a
small set of machines as data serving machines to
offload the computational requirements of these
transformations from the model training machines and
ensure high throughput data delivery.

For vision tasks, the transformations include image
translations, reflections, and rotations. The training
data set is augmented by randomly applying a different
transformation to each image so that each training
epoch effectively processes a different variant of the
same image. This is done in advance since some of the
image transformations are compute intensive and we
want to immediately stream the transformed images to
the model training machines when requested.

The data servers pre-cache images utilizing nearly the
entire system memory as an image cache to speed
image serving. They use asynchronous IO to process
incoming requests. The model training machines
request images in advance in batches using a
background thread so that the main training threads
always have the required image data in memory.

3.2 Model Training
Models for vision tasks typically contain a number of
convolutional layers followed by a few fully connected
layers [17, 27]. We partition our models vertically
across the model worker machines as shown in Figure
6 as this minimizes the amount of cross-machine
communication that is required for the convolution
layers.

3.2.1 Multi-Threaded Training
Model training on a machine is multi-threaded with
different images assigned to threads that share the
model weights. Each thread allocates a training context
for feed-forward evaluation and back propagation. This

Figure 6. Model partitioning across training machines.

…
..

…
..

I21I11 …… IN1 I22I12 …… IN2 I2MI1M …… INM

…
..

…
..

…
..

…
..

………
.

Convolutional
Layers (1..K)

Fully
Connected
Layers (1..L)

Machine 1 Machine 2 Machine M

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 575

training context stores the activations and weight
update values computed during back-propagation for
each layer. The context is pre-allocated to avoid heap
locks while training. Both the context and per-thread
scratch buffer for intermediate results use NUMA-
aware allocations to reduce cross-memory bus traffic
as these structures are frequently accessed.

3.2.2 Fast Weight Updates
To further accelerate training we access and update the
shared model weights locally without using locks.
Each thread computes weight updates and updates the
shared model weights. This introduces some races as
well as potentially modifying weights based on stale
weight values that were used to compute the weight
updates but have since been changed by other threads.
We are still able to train models to convergence despite
this since the weight updates are associative and
commutative and because neural networks are resilient
and can overcome the small amount of noise that this
introduces. Updating weights without locking is
similar to the Hogwild system except that we rely on
weight updates being associative and commutative
instead of requiring that the models be sparse to
minimize conflicts [23]. This optimization is important
for achieving good scaling when using multiple threads
on a single machine.

3.2.3 Reducing Memory Copies
During model training data values need to be
communicated across neuron layers. Since the model is
partitioned across multiple machines some of this
communication is non local. We use a uniform
optimized interface to accelerate this communication.
Rather than copy data values we pass a pointer to the
relevant block of neurons whose outputs need
communication avoiding expensive memory copies.
For non-local communication, we built our own
network library on top of the Windows socket API
with IO completion ports. This library is compatible
with our data transfer mechanism and accepts a pointer
to a block of neurons whose output values need to be
communicated across the network. We exploit
knowledge about the static model partitioning across
machines to optimize communication and use
reference counting to ensure safety in the presence of
asynchronous network IO. These optimizations reduce
the memory bandwidth and CPU requirements for
model training and are important for achieving good
performance when a model is partitioned across
machines.

3.2.4 Memory System Optimizations
We partition models across multiple machines such
that the working sets for the model layers fit in the L3
cache. The L3 cache has higher bandwidth than main
memory and allows us to maximize usage of the

floating point units on the machine that would
otherwise be limited by memory bandwidth.

We also optimize our computation for cache locality.
The forward evaluation and back-propagation
computation have competing locality requirements in
terms of preferring a row major or column major
layout for the layer weight matrix. To address this we
created two custom hand-tuned assembly kernels that
appropriately pack and block the data such that the
vector units are fully utilized for the matrix multiply
operations. These optimizations enable maximal
utilization of the floating point units on a machine.

3.2.5 Mitigating the Impact of Slow Machines
In any large computing cluster there will always be a
variance in speed between machines even when all
share the same hardware configuration. While we have
designed the model training to be mostly asynchronous
to mitigate this, there are two places where this speed
variance has an impact. First, since the model is
partitioned across multiple machines the speed of
processing an image is limited by slow machines. To
avoid stalling threads on faster machines that are
waiting for data values to arrive from slower machines,
we allow threads to process multiple images in
parallel. We use a dataflow framework to trigger
progress on individual images based on arrival of data
from remote machines. The second place where this
speed variance manifests is at the end of an epoch.
This is because we need to wait for all training images
to be processed to compute the model prediction error
on the validation data set and determine whether an
additional training epoch is necessary. To address this,
we implemented the simple solution of ending an
epoch whenever a specified fraction of the images are
completely processed. We ensure that the same set of
images are not skipped each epoch by randomizing the
image processing order for each epoch. We have
empirically determined that waiting for 75% of the
model replicas to complete processing all their images
before declaring the training epoch complete can speed
training by up to 20% with no impact on the trained
model’s prediction accuracy. An alternative solution
that we did not implement is to have the faster
machines steal work from the slower ones. However,
since our current approach does not affect model
accuracy this is unlikely to outperform it.

3.2.6 Parameter Server Communication
We have implemented two different communication
protocols for updating parameter weights. The first
version locally computes and accumulates the weight
updates in a buffer that is periodically sent to the
parameter server machines when k (which is typically
in the hundreds) images have been processed. The
parameter server machines then directly apply these

576 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

accumulated updates to the stored weights. This works
well for the convolutional layers since the volume of
weights is low due to weight sharing. For the fully
connected layers that have many more weights we use
a different protocol to minimize communication traffic
between the model training and parameter server
machines. Rather than directly send the weight updates
we send the activation and error gradient vectors to the
parameter server machines where the matrix multiply
can be performed locally to compute and apply the
weight updates. This significantly reduces the
communication traffic volume from M*N to k*(M+N)
and greatly improves system scalability. In addition, it
has an additional beneficial aspect as it offloads
computation from the model training machines where
the CPU is heavily utilized to the parameter server
machines where the CPU is underutilized resulting in a
better balanced system.

3.3 Global Parameter Server
The parameter server is in constant communication
with the model training machines receiving updates to
model parameters and sending the current weight
values. The rate of updates is far too high for the
parameter server to be modeled as a conventional
distributed key value store. The architecture of a
parameter server node is shown in Figure 7.

3.3.1 Throughput Optimizations

The model parameters are divided into 1 MB sized
shards, which represents a contiguous partition of the
parameter space, and these shards are hashed into
storage buckets that are distributed equally among the
parameter server machines. This partitioning improves
the spatial locality of update processing while the

distribution helps with load balancing. Further, we
opportunistically batch updates. This improves
temporal locality and relieves pressure on the L3 cache
by applying all updates in a batch to a block of
parameters before moving to next block in the shard.
The parameter servers use SSE/AVX instructions for
applying the update and all processing is NUMA
aware. Shards are allocated on a specific NUMA node
and all update processing for the shard is localized to
that NUMA node by assigning tasks to threads bound
to the processors for the NUMA node by setting the
appropriate processor masks. We use lock free data
structures for queues and hash tables in high traffic
execution paths to speed up network, update, and disk
IO processing. In addition, we implement lock free
memory allocation where buffers are allocated from
pools of specified size that vary in powers of 2 from
4KB all the way to 32MB. Small object allocations are
satisfied by our global lock free pool for the object. All
of these optimizations are critical to achieving good
system scalability and were arrived at through iterative
system refinement to eliminate scalability bottlenecks.

3.3.2 Delayed Persistence
We decouple durability from the update processing
path to allow for high throughput serving to training
nodes. Parameter storage is modelled as a write back
cache, with dirty chunks flushed asynchronously in the
background. The window of potential data loss is a
function of the IO throughput supported by the storage
layer. This is tolerable due to the resilient nature of the
underlying system as DNN models are capable of
learning even in the presence of small amounts of lost
updates. Further, these updates can be effectively
recovered if needed by retraining the model on the
appropriate input data. This delayed persistence allows
for compressed writes to durable storage as many
updates can be folded into a single parameter update,
due to the additive nature of updates, between rounds
of flushes. This allows update cycles to catch up to the
current state of the parameter shard despite update
cycles being slower.

3.3.3 Fault Tolerant Operation
There are three copies of each parameter shard in the
system and these are stored on different parameter
servers. The shard version that is designated as the
primary is actively served while the two other copies
are designated as secondary for fault tolerance. The
parameter servers are controlled by a set of parameter
server (PS) controller machines that form a Paxos
cluster. The controller maintains in its replicated state
the configuration of parameter server cluster that
contains the mapping of shards and roles to parameter
servers. The clients (model training machines) contact
the controller to determine request routing for
parameter shards. The PS controller hands out bucket

Figure 7. Parameter Server Node Architecture.

TCP End Point
Shard
Table

Read
Shard

Update
Shard

Shard
TableShard

TableShard
Table

TCP End PointShard
Table

Read
Shard

Update
Shard

Shard
Table Shard

TableShard
Table

TCP End Point Durable Media

Administrative TCP End PointLoad
Shard Unload

Shard

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 577

assignments (primary role via a lease, secondary roles
with primary lease information) to parameter servers
and persists the lease information in its replicated state.
The controller also receives heart beats from parameter
server machines and relocates buckets from failed
machines evenly to other active machines. This
includes assigning new leases for buckets where the
failed machine was the primary.

The parameter server machine that is the primary for a
bucket accepts requests for parameter updates for all
chunks in that bucket. The primary machine replicates
changes to shards within a bucket to all secondary
machines via a 2 phase commit protocol. Each
secondary checks the lease information of the bucket
for a replicated request initiated by primary before
committing. Each parameter server machine sends
heart beats to the appropriate secondary machines for
all buckets for which it has been designated as
primary. Parameter servers that are secondary for a
bucket initiate a role change proposal to be a primary
along with previous primary lease information to the
controller in the event of prolonged absence of heart
beats from the current primary. The controller will
elect one of the secondary machines to be the new
primary, assigns a new lease for the bucket and
propagates this information to all parameter server
nodes involved for the bucket. Within a parameter
server node, the on disk storage for a bucket is
modelled as a log structured block store to optimize
disk bandwidth for the write heavy work load.

We have used Adam extensively over the past two
years to run several training experiments. Machines
did fail during these runs and all of these fault
tolerance mechanisms were exercised at some point.

3.3.4 Communication Isolation
Parameter server machines have two 10Gb NICs.
Since parameter update processing from a client
(training) perspective is decoupled from persistence,
the 2 paths are isolated into their own NICs to
maximize network bandwidth and minimize
interference as shown in Figure 7. In addition, we
isolate administrative traffic from the controller to the
1Gb NIC.

4. EVALUATION
4.1 Visual Object Recognition Tasks
We evaluate Adam using two popular benchmarks for
image recognition tasks. MNIST is a digit
classification task where the input data is composed of
28x28 images of the 10 handwritten digits [20]. This is
a very small benchmark with 60,000 training images
and 10,000 test images that we use to characterize the
baseline system performance and accuracy of trained
models. ImageNet is a large dataset that contains over

15 million labeled high-resolution images belonging to
around 22,000 different categories [8]. The images
were gathered from a variety of sources on the web
and labeled by humans using Mechanical Turk.
ImageNet contains images with variable resolution but
like others we down-sampled all images to a fixed
256x256 resolution and used half of the data set for
training and the other half for testing. This is the
largest publicly available image classification
benchmark and the task of correctly classifying an
image among 22,000 categories is extremely hard (for
e.g., distinguishing between an American and English
foxhound). Performance on this task is measured in
terms of top-1 accuracy, which compares the model’s
top choice with the image label and assigns a score of
1 for a correct answer and 0 for an incorrect answer.
No partial credit is awarded. Random guessing will
result in a top-1 accuracy of only around 0.0045%.
Based on our experience with this benchmark it is
unlikely that human performance exceeds 20%
accuracy as this task requires correctly distinguishing
between hundreds of breeds of dogs, butterflies,
flowers, etc.1 We use this benchmark to characterize
Adam’s performance and scaling, and the accuracy of
trained models.
4.2 System Hardware
Adam is currently comprised of a cluster of 120
identical machines organized as three equally sized
racks connected by IBM G8264 switches. Each
machine is a HP Proliant server with dual Intel Xeon
E5-2450L processors for a total of 16 cores running at
1.8Ghz with 98GB of main memory, two 10 Gb NICs
and one 1 Gb NIC. All machines have four 7200 rpm
HDDs. A 1TB drive hosts the operating system
(Windows 2012 server) and the other three HDDs are
3TB each and are configured as a RAID array. This
set of machines can be configured slightly differently
based on the experiment but model training machines
are selected from a pool of 90 machines, parameter
servers from a pool of 20 machines and image servers
from a pool of 10 machines. These pools include
standby machines for fault tolerance in case of
machine failure.

4.3 Baseline Performance and Accuracy
We first evaluate Adam’s baseline performance by
focusing on single model training and parameter server
machines. In addition, we evaluate baseline training
accuracy by training a small model on the MNIST digit
classification task.

1 We invite people to test their performance on this

benchmark available at http://www.image-net.org

578 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.3.1 Model Training System
We train a small MNIST model comprising around 2.5
million connections (described later) to convergence
on a single model training machine with no parameter
server and vary the number of processor cores used for
training. We measure the average training speed
computed as billions of connections trained per second
(Model connections*Training examples*Number of
Epochs)/(Wall clock time) and plot this against the
number of processor cores used for training. The
results are shown in Figure 8. Adam shows excellent
scaling as we increase the number of cores since we
allow parameters to be updated without locking. The
scaling is super-linear up to 4 cores due to caching
effects and linear afterwards.

4.3.2 Parameter Server
To evaluate the multi-core scaling of a single
parameter server we collected parameter update traffic
from ImageNet 22K model training runs, as MNIST
parameter updates are too small to stress the system,
and ran a series of simulated tests. For all tests we
compare the parameter update rate that the machine is
able to sustain as we increase the amount of server
cores available for processing. Recall that we support

two update APIs—one where the parameter server
directly receives weight updates and the other where it
receives activation and error gradient vectors that it
must multiply to compute the weight updates. The
results are shown in Figure 9. The network bandwidth
is the limiting factor when weight updates are sent over
the network resulting in poor performance and scaling.
With a hypothetical fast network we see scaling up to 8
cores after which we hit the memory bandwidth
bottleneck. When the weight updates are computed
locally we see good scaling as we have tiled the
computation to efficiently use the processor cache
avoiding the memory bandwidth bottleneck. While our
current networking technology limits our update
throughput, we are still able to sustain a very high
update rate of over 13 Bn updates/sec.

4.3.3 Trained Model Accuracy
The MNIST benchmark is primarily evaluated in two
forms. One variant transforms the training data via
affine transformations or elastic distortions to
effectively expand the limited training data to a much
larger set resulting in the trained models generalizing
well and achieving higher accuracy on the unseen test
data [5, 26]. The traditional form allows no data
transformation so all training has to proceed using only
the limited 60,000 training examples. Since our goal
here is to evaluate Adam’s baseline performance on
small models trained on little data we used the MNIST
data without any transformation.

 We trained a fairly standard model for this benchmark
comprising 2 convolutional layers followed by two
fully connected layers and a final ten class softmax
output layer [26]. The convolutional layers used 5x5
kernels and each is followed by a 2x2 max-pooling
layer. The first convolutional layer has 10 feature maps
and the second has 20. Both fully connected layers use
400 hidden units. The resulting model is small and has
around 2.5 million connections. The prediction
accuracy results are shown in Table 1. We were

Figure 9. Parameter Server Node Performance.

0

5

10

15

20

25

1 2 4 8 16

B
il

li
o

n
 p

a
ra

m
e

te
r

u
p

d
a

te
s/

se
c

of processor cores

Weight updates Weight updates over network
Local weight computation Local weight computation with inputs over network

Figure 10. Scaling Model Size with more Workers.

0

5

10

15

20

25

30

35

40

4 8 12 16

Bi
lli

on
 c

on
ne

ct
io

ns

of Machines

Figure 8. Model Training Node Performance.

0

1

2

3

4

5

6

7

1 2 4 8 16

B
il

li
o

n
 c

o
n

n
e

ct
io

n
s

tr
a

in
e

d
/s

e
c

of Processor cores

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 579

targeting competitive performance with the state-of-
the-art accuracy on this benchmark from Goodfellow
et al. that uses sophisticated training techniques that we
have not implemented [12]. To our surprise, we
exceeded their accuracy by 0.08%. To put this
improvement in perspective, it took four years of
advances in deep learning to improve accuracy on this
task by 0.08% to its present value. We believe that our
accuracy improvement arises from the asynchrony in
Adam which adds a form of stochastic noise while
training that helps the models generalize better when
presented with unseen data. In addition, it is possible
that the asynchrony helps the model escape from
unstable local minima to potentially find a better local
minimum. To validate this hypothesis, we trained the
same model on the MNIST data using only a single
thread to ensure synchronous training. We trained the
model to convergence, which took significantly longer.
The result from our best synchronous variant is shown
in Table 1 and indicates that asynchrony contributes to
improving model accuracy by 0.24%, which is a
significant increase for this task. This result contradicts
conventional established wisdom in the field that holds
that asynchrony lowers model prediction accuracy and
must be controlled as far as possible.

Table 1. MNIST Top-1 Accuracy

4.4 System Scaling and Accuracy
We evaluate our system performance and scalability
across multiple dimensions and evaluate its ability to
train large DNNs for the ImageNet 22K classification
task.

4.4.1 Scaling with Model Workers
We evaluate the ability of Adam to train very large
models by partitioning them across multiple machines.
We use a single training epoch of the ImageNet
benchmark to determine the maximum size model we
can efficiently train on a given multi-machine
configuration. We do this by increasing the model size
via an increase in the number of feature maps in
convolutional layers and training the model for an
epoch until we observe a decrease in training speed.
For this test we use only a single model replica with no
parameter server. The results are shown in Fig. 10 and
indicate that Adam is capable of training extremely
large models using a relatively small number of
machines. Our 16 machine configuration is capable of
training a 36 Bn connection model. More importantly,

the size of models we can train efficiently increases
super-linearly as we partition the model across more
machines. Our measurements indicate that this is due
to cache effects where larger portions of the working
sets of model layers fits in the L3 cache as the number
of machines is increased. While the ImageNet data set
does not have sufficient training data to train such
large models to convergence these results indicate that
Adam is capable of training very large models with
good scaling.

4.4.2 Scaling with Model Replicas
We evaluate the impact of adding more model replicas
to Adam. Each replica contains 4 machines with the
ImageNet model (described later) partitioned across
these machines. The results are shown in Figure 11
where we evaluated configurations comprising 4, 10,
12, 16, and 22 replicas. All experiments used the same
parameter server configuration comprised of 20
machines. The results indicate that Adam scales well
with additional replicas. Note that the configuration
without a parameter server is merely intended as a
reference for comparison since the models cannot
jointly learn without a shared parameter server. While
the parameter server does add some overhead the
system still exhibits good scaling.

4.4.3 Trained Model Accuracy
We trained a large and deep convolutional network for
the ImageNet 22K category object classification task
with a similar architecture to those described in prior
work [17, 27]. The network has five convolutional
layers followed by three fully connected layers with a

Systems MNIST Top-1 Accuracy

Goodfellow et al [12] 99.55%

Adam 99.63%

Adam (synchronous) 99.39%

Figure 11. System scaling with more Replicas.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

B
ill

io
n

co
nn

ec
ti

on
s

tr
ai

ne
d/

se
c

of Machines

System with PS Linear (no PS)

Table 2. ImageNet 22K Top-1 Accuracy.

Systems ImageNet 22K Top-1 Accuracy

Le et al. [18] 13.6%
Le et al. (with

pre-training) [18] 15.8%

Adam 29.8%

580 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

final 22,000-way softmax. The convolutional kernels
range in size from 3x3 to 7x7 and the convolutional
feature map sizes range from 120 to 600. The first,
second and fifth convolutional layers are followed by a
3x3 max-pooling layer. The fully-connected layers
contain 3000 hidden units. The resulting model is
fairly large and contains over 2Bn connections. While
Adam is capable of training much larger models the
amount of ImageNet training data is a limiting factor in
these experiments.

We trained this model to convergence in ten days using
4 image servers, 48 model training machines
configured as 16 model replicas containing 4 machines
per replica and 10 parameter servers for a total of 62
machines. The results are shown in Table 2. Le et al.
held the previous best top-1 accuracy result on this
benchmark of 13.6% that was obtained by training a
1Bn connection model on 2,000 machines for a week
(our model exceeds 13.6% accuracy with a single day
of training using 62 machines). When they
supplemented the ImageNet training data with 10
million unlabeled images sampled from Youtube
videos, which they trained on using 1,000 machines for
3 days, they were able to increase prediction accuracy
to 15.8%. Our model is able to achieve a new world
record prediction accuracy of 29.8% using only
ImageNet training data, which is a dramatic 2x
improvement over the prior best.

To better understand the reasons for this accuracy
improvement, we used Adam to train a couple of
smaller models to convergence for this task. The
results are shown in Figure 12 and indicate that
training larger models increases task accuracy. This
highlights the importance of Adam’s efficiency and
scalability as it enables training larger models. In
addition, our 1.1 Bn connection model achieves 24%
accuracy on this task as compared to prior work that
achieved 13.6% accuracy with a similar size model.
While we are unable to isolate the impact of
asynchrony for this task as the synchronous execution
is much too slow, this result in conjunction with the

MNIST accuracy data provides evidence that
asynchrony contributes to the accuracy improvements.
The graph also appears to suggest that improvements
in accuracy slow down as the model size increases but
we note that the larger models are being trained with
the same amount of data. It is likely that larger models
for complex tasks require more training data to
effectively use their capacity.

4.4.4 Discussion
Adam achieves high multi-threaded scalability on a
single machine by permitting threads to update local
parameter weights without locks. It achieves good
multi-machine scalability through minimizing
communication traffic by performing the weight
update computation on the parameter server machines
and performing asynchronous batched updates to
parameter values that take advantage of these updates
being associative and commutative. Finally, Adam
enables training models to high accuracy by exploiting
its efficiency to train very large models and leveraging
asynchrony to further improve accuracy.

5. RELATED WORK
Due to the computational requirements of deep
learning, deep models are popularly trained on GPUs
[5, 14, 17, 24, 27]. While this works well when the
model fits within 2-4 GPU cards attached to a single
server, it limits the size of models that can be trained.
Consequently the models trained on these systems are
typically evaluated on the much smaller ImageNet
1,000 category classification task [17, 27].

Recent work attempted to use a distributed cluster of
16 GPU servers connected with Infiniband to train
large DNNs partitioned across the servers on image
classification tasks [6]. Training large models to high
accuracy typically requires iterating over vast amount
of data. This is not viable in a reasonable amount of
time unless the system also supports data parallelism.
Unfortunately the mismatch in speed between GPU
compute and network interconnects makes it extremely
difficult to support data parallelism via a parameter
server. Either the GPU must constantly stall while
waiting for model parameter updates or the models
will likely diverge due to insufficient synchronization.
This work did not support data parallelism and the
large models trained had lower accuracy than much
smaller models.

The only comparable system that we are aware of for
training large-scale DNNs that supports both model
and data parallelism is the DistBelief system [7]. The
system has been used to train a large DNN (1 billion
connections) to high accuracy on the ImageNet 22K
classification task but at a significant compute cost of
using 2,000 machines for a week. In addition, the

Figure 12. Model accuracy with larger models.

0

5

10

15

20

25

30

35

1000 1200 1400 1600 1800 2000 2200 2400

To
p-

1
ac

cu
ra

cy
 (%

)

Model size (# connections in millions)

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 581

system exhibits poor scaling efficiency and is not a
viable cost-effective solution.

GraphLab [21] and similar large scale graph
processing frameworks are designed for operating on
general unstructured graphs and are unlikely to offer
competitive performance and scalability as they do not
exploit deep network structure and training
efficiencies.

The vision and computer architecture community has
started to explore hardware acceleration for neural
network models for vision [3, 4, 10, 16, 22]. Currently,
the work has concentrated on efficient feed-forward
evaluation of already trained networks and
complements our work that focuses on training large
DNNs.

6. CONCLUSIONS
We show that large-scale commodity distributed
systems can be used to efficiently train very large
DNNs to world-record accuracy on hard vision tasks
using current training algorithms by using Adam to
train a large DNN model that achieves world-record
classification performance on the ImageNet 22K
category task. While we have implemented and
evaluated Adam using a 120 machine cluster, the
scaling results indicate that much larger systems can
likely be effectively utilized for training large DNNs.

7. ACKNOWLEDGMENTS
We would like to thank Patrice Simard for sharing his
gradient descent toolkit code that we started with as a
single machine reference implementation. Leon Bottou
provided valuable guidance and advice on scalable
training algorithms. John Platt served as our machine
learning consultant throughout this effort and
constantly shared valuable input. Yi-Min Wang was an
early and constant supporter of this work and provided
the initial seed funding. Peter Lee and Eric Horvitz
provided additional support and funding. Jim Larus,
Eric Rudder and Qi Lu encouraged this work. We
would also like to acknowledge the contributions of
Olatunji Ruwase, Abhishek Sharma, and Xinying Song
to the system. We benefitted from several discussions
with Larry Zitnick, Piotr Dollar, Istvan Cseri, Slavik
Krassovsky, and Sven Groot. Finally, we would like to
thank our reviewers and our paper shepherd, Geoff
Voelker, for their detailed and thoughtful comments.

8. REFERENCES
[1] Bengio, Y., and LeCun, Y. 2007. Scaling

Learning Algorithms towards AI. In Large-Scale
Kernel Machines, Bottou, L. et al. (Eds), MIT
Press.

[2] Bottou, L., 1991. Stochastic gradient learning in
neural networks. In Proceedings of Neuro-Nîmes
91, EC2, Nimes, France.

[3] S. Chakradhar, M. Sankaradas, V. Jakkula, and S.
Cadambi. 2010. A dynamically configurable
coprocessor for convolutional neural networks. In
International symposium on Computer
Architecture, ISCA’10.

[4] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen,
Y., and Temam, O. 2014. DianNao: A Small-
Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning. In International
Conference on Architectural Support for
Programming Languages and Operating Systems.
ASPLOS’14.

[5] Ciresan, D. C, Meier, U., and Schmidhuber, J.
2012. Multicolumn deep neural networks for
image classification. In Computer Vision and
Pattern Recognition. CVPR’12.

[6] Coates, A., Huval, B., Wang, T., Wu, D., Ng, A.,
and Catanzaro, B. 2013. Deep Learning with
COTS HPC. In International Conference on
Machine Learning. ICML’13.

[7] Dean, J., Corrado, G., Monga, R., Chen, K.,
Devin, M., Mao, M., Ranzato, M., Senior, A.,
Tucker, P., Yang, K., Le, Q., and Ng, A. 2012.
Large Scale Distributed Deep Networks. In
Advances in Neural Information Processing
Systems. NIPS’12.

[8] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
and Fei-Fei, L. 2009. ImageNet: A Large-Scale
Hierarchical Image Database. In Computer Vision
and Pattern Recognition. CVPR ‘09.

[9] Faerber, P., and Asanović, K. 1997. Parallel neural
network training on Multi-Spert. In IEEE 3rd
International Conference on Algorithms and
Architectures for Parallel Processing (Melbourne,
Australia, December 1997).

[10] Farabet, C., Martini, B., Corda, B., Akselrod, P.,
Culurciello, E., and LeCun, Y. 2011. NeuFlow: A
runtime reconfigurable dataflow processor for
vision. In Computer Vision and Pattern
Recognition Workshop (June 2011), pages 109–
116.

[11] Fukushima, K. 1980. Neocognitron: A self-
organizing neural network for a mechanism of
pattern recognition unaffected by shift in position.
In Biological Cybernetics, 36(4): 93-202.

[12] Goodfellow, I., Warde-Farley, D., Mirza, M.,
Courville, A., and Bengio, Y. 2013. Maxout

582 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Networks. In International Conference on
Machine Learning. ICML’13.

[13] Hahnloser, R. 2003. Permitted and Forbidden Sets
in Symmetric Threshold-Linear Networks. In
Neural Computing. (Mar. 2003), 15(3):621-38.

[14] Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed,
A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., Sainath, T., and Kingsbury, B. 2012. Deep
neural networks for acoustic modeling in speech
recognition. In IEEE Signal Processing Magazine,
2012.

[15] Hubel, D. and Wiesel, T. 1968. Receptive fields
and functional architecture of monkey striate
cortex. In Journal of Physiology (London), 195,
215–243.

[16] Kim, J., Member, S., Kim, M., Lee, S., Oh, J.,
Kim, K. and Yoo, H. 2010. A 201.4 GOPS 496
mW Real-Time Multi-Object Recognition
Processor with Bio-Inspired Neural Perception
Engine. In IEEE Journal of Solid-State Circuits,
(Jan. 2010), 45(1):32–45.

[17] Krizhevsky, A., Sutskever, I., and Hinton, G.
2012. ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in
Neural Information Processing Systems. NIPS’12.

[18] Le, Q., Ranzato, M., Monga, R., Devin, M., Chen,
K., Corrado, G., Dean, J., and Ng, A. 2012.
Building high-level features using large scale
unsupervised learning. In International
Conference on Machine Learning. ICML’12.

[19] LeCun, Y., Boser, B., Denker, J., Henderson, D.,
Howard, R., Hubbard, W., and Jackel, L. 1989.
Backpropagation Applied to Handwritten Zip
Code Recognition. In Neural Computation,
1(4):541-551.

[20] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
1998. Gradient-based learning applied to
document recognition. In Proceedings of the
IEEE, 86(11):2278–2324, (Nov. 1998).

[21] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,
Guestrin, C., and Hellerstein, J. 2012. Distributed
GraphLab: A framework for machine learning in
the cloud. In International Conference on Very
Large Databases. VLDB’12.

[22] Maashri, A., Debole, M., Cotter, M.,
Chandramoorthy, N., Xiao, Y., Narayanan, V.,
and Chakrabarti, C. 2012. Accelerating
neuromorphic vision algorithms for recognition. In
Proceedings of the 49th Annual Design
Automation Conference, DAC’12.

[23] Niu, F., Retcht, B., Re, C., and Wright, S. 2011.
Hogwild! A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural
Information Processing Systems. NIPS’11.

[24] Raina, R., Madhavan, A., and Ng., A. 2009.
Large-scale deep unsupervised learning using
graphics processors. In International Conference
on Machine Learning. ICML’09.

[25] Rumelhart, D., Hinton, G., and Williams, R. 1986.
Learning representations by back-propagating
errors. In Nature 323 (6088): 533–536.

[26] Simard, P., Steinkraus, D., and Platt, J. 2003. Best
Practices for Convolutional Neural Networks
applied to Visual Document Analysis. In ICDAR,
vol. 3, pp. 958-962.

[27] Zeiler, M. and Fergus, R. 2013. Visualizing and
Understanding Convolutional Networks. In Arxiv
1311.2901. http://arxiv.org/abs/1311.2901

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 583

Scaling Distributed Machine Learning with the Parameter Server

Mu Li∗‡, David G. Andersen∗, Jun Woo Park∗, Alexander J. Smola∗†, Amr Ahmed†,
Vanja Josifovski†, James Long†, Eugene J. Shekita†, Bor-Yiing Su†

∗Carnegie Mellon University ‡Baidu †Google
{muli, dga, junwoop}@cs.cmu.edu, alex@smola.org, {amra, vanjaj, jamlong, shekita, boryiingsu}@google.com

Abstract
We propose a parameter server framework for distributed
machine learning problems. Both data and workloads
are distributed over worker nodes, while the server nodes
maintain globally shared parameters, represented as dense
or sparse vectors and matrices. The framework manages
asynchronous data communication between nodes, and
supports flexible consistency models, elastic scalability,
and continuous fault tolerance.

To demonstrate the scalability of the proposed frame-
work, we show experimental results on petabytes of real
data with billions of examples and parameters on prob-
lems ranging from Sparse Logistic Regression to Latent
Dirichlet Allocation and Distributed Sketching.

1 Introduction
Distributed optimization and inference is becoming a pre-
requisite for solving large scale machine learning prob-
lems. At scale, no single machine can solve these prob-
lems sufficiently rapidly, due to the growth of data and
the resulting model complexity, often manifesting itself
in an increased number of parameters. Implementing an
efficient distributed algorithm, however, is not easy. Both
intensive computational workloads and the volume of data
communication demand careful system design.

Realistic quantities of training data can range between
1TB and 1PB. This allows one to create powerful and
complex models with 109 to 1012 parameters [9]. These
models are often shared globally by all worker nodes,
which must frequently accesses the shared parameters as
they perform computation to refine it. Sharing imposes
three challenges:

• Accessing the parameters requires an enormous
amount of network bandwidth.

• Many machine learning algorithms are sequential.
The resulting barriers hurt performance when the

≈ #machine × time # of jobs failure rate
100 hours 13,187 7.8%

1, 000 hours 1,366 13.7%
10, 000 hours 77 24.7%

Table 1: Statistics of machine learning jobs for a three
month period in a data center.

cost of synchronization and machine latency is high.
• At scale, fault tolerance is critical. Learning tasks are

often performed in a cloud environment where ma-
chines can be unreliable and jobs can be preempted.

To illustrate the last point, we collected all job logs for
a three month period from one cluster at a large internet
company. We show statistics of batch machine learning
tasks serving a production environment in Table 1. Here,
task failure is mostly due to being preempted or losing
machines without necessary fault tolerance mechanisms.

Unlike in many research settings where jobs run exclu-
sively on a cluster without contention, fault tolerance is a
necessity in real world deployments.

1.1 Contributions

Since its introduction, the parameter server frame-
work [43] has proliferated in academia and industry. This
paper describes a third generation open source implemen-
tation of a parameter server that focuses on the systems
aspects of distributed inference. It confers two advan-
tages to developers: First, by factoring out commonly
required components of machine learning systems, it en-
ables application-specific code to remain concise. At the
same time, as a shared platform to target for systems-
level optimizations, it provides a robust, versatile, and
high-performance implementation capable of handling a
diverse array of algorithms from sparse logistic regression
to topic models and distributed sketching. Our design de-

584 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Shared Data Consistency Fault Tolerance
Graphlab [34] graph eventual checkpoint

Petuum [12] hash table delay bound none
REEF [10] array BSP checkpoint
Naiad [37] (key,value) multiple checkpoint

Mlbase [29] table BSP RDD
Parameter (sparse) various continuousServer vector/matrix

Table 2: Attributes of distributed data analysis systems.

cisions were guided by the workloads found in real sys-
tems. Our parameter server provides five key features:
Efficient communication: The asynchronous commu-
nication model does not block computation (unless re-
quested). It is optimized for machine learning tasks to
reduce network traffic and overhead.
Flexible consistency models: Relaxed consistency fur-
ther hides synchronization cost and latency. We allow the
algorithm designer to balance algorithmic convergence
rate and system efficiency. The best trade-off depends on
data, algorithm, and hardware.
Elastic Scalability: New nodes can be added without
restarting the running framework.
Fault Tolerance and Durability: Recovery from and re-
pair of non-catastrophic machine failures within 1s, with-
out interrupting computation. Vector clocks ensure well-
defined behavior after network partition and failure.
Ease of Use: The globally shared parameters are repre-
sented as (potentially sparse) vectors and matrices to facil-
itate development of machine learning applications. The
linear algebra data types come with high-performance
multi-threaded libraries.

The novelty of the proposed system lies in the synergy
achieved by picking the right systems techniques, adapt-
ing them to the machine learning algorithms, and modify-
ing the machine learning algorithms to be more systems-
friendly. In particular, we can relax a number of other-
wise hard systems constraints since the associated ma-
chine learning algorithms are quite tolerant to perturba-
tions. The consequence is the first general purpose ML
system capable of scaling to industrial scale sizes.

1.2 Engineering Challenges
When solving distributed data analysis problems, the is-
sue of reading and updating parameters shared between
different worker nodes is ubiquitous. The parameter
server framework provides an efficient mechanism for ag-
gregating and synchronizing model parameters and statis-
tics between workers. Each parameter server node main-

101 102 103 104 105104

105

106

107

108

109

1010

1011

number of cores

nu
m

be
r o

f s
ha

re
d

pa
ra

m
et

er
s

Distbelief (DNN)

VW (LR)
YahooLDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Parameter server (LDA)

Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed. Problems are
color-coded as follows: Blue circles — sparse logistic re-
gression; red squares — latent variable graphical models;
grey pentagons — deep networks.

tains only a part of the parameters, and each worker node
typically requires only a subset of these parameters when
operating. Two key challenges arise in constructing a high
performance parameter server system:
Communication. While the parameters could be up-
dated as key-value pairs in a conventional datastore, us-
ing this abstraction naively is inefficient: values are typi-
cally small (floats or integers), and the overhead of send-
ing each update as a key value operation is high.

Our insight to improve this situation comes from the
observation that many learning algorithms represent pa-
rameters as structured mathematical objects, such as vec-
tors, matrices, or tensors. At each logical time (or an it-
eration), typically a part of the object is updated. That is,
workers usually send a segment of a vector, or an entire
row of the matrix. This provides an opportunity to auto-
matically batch both the communication of updates and
their processing on the parameter server, and allows the
consistency tracking to be implemented efficiently.
Fault tolerance, as noted earlier, is critical at scale, and
for efficient operation, it must not require a full restart of a
long-running computation. Live replication of parameters
between servers supports hot failover. Failover and self-
repair in turn support dynamic scaling by treating machine
removal or addition as failure or repair respectively.

Figure 1 provides an overview of the scale of the largest
supervised and unsupervised machine learning experi-
ments performed on a number of systems. When possi-
ble, we confirmed the scaling limits with the authors of
each of these systems (data current as of 4/2014). As is
evident, we are able to cover orders of magnitude more
data on orders of magnitude more processors than any

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 585

other published system. Furthermore, Table 2 provides an
overview of the main characteristics of several machine
learning systems. Our parameter server offers the greatest
degree of flexibility in terms of consistency. It is the only
system offering continuous fault tolerance. Its native data
types make it particularly friendly for data analysis.

1.3 Related Work

Related systems have been implemented at Amazon,
Baidu, Facebook, Google [13], Microsoft, and Yahoo [1].
Open source codes also exist, such as YahooLDA [1] and
Petuum [24]. Furthermore, Graphlab [34] supports pa-
rameter synchronization on a best effort model.

The first generation of such parameter servers, as in-
troduced by [43], lacked flexibility and performance — it
repurposed memcached distributed (key,value) store as
synchronization mechanism. YahooLDA improved this
design by implementing a dedicated server with user-
definable update primitives (set, get, update) and a more
principled load distribution algorithm [1]. This second
generation of application specific parameter servers can
also be found in Distbelief [13] and the synchronization
mechanism of [33]. A first step towards a general platform
was undertaken by Petuum [24]. It improves YahooLDA
with a bounded delay model while placing further con-
straints on the worker threading model. We describe a
third generation system overcoming these limitations.

Finally, it is useful to compare the parameter server
to more general-purpose distributed systems for machine
learning. Several of them mandate synchronous, itera-
tive communication. They scale well to tens of nodes,
but at large scale, this synchrony creates challenges as the
chance of a node operating slowly increases. Mahout [4],
based on Hadoop [18] and MLI [44], based on Spark [50],
both adopt the iterative MapReduce [14] framework. A
key insight of Spark and MLI is preserving state between
iterations, which is a core goal of the parameter server.

Distributed GraphLab [34] instead asynchronously
schedules communication using a graph abstraction. At
present, GraphLab lacks the elastic scalability of the
map/reduce-based frameworks, and it relies on coarse-
grained snapshots for recovery, both of which impede
scalability. Its applicability for certain algorithms is lim-
ited by its lack of global variable synchronization as an
efficient first-class primitive. In a sense, a core goal of the
parameter server framework is to capture the benefits of
GraphLab’s asynchrony without its structural limitations.

Piccolo [39] uses a strategy related to the parameter
server to share and aggregate state between machines. In
it, workres pre-aggregate state locally and transmit the up-

dates to a server keeping the aggregate state. It thus imple-
ments largely a subset of the functionality of our system,
lacking the mechane learning specailized optimizations:
message compression, replication, and variable consis-
tency models expressed via dependency graphs.

2 Machine Learning
Machine learning systems are widely used in Web search,
spam detection, recommendation systems, computational
advertising, and document analysis. These systems au-
tomatically learn models from examples, termed training
data, and typically consist of three components: feature
extraction, the objective function, and learning.

Feature extraction processes the raw training data, such
as documents, images and user query logs, to obtain fea-
ture vectors, where each feature captures an attribute of
the training data. Preprocessing can be executed effi-
ciently by existing frameworks such as MapReduce, and
is therefore outside the scope of this paper.

2.1 Goals
The goal of many machine learning algorithms can be ex-
pressed via an “objective function.” This function cap-
tures the properties of the learned model, such as low er-
ror in the case of classifying e-mails into ham and spam,
how well the data is explained in the context of estimating
topics in documents, or a concise summary of counts in
the context of sketching data.

The learning algorithm typically minimizes this objec-
tive function to obtain the model. In general, there is no
closed-form solution; instead, learning starts from an ini-
tial model. It iteratively refines this model by processing
the training data, possibly multiple times, to approach the
solution. It stops when a (near) optimal solution is found
or the model is considered to be converged.

The training data may be extremely large. For instance,
a large internet company using one year of an ad impres-
sion log [27] to train an ad click predictor would have
trillions of training examples. Each training example is
typically represented as a possibly very high-dimensional
“feature vector” [9]. Therefore, the training data may con-
sist of trillions of trillion-length feature vectors. Itera-
tively processing such large scale data requires enormous
computing and bandwidth resources. Moreover, billions
of new ad impressions may arrive daily. Adding this data
into the system often improves both prediction accuracy
and coverage. But it also requires the learning algorithm
to run daily [35], possibly in real time. Efficient execution
of these algorithms is the main focus of this paper.

3

586 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To motivate the design decisions in our system, next
we briefly outline the two widely used machine learning
technologies that we will use to demonstrate the efficacy
of our parameter server. More detailed overviews can be
found in [36, 28, 42, 22, 6].

2.2 Risk Minimization

The most intuitive variant of machine learning problems
is that of risk minimization. The “risk” is, roughly, a mea-
sure of prediction error. For example, if we were to predict
tomorrow’s stock price, the risk might be the deviation be-
tween the prediction and the actual value of the stock.

The training data consists of n examples. xi is the ith
such example, and is often a vector of length d. As noted
earlier, both n and d may be on the order of billions to tril-
lions of examples and dimensions, respectively. In many
cases, each training example xi is associated with a label
yi. In ad click prediction, for example, yi might be 1 for
“clicked” or -1 for “not clicked”.

Risk minimization learns a model that can predict the
value y of a future example x. The model consists of pa-
rameters w. In the simplest example, the model param-
eters might be the “clickiness” of each feature in an ad
impression. To predict whether a new impression would
be clicked, the system might simply sum its “clickiness”
based upon the features present in the impression, namely
x�w :=

∑d
j=1 xjwj , and then decide based on the sign.

In any learning algorithm, there is an important re-
lationship between the amount of training data and the
model size. A more detailed model typically improves
accuracy, but only up to a point: If there is too little train-
ing data, a highly-detailed model will overfit and become
merely a system that uniquely memorizes every item in
the training set. On the other hand, a too-small model
will fail to capture interesting and relevant attributes of
the data that are important to making a correct decision.

Regularized risk minimization [48, 19] is a method to
find a model that balances model complexity and training
error. It does so by minimizing the sum of two terms:
a loss �(x, y, w) representing the prediction error on the
training data and a regularizer Ω[w] penalizing the model
complexity. A good model is one with low error and low
complexity. Consequently we strive to minimize

F (w) =
n∑

i=1

�(xi, yi, w) + Ω(w). (1)

The specific loss and regularizer functions used are impor-
tant to the prediction performance of the machine learning
algorithm, but relatively unimportant for the purpose of

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers
g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: Steps required in performing distributed subgra-
dient descent, as described e.g. in [46]. Each worker only
caches the working set of w rather than all parameters.

Algorithm 1 Distributed Subgradient Descent
Task Scheduler:

1: issue LoadData() to all workers
2: for iteration t = 0, . . . , T do
3: issue WORKERITERATE(t) to all workers.
4: end for

Worker r = 1, . . . ,m:
1: function LOADDATA()
2: load a part of training data {yik , xik}

nr

k=1

3: pull the working set w(0)
r from servers

4: end function
5: function WORKERITERATE(t)
6: gradient g(t)r ←

∑nr

k=1 ∂�(xik , yik , w
(t)
r)

7: push g
(t)
r to servers

8: pull w(t+1)
r from servers

9: end function
Servers:

1: function SERVERITERATE(t)
2: aggregate g(t) ←

∑m
r=1 g

(t)
r

3: w(t+1) ← w(t) − η
(
g(t) + ∂Ω(w(t)

)
4: end function

this paper: the algorithms we present can be used with all
of the most popular loss functions and regularizers.

In Section 5.1 we use a high-performance distributed
learning algorithm to evaluate the parameter server. For
the sake of simplicity we describe a much simpler model

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 587

10
0

10
1

10
2

10
3

10
4

0.1

1

10

100

number of workers

p
a

ra
m

e
te

rs
 p

e
r

w
o

rk
e

r
(%

)

Figure 3: Each worker’s set of parameters shrinks as more
workers are used, requiring less memory per machine.

[46] called distributed subgradient descent.1

As shown in Figure 2 and Algorithm 1, the training
data is partitioned among all of the workers, which jointly
learn the parameter vector w. The algorithm operates iter-
atively. In each iteration, every worker independently uses
its own training data to determine what changes should be
made to w in order to get closer to an optimal value. Be-
cause each worker’s updates reflect only its own training
data, the system needs a mechanism to allow these up-
dates to mix. It does so by expressing the updates as a
subgradient—a direction in which the parameter vector w
should be shifted—and aggregates all subgradients before
applying them to w. These gradients are typically scaled
down, with considerable attention paid in algorithm de-
sign to the right learning rate η that should be applied in
order to ensure that the algorithm converges quickly.

The most expensive step in Algorithm 1 is computing
the subgradient to update w. This task is divided among
all of the workers, each of which execute WORKERIT-
ERATE. As part of this, workers compute w�xik , which
could be infeasible for very high-dimensional w. Fortu-
nately, a worker needs to know a coordinate of w if and
only if some of its training data references that entry.

For instance, in ad-click prediction one of the key fea-
tures are the words in the ad. If only very few advertise-
ments contain the phrase OSDI 2014, then most workers
will not generate any updates to the corresponding entry
in w, and hence do not require this entry. While the total
size of w may exceed the capacity of a single machine,
the working set of entries needed by a particular worker
can be trivially cached locally. To illustrate this, we ran-

1The unfamiliar reader could read this as gradient descent; the sub-
gradient aspect is simply a generalization to loss functions and regular-
izers that need not be continuously differentiable, such as |w| at w = 0.

domly assigned data to workers and then counted the av-
erage working set size per worker on the dataset that is
used in Section 5.1. Figure 3 shows that for 100 work-
ers, each worker only needs 7.8% of the total parameters.
With 10,000 workers this reduces to 0.15%.

2.3 Generative Models

In a second major class of machine learning algorithms,
the label to be applied to training examples is unknown.
Such settings call for unsupervised algorithms (for labeled
training data one can use supervised or semi-supervised
algorithms). They attempt to capture the underlying struc-
ture of the data. For example, a common problem in this
area is topic modeling: Given a collection of documents,
infer the topics contained in each document.

When run on, e.g., the SOSP’13 proceedings, an algo-
rithm might generate topics such as “distributed systems”,
“machine learning”, and “performance.” The algorithms
infer these topics from the content of the documents them-
selves, not an external topic list. In practical settings such
as content personalization for recommendation systems
[2], the scale of these problems is huge: hundreds of mil-
lions of users and billions of documents, making it critical
to parallelize the algorithms across large clusters.

Because of their scale and data volumes, these al-
gorithms only became commercially applicable follow-
ing the introduction of the first-generation parameter
servers [43]. A key challenge in topic models is that the
parameters describing the current estimate of how docu-
ments are supposed to be generated must be shared.

