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contributions during the early days of the conference. Thank you to Joel Young and Sandeep Uttamchandani for organizing 
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(Nitin Agrawal,  Eli Collins, Casey Henderson, Robert Ober, Jairam Ranganathan, D. Sculley,  Tal Shaked, Swaminathan 
Sundararaman, Sandeep Uttamchandani, and Joel Young). Finally, we would like to thank Casey Henderson and Kurt Ander-
sen of USENIX for their tremendous help and insight as we worked on this new conference, and all of the USENIX staff for 
their extraordinary level of support throughout the process.
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Opportunities and Challenges Of Machine Learning Accelerators In Production 
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Abstract 
The rise of deep learning has resulted in tremendous                 
demand for compute power, with the FLOPS required for                 
leading machine learning (ML) research doubling roughly             
every 3.5 months since 2012 [1]. This increase in demand                   
for compute has coincided with the end of Moore’s Law [2]. 

As a result, major industry players such as NVIDIA, Intel,                   
and Google have invested in ML accelerators that are                 
purpose built for deep learning workloads. 

ML accelerators present many opportunities and challenges             
in production environments. This paper discusses some high               
level observations from experience internally at Google. 

1. Products Enabled by ML Accelerators 
ML accelerators have had transformational impact on             
consumer tech products. Many of the recent AI-inspired               
products developed across the industry would not have been                 
possible without gains in compute via ML accelerators.               
Notable examples at Google include computational           
photography features in Photos and Lens, breakthroughs in               
Translate quality, Gmail SmartCompose, and improvements           
to Search and Assistant [3, 4]. Similarly, ML accelerators                 
have powered neural architecture search [15, 20] with               
hyperparameter exploration to pick the best of the breed of                   
large set of models for a given task.  
 
DeepMind’s WaveNet model is particularly illustrative [5].             
WaveNet enabled a dramatic jump in text-to-speech quality,               
which for the first time approached truly human-sounding               
voice. However, the initial version of this model took 1                   
second to generate just .02 seconds of audio. Through                 
optimizations enabled by Google’s TPU ML accelerators, it               
was possible to achieve a 1000X speed improvement in                 
audio generation and to launch both in Assistant and as a                     
Cloud product offering [6]. 

ML accelerators have led to the launch of new large scale                     
compute products e.g. NVIDIA’s DGX-2 2 petaFLOPS             
system and Google’s TPU v3 pod 100 petaFLOPS system. 

2. Overview of ML Accelerator Specialization 
ML accelerator chips and the systems which incorporate               
them are characterized by a variety of specializations               
compared to general purpose CPUs and distributed systems               
[2, 13]. These specializations have led to order of magnitude                   
gains in performance and cost [16], and in turn led to                     
significant breakthroughs in AI research e.g. AmoebaNet             
[17], AlphaGo [18], and BERT [19]. 

Below, we summarize key specializations tailored to deep               
learning, encompassing both supervised and unsupervised           
learning with neural networks (NN) [10]. 

2.1. Instruction Sets 

The main instructions for an ML accelerator implement               
linear algebra operations such as matrix multiplication and               
convolutions. Supported data types allow variable precision             
tailored for deep learning workloads such as bfloat16 [11]                 
and quantized or low-precision arithmetic [2, 13], leading to                 
advantages in memory use and power savings. 

2.2. Memory Hierarchy 
ML accelerator instructions operate over block-oriented data             
to fully utilize memory and computation capacity. The               
memory hierarchy consists of on-chip buffers, on-board             
high bandwidth memory to efficiently feed data, and host                 
memory to hold state across multiple ML accelerators. 

2.3. Host Systems and Networks 
To enable access to file systems for input/output, debugging                 
and development workflows, language runtimes, and           
general purpose computing stack, ML accelerators are             
connected to a host CPU system. Hosts connect to each                   
other through networks such as Gigabit Ethernet. 

ML accelerators connect to hosts through off-the-shelf             
networking such as PCIe. Accelerator boards also             
incorporate customized high speed interconnects that           
connect multiple cores on and across boards. This allows for                   
fast synchronization of state, e.g. by using AllReduce. 

3. Software Stack Design 

Software stacks for ML accelerators generally strive to               
abstract away hardware complexity from developers.           
However, the supported ops, data types, and tensor shapes                 
can differ greatly across hardware platforms and create               
limitations. These differences can render parts of a model’s                 
architecture unsuitable for accelerators. It can be             
challenging to adapt models trained on one platform, e.g.                 
CPU, to run on a different platform for production inference                   
e.g. TPUv1 or mobile devices. Many bespoke solutions               
exist, but a good general purpose approach remains an                 
active area of research, including compilers and runtimes               
that abstract away hardware details [7]​. In practice, API                 
design emphasizing helpful error messages greatly improves             
developer experience and enables broader adoption. 

 
1​Alphabetical by last name 
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4. Developer Experience 
Model developers want to accelerate training and inference               
across a variety of models. Below we summarize a few key                     
considerations in porting these computations to accelerators. 

4.1 Model Suitability and Decomposition 
Operations used by a model must be implemented using the                   
instruction set of the accelerator e.g. to launch CUDA                 
kernels. For a modeler, it is a crucial first step to know                       
which of a model’s ops are not supported on the accelerator                     
and whether alternatives exist. Beyond compatibility, it is               
also important to consider the suitability of ops to run the                     
accelerator (e.g. matmuls) vs. the host CPU (e.g. I/O). 

A common decomposition is to place the input ops on the                     
host CPU, with its access to the operating system stack,                   
including file systems, and feed the data to the accelerator.                   
APIs such as tf.data enable this decomposition [25, 26]. 

4.2 Batch Sizes and Learning Rates 
Large batch sizes help to fully exploit the data parallelism                   
available in accelerators. However, increasing the batch size               
without additional tuning may increase the out-of-sample             
error [12]. Hyper-parameter tuning, and warm-up           
techniques where learning rate is slowly increased, may be                 
necessary to obtain quality comparable to lower batch sizes. 

4.3 Toolchain - Reproducibility, Performance, and Tests 

For a model developer, A/B diff tools integrated into the                   
workflow are essential to compare metrics around model               
convergence (e.g. accuracy, recall, per batch weight             
distribution at every step of training) and performance (e.g.                 
latency, throughput, resource utilization). The diff tools can               
quantify model prediction equivalence between CPU and             
accelerator based models. Comparing two model versions             
both using accelerators is important to track benefits and                 
trade offs between cost, speed, and utilization. Finally,               
continuous quality tests and performance benchmarks across             
models must be used to gate models rolling into production. 

4.4  Other Considerations 

Contemporary large models deployed on multiple           
computers use asynchronous stochastic gradient descent           
(SGD) [12] to remain efficient on loosely coupled clusters                 
found in data centers. With dedicated high performance               
interconnects, an accelerator-based system can use           
Synchronous SGD, which can be beneficial in terms of                 
accuracy [10]. 

Other performance optimizations include support for           
batching, switching between model versions, model           
multi-tenancy to drive higher throughput for inference, and               

optimizing lookups of variables in the model graph from                 
host CPUs to reduce per query cost.  

5. Production Deployment 
5.1 System Design for Balanced I/O and Compute 
It is important to pay attention to bottlenecks that can creep                     
into various stages of the training pipeline. For example, we                   
need to ensure that the CPU host(s) connected to the ML                     
accelerators can perform data processing, shuffling,           
transformation, etc. at a high throughput. If any of these                   
stages is slow, the entire pipeline will be slow. 

5.2. Diverse Hardware Pool Utilization 

Traditionally, large-scale data processing used algorithms           
such as MapReduce [8] on large clusters of fungible,                 
commodity hardware sharing the x86 architecture [13]. 

Accelerators add significant heterogeneity into data center             
environments. Ensuring efficient use of diverse hardware             
pools to achieve maximum value for an organization is an                   
open problem. Implementing a dominant resource fairness             
policy [14] works well in practice for some training                 
workloads. However, complications arise while considering           
data and traffic proximity, inference latency, and query cost. 

5.3. Resource Planning 

Timelines for designing new hardware and deploying it to                 
data centers often stretch over several years. Pricing and                 
accessibility to resources can significantly determine scale             
of adoption and benefit to the organization. Forecasting the                 
future ML compute needs is uncertain, and driven by                 
research progress, e.g. new computationally intensive           
models such as BERT [19]. When trends are accurately                 
reflected in ASIC design and data center planning, it can                   
drive enormous performance improvements [13]. 

6. Future Work 
Several trends point to areas that will be increasingly                 
important for accelerators over the next few years. 

Multitask learning [21, 22], where a single model performs                 
multiple tasks (e.g. CTR prediction and user like prediction                 
in a recommender system), is growing in popularity. Today,                 
the number of tasks is limited and generally related. Models                   
with orders of magnitude more tasks of greater diversity are                   
an active area of research [23]. Such models will consume                   
more data of wider variety, posing I/O challenges. It may be                     
necessary to distill [24] such giant models and leverage ML                   
accelerators to make production serving possible. 
 
Transfer learning is a related approach where pre-trained               
models are fine tuned to create many different models for                   
different tasks, often with significant quality wins. If this                 
grows in prevalence, it will dramatically increase the need                 
for ML software stacks to consistently run inference on                 
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model architectures across diverse HW platforms, regardless             
of the HW platform used to train the models. 
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Abstract
The application of deep learning models presents significant
improvement to many Microsoft services and products. In
this paper, we introduce our experience and methodology of
developing and applying the DeepCPU library for serving DL
models in production at large scale with remarkable latency
improvement and infrastructure cost reduction. We describe
two ways to use the library, through customized optimization
or framework integration, targeting different scenarios.
1 Introduction
Deep learning (DL) sits at the core of many essential products
and services at Microsoft, such as web question and answer-
ing, web relevance ranking, advertising, language modeling,
text translation, and conversational bot [2, 3, 4, 5, 7, 8]. Many
of these services are deployed in large scale, supporting mil-
lions of users and billions of requests.

Such large scale DL inference faces threefold challenges to
deploy a trained DL model at production. First, users expect to
receive an inference result with low latency. The serving sys-
tem needs to provide adequate quality of service, expressed
as latency SLA (service level agreement), which is often a
few milliseconds [11]. In practice, DL models are computa-
tionally expensive, incurring long latency, e.g., ranging from
hundreds of milliseconds to seconds, that blocks their deploy-
ment [12, 23]. Second, when the volume of requests exceeds
the capacity of a single server, the DL service must scale
horizontally. An efficient serving system reduces the required
replications and save thousands of machines and millions of
cost. Finally, these constraints come together with restriction
on the deployment infrastructure. In particular, it is strongly
preferable to use existing commodity hardware, one main
reason being the easier maintenance of the infrastructure and
the agility of deployment.

To tackle these challenges, we foremost rely on a large
amount of CPUs for serving DL models and adopt a co-
development methodology called SLT (scenario, library, and
technique) to make the best use of the CPU resource for busi-
ness critical scenarios while accelerating the iteration cycle
of deployment and optimization. In this paper, we present
the SLT methodology and how it leads to DeepCPU, a DL
inference library, which is deployed in production for many
services on thousands of servers, and is tailored for DL sce-
narios with large number of users. We show two ways of
applying DeepCPU, either through customized end-to-end op-
timized DL serving solution or low-level interface integration
into frameworks such as TensorFlow [9] and ONNX [6]. Our

Scenarios Services Major components

Deep feature Encoder model GRU, Conv
Embedding model Stacked Bidir RNN, MLP, Attention

Web Q&A
MRC model A Bidir RNN, Attention
MRC model B Bidir LSTM, Stacked LSTM, Conv,

MLP, Attention
MRC model C Bidir GRU, Conv, MLP, Attention

Similarity Ranking model A RNN encoder/decoder, Attention
ranking Ranking model B GRU, Conv, MaxPool, Scoring
Query Query rewriting RNN encoder/decoder

processing Query tagging Stacked RNN

Table 1: DL scenarios and corresponding models.

evaluation on production models demonstrates the ability of
the DeepCPU library that addresses latency SLA violation
problem on a single server and also improves the throughput
so that the DL service scales horizontally.