A popular topic modeling approach is Latent Dirichlet
Allocation (LDA) [7]. While the statistical model is quite
different, the resulting algorithm for learning it is very
similar to Algorithm 1.2 The key difference, however,
is that the update step is not a gradient computation, but
an estimate of how well the document can be explained
by the current model. This computation requires access
to auxiliary metadata for each document that is updated
each time a document is accessed. Because of the number
of documents, metadata is typically read from and written
back to disk whenever the document is processed.

This auxiliary data is the set of topics assigned to each
word of a document, and the parameter w being learned
consists of the relative frequency of occurrence of a word.

As before, each worker needs to store only the param-
eters for the words occurring in the documents it pro-
cesses. Hence, distributing documents across workers has

2The specific algorithm we use in the evaluation is a parallelized vari-
ant of a stochastic variational sampler [25] with an update strategy sim-
ilar to that used in YahooLDA [1].

5

588 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

server groupserver
managerresource

manager

task
scheduler

a worker
node

training data

a server
node

worker group

Figure 4: Architecture of a parameter server communicat-
ing with several groups of workers.

the same effect as in the previous section: we can process
much bigger models than a single worker may hold.

3 Architecture

An instance of the parameter server can run more than
one algorithm simultaneously. Parameter server nodes are
grouped into a server group and several worker groups
as shown in Figure 4. A server node in the server group
maintains a partition of the globally shared parameters.
Server nodes communicate with each other to replicate
and/or to migrate parameters for reliability and scaling. A
server manager node maintains a consistent view of the
metadata of the servers, such as node liveness and the as-
signment of parameter partitions.

Each worker group runs an application. A worker typ-
ically stores locally a portion of the training data to com-
pute local statistics such as gradients. Workers communi-
cate only with the server nodes (not among themselves),
updating and retrieving the shared parameters. There is a
scheduler node for each worker group. It assigns tasks to
workers and monitors their progress. If workers are added
or removed, it reschedules unfinished tasks.

The parameter server supports independent parameter
namespaces. This allows a worker group to isolate its set
of shared parameters from others. Several worker groups
may also share the same namespace: we may use more
than one worker group to solve the same deep learning
application [13] to increase parallelization. Another ex-
ample is that of a model being actively queried by some

nodes, such as online services consuming this model. Si-
multaneously the model is updated by a different group of
worker nodes as new training data arrives.

The parameter server is designed to simplify devel-
oping distributed machine learning applications such as
those discussed in Section 2. The shared parameters are
presented as (key,value) vectors to facilitate linear algebra
operations (Sec. 3.1). They are distributed across a group
of server nodes (Sec. 4.3). Any node can both push out its
local parameters and pull parameters from remote nodes
(Sec. 3.2). By default, workloads, or tasks, are executed
by worker nodes; however, they can also be assigned to
server nodes via user defined functions (Sec. 3.3). Tasks
are asynchronous and run in parallel (Sec. 3.4). The pa-
rameter server provides the algorithm designer with flexi-
bility in choosing a consistency model via the task depen-
dency graph (Sec. 3.5) and predicates to communicate a
subset of parameters (Sec. 3.6).

3.1 (Key,Value) Vectors

The model shared among nodes can be represented as a set
of (key, value) pairs. For example, in a loss minimization
problem, the pair is a feature ID and its weight. For LDA,
the pair is a combination of the word ID and topic ID, and
a count. Each entry of the model can be read and written
locally or remotely by its key. This (key,value) abstraction
is widely adopted by existing approaches [37, 29, 12].

Our parameter server improves upon this basic ap-
proach by acknowledging the underlying meaning of
these key value items: machine learning algorithms typ-
ically treat the model as a linear algebra object. For in-
stance, w is used as a vector for both the objective function
(1) and the optimization in Algorithm 1 by risk minimiza-
tion. By treating these objects as sparse linear algebra
objects, the parameter server can provide the same func-
tionality as the (key,value) abstraction, but admits impor-
tant optimized operations such as vector addition w + u,
multiplication Xw, finding the 2-norm ‖w‖2, and other
more sophisticated operations [16].

To support these optimizations, we assume that the
keys are ordered. This lets us treat the parameters as
(key,value) pairs while endowing them with vector and
matrix semantics, where non-existing keys are associated
with zeros. This helps with linear algebra in machine
learning. It reduces the programming effort to implement
optimization algorithms. Beyond convenience, this inter-
face design leads to efficient code by leveraging CPU-
efficient multithreaded self-tuning linear algebra libraries
such as BLAS [16], LAPACK [3], and ATLAS [49].

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 589

3.2 Range Push and Pull
Data is sent between nodes using push and pull oper-
ations. In Algorithm 1 each worker pushes its entire lo-
cal gradient into the servers, and then pulls the updated
weight back. The more advanced algorithm described
in Algorithm 3 uses the same pattern, except that only a
range of keys is communicated each time.

The parameter server optimizes these updates for
programmer convenience as well as computational and
network bandwidth efficiency by supporting range-
based push and pull. If R is a key range, then
w.push(R,dest) sends all existing entries of w in key
range R to the destination, which can be either a particular
node, or a node group such as the server group. Similarly,
w.pull(R,dest) reads all existing entries of w in key
range R from the destination. If we set R to be the whole
key range, then the whole vector w will be communicated.
If we set R to include a single key, then only an individual
entry will be sent.

This interface can be extended to communicate any lo-
cal data structures that share the same keys as w. For ex-
ample, in Algorithm 1, a worker pushes its temporary lo-
cal gradient g to the parameter server for aggregation. One
option is to make g globally shared. However, note that g
shares the keys of the worker’s working set w. Hence the
programmer can use w.push(R,g,dest) for the local
gradients to save memory and also enjoy the optimization
discussed in the following sections.

3.3 User-Defined Functions on the Server
Beyond aggregating data from workers, server nodes can
execute user-defined functions. It is beneficial because the
server nodes often have more complete or up-to-date in-
formation about the shared parameters. In Algorithm 1,
server nodes evaluate subgradients of the regularizer Ω
in order to update w. At the same time a more compli-
cated proximal operator is solved by the servers to update
the model in Algorithm 3. In the context of sketching
(Sec. 5.3), almost all operations occur on the server side.

3.4 Asynchronous Tasks and Dependency
A tasks is issued by a remote procedure call. It can be a
push or a pull that a worker issues to servers. It can
also be a user-defined function that the scheduler issues
to any node. Tasks may include any number of subtasks.
For example, the task WorkerIterate in Algorithm 1
contains one push and one pull.

Tasks are executed asynchronously: the caller can per-
form further computation immediately after issuing a task.

iter 10:

iter 11:

iter 12:

gradient

gradient

gradient

push & pull

push & pull

pu

Figure 5: Iteration 12 depends on 11, while 10 and 11 are
independent, thus allowing asynchronous processing.

The caller marks a task as finished only once it receives
the callee’s reply. A reply could be the function return
of a user-defined function, the (key,value) pairs requested
by the pull, or an empty acknowledgement. The callee
marks a task as finished only if the call of the task is re-
turned and all subtasks issued by this call are finished.

By default, callees execute tasks in parallel, for best
performance. A caller that wishes to serialize task exe-
cution can place an execute-after-finished dependency be-
tween tasks. Figure 5 depicts three example iterations of
WorkerIterate. Iterations 10 and 11 are independent,
but 12 depends on 11. The callee therefore begins itera-
tion 11 immediately after the local gradients are computed
in iteration 10. Iteration 12, however, is postponed until
the pull of 11 finishes.

Task dependencies help implement algorithm logic.
For example, the aggregation logic in ServerIterate
of Algorithm 1 updates the weight w only after all worker
gradients have been aggregated. This can be implemented
by having the updating task depend on the push tasks of
all workers. The second important use of dependencies is
to support the flexible consistency models described next.

3.5 Flexible Consistency
Independent tasks improve system efficiency via paral-
lelizing the use of CPU, disk and network bandwidth.
However, this may lead to data inconsistency between
nodes. In the diagram above, the worker r starts iteration
11 before w(11) has been pulled back, so it uses the old
w

(10)
r in this iteration and thus obtains the same gradient

as in iteration 10, namely g
(11)
r = g

(10)
r . This inconsis-

tency potentially slows down the convergence progress of
Algorithm 1. However, some algorithms may be less sen-
sitive to this type of inconsistency. For example, only a
segment of w is updated each time in Algorithm 3. Hence,
starting iteration 11 without waiting for 10 causes only a
part of w to be inconsistent.

The best trade-off between system efficiency and algo-
rithm convergence rate usually depends on a variety of
factors, including the algorithm’s sensitivity to data incon-
sistency, feature correlation in training data, and capacity

7

590 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0 1 2 0 1 2 0 1 2 3

(a) Sequential (b) Eventual (c) 1 Bounded delay

4

Figure 6: Directed acyclic graphs for different consistency
models. The size of the DAG increases with the delay.

difference of hardware components. Instead of forcing the
user to adopt one particular dependency that may be ill-
suited to the problem, the parameter server gives the algo-
rithm designer flexibility in defining consistency models.
This is a substantial difference to other machine learning
systems.

We show three different models that can be imple-
mented by task dependency. Their associated directed
acyclic graphs are given in Figure 6.

Sequential In sequential consistency, all tasks are exe-
cuted one by one. The next task can be started only
if the previous one has finished. It produces results
identical to the single-thread implementation, and
also named Bulk Synchronous Processing.

Eventual Eventual consistency is the opposite: all tasks
may be started simultaneously. For instance, [43]
describes such a system. However, this is only rec-
ommendable if the underlying algorithms are robust
with regard to delays.

Bounded Delay When a maximal delay time τ is set, a
new task will be blocked until all previous tasks τ
times ago have been finished. Algorithm 3 uses such
a model. This model provides more flexible controls
than the previous two: τ = 0 is the sequential consis-
tency model, and an infinite delay τ = ∞ becomes
the eventual consistency model.

Note that the dependency graphs may be dynamic. For
instance the scheduler may increase or decrease the max-
imal delay according to the runtime progress to balance
system efficiency and convergence of the underlying op-
timization algorithm. In this case the caller traverses the
DAG. If the graph is static, the caller can send all tasks
with the DAG to the callee to reduce synchronization cost.

3.6 User-defined Filters
Complementary to a scheduler-based flow control, the
parameter server supports user-defined filters to selec-
tively synchronize individual (key,value) pairs, allowing
fine-grained control of data consistency within a task.
The insight is that the optimization algorithm itself usu-
ally possesses information on which parameters are most

Algorithm 2 Set vector clock to t for range R and node i

1: for S ∈ {Si : Si ∩R �= ∅, i = 1, . . . , n} do
2: if S ⊆ R then vci(S) ← t else
3: a ← max(Sb,Rb) and b ← min(Se,Re)
4: split range S into [Sb, a), [a, b), [b,Se)
5: vci([a, b)) ← t
6: end if
7: end for

useful for synchronization. One example is the signifi-
cantly modified filter, which only pushes entries that have
changed by more than a threshold since their last synchro-
nization. In Section 5.1, we discuss another filter named
KKT which takes advantage of the optimality condition of
the optimization problem: a worker only pushes gradients
that are likely to affect the weights on the servers.

4 Implementation
The servers store the parameters (key-value pairs) using
consistent hashing [45] (Sec. 4.3). For fault tolerance, en-
tries are replicated using chain replication [47] (Sec. 4.4).
Different from prior (key,value) systems, the parameter
server is optimized for range based communication with
compression on both data (Sec. 4.2) and range based vec-
tor clocks (Sec. 4.1).

4.1 Vector Clock
Given the potentially complex task dependency graph and
the need for fast recovery, each (key,value) pair is associ-
ated with a vector clock [30, 15], which records the time
of each individual node on this (key,value) pair. Vector
clocks are convenient, e.g., for tracking aggregation sta-
tus or rejecting doubly sent data. However, a naive im-
plementation of the vector clock requires O(nm) space
to handle n nodes and m parameters. With thousands of
nodes and billions of parameters, this is infeasible in terms
of memory and bandwidth.

Fortunately, many parameters hare the same timestamp
as a result of the range-based communication pattern of
the parameter server: If a node pushes the parameters in
a range, then the timestamps of the parameters associated
with the node are likely the same. Therefore, they can be
compressed into a single range vector clock. More specif-
ically, assume that vci(k) is the time of key k for node i.
Given a key range R, the ranged vector clock vci(R) = t
means for any key k ∈ R, vci(k) = t.

Initially, there is only one range vector clock for each
node i. It covers the entire parameter key space as its

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 591

range with 0 as its initial timestamp. Each range set may
split the range and create at most 3 new vector clocks (see
Algorithm 2). Let k be the total number of unique ranges
communicated by the algorithm, then there are at most
O(mk) vector clocks, where m is the number of nodes.
k is typically much smaller than the total number of pa-
rameters. This significantly reduces the space required for
range vector clocks.3

4.2 Messages
Nodes may send messages to individual nodes or node
groups. A message consists of a list of (key,value) pairs
in the key range R and the associated range vector clock:

[vc(R), (k1, v1), . . . , (kp, vp)] kj ∈ R and j ∈ {1, . . . p}

This is the basic communication format of the parameter
server not only for shared parameters but also for tasks.
For the latter, a (key,value) pair might assume the form
(task ID, arguments or return results).

Messages may carry a subset of all available keys
within range R. The missing keys are assigned the same
timestamp without changing their values. A message can
be split by the key range. This happens when a worker
sends a message to the whole server group, or when the
key assignment of the receiver node has changed. By do-
ing so, we partition the (key,value) lists and split the range
vector clock similar to Algorithm 2.

Because machine learning problems typically require
high bandwidth, message compression is desirable. Train-
ing data often remains unchanged between iterations. A
worker might send the same key lists again. Hence it is de-
sirable for the receiving node to cache the key lists. Later,
the sender only needs to send a hash of the list rather than
the list itself. Values, in turn, may contain many zero
entries. For example, a large portion of parameters re-
main unchanged in sparse logistic regression, as evalu-
ated in Section 5.1. Likewise, a user-defined filter may
also zero out a large fraction of the values (see Figure 12).
Hence we need only send nonzero (key,value) pairs. We
use the fast Snappy compression library [21] to compress
messages, effectively removing the zeros. Note that key-
caching and value-compression can be used jointly.

4.3 Consistent Hashing
The parameter server partitions keys much as a conven-
tional distributed hash table does [8, 41]: keys and server

3Ranges can be also merged to reduce the number of fragments.
However, in practice both m and k are small enough to be easily han-
dled. We leave merging for future work.

node IDs are both inserted into the hash ring (Figure 7).
Each server node manages the key range starting with its
insertion point to the next point by other nodes in the
counter-clockwise direction. This node is called the mas-
ter of this key range. A physical server is often repre-
sented in the ring via multiple “virtual” servers to improve
load balancing and recovery.

We simplify the management by using a direct-mapped
DHT design. The server manager handles the ring man-
agement. All other nodes cache the key partition locally.
This way they can determine directly which server is re-
sponsible for a key range, and are notified of any changes.

4.4 Replication and Consistency
Each server node stores a replica of the k counterclock-
wise neighbor key ranges relative to the one it owns. We
refer to nodes holding copies as slaves of the appropriate
key range. The above diagram shows an example with
k = 2, where server 1 replicates the key ranges owned by
server 2 and server 3.

Worker nodes communicate with the master of a key
range for both push and pull. Any modification on the
master is copied with its timestamp to the slaves. Mod-
ifications to data are pushed synchronously to the slaves.
Figure 8 shows a case where worker 1 pushes x into server
1, which invokes a user defined function f to modify the
shared data. The push task is completed only once the
data modification f(x) is copied to the slave.

Naive replication potentially increases the network traf-
fic by k times. This is undesirable for many machine
learning applications that depend on high network band-
width. The parameter server framework permits an impor-
tant optimization for many algorithms: replication after
aggregation. Server nodes often aggregate data from the
worker nodes, such as summing local gradients. Servers
may therefore postpone replication until aggregation is
complete. In the righthand side of the diagram, two work-
ers push x and y to the server, respectively. The server first
aggregates the push by x + y, then applies the modifica-
tion f(x+y), and finally performs the replication. With n
workers, replication uses only k/n bandwidth. Often k is
a small constant, while n is hundreds to thousands. While
aggregation increases the delay of the task reply, it can be
hidden by relaxed consistency conditions.

4.5 Server Management
To achieve fault tolerance and dynamic scaling we must
support addition and removal of nodes. For convenience
we refer to virtual servers below. The following steps hap-
pen when a server joins.

9

592 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

owned
by S1

replicated
by S1

key ring

S1

S3

S1'

S2

S3'

S2'

S4

S4'

Figure 7: Server node layout.

2: f(x+y)W1
S2

push: ack:
1a: x

3: f(x+y)
4

1b: y
5b

5a

W2

S1
2: f(x)

S2S1W1 1: x 3: f(x)
45

Figure 8: Replica generation. Left: single worker. Right: multiple workers updating
values simultaneously.

1. The server manager assigns the new node a key range
to serve as master. This may cause another key range
to split or be removed from a terminated node.

2. The node fetches the range of data to maintains as
master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes.
The recipients of the message may shrink their own
data based on key ranges they no longer hold and to
resubmit unfinished tasks to the new node.

Fetching the data in the range R from some node S
proceeds in two stages, similar to the Ouroboros proto-
col [38]. First S pre-copies all (key,value) pairs in the
range together with the associated vector clocks. This
may cause a range vector clock to split similar to Algo-
rithm 2. If the new node fails at this stage, S remains
unchanged. At the second stage S no longer accepts mes-
sages affecting the key range R by dropping the messages
without executing and replying. At the same time, S sends
the new node all changes that occurred in R during the
pre-copy stage.

On receiving the node change message a node N first
checks if it also maintains the key range R. If true and
if this key range is no longer to be maintained by N , it
deletes all associated (key,value) pairs and vector clocks
in R. Next, N scans all outgoing messages that have not
received replies yet. If a key range intersects with R, then
the message will be split and resent.

Due to delays, failures, and lost acknowledgements N
may send messages twice. Due to the use of vector clocks
both the original recipient and the new node are able to
reject this message and it does not affect correctness.

The departure of a server node (voluntary or due to fail-
ure) is similar to a join. The server manager tasks a new
node with taking the key range of the leaving node. The
server manager detects node failure by a heartbeat sig-
nal. Integration with a cluster resource manager such as
Yarn [17] or Mesos [23] is left for future work.

4.6 Worker Management
Adding a new worker node W is similar but simpler than
adding a new server node:

1. The task scheduler assigns W a range of data.
2. This node loads the range of training data from a net-

work file system or existing workers. Training data is
often read-only, so there is no two-phase fetch. Next,
W pulls the shared parameters from servers.

3. The task scheduler broadcasts the change, possibly
causing other workers to free some training data.

When a worker departs, the task scheduler may start a
replacement. We give the algorithm designer the option
to control recovery for two reasons: If the training data
is huge, recovering a worker node be may more expen-
sive than recovering a server node. Second, losing a small
amount of training data during optimization typically af-
fects the model only a little. Hence the algorithm designer
may prefer to continue without replacing a failed worker.
It may even be desirable to terminate the slowest workers.

5 Evaluation
We evaluate our parameter server based on the use cases
of Section 2 — Sparse Logistic Regression and Latent
Dirichlet Allocation. We also show results of sketching
to illustrate the generality of our framework. The experi-
ments were run on clusters in two (different) large inter-
net companies and a university research cluster to demon-
strate the versatility of our approach.

5.1 Sparse Logistic Regression
Problem and Data: Sparse logistic regression is one
of the most popular algorithms for large scale risk min-
imization [9]. It combines the logistic loss4 with the �1

4�(xi, yi, w) = log(1 + exp(−yi〈xi, w〉))

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 593

Algorithm 3 Delayed Block Proximal Gradient [31]
Scheduler:

1: Partition features into b ranges R1, . . . ,Rb

2: for t = 0 to T do
3: Pick random range Rit and issue task to workers
4: end for

Worker r at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute first-order gradient g

(t)
r and diagonal

second-order gradient u(t)
r on range Rit

3: Push g
(t)
r and u

(t)
r to servers with the KKT filter

4: Pull w(t+1)
r from servers

Servers at iteration t

1: Aggregate gradients to obtain g(t) and u(t)

2: Solve the proximal operator

w(t+1) ← argmin
u

Ω(u) +
1

2η
‖w(t) − ηg(t) + u‖2H ,

where H = diag(h(t)) and ‖x‖2H = xTHx

Method Consistency LOC
System A L-BFGS Sequential 10,000
System B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: Systems evaluated.

regularizer5 of Section 2.2. The latter biases a compact
solution with a large portion of 0 value entries. The non-
smoothness of this regularizer, however, makes learning
more difficult.

We collected an ad click prediction dataset with 170 bil-
lion examples and 65 billion unique features. This dataset
is 636 TB uncompressed (141 TB compressed). We ran
the parameter server on 1000 machines, each with 16
physical cores, 192GB DRAM, and connected by 10 Gb
Ethernet. 800 machines acted as workers, and 200 were
parameter servers. The cluster was in concurrent use by
other (unrelated) tasks during operation.

Algorithm: We used a state-of-the-art distributed re-
gression algorithm (Algorithm 3, [31, 32]). It differs from
the simpler variant described earlier in four ways: First,
only a block of parameters is updated in an iteration. Sec-
ond, the workers compute both gradients and the diagonal
part of the second derivative on this block. Third, the pa-
rameter servers themselves must perform complex com-

5Ω(w) =
∑n

i=1 |wi|

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b

je
c
ti
v
e

 v
a

lu
e

System−A
System−B
Parameter Server

Figure 9: Convergence of sparse logistic regression. The
goal is to minimize the objective rapidly.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 10: Time per worker spent on computation and
waiting during sparse logistic regression.

putation: the servers update the model by solving a prox-
imal operator based on the aggregated local gradients.
Fourth, we use a bounded-delay model over iterations and
use a “KKT” filter to suppress transmission of parts of the
generated gradient update that are small enough that their
effect is likely to be negligible.6

To the best of our knowledge, no open source system
can scale sparse logistic regression to the scale described
in this paper.7 We compare the parameter server with two
special-purpose systems, named System A and B, devel-

6A user-defined Karush-Kuhn-Tucker (KKT) filter [26]. Feature k is
filtered if wk = 0 and |ĝk| ≤ ∆. Here ĝk is an estimate of the global
gradient based on the worker’s local information and ∆ > 0 is a user-
defined parameter.

7Graphlab provides only a multi-threaded, single machine imple-
mentation, while Petuum, Mlbase and REEF do not support sparse lo-
gistic regression. We confirmed this with the authors as per 4/2014.

11

594 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

oped by a large internet company.
Notably, both Systems A and B consist of more than

10K lines of code. The parameter server only requires
300 lines of code for the same functionality as System
B.8 The parameter server successfully moves most of the
system complexity from the algorithmic implementation
into a reusable generalized component.

Results: We first compare these three systems by run-
ning them to reach the same objective value. A better
system achieves a lower objective in less time. Figure 9
shows the results: System B outperforms system A be-
cause it uses a better algorithm. The parameter server, in
turn, outperforms System B while using the same algo-
rithm. It does so because of the efficacy of reducing the
network traffic and the relaxed consistency model.

Figure 10 shows that the relaxed consistency model
substantially increases worker node utilization. Workers
can begin processing the next block without waiting for
the previous one to finish, hiding the delay otherwise im-
posed by barrier synchronization. Workers in System A
are 32% idle, and in system B, they are 53% idle, while
waiting for the barrier in each block. The parameter server
reduces this cost to under 2%. This is not entirely free:
the parameter server uses slightly more CPU than System
B for two reasons. First, and less fundamentally, System
B optimizes its gradient calculations by careful data pre-
processing. Second, asynchronous updates with the pa-
rameter server require more iterations to achieve the same
objective value. Due to the significantly reduced commu-
nication cost, the parameter server halves the total time.

Next we evaluate the reduction of network traffic by
each system components. Figure 11 shows the results for
servers and workers. As can be seen, allowing the senders
and receivers to cache the keys can save near 50% traffic.
This is because both key (int64) and value (double)
are of the same size, and the key set is not changed during
optimization. In addition, data compression is effective
for compressing the values for both servers (>20x) and
workers when applying the KKT filter (>6x). The reason
is twofold. First, the �1 regularizer encourages a sparse
model (w), so that most of values pulled from servers are
0. Second, the KKT filter forces a large portion of gra-
dients sending to servers to be 0. This can be seen more
clearly in Figure 12, which shows that more than 93%
unique features are filtered by the KKT filter.

Finally, we analyze the bounded delay consistency
model. The time decomposition of workers to achieve
the same convergence criteria under different maximum
allowed delay (τ) is shown in Figure 13. As expected, the

8System B was developed by an author of this paper.

waiting time decreases when the allowed delay increases.
Workers are 50% idle when using the sequential consis-
tency model (τ = 0), while the idle rate is reduced to
1.7% when τ is set to be 16. However, the computing time
increases nearly linearly with τ . Because the data incon-
sistency slows convergence, more iterations are needed to
achieve the same convergence criteria. As a result, τ = 8
is the best trade-off between algorithm convergence and
system performance.

5.2 Latent Dirichlet Allocation
Problem and Data: To demonstrate the versatility of
our approach, we applied the same parameter server ar-
chitecture to the problem of modeling user interests based
upon which domains appear in the URLs they click on in
search results. We collected search log data containing 5
billion unique user identifiers and evaluated the model for
the 5 million most frequently clicked domains in the re-
sult set. We ran the algorithm using 800 workers and 200
servers and 5000 workers and 1000 servers respectively.
The machines had 10 physical cores, 128GB DRAM, and
at least 10 Gb/s of network connectivity. We again shared
the cluster with production jobs running concurrently.

Algorithm: We performed LDA using a combination
of Stochastic Variational Methods [25], Collapsed Gibbs
sampling [20] and distributed gradient descent. Here, gra-
dients are aggregated asynchronously as they arrive from
workers, along the lines of [1].

We divided the parameters in the model into local
and global parameters. The local parameters (i.e. auxil-
iary metadata) are pertinent to a given user and they are
streamed the from disk whenever we access a given user.
The global parameters are shared among users and they
are represented as (key,value) pairs to be stored using the
parameter server. User data is sharded over workers. Each
of them runs a set of computation threads to perform in-
ference over its assigned users. We synchronize asyn-
chronously to send and receive local updates to the server
and receive new values of the global parameters.

To our knowledge, no other system (e.g., YahooLDA,
Graphlab or Petuum) can handle this amount of data and
model complexity for LDA, using up to 10 billion (5
million tokens and 2000 topics) shared parameters. The
largest previously reported experiments [2] had under 100
million users active at any time, less than 100,000 tokens
and under 1000 topics (2% the data, 1% the parameters).

Results: To evaluate the quality of the inference algo-
rithm we monitor how rapidly the training log-likelihood

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 595

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

2x 2x2x

40.8x 40.3x

non−compressed
compressed

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

1.9x 1.9x

1.1x

2.5x

12.3x

non−compressed
compressed

Figure 11: The savings of outgoing network traffic by different components. Left: per server. Right: per worker.

0 0.5 1
94.5

95

95.5

96

96.5

97

97.5

time (hours)

fi
lt
e

re
d

 (
%

)

Figure 12: Unique features (keys) filtered by the
KKT filter as optimization proceeds.

0 1 2 4 8 16
0

0.5

1

1.5

2

ti
m

e
 (

h
o

u
rs

)

maximal delays

computing
waiting

Figure 13: Time a worker spent to achieve the same
convergence criteria by different maximal delays.

(measuring goodness of fit) converges. As can be seen
in Figure 14, we observe an approximately 4x speedup
in convergence when increasing the number of machines
from 1000 to 6000. The stragglers observed in Figure 14
(leftmost) also illustrate the importance of having an ar-
chitecture that can cope with performance variation across
workers.

Topic name # Top urls

Programming
stackoverflow.com w3schools.com cplusplus.com github.com tutorials-
point.com jquery.com codeproject.com oracle.com qt-project.org bytes.com
android.com mysql.com

Music ultimate-guitar.com guitaretab.com 911tabs.com e-chords.com song-
sterr.com chordify.net musicnotes.com ukulele-tabs.com

Baby Related
babycenter.com whattoexpect.com babycentre.co.uk circleofmoms.com
thebump.com parents.com momtastic.com parenting.com americanpreg-
nancy.org kidshealth.org

Strength Train-
ing

bodybuilding.com muscleandfitness.com mensfitness.com menshealth.com
t-nation.com livestrong.com muscleandstrength.com myfitnesspal.com elit-
efitness.com crossfit.com steroid.com gnc.com askmen.com

Table 4: Example topics learned using LDA over the .5
billion dataset. Each topic represents a user interest

5.3 Sketches

Problem and Data: We include sketches as part of our
evaluation as a test of generality, because they operate
very differently from machine learning algorithms. They
typically observe a large number of writes of events com-
ing from a streaming data source [11, 5].

We evaluate the time required to insert a streaming log
of pageviews into an approximate structure that can effi-
ciently track pageview counts for a large collection of web
pages. We use the Wikipedia (and other Wiki projects)
page view statistics as benchmark. Each entry is an unique
key of a webpage with the corresponding number of re-
quests served in a hour. From 12/2007 to 1/2014, there
are 300 billion entries for more than 100 million unique
keys. We run the parameter server with 90 virtual server
nodes on 15 machines of a research cluster [40] (each has

13

596 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 14: Left: Distribution over worker log-likelihoods as a function of time for 1000 machines and 5 billion users.
Some of the low values are due to stragglers synchronizing slowly initially. Middle: the same distribution, stratified
by the number of iterations. Right: convergence (time in 1000s) using 1000 and 6000 machines on 500M users.

Algorithm 4 CountMin Sketch
Init: M [i, j] = 0 for i ∈ {1, . . . n} and j ∈ {1, . . . k}.
Insert(x)

1: for i = 1 to k do
2: M [i, hash(i, x)] ← M [i, hash(i, x)] + 1

Query(x)
1: return min {M [i, hash(i, x)] for 1 ≤ i ≤ k}

64 cores and is connected by a 40Gb Ethernet).

Algorithm: Sketching algorithms efficiently store sum-
maries of huge volumes of data so that approximate
queries can be quickly answered. These algorithms are
particularly important in streaming applications where
data and queries arrive in real-time. Some of the highest-
volume applications involve examples such as Cloud-
flare’s DDoS-prevention service, which must analyze
page requests across its entire content delivery service ar-
chitecture to identify likely DDoS targets and attackers.
The volume of data logged in such applications consid-
erably exceeds the capacity of a single machine. While
a conventional approach might be to shard a workload
across a key-value cluster such as Redis, these systems
typically do not allow the user-defined aggregation se-
mantics needed to implement approximate aggregation.

Algorithm 4 gives a brief overview of the CountMin
sketch [11]. By design, the result of a query is an up-
per bound on the number of observed keys x. Splitting
keys into ranges automatically allows us to parallelize the
sketch. Unlike the two previous applications, the workers
simply dispatch updates to the appropriate servers.

Results: The system achieves very high insert rates,
which are shown in Table 5. It performs well for two rea-
sons: First, bulk communication reduces the communica-
tion cost. Second, message compression reduces the aver-

Peak inserts per second 1.3 billion
Average inserts per second 1.1 billion
Peak net bandwidth per machine 4.37 GBit/s
Time to recover a failed node 0.8 second

Table 5: Results of distributed CountMin

age (key,value) size to around 50 bits. Importantly, when
we terminated a server node during the insertion, the pa-
rameter server was able to recover the failed node within
1 second, making our system well equipped for realtime.

6 Summary and Discussion

We described a parameter server framework to solve dis-
tributed machine learning problems. This framework is
easy to use: Globally shared parameters can be used as
local sparse vectors or matrices to perform linear algebra
operations with local training data. It is efficient: All com-
munication is asynchronous. Flexible consistentcy mod-
els are supported to balance the trade-off between system
efficiency and fast algorithm convergence rate. Further-
more, it provides elastic scalability and fault tolerance,
aiming for stable long term deployment. Finally, we show
experiments for several challenging tasks on real datasets
with billions of variables to demonstrate its efficiency. We
believe that this third generation parameter server is an
important building block for scalable machine learning.
The codes are available at parameterserver.org.

Acknowledgments: This work was supported in part by
gifts and/or machine time from Google, Amazon, Baidu,
PRObE, and Microsoft; by NSF award 1409802; and by
the Intel Science and Technology Center for Cloud Com-
puting. We are grateful to our reviewers and colleagues
for their comments on earlier versions of this paper.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 597

References
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and

A. J. Smola. Scalable inference in latent variable models.
In Proceedings of The 5th ACM International Conference
on Web Search and Data Mining (WSDM), 2012.

[2] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J.
Smola. Scalable inference of dynamic user interests for
behavioural targeting. In Knowledge Discovery and Data
Mining, 2011.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, second edition, 1995.

[4] Apache Foundation. Mahout project, 2012. http://
mahout.apache.org.

[5] R. Berinde, G. Cormode, P. Indyk, and M.J. Strauss.
Space-optimal heavy hitters with strong error bounds. In
J. Paredaens and J. Su, editors, Proceedings of the Twenty-
Eigth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS, pages 157–166.
ACM, 2009.

[6] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet alloca-
tion. Journal of Machine Learning Research, 3:993–1022,
January 2003.

[8] J. Byers, J. Considine, and M. Mitzenmacher. Simple load
balancing for distributed hash tables. In Peer-to-peer sys-
tems II, pages 80–87. Springer, 2003.

[9] K. Canini. Sibyl: A system for large scale supervised ma-
chine learning. Technical Talk, 2012.

[10] B.-G. Chun, T. Condie, C. Curino, C. Douglas, S. Matu-
sevych, B. Myers, S. Narayanamurthy, R. Ramakrishnan,
S. Rao, J. Rosen, R. Sears, and M. Weimer. Reef: Retain-
able evaluator execution framework. Proceedings of the
VLDB Endowment, 6(12):1370–1373, 2013.

[11] G. Cormode and S. Muthukrishnan. Summarizing and
mining skewed data streams. In SDM, 2005.

[12] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin,
Q. Ho, and E. P. Xing. Petuum: A framework
for iterative-convergent distributed ml. arXiv preprint
arXiv:1312.7651, 2013.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A. Ng. Large scale distributed deep networks. In Neural
Information Processing Systems, 2012.

[14] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. CACM, 51(1):107–113, 2008.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In T. C. Bressoud and M. F. Kaashoek, editors,
Symposium on Operating Systems Principles, pages 205–
220. ACM, 2007.

[16] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Han-
son. An extended set of fortran basic linear algebra sub-
programs. ACM Transactions on Mathematical Software,
14:18–32, 1988.

[17] The Apache Software Foundation. Apache hadoop
nextgen mapreduce (yarn). http://hadoop.
apache.org/.

[18] The Apache Software Foundation. Apache hadoop, 2009.
http://hadoop.apache.org/core/.

[19] F. Girosi, M. Jones, and T. Poggio. Priors, stabilizers and
basis functions: From regularization to radial, tensor and
additive splines. A.I. Memo 1430, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 1993.

[20] T.L. Griffiths and M. Steyvers. Finding scientific top-
ics. Proceedings of the National Academy of Sciences,
101:5228–5235, 2004.

[21] S. H. Gunderson. Snappy: A fast compressor/decompres-
sor. https://code.google.com/p/snappy/.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer, New York, 2 edition, 2009.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data cen-
ter. In Proceedings of the 8th USENIX conference on Net-
worked systems design and implementation, pages 22–22,
2011.

[24] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gib-
son, G. Ganger, and E. Xing. More effective distributed ml
via a stale synchronous parallel parameter server. In NIPS,
2013.

[25] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochas-
tic variational inference. In International Conference on
Machine Learning, 2012.

[26] W. Karush. Minima of functions of several variables with
inequalities as side constraints. Master’s thesis, Dept. of
Mathematics, Univ. of Chicago, 1939.

[27] L. Kim. How many ads does Google serve in a day?, 2012.
http://goo.gl/oIidXO.

[28] D. Koller and N. Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, 2009.

[29] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. Mlbase: A distributed
machine-learning system. In CIDR, 2013.

[30] L. Lamport. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[31] M. Li, D. G. Andersen, and A. J. Smola. Distributed de-
layed proximal gradient methods. In NIPS Workshop on
Optimization for Machine Learning, 2013.

15

598 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[32] M. Li, D. G. Andersen, and A. J. Smola. Communication
Efficient Distributed Machine Learning with the Parameter
Server. In Neural Information Processing Systems, 2014.

[33] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D.G. Andersen,
and A. J. Smola. Parameter server for distributed machine
learning. In Big Learning NIPS Workshop, 2013.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed Graphlab: A frame-
work for machine learning and data mining in the cloud.
In PVLDB, 2012.

[35] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, and D. Golovin.
Ad click prediction: a view from the trenches. In KDD,
2013.

[36] K. P. Murphy. Machine learning: a probabilistic perspec-
tive. MIT Press, 2012.

[37] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 439–455. ACM, 2013.

[38] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner,
and W. Belluomini. Flex-KV: Enabling high-performance
and flexible KV systems. In Proceedings of the 2012 work-
shop on Management of big data systems, pages 19–24.
ACM, 2012.

[39] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In R. H. Arpaci-Dusseau and
B. Chen, editors, Operating Systems Design and Imple-
mentation, OSDI, pages 293–306. USENIX Association,
2010.

[40] PRObE Project. Parallel Reconfigurable Observational En-
vironment. https://www.nmc-probe.org/wiki/
Machines:Susitna,

[41] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-
peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–
350, Heidelberg, Germany, November 2001.

[42] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[43] A. J. Smola and S. Narayanamurthy. An architecture for
parallel topic models. In Very Large Databases (VLDB),
2010.

[44] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan,
J. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska.
Mli: An api for distributed machine learning. 2013.

[45] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Com-
puter Communication Review, 31(4):149–160, 2001.

[46] C.H. Teo, Q. Le, A. J. Smola, and S. V. N. Vishwanathan.
A scalable modular convex solver for regularized risk min-
imization. In Proc. ACM Conf. Knowledge Discovery and
Data Mining (KDD). ACM, 2007.

[47] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In OSDI, vol-
ume 4, pages 91–104, 2004.

[48] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[49] R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated
empirical optimization of software and the ATLAS project.
Parallel Computing, 27(1–2):3–35, 2001.

[50] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. M. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Fast and interactive analytics over Hadoop data with Spark.
USENIX ;login:, 37(4):45–51, August 2012.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 599

GraphX: Graph Processing in a Distributed Dataflow Framework

Joseph E. Gonzalez*, Reynold S. Xin*†, Ankur Dave*, Daniel Crankshaw*

Michael J. Franklin*, Ion Stoica*†
*UC Berkeley AMPLab †Databricks

Abstract
In pursuit of graph processing performance, the systems
community has largely abandoned general-purpose dis-
tributed dataflow frameworks in favor of specialized graph
processing systems that provide tailored programming ab-
stractions and accelerate the execution of iterative graph
algorithms. In this paper we argue that many of the advan-
tages of specialized graph processing systems can be re-
covered in a modern general-purpose distributed dataflow
system. We introduce GraphX, an embedded graph pro-
cessing framework built on top of Apache Spark, a widely
used distributed dataflow system. GraphX presents a fa-
miliar composable graph abstraction that is sufficient to
express existing graph APIs, yet can be implemented us-
ing only a few basic dataflow operators (e.g., join, map,
group-by). To achieve performance parity with special-
ized graph systems, GraphX recasts graph-specific op-
timizations as distributed join optimizations and mate-
rialized view maintenance. By leveraging advances in
distributed dataflow frameworks, GraphX brings low-cost
fault tolerance to graph processing. We evaluate GraphX
on real workloads and demonstrate that GraphX achieves
an order of magnitude performance gain over the base
dataflow framework and matches the performance of spe-
cialized graph processing systems while enabling a wider
range of computation.

1 Introduction

The growing scale and importance of graph data
has driven the development of numerous specialized
graph processing systems including Pregel [22], Pow-
erGraph [13], and many others [7, 9, 37]. By exposing
specialized abstractions backed by graph-specific opti-
mizations, these systems can naturally express and ef-
ficiently execute iterative graph algorithms like PageR-
ank [30] and community detection [18] on graphs with
billions of vertices and edges. As a consequence, graph

GraphX (2,500)!

Spark (30,000) !

GAS Pregel API (34)!

PageRank
(20)!

Connected
Comp. (20)!

K-core!
(60)! Triangle!

Count!
(50)!

LDA!
(220)!

SVD++!
(110)!

Figure 1: GraphX is a thin layer on top of the Spark
general-purpose dataflow framework (lines of code).

processing systems typically outperform general-purpose
distributed dataflow frameworks like Hadoop MapReduce
by orders of magnitude [13, 20].

While the restricted focus of these systems enables a
wide range of system optimizations, it also comes at a cost.
Graphs are only part of the larger analytics process which
often combines graphs with unstructured and tabular data.
Consequently, analytics pipelines (e.g., Figure 11) are
forced to compose multiple systems which increases com-
plexity and leads to unnecessary data movement and du-
plication. Furthermore, in pursuit of performance, graph
processing systems often abandon fault tolerance in fa-
vor of snapshot recovery. Finally, as specialized systems,
graph processing frameworks do not generally enjoy the
broad support of distributed dataflow frameworks.

In contrast, general-purpose distributed dataflow frame-
works (e.g., Map-Reduce [10], Spark [39], Dryad [15]) ex-
pose rich dataflow operators (e.g., map, reduce, group-by,
join), are well suited for analyzing unstructured and tabu-
lar data, and are widely adopted. However, directly imple-
menting iterative graph algorithms using dataflow oper-
ators can be challenging, often requiring multiple stages
of complex joins. Furthermore, the general-purpose join
and aggregation strategies defined in distributed dataflow
frameworks do not leverage the common patterns and
structure in iterative graph algorithms and therefore miss
important optimization opportunities.

600 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Historically, graph processing systems evolved sepa-
rately from distributed dataflow frameworks for several
reasons. First, the early emphasis on single stage computa-
tion and on-disk processing in distributed dataflow frame-
works (e.g., MapReduce) limited their applicability to
iterative graph algorithms which repeatedly and randomly
access subsets of the graph. Second, early distributed
dataflow frameworks did not expose fine-grained control
over the data partitioning, hindering the application of
graph partitioning techniques. However, new in-memory
distributed dataflow frameworks (e.g., Spark and Naiad)
expose control over data partitioning and in-memory rep-
resentation, addressing some of these limitations.

Given these developments, we believe there is an oppor-
tunity to unify advances in graph processing systems with
advances in dataflow systems enabling a single system
to address the entire analytics pipeline. In this paper we
explore the design of graph processing systems on top of
general purpose distributed dataflow systems. We argue
that by identifying the essential dataflow patterns in graph
computation and recasting optimizations in graph pro-
cessing systems as dataflow optimizations we can recover
the advantages of specialized graph processing systems
within a general-purpose distributed dataflow framework.
To support this argument we introduce GraphX, an effi-
cient graph processing framework embedded within the
Spark [39] distributed dataflow system.

GraphX presents a familiar, expressive graph API (Sec-
tion 3). Using the GraphX API we implement a variant
of the popular Pregel abstraction as well as a range of
common graph operations. Unlike existing graph process-
ing systems, the GraphX API enables the composition of
graphs with unstructured and tabular data and permits the
same physical data to be viewed both as a graph and as
collections without data movement or duplication. For ex-
ample, using GraphX it is easy to join a social graph with
user comments, apply graph algorithms, and expose the
results as either collections or graphs to other procedures
(e.g., visualization or rollup). Consequently, GraphX en-
ables users to adopt the computational pattern (graph or
collection) that is best suited for the current task without
sacrificing performance or flexibility.

We built GraphX as a library on top of Spark (Figure 1)
by encoding graphs as collections and then expressing
the GraphX API on top of standard dataflow operators.
GraphX requires no modifications to Spark, revealing
a general method to embed graph computation within
distributed dataflow frameworks and distill graph compu-
tation to a specific join–map–group-by dataflow pattern.
By reducing graph computation to a specific pattern we
identify the critical path for system optimization.

However, naively encoding graphs as collections and
executing iterative graph computation using general-
purpose dataflow operators can be slow and inefficient.

To achieve performance parity with specialized graph pro-
cessing systems, GraphX introduces a range of optimiza-
tions (Section 4) both in how graphs are encoded as col-
lections as well as the execution of the common dataflow
operators. Flexible vertex-cut partitioning is used to en-
code graphs as horizontally partitioned collections and
match the state of the art in distributed graph partitioning.
GraphX recasts system optimizations developed in the
context of graph processing systems as join optimizations
(e.g., CSR indexing, join elimination, and join-site speci-
fication) and materialized view maintenance (e.g., vertex
mirroring and delta updates) and applies these techniques
to the Spark dataflow operators. By leveraging logical
partitioning and lineage, GraphX achieves low-cost fault
tolerance. Finally, by exploiting immutability GraphX
reuses indices across graph and collection views and over
multiple iterations, reducing memory overhead and im-
proving system performance.

We evaluate GraphX on real-world graphs and compare
against direct implementations of graph algorithms using
the Spark dataflow operators as well as implementations
using specialized graph processing systems. We demon-
strate that GraphX can achieve performance parity with
specialized graph processing systems while preserving
the advantages of a general-purpose dataflow framework.
In summary, the contributions of this paper are:

1. an integrated graph and collections API which is
sufficient to express existing graph abstractions and
enable a much wider range of computation.

2. an embedding of vertex-cut partitioned graphs in hor-
izontally partitioned collections and the GraphX API
in a small set of general-purpose dataflow operators.

3. distributed join and materialized view optimizations
that enable general-purpose distributed dataflow
frameworks to execute graph computation at per-
formance parity with specialized graph systems.

4. a large-scale evaluation on real graphs and com-
mon benchmarking algorithms comparing GraphX
against widely used graph processing systems.

2 Background

In this section we review the design trade-offs and limita-
tions of graph processing systems and distributed dataflow
frameworks. At a high level, graph processing systems
define computation at the granularity of vertices and their
neighborhoods and exploit the sparse dependency struc-
ture pre-defined by the graph. In contrast, general-purpose
distributed dataflow frameworks define computation as
dataflow operators at either the granularity of individual
items (e.g., filter, map) or across entire collections (i.e., op-
erations like non-broadcast join that require a shuffle).

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 601

2.1 The Property Graph Data Model

Graph processing systems represent graph structured data
as a property graph [33], which associates user-defined
properties with each vertex and edge. The properties can
include meta-data (e.g., user profiles and time stamps)
and program state (e.g., the PageRank of vertices or in-
ferred affinities). Property graphs derived from natural
phenomena such as social networks and web graphs often
have highly skewed, power-law degree distributions and
orders of magnitude more edges than vertices [18].

In contrast to dataflow systems whose operators
(e.g., join) can span multiple collections, operations in
graph processing systems (e.g., vertex programs) are typi-
cally defined with respect to a single property graph with
a pre-declared, sparse structure. While this restricted fo-
cus facilitates a range of optimizations (Section 2.3), it
also complicates the expression of analytics tasks that
may span multiple graphs and sub-graphs.

2.2 The Graph-Parallel Abstraction

Algorithms ranging from PageRank to latent factor anal-
ysis iteratively transform vertex properties based on the
properties of adjacent vertices and edges. This common
pattern of iterative local transformations forms the ba-
sis of the graph-parallel abstraction. In the graph-parallel
abstraction [13], a user-defined vertex program is instan-
tiated concurrently for each vertex and interacts with adja-
cent vertex programs through messages (e.g., Pregel [22])
or shared state (e.g., PowerGraph [13]). Each vertex pro-
gram can read and modify its vertex property and in some
cases [13, 20] adjacent vertex properties. When all vertex
programs vote to halt the program terminates.

As a concrete example, in Listing 1 we express the
PageRank algorithm as a Pregel vertex program. The
vertex program for the vertex v begins by summing the
messages encoding the weighted PageRank of neighbor-
ing vertices. The PageRank is updated using the resulting
sum and is then broadcast to its neighbors (weighted by
the number of links). Finally, the vertex program assesses
whether it has converged (locally) and votes to halt.