2 Scenario, Library, and Technique (SLT)
This section highlights the SLT methodology. Section 2.1
describes DL inference scenarios that are of interest in our
production. Section 2.2 introduces what DeepCPU library is.
Section 2.3 shows our performance optimization techniques.

2.1 Major Deep Learning Scenarios
We start the SLT methodology with a bird’s-eye view of some
major Microsoft scenarios that leverage DL models from the
standpoint of latency SLA and resource consumption. Table 1
shows some of the scenarios, services, and model components.
Deep feature uses a DL model to encode entities (e.g., text)
into deep descriptors (i.e., vectors). The generated vectors are
used for semantic understanding of downstream models.
Web Q&A addresses web question-and-answering scenario.
It uses a machine reading comprehension model to generate a
high quality answer based on the question in a query.
Similarity ranking reranks the top-N text passages for each
query based on their semantic similarity to the query.
Query rewriting performs sequence-to-sequence rewriting
to map a query to some other query (well corrected, altered,
paraphrased) at runtime and uses this query to surface more
and better documents for the query.
Query tagging identifies entities in the query to enable more
precise matching with documents.

These are just a few examples. There are many more ser-
vices that leverage DL models in various forms. These ser-
vices often face challenges from latency, cost, or both. For
example, for MRC models, latency is often a big challenge.
MRC model A has serving latency of 200ms using Tensor-
Flow [9] but requires to meet 10ms latency SLA for shipping.
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DL services Original Latency Latency Target Optimized Latency Latency Reduction Throughput Improvement
Encoder model ∼29ms 10ms 5.4ms 5X 5X
MRC model A ∼100ms 10ms 9ms >10X >10X
MRC model B ∼107ms 10ms 4.1ms >20X >50X
MRC model C ∼45ms for batch size 1 10ms <8.5ms for batch size 20 11X >100X

Ranking model A 10∼12ms for batch size 1 6ms <6ms for batch size 33 >6X >30X
Ranking model B 10ms for batch size 1 6ms <5ms for batch size 150 >10X >100X
Query rewriting 51ms 5ms 4ms >10X >3X
Query tagging 9∼16ms 3ms 0.95ms 10X >10X
NMT model 29ms 10ms 5.8ms 5X 5X

Table 2: Optimization results with and without DeepCPU on production models.
For similarity ranking models, cost is often a big concern.
Ranking model A takes 10ms to serve a query with batch size
1 on a single server, whereas the latency SLA is 5ms for batch
size 150. This is not scalable because even a fan-out solution
requires thousands of machines to serve the large volume of
request traffic.
2.2 Highly Reusable Library
Table 1 also shows the DL components each model has. Those
components are divided into three categories.
RNN family includes GRU/LSTM cell and sequence, unidi-
rectional/bidirectional RNN, and stacked RNNs [10, 13].
Fundamental building blocks and common DL layers in-
cludes matrix-multiply kernels, high-way network [20], max
pooling layer [16], Conv layer [15], MLP layer [18], etc.
DL layers for machine reading comprehension and con-
versation models includes variety of attention layers [14,
19], seq2seq decoding with beam search [21], etc.

We build DeepCPU, a library of these components as build-
ing blocks with customized optimization. We find that these
components are highly reusable and allow faster implementa-
tion and decreased development cost to support new scenarios.
As an example, it takes < 200 lines of C++ code for running
a Seq2Seq model end-to-end with the library.
2.3 Performance Optimization Techniques
Not only we support the library, but we also offer optimization
techniques to optimize different components. We perform
three large categories of optimizations:
Intra-op optimizations. We provide i) more efficient ma-
trix computation by combining Intel MKL [1] with cus-
tomized cache-aware kernel computation to handle, large ma-
trix computation, as well as small or tall-and-skinny matrix-
multiplication. ii) optimized common activation functions
using continued fraction expansion [22], efficient paralleliza-
tion, and SIMD vectorization.
Inter-op optimizations. We perform operation fusion which
fuses point-wise operation to avoid multiple scans of data and
reduced data movement overhead.
Parallelism, scheduling, and affinity. The parallelism, load
balancing, and scheduling order are also critical to the perfor-
mance of DL optimization on multicore CPU. Existing frame-
works such as TensorFlow are designed to handle generic
DAG, which can lead to suboptimal parallelism decisions and
cannot control per-op parallelism, while we consider the char-
acteristics of the workload and perform global optimization

by looking at model structure. We also pin application threads
to physical cores and make DL computation NUMA-aware
and socket-aware to avoid expensive context switching and
cross-socket communication overhead.
3 How is DeepCPU Utilized?
DeepCPU is currently released as C++ SDK to first party
users. There are two approaches to use the library.

Customized optimization. This approach requires rewrit-
ing the model runtime using the DeepCPU library. After then
we tune the performance such as thread settings, targeting at
obtaining the ultimately optimized performance, because at
large scale, every possible bit of hardware optimization space
leads to major improvements. This approach requires interac-
tion with the model developer and requires some development
efforts if the model changes drastically. To achieve improved
performance with less development work, we also integrate
DeepCPU into existing DL frameworks.

Framework integration. We replace frequently used and
costly operators, such as LSTM, GRU, Conv2D, Attention,
with DeepCPU ’s high-performance implementations in Ten-
sorFlow runtime. This approach targets framework users di-
rectly, and it allows users to use existing frameworks to de-
velop models while taking only a minimal amount of work to
switch the operators to take the advantage of DeepCPU. Mean-
while, we are closely working with ONNX team to power
ONNX runtime [6] with DeepCPU technology, which allows
frameworks that support ONNX IR, such as PyTorch [17], to
also benefit from DeepCPU.

For new scenarios and models, we often encourage to try
the framework integration approach first, which allows fast de-
ployment if that already gives satisfying performance results
(e.g., meeting latency SLA). Otherwise, we apply customized
optimization to further boost the performance.
4 Evaluation results
Table 2 shows a list of models we have optimized with Deep-
CPU, with both latency and throughput improvement in com-
parison with TensorFlow on a server with two 2.20 GHz
Intel Xeon E5-2650 V4 processors, each of which has 12-
core with 128GB RAM. Overall, we see 5–20 times latency
improvement, which helps to change the model status from
non–shippable to shippable. Meanwhile, we have achieved
up to 100 times throughput improvement and cost reduction.
These models have been running in production for the last
two years on thousands of servers.
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Abstract
Recent advances in machine learning and the proliferation
of edge computing have enabled manufacturing industry to
integrate machine learning into its operation to boost pro-
ductivity. In addition to building high performing machine
learning models, stakeholders and infrastructures within the
industry should be taken into an account in building an oper-
ational lifecycle. In this paper, a practical machine learning
operation scheme to build the vision inspection process is
proposed, which is mainly motivated from field experiences
in applying the system in large scale corporate manufacturing
plants. We evaluate our scheme in four defect inspection lines
in production. The results show that deep neural network mod-
els outperform existing algorithms and the scheme is easily
extensible to other manufacturing processes.

1 Introduction

Machine learning(ML) have begun to impact various indus-
trial fields and manufacturing is no exception. Manufacturers,
in preparation for the smart manufacturing era to come, aim
to improve their competitiveness by adapting new technolo-
gies that excel product quality, cut down production cost and
reduce lead time in production [7]. Manufacturing industry is
an attractive field for ML Operations(MLOps) for number of
reasons. First, a huge volume of data is generated, forming
the foundation for source of learning. Secondly, trivial and
repeated tasks in production process opens up opportunities
for ML models. For instance, consider a defect inspection task
in which product surfaces are visually checked for scratches
by a human inspector. While the task itself is trivial, thus sus-
ceptible to human errors, it is difficult to express a good set
of rules for scratch detection. Given the recent advancement
in deep neural network(DNN), MLOps have become natural
selection for such tasks.

MLOps in production is more than just training and run-
ning ML models. Despite large volume of raw data collected,
it needs to be cleaned and labeled to use them as a ML train-
ing dataset. Test data are generated from multiple devices on

Figure 1: Overall system architecture of the proposed scheme
with multiple stakeholders. A circular lifecycle is formed
among the components.

network edge and thus running inference on a single server
is infeasible due to high latency caused by data communica-
tion and inference. Also, a use of off-premise services is not
proper as every manufacturing data is confidential and should
be stored securely on premise. Last but not least, there are
multiple stakeholders with different roles in production pro-
cess and thus, require different tools at each stage in MLOp
lifecycle.

In this paper, we propose a MLOp lifecycle scheme for
vision-based inspection systems in manufacturing. Figure 1
describes overall architecture and components required for in-
factory operations, ranging from data collection, ML model
development and deployment on multiple edge devices. Based
on the scheme, we developed a MLOp lifecycle solution
called CruX. We have successfully set up CruX in Sam-
sung Electronics’ smartphone and home appliance plants for
scratch, dent and missing part detection. Four DNN models
of three different tasks(one-class adversarial net, multi-class
classification, and object detection) are trained and deployed
to a total of 158 edge devices for inspection. Compared to
the existing rule-based algorithms, models achieved at least
32.8% improvement in defect detection accuracy and all in-
ferences at edge took less than 2 seconds per image on CPU.
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2 Related Work

With the popularity of ML, a number of model versioning
and serving solutions are available. Data Version Control [1],
ModelDB [10] and ModelChimp [2] provide ML model and
data pipeline versioning. These solutions, however, require
model developers to control versions by either extending ex-
isting ML code or setting up extra infrastructure.TensorFlow
Serving [8] is a solution to serve TensorFlow model, but it
requires models to be accessible from its own file system,
leaving the challenge of deploying the model across physi-
cally separated edge devices. Complex factors of real field
requirements such as different stakeholders in the lifecycle,
deployment needs, management and controllability of ML
models on multiple edge devices, call for a new operational
scheme in the manufacturing industry.

3 Proposed Scheme

We propose a MLOp lifecycle scheme for vision inspection
systems, in which four key stakeholders and five components
are identified and defined as shown in Figure. 1.

Raw image data are captured by camera which is usually
located at the conveyor belt. While some of the images can be
annotated by a non ML-domain expert (e.g. identify screw(s)
from an image), some are not (e.g. classify scratches by type).
Due to this reason, Data Labeler is designed and used by in-
spectors on site. An intuitive user experience is important as
we do not want inspectors spending more time annotating
than inspecting the product. Model developers use Model
Trainer to train and test DNN models from annotated data.
Model Trainer provides a function to train DNN models with
different set of hyper-parameters to identify the best hyper-
parameter set for the model. The trained model is then up-
loaded to Edge manager for configuration before deployment.
We found this step to be important in production because no
edge (or the inspected product) is the same. Model configu-
rations, such as threshold, is adjusted per edge and deployed
to edges under the supervision of operation manager. As the
inspection continues, statistics are collected and visualized to
the product manager.

All the components are modular but interconnected. This is
important because it enables the process of training, deploying
and running model possible through a single graphical user-
interface without having to make any code-level changes.