The extent to which vertex programs run concurrently
differs across systems. Most systems (e.g., [7, 13, 22, 34])
adopt the bulk synchronous execution model, in which
all vertex programs run concurrently in a sequence of
super-steps. Some systems (e.g., [13, 20, 37]) also sup-
port an asynchronous execution model that mitigates the
effect of stragglers by running vertex programs as re-
sources become available. However, the gains due to an
asynchronous programming model are often offset by
the additional complexity and so we focus on the bulk-
synchronous model and rely on system level techniques
(e.g., pipelining and speculation) to address stragglers.

def PageRank(v: Id, msgs: List[Double]) {
// Compute the message sum
var msgSum = 0
for (m <- msgs) { msgSum += m }
// Update the PageRank
PR(v) = 0.15 + 0.85 * msgSum
// Broadcast messages with new PR
for (j <- OutNbrs(v)) {

msg = PR(v) / NumLinks(v)
send_msg(to=j, msg)

}
// Check for termination
if (converged(PR(v))) voteToHalt(v)

}

Listing 1: PageRank in Pregel: computes the sum of the
inbound messages, updates the PageRank value for the
vertex, and then sends the new weighted PageRank value
to neighboring vertices. Finally, if the PageRank did not
change the vertex program votes to halt.

While the graph-parallel abstraction is well suited for
iterative graph algorithms that respect the static neigh-
borhood structure of the graph (e.g., PageRank), it is not
well suited to express computation where disconnected
vertices interact or where computation changes the graph
structure. For example, tasks such as graph construction
from raw text or unstructured data, graph coarsening, and
analysis that spans multiple graphs are difficult to express
in the vertex centric programming model.

2.3 Graph System Optimizations

The restrictions imposed by the graph-parallel abstraction
along with the sparse graph structure enable a range of
important system optimizations.

The GAS Decomposition: Gonzalez et al. [13] ob-
served that most vertex programs interact with neigh-
boring vertices by collecting messages in the form of a
generalized commutative associative sum and then broad-
casting new messages in an inherently parallel loop. They
proposed the GAS decomposition which splits vertex pro-
grams into three data-parallel stages: Gather, Apply, and
Scatter. In Listing 2 we decompose the PageRank vertex
program into the Gather, Apply, and Scatter stages.

The GAS decomposition leads to a pull-based model of
message computation: the system asks the vertex program
for value of the message between adjacent vertices rather
than the user sending messages directly from the ver-
tex program. As a consequence, the GAS decomposition
enables vertex-cut partitioning, improved work balance,
serial edge-iteration [34], and reduced data movement.
However, the GAS decomposition also prohibits direct
communication between vertices that are not adjacent in
the graph and therefore hinders the expression of more
general communication patterns.

602 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

def Gather(a: Double, b: Double) = a + b
def Apply(v, msgSum) {

PR(v) = 0.15 + 0.85 * msgSum
if (converged(PR(v))) voteToHalt(v)

}
def Scatter(v, j) = PR(v) / NumLinks(v)

Listing 2: Gather-Apply-Scatter (GAS) PageRank:
The gather phase combines inbound messages. The apply
phase consumes the final message sum and updates the
vertex property. The scatter phase defines the message
computation for each edge.

Graph Partitioning: Graph processing systems apply
a range of graph-partitioning algorithms [16] to minimize
communication and balance computation. Gonzalez et
al. [13] demonstrated that vertex-cut [12] partitioning
performs well on many large natural graphs. Vertex-cut
partitioning evenly assigns edges to machines in a way
that minimizes the number of times each vertex is cut.

Mirror Vertices: Often high-degree vertices will have
multiple neighbors on the same remote machine. Rather
than sending multiple, typically identical, messages
across the network, graph processing systems [13, 20,
24, 32] adopt mirroring techniques in which a single mes-
sage is sent to the mirror and then forwarded to all the
neighbors. Graph processing systems exploit the static
graph structure to reuse the mirror data structures.

Active Vertices: As graph algorithms proceed, vertex
programs within a graph converge at different rates, lead-
ing to rapidly shrinking working sets (the collection of
active vertex programs). Recent systems [11, 13, 20, 22]
track active vertices and eliminate data movement and
unnecessary computation for vertices that have converged.
In addition, these systems typically maintain efficient
densely packed data-structures (e.g., compressed sparse
row (CSR)) that enable constant-time access to the local
edges adjacent to active vertices.

2.4 Distributed Dataflow Frameworks
We use the term distributed dataflow framework to refer to
cluster compute frameworks like MapReduce and its gen-
eralizations. Although details vary from one framework
to another, they typically satisfy the following properties:

1. a data model consisting of typed collections (i.e., a
generalization of tables to unstructured data).

2. a coarse-grained data-parallel programming model
composed of deterministic operators which trans-
form collections (e.g., map, group-by, and join).

3. a scheduler that breaks each job into a directed
acyclic graph (DAG) of tasks, where each task runs
on a (horizontal) partition of data.

4. a runtime that can tolerate stragglers and partial clus-
ter failures without restarting.

In MapReduce, the programming model exposes only
two dataflow operators: map and reduce (a.k.a., group-by).
Each job can contain at most two layers in its DAG of
tasks. More modern frameworks such as DryadLINQ [15],
Pig [29], and Spark expose additional dataflow operators
such as fold and join, and can execute tasks with multiple
layers of dependencies.

Distributed dataflow frameworks have enjoyed broad
adoption for a wide variety of data processing tasks, in-
cluding ETL, SQL query processing, and iterative ma-
chine learning. They have also been shown to scale to
thousands of nodes operating on petabytes of data.

In this work we restrict our attention to Apache Spark,
upon which we developed GraphX. Spark has several
features that are particularly attractive for GraphX:

1. The Spark storage abstraction called Resilient Dis-
tributed Datasets (RDDs) enables applications to
keep data in memory, which is essential for iterative
graph algorithms.

2. RDDs permit user-defined data partitioning, and
the execution engine can exploit this to co-partition
RDDs and co-schedule tasks to avoid data movement.
This is essential for encoding partitioned graphs.

3. Spark logs the lineage of operations used to build
an RDD, enabling automatic reconstruction of lost
partitions upon failures. Since the lineage graph is
relatively small even for long-running applications,
this approach incurs negligible runtime overhead,
unlike checkpointing, and can be left on without con-
cern for performance. Furthermore, Spark supports
optional in-memory distributed replication to reduce
the amount of recomputation on failure.

4. Spark provides a high-level API in Scala that can be
easily extended. This aided in creating a coherent
API for both collections and graphs.

We believe that many of the ideas in GraphX could
be applied to other contemporary dataflow systems and
in Section 6 we discuss some preliminary work on a
GraphLINQ, a graph framework within Naiad.

3 The GraphX Programming Abstraction

We now revisit graph computation from the perspective
of a general-purpose dataflow framework. We recast the
property graph data model as collections and the graph-
parallel abstraction as a specific pattern of dataflow oper-
ators. In the process we reveal the essential structure of
graph-parallel computation and identify the key operators
required to execute graph algorithms efficiently.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 603

3.1 Property Graphs as Collections
The property graph, described in Section 2.1, can be logi-
cally represented as a pair of vertex and edge property col-
lections. The vertex collection contains the vertex proper-
ties uniquely keyed by the vertex identifier. In the GraphX
system, vertex identifiers are 64-bit integers which may
be derived externally (e.g., user ids) or by applying a hash
function to the vertex property (e.g., page URL). The
edge collection contains the edge properties keyed by the
source and destination vertex identifiers.

By reducing the property graph to a pair of collections
we make it possible to compose graphs with other col-
lections in a distributed dataflow framework. Operations
like adding additional vertex properties are naturally ex-
pressed as joins against the vertex property collection.
The process of analyzing the results of graph computation
(i.e., the final vertex and edge properties) and comparing
properties across graphs becomes as simple as analyzing
and joining the corresponding collections. Both of these
tasks are routine in the broader scope of graph analytics
but are not well served by the graph parallel abstraction.

New property graphs can be constructed by compos-
ing different vertex and edge property collections. For
example, we can construct logically distinct graphs with
separate vertex properties (e.g., one storing PageRanks
and another storing connected component membership)
while sharing the same edge collection. This may appear
to be a small accomplishment, but the tight integration
of vertices and edges in specialized graph processing
systems often hinders even this basic form of reuse. In ad-
dition, graph-specific index data structures can be shared
across graphs with common vertex and edge collections,
reducing storage overhead and improving performance.

3.2 Graph Computation as Dataflow Ops.
The normalized representation of a property graph as a
pair of vertex and edge property collections allows us
to embed graphs in a distributed dataflow framework. In
this section we describe how dataflow operators can be
composed to express graph computation.

Graph-parallel computation, introduced in Section 2.2,
is the process of computing aggregate properties of the
neighborhood of each vertex (e.g., the sum of the PageR-
anks of neighboring vertices weighted by the edge val-
ues). We can express graph-parallel computation in a dis-
tributed dataflow framework as a sequence of join stages
and group-by stages punctuated by map operations.

In the join stage, vertex and edge properties are joined
to form the triplets view1 consisting of each edge and its
corresponding source and destination vertex properties.

1 The triplet terminology derives from the classic Resource Descrip-
tion Framework (RDF), discussed in Section 6.

CREATE VIEW triplets AS
SELECT s.Id, d.Id, s.P, e.P, d.P
FROM edges AS e
JOIN vertices AS s JOIN vertices AS d
ON e.srcId = s.Id AND e.dstId = d.Id

Listing 3: Constructing Triplets in SQL: The column P
represents the properties in the vertex and edge property
collections.

The triplets view is best illustrated by the SQL statement
in Listing 3, which constructs the triplets view as a three
way join keyed by the source and destination vertex ids.

In the group-by stage, the triplets are grouped by source
or destination vertex to construct the neighborhood of
each vertex and compute aggregates. For example, to
compute the PageRank of a vertex we would execute:

SELECT t.dstId, 0.15+0.85*sum(t.srcP*t.eP)
FROM triplets AS t GROUP BY t.dstId

By iteratively applying the above query to update the
vertex properties until they converge, we can calculate the
PageRank of each vertex.

These two stages capture the GAS decomposition de-
scribed in Section 2.3. The group-by stage gathers mes-
sages destined to the same vertex, an intervening map
operation applies the message sum to update the vertex
property, and the join stage scatters the new vertex prop-
erty to all adjacent vertices.

Similarly, we can implement the GAS decomposition
of the Pregel abstraction by iteratively composing the join
and group-by stages with data-parallel map stages. Each
iteration begins by executing the join stage to bind active
vertices with their outbound edges. Using the triplets view,
messages are computed along each triplet in a map stage
and then aggregated at their destination vertex in a group-
by stage. Finally, the messages are received by the vertex
programs in a map stage over the vertices.

The dataflow embedding of the Pregel abstraction
demonstrates that graph-parallel computation can be ex-
pressed in terms of a simple sequence of join and group-by
dataflow operators. Additionally, it stresses the need to
efficiently maintain the triplets view in the join stage and
compute the neighborhood aggregates in the group-by
stage. Consequently, these stages are the focus of per-
formance optimization in graph processing systems. We
describe how to implement them efficiently in Section 4.

3.3 GraphX Operators

The GraphX programming abstraction extends the Spark
dataflow operators by introducing a small set of special-
ized graph operators, summarized in Listing 4.

604 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

class Graph[V, E] {
// Constructor
def Graph(v: Collection[(Id, V)],

e: Collection[(Id, Id, E)])
// Collection views
def vertices: Collection[(Id, V)]
def edges: Collection[(Id, Id, E)]
def triplets: Collection[Triplet]
// Graph-parallel computation
def mrTriplets(f: (Triplet) => M,

sum: (M, M) => M): Collection[(Id, M)]
// Convenience functions
def mapV(f: (Id, V) => V): Graph[V, E]
def mapE(f: (Id, Id, E) => E): Graph[V, E]
def leftJoinV(v: Collection[(Id, V)],

f: (Id, V, V) => V): Graph[V, E]
def leftJoinE(e: Collection[(Id, Id, E)],

f: (Id, Id, E, E) => E): Graph[V, E]
def subgraph(vPred: (Id, V) => Boolean,

ePred: (Triplet) => Boolean)
: Graph[V, E]

def reverse: Graph[V, E]
}

Listing 4: Graph Operators: transform vertex and edge
collections.

The Graph constructor logically binds together a pair
of vertex and edge property collections into a property
graph. It also verifies the integrity constraints: that every
vertex occurs only once and that edges do not link missing
vertices. Conversely, the vertices and edges opera-
tors expose the graph’s vertex and edge property collec-
tions. The triplets operator returns the triplets view
(Listing 3) of the graph as described in Section 3.2. If a
triplets view already exists, the previous triplets are incre-
mentally maintained to avoid a full join (see Section 4.2).

The mrTriplets (Map Reduce Triplets) opera-
tor encodes the essential two-stage process of graph-
parallel computation defined in Section 3.2. Logically, the
mrTriplets operator is the composition of the map
and group-by dataflow operators on the triplets view. The
user-defined map function is applied to each triplet, yield-
ing a value (i.e., a message of type M) which is then ag-
gregated at the destination vertex using the user-defined
binary aggregation function as illustrated in the following:

SELECT t.dstId, reduceF(mapF(t)) AS msgSum
FROM triplets AS t GROUP BY t.dstId

The mrTriplets operator produces a collection con-
taining the sum of the inbound messages keyed by the
destination vertex identifier. For example, in Figure 2 we
use the mrTriplets operator to compute a collection
containing the number of older followers for each user
in a social network. Because the resulting collection con-
tains a subset of the vertices in the graph it can reuse the
same indices as the original vertex collection.

Finally, Listing 4 contains several functions that sim-

F

ED

A

C

B42 23

30

19 75

16

mapF() = 1A B

42 23

Vertex Id Property
A 0
B 2
C 1
D 1
E 0
F 3

Source
Property

Target
Property

Resulting
Vertices

Message
to vertex B

val graph: Graph[User, Double]
def mapUDF(t: Triplet[User, Double]) =

if (t.src.age > t.dst.age) 1 else 0
def reduceUDF(a: Int, b: Int): Int = a + b
val seniors: Collection[(Id, Int)] =

graph.mrTriplets(mapUDF, reduceUDF)

Figure 2: Example use of mrTriplets: Compute the num-
ber of older followers of each vertex.

def Pregel(g: Graph[V, E],
vprog: (Id, V, M) => V,
sendMsg: (Triplet) => M,
gather: (M, M) => M): Collection[V] = {

// Set all vertices as active
g = g.mapV((id, v) => (v, halt=false))
// Loop until convergence
while (g.vertices.exists(v => !v.halt)) {

// Compute the messages
val msgs: Collection[(Id, M)] =

// Restrict to edges with active source
g.subgraph(ePred=(s,d,sP,eP,dP)=>!sP.halt)
// Compute messages
.mrTriplets(sendMsg, gather)

// Receive messages and run vertex program
g = g.leftJoinV(msgs).mapV(vprog)

}
return g.vertices
}

Listing 5: GraphX Enhanced Pregel: An implementa-
tion of the Pregel abstraction using the GraphX API.

ply perform a dataflow operation on the vertex or edge
collections. We define these functions only for caller con-
venience; they are not essential to the abstraction and can
easily be defined using standard dataflow operators. For
example, mapV is defined as follows:

g.mapV(f) ≡ Graph(g.vertices.map(f), g.edges)

In Listing 5 we use the GraphX API to implement a
GAS decomposition of the Pregel abstraction. We begin
by initializing the vertex properties with an additional
field to track active vertices (those that have not voted
to halt). Then, while there are active vertices, messages
are computed using the mrTriplets operator and the
vertex program is applied to the resulting message sums.

By expressing message computation as an edge-
parallel map operation followed by a commutative asso-
ciative aggregation, we leverage the GAS decomposition

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 605

def ConnectedComp(g: Graph[V, E]) = {
g = g.mapV(v => v.id) // Initialize vertices
def vProg(v: Id, m: Id): Id = {

if (v == m) voteToHalt(v)
return min(v, m)

}
def sendMsg(t: Triplet): Id =

if (t.src.cc < t.dst.cc) t.src.cc
else None // No message required

def gatherMsg(a: Id, b: Id): Id = min(a, b)
return Pregel(g, vProg, sendMsg, gatherMsg)

}

Listing 6: Connected Components: For each vertex we
compute the lowest reachable vertex id using Pregel.

to mitigate the cost of high-degree vertices. Furthermore,
by exposing the entire triplet to the message computation
we can simplify algorithms like connected components.
However, in cases where the entire triplet is not needed
(e.g., PageRank which requires only the source property)
we rely on UDF bytecode inspection (see Section 4.3.2)
to automatically drop unused fields from join.

In Listing 6 we use the GraphX variant of Pregel to
implement the connected components algorithm. The con-
nected components algorithm computes the lowest reach-
able vertex id for each vertex. We initialize the vertex
property of each vertex to equal its id using mapV and
then define the three functions required to use the GraphX
Pregel API. The sendMsg function leverages the triplet
view of the edge to only send a message to neighboring
vertices when their component id should change. The
gatherMsg function computes the minimum of the in-
bound message values and the vertex program (vProg)
determines the new component id.

Combining Graph and Collection Operators: Often
groups of connected vertices are better modeled as a sin-
gle vertex. In these cases, it can be helpful coarsen the
graph by aggregating connected vertices that share a com-
mon characteristic (e.g., web domain) to derive a new
graph (e.g., the domain graph). We use the GraphX ab-
straction to implement graph coarsening in Listing 7.

The coarsening operation takes an edge predicate and
a vertex aggregation function and collapses all edges that
satisfy the predicate, merging their respective vertices.
The edge predicate is used to first construct the subgraph
of edges that are to be collapsed (i.e., modifying the graph
structure). Then the graph-parallel connected components
algorithm is run on the subgraph. Each connected compo-
nent corresponds to a super-vertex in the new coarsened
graph with the component id being the lowest vertex id
in the component. The super-vertices are constructed by
aggregating all the vertices with the same component id
using a data-parallel aggregation operator. Finally, we up-
date the edges to link together super-vertices and generate
the new graph for subsequent graph-parallel computation.

def coarsen(g: Graph[V, E],
pred: (Id,Id,V,E,V) => Boolean,
reduce: (V,V) => V) = {

// Restrict graph to contractable edges
val subG = g.subgraph(v => True, pred)
// Compute connected component id for all V
val cc: Collection[(Id,ccId)] =

ConnectedComp(subG).vertices
// Merge all vertices in same component
val superV: Collection[(ccId,V)] =

g.vertices.leftJoin(cc)
.groupBy(CC_ID, reduce)

// Link remaining edges between components
val invG = g.subgraph(ePred = t => !pred(t))
val remainingE: Collection[(ccId,ccId,E)] =

invG.leftJoin(cc).triplets.map {
e => (e.src.cc, e.dst.cc, e.attr)

}
// Return the final graph
Graph(superV, remainingE)

}

Listing 7: Coarsen: The coarsening operator merges ver-
tices connected by edges that satisfy the edge predicate.

The coarsen operator demonstrates the power of a
unified abstraction by combining both data-parallel and
graph-parallel operators in a single graph-analytics task.

4 The GraphX System

GraphX achieves performance parity with specialized
graph processing systems by recasting the graph-specific
optimizations of Section 2.3 as optimizations on top of
a small set of standard dataflow operators in Spark. In
this section we describe these optimizations in the context
of classic techniques in traditional database systems in-
cluding indexing, incremental view maintenance, and join
optimizations. Along the way, we quantify the effective-
ness of each optimization; readers are referred to Section
5 for details on datasets and experimental setup.

4.1 Distributed Graph Representation

GraphX represents graphs internally as a pair of vertex
and edge collections built on the Spark RDD abstraction.
These collections introduce indexing and graph-specific
partitioning as a layer on top of RDDs. Figure 3 illustrates
the physical representation of the horizontally partitioned
vertex and edge collections and their indices.

The vertex collection is hash-partitioned by the vertex
ids. To support frequent joins across vertex collections,
vertices are stored in a local hash index within each par-
tition (Section 4.2). Additionally, a bitmask stores the
visibility of each vertex, enabling soft deletions to pro-
mote index reuse (Section 4.3.1).

606 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Edges

1 2

1 3

edge partition A

1 4

5 4

edge partition B

1 5
edge partition C

1 6

6 5

clustered indices on
source vertex

2

3

4

edge
partition A

edge
partition B

6

edge
partition C 1

5

Graph

Vertices

vertex partition A

1

2

3

1

1

1

bitmask

vertex partition B

4

5

6

1

1

0

bitmask

hash indices on
vertex id

Routing Table

partition A

1C
B 1
A 1,2,3

partition B

A
4,5
5,6C

B

Figure 3: Distributed Graph Representation: The
graph (left) is represented as a vertex and an edge col-
lection (right). The edges are divided into three edge par-
titions by applying a partition function (e.g., 2D Parti-
tioning). The vertices are partitioned by vertex id. Co-
partitioned with the vertices, GraphX maintains a routing
table encoding the edge partitions for each vertex. If ver-
tex 6 and adjacent edges (shown with dotted lines) are
restricted from the graph (e.g., by subgraph), they are
removed from the corresponding collection by updating
the bitmasks thereby enabling index reuse.

The edge collection is horizontally partitioned by a
user-defined partition function. GraphX enables vertex-
cut partitioning, which minimizes communication in nat-
ural graphs such as social networks and web graphs [13].
By default edges are assigned to partitions based on the
partitioning of the input collection (e.g., the original place-
ment on HDFS). However, GraphX provides a range of
built-in partitioning functions, including a 2D hash parti-
tioner with strong upper bounds [8] on the communication
complexity of operators like mrTriplets. This flexi-
bility in edge placement is enabled by the routing table,
described in Section 4.2. For efficient lookup of edges by
their source and target vertices, the edges within a parti-
tion are clustered by source vertex id using a compressed
sparse row (CSR) [35] representation and hash-indexed
by their target id. Section 4.3.1 discusses how these in-
dices accelerate iterative computation.

Index Reuse: GraphX inherits the immutability of
Spark and therefore all graph operators logically create
new collections rather than destructively modifying exist-
ing ones. As a result, derived vertex and edge collections
can often share indices to reduce memory overhead and
accelerate local graph operations. For example, the hash
index on vertices enables fast aggregations, and the result-
ing aggregates share the index with the original vertices.

In addition to reducing memory overhead, shared in-
dices enable faster joins. Vertex collections sharing the
same index (e.g., the vertices and the messages from

mrTriplets) can be joined by a coordinated scan, sim-
ilar to a merge join, without requiring any index lookups.
In our benchmarks, index reuse reduces the per-iteration
runtime of PageRank on the Twitter graph by 59%.

The GraphX operators try to maximize index reuse. Op-
erators that do not modify the graph structure (e.g., mapV)
automatically preserve indices. To reuse indices for oper-
ations that restrict the graph structure (e.g., subgraph),
GraphX relies on bitmasks to construct restricted views.
In cases where index reuse could lead to decreased ef-
ficiency (e.g., when a graph is highly filtered), GraphX
uses the reindex operator to build new indices.

4.2 Implementing the Triplets View

As described in Section 3.2, a key stage in graph compu-
tation is constructing and maintaining the triplets view,
which consists of a three-way join between the source and
destination vertex properties and the edge properties.

Vertex Mirroring: Because the vertex and edge prop-
erty collections are partitioned independently, the join
requires data movement. GraphX performs the three-way
join by shipping the vertex properties across the network
to the edges, thus setting the edge partitions as the join
sites [21]. This approach substantially reduces communi-
cation for two reasons. First, real-world graphs commonly
have orders of magnitude more edges than vertices. Sec-
ond, a single vertex may have many edges in the same
partition, enabling substantial reuse of the vertex property.

Multicast Join: While broadcast join in which all ver-
tices are sent to each edge partition would ensure joins
occur on edge partitions, it could still be inefficient since
most partitions require only a small subset of the ver-
tices to complete the join. Therefore, GraphX introduces
a multicast join in which each vertex property is sent only
to the edge partitions that contain adjacent edges. For
each vertex GraphX maintains the set of edge partitions
with adjacent edges. This join site information is stored
in a routing table which is co-partitioned with the ver-
tex collection (Figure 3). The routing table is associated
with the edge collection and constructed lazily upon first
instantiation of the triplets view.

The flexibility in partitioning afforded by the multi-
cast join strategy enables more sophisticated application-
specific graph partitioning techniques. For example, by
adopting a per-city partitioning scheme on the Facebook
social network graph Ugander et al. [38] showed a 50.5%
reduction in query time. In Section 5.1 we exploit the
optimized partitioning of our sample datasets to achieve
up to 56% reduction in runtime and 5.8× reduction in
communication compared to a 2D hash partitioning.

Partial Materialization: Vertex replication is per-
formed eagerly when vertex properties change, but the
local joins at the edge partitions are left unmaterialized to

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 607

Figure 4: Impact of incrementally maintaining the
triplets view: For both PageRank and connected compo-
nents, as vertices converge, communication decreases due
to incremental view maintenance. The initial rise in com-
munication is due to message compression (Section 4.4);
many PageRank values are initially the same.

avoid duplication. Instead, mirrored vertex properties are
stored in hash maps on each edge partition and referenced
when constructing triplets.

Incremental View Maintenance: Iterative graph algo-
rithms often modify only a subset of the vertex properties
in each iteration. We therefore apply incremental view
maintenance to the triplets view to avoid unnecessary
movement of unchanged data. After each graph operation,
we track which vertex properties have changed since the
triplets view was last constructed. When the triplets view
is next accessed, only the changed vertices are re-routed
to their edge-partition join sites and the local mirrored
values of the unchanged vertices are reused. This func-
tionality is managed automatically by the graph operators.

Figure 4 illustrates the impact of incremental view
maintenance for both PageRank and connected compo-
nents on the Twitter graph. In the case of PageRank, where
the number of active vertices decreases slowly because
the convergence threshold was set to 0, we see only mod-
erate gains. In contrast, for connected components most
vertices are within a short distance of each other and con-
verge quickly, leading to a substantial reduction in com-
munication from incremental view maintenance. Without
incremental view maintenance, the triplets view would
need to be reconstructed from scratch every iteration, and
communication would remain at its peak throughout the
computation.

4.3 Optimizations to mrTriplets
GraphX incorporates two additional query optimizations
for the mrTriplets operator: filtered index scanning
and automatic join elimination.

4.3.1 Filtered Index Scanning

The first stage of the mrTriplets operator logically in-
volves a scan of the triplets view to apply the user-defined

Figure 5: Sequential scan vs index scan: Connected
components on the Twitter graph benefits greatly from
switching to index scan after the 4th iteration, while
PageRank benefits only slightly because the set of ac-
tive vertices is large even at the 15th iteration.

map function to each triplet. However, as iterative graph
algorithms converge, their working sets tend to shrink,
and the map function skips all but a few triplets. In par-
ticular, the map function only needs to operate on triplets
containing vertices in the active set, which is defined by
an application-specific predicate. Directly scanning all
triplets becomes increasingly wasteful as the active set
shrinks. For example, in the last iteration of connected
components on the Twitter graph, only a few of the ver-
tices are still active. However, to execute mrTriplets
we still must sequentially scan 1.5 billion edges and check
whether their vertices are in the active set.

To address this problem, we introduced an indexed scan
for the triplets view. The application expresses the current
active set by restricting the graph using the subgraph
operator. The vertex predicate is pushed to the edge par-
titions, where it can be used to filter the triplets using
the CSR index on the source vertex id (Section 4.1). We
measure the selectivity of the vertex predicate and switch
from sequential scan to clustered index scan when the
selectivity is less than 0.8.

Figure 5 illustrates the benefit of index scans in PageR-
ank and connected components. As with incremental view
maintenance, index scans lead to a smaller improvement
in runtime for PageRank and a substantial improvement
in runtime for connected components. Interestingly, in
the initial iterations of connected components, when the
majority of the vertices are active, a sequential scan is
slightly faster as it does not require the additional index
lookup. It is for this reason that we dynamically switch
between full and indexed scans based on the fraction of
active vertices.

608 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.3.2 Automatic Join Elimination

In some cases, operations on the triplets view may access
only one of the vertex properties or none at all. For ex-
ample, when mrTriplets is used to count the degree
of each vertex, the map UDF does not access any ver-
tex properties. Similarly, when computing messages in
PageRank only the source vertex properties are used.

GraphX uses a JVM bytecode analyzer to inspect user-
defined functions at runtime and determine whether the
source or target vertex properties are referenced. If only
one property is referenced, and if the triplets view has not
already been materialized, GraphX automatically rewrites
the query plan for generating the triplets view from a three-
way join to a two-way join. If none of the vertex properties
are referenced, GraphX eliminates the join entirely. This
modification is possible because the triplets view follows
the lazy semantics of RDDs in Spark. If the user never
accesses the triplets view, it is never materialized. A call to
mrTriplets is therefore able to rewrite the join needed
to generate the relevant part of the triplets view.

Figure 6 demonstrates the impact of this physical ex-
ecution plan rewrite on communication and runtime for
PageRank on the Twitter follower graph. We see that join
elimination cuts the amount of data transferred in half,
leading to a significant reduction in overall runtime. Note
that on the first iteration there is no reduction in com-
munication. This is due to compression algorithms that
take advantage of all messages having exactly the same
initial value. However, compression and decompression
still consume CPU time so we still observe nearly a factor
of two reduction in overall runtime.

4.4 Additional Optimizations

While implementing GraphX, we discovered that a num-
ber of low level engineering details had significant perfor-
mance impact. We sketch some of them here.

Memory-based Shuffle: Spark’s default shuffle imple-
mentation materializes the temporary data to disk. We
modified the shuffle phase to materialize map outputs in
memory and remove this temporary data using a timeout.

Batching and Columnar Structure: In our join code
path, rather than shuffling the vertices one by one, we
batch a block of vertices routed to the same target join
site and convert the block from row-oriented format to
column-oriented format. We then apply the LZF compres-
sion algorithm on these blocks to send them. Batching
has a negligible impact on CPU time while improving the
compression ratio of LZF by 10–40% in our benchmarks.

Variable Integer Encoding: While GraphX uses 64-bit
vertex ids, in most cases the ids are much smaller than 264.
To exploit this fact, during shuffling, we encode integers

Figure 6: Impact of automatic join elimination on com-
munication and runtime: We ran PageRank for 20 itera-
tions on the Twitter dataset with and without join elimina-
tion and found that join elimination reduces the amount of
communication by almost half and substantially decreases
the total execution time.

using a variable-encoding scheme where for each byte,
we use only the first 7 bits to encode the value, and use
the highest order bit to indicate whether we need another
byte to encode the value. In this case, smaller integers
are encoded with fewer bytes. In the worst case, integers
greater than 256 require 5 bytes to encode. This technique
reduces communication in PageRank by 20%.

5 System Evaluation

In this section we demonstrate that, for iterative graph
algorithms, GraphX is over an order of magnitude faster
than directly using the general-purpose dataflow operators
described in Section 3.2 and is comparable to or faster
than specialized graph processing systems.

We evaluate the performance of GraphX on several
graph-analytics tasks, comparing it with the following:

1. Apache Spark 0.9.1: the base distributed dataflow
system for GraphX. We compare against Spark to
demonstrate the performance gains relative to the
baseline distributed dataflow framework.

2. Apache Giraph 1.1: an open source graph compu-
tation system based on the Pregel abstraction.

3. GraphLab 2.2 (PowerGraph): the open-source
graph computation system based on the GAS de-
composition of vertex programs. Because GraphLab

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 609

is implemented in C++ and all other systems run on
the JVM, given identical optimizations, we would
expect GraphLab to have a slight performance ad-
vantage.

We also compare against GraphLab without shared-
memory parallelism (denoted GraphLab NoSHM).
GraphLab communicates between workers on the same
machine using shared data structures. In contrast, Giraph,
Spark, and GraphX adopt a shared-nothing worker model
incurring extra serialization overhead between workers.
To isolate this overhead, we disabled shared-memory by
forcing GraphLab workers to run in separate processes.

It is worth noting that the shared data structures in
GraphLab increase the complexity of the system. Indeed,
we encountered and fixed a critical bug in one of the
GraphLab shared data structures. The resulting patch in-
troduced an additional lock which led to a small increase
in thread contention. As a consequence, in some cases
(e.g., Figure 7c) disabling shared memory contributed to
a small improvement in performance.

All experiments were conducted on Amazon EC2 using
16 m2.4xlarge worker nodes. Each node has 8 virtual
cores, 68 GB of memory, and two hard disks. The cluster
was running 64-bit Linux 3.2.28. We plot the mean and
standard deviation for multiple trials of each experiment.

5.1 System Comparison

Cross-system benchmarks are often unfair due to the dif-
ficulty in tuning each system equitably. We have endeav-
ored to minimize this effect by working closely with ex-
perts in each of the systems to achieve optimal configura-
tions. We emphasize that we are not claiming GraphX is
fundamentally faster than GraphLab or Giraph; these sys-
tems could in theory implement the same optimizations
as GraphX. Instead, we aim to show that it is possible
to achieve comparable performance to specialized graph
processing systems using a general dataflow engine while
gaining common dataflow features such as fault tolerance.

While we have implemented a wide range of graph
algorithms on top of GraphX, we restrict our perfor-
mance evaluation to PageRank and connected compo-
nents. These two representative graph algorithms are im-
plemented in most graph processing systems, have well-
understood behavior, and are simple enough to serve as
an effective measure of the system’s performance. To en-
sure a fair comparison, our PageRank implementation is
based on Listing 1; it does not exploit delta messages
and therefore benefits less from indexed scans and in-
cremental view maintenance. Conversely, the connected
components implementation only sends messages when a
vertex must change component membership and therefore
does benefit from incremental view maintenance.

Dataset Edges Vertices
twitter-2010 [5, 4] 1,468,365,182 41,652,230
uk-2007-05 [5, 4] 3,738,733,648 105,896,555

Table 1: Graph Datasets. Both graphs have highly
skewed power-law degree distributions.

For each system, we ran both algorithms on the twitter-
2010 and uk-2007-05 graphs (Table 1). For Giraph and
GraphLab we used the included implementations of these
algorithms. For Spark we implemented the algorithms
both using idiomatic dataflow operators (Naive Spark, as
described in Section 3.2) and using an optimized imple-
mentation (Optimized Spark) that eliminates movement
of edge data by pre-partitioning the edges to match the
partitioning adopted by GraphX.

Both GraphLab and Giraph partition the graph accord-
ing to specialized partitioning algorithms. While GraphX
supports arbitrary user defined graph partitioners includ-
ing those used by GraphLab and Giraph, the default parti-
tioning strategy is to construct a vertex-cut that matches
the input edge data layout thereby minimizing edge data
movement when constructing the graph. However, as
point of comparison we also tested GraphX using a ran-
domized vertex-cut (GraphX Rand). We found (see Fig-
ure 7) that for the specific datasets used in our experiments
the input partitioning, which was determined by a special-
ized graph compression format [4], actually resulted in a
more communication-efficient vertex-cut partitioning.

Figures 7a and 7c show the total runtimes for connected
components algorithm. We have excluded Giraph and
Optimized Spark from Figure 7c because they were unable
to scale to the larger web-graph in the allotted memory
of the cluster. While the basic Spark implementation did
not crash, it was forced to re-compute blocks from disk
and exceeded 8000 seconds per iteration. We attribute
the increased memory overhead to the use of edge-cut
partitioning and the need to store bi-directed edges and
messages for the connected components algorithm.

Figures 7b and 7d show the total runtimes for PageRank
for 20 iterations on each system. In Figure 7b, GraphLab
outperforms GraphX largely due to shared-memory par-
allelism; GraphLab without shared memory parallelism
is much closer in performance to GraphX. In 7d, GraphX
outperforms GraphLab because the input partitioning of
uk-2007-05 is highly efficient, resulting in a 5.8x reduc-
tion in communication per iteration.

5.2 GraphX Performance
Scaling: In Figure 8 we evaluate the strong scaling per-
formance of GraphX running PageRank on the Twitter
follower graph. As we move from 8 to 32 machines (a
factor of 4) we see a 3x speedup. However as we move to
64 machines (a factor of 8) we only see a 3.5x speedup.

610 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Conn. Comp. Twitter (b) PageRank Twitter (c) Conn. Comp. uk-2007-05∗ (d) PageRank uk-2007-05

Figure 7: System Performance Comparison. (c) Spark did not finish within 8000 seconds, Giraph and Spark + Part.
ran out of memory.

Figure 8: Strong scaling for PageR-
ank on Twitter (10 Iterations)

Figure 9: Effect of partitioning on
communication

Figure 10: Fault tolerance for
PageRank on uk-2007-05

While this is hardly linear scaling, it is actually slightly
better than the 3.2x speedup reported by GraphLab [13].
The poor scaling performance of PageRank has been at-
tributed by [13] to high communication overhead relative
to computation for the PageRank algorithm.

It may seem surprising that GraphX scales slightly
better than GraphLab given that Spark does not exploit
shared memory parallelism and therefore forces the graph
to be partitioned across processors rather than machines.
However, Figure 9 shows the communication of GraphX
as a function of the number of partitions. Going from 16
to 128 partitions (a factor of 8) yields only an approxi-
mately 2-fold increase in communication. Returning to
the analysis of vertex-cut partitioning conducted by [13],
we find that the vertex-cut partitioning adopted by GraphX
mitigates the 8-fold increase in communication.

Fault tolerance: Existing graph systems only support
checkpoint-based fault tolerance, which most users leave
disabled due to the performance overhead. GraphX is
built on Spark, which provides lineage-based fault toler-
ance with negligible overhead as well as optional dataset
replication (Section 2.4). We benchmarked these fault tol-

erance options for PageRank on uk-2007-05 by killing a
worker in iteration 11 of 20, allowing Spark to recover by
using the remaining copies of the lost partitions or recom-
puting them, and measuring how long the job took in total.
For comparison, we also measured the end-to-end time
for running until failure and then restarting from scratch
on the remaining nodes using a driver script, as would be
necessary in existing graph systems. Figure 10 shows that
in case of failure, both replication and recomputation are
faster than restarting the job from scratch, and moreover
they are performed transparently by the dataflow engine.

6 Related Work

In Section 2 we described the general characteristics
shared across many of the earlier graph processing sys-
tems. However, there are some exceptions to many of
these characteristics that are worth noting.

While most of the work on large-scale distributed graph
processing has focused on static graphs, several systems
have focused on various forms of stream processing. One

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 611

of the earlier examples is Kineograph [9], a distributed
graph processing system that constructs incremental snap-
shots of the graph for offline static graph analysis. In the
multicore setting, GraphChi [17] and later X-Stream [34]
introduced support for the addition of edges between ex-
isting vertices and between computation stages. Although
conceptually GraphX could support the incremental in-
troduction of edges (and potentially vertices), the exist-
ing data-structures would require additional optimization.
Instead, GraphX focuses on efficiently supporting the re-
moval of edges and vertices: essential functionality for
offline sub-graph analysis.

Most of the optimizations and programming models of
earlier graph processing systems focus on a single graph
setting. While some of these systems [19, 13, 34] are ca-
pable of operating on multiple graphs independently, they
do not expose an API or present optimizations for opera-
tions spanning graphs (or tables). One notable exception
is CombBLAS [7] which treats graphs (and data more
generally) as matrices and supports generalized binary
algebraic operators. In contrast GraphX preserves the na-
tive semantics of graphs and tables and provides a simple
API to combine data across these representations.

The triplets view in GraphX is related to the clas-
sic Resource Description Framework [23] (RDF) data
model which encodes graph structured data as subject-
predicate-object triplets (e.g., NYC-isA-city). Numerous
systems [1, 6, 28] have been proposed for storing and
executing SPARQL [31] subgraph queries against RDF
triplets. Like GraphX, these systems rely heavily on in-
dexing and clustering for performance. Unlike GraphX,
these systems are not distributed or do not address it-
erative graph algorithms. Nonetheless, we believe that
the optimizations techniques developed for GraphX may
benefit the design of distributed graph query processing.

There have been several recent efforts at exploring
graph algorithms within dataflow systems. Najork et
al. [27], compares implementations of a range of graph
algorithms on the DryadLINQ [15] and SQL Server
dataflow systems. However, the resulting implementa-
tions are fairly complex and specialized, and little is dis-
cussed about graph-specific optimizations. Both Ewen
et al. [11] and Murray et al. [26] proposed dataflow sys-
tems geared towards incremental iterative computation
and demonstrated performance gains for specialized im-
plementations of graph algorithms. While this work high-
lights the importance of incremental updates in graph
computation, neither proposed a general method to ex-
press graph algorithms or graph specific optimizations
beyond incremental dataflows. Nonetheless, we believe
that the GraphX system could be ported to run on-top of
these dataflow frameworks and would potentially benefit
from advances like timely dataflows [26].

At the time of publication, the Microsoft Naiad

team had announced initial work on a system called
GraphLINQ [25], a graph processing framework on-top
of Naiad which shares many similarities to GraphX. Like
GraphX, GraphLINQ aims to provides rich graph func-
tionality within a general-purpose dataflow framework.
In particular GraphLINQ presents a GraphReduce op-
erator that is semantically similar to the mrTriplets
operator in GraphX except that it operates on streams of
vertices and edges. The emphasis on stream processing ex-
poses opportunities for classic optimizations in the stream
processing literature as well as recent developments like
the Naiad timely dataflows [26]. We believe this further
supports the advantages of embedding graph processing
within more general-purpose data processing systems.

Others have explored join optimizations in distributed
dataflow frameworks. Blanas et al. [3] show that broad-
cast joins and semi-joins compare favorably with the stan-
dard MapReduce style shuffle joins when joining a large
table (e.g., edges) with a smaller table (e.g., vertices).
Closely related is the work by Afrati et al. [2] which ex-
plores optimizations for multi-way joins in a MapReduce
framework. They consider joining a large relation with
multiple smaller relations and provide a partitioning and
replication strategy similar to classic 2D partitioning [8].
However, in contrast to our work, they do not construct a
routing table forcing the system to broadcast the smaller
relations (e.g., the vertices) to all partitions of the larger
relation (e.g., the edges) that could have matching tuples.
Furthermore, they force a particular hash partitioning on
the larger relation precluding the opportunity for user
defined graph partitioning algorithms (e.g., [16, 38, 36]).

7 Discussion

The work on GraphX addressed several key themes in
data management systems and system design:

Physical Data Independence: GraphX allows the
same physical data to be viewed as collections and as
graphs without data movement or duplication. As a con-
sequence the user is free to adopt the best view for the
immediate task. We demonstrated that operations on col-
lections and graphs can be efficiently implemented using
the same physical representation and underlying opera-
tors. Our experiments show that this common substrate
can match the performance of specialized graph systems.

Graph Computation as Joins and Group-By: The
design of the GraphX system reveals the strong con-
nection between distributed graph computation and dis-
tributed join optimizations. When viewed through the
lens of dataflow operators, graph computation reduces
to join and group-by operators. These two operators cor-
respond to the Scatter and Gather stages of the GAS ab-
straction. Likewise, the optimizations developed for graph
processing systems reduce to indexing, distributed join

612 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Contemporary Graph
Processing Systems!

< / >!< / >!< / >!
XML!

ETL! Slice! Compute! Analyze!

Figure 11: Graph Analytics Pipeline: requires multiple
collection and graph views of the same data.

site selection, multicast joins, partial materialization, and
incremental view maintenance.

The Narrow Waist: In designing the GraphX abstrac-
tion, we sought to develop a thin extension on top of
dataflow operators with the goal of identifying the essen-
tial data model and core operations needed to support
graph computation. We aimed for a portable framework
that could be embedded in a range of dataflow frame-
works. We believe that the GraphX design can be adopted
by other dataflow systems, including MPP databases, to
efficiently support a wide range of graph computations.

Analytics Pipelines: GraphX provides the ability to
stay within a single framework throughout the analytics
process, eliminating the need to learn and support mul-
tiple systems (e.g., Figure 11) or write data interchange
formats and plumbing to move between systems. As a
consequence, it is substantially easier to iteratively slice,
transform, and compute on large graphs as well as to share
data-structures across stages of the pipeline. The gains in
performance and scalability for graph computation trans-
late to a tighter analytics feedback loop and therefore a
more efficient work flow.

Adoption: GraphX was publicly released as part of the
0.9.0 release of the Apache Spark open-source project.2

It has since generated substantial interest in the commu-
nity and has been used in production at various places.3

Despite its nascent state, there has been considerable open-
source contribution to GraphX with contributors provid-
ing some of the core graph functionality. We attribute this
to its wide applicability and the simple abstraction built
on top of an existing, popular dataflow framework.

8 Conclusions and Future Work

In this work we introduced GraphX, an efficient graph
processing system that enables distributed dataflow frame-
works such as Spark to naturally express and efficiently
execute iterative graph algorithms. We identified a sim-
ple pattern of join–map–group-by dataflow operators that
forms the basis of graph-parallel computation. Inspired
by this observation, we proposed the GraphX abstraction,

2https://spark.apache.org
3For a large-scale commercial use case see [14].

which represents graphs as horizontally-partitioned col-
lections and graph computation as dataflow operators on
those collections. Not only does GraphX support existing
graph-parallel abstractions and a wide range of iterative
graph algorithms, it enables the composition of graphs
and collections, freeing the user to adopt the most natural
view without concern for data movement or duplication.

Guided by the connection between graph computation
and dataflow operators, we recast recent advances in graph
processing systems as range of classic optimizations in
database systems. We recast vertex-cut graph partitioning
as horizontally-partitioned vertex and edge collections,
active vertex tracking as incremental view maintenance,
and vertex mirroring as multicast joins with routing tables.
As a result, for graph algorithms, GraphX is over an order
of magnitude faster than the base dataflow system and is
comparable to or faster than specialized graph processing
systems. In addition, GraphX benefits from features pro-
vided by recent dataflow systems such as low-cost fault
tolerance and transparent recovery.

We believe that our work on GraphX points to a larger
research agenda in the unification of specialized data pro-
cessing systems. Recent advances in specialized systems
for topic modeling, graph processing, stream processing,
and deep learning have revealed a range of new system
optimizations and design trade-offs. However, the full
potential of these systems is often realized in their inte-
gration (e.g., applying deep learning to text and images in
a social network). By casting these systems within a com-
mon paradigm (e.g., dataflow operators) we may reveal
common patterns and enable new analytics capabilities.

9 Acknowledgments

We would like to thank Matei Zaharia, Peter Bailis,
and our colleagues in the AMPLab, Databricks, and
GraphLab for their help in building and presenting the
GraphX system. We also thank the OSDI reviewers and
our shepherd Frans Kaashoek for their insightful com-
ments and guidance in preparing this paper. This research
is supported in part by NSF CISE Expeditions Award
CCF-1139158, LBNL Award 7076018, and DARPA
XData Award FA8750-12-2-0331, and gifts from Ama-
zon Web Services, Google, SAP, The Thomas and Stacey
Siebel Foundation, Adobe, Apple, Inc., Bosch, C3Energy,
Cisco, Cloudera, EMC, Ericsson, Facebook, GameOn-
Talis, Guavus, HP, Huawei, Intel, Microsoft, NetApp, Piv-
otal, Splunk, Virdata, VMware, and Yahoo!.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 613

References
[1] ABADI, D. J., MARCUS, A., MADDEN, S. R., AND HOLLEN-

BACH, K. SW-Store: A vertically partitioned DBMS for semantic
web data management. PVLDB 18, 2 (2009), 385–406.

[2] AFRATI, F. N., AND ULLMAN, J. D. Optimizing joins in a
map-reduce environment. In EDBT (2010), pp. 99–110.

[3] BLANAS, S., PATEL, J. M., ERCEGOVAC, V., RAO, J., SHEKITA,
E. J., AND TIAN, Y. A comparison of join algorithms for log
processing in MapReduce. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (New
York, NY, USA, 2010), SIGMOD ’10, ACM, pp. 975–986.

[4] BOLDI, P., ROSA, M., SANTINI, M., AND VIGNA, S. Layered
label propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW (2011), pp. 587–596.

[5] BOLDI, P., AND VIGNA, S. The WebGraph framework I: Com-
pression techniques. In WWW’04.

[6] BROEKSTRA, J., KAMPMAN, A., AND HARMELEN, F. V.
Sesame: A generic architecture for storing and querying rdf and rdf
schema. In Proceedings of the First International Semantic Web
Conference on The Semantic Web (2002), ISWC ’02, pp. 54–68.

[7] BULUÇ, A., AND GILBERT, J. R. The combinatorial BLAS:
design, implementation, and applications. IJHPCA 25, 4 (2011),
496–509.

[8] ÇATALYÜREK, U. V., AYKANAT, C., AND UÇAR, B. On two-
dimensional sparse matrix partitioning: Models, methods, and a
recipe. SIAM J. Sci. Comput. 32, 2 (2010), 656–683.