(a) Edge manager (b) Inference result

Figure 2: (a) Manager monitors inspection status and de-
ploys models to edges. (b) Inference result where detected
objects(bolt) are located in white bounding boxes.

4 Evaluation

We implemented the proposed scheme called CruX , and ap-
plied in two different plants. Back-end components are devel-
oped in Python, Java and Go. Data are exchanged among
the components using REST APIs and message queues.
The proposed scheme supports three different DNN models,
namely multi-class classification(ResNet50 [6]), one-class
generative adversarial network(GAN [5]) and object detec-
tion(YOLO [9]). All are implemented with TensorFlow and
fine-tuned from ImageNet [4] pretrained weights. Figure 2
shows a web-based GUI that is provided to end-users. Edge
manager and Inspection edge run Windows 7 64bit with 8GB
RAM, 2.60GHz CPU and no GPUs.

Table 1 shows the results on production lines. In prior to
this, rule-based algorithms [3] are used to detect scratches,
dents and missing parts. We noticed that the rule-based algo-
rithms are very sensitive to small changes in data (e.g. image
orientation and brightness) and difficult to update. On the
other hand, DNN models showed higher defect detection ac-
curacy, outperforming previous method by 32.8% 92.8%. All
four production lines required inspection time to not exceed
3 seconds.

5 Conclusion

In this paper, we propose a MLOp scheme for vision inspec-
tion in manufacturing. We identify four key stakeholders and
five components across in realizing MLOp lifecycle. We suc-
cessfully applied it on four production fields of smartphone
and home appliance plants. ML models trained and deployed
by the scheme outperform existing inspection systems, and
we aim to update the operation automated as the future work.

Table 1: Defect inspection results on four production lines (*: Defection detection accuracy).

Inspection area Edges deployed DNN model (Backbone) DDA* improvement Avg. inference time
Scratch (smartphone) 88 Multi-class (ResNet50) 32.8% 760 ms
Dent (smartphone) 52 One-class (GAN) 40.0% 998 ms
Missing part (refrigerator) 9 Object detection (YOLO) 92.8% 1416 ms
Missing part (washing machine) 9 Object detection (YOLO) 85.6% 1632 ms
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Abstract
We introduce a platform used to productionize machine

learning models for detecting cyberthreats. To keep up with a
diverse and ever evolving threat landscape, it is of paramount
importance to seamlessly iterate over the two pillars of ma-
chine learning: data and models. To satisfy this requirement,
the introduced platform is modular, extensible, and automates
the continuous improvement of the detection models. The plat-
form counts more than 1000 successful model deployments
at over 30 production environments.

1 Introduction

The cybersecurity community is embracing machine learning
(ML) to transition from a reactive to a predictive strategy for
threat detection. In fact, most cyberthreats exhibit distinctive
activity patterns, allowing practitioners to leverage ML to
accurately identify attacks. However, while there is a plethora
of research on detecting attacks using ML [1], the findings
are rarely deployed in real-world solutions.

The limited adoption of ML in cybersecurity is explained
by the following challenges: a) the diversity of the threat
landscape [2] requires the creation and deployment of a large
number of models; b) threats keep evolving to bypass de-
fenses, requiring detection models to be frequently updated.

To alleviate model management effort and to simultane-
ously tackle the moving target problem, we present a scal-
able, extensible, and automated machine learning platform
designed to keep the detection models deployed in production
environments up to date. Our platform is designed to satisfy
the following requirements:

1. To maintain and to enable the extension of the datasets
required to retrain detection models. Each dataset (one
per model) contains examples of a particular attack, as
well as a representative sample of benign activity. In this
paper, we refer to these datasets as “golden datasets”.

2. To support modifications to the modeling strategy
(namely the addition of new features), and to update

the deployment logic accordingly.

3. To seamlessly deploy updated models in production.

4. To do the aforementioned points in minimal time.

2 Overview of our machine learning platform

Figure 1 shows a schematic representation of our platform. In
the following, we briefly describe the different modules.

Golden dataset repository The golden datasets are stored
in a repository accessed by threat researchers, data scientists,
and ML engineers. The repository is stored in Amazon S3.
Configurable data pipelines To simplify and speed up both
data ingestion and changes in the feature extraction logic, we
have created a configurable and extensible log parsing and
feature computation engine.

The parsing engine relies on Protocol buffers (protobuf)
messages expressed in plain text to convert raw logs into
a structured format. The Log Parsing Engine in Figure 1
shows a snippet of the protobuf message. The logic needed
to extract the fields that make up the structured format is
declared in fields blocks, each composed of the following
parameters:
- name: the name of the extracted field
- display_name: the display name of the extracted field
- data_type: the type of extracted field
- index: the relative position of the raw data field(s) needed
to extract the new field
- definition: the definition of the transformation required
to extract the new field, declared as a SQL expression.

With this approach, edits to the extraction and transforma-
tion logic correspond to configuration changes rather than
changes in the platform codebase. To achieve scalability, we
rely on Spark jobs to perform the parsing and extraction logic.

In a similar way, features are also expressed as a protobuf
messages (as shown in the Feature Compute Engine module
in Figure 1). The extraction of the features is performed by
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Figure 1: The presented machine learning platform implements a continuous improvement process based on end user feedback to
maintain a wide range of cyberattack detection models deployed in production environments up to date.

a Spark job that reads the messages and applies the trans-
formations indicated in the definition fields. Note that the
definitions are again SQL expressions, and that changes to fea-
ture extraction logic (including the addition of new features)
entail only the modification of the feature messages.
Model training and validation In a nutshell, this module
retrieves the newly extracted features and trains machine
learning models using the standard machine learning libraries
scikit-learn and TensorFlow1.
Model repository After training, the models are stored at a
central location, making it a one stop shop for all the models.
Model distribution and deployment All the serviced envi-
ronments share the same parsing and feature computation
logic, and periodically pull the models from the repository.
This way, the updated models are seamlessly deployed across
all the production systems.

3 Continuous improvement process

The threat alerts generated by the deployed models are ana-
lyzed by the end users (security analysts or threat researchers
working at the serviced environments). As shown in Figure 1,
the end users provide feedback, triggering a new model im-
provement iteration. In the following, we describe the process
that takes place when the feedback takes the form of a) new
attack or benign examples, b) ideas for new features.
Extending the golden datasets Our threat research team and
end users contribute new examples of malicious or benign
activities to the existing golden datasets on an ongoing basis.
Any time new raw data is contributed, the platform triggers
all the steps shown, from left to right, in Figure 1: parsing
of the new examples and extension of the appropriate golden
dataset, feature extraction, and model retraining and backup

1We consider that the details of the modeling strategy are out of the scope
of this paper. The interested reader is referred to [3]

in the model repository.
Modifying the modeling strategy We limit the modifica-
tions of the modeling to either the addition of new features
or the modification of an existing one 2. As explained in Sec-
tion 2, in either case the required changes are limited to the
edit of configuration files. Any time edits are performed to the
feature definition files, the platform triggers the re-extraction
of the features for the affected golden datasets, followed by the
re-training and distribution of the impacted detection models.

4 Current state of the system

The presented platform currently supports the ingestion of
31 data sources, maintains 27 golden datasets, and counts
70 models readily available for distribution and deployment.
As of the day of this writing, the platform has successfully
performed more than 1000 model deployments, where each
model is updated weekly.

References

[1] Heju Jiang, Jasvir Nagra, and Parvez Ahammad. Sok:
Applying machine learning in security-a survey. arXiv
preprint arXiv:1611.03186, 2016.

[2] MITRE. Adversarial Tactics, Techniques & Common
Knowledge. https://attack.mitre.org, 2019.

[3] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias,
and K. Li. AI2: Training a Big Data Machine to Defend.
In 2016 IEEE 2nd International Conference on Big Data
Security on Cloud, pages 49–54, April 2016.

2Motivation: end users are domain experts that are not well-versed in the
advantages and drawbacks of the different ML models and training strategies.

14    2019 USENIX Conference on Operational Machine Learning USENIX Association

https://attack.mitre.org


Deep Learning Inference Service at Microsoft

Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan Li, Yuxiong He,
Elton Zheng, Adi Oltean, Maya Mosyak, Chris Barnes, Thomas Liu, Junhua Wang

Microsoft

Abstract

This paper introduces the Deep Learning Inference Service, an
online production service at Microsoft for ultra-low-latency
deep neural network model inference. We present the sys-
tem architecture and deep dive into core concepts such as
intelligent model placement, heterogeneous resource man-
agement, resource isolation, and efficient routing. We also
present production scale and performance numbers.

1 Introduction

Over the past couple of years, many services across Microsoft
have adopted deep neural networks (DNN) to deliver novel
capabilities. For example, the Bing search engine uses DNNs
to improve search relevance by encoding user queries and
web documents into semantic vectors, where the distance be-
tween vectors represents the similarity between query and
document [6, 7, 9]. However, due to the computational com-
plexity of DNNs, application-embedded inference and off-the-
shelf micro-service offerings don’t meet the necessary scale,
performance, and efficiency requirements for many of Mi-
crosoft’s critical production services. These services receive
hundreds of thousands calls per second and are often con-
strained to single-digit millisecond latency budgets. DNNs
authored across a spectrum of operating systems and frame-
works must be provisioned efficiently on heterogeneous data-
center hardware, such as CPU, GPU, and FPGA. With rapid
innovations in DNN architectures, the system must be extensi-
ble and agile by supporting fast model validation, deployment,
and proper version control. Deep Learning Inference Service
(DLIS) is a dedicated platform to address these requirements,
and now serves as the inference backend for many teams
across Microsoft such as web search, advertising, and Office
intelligence. At present, DLIS is handling three million in-
ference calls per second, served from tens of thousands of
model instances, and deployed in more than 20 data centers
world-wide.

Figure 1: DLIS Architecture

2 System Overview

Figure 1 shows an overview of DLIS and its key components.
Model Master (MM) is a singleton orchestrator responsible
for intelligently provisioning model containers onto one or
more servers by factoring in model requirements and hard-
ware resources. Model Servers (MS) are the server unit and
can number in the thousands. They have two roles: routing
and model execution. MS receives an incoming request from
a client and efficiently routes it to another MS hosting an
instance of the requested model. The MS receiving the re-
quest from the routing server then executes the request with
low-latency. These three core functionalities of provisioning,
routing, and model execution will be discussed in detail in
sections 3, 4, and 5. In addition to the features discussed in
this paper, MS is flexible. It runs on both Windows and Linux
and supports multiple orchestrators outside of MM. These
include YARN and Kubernetes [1, 3].

3 Intelligent Model Placement

The performance of different DNN models varies across hard-
ware. For example, convolutional neural network models are
most performant on GPU, while recurrent neural network
models often achieve lower latency on FPGA or CPU [5,8,10].
DLIS needs to understand different models’ requirements and
place them efficiently onto matching hardware. This neces-
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sitates an intelligent model placement system in the Model
Master.

Model Placement. MM has a global view of all servers
and their respective hardware and resource availability, which
includes CPU instruction sets, number of CPU cores, amount
of memory, and number of GPUs, among others. MM is aware
of a model’s estimated resource usage through a validation test
run prior to model deployment. To host an instance of a model,
servers must satisfy the following constraints: they must meet
the hardware requirements of the model, they must have avail-
able resources to host at least one instance, and they must be
spread across a certain number of fault domains. Placement is
multi-tenant and dynamic. Instances can be hosted with other
instances of the same model or a different model. Further,
MM reads resource usage at runtime and can decide to move
instances to different servers at any time.

Diverse Hardware Management. Specialized hardware
such as GPU and FPGA requires proper configuration and
management. To support this, DLIS uses a special model
called a machine configuration model (MCM). MCMs config-
ure servers at regular intervals. For example, an MCM may
run every ten minutes, installing a GPU driver, resetting GPU
clock speed, and verifying overall GPU health.

4 Low-Latency Model Execution

DNNs are computationally complex. Different levels of opti-
mization are required to achieve low-latency serving. DLIS
supports both system- and model-level optimizations [10].
This section describes the system optimizations, while model
optimizations are outside the scope of this paper.

Resource Isolation and Data Locality. For low-latency
serving in a multi-tenant environment, data access is localized
to take advantage of different cache layers, while resource
isolation is used to ensure that model instances do not interfere
with each other. To achieve this, MS isolates model instances
in containers. Linux models are run in Docker containers,
while Windows models are run in custom containers under
job objects [2]. DLIS enforces resource isolation in the form
of processor affinity, NUMA affinity (when hardware supports
it), and memory restrictions. Processor affinity allows model-
critical data to stay in the nearest processor caches. NUMA
affinity guarantees that a model doesn’t have to cross memory
banks. Memory restrictions ensure that the model never needs
to access disk. Together, they ensures that model instances
localize data access with minimal interference from other
instances.

Server-to-Model Communication. Container-based iso-
lation leads to a need for efficient communication between
server and model. To support this, Linux models are wrapped
in custom infrastructure to enable efficient communication
over UDP. Windows models are wrapped in custom infrastruc-
ture to enable efficient communication over a shared-memory

Figure 2: Latency Before and After Enabling Cross-Server
Cancellation

queue. The shared-memory queue provides inter-process com-
munication latencies of less than a few hundred microseconds.

5 Efficient Routing

Traffic patterns to model inference at Microsoft come with
unique challenges. First, there is frequent burst traffic - many
requests in the span of a few milliseconds. In extreme sce-
narios, each request may be a batch with hundreds of sub-
requests. Such burst traffic can lead to many requests being
enqueued on the same server. Next, tail model latency is often
very near performance SLA. These challenges necessitate MS
to route requests with minimal overhead.

Backup Requests and Cross-Server Cancellation. With
frequent burst traffic, it is hard to accurately predict each
server’s load. To compensate, MS router supports backup re-
quests which serves as a second chance if the first request has
a risk of missing SLA. Backup requests can be either statically
configured (for example, sending a backup request after 5ms)
or dynamically configured (for example, sending a backup
request at the 95th-percentile model latency). For many low-
latency scenarios, backup requests alone are not enough. For
example, say an SLA is 15ms, current 95th-percentile model
latency is 10ms, and average model latency is 8ms. If backup
requests are configured to send at 10ms, the request will al-
most certainly timeout. However, if the backup request is
sent earlier (say at 2ms), the system’s load will effectively be
doubled. To solve this, MS router supports backup requests
with cross-server cancellation [4]. In this mode, MS will send
backup requests earlier. When a server dequeues the request,
it will notify the other server to abandon that request. For our
scenarios, backup requests at 2ms with cross-server cancel-
lation provides the best latency improvement with the least
amount of extra computation. With these optimizations, MS
routing overhead is less than 1.5ms. Figure 2 shows the nearly
2x latency drop after cross-server cancellation is enabled for
a model.

6 Conclusion

We have presented DLIS. It is serving millions of inference
calls per second across tens of thousands of model instances.
These models run on varying hardware with low overhead
and are supporting many production Microsoft services.
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1 Introduction
Traditionally, training machine learning models requires all
data to be in the same place accessible to a trusted third
party. However, privacy concerns and legislations such as
General Data Protection Regulation (GDPR) [16] and Health
Insurance Portability and Accountability Act (HIPAA) [14]
inhibit transmitting data to a central place resulting in the
impossibility of training machine learning models using this
traditional technique. Despite these limitations, in some cases
data owners would benefit from collaboratively training a
model. To address this requirement, very recently Federated
Learning (FL) has emerged as an alternative way to do col-
laborative model train models without sharing the training
data [12] [17] [18].

In FL, each data owner, party, maintains its own data locally
and engage in a collaborative learning procedure where only
model updates are shared with an aggregator. Note that the
aggregator does not have access to the data of any of the
parties. Through FL, parties with relatively small datasets can
learn more accurate models than they would if they had only
used their own data. Examples of such scenario include a
large number of individual parties providing personal data to
smart phone apps and a relatively small number of competing
companies within the same domain training a single model. A
concrete scenario where FL has been used to collaboratively
train models include Google’s key board predictive model [6].

In these scenarios, parties may be very diverse. This di-
versity largely differentiates FL from traditional distributed
learning systems such as [8,11] where a datacenter is available
for careful management. Most of the times, the data parties
involved in FL training have diversified training sets that
may vary in size, computing power, and network bandwidth.
These differences impact the FL process as we empirically
demonstrate in our experimental section.

In the following, we first overview existing FL approaches.
We show that stragglers are not considered by existing tech-
niques. Then, through a preliminary study, we demonstrate
the potential impact of stragglers on FL process and finally
conclude with a discussion of the research problems.
2 Related Work
Existing FL approaches do not account for the resource and
dataset heterogeneities [7,10,12], nor are they straggler-aware.

In particular, there are two main approaches in training a FL
model: synchronous and asynchronous FL.

In synchronous FL, a fixed number of data parties are
queried in each learning epoch to ensure performance and data
privacy. Recent synchronous FL algorithms focus on reducing
the total training time without considering the straggler parties.
For example, [12] proposes to reduce network communication
costs by performing multiple SGD (stochastic gradient de-
scent) updates locally and batching data parties. [7] reduces
communication bandwidth consumption by structured and
sketched updates. Moreover, [9] exploits randomized tech-
nique to reduce communication rounds. FedCS [13] proposes
to solve data party selection issue via a deadline-based ap-
proach that filters out slowly-responding parties. However,
FedCS does not consider how this approach effects the con-
tributing factors of straggler parties in model training. Simi-
larly, [19] proposes a FL algorithm for the use case of running
FL on resource constrained devices. However, they do not aim
to handle straggler parties and treat all parties as resource con-
strained. In contrast, we focus on scenarios where resource
constrained devices are paired with high resource devices to
perform FL.

Most asynchronous FL algorithms work only for convex
loss and do not allow parties to drop-out. For instance, [15]
provides performance guarantee only for convex loss func-
tions with bounded delay assumption. Similarly, [3, 10] allow
uniform sampling of the data parties and provide performance
guarantee for convex loss functions. Furthermore, the com-
parison of synchronous and asynchronous methods of dis-
tributed gradient descent [4] suggest that FL should use the
synchronous approach, because it is more efficient than the
asynchronous approaches [12, 13].

3 Preliminary Study
We conduct an experimental study on AWS EC2 to quantify
the impact of resource and dataset heterogeneity on training
time of FL. We use a multi-party TensorFlow [2] setup to em-
ulate a FL environment following the configuration settings
used in [5], with δ as 0.001, ε as 8, and σ in the Gaussian
mechanism as 1.0. We deploy 20 data parties to emulate a
randomly picked 100-party FL environment, where each party
is running inside of a Docker container. The training process
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Test # of Clients # of CPUs CPUs per Client
1 4 16 4
2 4 8 2
3 4 4 1
4 3 1 1/3
5 5 1 1/5

Table 1: Distribution of data parties and CPUs.
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Figure 1: Per-epoch training time different CPU resources and
different dataset sizes.

terminates until the accumulated privacy cost exceeds the pri-
vacy bound (δ). All the containerized parties are running on a
single EC2 virtual machine (VM) instance of m4.10xlarge
with 40 vCPUs and 160 GiB memory.

We train a CNN (Convolutional Neural Network) model on
the MNIST dataset [1], which contains 60,000 28 grayscale
images of ten handwritten digits. To emulate a realistic imbal-
anced party data distribution, we use Non-IID in data selec-
tion, where each party randomly selects 5 digit categories and
then performs the image sampling from these 5 categories.
The CNN model consists of two CNN layers and one Max-
Pooling layer. We use a filter size of 3 for the CNN layers and
2 for the MaxPooling layer. We also add two drop-out layers
with a dropping out rate of 0.25 and 0.5, respectively. We
use Adadelta for the optimizer, and accuracy as the training
evaluation metric. We train the model with 8 learning epoches
and measure the training time for each epoch.

Resource Heterogeneity First, we explore the impact of
CPU resource heterogeneity on training time. Table 1 sum-
marizes the parties and CPU resource distributions of 5 test
groups. We reduce the total amount of CPU resources from
Test 1 to 5, and within each test, each party gets an equal
share of the available CPU resource. For example, in Test 1,
4 parties get allocated 16 CPU cores with 4 cores per party.
Within each test group, we conduct 4 tests each with varied
dataset size (sizing from 500 – 5000 data points). Figure 1
plot the average training time of one learning epoch across all
data parties for each test. As shown, as the amount of CPU
resources allocated to each party increases, the training time
gets longer. Reducing the per-party CPU from 4 cores to 2
cores does not impact the training time much, since the CPU

bottleneck is relieved with 4 CPU cores.
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Figure 2: Per-epoch training time with different dataset sizes.

Data Heterogeneity We next quantify the impact of data
heterogeneity on training time. We deploy 14 data parties,
each owning a different dataset size (varying from 100–5000
data points) but with the same amount of CPU resources (i.e.,
1 CPU core), to concurrently training the model. As shown
in Figure 2, the training time gets linearly increased as the
dataset size gets bigger. This demonstrates that data hetero-
geneity can significantly impact the FL system’s training time.

4 Research Problems and Opportunities
Our preliminary results imply that the straggler issues can
be severe under a complicated and heterogeneous FL envi-
ronment. We believe that our paper will lead to discussions
on the following aspects, which are the focus of our ongoing
research:
P1: How to classify parties based on their response time and
then use this information for our advantage without affecting
the FL process? A naive solution can lead to misrepresenta-
tion of data, because resource constraints may be correlated
with quantity/quality of data.
P2: How to incorporate data of each party in the FL process
without worrying about stragglers? This problem is challeng-
ing because we need to make sure we do not over include
or exclude certain data parties in FL process. We should be
able to provide performance guarantee for general machine
learning models and algorithms.
P3: How to identify drop-out parties and mitigate the effect
of drop-out data parties without affecting the ML process?
Existing approaches cannot identify drop-out parties dynam-
ically during the FL process, and no effective method has
been proposed to mitigate the information loss when drop-out
happens.
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Abstract
Operations is a key challenge in the domain of machine learn-
ing pipeline deployments involving monitoring and manage-
ment of real-time prediction quality. Typically, metrics like
accuracy, RMSE etc., are used to track the performance of
models in deployment. However, these metrics cannot be cal-
culated in production due to the absence of labels. We propose
using an ML algorithm, Model Performance Predictor (MPP),
to track the performance of the models in deployment. We
argue that an ensemble of such metrics can be used to create
a score representing the prediction quality in production. This
in turn facilitates formulation and customization of ML alerts,
that can be escalated by an operations team to the data science
team. Such a score automates monitoring and enables ML
deployments at scale.