[9] CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X.,
WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E. Kineo-
graph: taking the pulse of a fast-changing and connected world.
In EuroSys (2012), pp. 85–98.

[10] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data
processing on large clusters. In OSDI (2004).

[11] EWEN, S., TZOUMAS, K., KAUFMANN, M., AND MARKL, V.
Spinning fast iterative data flows. Proc. VLDB 5, 11 (July 2012),
1268–1279.

[12] FEIGE, U., HAJIAGHAYI, M., AND LEE, J. R. Improved ap-
proximation algorithms for minimum-weight vertex separators.
In Proceedings of the Thirty-seventh Annual ACM Symposium on
Theory of Computing (New York, NY, USA, 2005), STOC ’05,
ACM, pp. 563–572.

[13] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel computa-
tion on natural graphs. OSDI’12, USENIX Association, pp. 17–30.

[14] HUANG, A., AND WU, W. Mining ecom-
merce graph data with spark at alibaba taobao.
http://databricks.com/blog/2014/08/14/mining-graph-data-
with-spark-at-alibaba-taobao.html, 2014.

[15] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys (2007), pp. 59–72.

[16] KARYPIS, G., AND KUMAR, V. Multilevel k-way partitioning
scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 1
(1998), 96–129.

[17] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi:
Large-scale graph computation on just a PC. In OSDI (2012).

[18] LESKOVEC, J., LANG, K. J., DASGUPTA, A., , AND MAHONEY,
M. W. Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet
Mathematics 6, 1 (2008), 29–123.

[19] LOW, Y., ET AL. GraphLab: A new parallel framework for ma-
chine learning. In UAI (2010), pp. 340–349.

[20] LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,
GUESTRIN, C., AND HELLERSTEIN, J. M. Distributed GraphLab:
A Framework for Machine Learning and Data Mining in the Cloud.
PVLDB (2012).

[21] MACKERT, L. F., AND LOHMAN, G. M. R* optimizer validation
and performance evaluation for distributed queries. In VLDB’86
(1986), pp. 149–159.

[22] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J.,
HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: a system
for large-scale graph processing. In SIGMOD (2010), pp. 135–
146.

[23] MANOLA, F., AND MILLER, E. RDF primer. W3C Recommen-
dation 10 (2004), 1–107.

[24] MONDAL, J., AND DESHPANDE, A. Managing large dynamic
graphs efficiently. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (New York, NY,
USA, 2012), SIGMOD ’12, ACM, pp. 145–156.

[25] MURRAY, D. Building new frameworks on Naiad. blog
post: http://bigdataatsvc.wordpress.com/2014/04/29/ building-
new-frameworks-for-naiad/, April 2014.

[26] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: A timely dataflow system.
In SOSP ’13.

[27] NAJORK, M., FETTERLY, D., HALVERSON, A., KENTHAPADI,
K., AND GOLLAPUDI, S. Of hammers and nails: An empirical
comparison of three paradigms for processing large graphs. In
Proceedings of the Fifth ACM International Conference on Web
Search and Data Mining (2012), WSDM ’12, ACM, pp. 103–112.

[28] NEUMANN, T., AND WEIKUM, G. RDF-3X: A RISC-style engine
for RDF. VLDB’08.

[29] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig Latin: A not-so-foreign language for data
processing. SIGMOD (2008).

[30] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web. Technical
Report 1999-66, Stanford InfoLab, 1999.

[31] PRUD’HOMMEAUX, E., AND SEABORNE, A. SPARQL query
language for RDF. Latest version available as http://www.
w3.org/TR/rdf-sparql-query/, January 2008.

[32] PUJOL, J. M., ERRAMILLI, V., SIGANOS, G., YANG, X.,
LAOUTARIS, N., CHHABRA, P., AND RODRIGUEZ, P. The little
engine(s) that could: scaling online social networks. In SIGCOMM
(2010), pp. 375–386.

[33] ROBINSON, I., WEBBER, J., AND EIFREM, E. Graph Databases.
O’Reilly Media, Incorporated, 2013.

[34] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
Edge-centric graph processing using streaming partitions. SOSP
’13, ACM, pp. 472–488.

[35] SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2003.

[36] STANTON, I., AND KLIOT, G. Streaming graph partitioning
for large distributed graphs. Tech. Rep. MSR-TR-2011-121, Mi-
crosoft Research, November 2011.

[37] STUTZ, P., BERNSTEIN, A., AND COHEN, W. Signal/collect:
graph algorithms for the (semantic) web. In ISWC (2010).

[38] UGANDER, J., AND BACKSTROM, L. Balanced label propagation
for partitioning massive graphs. In Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining (New
York, NY, USA, 2013), WSDM ’13, ACM, pp. 507–516.

[39] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. NSDI’12.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 615

Nail: A practical tool for parsing and generating data formats

Julian Bangert and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

Nail is a tool that greatly reduces the programmer effort
for safely parsing and generating data formats defined by
a grammar. Nail introduces several key ideas to achieve
its goal. First, Nail uses a protocol grammar to define not
just the data format, but also the internal object model
of the data. Second, Nail eliminates the notion of se-
mantic actions, used by existing parser generators, which
reduces the expressive power but allows Nail to both parse
data formats and generate them from the internal object
model, by establishing a semantic bijection between the
data format and the object model. Third, Nail introduces
dependent fields and stream transforms to capture proto-
col features such as size and offset fields, checksums, and
compressed data, which are impractical to express in ex-
isting protocol languages. Using Nail, we implement an
authoritative DNS server in C in under 300 lines of code
and grammar, and an unzip program in C in 220 lines
of code and grammar, demonstrating that Nail makes it
easy to parse complex real-world data formats. Perfor-
mance experiments show that a Nail-based DNS server
can outperform the widely used BIND DNS server on an
authoritative workload, demonstrating that systems built
with Nail can achieve good performance.

1 INTRODUCTION

Code that handles untrusted inputs, such as processing
network data or parsing a file, is error-prone and is often
exploited by attackers. For example, the libpng image
decompression library had 24 remotely exploitable vul-
nerabilities from 2007 to 2013 [5], Adobe’s PDF and
Flash viewers have been notoriously plagued by input
processing vulnerabilities, and even the zlib compression
library had input processing vulnerabilities in the past [6].
With a memory-unsafe language like C, mistakes in input
processing code can lead to memory errors like buffer
overflows, and even with a memory-safe language like
Java, inconsistencies between different parsers can lead
to security issues [13].

A promising approach to avoid these problems is to
specify a precise grammar for the input data format, and
to use a parser generator, such as lex and yacc, to syn-
thesize the input processing code. Developers that use a
parser generator do not need to write error-prone input
processing code on their own, and as long as the parser
generator is bug-free, the application will be safe from

input processing vulnerabilities. Grammars can also be
re-used between applications, further reducing effort and
eliminating inconsistencies.

Unfortunately, applying this approach in practice, using
state-of-the-art parser generators, still requires too much
manual programmer effort, and is still error-prone, for
four reasons:

First, parser generators typically parse inputs into an
abstract syntax tree (AST) that corresponds to the gram-
mar. In order to produce a data structure that the rest
of the application code can easily process, application
developers must write explicit semantic actions that up-
date the application’s internal representation of the data
based on each AST node. Writing these semantic actions
requires the programmer to describe the structure of the
input three times—once to describe the grammar, once
to describe the internal data structure, and once again in
the semantic actions that translate the grammar into the
data structure—leading to potential bugs and inconsisten-
cies. Furthermore, in a memory-unsafe language like C,
these semantic actions often involve error-prone manual
memory allocation and pointer manipulation.

Second, applications often need to produce output in
the same format as their input—for example, applica-
tions might both read and write files, or both receive and
send network packets. Most parser generators focus on
just parsing an input, rather than producing an output,
thus requiring the programmer to manually construct out-
puts, which is work-intensive and leads to more code
that could contain errors. Some parser generators, such as
Boost.Spirit [8], allow reusing the grammar for generating
output from the internal representation. However, those
generators require yet another set of semantic actions to
be written, transforming the internal representation back
into an AST.

Third, many data formats contain redundancies, such
as repeating information in multiple structures. Appli-
cations usually do not explicitly check for consistency,
and if different applications use different instances of the
same value, an attacker can craft an input that causes in-
consistencies [38]. Furthermore, security vulnerabilities
can occur when an application assumes two repetitions of
the same data to be consistent, such as allocating a buffer
based on the value of one size field and copying into that
buffer based on the value of another [28].

Finally, real-world data formats, such as PNG or PDF,

1

616 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

are hard to represent with existing parser generators.
Those parsers cannot directly deal with length or check-
sum fields, so the programmer has to either write poten-
tially unsafe code to deal with such features, or build
contrived grammar constructs, such as introducing one
grammar rule for each possible value of a length field.
Offset fields, which specify the position at which some
data structure is located, usually require the programmer
to manipulate a parser’s internal state to re-position its in-
put. More complicated transformations, such as handling
compressed data, cannot be represented at all.

This paper presents the design and implementation of
Nail, a parser generator that greatly reduces the program-
mer effort required to use grammars. Nail addresses the
above challenges with several key ideas, as follows.

First, Nail grammars define both a format’s external
representation and an internal object model. This removes
the semantic actions and type declarations that program-
mers have to write with existing parser generators. While
this somewhat reduces the flexibility of the internal model,
it forces the programmer to clearly separate syntactic val-
idation and semantic processing.

Second, this well-defined internal representation allows
Nail to establish a semantic bijection between data for-
mats and their internal object model. As a result, this
enables Nail to not just parse input but also generate out-
put from the internal representation, without requiring the
programmer to write additional code.

Third, Nail introduces two abstractions, dependent
fields and transformations, to elegantly handle problem-
atic structures, such as offset fields or checksums. De-
pendent fields capture fields in a protocol whose value
depends in some way on the value or layout of other parts
of the format; for example, offset or length fields, which
specify the position or length of another data structure,
fall in this category. Transformations allow the program-
mer to escape the generated code to modify the raw data
and interact with dependent fields in a controlled manner.

To evaluate whether Nail’s design is effective at han-
dling real-world data formats, we implemented a proto-
type of Nail for C. Using our prototype, we implemented
grammars for parts of an IP network stack, for DNS pack-
ets, and for ZIP files, each in about a hundred lines of
grammar. On top of these grammars, we were able to
build a DNS server in under 200 lines of C code, and an
unzip utility in about 50 lines of C code, with perfor-
mance comparable to or exceeding existing implementa-
tions. This suggests both that Nail is effective at handling
complex real-world data formats, and that Nail makes
it easy for application developers to parse and generate
external data representations. Performance results show
that the Nail-based DNS server outperforms the widely
used BIND DNS server, demonstrating that Nail-based
parsers and generators can achieve good performance.

The rest of this paper is organized as follows. §2 puts
Nail in the context of related work. §3 motivates the need
for Nail by examining past data format vulnerabilities. §4
describes Nail’s design. §5 discusses our implementation
of Nail. §6 provides evaluation results, and §7 concludes.

2 RELATED WORK

Parsers. Generating parsers and generators from an ex-
ecutable specification is the core concept of interface gen-
erators, such as CORBA [30], XDR [37], and Protocol
Buffers [40]. However, interface generators do not allow
the programmer to specify the byte-level data format; in-
stead, they define their own data encoding that is specific
to a particular interface generator. For instance, XDR-
based protocols are incompatible with Protocol Buffers.
Moreover, this means that interface generators cannot be
used to interact with existing protocols that were not de-
fined using that interface generator in the first place. As
a result, interface generators cannot be used to parse or
generate widely used formats such as DNS or ZIP, which
is a goal for Nail.

Closely related work has been done in the field of data
description languages, for example PacketTypes [24] and
DataScript [1]; a broader overview of data description
languages can be found in Fisher et al [10]. PacketTypes
implements a C-like structure model enhanced with length
fields and constraints, but works only as a parser, and not
as an output generator. DataScript adds output generation
and built-in support for offset fields. A particularly so-
phisticated data description language, PADS [9], which is
targeted more towards offline analysis, even features built-
in support for XML and automatic grammar inference.
However, these systems cannot easily handle complicated
encodings such as compressed data, which are supported
by Nail’s stream transforms. While sophisticated lan-
guages like PADS allow for handling particular variations
of offset fields, compressed data, or even XML entities,
each of these features has to be implemented in the data
description language and all associated tools. Nail’s trans-
formations keep the core language small, while enabling
the wide range of features real-world protocols require.

Recently, the Hammer project [32] introduced a
security-focused parser framework for binary protocols.
Hammer implements grammars as language-integrated
parser combinators, an approach popularized by Parsec
for Haskell [21]. The parser combinator style (to our
knowledge, first described by Burge [4]) is a natural way
of concisely expressing top-down grammars [7] by com-
posing them from one or multiple sub-parsers.1 Hammer
then constructs a tree of function pointers which can be
invoked to parse a given input into an AST.

1For more background on the history of expressing grammars, see
Bryan Ford’s masters thesis [11], which also describes the default pars-
ing algorithm used by Hammer.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 617

Nail improves upon Hammer in three ways. First, Nail
generates output in addition to parsing input. Second,
Nail does not require the programmer to write poten-
tially insecure semantic actions. Last, Nail’s structural
dependencies and stream transforms allow it to work with
protocols that Hammer cannot handle, such as protocols
with offset fields, length fields, checksums, or compressed
data, although Hammer has special facilities for arrays
immediately preceded by their length.

Parsifal [22] is a parser framework for OCaml that also
supports generating output. Parsifal structures grammars
as an OCaml type that holds an internal model and func-
tions for parsing input and output. However, Parsifal can
produce parsers and generators only for simple, fixed-size
structures. The programmer can then use these when im-
plementing parsers and generators for more complicated
formats, manually handling offsets, checksums, and the
like, risking bugs. Nail handles more complicated con-
structs without the programmer manually writing code to
support them.

We presented an earlier design of Nail at a work-
shop [2]. At that stage, Nail had only limited support
for dependent fields, and did not support stream trans-
forms at all, which are crucial for supporting real-world
formats like DNS and ZIP. The workshop paper also did
not provide a detailed design discussion or evaluation.

Application use of parsers. Generated parsers have
long been used to parse human input, such as program-
ming languages and configuration files. Frequently, such
languages are specified with a formal grammar in an
executable form. Unfortunately, parser frameworks are
seldom used to recognize machine-created input; as we
demonstrate in §6, state-of-the-art parser generators are
not suitable for parsing or generating many real-world
data formats.

A notable exception is the Mongrel web server [36]
which uses a grammar for HTTP written in the Ragel
regular expression language [39]. Mongrel was re-written
from scratch multiple times to achieve better scalability
and design, yet the grammar was reused across all itera-
tions [31]. We hope that Nail’s ideas make it possible to
handle a wider range of protocols using parser generators,
and to build more applications on top of grammar-based
parsers.

3 MOTIVATION

To motivate the need for Nail, this section presents a case
study of vulnerabilities due to ad-hoc input parsing and
output generation. Broadly speaking, parsing vulnerabili-
ties can lead to two kinds of problems—memory corrup-
tion and logic errors—and as we show, both are prevalent
in software and lead to significant security problems.

Widely exploited parsing errors. Three recent high-
profile security vulnerabilities are due to logic errors in
input processing. In all cases, when the vulnerabilities
were fixed, a similar flaw was exposed immediately after-
wards, showing the need for a different approach to input
handling that eliminates those vulnerabilities by design.

The Evasi0n jailbreak for iOS 6 [38] relies on the XNU
kernel and user-mode code-signing verifier interpreting
executable metadata differently, so the code signature
checker sees different bytes at a virtual address than what
the kernel maps into the process. The next version of
iOS added an explicit check for this particular metadata
inconsistency. However, because parsing and processing
of the input data is still mixed, the jailbreakers could set a
flag that re-introduced the inconsistency after the check,
but before signatures are verified [16], which allowed iOS
7 to be jailbroken.

Similarly, vulnerabilities in X.509 parsers for SSL cer-
tificates allowed attackers to get certificates for domains
they do not control. First, Moxie Marlinspike discov-
ered that the X.509 parsers in popular browsers handle
NUL-bytes in certificates incorrectly [23]. After this vul-
nerability was fixed, Dan Kaminsky discovered [20] that
other structures, such as length fields and duplicated data,
were also handled incorrectly.

Similarly, the infamous Android master key bug [13]
completely bypassed Android security by exploiting
parser inconsistencies between the ZIP handler that
checks signatures for privileged applications and the ZIP
implementation that ultimately extracts those files. Thus,
privileged application bundles could be modified to in-
clude malicious code without breaking their signatures.
Google quickly fixed this particular parser inconsistency,
but another vulnerability, based on a different inconsis-
tency between the parsers, was quickly disclosed [14].

Case study: ZIP file handling. To understand the im-
pact of parsing mistakes in real-world software, we con-
ducted a systematic study of vulnerabilities related to
ZIP file parsing. The ZIP format has been associated
with many vulnerabilities, and the PROTOS Genome
project [34] found numerous security vulnerabilities re-
lated to input handling in most implementations of ZIP
and other archive formats. We extend this study by look-
ing at the CVE database.

We found 83 vulnerabilities in the CVE database [25]
that mention the search string “ZIP.” Just 16 of these vul-
nerabilities were related to processing ZIP archives; the
rest were unrelated to ZIP archives or involved applica-
tions insecurely using the contents of untrusted ZIP files.
Figure 1 summarizes the 16 ZIP-related vulnerabilities.

These input-processing vulnerabilities fall into two
broad classes. The first class, which occurred 11 times,2

2We classified the following vulnerabilities as memory corruption

3

618 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Classification Example CVE Example description Count

Memory corruption CVE-2013-5660 Buffer overflow 11
Parsing inconsistency CVE-2013-1462 Multiple virus scanners interpret ZIP files incorrectly 4
Semantic misunderstanding CVE-2014-2319 Weak cryptography used even if user selects AES 1

Total of all vulnerabilities related to .zip processing 16

Figure 1: Classification of vulnerabilities in the CVE database from 2010 to May 2014 containing the term “ZIP” and involving the ZIP file format.

is memory safety bugs, such as buffer overflows, which
allow an adversary to corrupt the application’s memory
using specially crafted inputs. These mistakes arise in
lower-level languages that do not provide memory safety
guarantees, such as C, and can be partially mitigated by
a wide range of techniques, for example static analysis,
dynamic instrumentation, and address space layout ran-
domization, that make it more difficult for an adversary
to exploit these bugs. Nail helps developers using lower-
level languages to avoid these bugs in the first place.

The second class, which occurred four times in our
study, is logic errors, where application code misinter-
prets input data. Safe languages and exploit mitigation
technologies do not help against such vulnerabilities. This
can lead to serious security consequences when two sys-
tems disagree on the meaning of a network packet or a
signed message, as shown by the vulnerabilities we de-
scribed before. CVE-2013-0211 shows that logic errors
can be the underlying cause of memory corruption, when
one part of a parser interprets a size field as a signed
integer and another interprets it as an unsigned integer.
CVE-2013-7338 is a logic error that allows an attacker
to craft ZIP files that are incorrectly extracted or result
in application hangs with applications using a Python
ZIP library, because this library does not check that two
fields that contain the size of a file contain the same value.
The Android ZIP file signature verification bug that we
described earlier was also among these 4 vulnerabilities.

These mistakes are highly application-specific, and
are difficult to mitigate using existing techniques, and
these mistakes can occur even in high-level languages
that guarantee memory safety. By allowing developers to
specify their data format just once, Nail avoids logic errors
and inconsistencies in parsing and output generation.

4 DESIGN

Nail’s goals are to reduce programmer effort required to
safely interact with data formats and prevent vulnerabili-
ties like those described in §3. In particular, this means:

• Using a single grammar to define both the exter-
nal format and the internal representation. This
allows the same grammar to be re-used in multiple

attacks based on their description: CVE-2013-5660, -0742, -0138, CVE-
2012-4987, -1163, -1162, CVE-2011-2265, CVE-2010-4535, -1657,
-1336, and -1218.

programs, and helps avoid vulnerabilities like the
Android Master Key bug.

• Parsing inputs into internal representations, as well
as generating outputs from internal representations,
without requiring the programmer to write any se-
mantic actions. This prevents vulnerabilities such as
the iOS XNU bug, where format recognition and se-
mantics are mixed and interact in unexpected ways.

• Eliminating redundancy in internal representations,
such as storing both an explicit length field and an
implicit length of a container data structure, to pro-
vide programmers a consistent, unambiguous view
of the data. This helps avoid bugs such as the one
discovered in the Python ZIP library [28].

• Allow programmers to define grammars for com-
plex real-world data formats through well-defined
extensibility mechanisms. This helps prevent pro-
grammers from falling back on manual parsing when
encountering a complex data format.

4.1 Overview
Internal model. Nail grammars describe both the ex-
ternal format and an internal representation of a protocol.
Nail produces the following from a single, descriptive
grammar:

• Type declarations for the internal model, which the
application should use to represent data items in
memory.

• The parser, a function that the application should
invoke to parse a sequence of bytes into an instance
of the above model.

• The generator, a function that the application should
invoke to create a sequence of bytes from an instance
of the model.

For example, Figure 2 shows a Nail grammar for DNS
packets. For this grammar, Nail produces the type decla-
rations shown in Figure 3, and the parser and generator
functions shown in Figure 4.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 619

1 dnspacket = {
2 id uint16
3 qr uint1
4 opcode uint4
5 aa uint1
6 tc uint1
7 rd uint1
8 ra uint1
9 uint3 = 0

10 rcode uint4
11 @qc uint16
12 @ac uint16
13 @ns uint16
14 @ar uint16
15 questions n_of @qc question
16 responses n_of @ac answer
17 authority n_of @ns answer
18 additional n_of @ar answer
19 }
20 question = {
21 labels compressed_labels
22 qtype uint16 | 1..16
23 qclass uint16 | [1,255]
24 }
25 answer = {
26 labels compressed_labels
27 rtype uint16 | 1..16
28 class uint16 | [1]
29 ttl uint32
30 @rlength uint16
31 rdata n_of @rlength uint8
32 }
33 compressed_labels = {
34 $decompressed transform dnscompress ($current)
35 labels apply $decompressed labels
36 }
37 label = { @length uint8 | 1..64
38 label n_of @length uint8 }
39 labels = <many label; uint8 = 0>

Figure 2: Nail grammar for DNS packets, used by our prototype DNS
server.

struct dnspacket {
uint16_t id;
uint8_t qr;
/* ... */
struct {
struct question *elem;
size_t count;

} questions;
};

Figure 3: Portions of the C data structures defined by Nail for the DNS
grammar shown in Figure 2.

struct dnspacket *parse_dnspacket(NailArena *arena,
const uint8_t *data,
size_t size);

int gen_dnspacket(NailArena *tmp_arena,
NailStream *out,
struct dnspacket *val);

Figure 4: The API functions generated by Nail for parsing inputs and
generating outputs for the DNS grammar shown in Figure 2.

Semantic bijection. Parsing inputs and generating out-
puts suggests a bijection between external data and its
internal representation. However, a bijection in the tradi-
tional sense often does not make sense for data formats.
Consider a grammar for a text language that tolerates
white space, or a binary protocol that tolerates arbitrarily
long padding. Program semantics should be independent
of the number of padding elements in the input, and Nail
therefore does not expose that information to the program-
mer. We call such discarded fields constants. Similarly,
programs should not necessarily preserve the layout of
objects referred to by their offsets.

Therefore, Nail establishes only a semantic bijection
between the external format and the internal model. That
is, when Nail parses an input into an internal representa-
tion, and then generates output from that representation,
the two byte streams (input and output) will have the
same meaning (i.e., be interpreted equivalently by Nail).
However, the byte streams might not be identical. If
the grammar consists of a simple protocol without off-
set fields, constants, and the like, there is a conventional
bijection between internal models and valid parser inputs.

Hiding redundant information. Nail’s internal model
is designed to hide unneeded and redundant information
from the application. Nail introduces dependent fields,
which contain data that can be computed during genera-
tion and need to be kept as additional state during pars-
ing. Dependent fields are, for example, used to represent
lengths, offsets, and checksums. If dependent fields were
exposed in the internal model, information would be du-
plicated and inconsistent internal data structures could
be produced when data is modified. For example, when
using Nail to handle UDP packets, without dependent
fields, programmers might forget to update checksum
fields when they modify the payload data.

Parser extensions. Real-world protocols contain com-
plicated ways of encoding data. Fully representing these
in an intentionally limited model such as our parser lan-
guage is impractical. Therefore, Nail introduces transfor-
mations, which allow arbitrary code by the programmer
to interact with the parser and generator. Nail parsers
and generators interact with data through an abstract
stream, which allows reading and writing of bits and
re-positioning. Transformations allow the programmer to
write functions in a general-purpose language that con-
sume streams and define new temporary streams, while
also reading or writing the values of dependent fields.

Initial versions of Nail’s design included a special com-
binator for handling offset fields, which consumed a de-
pendent field and applied a parser at the offset specified
therein. However, it proved impossible to foresee all the
ways in which a protocol could encode an offset; for exam-
ple, some protocols such as PDF and ZIP locate structures

5

620 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Nail grammar External format Internal data type in C

uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈ {1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

size_t N_count;

int_t *elem;

};

{ Structure with two fields struct {

hours uint8 uint8_t hours;

minutes uint8 uint8_t minutes;

} };

<int8=’"’; p; int8=’"’> A value described by parser p, in quotes The data type of p

choose { Either an 8-bit integer between 1 and 8, struct {

A = uint8 | 1..8 or a 16-bit integer larger than 256 enum {A, B} N_type;

B = uint16 | 256.. union {

} uint8_t a;

uint16_t b;

};

};

@valuelen uint16 A 16-bit length field, followed by struct {

value n_of @valuelen uint8 that many bytes size_t N_count;

uint8_t *elem;

};

$data transform Applies programmer-specified function to /* empty */

deflate($current @method) create new stream (§4.4)

apply $stream p Apply parser p to stream $stream (§4.4) The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

Figure 5: Syntax of Nail parser declarations and the formats and data types they describe.

by scanning for a magic number starting at the end of the
file or at a fixed offset. In nested grammars, offsets are
also not necessarily computed from the beginning of a file
or packet. Nail’s transformations allow the programmer
to write arbitrary functions that can handle such structures
and streams, which are a generic abstraction for input and
output data that allow the decoded data to be integrated
with the rest of the generated Nail parser.

4.2 Basics
A Nail parser defines both the structure of some external
format and a data type to represent that format. Parsers
are constructed by combinators over simpler parsers, an
approach popularized by the Parsec framework [21]. We
provide the most common combinators familiar from
other parser combinator libraries, such as Parsec and
Hammer [32] and extend them so they also describe a
data type.

We present both a systematic overview of Nail’s syntax
with short examples in Figure 5, and explain our design in
more detail below, using a grammar for the well-known
DNS protocol as a running example (shown in Figure 2).

Rules. A Nail grammar consists of rules that assign a
parser to a name. Rules are written as assignments, such
as ints = /*parser definition*/, which defines a rule
called ints. As we will describe later in §4.3 and §4.4,
rules can optionally consume parameters. Rules can be
invoked in a Nail grammar anywhere a parser can appear.
Rule invocations act as though the body of the rule had
been substituted in the code. If parameters appear, they
are passed by reference.

Integers and constraints. Nail’s fundamental parsers
represent signed or unsigned integers with arbitrary
lengths up to 64 bits. Note that is possible to define

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 621

parsers for sub-byte lengths, for example, the flag bits in
the DNS message header, in lines 5 through 8.

The grammar can also constrain the values of an integer.
Nail expresses constraints as a set of permissible values or
value ranges. Extending the Nail language and implemen-
tation to support richer constraints languages would be
relatively trivial, however we have found that the current
syntax covers permissible values within existing protocols
correctly and concisely.

Repetition. The many combinator takes a parser and ap-
plies it repeatedly until it fails, returning an array of the
inner parser’s results. In line 39 of the DNS grammar, a
sequence of labels is parsed by parsing as many labels as
possible, that is, until an invalid length field is encoun-
tered. The sepBy combinator additionally takes a constant
parser, which it applies in between parsing two values,
but not before parsing the first value or after parsing the
last. This is useful for parsing an array of items delimited
by a separator.

Structures. Nail provides a structure combinator with
semantic labels instead of the sequence combinator that
other parser combinator libraries use to capture structures
in data formats. The structure combinator consists of a
sequence of fields, typically consisting of a label and a
parser that describes the contents of that field, surrounded
by curly braces. Other field types will be described below.
The syntax of the structure combinator is inspired by
the Go language [15], with field names preceding their
definition.

Constants. In some cases, not all bytes in a structure
actually contain information, such as magic numbers or
reserved fields. Those fields can be represented in Nail
grammars by constant fields in structures. Constant fields
do not correspond to a field in the internal model, but they
are validated during parsing and generated during output.
Constants can either have integer values, such as in line
9 of the DNS grammar, or string values for text-based
protocols, e.g. many uint8 = “Foo”.

In some protocols, there might be many ways to rep-
resent the same constant field and there is no semantic
difference between the different syntactic representations.
Nail therefore allows repeated constants, such as many
(uint8=’ ’), which parses any number of space charac-
ters, or || uint8 = 0x90 || uint16 = 0x1F0F, which
parses two of the many representations for x86 NOP
instructions, which are used as padding between basic
blocks in an executable.

As discussed above, choosing to use these combinators
on constant parsers weakens the bijection between the
format and the data type, as there are multiple byte-strings
that correspond to the same internal representation and
the generator chooses one of these.

Wrap combinator. When implementing real protocols
with Nail, we often found structures that consist of many
constants and only one named field. This pattern is com-
mon in binary protocols which use fixed headers to denote
the type of data structure to be parsed. In order to keep the
internal representation cleaner, we introduced the wrap
combinator, which takes a sequence of parsers containing
exactly one non-constant parser. The external format is
defined as though the wrap combinator were a structure,
but the data model does not introduce a structure with just
one element, making the application-visible representa-
tion (and thus application code) more concise. Line 39 of
the DNS grammar uses the wrap combinator to hide the
terminating NUL-byte of a sequence of labels.

Choices. If multiple structures can appear at a given po-
sition in a format, the programmer lists the options along
with a label for each in the choose combinator. During
parsing, Nail remembers the current input position and
attempts each option in the order they appear in the gram-
mar. If an option fails, the parser backtracks to the initial
position. If no options succeed, the entire combinator
fails. In the data model, choices are represented as tagged
unions. The programmer has to be careful when options
overlap, because if the programmer meant to generate
output for a choice, but the external representation is also
valid for an earlier, higher-priority option, the parser will
interpret it as such. However, real data formats normally
do not have this overlap and we did not encounter it in the
grammars we wrote. An example is provided in Figure 6.

Optional. Nail includes an optional combinator,
which attempts to recognize a value, but succeeds without
consuming input when it cannot recognize that value. Syn-
tactically, optional is equivalent to a choice between the
parser and an empty structure, but in the internal model
it is more concisely represented as a reference that is
null when the parser fails. For example, the grammar for
Ethernet headers uses optional vlan_header to parse
the VLAN header that appears only in Ethernet packets
transmitted to a non-default VLAN.

References. Rules allow for recursive grammars. To
support recursive data types, we introduce the reference
combinator * that does not change the syntax of the exter-
nal format described, but introduces a layer of indirection,
such as a reference or pointer, to the model data type.
The reference combinator does not need to be used when
another combinator, such as optional or many, already
introduces indirection in the data type. An example is
shown in Figure 6.

4.3 Dependent fields
Data formats often contain values that are determined
by other values or the layout of information, such as
checksums, duplicated information, or offset and length

7

622 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

expr = choose {
PAREN = <uint8=’(’; *expr; uint8=’)’>
PRODUCT = sepBy1 uint8=’*’ expr
SUM = sepBy1 uint8=’+’ expr
INTEGER = many1 uint8 | ’0’ .. ’9’

}

Figure 6: Grammar for sums and products of integers.

fields. We represent such values using dependent fields
and handle them transparently during parsing and genera-
tion without exposing them to the internal model.

Dependent fields are defined within a structure like
normal fields, but their name starts with an @ symbol. A
dependent field is in scope and can be referred to by the
definition of all subsequent fields in the same structure.
Dependent fields can be passed to rule invocations as
parameters.

Dependent fields are handled like other fields when
parsing input, but their values are not stored in the in-
ternal data type. Instead the value can be referenced by
subsequent parsers and it discarded when the field goes
out of scope. When generating output, Nail visits a depen-
dent field twice. First, while generating the other fields of
a structure, the generator reserves space for the dependent
field in the output. Once the dependent field goes out of
scope, the generator writes the dependent field’s value to
this space.

Nail provides only one built-in combinator that uses
dependent fields, n_of, which acts like the many combi-
nator, except it represents an exact number, specified in
the dependent field, of repetitions, as opposed to as many
repetitions as possible. For example, DNS labels, which
are encoded as a length followed by a value, are described
in line 38 of the DNS grammar. Other dependencies, such
as offset fields or checksums, are not handled directly by
combinators, but through transformations, as we describe
next.

4.4 Input streams and transformations
Traditional parsers handle input one symbol at a time,
from beginning to end. However, real-world formats
often require non-linear parsing. Offset fields require a
parser to move to a different position in the input, possibly
backwards. Size fields require the parser to stop process-
ing before the end of input has been reached, and perhaps
resume executing a parent parser. Other cases, such as
compressed data, require more complicated processing
on parts of the input before it can be handled.

Nail introduces two concepts to handle these chal-
lenges, streams and transformations. Streams represent a
sequence of bytes that contain some external format. The
parsers and generators that Nail generates always operate
on an implicit stream named $current that they process
front to back, reading input or appending output. Gram-

mars can use the apply combinator to parse or generate
external data on a different stream, inserting the result in
the data model.

Streams are passed as arguments to a rule or defined
within the grammar through transformations. The current
stream is always passed as an implicit parameter.

Transformations are two arbitrary functions called dur-
ing parsing and output generation. The parsing func-
tion takes any number of stream arguments and depen-
dent field values, and produces any number of temporary
streams. This function may reposition and read from the
input streams and read the values of dependent fields,
but not change their contents and values. The generat-
ing function has to be an inverse of the parsing function.
It takes the same number of temporary streams that the
parsing function produces, and writes the same number
of streams and dependent field values that the parsing
function consumes.

Typically, the top level of most grammars is a rule that
takes only a single stream, which may then be broken up
by various transformations and passed to sub-rules, which
eventually parse various linear fragment streams. Upon
parsing, these fragment streams are generated and then
combined by the transforms.

To reduce both programmer effort and the risk of unsafe
operations, Nails provides implementations of transforma-
tions for many common features, such as checksums, size,
and offset fields. Furthermore, Nail provides library func-
tions that can be used to safely operate on streams, such
as splitting and concatenation. Nail implements streams
as iterators, so they can share underlying buffers and can
be efficiently duplicated and split.

Transformations need to be carefully written, because
they can violate Nail’s safety properties and introduce
bugs. However, as we will show in §6.2, Nail transfor-
mations are much shorter than hand-written parsers, and
many formats can be represented with just the transfor-
mations in Nail’s standard library. For example, our Zip
transformations are 78 lines of code, compared to 1600
lines of code for a hand-written parser. Additionally,
Nail provides convenient and safe interfaces for allocat-
ing memory and accessing streams that address the most
common occurrences of buffer overflow vulnerabilities.

Transformations can handle a wide variety of patterns
in data formats, including the following:

Offsets. A built-in transformation for handling off-
set fields, which is invoked as follows: $fragment
transform offset_u32($current, @offset). This
transformation corresponds to two functions for parsing
and generation, as shown in Figure 7. It defines a new
stream $fragment that can be used to parse data at the
offset contained in @offset, by using apply $fragment
some_parser.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 623

int offset_u32_parse(NailArena *tmp,
NailStream *out_str, NailStream *in_current,
const uint32_t *off)

{
/* out_str = suffix of in_current

at offset *off */
}

int offset_u32_generate(NailArena *tmp,
NailStream *in_fragment,
NailStream *out_current, uint32_t *off)

{
/* *off = position of out_current */
/* append in_fragment to out_current */

}

Figure 7: Pseudocode for two functions that implement the offset trans-
form.

Sizes. A similar transformation handles size fields. Just
like the offset transform, it takes two parameters, a stream
and a dependent field, but instead of returning the suffix
of the current stream after an offset, it returns a slice of
the given size from the current stream starting at its cur-
rent position. When generating, it appends the fragment
stream to the current stream and writes the size of the
fragment to the dependent field.

Compressed data. Encoded, compressed, or encrypted
data can be handled transparently by writing a custom
transformation that transforms a coded stream into one
that can be parsed by a Nail grammar and vice versa. This
transformation must be carefully written to not have bugs.

Checksums. Checksums can be verified and computed
in a transformation that takes a stream and a dependent
field. In some cases, a checksum is calculated over a
buffer that contains the checksum itself, with the check-
sum being set to some particular value. Because the func-
tions implementing a transformation are passed a pointer
to any dependent fields, the checksum function can set the
checksum’s initial value before calculating the checksum
over the entire buffer, including the checksum.

A real-world example with many different transforms,
used to support the ZIP file format, is described in §6.1.

5 IMPLEMENTATION

The current prototype of the Nail parser generator sup-
ports the C programming language. The implementation
parses Nail grammars with Nail itself, using a 130-line
Nail grammar feeding into a 2,000-line C++ program that
emits the parser and generator code. Bootstrapping is per-
formed with a subset of the grammar implemented using
conventional grammars. An option for C++ STL data
models is in development. In this section, we will discuss
some particular features of our parser implementation.

A generated Nail parser makes two passes through the
input: the first to validate and recognize the input, and the
second to bind this data to the internal model. Currently
the parser uses a straightforward top-down algorithm,
which can perform poorly on grammars that backtrack
heavily. However, preparations have been made to add
Packrat parsing [12] that achieve linear time even in the
worst case.

Defense-in-depth. Security exploits often rely on raw
inputs being present in memory [3], for example to in-
clude shell-code or crafted stack frames for ROP [29]
attacks in padding fields or the application executing a
controlled sequence of heap allocations and de-allocations
to place specific data at predictable addresses [18, 19]. Be-
cause the rest of the application or even Nail’s generated
code may contain memory corruption bugs, Nail carefully
handles memory allocations as defense-in-depth to make
exploiting such vulnerabilities harder.

When parsing input, Nail uses two separate memory
arenas. These arenas allocate memory from the system
allocator in large, fixed-size blocks. Allocations are han-
dled linearly and all data in the arena is zeroed and freed
at the same time. Nail uses one arena for data used only
during parsing, including dependent fields and temporary
streams; this arena is released before the parser returns.
The other arena is used to allocate the internal data type
returned and is freed by the application once it is done
processing an input.

Furthermore, the internal representation does not in-
clude any references to the input stream, which can there-
fore be zeroed immediately after the parser succeeds, so
an attacker has to write an exploit that works without
referencing data from the raw input.

Finally, Nail performs sophisticated error handling only
in a special debug configuration and will print error mes-
sages about the input only to stderr. Besides complicat-
ing the parser, advanced error handling invites program-
mers to attempt to fix malformed input, such as adding
reasonable defaults for a missing field. Such error-fixing
not only introduces parser inconsistencies, but also might
allow an attacker to sneak inconsistent input past a parser.

6 EVALUATION

In our evaluation of Nail, we answer four questions:

• Can Nail grammars support real-world data formats,
and are Nail’s techniques critical to handling these
formats?

• How much programmer effort is required to build an
application that uses Nail for data input and output?

• Does using Nail for handling input and output im-
prove application security?

9

624 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Protocol LoC Challenging features

DNS packets 48+64 Label compression,
count fields

ZIP archives 92+78 Checksums, offsets,
variable length trailer,
compression

Ethernet 16+0 —
ARP 10+0 —
IP 25+0 Total length field, options
UDP 7+0 Checksum, length field
ICMP 5+0 Checksum

Figure 8: Protocols, sizes of their Nail grammars, and challenging
aspects of the protocol that cannot be expressed in existing grammar
languages. A + symbol counts lines of Nail grammar code (before the
+) and lines of C code for protocol-specific transforms (after the +).

• Does Nail achieve acceptable performance?

6.1 Data formats
To answer the first question, we used Nail to implement
grammars for seven protocols with a range of challenging
features. Figure 8 summarizes these protocols, the lines
of code for their Nail grammars, and the challenging
features that make the protocols difficult to parse with
state-of-the-art parser generators. We find that despite
the challenging aspects of these protocols, Nail is able
to capture the protocols, by relying on its novel features:
dependent fields, streams, and transforms. In contrast,
state-of-the-art parser generators would be unable to fully
handle 5 out of the 7 data formats. In the rest of this
subsection, we describe the DNS and Zip grammars in
more detail, focusing on how Nail’s features enable us to
support these formats.

DNS. In Section 4, we introduced Nail’s syntax with
a grammar for DNS packets, shown in Figure 2. The
grammar corresponds almost directly to the diagrams
in RFC 1035, which defines DNS [26: §4]. Each DNS
packet consists of a header, a set of question records, and a
set of answer records. Domain names in both queries and
answers are encoded as a sequence of labels, terminated
by a zero byte. Labels are Pascal-style strings, consisting
of a length field followed by that many bytes comprising
the label.

One challenging aspect of DNS packets lies in the
count fields (qc, ac, ns, and ar), which represent the
number of questions or answers in another part of the
packet. Nail’s n_of combinator handles this situation
easily, which would have been difficult to handle for other
parsers.

Another challenging aspect of DNS is label compres-
sion [26: §4.1.4]. Label compression is used to reduce the
size overhead of including each domain name multiple

int dnscompress_parse(NailArena *tmp,
NailStream *out_decomp,
NailStream *in_current);

int dnscompress_generate(NailArena *tmp,
NailStream *in_decomp,
NailStream *out_current);

Figure 9: Signatures of stream transform functions for handling DNS
label compression.

times in a DNS reply (once in the question section, and at
least once in the response section). If a domain name suf-
fix is repeated, instead of repeating that suffix, the DNS
packet may write a two-bit marker sequence followed by
a 14-bit offset into the packet, indicating the position of
where that suffix was previously encoded.

Handling label compression in existing tools, such as
Bison or Hammer, would be awkward at best, because
some ad-hoc trick would have to be used to re-position the
parser’s input stream. Keeping track of the position of all
recognized labels would not be enough, as the offset field
may refer to any byte within the packet, not just the be-
ginning of labels. For this reason, the DNS server used as
the example for Hammer does not support compression.

In contrast, Nail is able to handle label compression,
by using a stream transform; the signatures of the two
transform functions are shown in Figure 9. When pars-
ing a packet, this transform decompresses the DNS label
stream by following the offset pointers. When generating
a packet, this transform receives the current suffix as an in-
put, and scans the packet so far for previous occurrences,
which implements compression.

ZIP files. An especially tricky data format is the ZIP
compressed archive format [33]. ZIP files are normally
parsed end-to-beginning. At the end of each ZIP file is an
end-of-directory header. This header contains a variable-
length comment, so it has to be located by scanning back-
wards from the end of the file until a magic number and
a valid length field is found. Many ZIP implementations
disagree on how to find this header in confusing situ-
ations, such as when the comment contains the magic
number [42].

This end-of-directory header contains the offset and
size of the ZIP directory, which is an array of directory
entry headers, one for every file in the archive. Each entry
stores file metadata, such as file name, compressed and
uncompressed size, and a checksum, in addition to the off-
set of a local file header. The local file header duplicates
most information from the directory entry header. The
compressed file contents follow the header immediately.

Duplicating information made sense when ZIP files
were stored on floppy disks with slow seek times and high

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 625

1 zip_file = {
2 $file, $header transform
3 zip_end_of_directory ($current)
4 contents apply $header
5 end_of_directory ($file)
6 }
7 end_of_directory ($file) = {
8 // ...
9 @directory_size uint32

10 @directory_start uint32
11 $dirstr1 transform
12 offset_u32 ($filestream @directory_start)
13 $directory_stream transform
14 size_u32 ($dirstr1 @directory_size)
15 @comment_length uint16
16 comment n_of @comment_length uint8
17 files apply $directory_stream n_of
18 @total_directory_records dir_entry ($file)
19 }
20 dir_entry ($file) = {
21 // ...
22 @compression_method uint16
23 mtime uint16
24 mdate uint16
25 @crc32 uint32
26 @compressed_size uint32
27 @uncompressed_size uint32
28 @file_name_len uint16
29 @extra_len uint16
30 @comment_len uint16
31 // ...
32 @off uint32
33 filename n_of @file_name_len uint8
34 extra_field n_of @extra_len uint8
35 comment n_of @comment_len uint8
36 $content transform offset_u32 ($file @off)
37 contents apply $content
38 file (@crc32, @compression_method,
39 @compressed_size, @uncompressed_size)
40 }
41 file (@crc32 uint32, @method uint16,
42 @compressed_size uint32,
43 @uncompressed_size uint32) = {
44 uint32 = 0x04034b50
45 version uint16
46 flags file_flags
47 @method_lcl uint16
48 // ...
49 $compressed transform
50 size_u32 ($current @compressed_size)
51 $uncompressed transform
52 zip_compression ($compressed @method)
53 transform crc_32 ($uncompressed @crc32)
54 contents apply $uncompressed many uint8
55 transform u16_depend (@method_lcl @method)
56 // ...
57 }

Figure 10: Nail grammar for ZIP files. Various fields have been cut for
brevity.

fault rates, and memory constraints made it impossible to
keep the ZIP directory in memory or the archive was split
across multiple disks. However, care must be taken that
the metadata is consistent. For example, vulnerabilities
could occur if the length in the central directory is used to
allocate memory and the length in the local directory is
used to extract without checking that they are equal first,
as was the case in the Python ZIP library [28]. Figure 10
shows an abbreviated version of our ZIP file grammar.
The ZIP grammar is a good example of how transfor-
mations capture complicated syntax in a real-world file
format; existing parser languages cannot handle a file
format of this complexity.

The zip_file grammar first splits the entire file stream
into two streams based on the zip_end_of_directory
transform on line 2. The corresponding C function
zip_end_of_directory_parse finds the end-of-directory
header as described above, by scanning the file backwards,
and splits the file into two streams, one containing the
end-of-directory header and one containing the file con-
tents. The end_of_directory rule is then applied to the
header stream in line 4. All offsets in the ZIP file refer
to the beginning of the file, so the stream $file which
contains the file contents without the header is passed as
an argument to all parsers from hereon.

The directory header contains the offset and size of the
ZIP directory (lines 9 and 10). The offset and size trans-
formations extract a stream containing just the directory
from the file contents. This stream is then parsed as an
array of directory entries in line 17. Each directory entry
in turn points to a local file header, which is similarly
extracted and parsed with the file rule.

The file rule starting at line 41, describing a ZIP file
entry, takes dependent field parameters containing file
metadata information from the directory header. How-
ever, this same information is duplicated in the file entry,
so the grammar uses the Nail-supplied u16_depend trans-
form to check whether the two values are equal. Unlike
most other transforms, u16_depend does not consume or
produce strings; it only checks that two dependent fields
are equal when parsing, and assigns the value of the sec-
ond field to the first when generating. This ensures that
the programmer does not have to worry about inconsis-
tencies when handling the internal representation of a ZIP
file.

Immediately following the file entry is the compressed
data. Because most compression algorithms operate on
unbounded streams of data, Nail decompresses data in
two steps. First, it isolates the compressed data from the
rest of the stream by using the size transform, which
operates on the current stream, meaning it will consume
data starting at the current position of the parser in the
input. Second, Nail invokes a custom zip_compression
transform that implements the appropriate compression

11

626 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Application LoC w/ Nail LoC w/o Nail

DNS server 295 683 (Hammer parser)
unzip 220 1,600 (Info-Zip)

Figure 11: Comparison of code size for three applications written in
Nail,and a comparable existing implementation without Nail.

and decompression functions based on the specified com-
pression method. These functions are otherwise oblivious
to the layout or metadata of the file.

6.2 Programmer effort
To evaluate how much programmer effort is required
to build an application that uses Nail, we implemented
two applications—a DNS server and an unzip program—
based on the above grammars, and compared code size
with comparable applications that process data manually,
using sloccount [41]. We also compare the code size
of our DNS server to a DNS server written using the
Hammer parsing framework, although it does not fully
support DNS (e.g., it lacks label compression, among
other things). Figure 11 summarizes the results.