1 Introduction

Using machine learning models to extract insights from mas-
sive datasets is a widespread industry goal [10]. The train-
ing phase typically generates several models and the model
with the best predictive performance is deployed to produc-
tion. However, a model’s performance in production depends
on both the particular data it receives and the datasets origi-
nally used to train the model. Models perform optimally on
different data distributions and vary in their capacities for
generalization. Production datasets often vary with external
factors [8, 14]. Whether rapid or gradual, these variations can
require models to be updated or rolled back to maintain good
predictive performance. Massive scale in production systems
prohibits manual intervention or monitoring of such events,
requiring in turn automated methods to detect, diagnose, and
improve the quality of predictive performance. However, typ-
ical production scenarios do not have real-time labels, so
popular metrics that compare predictions with labels cannot
be used to assess real-time health.

We present a technique to track the predictive performance
of the deployed models called: Model Performance Predictor

(MPP). It tracks the predictive performance metric of the
model. For (a) classification and (b) regression, we present an
example that targets (a) accuracy and (b) RMSE respectively
as the metric to track.

Detecting the applicability of an activity model to a differ-
ent domain using another model was proposed in [15] using
algorithm-specific information. Similar to our approach, an
error dataset is used to train another model, but it is limited
to a specific algorithm (random forest) and a unique domain.
With a similar goal of detecting the confidence in predictions
made by a machine learning algorithm, [3] proposed hedging
the predictions using conformal predictors. A hold out set (in
contrast to error set) is used to obtain a bound on the error
probability. On the other hand, we present an approach that
models the errors by using them as the labels. On similar
lines, [12] presented a metric that tracks the divergence in
data patterns between training and inference. We argue that
an ensemble of such approaches can be customized to serve
as a score, based on which alerts can be raised.

2 Model Performance Predictor

The goal of Model Performance Predictor (MPP) algorithm
is to predict the predictive performance of the deployed al-
gorithm on the test data. This algorithm is trained on the
error dataset which consists of prediction errors made by the
primary algorithm. In the training phase, the data is divided
into training and validation datasets (apart from the test set).
The training dataset is used to train the primary algorithm
that will be deployed in production. Predictions made by this
algorithm on the validation dataset generate the errors that
are used as labels to train the MPP algorithm.

Figure 1 describes the structure of this framework. Labels
of this error dataset are the errors in predictions made by the
primary algorithm, and features could be a range of things de-
pending on the application. They could simply be the primary
algorithm features themselves, predictions from the primary
algorithm, probability measures from the primary predictions
or some algorithm-specific metrics, such as the number of
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trees or variation in output from different trees in a Random
Forest. Both primary and MPP algorithms make predictions
on the test dataset. The primary algorithm focuses on the clas-
sification/regression task, while the MPP algorithm focuses
on predicting the performance of the primary algorithm. We
present MPP as a binary classification algorithm that predicts
whether a prediction is correct (1) or incorrect (0).

Figure 1: MPP algorithm flow

Figure 2: REC curve for the Video dataset . RF represents
Random Forest; GBR represents Gradient Boosted Regres-
sion Tree

For regression problems, in order to calculate error analo-
gously to how it is done in classification, we use a threshold
(ε) on the absolute error of primary predictions to be within
tolerable limits. For example, as long as error is within ±ε of
the true value, it is considered an acceptable prediction (1).
When the prediction of an algorithm is outside these bounds,
it’s considered an unacceptable (or incorrect) prediction (0).
However, this threshold value is application specific and there
is a need to detect a default value. To provide a default value,
we use the null model concept introduced by [5]. Every re-
gression problem has a null model and hence an REC curve
associated with it. We detect the knee of this curve using the
first convex dip in its double differential and choose the corre-
sponding ε to be the default threshold value. An REC plot for

Dataset Primary
Algorithm
Error

MPP pre-
dicted ac-
curacy

Absolute
differ-
ence

Samsung [2] 0.92 0.92 0.00
Yelp [1] 0.95 0.95 0.00
Census [13] 0.78 0.63 0.15
Forest [6] 0.65 0.64 0.01
Letter [17] 0.71 0.6 0.11

Table 1: MPP’s performance on classification datasets. Ideally,
the primary algorithm accuracy and MPP’s prediction should
match.

Dataset Primary
Algorithm
Error

MPP pre-
dicted ac-
curacy

Absolute
differ-
ence

Facebook [16] 0.56 0.56 0.00
Songs [4] 0.58 0.61 0.03
Blog [7] 0.73 0.71 0.02
Turbine [9] 0.51 0.85 0.34
Video [11] 0.59 0.72 0.13

Table 2: MPP’s performance on regression datasets with
default epsilon value. Ideally, the primary algorithm accu-
racy (generated by thresholding with default epsilon) and the
MPP’s prediction should match

the video dataset [11] is shown in Figure 2. We calculate this
default threshold for all the regression experiments reported
in Section 3.

3 Illustration

We illustrate the performance of this algorithm using 5 classi-
fication and regression datasets, listed in Table 1 and 2 respec-
tively. Features used by the MPP algorithm for the purpose
of these experiments are same as the features used by the
primary algorithm. Ideally, the score presented by MPP algo-
rithm should match the predictive performance of the primary
algorithm. It can be seen from the tables that the MPP algo-
rithm is able to track the performance of primary algorithm
in most of the datasets.

4 Conclusion

We presented an approach MPP to track the predictive per-
formance of a ML model in deployment. Such a score helps
operations teams to create automated ML alerts and data sci-
entists to get insights about the efficacy of deployed models in
production. This helps both, the operations teams to monitor
and manage the deployed ml model potentially preventing
catastrophic predictions and the data scientists to get the in-
formation they need for further analysis of the production
system.
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Ajith Abraham, Michał Woźniak, Manuel Graña, and
Sung-Bae Cho, editors, Hybrid Artificial Intelligent Sys-
tems, pages 558–568, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[9] Andrea Coraddu, Luca Oneto, Alessandro Ghio, Stefano
Savio, Davide Anguita, and Massimo Figari. Machine

learning approaches for improving condition?based
maintenance of naval propulsion plants. Journal of En-
gineering for the Maritime Environment, –(–):–, 2014.

[10] A. Daecher. Internet of things: From sensing to doing.
Wall Street Journal, 2016.

[11] T. Deneke, H. Haile, S. Lafond, and J. Lilius. Video
transcoding time prediction for proactive load balancing.
In Multimedia and Expo (ICME), 2014 IEEE Interna-
tional Conference on, pages 1–6, July 2014.

[12] Sindhu Ghanta, Sriram Subramanian, Lior Khermosh,
Swaminathan Sundararaman, Harshil Shah, Yakov Gold-
berg, Drew Roselli, and Nisha Talagala. Ml health: Fit-
ness tracking for production models. arXiv:1902.02808,
2019.

[13] Ronny Kohavi and Barry Becker. UCI machine learn-
ing repository. "https://archive.ics.uci.edu/
ml/datasets/Census+Income, 1996.

[14] Osama A. Mahdi, Eric Pardede, and Jinli Cao. Combina-
tion of information entropy and ensemble classification
for detecting concept drift in data stream. In Proceedings
of the Australasian Computer Science Week Multicon-
ference, ACSW ’18, pages 13:1–13:5, New York, NY,
USA, 2018. ACM.

[15] Robert P. Sheridan. Using random forest to model
the domain applicability of another random forest
model. Journal of Chemical Information and Modeling,
53(11):2837–2850, 2013.

[16] Kamaljot Singh. Facebook comment volume prediction.
International Journal of Simulation- Systems, Science
and Technology- IJSSST V16, January 2016.

[17] David J. Slate. UCI machine learning repository.
https://archive.ics.uci.edu/ml/datasets/

Letter+Recognition, 1991.

USENIX Association 2019 USENIX Conference on Operational Machine Learning    25

https://www.yelp.com/dataset _challenge/
https://www.yelp.com/dataset _challenge/
http://archive.ics.uci.edu/ml/datasets/ YearPredictionMSD
http://archive.ics.uci.edu/ml/datasets/ YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype
"https://archive.ics.uci.edu/ml/datasets/Census+Income
"https://archive.ics.uci.edu/ml/datasets/Census+Income
https://archive.ics.uci.edu/ml/datasets/ Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/ Letter+Recognition




Low-latency Job Scheduling with Preemption
for the Development of Deep Learning

Hidehito Yabuuchi ∗

The University of Tokyo
yabuuchi@os.ecc.u-tokyo.ac.jp

Daisuke Taniwaki Shingo Omura
Preferred Networks, Inc.

{dtaniwaki, omura}@preferred.jp

Abstract
Efficient job scheduling of trial-and-error (TE) jobs is a chal-
lenging problem in deep learning projects. Unfortunately,
existing job schedulers to date do not feature well-balanced
scheduling for the mixture of TE and best-effort (BE) jobs,
or they can handle the mixture in limited situations at most.
To fill in this niche, we present an algorithm that efficiently
schedules both TE and BE jobs by selectively preempting the
BE jobs that can be, when the time comes, resumed without
much delay. In our simulation study with synthetic workloads,
we were able to reduce the 95th percentile of the slowdown
rates for the TE jobs in the standard FIFO strategy by 96.6%
while compromising the median of the BE slowdown rates by
only 18.0% and the 95th percentile by only 23.9%.

1 Introduction

Efficient job scheduling of clusters is in high demand these
days, especially due to the recent explosive development of
deep learning (DL) algorithms. One important type of jobs in
the development of DL is trial-and-error (TE) jobs, in which
the users conduct small-scale experiments on a trial basis
for the debugging and the testing of prototype algorithms. In
fact, for the private cluster at the authors’ institution, TE jobs
account for approximately 30% of all jobs in six months. Start-
ing the TE jobs with low latency is critical because the users
often want to monitor the learning curves of the prototypes im-
mediately in order to save time for exploring numerous other
options. The other jobs can be executed in the best-effort (BE)
manner, but their delay should be minimized.

Unfortunately, most scheduling algorithms to date can han-
dle the mixture of TE and BE jobs in certain situations at
most. Big-C [2], a container-based preemptive job scheduler,
does not handle multiplexing of GPUs. Optimus [5] and Gan-
diva [6] are efficient job schedulers for DL jobs, but they are
only compatible with select DL frameworks. Reservation-
based schedulers such as Hawk [4] reserve a separate portion

∗Work done during an internship at Preferred Networks, Inc.

of a cluster to guarantee the immediate scheduling for short
jobs. Given highly diverse workload, however, it is often chal-
lenging to find the optimal reservation factor.

In this paper, we take the novel strategy of systematically
suspending a selected set of BE jobs in favor of the TE jobs.
Our proposed algorithm can handle any DL jobs that can
be suspended, and it can be used in a variety of situations.
We also take special care not to neglect the BE jobs. By
selectively preempting the BE jobs for which the scheduler
can re-schedule its execution in relatively short time, our
algorithm makes sure not to greatly delay the BE jobs.

2 Proposed Preemption Algorithm
2.1 System Model
We built our preemption algorithm on the FIFO principle,
which is widely used in production (e.g., Kubernetes [1]), so
that we can easily integrate our algorithm into the existing
frameworks. For simplicity, we assume that each job consists
of a single task. Unlike big-data processing, a typical job that
trains a DL model does not have multiple tasks.

When submitting a job, the users are asked to specify its
type, either TE or BE, along with the types and the amount of
the resource demanded for the job. When a TE job arrives at a
job queue, one or more BE jobs are suspended to make room
for the incoming TE job if the resource is insufficient. The
preempted BE jobs are placed back on the top of the queue to
observe the FIFO. Some jobs demand the time for suspension
processing (e.g., storing data) before being suspended. We
therefore allow a grace period (GP) of user-specified length
for each suspension prompt. In this study, we propose an
efficient rule for deciding which BE jobs shall be preempted.

2.2 Proposed Algorithm
Our algorithm is based on the following observations:

Minimizing the re-scheduling intervals. Since a pre-
empted BE job is placed back on the top of the queue, it
will be re-scheduled without much delay. However, if a BE
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job that demands large resource is preempted without any
consideration, other BE jobs waiting in the queue must wait
until the scheduler secures a large room for the resumption of
the preempted large BE job.

Minimizing the number of preemptions. On the other
hand, preempting too small a BE job can also increase the
overall slowdown of BE jobs. If a single preemption cannot
make enough room for an incoming TE job, the scheduler has
to preempt still another BE job. Many numbers of preemp-
tions increase the total time loss incurred by the re-scheduling.

Minimizing the preemption-incurred time loss. It is also
not preferable to preempt a BE job with too long a GP, because
the length of GP affects the time until the execution of the
incoming TE jobs.

Thus, we shall always preferentially preempt BE jobs with
(1) small resource demand, (2) an ability to offer enough re-
source for the incoming TE job, and (3) short GPs. Our Fitting
Grace Period Preemption (FitGpp) algorithm evaluates the
following score for each BE job j:

Score( j) :=
‖D j‖

max j∈J ‖D j‖
+ s×

GP j

max j∈J GP j
(1)

where D j is the vector of resource quantities demanded by the
job j 1, and J is the set of all running BE jobs. The parameter
s determines the importance of the GP relative to the resource
demand. At all time, FitGpp preempts the BE job that solves:

argmin
{

Score( j) | DTE ≤ D j +N ∧ PC j < P
}

(2)

where N is the amount of free resource of the node on which
j is running, PC j is the number of times that j has been
preempted, and P is the maximum number of times a given BE
job can be preempted, which guards the job against starvation.

Note that the FitGpp’s criterion of preemption does not
depend on the execution time of jobs, so that it is not affected
by the algorithm’s ability to estimate the execution time. This
is an important advantage of FitGpp because the estimation is
generally hard [3]. This is especially true for DL jobs, whose
execution time are sensitive to the hyper-parameters.

3 Evaluation

Here we briefly describe our simulation study. The more
comprehensive evaluation can be found in our report [7].

We evaluated our FitGpp algorithm in a simulated envi-
ronment, which consisted of 84 nodes, each having 32 CPUs,
256 GB RAM, and 8 GPUs. We compared FitGpp against
(non-preemptive) vanilla FIFO, Longest Remaining Time Pre-
emption (LRTP), and RAND. LRTP is the algorithm used
in Big-C [2], and it preferentially preempts the job with the
longest remaining execution time. RAND is an algorithm that

1Each coordinate entry of D j is the amount of a type of resource (e.g.,
CPU and RAM) relative to the capacity of the node.

preempts a randomly selected running BE job. We compared
the performance of the algorithms based on the slowdown
rate computed by the formula 1+ WaitingTime

ExecutionTime .
In order to synthesize a realistic set of workloads, we ana-

lyzed a trace of the cluster at the authors’ institution, which
consists of over 50,000 jobs. We approximated the mixture of
TE and BE jobs in the trace with a mixture of truncated nor-
mal distributions. For the lengths of GPs, we used a normal
distribution with the mean of 3 min . We set the maximum
preemption limit P to 1. We evaluated the algorithms on a set
of 219 jobs generated from the distributions with 30% of them
being TE. In the simulation, the jobs were submitted at such
a rate that the cluster load would be kept at 2.0 if they were
scheduled by FIFO. Additional details are in Appendix A.

The results are given in Fig. 1. FitGpp with s = 4.0 was
able to reduce the 95th percentile of the slowdown rates of
the TE jobs by 96.6% relative to that of FIFO. Our algorithm
increased the median of the slowdown rates of BE jobs by
only 18.0% and the 95th percentile by only 23.9%.
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Figure 1: Job slowdown rates with synthetic workloads.

The superiority of FitGpp in this experiment was most
likely due to its ability to shorten the intervals between pre-
emptions and re-scheduling. In fact, the median of the inter-
vals with FitGpp was almost half compared to that of LRTP
and RAND, and the 95th percentile was 20% shorter than that
of LRTP and 33% shorter than that of RAND. We shall also
not forget that FitGpp makes an effort to reduce the total num-
ber of preemptions. When P = 1, it reduced the total number
of preempted jobs to less than 7.0% relative to that of LRTP
and RAND.

4 Conclusion

In this paper, we presented FitGpp, a preemption algorithm
that reduces the latency of the TE jobs while controlling
the slowdown of the BE jobs incurred by the preemption
processes. Future directions include extending of this work
to non-FIFO based setting and scheduling of multi-node jobs
in distributed DL. Finally, the application of our algorithm is
not necessarily limited to the scheduling of DL jobs. We shall
be able to extend our algorithm to any type of workload that
consists of a mixture of TE-like jobs and BE-like jobs.
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Appendix A Experimental Details

We simulated LongestRemainingTimePreemption (LRTP) al-
gorithm on the assumption that it can perfectly estimate the
execution time of each job. Both LRTP and RAND continue
the preemption process until they can prepare enough resource
for an incoming TE job. For the evaluation of RAND, we re-
peated the same experiment four times and report the average
statistics.

In order to synthesize realistic workloads, we analyzed
a trace of the cluster at the authors’ institution. The trace
consisted of approximately 50,000 jobs with about 30% of
them being TE. Fig. 2 shows the brief statistics of the trace.

To create a realistic sequence of synthetic workloads, we
approximated the empirical distributions of (1) the execution
time, (2) the number of demanded CPUs, (3) the amount of
demanded RAM, and (4) the number of demanded GPUs for
both the TE jobs and the BE jobs with separate normal dis-
tributions, and artificially generated typical jobs from their
truncated versions. The means of the fitted normal distribu-
tions for the execution time of the TE jobs and the BE jobs

were respectively 5 min and 30 min. We truncated these dis-
tributions at 30 min and 24 hours, in this order.

For the lengths of GPs, we prepared the normal distribu-
tion with the mean of 3 min and truncated the distribution at
20 min. We set the length of GPs at such large values for the
following three reasons: (1) typical DL jobs tend to accom-
pany large data to store before the suspension, (2) the data
often requires preprocessing step for the storage, such as seri-
alization, and (3) we expect the developers of DL algorithms
to specify long GPs because a prematurely suspended job is
destined to fail.
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Figure 2: Statistics of jobs on the cluster at the authors’ insti-
tution.
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1 Introduction

The growing popularity of Deep Neural Networks (DNN)
within the mainstream [8] has had a rapid transforma-
tive effect on clusters and data centers. DNN training
jobs are becoming one of the largest tenants within clus-
ters, and often take hours to weeks to complete; and
even a slight performance improvement can save sub-
stantial runtime costs. Despite this fact, the DNN specific
performance tuning tools are yet to keep up with the
needs of the new changes in production environments.

On one hand, the existing application-agnostic
resource-level tools such as top, Nvidia Nsight (for GPU
utilization), IPM (for MPI network monitoring) are too
limited to predict or explain the behavior and perfor-
mance of a job accurately. In DNN applications, there
exists a complex relationship among resources. Even
though measuring coarse metrics such as bandwidth,
latency, and GPU/CPU utilization can draw an overall
picture of cluster performance, these metrics are not
easily translatable to application-level metrics and do
not provide actionable insights on how to handle perfor-
mance bottlenecks.

On the other hand, the short list of application-aware
tools, such as MLModelScope [6], TensorBoard [1], and
tf.RunOptions [2], while able to provide actionable
insights, are mainly designed for the need of applica-
tion developers and are not intended for production use.
Such tools require substantial modification to applica-
tions, and early planning as to what, when and how data
should be collected.

In this article, we introduce tensorflow-tracing to
fill the gap between these two classes of performance tun-
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Figure 1: The architecture of tensorflow-tracing

ing tools. To achieve this goal, tensorflow-tracing ad-
dresses the following technical challenges:

• Collecting the application-level runtime metrics, such
as the timing of each operation or the iteration
time, needs explicitly expressed in the training job
source code. To makes it possible to trace ML
jobs without requiring any application modification,
tensorflow-tracing monkeypatches the tensorflow
library at the system level.

• Collecting some metrics is expensive and
have a significant overhead on the runtime.
tensorflow-tracing treats metrics differently; it
collects low-overhead metrics automatically, while
expensive ones are collected on demand through an
admin interface.

• There is no easy way to exchange runtime metrics
among users and admins — tensorflow-tracing fa-
cilities this through a portable file format and support-
ing tools to explore these metrics offline.

The tensorflow-tracing is publicly available under
Apache-2.0 license1. It supports native TensorFlow [3],
Horovod [7], and IBM PowerAI [5] applications.

1https://github.com/xldrx/tensorflow-tracer
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Figure 2: The main web interface of
tensorflow-tracing. Each entry represents a
separate task in the DNN session.

Figure 3: The timeline interface provides details of
the execution of one iteration step. Each box repre-
sent an operation in the DataFlow DAG. There is a
timeline for every resources on each machine. The
trace is collected from next_frame_sv2p [4] model
in tensor2tensor library [10].

2 Design and Implementation

Figure 1 shows the building blocks of
tensorflow-tracing:

MonkeyPatching In order to provide tracing without
code modification, tensorflow-tracing injects a proxy
function to the tensorflow library using a monkey-
patching scheme to intercepts the calls to certain func-
tions and redirects them to the Data Management mod-
ule. While monkeypatching the library at the system-
level automatically enables tracing for any DNN applica-
tion, tensorflow-tracing also supports per application
patching.

Data Management This module is responsible for
collecting profiling and tracing data as well as mak-
ing online decisions as to whether a task should be
traced2. This module is also responsible for serializ-
ing/deserializing tracing sessions from/to a file.

REST/Web Interface This interface is the
main portal for interacting with the system.
tensorflow-tracing starts a web server when-
ever an application is executed which is accessible either
through a web browser or a REST API client (possibly
from terminal). The interface provides two logical
views:
1. Main Interface shows the list of tasks and their asso-

ciated profiling/tracing data. This interface allows
request tracing. (Figure 2)

2. Timeline Interface visualizes an instance of a task trace
as a series of timelines, one for every resources (e.g.
CPU, GPU, Network Interface) on each machine. Each

2MonitoredSession.run function calls

box represent an operation in the DataFlow DAG of
DNN application. (Figure 3)

CLI It loads a tracing sessions offline and enables ex-
ploring through a web interface.

3 tensorflow-tracing in action
Overhead We observe no performance hit on collect-
ing low-overhead metrics such as iteration times, ‘ses-
sion.run‘ call names and frequencies. We observe less
than 3% runtime overhead to iteration time when in-
dividual operations in a call are traced. CPU Mem-
ory requirements varies for different models. For exam-
ple: an Inception v3 [9] trace consumes 718KB while
next_frame_sv2p [4] consumes 2.4MB.

Case Study We have used tensorflow-tracing on dif-
ferent workloads to find the performance issues on appli-
cation, framework, and infrastructure level. For example,
our work TicTac ?? addresses the communication timing
issue we found in the tracing of a distributed TensorFlow
job with parameter server.

4 Limitation and Future Work

The correctness of the tensorflow-tracing’s distributed
traces relies on the precision of the clocks on the differ-
ent machines. Currently it relies on external sources to
synchronize the clocks.
tensorflow-tracing traces the network activities just

in the user space. This will miss the events such as packet
drops or queue latencies. We are planning to expand this
capability by adding network stack events from kernel
space.
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Abstract

Modern machine learning pipelines can produce hundreds
of data artifacts (such as features, models, and predictions)
throughout their lifecycle. During that time, data scientists
need to reproduce errors, update features, re-train on specific
data, validate / inspect outputs, and share models and predic-
tions. Doing so requires the ability to publish, discover, and
version those artifacts.