DNS. Our DNS server parses a zone file, listens to in-
coming DNS requests, parses them, and generates appro-
priate responses. The DNS server is implemented in 183
lines of C, together with 48 lines of Nail grammar and 64
lines of C code implementing stream transforms for DNS
label compression. In comparison, Hammer [32] ships
with a toy DNS server that responds to any valid DNS
query with a CNAME record to the domain “spargelze.it”.
Their server consists of 683 lines of C, mostly custom
validators, semantic actions, and data structure definitions,
with 52 lines of code defining the grammar with Ham-
mer’s combinators. Their DNS server does not implement
label compression, zone files, etc. From this, we conclude
that Nail leads to much more compact code for dealing
with DNS packet formats.

ZIP. We implemented a ZIP file extractor in 50 lines of
C code, together with 92 lines of Nail grammar and 78
lines of C code implementing two stream transforms (one
for the DEFLATE compression algorithm with the help of
the zlib library, and one for finding the end-of-directory
header).

Because more recent versions of ZIP have added more
features, such as large file support and encryption, the
closest existing tool in functionality is the historic ver-
sion 5.4 of the Info-Zip unzip utility [35] that is shipped
with most Linux distributions. The entire unzip distri-
bution is about 46,000 lines of code, which is mostly
optimized implementations of various compression al-
gorithms and other configuration and portability code.
However, unzip isolates the equivalent of our Nail tool
in the file extract.c, which parses the ZIP metadata and

calls various decompression routines in other files. This
file measures over 1,600 lines of C, which suggests that
Nail is highly effective at reducing manual input parsing
code, even for the complex ZIP file format.

6.3 Security
We use a twofold approach to evaluate the security of
applications implemented with Nail. First, we analyze a
list of CVE’s related to the ZIP file format and argue how
our ZIP tools based on Nail are immune against those
vulnerability classes. Second, we present the results of
fuzz-testing our DNS server.

ZIP analysis. In §3, we presented 15 input handling
vulnerabilities related to ZIP files.

11 of these vulnerabilities involved memory corruption
during input handling. Because Nail’s generated code
checks offsets before reading and does not expose any un-
trusted pointers to the application, it is immune to memory
corruption attacks by design.

Nail also protects against parsing inconsistency vulner-
abilities like the four others we studied. Nail grammars
explicitly encode duplicated information such as the re-
dundant length fields in ZIP that caused a vulnerability in
the Python ZIP library. The other three vulnerabilities ex-
ist because multiple implementations of the same protocol
disagree on some inputs. Hand-written protocol parsers
are not very reusable, as they build application-specific
data structures and are tightly coupled to the rest of the
code. Nail grammars, however, can be re-used between
applications, avoiding protocol misunderstandings.

DNS fuzzing. To provide additional assurance that Nail
parsers are free of memory corruption attacks, we ran the
DNS fuzzer provided with the Metasploit framework [27]
on our DNS server, which sent randomly corrupted DNS
queries to our server for 4 hours, during which it did not
crash or trigger the stack or heap corruption detector.

6.4 Performance
To evaluate whether Nail-based parsers are compatible
with good performance, we compare the performance of
our DNS server to that of ISC BIND 9 release 9.9.5 [17],
a mature and widely used DNS server. We simulate a load
resembling that of an authoritative name server. First,
we generate domain names consisting of one or two la-
bels randomly selected from an English dictionary, and
one label that is one of three popular top-level domains
(com, net, and org). Second, we randomly selected 90%
of these domains and created a zone file that mapped
these domain names to 127.0.0.1. Finally, we used the
queryperf tool provided with BIND to query each do-
main between zero and three times, using a DNS server
running on the local machine. We used a single core of
an Intel i7-3610QM system with 12GB of RAM. The

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 627

0 50,000 100,000 150,000

NailDNS

Bind 9

Throughput
[

queries
s

]

0 0.1 0.2 0.3 0.4 0.5

NailDNS

Bind 9

Round Trip Time [msec]

Figure 12: A box plot comparing the performance of the Nail-based
DNS server compared to BIND 9.5.5 on 50,000 domains. The boxes
show the interquartile range, with the middle showing the median result.
The dots show outliers.

benchmark tool kept at most 20 queries outstanding at
once, and was configured to repeat the same randomized
sequence of queries for one minute. We repeated each
test seven times with 50,000 domain names, restarting
each daemon in between; we also repeated the tests with
1 million domain names, and found similar results. We
also performed one initial dry run to warm the file system
cache for the zone file.

The results are shown in Figure 12, and demonstrate
that our Nail-based DNS server can achieve higher perfor-
mance and lower latency than BIND. Although BIND is
a more sophisticated DNS server, and implements many
features that are not present in our Nail-based DNS server
and that allow it to be used in more complicated config-
urations, we believe our results demonstrate that Nail’s
parsers are not a barrier to achieving good performance.

7 CONCLUSION

This paper presented the design and implementation of
Nail, a tool for parsing and generating complex data for-
mats based on a precise grammar. Nail helps program-
mers avoid memory corruption and inconsistency vulner-
abilities while reducing effort in parsing and generating
real-world protocols and file formats. Nail achieves this
by reducing the expressive power of the grammar, estab-
lishing a semantic bijection between data formats and
internal representations. Nail captures complex data for-
mats by introducing dependent fields, streams, and trans-
forms. Using these techniques, Nail is able to support
DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of
code. Nail and all of the applications and grammars devel-
oped in this paper are released as open-source software,
available at https://github.com/jbangert/nail.

ACKNOWLEDGMENTS

We thank M. Frans Kaashoek and the anonymous review-
ers for their feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure
Hosts (CRASH) program under contract #N66001-10-2-
4089, and by NSF award CNS-1053143.

REFERENCES

[1] G. Back. Datascript - a specification and scripting
language for binary data. In Proceedings of the
1st ACM SIGPLAN/SIGSOFT Conference on Gen-
erative Programming and Component Engineering,
pages 66–77, Pittsburgh, PA, Oct. 2002.

[2] J. Bangert and N. Zeldovich. Nail: A practical in-
terface generator for data formats. In Proceedings
of the 1st Workshop on Language-Theoretic Secu-
rity (LangSec), pages 158–166, San Jose, CA, May
2014.

[3] S. Bratus, M. L. Patterson, and D. Hirsch. From
“shotgun parsers” to more secure stacks. In
Shmoocon, Nov. 2013.

[4] W. H. Burge. Recursive programming techniques.
Addison-Wesley Reading, 1975.

[5] CVE Details. Libpng: Security vulnerabili-
ties, 2014. http://www.cvedetails.com/
vulnerability-list/vendor_id-7294/
Libpng.html.

[6] CVE Details. GNU Zlib: List of security vul-
nerabilities, 2014. http://www.cvedetails.
com/vulnerability-list/vendor_id-72/
product_id-1820/GNU-Zlib.html.

[7] N. A. Danielsson. Total parser combinators. In Pro-
ceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, pages 285–
296, Baltimore, MD, Sept. 2010.

[8] J. de Guzman and H. Kaiser. Boost Spirit 2.5.2,
Oct. 2013. http://www.boost.org/doc/libs/
1_55_0/libs/spirit/doc/html/.

[9] K. Fisher and R. Gruber. PADS: A domain-specific
language for processing ad hoc data. In Proceedings
of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 295–304, Chicago, IL, June 2005.

[10] K. Fisher, Y. Mandelbaum, and D. Walker. The next
700 data description languages. In Proceedings of
the 33rd ACM Symposium on Principles of Program-
ming Languages (POPL), pages 2–15, Charleston,
SC, Jan. 2006.

[11] B. Ford. Packrat parsing: a practical linear-time
algorithm with backtracking. Master’s thesis, Mas-
sachusetts Institute of Technology, 2002.

13

628 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[12] B. Ford. Packrat parsing: Simple, powerful, lazy, lin-
ear time. In Proceedings of the 2002 ACM SIGPLAN
International Conference on Functional Program-
ming, Oct. 2002.

[13] J. Freeman. Exploit (& fix) Android “master
key”, 2013. http://http://www.saurik.com/
id/17.

[14] J. Freeman. Yet another Android master key bug,
2013. http://www.saurik.com/id/19.

[15] Google, Inc. The Go Programming Language, May
2014. http://golang.org/doc/.

[16] G. Hotz. evasi0n 7 writeup, 2013. http://geohot.
com/e7writeup.html.

[17] Internet Systems Consortium. BIND 9 DNS
server, 2014. http://www.isc.org/downloads/
bind/.

[18] jp. Advanced Doug Lea’s malloc exploits. Phrack
Magazine, 11(61), Aug. 2003. http://phrack.
org/issues/61/6.html.

[19] M. Kaempf. Vudo malloc tricks. Phrack Maga-
zine, 11(57), Nov. 2001. http://phrack.org/
issues/57/8.html.

[20] D. Kaminsky, M. L. Patterson, and L. Sassaman.
PKI layer cake: New collision attacks against the
global X.509 infrastructure. In Proceedings of the
2010 Conference on Financial Cryptography and
Data Security, pages 289–303, Jan. 2010.

[21] D. Leijen and E. Meijer. Parsec: Direct style
monadic parser combinators for the real world. Tech-
nical Report UU-CS-2001-27, Department of Com-
puter Science, Universiteit Utrecht, 2001.

[22] O. Levillain. Parsifal: a pragmatic solution to
the binary parsing problem. In Proceedings of
the 1st Workshop on Language-Theoretic Security
(LangSec), pages 191–197, San Jose, CA, May
2014.

[23] M. Marlinspike. More tricks for defeating SSL
in practice. https://www.blackhat.com/
presentations/bh-usa-09/MARLINSPIKE/
BHUSA09-Marlinspike-DefeatSSL-SLIDES.
pdf, 2009. Black Hat USA.

[24] P. J. McCann and S. Chandra. Packet types: abstract
specification of network protocol messages. ACM
SIGCOMM Computer Communication Review, 30
(4):321–333, 2000.

[25] MITRE Corporation. Common vulnerabilities and
exposures (CVE), 2014. http://http://cve.
mitre.org/.

[26] P. Mockapetris. Domain names – implementation
and specification. RFC 1035, Network Working
Group, Nov. 1987.

[27] H. Moore et al. The metasploit project, 2014. http:
//www.metasploit.com/.

[28] Nandiya. zipfile - ZipExtFile.read goes into 100%
CPU infinite loop on maliciously binary edited
zips, Dec. 2013. http://bugs.python.org/
issue20078.

[29] Nergal. The advanced return-into-lib(c) exploits:
PaX case study. Phrack Magazine, 11(58),
Dec. 2001. http://phrack.org/issues/58/4.
html.

[30] Object Management Group, Inc. CORBA FAQ,
2012. http://www.omg.org/gettingstarted/
corbafaq.htm.

[31] M. Patterson. Langsec 2011-2016, May
2013. http://prezi.com/rhlij_momvrx/
langsec-2011-2016/.

[32] M. Patterson and D. Hirsch. Hammer parser
generator, Mar. 2014. https://github.com/
UpstandingHackers/hammer.

[33] PKWARE, Inc. .ZIP File Format Specification, 6.3.3
edition, Sept. 2012. http://www.pkware.com/
documents/casestudies/APPNOTE.TXT.

[34] PROTOS Project Consortium. PROTOS
genome test suite c10-archive. Tech-
nical report, University of Oulu, 2007.
https://www.ee.oulu.fi/research/ouspg/
PROTOS_Test-Suite_c10-archive.

[35] G. Roelofs. Infozip, 1989. http://www.
info-zip.org/.

[36] Z. Shaw. Mongrel HTTP server, 2008. http://
www.rubyforge.org/projects/mongrel/.

[37] R. Srinivasan. XDR: External data representation
standard. RFC 1832, Network Working Group, Aug.
1995.

[38] Team Evaders. Swiping through modern security
features. In Proceedings of the HITB Amsterdam,
Apr. 2013.

[39] A. D. Thurston. Parsing computer languages with
an automaton compiled from a single regular ex-
pression. In Proceedings of the 11th International
Conference on Implementation and Application of
Automata, pages 285–286, Taipei, Taiwan, 2006.

[40] K. Varda. Protocol buffers: Google’s data
interchange format, June 2008. http:
//google-opensource.blogspot.com/2008/
07/protocol-buffers-googles-data.html.

[41] D. A. Wheeler. Sloccount, 2014. http://www.
dwheeler.com/sloccount/.

[42] J. Wolf. Stupid zip file tricks! In BerlinSides 0x7DD,
2013.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 629

lprof : A Non-intrusive Request Flow Profiler for Distributed Systems

Xu Zhao∗, Yongle Zhang∗, David Lion, Muhammad FaizanUllah, Yu Luo, Ding Yuan, Michael Stumm

University of Toronto

Abstract

Applications implementing cloud services, such as

HDFS, Hadoop YARN, Cassandra, and HBase, are

mostly built as distributed systems designed to scale. In

order to analyze and debug the performance of these sys-

tems effectively and efficiently, it is essential to under-

stand the performance behavior of service requests, both

in aggregate and individually.

lprof is a profiling tool that automatically reconstructs

the execution flow of each request in a distributed appli-

cation. In contrast to existing approaches that require in-

strumentation, lprof infers the request-flow entirely from

runtime logs and thus does not require any modifications

to source code. lprof first statically analyzes an applica-

tion’s binary code to infer how logs can be parsed so that

the dispersed and intertwined log entries can be stitched

together and associated to specific individual requests.

We validate lprof using the four widely used dis-

tributed services mentioned above. Our evaluation shows

lprof ’s precision in request extraction is 88%, and lprof

is helpful in diagnosing 65% of the sampled real-world

performance anomalies.

1 Introduction

Tools that analyze the performance behaviors of dis-

tributed systems are particularly useful; for example, they

can be used to make more efficient use of hardware re-

sources or to enhance the user experience. Optimiz-

ing performance can notably reduce data center costs for

large organizations, and it has been shown that user re-

sponse times have significant business impact [2].

In this paper, we present the design and implementa-

tion of lprof , a novel non-intrusive profiling tool aimed at

analyzing and debugging the performance of distributed

systems. lprof is novel in that (i) it does not require

instrumentation or modifications to source code, but in-

stead extracts information from the logs output during the

course of normal system operation, and (ii) it is capable

of automatically identifying, from the logs, each request

and profile its performance behavior. Specifically, lprof

is capable of reconstructing how each service request is

processed as it invokes methods, uses helper threads, and

invokes remote services on other nodes. We demonstrate

∗Contributed equally to this paper.

that lprof is easy and practical to use, and that it is capable

of diagnosing performance issues that existing solutions

are not able to diagnose without instrumentation.

lprof outputs a database table with one line per request.

Each entry includes (i) the type of the request, (ii) the

starting and ending timestamps of the request, (iii) a list

of nodes the request traversed along with the starting and

ending timestamps at each node, and (iv) a list of the ma-

jor methods that were called while processing the request.

This table can be used to analyze the system’s perfor-

mance behavior; for example, it can be SQL-queried to

generate gprof -like output [16], to graphically display la-

tency trends over time for each type of service request, to

graphically display average/high/low latencies per node,

or to mine the data for anomalies. Section 2 provides a

detailed example of how lprof might be used in practice.

Three observations led us to our work on lprof .

First, existing tools to analyze and debug the perfor-

mance of distributed systems are limited. For example,

IT-level tools, such as Nagios [30], Zabbix [46], and

OpsView [33], capture OS and hardware counter statis-

tics, but do not relate them to higher-level operations

such as service requests. A number of existing pro-

filing tools rely on instrumentation; examples include

gprof [16] that profiles applications by sampling func-

tion invocation points; MagPie [3], Project 5 [1], and X-

Trace [14] that instrument the application as well as the

network stack to monitor network communication; and

commercial solutions such as Dapper [36], Boundary [5],

and NewRelic [31]. As these tools require modifications

to the software stack, the added performance overhead

can be problematic for systems deployed in production.

Recently, a number of tools applied machine learning

techniques to analyze logs [29, 42], primarily to identify

performance anomalies. Although such techniques can

be effective in detecting individual anomalies, they often

require separate correct and issue-laden runs, they do not

relate anomalies to higher-level operations, and they are

unable to detect slowdown creep.1

Our second observation is that performance analysis

and debugging are generally given low priority in most

1Slowdown creep is an issue encountered in organizations practicing

agile development and deployment: each software update might poten-

tially introduce some marginal additional performance overhead (e.g.,

<1%) that would not be noticeable in performance testing. However,

with many frequent software releases, these individual slowdowns can

add up to become significant over time.

1

630 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

organizations. This makes having a suitable tool that is

easy and efficient to use more critical, and we find that

none of the existing tools fit the bill. Performance anal-

ysis and debugging are given low priority for a number

of reasons. Most developers prefer generating new func-

tionality or fixing functional bugs. This behavior is also

encouraged by aggressive release deadlines and company

incentive systems. Investigating potential performance

issues is frequently deferred because they can often eas-

ily be hidden by simply adding more hardware due to the

horizontal scalability of these systems. Moreover, un-

derstanding the performance behavior of these systems

is hard because the service is (i) distributed across many

nodes, (ii) composed of multiple sub-systems (e.g., front-

end, application, caching, and database services), and

(iii) implemented with many threads/processes running

with a high degree of concurrency.

Our third observation is that distributed systems imple-

menting internet services tend to output a lot of log state-

ments rich with useful information during their normal

execution, even at the default verbosity.2 Developers add

numerous log output statements to allow for failure di-

agnosis and reproduction, and these statements are rarely

removed [45]. This is evidenced by the fact that 81%

of all statically found threads in HDFS, Hadoop Yarn,

Cassandra, and HBase contains log printing statements

of default verbosity in non-exception-handling code, and

by the fact that Facebook has accumulated petabytes of

log data [13]. In this paper we show that the information

in the logs is sufficiently rich to allow the recovering of

the inherent structure of the dispersed and intermingled

log output messages, thus enabling useful performance

profilers like lprof .

Extracting the per-request performance information

from logs is non-trivial. The challenges include: (i) the

log output messages typically consist of unstructured

free-form text, (ii) the logs are distributed across the

nodes of the system with each node containing the lo-

cally produced output, (iii) the log output messages from

multiple requests and threads are intertwined within each

log file, and (iv) the size of the log files is large.

To interpret and stitch together the dispersed and in-

tertwined log messages of each individual request, lprof

first performs static analysis on the system’s bytecode. It

analyzes each log printing statement to understand how

to parse each output message and identifies the variable

values that are output by the message. By further ana-

lyzing the data-flow of these variable values, static anal-

ysis extracts identifiers whose values remain unchanged

2This is in contrast to single-component servers that tend to limit log

output [44]. Distributed systems typically output many log messages,

in part because these systems are difficult to functionally debug, and in

part because distributed systems, being horizontally scalable, are less

sensitive to latency caused by the attendant I/O.

in each specific request. Such identifiers can help asso-

ciate log messages to individual requests. Since in prac-

tice an identifier may not exist in log messages or may

not be not unique to each request, static analysis further

captures the temporal relationships between log printing

statements. Finally, static analysis identifies control paths

across different local and remote threads. The informa-

tion obtained from static analysis is then used by lprof ’s

parallel log processing component, which is implemented

as a MapReduce [12] job.

The design of lprof has the following attributes:

• Non-intrusive: It does not modify any part of the exist-

ing production software stack. This makes it suitable

for profiling production systems.

• In-situ and scalable analysis: The Map function in

lprof ’s MapReduce log processing job first stitches to-

gether the printed log messages from the same request

on the same node where the logs are stored, which re-

quires only one linear scan of each log file. Only sum-

mary information from the log file and only from re-

quests that traverse multiple nodes is sent over the net-

work in the shuffling phase to the reduce function. This

avoids sending the logs over the network to a central-

ized location to perform the analysis, which is unreal-

istic in real-world clusters [27].

• Compact representation allowing historical analysis:

lprof stores the extracted information related to each

request in a compact form so that it can be retained per-

manently. This allows historical analysis where current

performance behavior can be compared to the behavior

at a previous point of time (which is needed to detect

slowdown creep).

• Loss-tolerant: lprof ’s analysis is not sensitive to the

loss of data. If the logs of a few nodes are not avail-

able, lprof simply discards their input. At worst, this

leads to some inaccuracies for the requests involving

those nodes, but won’t affect the analysis of requests

not involving those nodes.

This paper makes the following contributions. First,

we show that the standard logs of many systems con-

tain sufficient information to be able to extract the perfor-

mance behavior of any service-level request. Section 2

gives a detailed example of the type of information that is

possible to extract from the logs and how this information

can be used to diagnose and debug performance issues.

Secondly, we describe the design and implementation of

lprof . Section 3 provides a high-level overview, while

Sections 4 and 5 describe details of lprof ’s static anal-

ysis and how the logs are processed. Finally, Section 6

evaluates the techniques presented in this paper. We val-

idated lprof using four widely-used distributed systems:

HDFS, Hadoop YARN, Cassandra, and HBase. We show

that lprof performs and scales well, and that it is able to

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 631

Request type start timestamp end timestamp
nodes traversed

log sequence ID

writeBlock 2014-04-21
05:32:45,103

2014-04-21
05:32:47,826

172.31.9.26 05:32:45,103 05:32:47,826
172.31.9.28 05:32:45,847 05:32:47,567
172.31.9.12 05:32:46,680 05:32:47,130

41
IP start time. end time.

Figure 1: One row of the request table constructed by lprof containing information related to one request. The “node traversed”

column family [7] contains the IP address, the starting and ending timestamp on each node this request traversed. In this case, the

HDFS writeBlock request traverses three nodes. The “log sequence ID” column contains a hash value that can be used to index

into another table containing the sequence of log printing statements executed by this request.

 0

 300

 600

 900

 1200

 1500

13:13:45
23:42:32

10:25:32

(a) Latency (ms) over time

writeBlock
readBlock

100K
200K
300K
400K

verifyBlock
writeBlock

readBlock
rollEditLog

(b) Request count

 0

 300

 600

 900

nodes

(c) Avg. latency per node (ms)

 0

 300

 600

 900

DN1 DN2 DN3

(d) Per-node latency (ms) of 2 req.

anomalous req.
normal req

Figure 2: lprof ’s analysis on HDFS’ performance.

attribute 88% of all log messages to the correct requests.

We discuss the limitations of lprof in Section 7 and close

with related work and concluding remarks.

2 Motivating Example

To illustrate how lprof ’s request flow analysis might be

used in practice, we selected a performance issue re-

ported by a (real) user [20] and reproduced the anomaly

on a 25-node cluster.

In this example, an HDFS user suspects that the sys-

tem has become slow after a software upgrade. Applying

lprof to analyze the logs of the cluster produces a request

table as shown in Figure 1. The user can perform vari-

ous queries on this table. For example, she can examine

trends in request latencies for various request types over

time, or she can count the number of times each request

type is processed during a time interval. Figures 2 (a)

and (b) show how lprof visualizes these results.3

Figure 2 (a) clearly shows an anomaly with writeBlock

requests at around 23:42. A sudden increase in write-

Block’s latency is clearly visible while the latencies of

3We envision that lprof is run periodically to process the log mes-

sages generated since its previous run, appending the new entries to the

table and keeping them forever to enable historical analysis and debug

problems like performance creep. If space is a concern, then instead

of generating one table entry per request, lprof can generate one table

entry per time interval and request type, each containing attendant sta-

tistical information (e.g., count, average/high/low timestamps, etc.).

the other requests remain unchanged. The user might sus-

pect this latency increase is caused by a few nodes that are

“stragglers” due to an unbalanced workload or a network

problem. To determine whether this is the case, the user

compares the latencies of each writeBlock request after

23:42 across the different nodes. This is shown in Fig-

ure 2 (c), which suggests no individual node is abnormal.

The user might then want to compare a few single re-

quests before and after 23:42. This can be done by select-

ing corresponding rows from the database and compar-

ing the per-node latency between an anomalous request

and a healthy one. Figure 2 (d) visualizes the latency

incurred on different nodes for two write requests: one

before 23:42 (healthy) and the other after (anomalous).

The figure shows that for both requests, latency is high-

est on the first node and lowest on the third node. HDFS

has each block replicated on three data nodes (DNs), and

each writeBlock request is processed as a pipeline across

the three DNs: DN1 updates the local replica, sends it to

DN2, and only returns to the user after DN2’s response

is received. Therefore the latency of DN2 includes the

latency on DN3 plus the network communication time

between DN2 and DN3.

The figure also shows that the latency of one request is

clearly higher than the latency of the second request on

the first two DNs. This leads to the hypothesis that code

changes are responsible for the latency increase. The

HDFS cluster was indeed upgraded between the servic-

ing of the two requests (from version 2.0.0 to 2.0.2). The

log sequence identifier is then used to identify the code

path taken by both requests, and a diff on the two ver-

sions of the source code reveals that an extra socket write

between DNs was introduced in version 2.0.2. The HDFS

developers later fixed this performance issue by combin-

ing both socket writes into one [20].

Figure 2 (b) shows another performance anomaly: the

number of verifyBlock requests is suspiciously high. Fur-

ther queries on the request database suggest that before

the upgrade, verifyBlock requests appear once every 5

seconds on every datanode, generating a lot of log mes-

sages, while after the upgrade, they appear only rarely.

Interestingly, we noticed this accidentally in our experi-

ments. Clearly lprof is useful in detecting and diagnosing

this case as well.

3

632 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1. Log format-string and variable parsing

2. Request entry and identifier analysis

4. Communication pair analysis

3. Temporal order analysis

Figure 5: Overall architecture of lprof

 1 class DataXceiver implements Runnable {
 2 public void run() {
 3 do { //handle one request per iteration
 4 switch (readOpCode()) {
 5 case WRITE_BLOCK: // a write request
 7 writeBlock(proto.getBlock(), ..); break;
 8 case READ_BLOCK: // a read request
 9 readBlock(proto.getBlock(), ..); break;
10 } //proto.getBlock: deserialize the request
11 } while (!socket.isClosed());
12 }
13 void writeBlock(ExtendedBlock block..) {
14 LOG.info("Receiving block " + block);
15 sender.writeBlock(block,..); //send to next DN
16 responder = new PacketResponder(block,..);
17 responder.start(); // create a thread that
18 } // handles the acks
19 }
20 /* PacketResponder handles the ack responses */
21 class PacketResponder implements Runnable {
22 public void run() {
23 ack.readField(downstream); //read ack
24 LOG.info("Received block " + block);
25 replyAck(upstream); //send an ack to upstream
26 LOG.info(myString + " terminating");
27 }
28 }

Figure 3: Code snippet from HDFS that handles write request.

1 HDFS_READ, blockid: BP-9..9:blk_5..7_1032
2 Receiving block BP-9..9:blk_5..7_1032
3 Received block BP-9..9:blk_5..7_1032
4 Receiving block BP-9..9:blk_4..8_2313
5 PacketResponder: BP-9..9:blk_5..7_1032 terminating
6 opWriteBlock BP-9..9:blk_4..8_2314 received exception

write 1
write 2

read

Figure 4: Part of an HDFS log. Request identifiers are shown

in bold. Note that the timestamp of each message is not shown.

3 Overview of lprof

In this Section, before describing lprof ’s design, we first

discuss the challenges involved in stitching log messages

together that were output when processing a single re-

quest. For example, consider how HDFS processes a

write request as shown in Figure 3. On each datanode,

a DataXceiver thread uses a while loop to process

each incoming request. If the op-code is WRITE_BLOCK,

then writeBlock() is invoked at line 7. At line 15,

writeBlock() sends a replication request to the next

downstream datanode. At line 16 - 17, a new thread as-

sociated with PacketResponder is created to receive

the response from the downstream datanode so that it can

send its response upstream. Hence, this code might out-

put log messages as shown in Figure 4. These six log

messages alone illustrate two challenges encountered:

1. The log messages produced when processing a sin-

gle writeBlock request may come from multiple

threads, and multiple requests may be processed

concurrently. As a result, the log output messages

from different requests will be intertwined.

2. The log messages do not contain an identifying sub-

string that is unique to a request. For example, block

ID “BP-9..9:blk_5..7” can be used to separate mes-

sages from different requests that do not operate

on the same block, but cannot be used to separate

the messages of the read and the first write request

because they operate on the same block. Unfortu-

nately, identifiers unique to a request rarely exist in

real-world logs. In Section 7, we further discuss how

lprof could be simplified if there were a unique re-

quest identifier in every log message.

To address these challenges lprof first uses static analysis

to gather information from the code that will help map

each log message to the processing of a specific request,

and help establish an order on the log messages mapped

to the request. In a second phase, lprof processes the logs

using the information obtained from the static analysis

phase; it does this as a MapReduce job.

We now briefly give a brief overview of lprof ’s static

analysis and log processing, depicted in Figure 5.

3.1 Static Analysis

lprof ’s static analysis gathers information in four steps.

(1) Parsing the log string format and variables obtains

the signature of each log printing statement found in the

code. An output string is composed of string constants

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 633

and variable values. It is represented by a regular expres-

sion (e.g., “Receiving block BP-(.*):blk_(.*)_.*”), which

is used during the log analysis phase to map a log mes-

sage to a set of log points in the code that could have

output the log message. We use the term log point in

this paper to refer to a log printing statement in the code.

This step also identifies the variables whose values are

contained in the log message.

(2) Request identifier and request entry analysis are

used to analyze the dataflow of the variables to determine

which ones are modified. Those that are not modified are

recognized as request identifiers. Request identifiers are

used to separate messages from different requests; that

is, two log messages with different request identifiers are

guaranteed to belong to different requests. However, the

converse is not true: two messages with the same identi-

fier value may still belong to different requests (e.g., both

of the “read” and the “write 1” requests in Figure 4 have

same the block ID).

Identifying request identifiers without domain

expertise can be challenging. Consider “BP-

9..9:blk_5..7_1032” in Figure 4 that might be considered

as a potential identifier. This string contains the values of

three variables as shown in Figure 6: poolID, blockID,

and generationStamp. Only the substring containing

poolID and blockID is suitable as a request identifier

for writeBlock, because generationStamp can have

different values while processing the same request (as

exemplified by the “write 2” request in Figure 4).

To infer which log points belong to the processing of

the same request, top-level methods are also identified

by analyzing when identifiers are modified. We use the

term top-level method to refer to the first method of any

thread dedicated to the processing of a single type of

request. For example, in Figure 3 writeBlock() and

PacketResponder.run() are top-level methods, but

DataXceiver.run() is not because it processes mul-

tiple types of requests. We say that method M is log point

p’s top-level method if M is a top-level method and p is

reachable from M.

If lprof can identify readBlock() and

writeBlock() as being two top-level methods for

different types of requests, it can separate messages

printed by readBlock() from the ones printed by

writeBlock() even if they have the same identifier

value. We identify the top-level methods by processing

each method in the call-graph in bottom-up order: if

a method M modifies many variables that have been

recognized as request identifiers in its callee M’, then M’

is recognized as a top-level method. The intuition behind

this design is that programmers naturally log request

identifiers to help debugging, and the modification of a

frequently logged but rarely modified variable is likely

not part of the processing of a specific request.

ExtendedBlock.toString()

poolID + ":" + block -> Block.toString()

getBlockName()+ getGenStamp()"_" +

1032

"blk_"+ generationStampblockID

BP-989716475039 : blk_ 520373207 _

block ->

Figure 6: How “BP-9..9:blk_5..7_1032” is printed.

(3) Temporal order analysis is needed because there

may not exist an ID unique to each request. For example,

by inferring that line 26 is executed after line 24 in Fig-

ure 3, lprof can conclude that when two messages appear

in the following order: “... terminating” and “Received

block...”, they cannot be from the same request even if

they have the same block ID.

(4) Communication pair analysis is used to identify

threads that communicate with each other. Log messages

output by two threads that communicate could potentially

be from processing of the same request. Such commu-

nication could occur through cooperative threads in the

same process, or via sockets or RPCs across the network.

3.2 Distributed Log Analysis

The log analysis phase attributes each log message to a

request, which is implemented using a MapReduce job.

The map function groups together all log messages that

were output by the same thread while processing the same

request. A log message is added to a group if (i) it has the

same top-level method, (ii) the request identifiers do not

conflict, and (iii) the corresponding log point matches the

temporal sequence in the control flow.

The reduce function merges groups if they represent

log messages that were output by different threads when

processing the same request. Two groups are merged if

(i) the two associated threads could communicate, and

(ii) the request identifiers do not conflict.

4 Static Analysis

lprof ’s static analysis works on Java bytecode. Each of

the four steps in lprof ’s static analysis is implemented

as one analysis pass on the bytecode of the target sys-

tem. We use the Chord static analysis framework [9]. For

convenience, we explain lprof using examples in source

code. All the information shown in the examples can be

inferred from Java bytecode.

4.1 Parsing Log Printing Statements

This first step identifies every log point in the program.

For each log point, lprof (i) generates a regular expres-

5

634 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

sion that matches the output log message, and (ii) identi-

fies the variables whose values appear in the log output.

lprof identifies log points by searching for call in-

structions whose target method has the name fatal,

error, warn, info, debug, or trace. This iden-

tifies all the logging calls if the system uses log4j [25]

or SLF4J [37], two commonly used logging libraries that

are used by the systems we evaluated.

To parse the format string of a log point into a regu-

lar expression, we use techniques similar to those used

by two previous tools [42, 43]. We summarize the chal-

lenges we faced in implementing a log parser on real-

world systems.

On the surface, parsing line 14 in Figure 3 into the reg-

ular expression “Receiving block (.*)”, where the wild-

card matches to the value of block, is straightforward.

However, identifying the variables whose values are out-

put at the log point is more challenging. In Java, the ob-

ject’s value is printed by calling its toString()method.

Figure 6 shows how the value of block is eventually

printed. In this case, lprof has to parse out the indi-

vidual fields because only poolID and blockID are re-

quest identifiers, whereas generationStamp is modi-

fied during request processing. To do this, lprof recur-

sively traces the object’s toString() method and the

methods that manipulate StringBuilder objects until

it reaches an object of a primitive type.

For the HDFS log point above, the regular expression

identified by lprof will be:

“Receiving block (.*):blk_(\d+)_(\d+)”.

The three wildcard components will be mapped

to block.poolID, block.block.blockID, and

block.block.generationStamp, respectively.

lprof also needs to analyze the data-flow of any string

object used at a log point. For example, mystring at line

26 in Figure 3 is a String object initialized earlier in the

code. lprof analyzes its data-flow to identify the precise

value of mystring.

Class inheritance and late binding in Java creates an-

other challenge. For example, when a class and its su-

per class both provide a toString() method, which one

gets invoked is resolved only at runtime depending on

the actual type of the object. To address this, lprof ana-

lyzes both classes’ toString() methods, and generates

two regular expressions for the one log point. During log

analysis, if both regular expressions match a log message,

lprof will use the one with the more precise match, i.e.,

the regular expression with a longer constant pattern.

4.2 Identifying Request Identifiers

This step identifies (i) request identifiers and (ii) top-level

methods. We implement the inter-procedural analysis as

DataXceiver.run()

writeBlock()

receiveBlock()

RIC: {poolID:8, blockID:8} count: 16

RIC: {poolID:4,blockID:4,genStamp:4} count: 12
MV: { }

RIC: { }, count: 0 MV: {poolID, blockID}

setGenerationStamp()
RIC: { } count: 0
MV: {genStamp}

readBlock()
RIC: {poolID:7,blockID:7,
 genStamp:7} count: 21

Figure 7: Request identifier analysis for the HDFS ex-

ample of Figure 3. When analyzing writeBlock(),

the request identifier candidate set (RIC) from its callee

receiveBlock() is merged into its own set, so the cumu-

lative count of poolID and blockID is increased to 8, 4

comes from receiveBlock() and 4 comes from the log

points in writeBlock(). Since generationStamp is in

setGenerationStamp()’s modified variable set (MV), it

is removed from writeBlock()’s RIC set.

summary-based analysis [35]. It analyzes one method

at a time and stores the result as the summary of that

method. The methods are analyzed in bottom-up order

along the call-graph and when a call instruction is en-

countered, the summary of the target method is used. Not

being summary-based would require lprof to store the in-

termediate representation of the entire program in mem-

ory, which would cause it to run out of memory.

Data-flow analysis for request identifiers: lprof infers

request identifiers by analyzing the inter-procedural data-

flow of the logged variables. For each method M, lprof

assembles two sets of variables as its summary: (i) the

request identifier candidate set (RIC), which contains the

variables whose values are output to a log and not mod-

ified by M or its callees, and (ii) the modified variable

set (MV) which contains the variables whose values are

modified. For each method M, lprof first initializes both

sets to be empty. It then analyzes each instruction in M.

When it encounters a log point, the variables whose val-

ues are printed (as identified by the previous step) are

added to the RIC set. If an instruction modifies a vari-

able v, v is added to the MV set and removed from the

RIC set. If the instruction is a call instruction, lprof first

merges the RIC and MV sets of the target method into

the corresponding sets of the current method, and then,

for each variable v in the MV set, lprof removes it from

the RIC set if it contains v.

As an example, consider the following code snippet

from writeBlock():

1 LOG.info("Receiving " + block);

2 block.setGenerationStamp(latest);

The setGenerationStamp() method modifies the

generationStamp field in block. In bottom-up order,

lprof first analyzes setGenerationStamp() and adds

generationStamp to its MV set. Later when lprof an-

alyzes writeBlock(), it removes generationStamp

from its RIC set because generationStamp is in the

MV set of setGenerationStamp().

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 635

Identifying top-level methods: the request identifier

analysis stops at the root of the call-graph: either a thread

entry method (i.e., run() in Java) or main(). However,

a thread entry method might not be the entry of a service

request. Consider the HDFS example shown in Figure 3.

The DataXceiver thread uses a while loop to handle

read and write requests. Therefore lprof needs to iden-

tify writeBlock() and readBlock() as the top-level

methods instead of run().

lprof identifies top-level methods by observing the

propagation of variables in the RIC set and uses the fol-

lowing heuristic when traversing the call-graph bottom-

up: if, when moving from a method M to its caller M’,

many request identifier candidates are suddenly removed,

then it is likely that M is a top-level method. Specifically,

lprof counts the number of times each request identifier

candidate appears in a log point in each method and accu-

mulates this counter along the call-graph bottom-up. (See

Figure 7 for an example.) Whenever this count decreases

from method M to its caller M’, lprof concludes that M is

a top-level method. The intuition is that developers nat-

urally include identifiers in their log printing statements,

and modifications to these identifiers are likely outside

the top-level method.

In Figure 7, both writeBlock() and readBlock()

accumulate a large count of request identifiers, which

drops to zero in run(). Therefore, lprof infers

writeBlock() and readBlock() are the top-

level methods instead of run(). Note that although

the count of generationStamp decreases when

the analysis moves from setGenerationStamp()

to writeBlock(), it does not conclude

setGenerationStamp() is a top-level method

because the accumulated count of all request identifiers

is still increasing from setGenerationStamp() to

writeBlock().

4.3 Partial Order Among Log Points

In this step, lprof generates a Directed Acyclic Graph

(DAG) for each top-level method (identified in the previ-

ous step) from the method’s call graph and control-flow

graph (CFG). This DAG contains each log point reach-

able from the top-level method and is used to help at-

tribute log messages to top-level methods.

It is not possible to statically infer the precise order in

which instructions will execute. Therefore, lprof takes

the liberty of applying a number of simplifications:

1. Only nodes that contain log printing statements are

represented in the DAG.

2. All nodes involved in a strongly connected com-

ponent (e.g., caused by loops) are folded into one

log 2,3
log 4
exit

entry
log 1

*

LOG.info("Request starts"); // log1
while (not_finished){
 r.process(); // log2 and log 3
}
LOG.info("Request ends"); // log4

Figure 8: DAG representation of log points.

node. This implies that multiple log points may be

assigned to a single node in the DAG.

3. Similarly, if there is a strongly connected compo-

nent due to recursive calls, then those nodes are also

folded into one.

4. Unchecked exceptions are ignored, since they will

terminate the execution. Checked exceptions are

captured by the CFG and are included in the DAG.

As an example, Figure 8 shows the DAG generated

from a code snippet. The asterisk (*) next to log 2 and

log 3 indicates that these log points may appear 0 or more

times. We do not maintain an ordering of the log points

for nodes with multiple log points.

In practice, we found the DAG particularly useful in

capturing the starting and ending log points of a request

— it is a common practice for developers to print a mes-

sage at the beginning of each request and/or right before

the request terminates.

4.4 Thread Communication

In this step, lprof infers how threads communicate with

one another. The output of this analysis is a tuple for

each communication pair: (top-level method 1, top-level

method 2, communication type, set of request identifier

pairs), where one end of the communication is reachable

from top-level method 1 and the other end is reachable

from top-level method 2. “Communication type” is one

of local, RPC, or socket, where “local” is used when two

threads running in the same process communicate. A

“request identifier pair” captures the transfer of request

identifier values from the source to the destination; the

pair identifies the variables containing the data values at

source and destination.

Threads from the same process: lprof detects two

types of local thread communications: (i) thread cre-

ation and (ii) shared memory reads and writes. Detect-

ing thread creation is straightforward because Java has a

well defined thread creation mechanism. If an instruction

r.start() is reachable from a top-level method, where

r is an object of class C that extends the Thread class

or implements the Runnable interface, and C.run() is

another top-level method, then lprof has identified a com-

munication pair. lprof also infers the data-flow of request

identifiers, as they are mostly passed through the con-

structor of the target thread object. In addition to explicit

7

636 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

thread creation, if two instructions reachable from two

top-level methods (i) access a shared object, and (ii) one

of them reads and the other writes to the shared object,

then a communication pair is identified.

As an example, consider the HDFS code in

Figure 3. lprof generates the following tuple:

(writeBlock, PacketResponder.run, local, <DataX-

ceiver.block.poolID, PacketResponder.block.poolID>,

..), indicating that writeBlock() could communicate

with PacketResponder via local thread creation, and

poolID is the request identifier used on both ends for the

data value passed between the threads.

Threads communicating across the network: Pairing

threads that communicate via the network is more chal-

lenging. While Java provides standard socket read and

write APIs for network communication, if we naïvely pair

the read to the write on the same socket, we would effec-

tively end up connecting most of the top-level methods

together even though they do not communicate. Con-

sider the HDFS example shown in Figure 3. While

readBlock() and writeBlock() do not communicate

with each other, they share the same underlying socket.

Instead of pairing socket read and write, we observe

that the sender and receiver that actually communicate

both have to agree on the same protocol. Specifically,

whenever lprof finds a pair of invoke instructions whose

target methods are the serialization and deserializaition

methods from the same class, respectively, the top-level

methods containing these two instructions are paired. De-

velopers often use third-party data-serialization libraries,

such as Google Protocol Buffers [15]. This further eases

lprof ’s analysis since they provide standardized serial-

ization/deserialization APIs. Among the systems we

evaluated, Cassandra is the only one that does not use

Google Protocol Buffers, but implements its own serial-

ization library. For Cassandra, a simple annotation to pair

C.serialize() with C.deserialize() for any class

C is sufficient to correctly pair all of the communicating

top-level methods. lprof also parses the Google Proto-

col Buffer’s protocol annotation file to identify the RPC

pairs, where each RPC is explicitly declared.

Improvements: To improve the accuracy of “log stitch-

ing”, we add two refinements when pairing communi-

cation points. First, even when a thread does not con-

tain any log point (which means it does not contain any

top-level method), it will still be included in a commu-

nication pair if it communicates with a top-level method.

In this case, its run() method will be used as the com-

munication end point. The reason is that such a thread

could serve as a link connecting two communicating top-

level methods A and B. Not including the communication

pair would prevent lprof from grouping the log messages

from A and B.

(DataXceiver.writeBlock, DAG#1, [id1,id2..])Top-level
methods: (DataXceiver.readBlock, DAG#2, [id1,id2..])

DAGs:
entry log1

[log2, log3]*

log4 exit

Regex: <log1, "Receiving block (.*):blk_(\d+)_\d*",
 id1:block.poolID, id2:block.block.blockID>

Comm.
pairs:

(writeBlock, PktRsp.run, local, <id1,id1>, ..)
(writeBlock, writeBlock, socket, <id1,id1>,..)

Figure 9: Output of lprof ’s static analysis.

The second improvement is to infer the number of

times a top-level method can occur in a communication

pair. For example, a communication pair “(M1, M2*, lo-

cal, ..)”, where M2 is followed by an asterisk, means that

method M1 could communicate with multiple instances

of method M2 in the same request. The log analysis uses

this property to further decide whether it can stitch mes-

sages from multiple instances of M2 into the same re-

quest. The inference of such a property is straightfor-

ward: if the communication point to M2 is within a loop

in M1’s CFG, then M2 could occur multiple times.

4.5 Summary of Static Analysis

The output of lprof ’s static analysis is a file that contains

the log printing behavior of the system. Figure 9 shows

a snippet of the output file for HDFS. It consists of the

following four segments:

1. Top-level methods: a list of tuples with (i) the name

of the top-level method, (ii) an index into the DAG

representation of the log points, and (iii) a list of

request identifiers;

2. DAGs: the DAG for each top-level method;

3. Log point regex: the regular expressions for each log

point and the identifier for each wildcard;

4. Communication pairs: a list of tuples that identify

the communication points along with the identifiers

for the data being communicated.

To speedup log analysis, this output file also contains a

number of indexes, including: (i) an index of regular ex-

pressions (to speedup the matching of each log message

to its log point) and (ii) an index mapping log points to

top-level methods. This output file is sent to every ma-

chine in the cluster whose log is analyzed.

5 Log Analysis

The log analysis phase is implemented as a MapReduce

job to group together information from all the log mes-

sages printed by each request. The map and reduce func-

tions use a common data structure, called a request ac-

cumulator (RA), for gathering information related to the

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 637

Figure 10: The grouping of five log messages where four print

a subset of request identifier values.

same request. Each RA contains: (i) a vector of top-

level methods that are grouped into this RA; (ii) the value

of each request identifier; (iii) a vector of log point se-

quences, where each sequence comes from one top-level

method; (iv) a list of nodes traversed, with the earliest and

latest timestamp. The map and reduce functions will iter-

atively accumulate the information of log messages from

the same request into the RAs. In the end, there will be

one RA per request that contains the information summa-

rized from all its log messages.

Map: Intra-thread Grouping

The map function is run on each node to process local

log files. There is one map task per node, and all the map

tasks run in parallel. Each map function scans the log

file linearly. Each log message is parsed to identify its

log point and the values of the request identifiers using

regular expression matching. We also heuristically parse

the timestamp associated with each message.

A parsed log message is added to an existing RA entry

if and only if: (i) their top-level methods match, (ii) the

identifier values do not conflict, and (iii) the log point

matches the temporal sequence in the control flow as rep-

resented by the DAG. A new RA is created (and appro-

priately initialized) if the log message cannot be added to

an existing RA. Therefore, each RA output by the map

function contains exactly one top-level method.

Note that a sequence of log messages can be added to

the same RA even when each contains the values of a

different subset of request identifiers. Figure 10 shows

an example. The 5 log messages in this figure can all be

grouped into a same RA entry even though 4 of them con-

tain the values of a subset of the request identifiers, and

one does not contain the value of any request identifier

but is captured using the DAG.

Combine and Reduce: Inter-thread Grouping

The combine function performs the same operation as the

reduce function, but does so locally first. It combines

two RAs into one if there exists a communication pair be-

tween the two top-level methods in these two RAs, and

the request identifier values do not conflict. Moreover,

as a heuristic, we do not merge RAs if the difference be-

tween their timestamps is larger than a user-configurable

threshold. Such a heuristic is necessary because two RAs

could have the same top-level methods and request iden-

tifies, but represent the processing of different requests

(i.e., two writeBlock operations on the same block). This

05:32:45,103 Receiving block 9..9:blk_5..7_1032
05:32:45,115 Received block 9..9:blk_5..7_1032
05:32:47,826 PacketResponder 9..9:blk_5..7_1032 terminating

node 1: 172.13.9.26
node 2: 172.13.9.28

node 3: 172.13.9.12

req. acc.2: ([PktRsp.run], {<id1:"9..9">, <id2:"5..7">},
 [[LP2,LP3]], [<172.31.9.26:"05:32:45,115 - 05:32:47,826">])

req. acc.1: ([writeBlock], {<id1:"9..9">, <id2:"5..7">},
 [[LP1]], [<172.31.9.26:"05:32:45,103 - N/A">])

req.acc.3: ({writeBlock,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">},
 [[LP1],[LP2,LP3]], [<172.31.9.26:"05:32:45,103 - 05:32:47,826">])

req.acc.4: ([writeBlock,PktRsp.run], {<id1:"9..9">, <id2:"5..7">},
 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

req.acc.6: ({writeBlock,writeBlock,writeBlock,PktRsp.run,
 PktRsp.run,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">},
 [[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]],
 [<172.31.9.26:"05:32:45,103 - 05:32:47,826">,
 <172.31.9.28:"05:32:45,847 - 05:32:47,567">,
 <172.31.9.12:"05:32:46,680 - 05:32:47,130">])

req.acc.5:([writeBlock, PktRsp.run], {<id1: "9..9">, <id2:"5..7">},
 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

Request accumulators after map

Request accumulators after combine

Request accumulators after reduce

Figure 11: The RAs that combine 9 log messages from 6

threads on 3 nodes belonging to a single write request in HDFS.

value is currently set to one minute, but should be ad-

justed depending on the networking environment. In an

unstable network environment with frequent congestion

this threshold should have a larger value.