This work introduces Disdat, a system to simplify ML
pipelines by addressing these data management challenges.
Disdat is built on two core data abstractions: bundles and con-
texts. A bundle is a versioned, typed, immutable collection of
data. A context is a sharable set of bundles that can exist on lo-
cal and cloud storage environments. Disdat provides a bundle
management API that we use to extend an existing workflow
system to produce and consume bundles. This bundle-based
approach to data management has simplified both authoring
and deployment of our ML pipelines.

1 Introduction

Managing data artifacts associated with ML pipelines remains
challenging for data scientists, even with existing tools for
code versioning, continuous deployment, and application con-
tainer execution. The development and deployment lifecycle
of a pipeline may create thousands of artifacts, including fea-
tures, trained models, and predictions. At any point in time,
the data science team may need to share inputs to reproduce
errors, re-train on specific data, or validate model behavior.

Naming and storing data artifacts is frequently an ad-hoc
and error-prone process in which data is managed per project,
found via tribal knowledge, and shared by e-mail or instant
messaging. This leads to significant data scatter across local
computers (such as laptops) and cloud storage (such as AWS
S3 [4]). Worse, data science team members often convolve
naming and versioning. For example, where one expects a
logical name like financials for a data set, one instead finds
a taxonomy of names like financials_v_1-20190520.

We introduce Disdat, a system that leverages two practi-
cal abstractions–the bundle and context–to strike a balance
between prescription and the need for data scientists to use
the latest tools when authoring and deploying ML pipelines.
The bundle is a named collection of files and literals, and is
the unit at which data is produced, versioned, and consumed.
The context is a view abstraction that gathers together one
or more bundles, and assists with managing bundles across
multiple locations. Bundles and contexts are minimally pre-
scriptive in the same sense as high-level pipelining systems
such as Luigi [9], Airflow [1], and Pinball [8] that encode
dependencies between user-defined tasks.

Bundles and contexts in Disdat together support common
data science activities. Conceptually, Disdat accomplishes
for data what Docker does for application images. Bundles
allow users to find the latest version of related pipeline data
with a single “human” name instead of parsing ad-hoc names.
Contexts facilitate simple sharing and synchronization of
bundles between different users and across local and cloud
storage locations through intuitive “push”/“pull” operations.

Disdat stands in contrast to existing systems for man-
aging pipeline data artifacts. Many are closed, monolithic
ecosystems, providing pipeline authoring, model version-
ing, deployment, feature storage, monitoring, and visualiza-
tion. Examples include Palantir’s Foundry [6], Facebook’s
FBLearner [3], and Uber’s Michelangelo and PyML [10]. Per-
haps closer in spirit to Disdat are MLFlow [2], Pachyderm [5],
and DVC [7], which aim to version pipeline experiments to
enable reproducibility.

Unlike prior approaches, Disdat treats bundles as first-class
citizens. Where Pachyderm and DVC support git-like oper-
ations, Disdat eschews some version control concepts, such
as branching and merging, whose semantics for ML artifacts
remain an open question (e.g., merging ML model weights be-
tween branches). In addition, their units of data versioning are
implementation specific; each Pachyderm container produces
a single commit to a “repository”, while DVC relies on an
extant git repository to version DVC metadata. Like Disdat,
the MLFlow API captures parameters and data outputs, but
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users must still organize and manage their data.
The core of Disdat consists of an API to create and publish

bundles in contexts. We use that API to instrument the Luigi
pipelining system from Spotify [9], allowing data scientists
to author pipelines that automatically produce bundles. By
virtue of this design, Disdat pipelines automatically re-use
prior results where possible and can publish new versions of
data products on a cloud storage service.
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by credit 
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Given score, FP, 
predict held cards

Prediction Task

Feature Tasks

Model Params

F1 Params
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Profile (FP)
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{}

Users.csv
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Figure 1: An ML pipeline with two featurization tasks feeding
a predictive model and producing three output bundles.

2 Motivating Example

We motivate Disdat’s design with a simple data processing
scenario. Consider a financial services company wishing to
predict credit card ownership among users. To do so, it creates
a three-task ML pipeline shown in Figure 1. This pipeline
featurizes the input data and applies a trained model to assign
a likelihood of ownership to each user.

In general, ML pipelines consist of tasks that read and
write one or more files. For example, the first featurization
step (“F1”) in Figure 1 reads two .csv files describing the
user population and produces a Parquet .pqt feature file. The
model task consumes the features to produce predictions and
performance metrics. Data scientists may re-run individual
tasks or the whole pipeline many times to explore features,
fix bugs, and tune hyper-parameters.

Many challenges face the data scientist in managing the
flow of data through this example pipeline. They must cre-
ate a naming and file system directory scheme that dis-
ambiguates input, intermediate, and output files relating to
different populations, which usually results in names like
users-popA.csv and users-popB.csv. They often incor-
porate ad-hoc versioning to track updates to populations
or pipeline code changes, which leads to clumsily em-
bedded metadata such as users-popA-20190520.csv or
Crd_scores-with-low-score-cutoff.pqt. Lastly, shar-
ing and re-using data requires mechanisms to find artifacts
across local and cloud locations as well as polices to define
“latest” among multiple versions of the same artifact.

Disdat builds on bundles and contexts to address this chal-
lenge. Bundles organize collections of data items flowing

through pipelines; thus, each task in Figure 1 produces a sin-
gle bundle. A bundle is an immutable set of tags, lineage
information, and named arrays. Each named array may store
scalar-typed data, file links, or pointers to bundles. File links
are references to files, such as POSIX filenames or S3 URLs.

In Figure 1, the “Prediction” bundle has one named array
with two file links. When Disdat creates the bundle, it places
the files and bundle metadata in the current context (on the
local file system). A context serves as an organizational unit
for bundles–the user decides whether the context represents
a project, pipeline, or data in a test or deploy environment.
Contexts hold any number of bundles and can exist at different
locations–the local file system and a cloud storage service.

Disdat bundles provide three distinct names by which to
distinguish data versions. These are a human_name, process-
ing_name, and a UUID. The human_name indicates the log-
ical data use; it supports data sharing among colleagues. In
our example, the final output bundle may have human_name
card_predictions. The processing_name is a unique string
computed from the parameterized task; it allows a pipeline to
re-use the most recent upstream task’s output.

Note that each pipeline execution can produce bundles with
the same human_name, but that differ by UUID and creation
date. Thus synchronization between local and cloud locations
is as simple as downloading bundles whose UUIDs are not
present. This allows the data scientist to easily get the latest
version either from a local context or one hosted on AWS S3.

3 Discussion

Disdat is a Python-based system consisting of an API for
creating and managing bundles in contexts, a command-line
interface, and an instrumented pipelining system. Disdat uses
the API to extend Spotify’s Luigi so that tasks transparently
ingest bundles and produce bundles as output. In addition,
Disdat can dockerize pipelines to run on container execution
services like AWS Batch or AWS SageMaker.

At Intuit, we use Disdat for batch prediction pipelines and
have found this approach valuable. Sometimes data scien-
tists may not access raw data on their laptops or their laptop
may have insufficient resources. During development, Disdat
makes it easy to run that portion of a pipeline on the cloud and
retrieve the output to test locally. Similarly, errors often occur
during large-scale tests, and it is easy to find the set of input
bundles that caused failures. Bundles have also simplified
performance monitoring, as any data scientist may pull all
versions of a pipeline’s outputs for analysis (for example, in a
notebook via the Disdat API).

4 Availability

Disdat is open-source (ASL 2.0) software available on github
at http://github.com/kyocum/disdat.
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Abstract
Training machine learning (ML) models on large datasets re-
quires considerable computing power. To speed up training, it
is typical to distribute training across several machines, often
with specialized hardware like GPUs or TPUs. Managing a
distributed training job is complex and requires dealing with
resource contention, distributed configurations, monitoring,
and fault tolerance. In this paper, we describe TonY, an open-
source orchestrator for distributed ML jobs built at LinkedIn
to address these challenges.

1 Introduction

The past couple of decades have seen an explosion in "Big
Data" systems for storing and processing data. Some widely
used systems include MapReduce [10], Hadoop Distributed
File System [19], and Spark [21]. The scale of these systems
has made it possible to store petabytes of data and do large-
scale ML.

Many features on the LinkedIn website are powered by ML,
including People You May Know, Job Recommendations,
the News Feed, and Learning Recommendations. Many of
these features are powered by ML techniques such as boosted
decision trees [7] and generalized linear models [22].

To boost the accuracy of predictions, ML engineers have
started experimenting with non-linear models such as neu-
ral networks [11] to capture more complex relationships in
the data. Programming these neural networks in a generic
language is tedious and error-prone. To address this, many
frameworks have been created to simplify the construction
and training of neural networks. These frameworks include
DistBelief [9] and its successor TensorFlow [4], Theano [6],
Caffe [13], PyTorch [17], and Keras [8].

An ML engineer will often begin model development by
developing on a single machine. One popular tool is a "note-
book" program such as Jupyter [15] or Zeppelin [1] that al-
lows an ML engineer to interactively explore the data and test
out fragments of their models. This works when experiment-
ing on a sample of the data. However, to validate a new model,
they generally need to train and test their model on the full
dataset, which may be petabytes in size and would take too
long to train on a single machine. To scale up their training,
they need to divide the data across multiple machines and
train in parallel [5].

Most ML frameworks provide APIs for doing distributed
training. However, to make use of multiple machines, an ML

engineer still has to copy their program to each host, set the
appropriate environment variables and configurations for dis-
tributed training on each host, and then launch their training
program on each host. This ad-hoc process faces several chal-
lenges:

• Resource contention. ML engineers sharing the same
pool of unmanaged machines fight for the same mem-
ory, CPU, and GPU resources. Consequently, jobs may
fail with out-of-memory exceptions or errors allocating
GPUs.

• Tedious and error-prone configuration. Setting up a
distributed training job requires copying configurations
to all hosts and it is hard to verify and update these
configurations.

• Lack of monitoring. While the job is running, it is dif-
ficult to monitor its global progress.

• Lack of fault tolerance. Transient errors are hard to
debug and require manual restarts.

To address these challenges, we built and open-sourced
TonY [12], an orchestrator that interacts with a cluster sched-
uler to launch and manage distributed training jobs.

2 Architecture

Figure 1: TonY’s architecture.
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TonY consists of a client for submitting jobs to a scheduler
and an application that runs in the scheduler. Users use the
client to submit their ML jobs, and the application handles
allocating resources, setting up configurations, and launching
the ML job in a distributed fashion. The client interface is
generic and its implementation can support submitting to
multiple schedulers. The scheduler implementation can be
changed without requiring users to update their ML or client
submission code.

For our initial implementation of TonY, we added support
for running distributed TensorFlow jobs on Hadoop YARN
(Yet Another Resource Negotiator) [20] (hence the name
TonY), as these were the most commonly used ML framework
and scheduler, respectively, at LinkedIn.

The overall architecture of TonY is presented in Figure 1.
We present the client and cluster components of TonY in more
detail in the following subsections.

2.1 TonY Client
The TonY client is the library users use to launch their dis-
tributed ML jobs. Users describe in an XML file the resources
required by their job. For TensorFlow, this might include the
number of worker and parameter server instances as well as
how much memory and how many GPUs per instance. If
needed, users can also specify additional configurations for
the underlying scheduler. In the case of YARN, this might
include specifying the queue [3] or node label [14] (e.g.: high-
memory) to run on.