After the combine function, lprof needs to assign a

shuffle key to each RA, and all the RAs with the same

shuffle key must be sent to the same reducer node over

the network. Therefore the same shuffle key should be

assigned to all of the RAs that need to be grouped to-

gether. We do this by considering communication pairs.

At the end of the static analysis, if there is a communi-

cation pair connecting two top-level methods A and B, A

and B are jointed together into a connected component

(CC). We iteratively merge more top-level methods into

this CC as long as they communicate with any of the top-

level methods in this CC. In the end, all of the top-level

methods in a CC could communicate, and their RAs are

assigned with the same shuffle key.

However, this approach could lead to the assignment of

only a small number of shuffle keys and thus a poor dis-

tribution in practice. Hence, we further implement two

improvements to the shuffling process. First, if all of the

communicating top-level methods have common request

identifiers, the identifier values will be used to further dif-

ferentiate shuffle keys.4 Secondly, if an RA cannot pos-

sibly communicate with any other RA through network

communication, we do not further shuffle it, but instead

we directly output the RA into the request database.

Finally, the reduce function applies the same method

4Note that if a request identifier is not shared by all of the communi-

cating top-level method, it cannot be used in the shuffle key because dif-

ferent communicating RAs might have different request identifier (e.g.,

one RA only has poolID while the other RA has blockID).

9

638 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 12: The web application that visualizes a request’ la-

tencies over time.

as the combine function. Figure 11 provides an ex-

ample that shows how the RAs of log messages in the

HDFS writeBlock request are grouped together. After

the map function generates req.acc.1 and 2 on node 1,

the combine function groups them into req.acc.3, because

writeBlock() and PacketResponder.run() belong

to the same communication pair, and their request iden-

tifier values match. Node 2 and node 3 run the map

and combine functions in parallel, and generate req.acc.4

and 5. lprof assigns the same shuffle key to req.acc.3,

req.acc.4, and req.acc.5. The reduce function further

groups them into a final RA req.acc.6.

Request Database and Visualization

Information from each RA generated by the reduce

function is stored into a database table. The database

schema is shown in Figure 1. It contains the following

fields: (i) request type, which is simply the top-level

method with the earliest time stamp; (ii) starting and

ending time stamps, which are the MAX and MIN in

all the timestamps of each node; (iii) nodes traversed

and the time stamps on each node, which are taken

directly from the RA; (iv) log sequence ID (LID),

which is a hash value of the log sequence vector field

in the RA. For example, as shown in Figure 11, the

vector of the log sequence of a writeBlock request is

“[[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]]”.

In this vector, each element is a log sequence from a

top-level method (e.g., “[LP1]” is from top-level

method writeBlock() and “[LP2,LP3]” is from

PacketResponder.run()). Note the LID captures

the unique type and number of log messages, their

order within a thread, as well as the number of threads.

However, it does not preserve the timing order between

threads. Therefore, in practice, there are not many unique

log sequences; for example, in HDFS there are only

220 unique log sequences on 200 EC2 nodes running a

variety of jobs for 24 hours. We also generate a separate

table that maps each log sequence ID to the sequence

of log points to enable source-level debugging. We use

MongoDB [28] for our current prototype.

We built a web application to visualize lprof ’s analy-

sis result using the Highcharts [21] JavaScript charting

System LOC workload # of msg.

HDFS-2.0.2 142K HiBench 1,760,926

Yarn-2.0.2 101K HiBench 79,840,856

Cassandra-2.1.0 210K YCSB 394,492

HBase-0.94.18 302K YCSB 695,006

Table 1: The systems and workload we used in our evaluation,

along with the number of log messages generated.

library. We automatically visualize (i) requests’ latency

over time; (ii) requests’ counts and their trend over time;

and (iii) average latency per node. Figure 12 shows our

latency-over-time visualization.

One challenge we encountered is that the number of

requests is too large when visualizing their latencies.

Therefore, when the number of requests in the query

result is greater than a threshold, we perform down-

sampling and return a smaller number of requests. We

used the largest triangle sampling algorithm [39], which

first divides the entire time-series data into small slices,

and in each slice it samples the three points that cover

the largest area. To further hide the sampling latency,

we pre-sample all the requests into different resolutions.

Whenever the server receives a user query, it examines

each pre-sampled resolution in parallel, and returns the

highest resolution whose number of data points is below

the threshold.

6 Evaluation

We answer four questions in evaluating lprof : (i) How

much information can our static analysis extract from the

target systems’ bytecode? (ii) How accurate is lprof in

attributing log messages to requests? (iii) How effective

is lprof in debugging real-world performance anomalies?

(iv) How fast is lprof ’s log analysis?

We evaluated lprof on four, off-the-shelf distributed

systems: HDFS, Yarn, Cassandra, and HBase. We ran

workloads on each system on a 200 EC2 node cluster for

over 24 hours with the default logging verbosity level.

Default verbosity is used to evaluate lprof in settings

closest to the real-world. HDFS, Cassandra, and YARN

use INFO as the default verbosity, and HBase uses DE-

BUG. A timestamp is attached to each message using the

default configuration in all of these systems.

For HDFS and Yarn, we used HiBench [22] to run

a variety of MapReduce jobs, including both real-world

applications (e.g., indexing, pagerank, classification and

clustering) and synthetic applications (e.g., wordcount,

sort, terasort). Together they processed 2.7 TB of data.

For Cassandra and HBase, we used the YCSB [11]

benchmark. In total, the four systems produced over 82

million log messages (See Table 1).

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 639

System
Threads Top-lev. Log points

tot. ≥ 1 log* meth. ≥ 1 id. per DAG*

HDFS 44 95% 167 79% 8

Yarn 45 73% 79 66% 21

Cass. 92 74% 74 45% 21

HBase 85 80% 193 74% 30

Average 67 81% 129 66% 20

Table 2: Static analysis result. *: in these two columns we

only count the log points that are under the default verbosity

level and not printed in exception handler — indicating they are

printed by default under normal conditions.

System Correct Incomplete Incorrect Failed

HDFS 97.0% 0.1% 0.3% 2.6%

Yarn 79.6% 19.2% 0.0% 1.2%

Cassandra 85.7% 9.6% 0.3% 4.4%

HBase 90.6% 2.5% 3.5% 3.4%

Average 88.2% 7.9% 1.0% 2.9%

Table 3: The accuracy of attributing log messages to requests.

6.1 Static Analysis Results

Table 2 shows the results of lprof ’s static analysis. On

average, 81% of the statically inferred threads contain at

least one log point that would print under normal con-

ditions, and there are an average of 20 such log points

reachable from the top-level methods inferred from the

threads that contain at least one log point. This sug-

gests that logging is prevalent. In addition, 66% of the

log points contain at least one request identifier, which

can be used to separate log messages from different re-

quests. This also suggests that lprof has to rely on the

generated DAG to group the remaining 34% log points.

lprof ’s static analysis takes less than 2 minutes to run and

868 MB of memory for each system.

6.2 Request Attribution Accuracy

With 82 million log messages, we obviously could not

manually verify whether lprof correctly attributed each

log message to the right request. Instead, we manually

verified each of the log sequence IDs (LID) generated by

lprof . Recall from Section 5 that the LID captures the

number and the type of the log points of a request, and

the partial orders of those within each thread (but it ig-

nores the thread orders, identifier values, and nodes’ IPs).

Only 784 different LIDs are extracted out of a total of

62 million request instances. We manually examined the

log points of each LID and the associated source code to

understand its semantics. The manual examination took

four authors one week of time.

Table 3 shows lprof ’s request attribution accuracy. A

log sequence A is considered correct if and only if (i) all

its log points indeed belong to this request, and (ii) there

is no other log sequence B that should have been merged

with A. All of the log messages belonging to a correct log

sequence are classified as “correct”. If A and B should

have been merged but were not then the messages in both

A and B are classified as “incomplete”. If a log message

in A does not belong to A then all the messages in A are

classified as “incorrect”. The “failed” column counts the

log messages that were not attributed to any request.

Overall, 88.2% of the log messages are attributed to

the correct requests.

7.9% of the log messages are in the “incomplete” cat-

egory. In particular, 19.2% of the messages in Yarn were

mistakenly separated because of only 2 unique log points

that print the messages in the following pattern: “Start-

ing resource-monitoring for container_1398” and “Mem-

ory usage of container-id container_1398..”. lprof failed

to group them because the container ID was first passed

into an array after the first log point and then read from

the array when the second message was printed. lprof ’s

conservative data-flow analysis failed to track the com-

plicated data-flow and inferred that the container ID was

modified between the first and the second log points, thus

attributing them into separate top-level methods. A sim-

ilar programming pattern was also the cause of “incom-

plete” log messages for Cassandra, HBase, and HDFS.

1.0% of the log messages are attributed to the wrong

requests, primarily because they do not have identifiers

and they are output in a loop so that the DAG groups

them all together. This could potentially be addressed

with a more accurate path-sensitive static analysis.

2.9% of the log messages were not attributed to any

request because they could not be parsed. We manu-

ally examined these messages and the source code, and

found that in these cases, developers often use compli-

cated data-flow and control-flow to construct a message.

However, these messages are mostly generated in the

start-up or shut-down phase of the systems and thus likely

do not affect the quality of the performance analysis.

Inaccuracy in lprof ’s request attribution could affect

users as follows: since the “incomplete requests” are

caused by two log sequences A and B that should have

been merged but were not, lprof would over-count the

number of requests. For the same reason, timing informa-

tion separately obtained from A and B would be underes-

timations of the actual latency. The “incorrect requests”

are the opposite; because they should have been split into

separate requests, “incorrect requests” would cause lprof

to under-count the number of requests yet overestimate

the latencies. Note that administrators should quickly re-

alize the “incorrect requests” because lprof provides the

sequence of log messages along with their source code in-

formation. The information about the “failed” messages,

however, will be lost.

Number of messages per request: Figure 13 shows the

cumulative distribution function on the number of mes-

11

640 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0 %
20 %
40 %
60 %
80 %

100 %

 0 5 10 15 20 25 30 35 40

of

 u
ni

qu
e

re
qu

es
ts

of log messages

HDFS
Yarn
HBase
Cassandra

Figure 13: The cumulative distribution function on the number

of log messages per unique request. For Cassandra, the num-

ber of nodes each streaming session traverses varies greatly, re-

sulting in a large umber of unique log sequences (it eventually

reaches 100% with 1484 log messages, which is not shown in

the figure).

Category example tot. helpful

Unnecessary

operation

Redundant DNS lookups

(should have been cached)
15 13 (87%)

Synch-

ronization

Block scanner holding

lock for too long, causing

other threads to hang

4 1 (25%)

Unoptimized

operation
Used a slow read method 2 0 (0%)

Unbalanced

workload

A particular region server

serves too many requests
1 1 (100%)

Resource

leak

Secondary namenode

leaks file descriptor
1 0 (0%)

Total - 23 15 (65%)

Table 4: Evaluation of 23 real-world performance anomalies.

sages printed by each unique request, i.e., the one with

the same log sequence ID. In each system, over 44% of

the request types, when being processed, print more than

one messages. Most of the requests printing only one

message are system’s internal maintenance operations.

6.3 Real-world Performance Anomalies

To evaluate whether lprof would be effective in de-

bugging realistic anomalies, we randomly selected 23

user-reported real-world performance anomalies from the

bugzilla databases associated with the systems we tested.

This allows us to understand, via a small number of sam-

ples, what percentage of real-world performance bugs

could benefit from lprof . For each bug, we carefully read

the bug report, the discussions, and the related code and

patch to understand it. We then reproduced each one to

obtain the logs, and applied lprof to analyze its effec-

tiveness. This is an extremely time-consuming process.

The cases are summarized in Table 4. We classify lprof

as helpful if the anomaly can clearly be detected through

queries on lprof ’s request database.

Overall, lprof is helpful in detecting and diagnosing

65% of the real-world failures we considered. Next, we

discuss when and why lprof is useful or not-so-useful.

Table 5 shows the features of lprof that are helpful in

Analysis helpful

Request clustering to identify bottleneck 73%

Log printing methods (inefficiencies are in
67%

the same method as the log point)

Request latency analysis 33%

Per-node request count 7%

Table 5: The most useful analyses on real-world performance

anomalies. The percentage is over the 15 anomalies where lprof

is helpful. An anomaly may need more than one queries to de-

tect and diagnose, so the sum is greater than 100%.

debugging real-world performance anomalies we consid-

ered. The “request count” analysis is useful in 73% of

the cases. In these cases, the performance problems are

caused by an unusually large number of requests, either

external ones submitted by users or internal operations.

For example, the second performance anomaly we dis-

cussed in Section 2 belongs to this category, where the

number of verifyBlock operations is suspiciously large.

In these cases, lprof can show the large request number

and pinpoint the particular offending requests.

Another useful feature of lprof is its capability to as-

sociate a request’s log sequence to the source code. This

can significantly reduce developers’ efforts in searching

for the root cause. In particular, among the cases where

lprof is helpful, 67% of the bugs that introduced ineffi-

ciencies were in the same method that contained one of

the log points involved in the anomalous log sequence.

lprof ’s capability of analyzing the latency of requests

is useful in identifying the particular request that is slow.

The visualization of request latency is particularly use-

ful in analyzing performance creep. For example, the

anomaly to HDFS’s write requests discussed in Section 2

can result in performance creep if not fixed. In addi-

tion, lprof can further separate the requests of the same

type by their different LIDs which corresponds to differ-

ent execution paths. For example, in an HBase perfor-

mance anomaly [19], there was a significant slow-down

in 1% of the read requests because they triggered a buggy

code path. lprof can separate these anomalous reads from

other normal ones.

In practice, the user might not identify the root cause in

her first attempt, but instead will have to go through a se-

quence of hypotheses validations. The variety of perfor-

mance information that can be SQL-queried makes lprof

a particularly useful debugging tool. For example, an

HBase bug caused an unbalanced workload — a few re-

gion servers were serving the vast majority of the requests

while others were idle [18]. The root cause is clearly vis-

ible if the administrator examines the number of requests

per node. However, she will likely first notice the request

being slow (via a request latency query), isolate particu-

larly slow requests, before realize the root cause.

In the cases where lprof was not helpful, most (75%)

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 641

0 %
20 %
40 %
60 %
80 %

100 %

HDFS Yarn HBase Cassandra

Ou
tpu

t s
ize

 (%
)

55
6 M

B

23
 G

B

18
1 M

B

80
 M

B

raw log combine out. reduce out.

Figure 14: Output size after map, combine, and reduce com-

pared to the raw log sizes. The raw log sizes are also shown.

were because the anomalous requests did not print any

log messages. For example, a pair of unnecessary mem-

ory serialization and deserialization in Cassandra would

not show up in the log. While theoretically one can add

log messages to the start and end of these operations, in

practice, this may not be realistic as the additional log-

ging may introduce undesirable slowdown. For example,

the serialization operation in Cassandra is an in-memory

operation that is executed on every network communi-

cation, and adding log messages to it will likely intro-

duce slowdown. In another case, the anomalous requests

would only print one log message, so lprof cannot ex-

tract latency information by comparing differences be-

tween multiple timestamps. Finally, there was one case

where the checksum verification in HBase was redundant

because it was already verified by the underlying HDFS.

Both verifications from HBase and HDFS were logged,

but lprof cannot identify the redundancy because it does

not correlate logs across different applications.

If verbose logging had been enabled, lprof would have

been able to detect an additional 8.6% of the real-world

performance anomalies that we considered since the of-

fending requests print log messages under the most ver-

bose level. However, enabling verbose logging will likely

introduce significant performance overhead.

6.4 Time and Space Evaluation

The map and combine functions ran on each EC2 node,

and the reduce function ran on a single server with 24

2.2GHz Intel Xeon cores and 32 GB of RAM.

Figure 14 shows the size of intermediate result. On

average, after map and combine, the intermediate result

size is only 7.3% of the size of the raw log. This is the

size of data that has to be shuffled over the network for

the reduce function. After reduce, the final output size is

4.8% of the size of the raw log.

Table 6 shows the time and memory used by lprof ’s

log analysis. lprof ’s map and combine functions finish in

less than 6 minutes for every system exception for Yarn,

which takes 14 minutes. Over 80% of the time is spent

on log parsing. We observe that when a message can

match multiple regular expressions, it takes much more

time than those that match uniquely. The memory foot-

print for map and combine is less than 3.3GB in all cases.

System
Time (s) Memory (MB)

map+comb. reduce map+comb. reduce

HDFS 14/528 21 185/348 1,901

Yarn 412/843 1131 1,802/3,264 7,195

Cassandra 4/9 17 90/134 833

HBase 3/7 2 74/150 242

Table 6: Log analysis time and memory footprint. For the

parallel map and combine functions, numbers are shown in the

form of median/max.

The reduce function takes no more than 21 seconds

for HDFS, Cassandra, and HBase, but currently takes

19 minutes for Yarn. It also uses 7.2GB of mem-

ory. Currently, our MapReduce jobs are implemented in

Python using Hadoop’s streaming mode, which may be

the source of the inefficiency. (Profiling Yarn’s reduce

function shows that over half of the time is spent in data

structure initializations.) Note that we run the reduce job

on a single node using a single thread. The reducer could

and should be parallelized in real-world usage.

7 Limitations and Discussions

We outline the limitations of lprof through a series of

questions. We also discuss how lprof could be extended

under different scenarios.

(1) What are the logging practices that make lprof most

effective? The output of lprof , and thus its usefulness, is

only as good as the logs output by the system. In partic-

ular, the following properties will help lprof to be most

effective: (i) attached timestamps from a reasonably syn-

chronized clock; (ii) output messages in those requests

that need profiling (multiple messages are needed to en-

able latency related analysis); (iii) the existence of a rea-

sonably distinctive request identifier, and (iv) not printing

the same message pattern in multiple program locations.

Note that these properties not only will help lprof ,

but also are useful for manual debugging. lprof natu-

rally leverages such existing best-practices. Furthermore,

lprof ’s static analysis can be used to suggest how to im-

prove logging. It identifies which threads do not con-

tain any log printing statements. These are candidates for

adding log printing statements. lprof can also infer the

request identifiers for developers to log.

(2) Can lprof be extended to other programming lan-

guages? Our implementation relies on Java bytecode and

hence is restricted to Java programs (or other languages

that use Java bytecode, such as Scala). Similar analysis

can be done on LLVM bytecode [24], but this would most

likely require access to the C/C++ source code so it can

be compiled to LLVM bytecode.

(3) How scalable is lprof? While the map phase is exe-

cuted in parallel on each node that stores the raw log, the

13

642 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

reduce phase may not be evenly distributed. This is be-

cause all of the RAs that contain top-level methods that

might communicate with each other need to be shuffled to

the same reducer. This can result in unbalanced load. For

example, in Yarn, 75% of the log messages are printed

by one log point during the heartbeat process, and their

RAs have to be shuffled to the same reducer node. This

node becomes the bottleneck even if there are other idle

reducer nodes. How to further balance the workload is

part of future work.

(4) How does lprof change if a unique per-request ID ex-

ist? If such an ID exists in every log message, then there

would be no need to infer the request identifier. The log

string format parsing could also be simplified since now

our log parser only needs to match a message to a log

printing statement, but does not need to precisely bind

the values to variables. However, the other components

are still needed. DAG and communication pairs are still

needed to infer the order dependency between different

log messages, especially if we want to perform per-thread

performance debugging. The MapReduce log analysis is

still needed. If such an ID exists, then the accuracy of

lprof will increase significantly, and we can better dis-

tribute the workload in the reduce function by using this

ID as part of the shuffle key.

(5) What happens when the code changes? This requires

lprof to perform static analysis on the new version. The

new model produced by the static analysis should be sent

to each node along with the new version of the system.

8 Related Work

Using machine learning for log analysis: Several tools

apply machine learning on log files to detect anoma-

lies [4, 29, 42]. Xu et al., [42] also analyzes the log print-

ing statements in the source code to parse the log. lprof

is different and complementary to these techniques. First,

these tools target anomaly detection and do not identify

request flows as lprof does. Analyzing request flows is

useful for numerous applications, including profiling, and

understanding system behavior. Moreover, the different

goals lead to different techniques being used in our de-

sign. Finally, these machine learning techniques can be

applied to lprof ’s request database to detect anomalies on

a per-request, instead of per-log-entry, basis.

Semi-automatic log analysis: SALSA [40] and

Mochi [41] also identify request flows from logs pro-

duced by Hadoop. However, unlike lprof , their models

are manually generated. By examining the code and logs

of HDFS, they identify the key log messages that mark

the start and the end of a request, and they identify request

identifiers, such as block ID. In contrast, lprof automat-

ically infers the order relationship between log printing

statements and the request identifiers from the program,

and thus is not specific to one particular system. The

Mystery Machine [10] extracts per-request performance

information from the log files of Facebook’s production

systems, and it can correlate log messages across differ-

ent layers in the software stack. To do this, they attach

unique request identifiers to each log message. Commer-

cial tools like VMWare LogInsight [26] and Splunk [38]

index the logs, but requires administrators to do keyword-

based searches on the log data.

Single thread log analysis: SherLog [43] analyzes the

source code and a sequence of error messages to recon-

struct the partial execution paths that print the log se-

quence. Since it is designed to debug functional bugs

in single-threaded execution, it uses precise but heavy-

weight static analysis to infer the precise execution path.

In contrast, lprof extracts less-precise information for

each request, but it analyzes all the log outputs from all

the requests of the entire distributed system.

Instrumentation-based profiling: Instrumentation-

based profilers have been widely used for performance

debugging [6, 8, 16, 17, 23, 32, 34]. Many, includ-

ing Project 5 [1], MagPie [3], X-Trace [14], and Dap-

per [36], just to name a few, are capable of analyzing

request flows by instrumenting network communication,

and they can profile the entire software stack instead of

just a single layer of service. G2 [17] further models all

the events into an execution graph that can be analyzed

using LINQ queries and user-provided programs. In com-

parison, lprof is non-intrusive. It also provides source-

level profiling information. However, it cannot provide

any information if requests do not output log messages.

9 Conclusions

This paper presented lprof , which is, to the best of our

knowledge, the first non-intrusive request flow profiler

for distributed services. lprof is able to stitch together

the dispersed and intertwined log messages and associate

them to specific requests based on the information from

off-line static analysis on the system’s code. Our evalua-

tion shows that lprof can accurately attribute 88% of the

log messages from widely-used, production-quality dis-

tributed systems, and is helpful in debugging 65% of the

sampled real-world performance anomalies.

Acknowledgements

We greatly appreciate the anonymous reviewers and our

shepherd, Ed Nightingale, for their insightful feedback.

This research is supported by NSERC Discovery grant,

NetApp Faculty Fellowship, and Connaught New Re-

searcher Award.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 643

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-

tributed systems of black boxes. In Proceedings of the

19th ACM Symposium on Operating Systems Principles,

SOSP’03, pages 74–89, 2003.

[2] Amazon found every 100ms of latency cost them 1% in

sales. http://blog.gigaspaces.com/amazon-

found-every-100ms-of-latency-cost-

them-1-in-sales/.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

magpie for request extraction and workload modelling. In

Proceedings of the 6th Symposium on Opearting Systems

Design and Implementation, OSDI’04, 2004.

[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and

M. D. Ernst. Leveraging existing instrumentation to au-

tomatically infer invariant-constrained models. In Pro-

ceedings of the 19th ACM Symposium on Foundations of

Software Engineering, FSE ’11, pages 267–277, 2011.

[5] Boundary: Modern IT operation management.

http://boundary.com/blog/2012/11/19/

know-your-iaas-boundary-identifies-

performance-lags-introduced-by-cloud/.

[6] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit:

Transactional profiling for multi-tier applications. In Pro-

ceedings of the 2nd ACM European Conference on Com-

puter Systems, EuroSys ’07, pages 17–30, 2007.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-

ber. Bigtable: a distributed storage system for structured

data. In Proceedings of the 7th symposium on Operat-

ing systems design and implementation, OSDI’06, pages

205–218, 2006.

[8] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and

E. Brewer. Pinpoint: Problem determination in large, dy-

namic internet services. In Proceedings of the Interna-

tional Conference on Dependable Systems and Networks,

DSN ’02, pages 595–604, 2002.

[9] Chord: A program analysis platform for java. http://

pag.gatech.edu/chord.

[10] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.

Wenisch. The mystery machine: End-to-end performance

analysis of large-scale internet services. In Proceedings

of the 11th symposium on Operating Systems Design and

Implementation, OSDI’14, 2014.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM Symposium on

Cloud Computing, SoCC ’10, pages 143–154, 2010.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. In Proceedings of the 6th

conference on Symposium on Opearting Systems Design

and Implementation, OSDI’04, 2004.

[13] Moving an elephant: Large scale hadoop data migra-

tion at facebook. https://www.facebook.com/

notes/paul-yang/moving-an-elephant-

large-scale-hadoop-data-migration-at-

facebook/10150246275318920.

[14] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-trace: a pervasive network tracing framework. In

Proceedings of the 4th USENIX conference on Networked

systems design and implementation, NSDI’07, 2007.

[15] Google protocol buffers. https://developers.

google.com/protocol-buffers/.

[16] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof:

A call graph execution profiler. In Proceedings of the SIG-

PLAN Symposium on Compiler Construction, SIGPLAN

’82, pages 120–126, 1982.

[17] Z. Guo, D. Zhou, H. Lin, M. Yang, F. Long, C. Deng,

C. Liu, and L. Zhou. G2: A graph processing system

for diagnosing distributed systems. In Proceedings of the

2011 USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC’11, 2011.

[18] HBase bug 2399. https://issues.apache.org/

jira/browse/HBASE-2399.

[19] HBase bug 3654. https://issues.apache.org/

jira/browse/HBASE-3654.

[20] HDFS performance regression on write requests.

https://issues.apache.org/jira/browse/

HDFS-4049.

[21] Highcharts: interactive JavaScript charts for your web-

page. http://www.highcharts.com/.

[22] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.

The HiBench benchmark suite: Characterization of the

MapReduce-based data analysis. In 26th International

Conference on Data Engineering Workshops (ICDEW),

pages 41–51, 2010.

[23] E. Koskinen and J. Jannotti. Borderpatrol: Isolating events

for black-box tracing. In Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Sys-

tems 2008, Eurosys ’08, pages 191–203, 2008.

[24] The LLVM compiler infrastructure. http://llvm.

org/.

[25] log4j: Apache log4j, a logging library for Java. http:

//logging.apache.org/log4j/2.x/.

[26] VMware vCenter Log Insight: Log management

and analytics. http://www.vmware.com/ca/en/

products/vcenter-log-insight.

[27] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-

situ mapreduce for log processing. In Proceedings of the

2011 USENIX Annual Technical Conference, 2011.

[28] Mongodb. http://www.mongodb.org/.

[29] K. Nagaraj, C. Killian, and J. Neville. Structured com-

parative analysis of systems logs to diagnose performance

problems. In Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation,

NSDI’12, 2012.

15

644 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[30] Nagios: the industry standard in IT infrastructure moni-

toring. http://www.nagios.org/.

[31] NewRelic: Application performance management and

monitoring. http://newrelic.com/.

[32] OProf - A system profiler for Linux. http://

oprofile.sourceforge.net/.

[33] OpsView - enterprise IT monitoring for networks. http:

//www.opsview.com/.

[34] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.

Shah, and A. Vahdat. Pip: Detecting the unexpected in

distributed systems. In Proceedings of the 3rd Confer-

ence on Networked Systems Design and Implementation,

NSDI’06, 2006.

[35] M. Sharir and A. Pnueli. Two approaches to interprocedu-

ral analysis. Program Flow Analysis, Theory and applica-

tions, 1981.

[36] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-

son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.

Dapper, a large-scale distributed systems tracing infras-

tructure. Technical report, Google, Inc., 2010.

[37] Simple logging facade for Java (SLF4J). http://www.

slf4j.org/.

[38] Splunk log management. http://www.splunk.

com/view/log-management/SP-CAAAC6F.

[39] S. Steinarsson. Downsampling time series for visual rep-

resentation. M.Sc thesis. Faculty of Industrial Engineer-

ing, Mechanical Engineering and Computer Science, Uni-

versity of Iceland, 2013.

[40] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan.

Salsa: Analyzing logs as state machines. In Proceedings

of the 1st USENIX Conference on Analysis of System Logs,

WASL’08, 2008.

[41] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan.

Mochi: Visual log-analysis based tools for debugging

hadoop. In Proceedings of the Conference on Hot Top-

ics in Cloud Computing, HotCloud’09, 2009.

[42] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proc. of the ACM 22nd Symposium on Operating

Systems Principles, SOSP ’09, pages 117–132, 2009.

[43] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-

pathy. SherLog: error diagnosis by connecting clues from

run-time logs. In Proceedings of the 15th Conference on

Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’10, pages 143–154, 2010.

[44] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou, and

S. Savage. Be conservative: Enhancing failure diagno-

sis with proactive logging. In Proceedings of the 10th

USENIX Symposium on Operating System Design and Im-

plementation, OSDI’12, pages 293–306, 2012.

[45] D. Yuan, S. Park, and Y. Zhou. Characterising logging

practices in open-source software. In Proceedings of the

34th International Conference on Software Engineering,

ICSE ’12, 2012.

[46] Zabbix - an enterprise-class open source monitoring solu-

tion. http://www.zabbix.com/.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 645

Pydron: semi-automatic parallelization
for multi-core and the cloud

Stefan C. Müller1,3, Gustavo Alonso1, Adam Amara2, and André Csillaghy3

1Department of Computer Science, ETH Zürich
2Department of Physics, ETH Zürich

3University of Applied Sciences Northwestern Switzerland

Abstract

The cloud, rack-scale computing, and multi-core are the
basis for today’s computing platforms. Their intrinsic
parallelism is a challenge for programmers, specially in
areas lacking the necessary economies of scale in appli-
cation/code reuse because of the small number of po-
tential users and frequently changing code and data. In
this paper, based on an on-going collaboration with sev-
eral projects in astrophysics, we present Pydron, a sys-
tem to parallelize and execute sequential Python code
on a cloud, cluster, or multi-core infrastructure. While
focused on scientific applications, the solution we pro-
pose is general and provides a competitive alternative
to moving the development effort to application specific
platforms. Pydron uses semi-automatic parallelization
and can parallelize with an API of only two decorators.
Pydron also supports the scheduling and run-time man-
agement of the parallel code, regardless of the target
platform. First experiences with real astrophysics data
pipelines indicate Pydron significantly simplifies devel-
opment without sacrificing the performance gains of par-
allelism at the machine or cluster level.

1 Introduction

In astronomy and other big-data sciences, the data gener-
ated by experiments and simulations is growing by leaps
and bounds. Scientists have to use sophisticated comput-
ing infrastructures to be able to analyze and process all
their observations.

Scientific data is often of a different nature than busi-
ness data. Data from instruments and simulations has to
be heavily processed before conclusions can be drawn
from it. This process is repeated many times to cali-
brate and clean the data and to tune parameters and al-

gorithms. Often this process is exploratory, using non-
standard tools and ad-hoc developed code.

For example, in [29] Refregier et al. describe a pro-
cedure where repeated executions of a wide-field astron-
omy image simulator [3] are used to develop and cali-
brate the simulator, match the simulations with data from
real observations, and perform a robustness analysis on
the parameter space. With long lasting missions, such
as the RHESSI spacecraft, launched in 2002 and still
producing data today, changes to processing algorithms,
data, and infrastructure happen continuously and will
continue throughout the life time of the spacecraft and
beyond [31]. This implies a constant correction of the
data and the algorithms that adds significant overhead.

One can argue that today there are enough platforms
– hardware and software – to support such application
scenarios. However, this is far from being the case.
The way to achieve performance today is through large
scale parallelism: multi-core, rack-scale, or cloud com-
puting. Current approaches to make parallelism avail-
able to developers typically provide either low level in-
terfaces to parallel hardware (such as pthreads [7] or
MPI [14] which are non trivial to use) or they require a
complete integration into frameworks such as Spark [38]
or Hadoop [13]. With fast changing code, legacy applica-
tions as well as legacy data formats, it is often impractical
to apply such frameworks because of their rigid require-
ments in terms of data formats and algorithmic structure.
This is not a question of the adequacy of these systems
to the task at hand. It is a question of the total cost of
adapting such a framework for the entire life cycle of a
scientific mission. Code is often specific to an instru-
ment and to the research of a single group. As a result,
the economies of scale that would justify larger develop-
ment efforts, as required to adopt existing frameworks,
are just not there.

646 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In this paper we argue for an alternative approach to
separate application specific code from the paralleliza-
tion framework (language and run-time). Our approach
tries to provide maximum flexibility and ease of use for
the application developer, with a system that takes care of
parallelization, deployment, and scheduling on a variety
of target infrastructures.

Our system, Pydron, can semi-automatically paral-
lelize sequential Python code and run the result on multi-
core, cluster, or cloud systems. The API consists only of
two Python decorators: one to mark functions that should
be parallelized, and one to mark functions that are free of
side-effects. We use Python because of its wide spread
use in the astronomy community. Pydron might even
open the door for scientists to start using cloud based sys-
tems such as Hadoop and Spark by not requiring them to
change their programming habits and not having to deal
with the parallel infrastructure used to run the code.

Existing approaches, such as SEJITS [9], have auto-
matically parallelized Python code when the code is re-
stricted in form and data types, or introduced systems,
such as CIEL [21], that can scale to multi-machine in-
frastructures when the application is written in a domain
specific language. Pydron combines the advantages of
both approaches.

With Pydron, the paper makes the following contribu-
tions:

• Pydron allows scientists to work in the language and
with the tools they are familiar with, while giving
them access to multi-core, cluster and cloud infras-
tructures.

• We show that the barrier for the application devel-
oper to benefit from modern infrastructures can be
significantly lowered by using semi-automatic par-
allelization.

• We demonstrate how a dynamic data-flow graph can
be used to counter the limitations of statical analysis
when applied to a dynamic language.

• We present a system with three interchangeable el-
ements that can be used to apply the ideas both to
other languages and to other execution platforms –
both hardware and software.

2 Related Work

Big data in scientific applications has lead to a large va-
riety of systems to make the use of high performance
infrastructures simpler for the developer.

Science Data Archives A significant effort has been
made to simplify the analysis of scientific data once it has
been collected and processed into science-ready prod-
ucts. For data that can be represented in tabular form,
e.g. the Sloan Digital Sky Survey [33], databases are typ-
ically used. The large data volumes and the sophisticated
queries can made specialized extensions to the database
system necessary [32]. When data does not easily fit into
a relational data model, other approaches are required,
such as SciDB [5], a database system that generalizes
the relational concept to multidimensional arrays to bet-
ter support data types such as images or spectra. Many
of these extensions are application specific and are rarely
used in other contexts.

Delayed Execution Before data can be analyzed, it
needs to be processed. Many of the languages currently
in widespread use were not designed with parallelization
in mind, which leads to a demand for easy-to-use inter-
faces between the language and the parallel infrastruc-
ture. One approach, used by Spark [38], Weaver [6], or
FlumeJava [10] is to collect expressions during the exe-
cution of the program. Instead of directly executing an
operation, an object is returned that represents the not-
yet-calculated result. Those objects can then participate
in other operations, resulting in an expression graph. The
expression graph is then evaluated in parallel.

Such systems typically introduce a set of data types to-
gether with operations that can be applied to them. The
close control of the system over both data and operators
allows for efficient parallelization and sophisticated data
management. However, it also forces the developer to
formulate the code using only the data formats and op-
erators provided. For the scientific applications we are
interested in, this is a significant limitation as those ap-
plications often use legacy code and data formats.

Source-to-Source Translation The approach used by
SEJITS [9] or Parakeet [30] is to translate the source
code into another programming language, such as
CUDA [22] or C++, more suited for the targeted in-
frastructure. The translation and subsequent compilation
typically happens just-in-time during execution. The per-
formance improvement comes from a more efficient tar-
get language, and / or from parallel execution on hard-
ware such as graphics processor units. These systems
place constraints on the code they can translate: Not all
data types and operations may be available in the tar-
get language, and since Python is dynamically typed,
the systems typically require complete type inference.
For example, both SEJITS and Parakeet operate only

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 647

on NumPy [17] data types and cannot handle other ob-
jects. This makes such systems attractive to speed up
inner loops, where the amount of translated code is rel-
atively small, and it it easier to comply with the con-
straints. Thus, parallelization is typically fine grained.
Pydron targets infrastructures on which Python is avail-
able, and can therefore avoid the constraints that result
from a translation into a different language.

Domain Specific Languages When parallelizing at a
coarse granular level, near the outer most loops, the dis-
tributed tasks will use a significant amount of unmodi-
fied application’s code. Applying strong constraints is
less practical. SWIFT [36], CIEL [21], or PigLatin [24],
use custom ’orchestration’ languages in which the outer-
most loops are parallelized.

Parallelization of the actual computations in the in-
ner loops are typically not addressed in those languages.
Instead, such systems provide convenient ways to call
code written in other languages. The orchestration lan-
guages are often functional or have other means to avoid
side-effects which would hinder automatic paralleliza-
tion. Those constraints are less restrictive than in the
source-to-source translation approach since they only ap-
ply to the outer loops and not to the code called from
within. Systems such as Taverna [23] also belong to this
category. They use a graphical programming language,
in the form of a work-flow graph, to specify the orches-
tration of the computation. A separate language enforces
a strict separation between orchestration and computa-
tion. Pydron blurs the barrier between orchestration and
computation and avoids the learning curve of an addi-
tional language.

Streaming Data streaming systems such as Spark
Streaming [39] and Naiad [20] use a data-flow graph
representation. Records are passed along the edges, an
the vertices represent operations on them. Several of the
non-streaming systems also use graph representations in-
ternally. In those systems vertices are executed once, and
data that flows along the edges typically represent larger
units of data (for example sets of records). Data stream-
ing can achieve finer parallelization, on the granularity
of individual records, while keeping the graph at a man-
ageable size since there is no need to have a vertex per
record.

For use-cases that can be formulated as record streams,
such systems can scale well to many nodes. The devel-
oper has to provide the implementation of the vertices
and, unlike Pydron, also has to provide the structure of

Figure 1: Pydron Overview

the graph, for example with a SQL or LINQ [37] expres-
sion.

Static Compiler Optimization Modern processors
support parallelism in various ways, with multiple cores,
multiple threads, and vectorized instructions. Compile-
time optimizations to make use of those features have
been studied extensively [12]. Those approaches are lim-
ited by the large search space of such optimizations. As
a result such optimizations are typically only applied to
relatively simple innermost loops and not at higher lev-
els.

In contrast to these systems, Pydron parallelizes reg-
ular Python code, similar to compiler optimizations or
source-to-source translation, but it uses a coarser granu-
larity and scales beyond shared memory systems. Exist-
ing systems that can scale to such an infrastructure use
either domain specific languages or force the developer
to formulate the problem in a form dictated by the sys-
tem. In Pydron, however, the parallelization and execu-
tion are separated. As a result, Pydron can easily tar-
get either multi-core, clusters, or cloud platforms (or a
combination there of). Our approach supports the com-
plete Python language, without the constraints of existing
source-to-source translation systems. Since we do not
translate the distributed code into a different language,
we are not limited to support only those data types and
functions from Python libraries that have equivalents in
the target language.

3 System Overview

Pydron operates by translating Python into an interme-
diate data-flow graph representation. The graph is then
evaluated by a scheduler sub-system which uses a dis-

3

648 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tribution sub-system to execute individual tasks to the
worker-nodes.

Dynamic-typing, late-binding, and side-effects makes
static analysis of Python code hard. We use a dy-
namic data-flow graph to account for the dynamic na-
ture of Python. This is is a similar approach as used by
CIEL [21], and we too use dynamic changes to the graph
to handle data dependent control flow, such as loops and
branches. We take this idea a step further and continu-
ously refine the data-flow graph to incorporate informa-
tion about object types and the data itself as it becomes
known during execution.

Pydron consists of three components (Figure 1):
The translator transforms Python code of those func-

tions decorated with @schedule into their initial graph
representation. All language constructs can be translated.
The translation happens at run-time, the first time the
function is invoked. The translation process is described
in Section 5.

When a translated function is invoked, the scheduler
component analyzes the graph to decide in which order
the tasks have to be executed and which of them may run
in parallel. It fills a queue with tasks that are ready for
execution. When the results become known after execu-
tion, the scheduler is informed. The scheduler is respon-
sible for making the dynamic graph changes and to add
those tasks that have now become ready for execution to
the queue. Scheduling is described in Section 6.

The tasks in the queue are distributed to worker nodes
for execution. The distribution system is responsible to
acquire the resources and to start the Python interpreters
(typically one per core) which will execute the tasks, as
well as to release the resources at the end. It also deploys
the the user’s application on the worker nodes. We have
several back-ends implemented to support cloud, cluster
and multi-core infrastructure. The distribution system is
described in Section 7.

Pydron has been designed to make these components
interchangeable so as to allow extensions to target other
languages and execution platforms. The components de-
scribed in this paper focus on achieving full support for
the Python language with greatest flexibility for the de-
veloper.

4 Language API: Decorators

To make the system as easy to use as possible, the API
of Pydron consists only of two decorators. @schedule
marks the functions which should be considered for au-
tomatic parallelization. This allows the developer to con-
trol which parts of the application the system will paral-

lelize. Since the developer marks complete methods with
@schedule, and not individual loops or statements, this
is typically a simple task as most applications will have
only a few central functions that orchestrate the process.

The @functional decorator informs Pydron that the
marked function is free of side-effects and may be run
on a different machine. The function has to meet the fol-
lowing criteria:

• No modification of objects passed as arguments.

• Arguments and return values need to support serial-
ization with Python’s pickle API [25].

• No assignments to global variables.

• No environment interactions.

The criteria apply only to the observed behavior of the
function, not to every operation within its implemen-
tation. Especially, the last criterion can be interpreted
rather freely as it isn’t a technical constraint of Pydron.

Environment interactions are not tracked by our sys-
tem and could lead to non-deterministic behaviour if ex-
ecuted in parallel. Sometimes this can be acceptable. If,
for example, log messages are generated inside a func-
tion marked with @functional, a non-deterministic order
of the log messages should be acceptable.

Another common situation is file IO. Open file handles
cannot be passed to marked functions since Pydron has
currently not support for remote file operations. Often
it is sufficient to track the files by their filenames. If the
function only reads files for which it has received the cor-
responding filename as an argument and returns the name
of the files it has written, then the function can typically
be safely marked as @functional. Pydron will track the
file dependencies between the functions by tracking their
names, enforcing the correct order of execution. This
is especially handy when operating on clusters with a
shared file system. In astronomy, many codes already
use files to store intermediate data products, making this
workaround particularly simple.

We don’t currently automatically check if the condi-
tions for the @functional decorator hold, even though
some automatic checks could be implemented to support
the developer in this decision.

5 Language Translation

The intermediate data-flow graph used by Pydron is di-
rectional, acyclic, and bipartite. There are two types of
nodes: Value-nodes which represent immutable data and
tasks which represent operations on data.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 649

Figure 2: Operator Translation

Figure 3: Function Call Translation

Figure 2 shows the data-flow graph for a simple ex-
pression. In general, variables become value-nodes. Ex-
pressions and statements become tasks. Intermediate val-
ues in expressions are also represented by value-nodes.
Those have no direct correspondence with a Python vari-
able, but behave no differently otherwise.

Functions with the @schedule decorator are translated
the first time they are invoked. Pydron uses Python’s
built-in parser to create an abstract syntax tree of the
function’s code. This tree is then traversed twice. A
first pass identifies the scope of the variables. The ac-
tual translation happens in the second pass.

In work-flow systems such as Taverna [23] there are
also other type of edges. In Pydron dependencies be-
tween tasks can only result from data dependencies.

5.1 Function Calls
Functions are first-class objects in Python. The invoked
function is represented by a value-node since the func-
tion may itself be the result of an operation. This value-
node is an input to a call-task, together with the argu-
ments passed to the function. The return value is again a
value-node. Figure 3 shows a simple example.

Pydron supports all of Python’s language features for
function calls, such as keyword arguments and argument
lists.

In general, we cannot know at translation time which
function is invoked. We have to assume that it may have
side-effects or modify arguments passed to it in-place.
This leads to additional edges connected to the task (as
described in Section 5.3).

To improve the readability of the data-flow graphs in
this paper, we show a slightly compacted form. Instead
of showing the function calls as in Figure 3, we hide the
input for the function object and name the call task-node
by the function. We will also hide intermediate value-
nodes, as shown in Figure 2, from expressions. Instead

Figure 4: Static Single Assignment Form

we directly connect the two tasks.

5.2 Static Single Assignment Form

Python variables can be reassigned. This conflicts with
the property that value-nodes represent immutable data.
Therefore a one-to-one relationship between variables
and value-nodes is not possible. We translate the Python
code into a static single assignment form [11]. A Python
variable is represented by a series of value-nodes, each
representing the content the variable would hold for a
period of the time in a sequential execution of the code.

Figure 4 shows an example. The variable x is assigned
twice. The value node x1 represents the content before
the += operator is executed, x2 represents the content af-
ter. Once this operator has been executed, both x1 and
x2 are known and the scheduler (see Section 6) will be
able to schedule both calls to f for parallel execution. We
don’t show the subscripts explicitly in the other figures as
the order can be derived easily from the graph structure.

5.3 In-place modifications

Python objects can change after their creation. This
poses a problem since value-nodes represent immutable
data. Creating a copy before a modification is impracti-
cal since the data of the value-node may not have value
semantics.

Pydron uses another solution based on the following
observation: The value represented by a value-node be-
comes known once the producing task has been executed.
The value becomes permanently unknown after an in-
place modification on the value-node. Conceptually, the
value-node still represents the unchanged value. If the
task which performs the in-place modification is exe-
cuted after all other tasks that use that value-node have
completed, then the modification will not have an observ-
able effect as the value-node will no longer be needed.

An operation with a potential in-place modification
is translated differently. The input edge that connects
the task with the affected value-node is flagged as last-
read. A new value-node to represent the modified value
is added as an output, in accordance with the static sin-

5

650 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: Synchronization point

gle assignment form (see Section 5.2). The scheduler is
aware of the last-read flag and ensures correct ordering
of task-executions.

In the general case, this is still insufficient to guarantee
the same results since the objects changed in-place may
be referenced from other value-nodes as well. For each
affected value-node, the above special translation would
have to be applied. We cannot identify them in general.
Therefore, whenever there is a risk of having an in-place
modification that may affect other value-nodes, we make
the task into a synchronization point.

A pseudo variable is introduced to model synchroniza-
tion points. This variable is implicitly read by all tasks.
A synchronization point is translated as an in-place mod-
ification on this variable. The last-read edge created by
that translation ensures that all previous tasks have to be
executed before the synchronization point. All tasks after
the synchronization point will use the new value-node,
representing the changed pseudo variable, as an input,
and will therefore be forced to wait til after the synchro-
nization point.

Synchronization points are also used to model opera-
tions with potential side-effects. Such as a call to a func-
tion which is not marked with @functional. Since the in-
voked function is not known at translation time, all calls
are initially translated as a synchronization point. We
will use the adaptive graph refinement to remove those
synchronization points for @functional functions.

Figure 5 shows an example. The last-read flag forces
the addition to complete before f is invoked. The assign-
ment of the pseudo-variable ρ , forces the multiplication
to execute after f .

There would be more straight-forward ways to model
synchronization points, for example by having ρ as an
output of the addition, but this method allows us to
reuse the technique of in-place modifications, reducing
the overall complexity of the system.

5.4 Attribute and Subscript

When used as a right-hand-side expression, both at-
tributes and subscripts are translated to a task which re-
ceives the object as an input. For attribute access, the

Figure 6: Attributes and Subscripts

name of the attribute is stored in the task. In case of a
subscript, the indices are also passed as inputs. Pydron
supports all indexing constructs, including slicing. Fig-
ure 6 shows a simple example with both attribute and
subscript used as a right-hand-side expression.

Both attributes and subscripts can be used as a left-
hand-side expression as well. Those tasks have the as-
signed value as an additional input. By its nature, such
an assignment is an in-place modification on the object,
for which additional edges have to be added to the graph,
as described in Section 5.3.

5.5 @functional Decorator
Functions decorated with @functional are not changed at
all. The only effect is that Pydron internally keeps track
of those functions.

When the function object on a call-task (see Section
5.1) becomes known during the evaluation of the graph,
the scheduler checks if the invoked function is @func-
tional. If so, the graph is changed to remove the syn-
chronization point.

This usually happens quite early during the evaluation
of a graph as most invoked functions will be stored in
global variables (Section 5.9) and are not the result of
operations.

5.6 Conditional Statements
The translation of the if statement makes use of the dy-
namic data-flow graph. The complete if statement is ini-
tially translated into a single task. The condition is an
input to this task. Both the body and the else section are
translated individually into sub-graphs.

During translation of the body and else sections, the
variables read and assigned are kept track of. They too
become inputs and outputs of the if -task.

A variable in Python can have an undefined content if
it is assigned in only one of the sections. In the data-flow
graph each value-node must be the output of a task. For
such situations a special task is added to the graph which
produces an undefined value as a result. The scheduler is
aware of value-nodes with an undefined content and will
produce the same exceptions on an attempt to use the

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 651

Figure 7: while Loop Translation

value-node as Python would when using an undefined
variable.

5.7 Loops
The translation of for and while loops use the same tech-
niques as for conditional statements. The loop body and
the optional else section are translated into sub-graphs.
The complete loop construct is translated initially into a
single task. The condition, in case of a while loop, or
the iterator, in case of a for loop, is an input to this task.
The expression of a for-loop evaluates to an iterable. We
insert another task which uses the built-in function iter()
to get the iterator.

At the end of the body sub-graph the loop task itself
is added to form a tail-recursive pattern. This may seem
to enforce sequential execution, and indeed it will do so,
unless the scheduler finds the requirements met at run-
time that allow parallel execution the iterations.

Figure 7 shows an example. The while loop is first
translated into a single while-task, internally storing the
sub-graph of its body. For every variable read in the body
there is a corresponding input, and for every variable as-
signed there is an output. The sub-graph also contains
the inner while-task which forms the tail recursion.

5.8 return, break, and continue
The three statements return, break, and continue inter-
rupt the regular control flow. Pydron translates those
statements by reformulating them with conditional ex-
pressions and flag variables. Figure 8 shows an example.
The interrupting statement sets a flag variable. Once such
a flag has been set, all code afterwards is put into a con-
dition checking the flag. Since the interrupting statement
might be inside nested if statements, multiple conditions
might be introduced. The task of the loop is aware of
the flags and uses them to decide if to replace the task by
the body sub-graph or if to end the loop, with or without
a final replacement with the else sub-graph. In case of
the return statement, the return value is stored together

Figure 8: Reformulate break Statement

with the flag. This reformulation is performed on the fly
during the translation into the data-flow graph.

5.9 Non-local variables

Besides being local to the function, variables can also
belong to the module in which the function is defined
(global variables). In addition Python allows functions
to be defined within functions. Those nested functions
may access the variables of the enclosing function (clo-
sure variables). Pydron supports both global variables,
closures, and nested functions.

Python stores the value of a closure variable in a cell-
object that lives on the heap. Any access to the variable
is transparently transformed into an access to this cell-
object. We can translate functions containing closure
variables by using the same approach as Python: A read-
cell or write-cell task is added to the graph whenever a
closure variable is accessed. The task is reading or writ-
ing the cell-object when executed. This has to be done
in both the enclosed and the enclosing function. Pydron
identifies the variables that are accessed from enclosed
functions in a first pass over the abstract syntax tree.

Any access to global variables can be translated sim-
ilarly with read-global and write-global tasks. Assign-
ment to a global variable is considered a side-effect and
leads to a synchronization point. Reading a global vari-
able does not.

5.10 Exception Handing

Exception handling statements such as try-except or the
with statement are translated as well.

At first, exceptions seem to forbid any parallelism as
every operation could potentially throw an exception.
The decision if an operation is to be executed can only
be made once the previous operation has finished. We

7

652 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

can still achieve parallelism by using speculative execu-
tion [27]. An operation is executed even if it is not clear
if an exception in a previous operation may occur. This
is possible because when we execute a task without side-
effects or in-place modifications and discard its outputs
then this has the same observable behavior as if we would
not have executed the task at all.

If a task does have side effects, this translates into a
synchronization point which forces all previous opera-
tions to complete before it. In this situation we know if
any of the previous operations raised an exception.

The cost of this method is that we potentially waste
significant resources on speculatively executed tasks
should an exception occur. If we assume that exceptions
are used in rare scenarios and not for regular control flow,
then exception handing has little impact on the potential
parallelism.

5.11 yield Statement

The yield statement is special since it transforms the
function in which it appears into a generator. When the
function is invoked, the execution of the function pauses
and an iterator is returned. When elements are consumed
from the iterator, the execution proceeds from yield to
yield statement.

The yield statement can be translated into a data-flow
equivalent which is treated specially by the scheduler.
Between reaching a yield statement and the next con-
sumption of an element on the iterator, only tasks can
be executed which are free of side-effects and perform
no in-place modifications. This is similar to exception
handing as we cannot say for sure if another element will
be consumed by the iterator, making the execution of any
operation after a yield statement speculative.

6 Scheduling

The scheduler component of Pydron takes as input the
graph produced in the translation step and produces as
output a continuously updated list of tasks to be exe-
cuted.

The scheduler becomes active when a function marked
with @schedule is invoked. It keeps track of the execu-
tion progress and enforces the correct order of execution
and decides which tasks may run in parallel.

A task is ready for execution if the following condi-
tions are met:

• All its inputs are known.

• The task does not require further changes of the
graph.

• For any input with the last-read flag (see Section
5.3) all other tasks that share this input have already
completed.

This guarantees the correct order of execution. If multi-
ple tasks fulfill those criteria, they may execute in paral-
lel.

All tasks that are identified as ready for execution are
placed in a queue. This queue is read by the distribu-
tion system (Section 7). The distribution system informs
the scheduler once the execution of a task has completed.
The outputs of the finished tasks become known, poten-
tially leading to more tasks becoming ready for execu-
tion.

The scheduler also uses the information that becomes
available during execution for refinement of the data-
flow graph. The availability of run-time information al-
lows for various optimizations, of which a small number
has already been implemented in Pydron.

6.1 Adaptive Graph Refinement

Some tasks will require changes to the graph. Every time
the value of a value-node becomes known the scheduler
informs the tasks which have this value-node as an in-
put and allows them to change the graph. There are two
kinds of changes made to the graph:

• Removal of a synchronization point (Section 6.2).

• Replacement of the task-node by a sub-graph (Sec-
tion 6.3).

6.2 Removal of synchronization points

The dynamic nature of Python often doesn’t allow to
make strong guarantees from the code alone. This forces
us to translate the code into a graph with many synchro-
nization points. The most common cause are call expres-
sions, since the invoked function is not known at trans-
lation time (see section 5.3). Once the called function
becomes known, the scheduler can check if it is marked
as @functional. If so, the synchronization point is re-
moved. The two value-nodes for ρ are merged into one
and the last-read flag is removed.

In most codes, the functions themselves are not the
result of expressions, but are either globally defined or
object attributes, therefore most synchronization points
can often be removed early in the execution.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 653

Figure 9: while loop parallelization

6.3 Loops
After the translation, there is a single node in the graph
for a loop (section 5.7). Loop tasks are replaced by their
sub-graphs during scheduling. According to the loop
condition, the scheduler replaces the looop task with ei-
ther its body or else sub-graph. Since the body sub-graph
contains the loop node again, a tail-recurison is formed.
At all stages the graph is acyclic which is a different
approach as taken by Naiad [20] were loops are mod-
eled with feed-back edges and the control flow is imple-
mented with timestamps on the records passed through
the graph.

If the decision for the execution of the next iteration
depends on the complete execution of the body, or if the
body contains a synchronization point, then the replace-
ment of the tail-recursive tasks must happen after execut-
ing all previous tasks, resulting in a sequential execution.
But if the condition is known early, as it is often the case
with for-loops, then the complete loop can be unrolled in
a short time.

Figure 9 shows the graph from the while loop of Figure
7 after three replacements. This method can still allow
for parallelism even if the loop iterations are not com-
pletely independent of each other. If g executes faster
than h, the while loop will unroll faster than a single h
executes, allowing for several parallel executions of h.
Even if g is slow, g can run in parallel with the h call of
the previous iteration.

The summation is still executed sequentially, without
making any associativity assumptions on the potentially
overloaded plus operator.

6.4 Scheduler Relocation
The scheduler can run on the workstation of the user, but
it can also be relocated to a remote Python process man-
aged by the distribution system. If the latency between
the user’s workstation and the remote machines is sub-
stantial (such as when executing on a cloud), this will

Figure 10: Inline Substitution

greatly reduce the communication overhead. The data
transferred from and to the workstation is reduced to the
arguments passed to the @schedule function, the data-
flow graph of the function, and the return value.

6.5 Inline Substitution

If, during the evaluation of the graph, an invoked func-
tion is found to be decorated with @schedule, then this
function can be translated to a data-flow graph as well.

Instead of invoking the original Python method, the
call-task is replaced by the function’s graph. This corre-
sponds to the inline substitution optimization performed
by compilers [11]. Inline substitution can expose addi-
tional parallelism as shown in Figure 10. The call to do
is inline substituted, allowing for parallel execution of f
and g, even though f is required to calculate an argument
of the call. This works since the substitution can be per-
formed as soon as the invoked method is known, even
before the arguments are calculated.

Inline substitution is optional and the scheduler may
decide not to inline a call and instead run the original,
untranslated, function to control the granularity of the
parallelization, depending on the target execution plat-
form.

6.6 Scheduler-local Execution

Some tasks, notably those with side-effects, cannot be
distributed safely. Such tasks are executed directly
within the thread of the scheduler. Since they enforce
a synchronization point, such tasks cannot be executed
in parallel anyway.

For some tasks, it might not be worth the effort of
sending them to a worker node for parallel execution
even though it would be formally possible. For exam-
ple, multiplying two integers has no side-effects, but the
overhead of distributing this task is in no relation to the
cost of the operation itself. The scheduler can decide to
run such tasks locally.

Pydron currently applies a simple heuristic based on
the type of the operation. Since the decision has to be

9

654 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 11: Layers of the distribution system

made only once all the input values to the task are known,
quite elaborate techniques could be used, based on oper-
ation and data size information, to balance communica-
tion and execution cost.

7 Distribution

The distribution system takes tasks that are ready for ex-
ecution and distributes them to Python run-times, poten-
tially on another machine. It is able to automatically al-
locate and free resources, so that the user only has to
run the application on a local workstation, as one would
for regular Python. The system is highly configurable to
support different infrastructures. Several configurations
can be prepared for the user to choose from.

During operation, the system typically maintains sev-
eral running Python processes on which it can execute
tasks in parallel. The task, and all the inputs, are trans-
ferred to the Python process where the task is executed.
The outputs are transferred back to the scheduler.

The main effort of the distribution system is to start or
acquire the worker nodes, start the Python processes, and
establish the means required for remote method invoca-
tion. The distribution system uses a layered architecture
(Figure 11).

7.1 Worker-Node Acquisition
Before the Python processes can be started, the machines
need to be acquired. There are several implementations
of this layer. Each provides the means to acquire ma-
chines, run a command on them, and release the ma-
chines. This API is then used to start a Python process
with a small boot-strap script passed to it as an argument.

Multi-core Back-end Python’s global interpreter lock
makes threads unusable for exploiting multi-core ma-
chines, we therefore use multiprocessing instead. This
back-end starts processes on the local machine using the
subprocess module provided by Python.

Cluster Back-end Instead of starting Python locally, a
job is submitted to the cluster’s job queue, asking for a
number of nodes on which the process is run. The job
submission is done with a configurable bash script. Py-
dron can also execute this bash script remotely via an
SSH connection as it is often required for clusters with a
login-node.

Cloud Back-end The cloud back-end first starts
worker nodes. Pydron is using Apache libcloud [1]
which supports various commercial cloud providers.
Once the instances have started, Pydron opens an SSH
connection to each to execute the command. The disk
image which is booted can be configured, as can the type
of the nodes. The image must contain a Python installa-
tion and allow SSH access. Neither Pydron nor the user’s
application need to be installed on it.

Combining Back-ends The multi-core back-end is of-
ten combined with the cluster or cloud back-end to make
use of multiple cores on multiple machines.

7.2 Establishing Communication
The boot-strap script establishes communication. Pydron
currently supports communication via TCP connections.
To mitigate problems caused by firewalls and network
address translation, connection attempts are made in both
directions. Other methods, such as MPI [14] could also
be implemented.

Each node has one communication channel to the
workstation from which Pydron was first started. Ad-
ditional channels for direct communication with other
participating nodes are opened on demand, as is needed
when the scheduler is relocated (see Section 6.4) to a
worker node.

7.3 Code deployment
To execute tasks on remote nodes, the application’s code
has to be available on the nodes. Manual deployment of
the code can be tedious, especially if the nodes do not
have access to a shared file system.

Pydron automates this process by using a Python im-
port hook [34] on the worker nodes. When a Python
module is imported which is not available on the worker
node, the import hook loads the source code from the
user’s workstation over the established communication
channel. Python’s internal caching of loaded modules
ensures that this has to be done only once per module
and Python process.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 655

The code of Pydron itself is also transferred to the
worker nodes. This simplifies the deployment of Pydron,
as it does not need to be installed on every node. It also
avoids potential version compatibility issues as all par-
ticipants use exactly the same version of Pydron.

7.4 Third-party libraries

The code deployment system also works for most third-
party libraries. This further simplifies the deployment of
the code on the worker nodes, and makes Pydron more
transparent to the user. The exception are libraries that
contain native code. Pydron currently does not attempt
to transmit native code libraries. In some cases, partic-
ularly when the worker-nodes are binary compatible, or
when the libraries can be installed via Python package
repository, automatic deployment of such libaries could
be made possible, but this currently not implemented.

An example of a library which has to be manually de-
ployed is SciPy [17]. This does not prevent us from using
SciPy. The primary data type, NumPy arrays, are serial-
izable with pickle. The methods of SciPy which do not
change the data in-place can be whitelisted as @func-
tional.

7.5 Remote Procedure Call

A simple remote procedure call (RPC) protocol is es-
tablished on top of the communication channel. It uses
Python’s pickle API to serialize the invoked function, the
arguments passed to it, as well as the return value or the
raised exception.

7.6 Executing Task-Nodes

RPC connections are established from the node on which
the scheduler is running to all other available nodes. The
distribution system keeps track of idle and busy workers.
Tasks added by the scheduler to the queue of ready tasks
are assigned to idle workers. The task is then executed
on the node using an RPC call. The result is passed back
to the scheduler.

7.7 Fault Tolerance

With increased number of nodes, the probably of a single
node failing is greatly increased. The distribution system
is in charge of monitoring the Python processes. If a pro-
cess fails to react, it is taken out of the set of available
workers. If it was executing a task, this task is put back
to the queue of tasks ready for execution. Since only

tasks without side-effects are executed on remote nodes
there are no conflicts arising from executing a task twice.

Currently, we follow a simple policy of rescheduling
failed tasks. In the future we will explore more complex
policies that could take user input into consideration.

8 Discussion

It is the simplicity of use and design that makes Pydron
attractive for domains such as astronomy that lack the
economy of scale to justify porting efforts to a differ-
ent language or to other frameworks. The system works
without sophisticated language analysis, scheduling, or
resource management. Using more advanced implemen-
tations for those components will certainly improve the
performance further. CIEL [21], in particular, is a sys-
tem that contains many components from which Pydron
could profit.

Pydron shares the architecture with systems such as
CIEL and Dryad [16]: An orchestration language is
translated into a data-flow graph. The individual tasks,
represented by nodes, are typically written in a language
such as Java. They are sent to worker nodes for execu-
tion. Such systems have the advantage over approaches
such as MapReduce [13] in handling iterative computa-
tions [21]. In Section 2 we discussed how a separate or-
chestration language can be a barrier to adopt a solution.
In addition, there are also technical consequences. Two
separate languages implies two spaces in which objects
can reside:

Data Space for the data which is a processed by the in-
dividual tasks.

Coordination Space for data that is required to deter-
mine the control flow.

CIEL allows data to pass from the data space to the coor-
dination space, by use of a special operator which makes
assumptions on the format of the data. This feature al-
lows for data dependent control flow. Pydron goes a step
further. By avoiding a separate language, there is only
one space where objects reside. Processed data and co-
ordination data can be treated equally, as one would in a
regular single-threaded program, reducing the complex-
ity the developer has to handle to profit from parallel in-
frastructures.

The separation between orchestration code and com-
putation code still exists in Pydron. Functions anno-
tated with @functional contain the code executed within
a task, functions annotated with @schedule mark orches-
tration code. Only orchestration code is translated into

11

656 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the data-flow graph. @functional code might be sent to
a worker node for execution, but there it is executed as
regular Python code. The line between the two is less
obvious in Pydron, since there is no need to use a differ-
ent language for orchestration code. In addition, Pydron
has the option to execute orchestration code regularly,
instead of translating it into a data-flow graph (Section
6.5), further blurring the line.

Both CIEL and Pydron change the data-flow graph
based on the data. CIEL allows a task to spawn new
tasks during execution. To account for the dynamic
nature of Python, Pydron requires additional changes,
most notably it those required to remove the synchro-
nization points (Section 5.3), We also allow tasks to trig-
ger changes to the graph before all its inputs are avail-
able.

There are a number of features in CIEL that Py-
dron is currently missing, such as the multiple-queue-
based scheduler, fault tolerance for the master node, and
streaming. Such features will be integrated into future
versions of Pydron.

Fully automated parallelization of sequential lan-
guages has been studied in depth which has lead to sys-
tems such as Helix [8]. Such systems perform a static
analysis on the code to identify loops that can be paral-
lelized. The search space for the inference of the data de-
pendencies includes all code potentially executed within
the loop. This effectively limits such approaches to the
inner-most loops. Dynamic languages such as Python
are particularly difficult in this respect. In consequence,
parallelization is fine granular, and small orchestration
overheads quickly become the bottleneck. This reflects
in the way such systems operate. For example, the par-
allelization constructs may be directly inserted into the
compiled code, instead of evaluating a data-flow graph
at run-time.

Pydron parallelizes on a coarse granularity. To keep
the search space reasonable, the user has to help out with
the @functional annotation. The code analysis of Pydron
is similar to the data-flow analysis performed by auto-
matic parallelization systems, yet the design is primarliy
driven by the need of coping with the dynamic nature of
Python. Since Pydron can make decisions at run-time, it
can avoid some of the complex problems such as pointer
analysis [15]. Such analysis could still be integrated into
Pydron in the future as it would allow certain decisions
to be made before the actual data is computed.

We don’t see Pydron as a replacement for systems
such as Helix. In fact, it would be possible to combine
both. Combining Pydron with another parallelization

Figure 12: Random Forest Implementation

system works very well in practice. In section 7.4 we de-
scribe how Pydron can be used with SciPy [17]. If SciPy
is compiled with multi-threaded ATLAS [35], then the
numerical functions would exploit multiple-cores, while
Pydron can parallelize the outer loops across several ma-
chines.

9 Scalability

In this section, we demonstrate the scalability of Py-
dron for multi-core, cluster and cloud infrastructures.
We also provide insights through several experiments on
how Pydron operates. All measurements were taken with
CPython 2.7.6.

9.1 Multi-core
We use a machine-learning example for the multi-core
and cluster measurements. The random forest method [4]
trains several decision trees on a random sub-set of the
training samples. Predictions are made by majority vote
among the predictions made by the individual decision
trees. We used 50% of the samples in the MNIST hand-
written digits data-set for training [19] (approx. 27 MB).

The code is shown in Figure 12. The train_forest
function is annotated with @schedule. The for-loop
can be unrolled completely in the beginning of the
execution since train_tree is annotated with @func-
tional. train_forest returns a nested function to make
predictions, using a closure variable to access the for-
est. If predictions were expensive, then annotating
the nested function with @schedule would parallelize
the list-comprehension as well. The implementation of
train_tree is using scikit-learn from SciPy [17] internally.
Pydron handles calls to thrid-party libraries as any other
function call (see section 7.4).

Figure 13 shows the learning time on a single ma-
chine with 64 cores (AMD Opteron 6276) when running
the code using regular Python and when using Pydron

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 657

Figure 13: Random Forest Training on Multi-core

Figure 14: Random Forest Training on Cluster

with an increasing number of cores. It scales nearly lin-
early and only flattens once the communication overhead
becomes noticeable. This is to be expected as Pydron
currently makes no use of shared memory for commu-
nication. The horizontal line marks the execution time
with regular, single threaded Python, which is about 90s
(~1%) faster than Pydron with a single core.

9.2 Cluster

Figure 14 shows the result of the same machine-learning
code when Pydron is instructed to execute it on a cluster
(Intel Xeon L5520). We use the combination of the clus-
ter and the multi-core back-end to utilize the 8 cores of
each node. We run the experiment with up to 16 cluster
nodes with a total of 128 cores, at which point the scala-
bility starts to degrade due to communication overheads.
The execution time of regular, single threaded, Python is
not shown in the figure as it would be about eight times
slower than a single node. When running Pydron with
only one of the node’s cores, the difference is compara-
ble to the one shown for the 64-core machine.

Figure 15: Parameter Sweep Code

9.3 Cloud

Running the machine-learning code on the cloud pro-
duces results comparable to those on the cluster, we
therefore use cloud computing to demonstrate Pydron on
a larger astronomy use-case.

PynPoint [2] is a method for detection of planets out-
side the solar system. The challenge of exo-planet detec-
tion lies in the extreme contrast between the bright host
star and the faint planet. Optical effects and atmospheric
distortions spread the light of the star over an area larger
than the orbit of the planet. PynPoint models the point-
spread function of the star with a principal component
analysis (PCA) to remove the spread-out light from the
star, leaving the planet visible in the residue.

We use a real high-contrast imaging data-set of β Pic-
toris [18] and the massive exo-planet orbiting it. The
data set was taken with the Very Large Telescope. The
raw data is publicly available from the European South-
ern Observatory (ESO) archive (Program ID: 084.C-
0739(A)). Some data reduction steps [26] have already
been applied to the data. The data set consists of 24000
individual exposures, totaling to 3.8 GB.

PynPoint operates in two main phases. In the first
phase, the images are prepared and the basis of the PCA
are calculated. In the second phase, the modeled point-
spread-function of the star is removed from the expo-
sures. The exposures are then rotated to compensate for
earth’s rotation and aggregated into the final result. The
second phase is fast enough to be used interactively by
the scientists to study the effect of the method’s param-
eters. However, some parameters affect the first phase
which takes about 15 minutes to execute. We have used
Pydron to scale the parameter sweep over the two main
parameters used in the first phase.

Six values are used for each parameter, resulting in
a total of 36 executions. The code is shown in Fig-
ure 15. in_file contains the path to the input data file
in HDF5 format. The two functions create_images and
create_basis are both decorated with @functional. Since
they are independent of each other, all 72 calls could be
run in parallel. The implementation of those methods

13

658 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 16: Scalability on Amazon EC2

use numerical routines from SciPy [17] which use multi-
threading internally to utilize multiple cores. Pydron can
be used together with such libraries. We use Pydron’s
cloud back-end to parallelize across multiple cloud in-
stances. To get a clearer performance analysis we do not
combine it with the multi-core back-end. Thus we use
one Python process per instance.

We use Amazon EC2 with m2.large instances, with
two CPU cores each. Adding cores would not scale well
with this workload, as the routines can only profit from
the parallel SciPy library for a part of their execution.
The cloud instances are connected to a shared file system
used as a scratch space. This file system is provided by
two separate EC2 instances (c2.2xlarge) which provide
the storage from a total of four solid state drives. The file
system is clustered with glusterFS [28]. The file system
initially contains the input data.

Figure 16 shows the execution time for up to 32 in-
stances (64 cores). The execution time includes the time
required to start the instances, which takes about one
minute.

Other than in the machine-learning use-case, the ac-
tual data is transmitted over a shared file system, while
Pydron only handles the paths, as described in Section 4.
The Pydron induced overhead is therefore very small,
about 7s. With a large number of instances the through-
put of the scratch file system becomes a bottleneck, as
each parameter combination produces approximately 4
GB of data. This bottleneck could be easily addressed
by increasing the number of nodes of the clustered file
system.

The overhead introduced by Pydron is neglectable in
this use-case. The translation of the Python code into the
initial data-flow takes five milliseconds. Figure 17 shows
that less than a second is spent for all dynamic changes in
the data-flow graph and that less than eight seconds are

Figure 17: Pydron overhead for communication and dy-
namic graph changes on Amazon EC2

required for communication, including serialization with
pickle. Both can partially run in parallel, reducing the
effective impact. With 32 instances the workers are lim-
ited by the shared file system, the lower CPU utilization
speeds up pickle.

10 Conclusions

Semi-automatic parallelization provides easy-to-use ac-
cess to high performance computing infrastructures for
many problems that can be parallelized at a sufficiently
coarse granularity.

By putting the focus on non-intrusiveness and a low
learning curve, instead of on optimal usage of infrastruc-
ture, Pydron can lower the barrier for scientists to access
high performance computing infrastructures.

We plan to release Pydron under an open source li-
cence. Please check www.pydron.org for availability.

References
[1] apache libcloud, a unified interface to the cloud

https://libcloud.apache.org, 2014.

[2] AMARA, A., AND QUANZ, S. P. Pynpoint: an image processing
package for finding exoplanets. Monthly Notices of the Royal
Astronomical Society 427, 2 (2012), 948–955.

[3] BERGÉ, J., GAMPER, L., ET AL. An ultra fast image generator
(ufig) for wide-field astronomy. Astronomy and Computing 1, 0
(2013), 23 – 32.

[4] BREIMAN, L. Random forests. Machine Learning 45, 1 (2001),
5–32.

[5] BROWN, P. G. Overview of sciDB: large scale array storage,
processing and analysis. In Proceedings of the 2010 international
conference on Management of data (New York, NY, USA, 2010),
SIGMOD ’10, ACM, pp. 963–968.

[6] BUI, P., YU, L., ET AL. Scripting distributed scientific work-
flows using weaver. Concurrency and Computation: Practice
and Experience 24, 15 (2012), 1685–1707.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 659

[7] BUTENHOF, D. R. Programming with POSIX Threads. Addison-
Wesley Professional, 1997.

[8] CAMPANONI, S., JONES, T., ET AL. Helix: Automatic paral-
lelization of irregular programs for chip multiprocessing. In Pro-
ceedings of the Tenth International Symposium on Code Genera-
tion and Optimization (2012), CGO ’12, ACM, pp. 84–93.

[9] CATANZARO, B., KAMIL, S., ET AL. Sejits: Getting productiv-
ity and performance with selective embedded jit specialization.
Programming Models for Emerging Architectures (2009).

[10] CHAMBERS, C., RANIWALA, A., ET AL. Flumejava: Easy, effi-
cient data-parallel pipelines. In Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2010), PLDI ’10, ACM,
pp. 363–375.

[11] COOPER, K. D., AND TORCZON, L. Engineering a compiler.
Morgan Kaufmann [Oxford], San Francisco (Calif.), 2012.

[12] DARTE, A., ROBERT, Y., ET AL. Scheduling and automatic Par-
allelization. Springer, 2000.

[13] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI 2004 (2004), pp. 137–
150.

[14] FORUM, M. P. I. MPI: A Message-Passing Interface Standard.
Version 2.2, Sept. 2009.

[15] HIND, M. Pointer analysis: Haven’t we solved this problem yet?
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (New
York, NY, USA, 2001), PASTE ’01, ACM, pp. 54–61.

[16] ISARD, M., AND YU, Y. Distributed data-parallel computing
using a high-level programming language. In Proceedings of the
35th SIGMOD international conference on Management of data
(New York, NY, USA, 2009), SIGMOD ’09, ACM, pp. 987–994.

[17] JONES, E., OLIPHANT, T., ET AL. SciPy: Open source scientific
tools for Python http://www.scipy.org, 2001.

[18] LAGRANGE, A.-M., BONNEFOY, M., ET AL. A giant planet
imaged in the disk of the young star beta pictoris. Science 329,
5987 (2010), 57–59.

[19] LECUN, Y., AND CORTES, C. The MNIST database of hand-
written digits http://yann.lecun.com/exdb/mnist.

[20] MURRAY, D. G., MCSHERRY, F., ET AL. Naiad: A timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 439–455.

[21] MURRAY, D. G., SCHWARZKOPF, M., ET AL. CIEL: A uni-
versal execution engine for distributed data-flow computing. In
Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA, 2011),
NSDI’11, USENIX Association, pp. 9–9.

[22] NVIDIA. Nvidia CUDA http://nvidia.com/cuda, 2007.

[23] OINN, T., GREENWOOD, M., ET AL. Taverna: lessons in cre-
ating a workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience 18, 10 (Aug. 2006),
1067–1100.

[24] OLSTON, C., REED, B., ET AL. Pig latin: A not-so-foreign lan-
guage for data processing. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data (2008),
SIGMOD ’08, ACM, pp. 1099–1110.

[25] PYTHON SOFTWARE FOUNDATION. pickle – python object se-
rialization http://docs.python.org, 2014.

[26] QUANZ, S. P., KENWORTHY, M. A., ET AL. Searching for gas
giant planets on solar system scales: Vlt naco/app observations
of the debris disk host stars hd172555 and hd115892. The Astro-
physical Journal Letters 736, 2 (2011), L32.

[27] RAGHAVAN, P., SHACHNAI, H., AND YANIV, M. Dynamic
schemes for speculative execution of code. In Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems,
1998. Proceedings. Sixth International Symposium on (Jul 1998),
pp. 309–314.

[28] RED HAT INC. GlusterFS http://www.gluster.org, 2013.

[29] REFREGIER, A., AND AMARA, A. A way forward for cosmic
shear: Monte-carlo control loops. Dark Universe Journal (in
press, http://arxiv.org/abs/1303.4739).

[30] RUBINSTEYN, A., HIELSCHER, E., ET AL. Parakeet: A just-
in-time parallel accelerator for python. In Proceedings of the 4th
USENIX conference on Hot Topics in Parallelism (2012).

[31] STOLTE, E., VON PRAUN, C., ET AL. Scientific data repos-
itories: Designing for a moving target. In Proceedings of the
2003 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2003), SIGMOD ’03, ACM,
pp. 349–360.

[32] SZALAY, A. S., GRAY, J., ET AL. Indexing the sphere with the
hierarchical triangular mesh. CoRR abs/cs/0701164 (2007).

[33] THAKAR, A. R., SZALAY, A. S., ET AL. The catalog archive
server database management system. Computing in Science and
Engineering 10, 1 (2008), 30–37.

[34] VAN ROSSUM, J., AND MOORE, P. New Import Hooks
http://legacy.python.org/dev/peps/pep-0302, 2000.

[35] WHALEY, R. C., AND PETITET, A. Minimizing develop-
ment and maintenance costs in supporting persistently optimized
BLAS. Software: Practice and Experience 35, 2 (February
2005), 101–121.

[36] WILDE, M., HATEGAN, M., ET AL. Swift: A language for dis-
tributed parallel scripting. Parallel Computing 37, 9 (2011), 633–
652.

[37] YU, Y., ISARD, M., , ET AL. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI (2008), vol. 8, pp. 1–14.

[38] ZAHARIA, M., CHOWDHURY, M., ET AL. Spark: cluster com-
puting with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing (2010), pp. 10–10.

[39] ZAHARIA, M., DAS, T., ET AL. Discretized streams: Fault-
tolerant streaming computation at scale. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples (2013), ACM, pp. 423–438.

15

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 661

User-Guided Device Driver Synthesis∗

Leonid Ryzhyk1,2 Adam Walker2 John Keys3 Alexander Legg2 Arun Raghunath3

Michael Stumm1 Mona Vij3

1University of Toronto
2NICTA† and UNSW, Sydney, Australia

3Intel Corporation

Abstract
Automatic device driver synthesis is a radical approach

to creating drivers faster and with fewer defects by gener-
ating them automatically based on hardware device spec-
ifications. We present the design and implementation of a
new driver synthesis toolkit, called Termite-2. Termite-2
is the first tool to combine the power of automation with
the flexibility of conventional development. It is also the
first practical synthesis tool based on abstraction refine-
ment. Finally, it is the first synthesis tool to support auto-
mated debugging of input specifications. We demonstrate
the practicality of Termite-2 by synthesizing drivers for a
number of I/O devices representative of a typical embed-
ded platform.

1 Introduction
Device driver synthesis has been proposed as a radical

alternative to traditional driver development that offers the
promise of creating drivers faster and with far fewer de-
fects [24]. The idea is to automatically generate the driver
code responsible for controlling device operations from a
behavioral model of the device and a specification of the
driver-OS interface.

The primary motivation for device driver synthesis is
the fact that device drivers are hard and tedious to write,
and they are notorious for being unreliable [8, 13]. Drivers
generally take a long time to bring to production—given
the speed at which new devices can be brought to mar-
ket today, it is not uncommon for a device release to be
delayed by driver rather than silicon issues [33].

Automatic driver synthesis was proposed in our ear-
lier work on the Termite-1 project [24], where we formu-

∗This research is supported by a grant from Intel Corporation.
†NICTA is funded by the Australian Government through the Depart-

ment of Communications and the Australian Research Council through
the ICT Centre of Excellence Program.

lated the key principles behind the approach and demon-
strated its feasibility by synthesizing drivers for several
real-world devices. The next logical step is to develop
driver synthesis into a practical methodology, capable of
replacing the conventional driver development process.
To this end we have to address the key problems left open
by Termite-1. The most important one is the quality of
synthesized drivers. While functionally correct, Termite-
1 drivers were bloated and poorly structured. This made it
impossible for a programmer to maintain and improve the
generated code and prevented synthesized drivers from
being adopted by Linux and other major OSs. Further-
more, it was impossible to enforce non-functional proper-
ties such as CPU and power efficiency.

Another critical limitation of Termite-1 was the limited
scalability of its synthesis algorithm, which made synthe-
sis of drivers for real-world devices intractable. Termite-1
got around the problem by using carefully crafted simpli-
fied device specifications, which is acceptable in a proof-
of-concept prototype, but not in a practical tool.

In the present project we set out to address these limi-
tations. After several years of research we achieved sig-
nificant improvement to all components of the synthesis
technology: the specification language, the synthesis al-
gorithm and the code generator.

Despite these improvements, we had come to the con-
clusion that the approach taken was initially critically
flawed. The fundamental problem, in our view, was that
the synthesis was viewed as a “push-button” technology
that generated a specification-compliant implementation
without any user involvement. As a result, the user had to
rely on the synthesis tool to produce a good implementa-
tion. Unfortunately, even the most intelligent algorithm
cannot fully capture the user-perceived notion of high-
quality code. While in theory one might be able to en-
force some of the desired properties by adding appropri-
ate constraints to the input specification, in our experience

1

662 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

creating such specifications is extremely hard and seldom
yields satisfactory results.

A radically different approach was needed—one that
combines the power of automation with the flexibility of
conventional development, and that involves the devel-
oper from the start, guiding the generation of the driver.
In many ways, synthesis and conventional development
are conflicting. Hence, a key challenge was to conceive of
a way that allowed the two to be combined so that the de-
veloper could do their job more efficiently and with fewer
errors without having the synthesis tool get in the way.

The primary contribution of this paper is a novel user-
guided approach to driver synthesis implemented in our
new tool called Termite-2 (further referred to as Termite).
In Termite, the user has full control over the synthesis pro-
cess, while the tool acts as an assistant that suggests, but
does not enforce, implementation options and ensures cor-
rectness of the resulting code. At any point during synthe-
sis the user can modify or extend previously synthesized
code. The tool automatically analyses user-provided code
and, on user’s request, suggests possible ways to extend it
to a complete implementation. If such an extension is not
possible due to an error in the user code, the tool generates
an explanation of the failure that helps the user to identify
and correct the error.

In an extreme scenario, Termite can be used to synthe-
size the complete implementation fully automatically. At
the other extreme, the user can build the complete imple-
mentation by hand, in which case Termite acts as a static
verifier for the driver. In practice, we found the interme-
diate approach, where most of the code is auto-generated,
but manual involvement is used when needed to improve
the implementation, to be the most practical.

From the developer’s perspective, user-guided syn-
thesis appears as an enhancement of the conventional
development process with very powerful autocomplete
functionality, rather than a completely new development
methodology. This vision is implemented in all aspects of
the design of Termite. In particular, input specifications
for driver synthesis are written as imperative programs
that model the behavior of the device and the OS. The
driver itself is modelled as a source code template where
parts to be synthesized are omitted. This approach enables
the use of familiar programming techniques in building
input specifications. In contrast, previous synthesis tools,
including Termite-1, require specifications to be written
in formal languages based on state machines and temporal
logic, which proved difficult and error-prone to use even
for formal methods experts, not to mention software de-
velopment practitioners.

Most previous research on automatic synthesis, includ-

synthesis
engine

input specifications:
- device model
- OS model
- driver template

explanation of synthesis failure

corrected input specifications

the most general strategy

visual
debugger

user-guided
code

generator
synthesised driver

Figure 1: Termite synthesis workflow.

ing Termite-1, considered input specifications to be “cor-
rect by definition”. In contrast, we recognise that input
specifications produced by human developers are likely to
contain defects, which can prevent the synthesis algorithm
from finding a correct driver implementation. There-
fore Termite incorporates powerful debugging tools that
help the developer identify and fix specification defects
through well-defined steps, similar to how conventional
debuggers help troubleshoot implementation errors.

Another important contribution of this project is a new
scalable synthesis algorithm, which mitigates the compu-
tational bottleneck in driver synthesis. Following the ap-
proach proposed in Termite-1, we treat the driver synthe-
sis problem as a two-player game between the driver and
its environment, comprised of the device and the OS. In
this work, we develop this approach into the first precise
mathematical formulation of the driver synthesis problem
based on game theory. This enables us to apply theoret-
ical results and algorithmic techniques from game theory
to driver synthesis.

Our game-based synthesis algorithm relies on abstrac-
tion and symbolic reasoning to achieve orders of magni-
tude speed up compared to the current state-of-the-art syn-
thesis techniques. The main idea of the algorithm is de-
scribed in Section 4, but we refer the reader to a detailed
description in an accompanying publication [30].

We evaluate Termite by synthesizing drivers for sev-
eral I/O devices. Our experience demonstrates that our
methodology meets our design goals, and indeed makes
automatic driver synthesis practical.

Overview of Termite Figure 1 gives an overview of the
driver synthesis process, described in detail in the rest of
the paper. Termite takes three specifications as its inputs:
a device model that simulates software-visible device be-
havior, an OS model that specifies the software interface
between the driver and the OS, and a driver template that
contains driver entry point declarations and, optionally,
their partial implementation to be completed by Termite.

Given these specifications, driver synthesis proceeds in
two steps. The first step is carried out fully automati-
cally by the Termite game-based synthesis engine, which
computes the most general strategy for the driver—a data

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 663

OS model

driver template

device model

IO requests
/*send()*/

IO completions
/*send_ack()*/

device commands
/*write_dat(), write_cmd(), read_cmd()*/

device notifications
/*irq()*/

virtual callbacks
/*evt_send(), evt_send_fail()*/

Figure 2: Input specifications for driver synthesis. Labels in
italics show interfaces from the running example (Figure 3).

structure that compactly represents all possible correct
driver implementations. This step encapsulates the com-
putationally expensive part of synthesis. At the second
step, the most general strategy is used by the Termite code
generator to construct one specific driver implementation
in C with the help of interactive input from the user.

The synthesis engine may establish that, due to a de-
fect in one of the input specifications, there does not exist
a specification-compliant driver implementation. In this
case, it produces an explanation of the failure, which can
be analysed with the help of the Termite debugger tool in
order identify and correct the defect.
Limitations of Termite The device driver synthesis
technology is still in its early days and, as such, has sev-
eral important limitations. Most notably, Termite does
not currently support synthesis or verification of code for
managing direct memory access (DMA) queues. This
code must be written manually and is treated by Termite
as an external API invoked by the driver. As another ex-
ample, in certain situations, explained in Section 3, Ter-
mite is unable to produce correct code without user as-
sistance; however it is able to verify the correctness of
user-provided code. We discuss limitations of Termite in
more detail in Section 6.

2 Developing specifications
Input to Termite consists of the three specifications,

which model the complete system consisting of the driver,
the device, and the OS, shown in Figure 2. The OS and
device models simulate the execution environment of the
driver and specify constraints on correct driver behavior.
The device model simulates software-visible device be-
havior. The OS model serves as a workload generator that
issues I/O requests to the driver and accepts request com-
pletions in a way consistent with real OS behavior.

The virtual interface between the device and the OS,
shown with the dashed arrow in Figure 2, is used by the
device model to notify the OS model about important
hardware events, such as completion of I/O transactions
and error conditions. Methods of the virtual interface do
not represent real runtime interactions between the device

and the OS, but are used by the OS model to specify cor-
rectness constraints for the driver (see Section 2.3).

Finally, the driver template contains a partial driver im-
plementation to be completed by Termite. A minimal tem-
plate consists of a list of driver entrypoints without imple-
mentation. At the other extreme, it can provide a complete
implementation, in which case Termite acts as a static ver-
ifier for the driver.

All specifications are written using the Termite Speci-
fication Language (TSL). In line with our goal of making
synthesis as close to the conventional driver development
workflow as possible, TSL is designed as a dialect of C
with additional constructs for use in synthesis. We intro-
duce relevant features of TSL throughout this section.

We minimize the amount of work needed to develop
specifications for every synthesized driver by maximiz-
ing the reuse of specifications. In particular, Termite al-
lows the use of existing device specifications developed
by hardware designers in driver synthesis. Furthermore,
the OS specification for the driver can be derived from a
generic specification for a class of similar devices (e.g.,
network or storage). Thus we expect that additional per-
driver effort will consist of: (1) inserting device-class call-
backs in appropriate locations of the device model and (2)
extending the OS specification to support device-specific
features missing in the generic OS specification.

2.1 Device model
The device model simulates the device operation at a level
of detail sufficient to synthesize a correct driver for it. To
this end, it must accurately model external device behav-
ior visible to software. At the same time, it is not required
to precisely capture internal device operation and timing,
as these aspects are opaque to the driver.

Such device models are routinely developed by hard-
ware designers for the purposes of design exploration,
simulation, and testing. They are widely used by hard-
ware manufacturers in-house [14] and are available com-
mercially from major silicon IP vendors [28]. These mod-
els are known as transaction-level models (TLMs) (in
contrast to the detailed register-transfer-level models used
in gate-level synthesis) [4]. A TLM focuses on software-
visible events, or transactions, such as a write to a device
register or a network packet transmission.

Existing TLMs created by hardware designers can be
used with minor modifications (explained in Section 2.3)
for driver synthesis. Model reuse dramatically reduces the
effort involved in synthesizing a driver and is therefore
crucial to practical success of driver synthesis. By reusing
an existing model, we also reuse the effort invested by
hardware designers into testing and debugging the model
throughout the hardware design cycle, thus making driver

3

664 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1template dev /* Device model */
2 uint8 reg_dat, reg_cmd, reg_status = 0;
3 /* device commands */
4 controllable void write_dat(uint8 v)
5 { reg_dat = v; };
6 controllable void write_cmd(uint8 v)
7 { reg_cmd = v; };
8 controllable uint8 read_cmd()
9 { return reg_cmd; };

10 controllable uint8 read_status()
11 { return reg_status; };
12 /* internal behavior */
13 process ptx {
14 forever {
15 wait (reg_cmd == 1);
16 choice {
17 { os.evt_send(reg_dat);
18 reg_status=0; };
19 { os.evt_send_fail(reg_dat);
20 reg_status=1; };
21 };
22 reg_cmd = 0;
23 /*drv.irq(); (see Section 4*/
24 };
25 };
26endtemplate
27

28template os /* OS model */
29 uint8 dat;
30 bool inprogress, acked, success;
31 /* driver workload generator */
32 process psend {
33 forever {
34 dat = *; /*randomise dat*/
35 inprogress = true;
36 acked = false;
37 drv.send(dat);
38 wait(acked);
39 };
40 };
41 /* I/O completions */
42 controllable void send_ack(bool status) {
43 assert (!inprogress && !acked &&
44 status == success);
45 acked = true;
46 };
47 /* virtual callbacks */
48 void evt_send(uint8 v) {
49 assert (inprogress && v==dat);
50 inprogress = false;
51 success = true;
52 };
53 void evt_send_fail(uint8 v) {
54 assert (inprogress && v==dat);
55 inprogress = false;
56 success = false;
57 };
58 goal idle_goal = acked;
59endtemplate
60

61template drv /* Driver template */
62 void send(uint8 v){...;};
63 /*void irq(){...;}; (see Section 4)*/
64endtemplate

Figure 3: Trivial serial controller driver specifications.

synthesis less susceptible to specification bugs. Finally,
since TLMs are created early in the hardware design cy-
cle, TLM-based driver synthesis can be carried out early
as well, thus removing driver development from the criti-
cal path to product delivery.

TLMs are written in high-level hardware description
languages like SystemC and DML. In order to use these
models in driver synthesis, we need to convert them to
TSL. This translation can be performed automatically, and
we are currently working on a DML-to-TSL compiler.
Since this work is not yet complete, device models used in
the experimental section of this paper are either manually
translated from existing TLMs or written from scratch us-
ing TLM modeling style guidelines [31].

The top part of Figure 3 shows a fragment of a model
of a trivial serial controller device used as a running ex-
ample. The fragment specifies the send logic of the con-
troller, which allows software to send data characters over
the serial line. The model is implemented as a TSL tem-
plate. The template encapsulates data and code that ma-
nipulates the data, similar to a class in OOP.

The software interface of the device consists of
data, command, and status registers declared in line 2.
The registers can be accessed from software via the
write dat, write cmd, read cmd, and read status

methods (lines 4–11). The controllable qualifier de-
notes a method that is available to the driver and can be
invoked from synthesized code.

The transmitter logic is modelled in lines 13–25. It is
implemented as a TSL process. A TSL specification can
contain multiple processes. The choice of the process to
run is made non-deterministically by the scheduler. The
process executes atomically until reaching a wait state-
ment or a controllable placeholder (see below).

In line 15, the transmitter waits for a command, issued
by the driver by writing value 1 to the command register.
Upon receiving the command, it sends the value in the
data register over the serial line. The transmission may
fail, e.g., due to a serial link problem. The device signals
transmission status to software by setting the status regis-
ter to 0 or 1. Finally, it clears the command register, thus
notifying the driver the request has completed.

Internally, the transmitter circuit consists of a shift reg-
ister and a baud rate generator used to output data on
the serial line. These details are not visible to soft-
ware and are abstracted away in the model. We use
the non-deterministic choice construct to choose be-
tween successful transmission and failure, without mod-
elling the details of serial link operation. Successful and
failed transmissions are modelled using evt send and
evt send fail events, explained in Section 2.2.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 665

2.2 OS model
The OS model specifies the API mandated by the OS for
all drivers of the given type. For example, any Ether-
net driver must implement the interface for sending and
receiving Ethernet packets. A separate specification is
needed for each supported OS, as different OSs define dif-
ferent interfaces for device drivers.

Additionally, each particular device can support non-
standard features, e.g., device-specific configuration op-
tions or transfer modes. These features must be added as
extensions to the generic OS specification in order to syn-
thesize support for them in the driver. TSL supports such
extensions in a systematic way via the template inheri-
tance mechanism. We do not describe this in detail due to
limited space.

The OS model is written in the form of a test harness
that simulates all possible sequences of driver invocations
issued by the OS. The os template in Figure 3 shows the
OS model for our running example. The main part of the
model is the psend process. At every iteration of the loop,
it non-deterministically chooses an 8-bit value (line 34)
and calls the send method of the driver, passing this value
as an argument. It then waits for the driver to acknowl-
edge the transmission of the byte (line 38) before issuing
another request. The driver acknowledges the transmis-
sion via the send ack callback (line 42). The callback
sets the acked flag, which unblocks the psend process.

We keep the specification concise by modeling the state
of the driver-OS interface, as opposed to the internal OS
state and behavior. For example, the acked variable
(line 30) serves to model the flow of data between the OS
and the driver and is not necessarily present in the OS im-
plementation.

2.3 Connecting device and OS models
In addition to simulating I/O requests to the driver, the
OS model also specifies the semantics of each request in
terms of device-internal events that must occur in order to
complete the requested I/O operation. In our running ex-
ample, after the OS invokes the send method of the driver
and before the driver acknowledges completion of the re-
quest, the device must attempt to send the requested data
over the serial line. This requirement establishes a con-
nection between the device and OS models and must be
specified explicitly in order to enable Termite to generate
a driver implementation that correctly handles the OS re-
quest. Note that we only need to specify which hardware
events must occur, but not how the driver generates them.

In order to develop such specifications, we need a way
to refer to relevant state and behavior of the device from
the OS model. At the same time, in order to maximize

specification reuse, we would like to keep the OS specifi-
cation device-independent. To reconcile these conflicting
requirements, we introduce a virtual interface between the
device and OS model. This interface consists of callbacks
used by the device model to notify the OS model about
important hardware events. The virtual interface does not
represent real runtime interactions between the device and
the OS, but serves as part of the correctness specification.

We define a virtual interface for each class of devices.
Such device-class interfaces are both device and OS-
independent. The device-class interface can be extended
with additional device-specific callbacks as required to
specify a driver for a particular device.

In our example, we define a device-class interface
consisting of two virtual callbacks: evt send and
ev send failed, invoked respectively when the device
successfully transmits and fails to transmit a byte. These
callbacks are invoked in lines 17 and 19 of the device
model. The evt send handler is shown in line 48 of
the OS model. The assertion in line 49 specifies that the
send event is only allowed to occur if there is an outstand-
ing send request in progress and the value being sent is
the same as the one requested by the OS. We reset the
inprogress flag to false in line 50, thus marking the cur-
rent request as completed; line 51 sets the success flag
to true, thus indicating that the transfer completed with-
out an error. The evt send fail handler is identical,
except that it sets the success flag to false. The flags
are checked by the send ack method, which asserts that
the driver is only allowed to acknowledge a completed
request (!inprogress) that has not been acknowledged
yet (!acked) and that the completion status reported by
the driver must match the one recorded in the success

flag.

In this example we use C-style assertions to rule out
invalid system behaviors. Assertions alone do not fully
capture requirements for a correct driver behavior. For
example, a driver that remains idle does not violate any as-
sertions. Hence, we need to specify requirements for the
driver to make forward progress. We introduce such re-
quirements into the model in the form of goal conditions,
that must hold infinitely often in any run of the system. For
example, a goal may require that the driver is infinitely of-
ten in an idle state with no outstanding requests from the
OS. The OS can force the driver out of the goal by issu-
ing a new I/O request. To satisfy the goal condition, the
driver must return to the goal state by completing the re-
quest. Line 58 in Figure 3 defines such a goal condition
that holds whenever the acked flag is set, i.e., the driver
has no unacknowledged send requests.

5

666 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

2.4 Driver template
The bottom part of Figure 3 shows the driver template
for the running example consisting of a single send entry
point invoked by the OS. The ellipsis in line 62 represent
a location for inserting synthesized code and are part of
TSL syntax. We refer to such locations as controllable
placeholders.

3 User-guided code generation
The set of input TSL specifications is fed into the Ter-

mite synthesis engine, which then automatically computes
the most general strategy for the driver. Given a state of
the system, the most general strategy determines the set
of all valid driver actions in this state. The most general
strategy is used by the Termite code generator to produce
a driver implementation in C in a user-guide fashion.

The Termite code generator GUI is similar to a tradi-
tional integrated development environment with two ad-
ditional built-in tools: the generator and the verifier. The
generator works as advanced auto-complete that helps the
user to fill the controllable placeholders inside the driver
template with code. At any point, the user can invoke
the generator to synthesize a single statement or a com-
plete block of code inside a controllable placeholder via a
mouse click on the target code location. The user can ar-
bitrarily modify and amend the generated code. However,
the generator never modifies user code. Instead it tries to
extend it to a complete implementation, which is always
possible provided that the existing code is consistent with
the most general strategy. The generator currently only al-
lows synthesizing statements after the last control location
within a branch. However this restriction is not a concep-
tual one and will be lifted by ongoing development.

The verifier automatically and on the fly checks that
the driver implementation, comprised of a mix of gen-
erated and manually written code, is consistent with the
most general strategy, thus maintaining strong correctness
guarantees that one would expect in automatically synthe-
sized code. The verifier symbolically simulates execution
of the system, following the partial driver implementation
created so far, and signals the user whenever it encounters
a transition that violates the most general strategy.

In the first approximation, the generator algorithm is
quite simple: given a source code location, it determines
the set of possible system states in this location, picks an
action for each state from the most general strategy and
translates this action into a code statement. In practice the
algorithm uses a number of heuristics to produce compact
and human-readable code. In particular, whenever there
exists a common action in all possible states in the given
location, the algorithm produces straight-line code with-

out branching. For example, when running the generator
on the specification in Figure 3, it automatically generates
the following code for the send function (line 62):
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);
wait(dev.reg_cmd==0);
if (os.success) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

This implementation correctly starts the data transfer by
writing the value to be sent to the data register and setting
the command register to 1. It then waits for the transfer
to complete, which is signalled by the device by resetting
the command register to 0. Finally, it acknowledges the
completion of the transfer to the OS.

Note that the generated code refers to the dev.reg cmd

and os.success variables. These variables model in-
ternal device and OS state respectively and cannot be di-
rectly accessed by the driver. This example illustrates an
important limitation of Termite—it assumes a white-box
model of the system, where every state variable is visi-
ble to the driver. Ideally, we would like to synthesize an
implementation that automatically infers the values of im-
portant unobservable variables. In this case, the value of
the command register can be obtained by the driver by ex-
ecuting the read cmd action. Furthermore, the value of
the os.success variable is correlated with the comple-
tion status of the last transfer, which can be obtained by
reading the device status register.

While Termite currently cannot produce such an imple-
mentation automatically, it implements a pragmatic trade-
off that helps the user build and validate a correct im-
plementation with modest manual effort. The code gen-
erator warns the user that the auto-generated code ac-
cesses private variables of the device and OS templates.
This prompts the user to provide a functionally equiva-
lent valid implementation, replacing the wait statement
with a polling loop and using the read status method
to check transfer status:
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);
while(dev.read cmd()==1);
if (dev.read status()) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

The verifier automatically checks the resulting implemen-
tation and confirms that it satisfies the input specification.

Note that in this example we have synthesized code

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 667

that correctly handles device errors. This was possible,
as our input device specification correctly captures device
failure modes (namely, transmission failure) and our OS
specification describes how the driver must report errors
to the OS (via the status argument of the completion
callback).

In principle, it is also possible to synthesize a driver im-
plementation that handles device and OS failures not cap-
tured in the specifications: since the synthesis tool knows
all possible valid environment behaviors, it can easily de-
tect invalid behaviors and handle them gracefully. Au-
tomatic synthesis of such hardened device drivers is a
promising direction of future research.

The final step of the code generation process translates
the synthesized driver implementation to C. This is a triv-
ial line-by-line translation. We expect this translation to
become unnecessary in the future as our ongoing work on
the TSL syntax aims to make the synthesized subset of
TSL a strict subset of C.

Maintaining synthesized code Device driver develop-
ment is not a one-off task: following the initial implemen-
tation, drivers are routinely modified to implement addi-
tional functionality, adapt to the changing OS interface or
support new device features.

The user-guided code generation method naturally sup-
ports such incremental maintenance. A typical main-
tenance task proceeds in three steps. First, the devel-
oper amends device and OS models to reflect the new
or changed functionality. Second, they add new methods
to the previously synthesized driver, if necessary, and re-
place existing driver code that is expected to change with a
controllable placeholder. Finally, the user runs Termite to
synthesize code for all controllable placeholders. Termite
treats all existing driver code as part of the uncontrollable
environment. Hence, if some of the old code is incorrect
in the context of the new specifications, this will lead to a
synthesis failure, and counterexample-based debugging is
used to identify the faulty code, as described in Section 5.

As an example, we synthesize a new version of the
driver for our running example assuming a more advanced
version of the serial controller device that uses interrupts
to notify the driver on completion of a data transfer. The
new device model is obtained by uncommenting line 23
of the device model in Figure 3, which invokes the inter-
rupt handler method of the driver after each transfer. The
driver template is extended with the irq method (line 63).
We use the previously synthesized implementation of the
send method, but manually remove the last two lines,
which implement polling, as we want the new implemen-
tation to use interrupts instead:
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);}

Finally, we run Termite on the resulting specifications and
use the generator to automatically produce the following
implementation of the new irq method:

void irq(){
if (os.success) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

As before, we manually replace the if-condition in the first
line with

if (dev.read_status())

This example illustrates how Termite supports incre-
mental changes to the driver by reusing previously syn-
thesized code, while maintaining strong correctness guar-
antees.

Instrumenting synthesized code Termite does not auto-
matically instrument synthesized code for debugging, log-
ging, accounting, etc. However, the user can add such in-
strumentation manually. Termite interprets such code as
no-ops and, as with any manual code, never makes any
modifications to it.

4 Synthesis
In this section we give a high-level overview of the Ter-

mite synthesis algorithm. We refer the reader to the ac-
companying publication [30] for a detailed description.

4.1 Driver synthesis as a game
We formalize the driver synthesis problem as a two-player
game [29] between the driver and its environment. The
game is played over a finite automaton that represents all
possible states and behaviors of the system. Transitions
of the automaton are classified into controllable transi-
tions triggered by the driver and uncontrollable transitions
triggered by the device or OS. A winning strategy for the
driver in the game corresponds to a correct driver imple-
mentation. If, on the other hand, a winning strategy does
not exist, this means that there exists no specification-
conforming driver implementation.

Two-player games naturally capture the essence of the
driver synthesis problem: the driver must enforce a cer-
tain subset of system behaviors while having only partial
control over the system.

Figure 4 illustrates the concept using a trivial game au-
tomaton that models the core of our running example.
Controllable and uncontrollable transitions of the automa-
ton are shown with solid and dashed arrows respectively.

7

668 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

send evt_sendG s2

s3

s5

s4

s6

E

write_data write_cmd

write_cmd write_data

evt_send

send_ack

Figure 4: A simple two-player game.

The goal of the driver in the game is to infinitely often visit
the initial state, labelled G, which represents the situation
when the driver does not have any outstanding requests.
After getting a send request from the OS, the driver must
write data and command registers to start the data transfer.
Writing the command register first may trigger a hardware
send event before the driver has a chance to write the data
register. As a result, wrong data value gets sent, taking
the game into an error state E. Hence, state s4 is losing
for the driver. To avoid this state, the correct strategy for
the driver is to play write data in state s2, followed by
write cmd. In s5 the driver must remain idle until the
environment executes the evt send transition.

Games and strategies Formally, a two-player game
G = 〈S, I, Lc, Lu, δc, δu,Φ〉 consists of a set of states
S, a subset of initial states I ⊆ S, sets of controllable and
uncontrollable actions Lc and Lu, controllable transition
relation δc ⊆ S×Lc×S, uncontrollable transition relation
δu ⊆ S × Lu × S, and a game objective Φ ⊆ Sω (where
Sω represents the set of infinite sequences of states in S).

The game proceeds in rounds, starting from an ini-
tial state. In each round, in state s, both players select
actions lc and lu available to them in s, and the game
transitions non-deterministically to one of the states in
δc(s, lc) ∪ δu(s, lu). Intuitively, the system scheduler
chooses the player to make a move at each round. The
scheduler can be thought of as part of the uncontrollable
environment. Note that this is different from turn-based
games like chess, where players strictly alternate in mak-
ing moves. In the example in Figure 4, the driver can
avoid the error state by choosing the write dat action in
state s4; however the environment can override this choice
by playing evt send.

The infinite sequence of states (s0, s1, ...) ∈ Sω vis-
ited by the game is called a run. A strategy for the driver
player is a function π : S → 2Lc that maps each state of
the game into a set of actions to play in this state. The
strategy determines a set Outcomes(I, π) ⊆ Sω of all
possible runs generated by the driver choosing one of the
actions in π(s) in every state s in the run.

Given a state s and a strategy π such that
Outcomes({s}, π) ⊆ Φ, we say that s is a winning state
for the driver, π is a winning strategy in s, and actions in

π(s) are winning moves in s. The game G is winning for
the driver if all states in I are winning. The most general
winning strategy maps every winning state s to a set of all
winning moves in s, and all other states to an empty set.

In Termite we use game objectives of a particular form,
called generalised reactivity-1 (GR-1) objectives [22].
Such an objective consists of a finite set {B1, ...Bn},
Bi ⊆ S of goal sets and a finite set {F1, ...Fk}, Fi ⊆ S of
fair sets. A winning strategy for the driver must make sure
that the game infinitely often visits each of the goal sets,
provided that the environment guarantees that the game
does not get stuck in a fair set forever.

Intuitively, a goal set represents a constraint on the
driver behavior, requiring the driver to force the game into
the goal infinitely often, while a fair set represents a con-
straint on the environment, preventing it from staying in
certain states forever. The game in Figure 4 has a single
goal set B1 = {g} and a single fair set F1 = {s4, s5}, i.e.,
the driver must acknowledge each send request from the
OS, provided that the environment eventually performs
the evt send action after it has been enabled.

4.2 TSL compiler
In order to compute the most general driver strategy as a
solution of a two-player game, we must first convert input
TSL specifications into a game automaton. This conver-
sion is performed by the TSL compiler.

Real driver specifications have large state spaces, which
cannot be feasibly represented by explicitly enumerating
states, as in Figure 2. Therefore, in Termite we repre-
sent games symbolically. The state space of the game is
defined in terms of a finite set of state variables X , with
each state s ∈ S representing a valuation of variables in
X . The TSL compiler introduces a state variable for each
TSL variable declared in one of the input templates. In
addition, auxiliary state variables are introduced to model
the current control location of each TSL process.

We model controllable and uncontrollable actions as
valuations of action variables Yc and Yu. Transition rela-
tions δc and δu are represented symbolically as formulas
over state variables X , action variables Yc and Yu, and
next-state variables X ′.

The TSL compiler splits the input specification
into controllable and uncontrollable parts and trans-
lates them into controllable and uncontrollable transi-
tion relations respectively. The controllable part is
comprised of controllable methods that can be in-
voked by the driver. The controllable transition re-
lation δc is computed by rewriting controllable meth-
ods in the variable update form. Consider, for ex-
ample, variable reg dat declared in line 2 in Fig-
ure 3. This variable is only modified by the write dat

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 669

method in line 4. The corresponding fragment of the
controllable transition relation in the variable update
form is reg dat′ := (tag = write dat) ? v : reg dat,
where reg dat′ is the next-state variable representing
the value of reg dat after the transition, and tag and
v are controllable action variables, where tag models
the method being invoked, and v is the argument of the
method.

The uncontrollable part of the specification is com-
prised of TSL processes, which model device and OS
behavior. We syntactically decompose each process
into atomic transitions. Recall that a process executes
atomically until reaching a wait statement or a con-
trollable placeholder. Consider the ptx process in
line 13 in Figure 3. The process is initially paused in
the wait statement. It is scheduled to run when the wait
condition holds. It executes the statements in lines 16–22
atomically and stops again in line 15. As part of this
atomic transition, the process sets the reg cmd variable
to 0 (line 22). This is the only uncontrollable transition
that modifies this variable, hence the uncontrollable
update function for this variable is defined as follows:
reg cmd′ := (reg cmd = 1 ∧ pid = ptx) ? 0 : reg cmd,
where pid is an uncontrollable action variable that mod-
els the scheduler’s choice of a process to run, and the
reg cmd = 1 conjunct corresponds to the wait condition
in line 15.

Finally, we need to generate the game objective Φ. In a
symbolic representation of the game, goal and fair sets are
specified as conditions over state variables that hold for
each state in the set. The TSL compiler outputs a goal set
Bi for each goal declared in the input specification and a
fair set Fi for each wait statement. The latter guarantees
that every runnable process gets scheduled eventually.

In addition to goal conditions, a TSL specification also
contains assertions, which must never be violated. We
model assertions using an auxiliary boolean state variable
ε, which is set to true whenever an assertion is violated
and remains true forever after. We add an extra constraint
ε = false to each accepting set Bi. An assertion viola-
tion permanently takes the game out of Bi, and therefore
can not occur in any winning run of the game.

4.3 Solving the game
The Termite game solver takes a game automaton pro-
duced by the TSL compiler, determines whether all initial
states of the system are winning and, if so, computes the
most general winning strategy for the game. A successful
approach to solving two-player games with GR-1 objec-
tives was proposed by Piterman et al. [22]. We give an
overview of their algorithm and briefly explain how we
extend it to address the scalability bottleneck.

Algorithm 1 Computing the set of winning states
function REACH(B)

Y ← ∅
loop

Y ′ ← CPre(Y ∪B)
if Y ′ = Y return Y
Y ← Y ′

function WINNINGSET({B1, ..., Bn})
Z ← S
loop

Z′ ←
⋂

i=1..n REACH(Z ∩Bi)
if Z′ = Z return Z
Z ← Z′

The algorithm is based on exhaustive exploration of the
state space of the game. Given a goal set B, we first de-
termine the set of states from which the driver can force
the game into B in one step, called the controllable pre-
decessor of B. The controllable predecessor consists of
all states s that satisfy both of the following conditions:

1. All uncontrollable transitions available in s lead to
some state in B. Hence, if the scheduler chooses to
execute an uncontrollable transition, it is guaranteed
to take the game to B.

2. There exists at least one winning controllable tran-
sition from s to B or s belongs to a fair region. In
the former case, the driver must perform the winning
transition; in the latter case it must remain idle wait-
ing for an uncontrollable transition, which is guaran-
teed to occur due to fairness.

Having computed the controllable predecessor of B, we
apply the controllable predecessor operator again to the
resulting set, thus obtaining the set of states from which
the driver can force the game into the goal within two
steps. We repeat until no new states can be discovered,
at which point we have found all states from which the
driver can force the game into the goal in a finite number
of rounds. This computation is performed by the REACH
function shown in Algorithm 1.

Recall that a GR-1 game can have multiple goal re-
gions, and in order to win the game the driver must visit
each goal region Bi infinitely often. Using the REACH
function, we compute the set Z =

⋂
i REACH(Bi), from

which any of the goals can be reached at least once. Next,
we compute Z ′ =

⋂
i REACH(Z ∩ Bi). It is easy to see

that Z ′ contains all states from which any of the goals can
be reached twice. Furthermore, by construction, Z ′ ⊆ Z.
By continuing the last computation until a fixed point is
reached, we obtain all winning states of the game, as
shown in function WINNINGSET (Algorithm 1).

The algorithm presented above is polynomial in the size
of the game automaton. We have developed a highly opti-

9

670 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

mized implementation of the algorithm, which uses sym-
bolic data structures [3] to compactly represent large sets
of states and transitions. Nevertheless, when applying it to
games arising in driver synthesis, we hit a computational
bottleneck due to a state explosion.

We overcome this bottleneck by using abstraction to
reduce the dimensionality of the problem. The partic-
ular form of abstraction used by Termite is predicate
abstraction [12], where concrete state variables of the
game are replaced with boolean predicates over the orig-
inal variables. Abstraction is adaptively refined by in-
troducing new predicates that capture important rela-
tions among concrete variables. The predicate-based
abstraction-refinement algorithm for games is one of the
key technical contributions of Termite. It is described in
detail in an accompanying paper [30].

4.4 Verification as a special case of synthesis
Consider the situation where not only the OS and the de-
vice, but also the driver behavior is fully specified, so that
the synthesizer does not have any freedom to pick driver
actions. If the resulting game is winning for the driver,
i.e., every possible run of the game satisfies the objective,
then the provided driver implementation is correct. Thus,
verification can be seen as a special case of the synthesis
problem where all transitions in the system are uncontrol-
lable. Hence, our game solving algorithm doubles as a
driver verification algorithm. Termite also supports hy-
brid scenarios: given a partially implemented driver with
placeholders for synthesized code, it determines whether
the given partial implementation can be extended to a
complete one and, if so, fills out the placeholders in the
user-guided fashion.

5 Debugging with counterexamples
An important practical issue in game-based synthesis is

the complexity of diagnosing synthesis failures due to de-
fects in the input specifications. In the event that Termite
fails to solve the game, the user needs to trace the failure
back to the specification defect. However, the failure does
not carry any information about the defect, which makes
the problem harder to resolve.

In Termite we propose a new approach to troubleshoot-
ing synthesis failures based on the use of counterexample
strategies. A counterexample strategy is a strategy on be-
half of the environment that prevents the driver from win-
ning the game. It is obtained by solving the dual game,
where, in order to win, the environment must permanently
force the game out of one of the goal regions. A winning
strategy in the dual game is guaranteed to exist whenever
solving of the primary game fails.

In order to detect and fix the defect in an input specifi-
cation, the driver developer relies on their understanding
of the OS and device logic. The role of the counterexam-
ple strategy is to guide the developer towards the defect.
To automate this process, we developed a powerful visual
debugging tool that allows the user to interactively sim-
ulate intended driver behavior and observe environment
responses to it. The user plays the game on behalf of the
driver, while the tool responds on behalf of the environ-
ment, according to the counterexample strategy.

In a typical debugging session, the debugger, following
the counterexample strategy, generates a sequence of re-
quests that are guaranteed to win against the driver. The
user plays against these requests by specifying device
commands that, they believe, represent a correct way to
handle the request. Since this sequence of requests can-
not be handled correctly given the current input specifi-
cation, at some point in the game the user runs into an
unexpected behavior of one of the players, e.g., one of
user-provided commands does not change the state of the
device as expected or the environment performs an uncon-
trollable transition that violates an assertion. Based on this
information, the user can revise the faulty specification.

At every step of the interactive debugging session, the
debugger either chooses a spoiling uncontrollable action
based on the counterexample strategy or, if the system
is inside a controllable placeholder, allows the user to
choose a controllable action to execute on behalf of the
driver. In the former case the spoiling uncontrollable ac-
tion corresponds to a transition in one of the TSL pro-
cesses. The user can explore this transition by stepping
through it, exactly as they would in a conventional debug-
ger. In the latter case, the user provides the action that
they would like to perform by typing and executing corre-
sponding code statements.

The tool supports a number of features aimed to make
the debugging process as simple as possible for the user.
We mention two of them here. First, the debugger interac-
tively prompts actions available to the driver at each step.
Second, the debugger keeps the entire history of the game
and allows the user to go back to one of previously ex-
plored states and try a different behavior from there.

6 Limitations of Termite
In Section 3, we described one limitation of Termite,

namely the lack of support for grey-box synthesis. In this
section we discuss other limitations, which, we hope, will
help define the agenda for continuing research in driver
synthesis.

Most importantly, Termite does not currently support
automatic synthesis of direct memory access (DMA)

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 671

management code. Many modern devices transfer data
directly to and from main memory, where it is buffered
in data structures such as circular buffers and linked lists.
These data structures can have very large or infinite state
spaces and cannot be easily modeled within the finite state
machine-based framework of Termite. Efficient synthesis
for DMA requires enhancing the synthesis algorithm to
use more compact representation of DMA data structures,
which is the focus of our ongoing research. At this time,
code for manipulating DMA data structures must be writ-
ten manually. This code is not interpreted or verified by
Termite. For example, we use this approach to synthesize
a DMA-capable IDE disk driver (Section 7).

Device drivers in modern OSs contain a significant
amount of boilerplate code that is not directly related to
the task of controlling the device. This includes binding
the driver to I/O resources (memory mapped regions, in-
terrupts, timers), registering the driver with various OS
subsystems, allocating DMA memory regions, creating
sysfs entries, etc. While much of this functionality could
be synthesized within the game-based framework, we do
not believe that this is the correct approach. Previous re-
search has demonstrated that this boilerplate code can be
generated in a principled way from declarative specifica-
tions of the driver’s requirements and capabilities [26].
This technique has lower computational complexity than
game solving and better captures the essence of the task.
A practical driver synthesis tool can combine game-based
synthesis of the core driver logic responsible for control-
ling the device with declarative synthesis of boilerplate
code. As a result, the current version of Termite assumes
this boilerplate code is written manually as a wrapper
around the synthesized driver.

Drivers execute in a concurrent OS environment and
must handle invocations from multiple threads, as well as
asynchronous hardware interrupts. We separate synthesis
for concurrency into a separate step. Drivers synthesized
by Termite are correct assuming a sequential environment,
where driver entry points are invoked atomically. The re-
sulting sequential driver is then processed by a separate
tool that performs a sequence of transformations of the
driver source code, which preserve the driver’s sequential
behavior, while making the driver thread-safe. Such trans-
formations include adding locks around critical code sec-
tions, inserting memory barriers, and reordering instruc-
tions to avoid race conditions. Concurrency synthesis is
still work in progress and is beyond the scope of this pa-
per. Our preliminary results are published in [5, 6].

Termite does not explicitly support specification and
synthesis of timed behaviors. Instead, it uses a pragmatic
approach that allows it to synthesize time-sensitive be-

havior without having to explicitly reason about time. To
this end, Termite conservatively approximates timed oper-
ations by fairness constraints: it ignores the exact duration
of each device operation, but keeps the knowledge that
the operation will complete eventually, and synthesizes a
driver that waits for the completion. Termite is also able
to handle time-out conditions, modeled as external events.
However, at this time it is not capable of generating device
drivers for hard real-time systems, where the driver must
guarantee completion of I/O operations by a certain dead-
line.

7 Implementation and evaluation
The version of Termite presented here consists of

30,000 lines of Haskell code. The estimated overall
project effort is 10 person years. Termite is available in
source and binary form from the project webpage1.

We evaluate Termite by synthesizing drivers for eight
I/O devices. Specifically, we synthesized drivers for a
UVC-compliant USB webcam, the 16550 UART serial
controller, the DS12887 real-time clock, and the IDE disk
controller for Linux, as well as seL4 [16] drivers for I2C,
SPI, and UART controllers on the Samsung exynos 5
chipset2 and SPI controller on the STM32F10 chipset.
With the exception of the IDE disk, these devices are
representative of peripherals found in a typical embed-
ded platform, such as a smartphone. Our synthesized
drivers implement data transfer, configuration and error
handling. The main barrier to synthesizing drivers for
more advanced devices, e.g., high-performance network
controllers, is the current lack of support for synthesis of
DMA code in the current version of Termite.

Modelling complexity Models of UART and DS12887
devices were developed based on existing publicly avail-
able device models [32, 20]. Models of other devices were
derived from their vendor-provided documentation, fol-
lowing standard TLM modeling guidelines [31]. OS mod-
els for the relevant device classes were created based on
Linux kernel documentation and source code.

Table 1 summarises the size, in lines of code, of device
and OS models in our case studies. Developing a com-
plete set of specifications for each driver took approxi-
mately one week, of which only one to three days were
spent building the models and the rest of the time was
spent studying device and OS documentation. This effi-
ciency can be attributed to the choice of the right level of

1http://termite2.org
2At the time of writing, the exynos drivers have not yet been tested

due to hardware availability issues; however we confirmed via manual
inspection that they implement the same device control sequences as
existing manually developed drivers.

11

672 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

input spec driver
OS device synthesized native

webcam 102 385 113 307
16450 UART 122 167 74 261
exynos UART 128 252 37 166
STM SPI 73 244 24 64
exynos SPI 88 239 40 183
exynos I2C 146 180 79 211
RT clock 118 252 84 183
IDE 188 480 94a 474

aExcluding 36 lines of manually written code that manipulates the
DMA descriptor table.

Table 1: Size (in lines of code) of input specifications and of
synthesized and equivalent manually written drivers.

abstraction and modeling language. In particular, the use
of transaction-level device modeling abstracts away com-
plicated internal device machinery by focusing on high-
level events relevant to driver synthesis, while the TSL
language allows modeling the driver environment using
standard programming techniques, as illustrated by our
running example.

Interestingly, we found the most error-prone step in de-
veloping specifications for driver synthesis to be defin-
ing correct relative ordering of OS-level and device-level
events with the help of the virtual interface (Section 2.3).
Naı̈ve specifications tend to be either too restrictive, lead-
ing to synthesis failures, or too liberal, leading to incorrect
synthesized drivers. As we gained more experience syn-
thesizing different types of drivers, we identified common
modeling patterns that help avoid errors in virtual inter-
face specifications.

As a common example, most virtual interfaces contain
callbacks that signal a change to one of device configura-
tion parameters, e.g., transfer speed, parity, etc. A naı̈ve
OS model may only allow such a callback to be triggered
when the OS has requested a change to the corresponding
device setting. However, many devices only allow setting
multiple configuration parameters simultaneously, so that
setting any individual parameter triggers multiple call-
backs, thus making the specification non-synthesizable.
The problem can be rectified by changing the device spec-
ification to only trigger callbacks if the new value of the
parameter is different from the old one; however this
bloats the device model due to the extra checks. A better
solution, used in all our models, is to design the OS speci-
fication to allow configuration callbacks to be triggered at
any time, provided that the new value of the parameter is
equal to the last value requested by the OS.

Synthesis time Table 2 summarises the performance of
the Termite game solver in our case studies. The second
column of the table characterises the complexity of the
two-player game constructed by the TSL compiler from

vars(bits) refine- predi- synt. verif.
ments cates time (s) time (s)

webcam 128 (125565) 47 192 215 794
16450 UART 81 (407) 65 128 210 464
exynos UART 80 (1185) 54 111 645 82
STM SPI 68 (389) 29 63 67 31
exynos SPI 83 (933) 31 72 25 44
exynos I2C 65 (303) 21 56 45 96
RT clock 92 (810) 25 74 56 127
IDE 114 (1333) 42 105 285 778

Table 2: Performance of the Termite game solver.

the input specifications in terms of the number of states
variables and the total number of bits in these variables.
The third column shows the number of iterations of the
abstraction refinement loop required to solve the game.
The next column shows the size of the abstract game at
the final iteration, in terms of the number of predicates
in the abstract state space of the game. These results
demonstrate the dramatic reduction of the problem dimen-
sion achieved by our abstraction refinement method. The
second-last column shows that the Termite game solver
was able to find the most general winning strategy within
a few minutes in all case studies.

We compared the performance of the Termite game
solver against a state-of-the-art abstraction refinement al-
gorithm for games [10] as well as against the standard
symbolic algorithm for solving games without abstrac-
tion [22]. In all case studies, the Termite solver was the
only one to find a winning strategy within a two-hour
limit. We refer the reader to [30] for a more detailed per-
formance analysis of the Termite synthesis algorithm.

The final column of Table 2 shows the time that it took
Termite to verify a complete driver. Recall that the Ter-
mite synthesis algorithm doubles as a verification algo-
rithm and can be used to verify drivers written in TSL.
We used complete synthesized drivers, containing a com-
bination of manual and automatically generated code, as
inputs to Termite. We have been able to successfully ver-
ify all of our drivers. We also experimented with intro-
ducing faults to synthesized drivers. Termite was able
to detect these faults and produce correct counterexample
strategies. In most cases verification took longer than syn-
thesis. The reason for this is that Termite has not yet been
optimized for verification workloads. This is one area for
future improvement.

User-guided code generation and debugging We eval-
uate the key contribution of this paper, namely the user-
guided debugging and code generation technique. Each
line of code in a Termite-generated driver originates from
one of three sources: it can be (1) synthesized automati-
cally by the tool, (2) developed offline and given to Ter-
mite as part of the driver template, or (3) added or modi-
fied by the user during an interactive code generation ses-

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 673

sion. A perfect synthesis tool, capable of generating a
complete driver fully automatically while producing code
that meets all non-functional requirements, would elimi-
nate the need for manual code altogether. We do not be-
lieve that such a tool is feasible in the near future. We
therefore explore the tradeoffs that arise when using our
current, imperfect, tool. In particular, we would like to
empirically characterize situations when the user can rely
on the synthesizer to automatically produce near-optimal
code, and when they are better off completely or par-
tially implementing certain functionality manually. These
tradeoffs are likely to change as the tool improves.

Based on our experience so far, automatic synthesis is
most helpful in generating code that performs device con-
figuration or starts a data transfer. This code may involve
a long sequence of commands to the device, which must
be issued in the right order and with correct arguments.
The synthesis algorithm of Termite proved more effective
at doing this than human developers, producing correct
code that only requires minimal cosmetic changes in most
cases. For example, Figure 5 shows a screenshot of Ter-
mite with a synthesized implementation of the IDE driver
write() function, which starts a data transfer to the de-
vice. The function writes request parameters into appro-
priate device data registers and sets bit fields in command
registers to prepare the device for data transfer. One de-
ficiency in this auto-generated implementation is that it
uses absolute values instead of symbolic constants for bit
fields.

As another example of suboptimal synthesized code,
consider the following synthesized fragment
void packet_received() {

if (((packet_data[9:9] == 1) &&
(packet_data[14:14] == 1))) {

os.ack_packet(1,1,packet_data[16:32]);
} else if ((dev.packet_data[9:9] == 1)) {
os.ack_packet(1,0,packet_data);

} else if ((dev.packet_data[14:14] == 1)) {
os.ack_packet(0,1,packet_data[16:32]);

} else {
os.ack_packet(0,0,packet_data[16:32]);

};
};

which can be replaced by an equivalent one-liner
os.ack_packet(packet_data[9:9],

packet_data[14:14],packet_data[16:32]);

While both issues can, and will, be addressed by an im-
proved code generation algorithm, our experience shows
that unaccounted corner cases will arise occasionally.
Therefore, the ability to manually modify synthesized
code without sacrificing correctness is crucial for a prac-
tical synthesis tool.

Limitations of Termite are most noticeable in synthesiz-

Figure 5: Screenshot of Termite with a synthesized im-
plementation of the IDE driver. Automatically generated
code is highlighted.

ing interrupt handler code responsible for processing I/O
completions. This involves querying device state to deter-
mine which operations completed and with what status,
reporting results to the OS, and clearing interrupt status
registers. Since Termite does not support grey-box syn-
thesis, it can not generate this code automatically and in-
stead produces code that directly accesses device-internal
state (see Section 3). Termite correctly reports such situ-
ations and allows the user to mitigate them by manually
editing synthesized code. In practice, however, we found
it easier to develop most of the interrupt handler logic of-
fline, as part of the driver template, and rely on Termite to
(a) establish correctness of this code and (b) extend it to a
complete implementation.

In our case studies, 60% to 90% of the code was gen-
erated fully automatically, with the rest of the code pro-
duced in a user-guided fashion. Once an initial version of
device and OS specifications was ready, it took us several
hours to generate the driver implementation for each of
our case studies. Three quarters of this time was spent de-
bugging the input specifications, with the rest of it spent
generating driver source code with the help of the user-
guided code generation GUI.

We found counterexample-driven debugging to be cru-
cial to the productivity of synthesis-based development.
Before the debugger was available, we had to rely on code
inspection to identify defects in the input specifications,
which proved to be a frustrating and unpredictably long
process. The Termite debugger streamlines this process,
giving us the confidence that any failure can be localised
by following well-defined steps. A typical debugging ses-
sion takes a few minutes and involves entering only a few
commands manually before the defect is localised.

13

674 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Size of synthesized code The last two columns of Ta-
ble 1 compare the size of synthesized drivers to existing
manually developed drivers. Synthesised drivers are sig-
nificantly more compact than conventional drivers for two
main reasons. First, as explained in Section 6, we only
synthesize the driver logic directly responsible for con-
trolling the device. Conventional drivers typically contain
a large amount of boilerplate code managing various OS
resources. We believe that this code can and should be
synthesized using complementary techniques. At the mo-
ment we implement this functionality manually as a wrap-
per around the synthesized driver.

Second, conventional device drivers are often designed
to support multiple similar devices with slightly different
interfaces and capabilities. This leads to code bloat, as
the driver must implement multiple versions of various
operations, as well as logic to dynamically discover de-
vice capabilities and choose the right implementation to
use. In contrast, every Termite driver supports one spe-
cific device model with a fixed set of features. Drivers
for similar devices can share common specification code,
but are synthesized as separate source code modules. This
approach leads to simpler code and is preferable for plat-
forms with a fixed set of peripheral devices, such as smart-
phones, where shipping drivers that support only the re-
quired devices enables smaller system image.

Specification reuse Our specification methodology en-
sures mutual independence of device and OS specifica-
tions, and thus facilitates their reuse. We have not yet car-
ried out a substantial evaluation of such reuse; however
we report our limited experience based on synthesizing
two SPI drivers for the seL4 OS. The corresponding OS
specification was initially developed during the work on
the SPI driver for the exynos chipset. It was later used to
synthesize a driver for the STM32F10 chipset. We were
able to reuse most of the original specification. Minor
changes (8 lines of code) were required in the part of the
specification describing configuration functionality of the
driver, since the STM SPI controller supports a number
of ad hoc transfer modes. We expect to observe similar
pattern for other devices and operating systems: generic
OS specifications can be reused with localized, device-
specific changes required to support non-standard device
features.

Performance of synthesized drivers Our synthesized
drivers implement effectively identical device control
logic to their conventional counterparts and therefore have
similar performance. We benchmarked the USB web-
cam driver, which is the most performance-critical one
among our case studies. We measured CPU load and data
throughput generated by the conventional and synthesized

drivers for varying bitrates. We obtained identical results,
modulo measurement errors, for both drivers in all cases.

8 Related work
Device driver reliability has been an active area of re-

search for a number of years. Some of the techniques for
dealing with buggy drivers include runtime isolation [27,
17], virtualisation [18], static verification [2, 9, 21], sym-
bolic execution [7], language-based protection [34, 23],
domain-specific languages [11, 19], hardware-software
co-verification [25], etc.

This research has demonstrated the effectiveness of for-
mal techniques in improving driver reliability. Interest-
ingly, formal approaches to driver correctness fall into
methods that verify existing drivers and methods that
combine verification with an improved driver architecture.
The latter rely on language and architectural support to
eliminate entire families of driver bugs by design. Re-
cent examples include the P programming language [11]
and the active driver framework [1], which facilitate the
development and automatic verification of asynchronous
event-driven code. Our work can be seen as taking this
correctness-by-construction approach to the extreme by
generating drivers in an automated fashion.

9 Conclusion and future work
We presented the design and implementation of the Ter-

mite driver synthesis tool. Termite is the first tool to marry
automatic game-based synthesis with conventional man-
ual development. It is also the first practical synthesis tool
based on abstraction refinement. Finally, it is the first syn-
thesis tool to support automated debugging of input spec-
ifications.

Based on our experimental results, we consider Ter-
mite to be an important step towards truly practical de-
vice driver synthesis. In particular, our synthesis algo-
rithm is able to efficiently handle real-world device speci-
fications, while the user-guided approach reliably leads to
high-quality code.

Our ongoing research focuses on solving the key re-
maining problems described in Section 6, primarily the
DMA problem, which poses the main obstacle to syn-
thesis of more complex drivers, and the grey-box syn-
thesis problem, which limits the degree of automation
achieved by Termite. Next, we will explore ways to im-
prove the quality of automatically generated code and thus
further reduce the need for user involvement. This in-
cludes performance- and power-aware synthesis. Finally,
we plan to investigate automatic synthesis of hardened de-
vice drivers, i.e., drivers that gracefully handle misbehav-
ing devices [15].

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 675

References
[1] S. Amani, P. Chubb, A. Donaldson, A. Legg, K. C.

Ong, L. Ryzhyk, and Y. Zhu. Automatic verification
of active device drivers. ACM Operating Systems
Review, 48(1), May 2014.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Licht-
enberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
and A. Ustuner. Thorough static analysis of device
drivers. In 1st EuroSys Conference, pages 73–85,
Leuven, Belgium, Apr. 2006.

[3] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, 35:677–691, 1986.

[4] L. Cai and D. Gajski. Transaction level modeling:
an overview. In ”1st International Conference on
Hardware/Software Codesign and System Synthe-
sis”, pages 19–24, Newport Beach, CA, USA, 2003.

[5] P. Cerny, T. Henzinger, A. Radhakrishna, L. Ryzhyk,
and T. Tarrach. Efficient synthesis for concurrency
by semantics-preserving transformations. In CAV,
Saint Petersburg, Russia, July 2013.

[6] P. Cerny, T. Henzinger, A. Radhakrishna, L. Ryzhyk,
and T. Tarrach. Regression-free synthesis for con-
currency. In CAV, Vienna, Austria, July 2014.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. The
S2E platform: Design, implementation, and appli-
cations. ACM Transactions on Computer Systems,
30(1):2:1–2:49, Feb. 2012.

[8] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. En-
gler. An empirical study of operating systems er-
rors. In 18th ACM Symposium on Operating Systems
Principles, pages 73–88, Lake Louise, Alta, Canada,
Oct. 2001.

[9] E. M. Clarke, D. Kroening, N. Sharygina, and
K. Yorav. Predicate abstraction of ANSI-C programs
using SAT. Formal Methods in System Design, 25(2-
3):105–127, 2004.

[10] L. de Alfaro and P. Roy. Solving games via three-
valued abstraction refinement. In 18th International
Conference on Concurrency Theory, pages 74–89,
Lisboa, Portugal, Sept. 2007.

[11] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Raja-
mani, and D. Zufferey. P: safe asynchronous event-
driven programming. In 34th annual ACM SIG-
PLAN conference on Programming Language De-

sign and Implementation, pages 321–332, Seattle,
Washington, USA, 2013.

[12] C. Flanagan and S. Qadeer. Predicate abstraction
for software verification. In 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 191–202, Portland, Oregon, 2002.

[13] A. Ganapathi, V. Ganapathi, and D. Patterson. Win-
dows XP kernel crash analysis. In 20th USENIX
Large Installation System Administration Confer-
ence, pages 101–111, Washington, DC, USA, 2006.

[14] Intel Corporation. Cofluent technolofy. http:
//www.intel.com/content/www/us/en/
cofluent/cofluent-difference.html.

[15] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tol-
erating hardware device failures in software. In 22nd
ACM Symposium on Operating Systems Principles,
Big Sky, MT, USA, 2009.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In 22nd ACM Symposium on Operating Sys-
tems Principles, pages 207–220, Big Sky, MT, USA,
Oct. 2009.

[17] B. Leslie, P. Chubb, N. FitzRoy-Dale, S. Götz,
C. Gray, L. Macpherson, D. Potts, Y. R. Shen, K. El-
phinstone, and G. Heiser. User-level device drivers:
Achieved performance. Journal of Computer Sci-
ence and Technology, 20(5):654–664, Sept. 2005.

[18] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Un-
modified device driver reuse and improved system
dependability via virtual machines. In 6th Sympo-
sium on Operating Systems Design and Implemen-
tation, pages 17–30, San Francisco, CA, USA, Dec.
2004.

[19] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware program-
ming. In 4th USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 17–30, San
Diego, CA, USA, Oct. 2000.

[20] 16550 UART core. http://opencores.org/
project,a_vhd_16550_uart.

[21] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in Linux: ten years later.
In 16th International Conference on Architectural

15

676 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Support for Programming Languages and Operat-
ing Systems, pages 305–318, Newport Beach, CA,
USA, Mar. 2011.

[22] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
Reactive(1) designs. In 7th International Confer-
ence on Verification, Model Checking and Abstract
Interpretation, pages 364–380, Jan. 2006.

[23] M. J. Renzelmann and M. M. Swift. Decaf: Moving
device drivers to a moderm language. In USENIX
Annual Technical Conference, San Diego, CA, USA,
June 2009.

[24] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and
G. Heiser. Automatic device driver synthesis with
Termite. In 22nd ACM Symposium on Operating
Systems Principles, Big Sky, MT, USA, Oct. 2009.

[25] L. Ryzhyk, J. Keys, B. Mirla, A. Raghunath, M. Vij,
and G. Heiser. Improved device driver reliability
through hardware verification reuse. In 16th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, New-
port Beach, CA, USA, Mar. 2011.

[26] M. F. Spear, T. Roeder, O. Hodson, G. C. Hunt, and
S. Levi. Solving the starting problem: device drivers
as self-describing artifacts. In 1st EuroSys Confer-
ence, pages 45–57, Leuven, Belgium, 2006.

[27] M. M. Swift, B. N. Bershad, and H. M. Levy. Im-
proving the reliability of commodity operating sys-

tems. In 19th ACM Symposium on Operating Sys-
tems Principles, Bolton Landing (Lake George),
New York, USA, Oct. 2003.

[28] Synopsys. Virtual prototyping models.
http://www.synopsys.com/Systems/
VirtualPrototyping/VPModels.

[29] W. Thomas. On the synthesis of strategies in infinite
games. In 12th Annual Symposium on Theoretical
Aspects of Computer Science, pages 1–13, 1995.

[30] A. Walker and L. Ryzhyk. Predicate abstraction for
reactive synthesis. In FMCAD, Lausanne, Switzer-
land, Oct. 2014.

[31] Wind River. Wind River Simics Model Builder user
guide. version 4.4, Sept. 2010.

[32] WindRiver Simics DS12887 Model. http://
www.windriver.com/products/simics.

[33] R. Yavatkar. Era of SoCs, presentation at the Intel
Workshop on Device Driver Reliability, Modeling
and Synthesis, Mar. 2012.

[34] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. En-
nals, M. Harren, G. Necula, and E. Brewer.
SafeDrive: Safe and recoverable extensions using
language-based techniques. In 7th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, pages 45–60, Seattle, WA, USA, Nov. 2006.

16

	Conference Organizers
	External Reviewers
	Table of Contents
	Message from the OSDI ’14 Program Co-Chairs
	Arrakis: The Operating System is the Control Plane
	Decoupling Cores, Kernels, and Operating Systems
	Jitk: A Trustworthy In-Kernel Interpreter Infrastructure
	IX: A Protected Dataplane Operating System for High Throughput and Low Latency
	Willow: A User-Programmable SSD
	Physical Disentanglement in a Container-Based File System
	Customizable and Extensible Deployment for Mobile/Cloud Applications
	Pebbles: Fine-Grained Data Management Abstractions for Modern Operating Systems
	Protecting Users by Confining JavaScript with COWL
	Code-Pointer Integrity
	Ironclad Apps: End-to-End Security via Automated Full-System Verification
	SHILL: A Secure Shell Scripting Language
	GPUnet: Networking Abstractions for GPU Programs
	The Mystery Machine: End-to-end performance analysis of large-scale Internet services
	End-to-end Performance Isolation through Virtual Datacenters
	Simple Testing Can Prevent Most Critical Failures
	Shielding applications from an untrusted cloud with Haven
	Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing
	The Power of Choice in Data-Aware Cluster Scheduling
	Heading Off Correlated Failures through Independence-as-a-Service
	Characterizing StorageWorkloads with Counter Stacks
	Pelican: A building block for exascale cold data storage
	A Self-Configurable Geo-Replicated Cloud Storage System
	f4: Facebook’s Warm BLOB Storage System
	SAMC: Semantic-Aware Model Checking forFast Discovery of Deep Bugs in Cloud Systems
	SKI: Exposing Kernel Concurrency Bugs through Systematic Schedule Exploration
	All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications
	Torturing Databases for Fun and Profit
	Fast Databases with Fast Durability and Recovery Through Multicore Parallelism
	Extracting More Concurrency from Distributed Transactions
	Salt: Combining ACID and BASE in a Distributed Database
	Phase Reconciliation for Contended In-Memory Transactions
	Eidetic Systems
	Detecting Covert Timing Channels with Time-Deterministic Replay
	Identifying information disclosure in web applicationswith retroactive auditing
	Project Adam: Building an Efficient and Scalable DeepLearning Training System
	Scaling Distributed Machine Learning with the Parameter Server
	GraphX: Graph Processing in a Distributed Dataflow Framework
	Nail: A practical tool for parsing and generating data formats
	lprof : A Non-intrusive Request Flow Profiler for Distributed Systems
	Pydron: semi-automatic parallelizationfor multi-core and the cloud
	User-Guided Device Driver Synthesis