Users will also provide the path to their ML program as
well as the virtual environment or Docker image [16] in which
their program should run on the cluster. Additionally, users
can specify properties such as model-specific hyperparame-
ters, input data, and output location via command-line argu-
ments passed to the TonY client.

Often, distributed ML jobs will be run as part of a larger
workflow that includes data preprocessing and model deploy-
ment. To simplify integration into existing workflows, we
built a TonY plugin for one such workflow manager, Azka-
ban [2], that lets users add distributed ML jobs in the same
workflow alongside Spark, MapReduce, and other jobs.

2.2 TonY Cluster Application
When the user runs the TonY Client to submit their job, the
client will package the user configurations, ML program, and
virtual environment into an archive file that it submits to the
cluster scheduler.

The TonY Client will launch a master program in the cluster
scheduler. In our initial implementation supporting Hadoop’s
YARN scheduler, we launch a TonY ApplicationMaster (AM)
in a YARN container. The AM then negotiates with YARN’s
ResourceManager (RM) to request all the other containers
(e.g.: worker and parameter server tasks) needed by the ML

job. The AM handles heterogeneous resource requests for
different task types, such as requesting containers with GPUs
for the worker tasks but requesting CPU-only containers for
the parameter server tasks.

Once the task containers are allocated by the RM to the
TonY AM, it then launches a TaskExecutor in each task con-
tainer. This TaskExecutor will allocate a port for its task to run
on and register this port with the AM. Upon receiving registra-
tion from all TaskExecutors, the AM will construct a global
cluster spec that it will then send back to every TaskExecutor.
Each TaskExecutor will then set the global cluster spec along
with task-specific configuration in environment variables be-
fore spawning the ML job as a child process. Once all the ML
jobs start up, they will communicate and coordinate with one
another via the ML framework’s distributed protocol (whether
that be RPC, MPI, etc.), and the TaskExecutors will monitor
the task processes and heartbeat back to the AM. When the
task processes finish, the TaskExecutor will register the final
exit status with the AM before terminating.

The TaskExecutor for the first worker task will also allocate
a port for launching a visualization user interface such as
TensorBoard for monitoring the running job. This also gets
registered with TonY AM. This user interface URL, along
with links to all the other task logs, is sent back to the TonY
Client so that users can directly access the visualization UI
and task logs from one place.

Finally, if any task fails, the TonY AM will automatically
tear down the remaining tasks, request new task containers,
setup a new global cluster spec, and relaunch the tasks. The
ML tasks can then restore from the last checkpoint and con-
tinue training.

3 Discussion

Previously, ML engineers had to write ad-hoc scripts to launch
distributed ML jobs on a pool of machines, with no resource
guarantees or isolation from other users. Now, using TonY,
users can configure their job once and rely on TonY to negoti-
ate with a cluster scheduler for guaranteed resources.

The TonY master handles all the distributed setup and pro-
vides a central place to monitor and visualize the training job.
It also ensures fault tolerance by restarting distributed jobs in
case of transient task failures.

The master and TaskExecutor orchestration framework is
also an ideal place to instrument the ML tasks and collect
metrics about the tasks’ performance and resource utilization.
These statistics could be aggregated and analyzed in a UI such
as Dr. Elephant [18] to suggest new settings for the ML jobs
that would improve performance and resource utilization. We
are currently implementing these new features in TonY and
plan to discuss them more in future work.
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Abstract

Modern deep neural network (DNN) systems are highly con-
figurable with large a number of options that significantly
affect their non-functional behavior, for example inference
time and energy consumption. Performance models allow
to understand and predict the effects of such configuration
options on system behavior, but are costly to build because
of large configuration spaces. Performance models from one
environment cannot be transferred directly to another; usually
models are rebuilt from scratch for different environments,
for example different hardware. Recently, transfer learning
methods have been applied to reuse knowledge from perfor-
mance models trained in one environment in another. In this
paper, we perform an empirical study to understand the effec-
tiveness of different transfer learning strategies for building
performance models of DNN systems. Our results show that
transferring information on the most influential configuration
options and their interactions is an effective way of reducing
the cost to build performance models in new environments.

1 Introduction
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Figure 1: DNN
System Stack

Deep neural networks (DNNs) are
becoming increasingly complex,
with an increased number of param-
eters to tune, and increased energy
consumption for the deployed sys-
tem [19]. Current state-of-the-art
methods for tuning DNNs do not
consider how a DNN is deployed
in a system stack [1, 2, 19], and do
therefore not consider energy con-
sumption. Figure 1 shows a 4-level
deployment environment of a DNN
system where options and option in-
teractions from each level contribute
to energy consumption [10, 11, 14].

Performance models have been
extensively used for understanding
the behavior of configurable sys-
tems [5, 6, 16, 17, 22, 24]. However,
constructing such models requires
extensive experimentation because
of large parameter spaces, complex
interactions, and unknown constraints [23]. Such models are
usually designed for fixed environments, i.e., fixed hardware
and fixed workloads, and cannot be used directly when the
environment changes. Repeating the process of building a
performance model every time an environment change oc-
curs is costly and slow. Several transfer learning approaches
have been proposed to reuse information from performance
models in a new environment for different configurable sys-
tems [4, 8–10]; however, to the best of our knowledge, no
approach focuses specifically on DNNs in different environ-
ments. We consider the following research question:

How can we efficiently and effectively transfer informa-
tion from a performance model of a DNN trained for one
environment to another environment?

We perform an empirical study comparing different trans-
fer learning strategies for performance models of DNNs for
different environmental changes, e.g., different hardware and
different workloads. We consider guided sampling (GS) [9],
direct model transfer (DM) [21], linear model shift (LMS),
and non-linear model shift (NMLS) [10]. We model the non-
functional properties inference time and energy consumption
in this paper and consider configuration options that affect
these properties as the parameters we tune, i.e. hardware-
level configuration options. Our results indicate that GS trans-
fer learning outperforms next best learning method, NMLS,
by 19.76% and 8.33% using regression trees (RT) and by
23.47% and 12.70% using neural networks (NN) for infer-
ence time and energy consumption, respectively. This enabled
us to build performance models in new environments using
only 2.44% of the configuration space to predict best con-
figurations in our systems with comparable accuracy to the
performance models built for the original environment.The
difference between the lowest and highest energy consump-
tion can be up to a factor of 20.

2 Methodology

We consider a pre-trained image recognition DNN system
in 16 different environments: 2 different hardware platforms
(Nvidia Jetson TX1, h1, and Jetson TX2, h2), 2 pre-trained
models (Xception [3], m1, and InceptionV3 [20], m2) and 4
different image sizes (200×200, 400×400, 600×600, and
800×800, s1 through s4). In each environment, we evaluate
the performance on the same 10 randomly selected images
from the ILSVRC2017 [15] image recognition dataset.

The configuration space we consider is composed of the
following hardware configuration options: (i) CPU status, (ii)
CPU frequency, (iii) GPU frequency, and (iv) memory con-
troller frequency. We evaluate a total of 46,080 configurations
on the TX1 platform and 11,616 configurations on the TX2
platform, for a total experimental effort of ≈ 43.6 days of
computational time across all 16 environments. We chose the
TX1 and TX2 platforms due to their limited energy budget
to better understand DNN system behavior with changing
configuration options.

We construct performance models of the effect of configu-
ration options on DNN system performance using these exper-
imental data with RTs and NNs, which are frequently used in
the literature to induce performance models [5, 12, 13, 16, 21].
We measure the performance of these models in terms of
mean absolute percentage error, Err [18].

We implement GS using a step-wise regression technique
with forward selection (FS) and backward elimination (BE).
Each step of FS adds an interaction term to the regression
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Figure 2: Comparison of prediction error of different transfer learning techniques (GS, DM, LMS, and NLMS) for performance
models of DNN systems (Regression Tree and Neural Net) for inference time (top) and energy consumption (bottom). We
consider 15 different target environments and show error bars for values aggregated over 10 predictions on a log scale.

model that increases the coefficient of determination, while
BE removes an interaction term if its significance is below a
threshold. We study the interaction terms of the final regres-
sion model; in particular, we exclude terms with coefficients
that are less than 10−12. These terms guide the sampling
towards important configuration options and avoid wasting
resources on evaluations that effect no change when building
performance models in new environments. The DM transfer
learning approach reuses a performance model built for one
environment directly in a different environment. The LMS
and NMLS transfer learning techniques learn a linear regres-
sion model and a non-linear random forest regression model,
respectively, to translate the predictions from a performance
model trained for one environment into predictions for a dif-
ferent environment. These transfer models are based on a
small number of randomly-sampled configurations that are
evaluated in both environments.

In our experiments, we select the TX2 platform with the
InceptionV3 DNN and 600× 600 images as the source en-
vironment to train the performance models for. We transfer
these performance models to each of the remaining 15 target
environments. The source code and data are available in an
online appendix [7].

3 Results and Discussion
We present the results in Figure 2. They demonstrate that
GS outperforms DM, LMS, and NMLS in each environment
for both inference time and energy consumption. Average
Err of the performance models induced using GS are 28.09%
and 22.93% lower than DM, 25.64% and 21.59% lower than
LMS, and 23.47% and 19.76% lower than NLMS for infer-
ence time using NN and RT, respectively. Similarly, they are

42.85% and 39.41% lower than DM, 20.52% and 13.19%
lower than LMS, and 12.70% and 8.33% lower than NLMS
for energy consumption for NN and RT, respectively. All of
GS, LMS, and NLMS incurred the same cost (evaluation of
2.44% of the entire configuration space, ≈ 2.48 hours), while
the cost for DM was zero as the performance model from
the source environment is reused without modification in the
target environment. For the DM and GS transfer learning
techniques, an increase in computational effort of just 2.48
hours (≈ 0.15% of the effort to train the original performance
model) leads to an decrease of Err of 28.09% and 22.93% for
inference time and 42.85% and 39.41% for energy consump-
tion using NN and RT, consecutively.

If the environment change between source and target in-
cludes a hardware change, DM is more effective than LMS
and NLMS for inference time modeling; however, for energy
consumption, NLMS performs better than DM and LMS.

Guided sampling can help practitioners to quickly develop
reliable performance models for new environments based
on information they have obtained in the past to tune and
optimize a system. Such performance models can guide prac-
titioners to avoid invalid configurations and are useful for
design space exploration to quickly find optimal configura-
tions in new environments using influential configurations
which typically practitioners miss. These models are also
useful to learn the performance landscape of a system for
performance debugging, and obtain a better understanding of
how the configuration options affect performance in general.
In future work, we will consider extending the configuration
space with options from all 4 levels of the DNN system stack.
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Abstract
Deep Neural Networks (DNNs) have a significant im-
pact on numerous applications, such as video processing,
virtual/augmented reality, and text processing. The ever-
changing environment forces the DNN models to evolve,
accordingly. Also, the transition from the cloud-only to edge-
cloud paradigm has made the deployment and training of
these models challenging. Addressing these challenges re-
quires new methods and systems for continuous training and
distribution of these models in a heterogeneous environment.

In this paper, we propose KnowledgeNet (KN), which is a
new architectural technique for a simple disaggregation and
distribution of the neural networks for both training and serv-
ing. Using KN, DNNs can be partitioned into multiple small
blocks and be deployed on a distributed set of computational
nodes. Also, KN utilizes the knowledge transfer technique
to provide small scale models with high accuracy in edge
scenarios with limited resources. Preliminary results show
that our new method can ensure a state-of-the-art accuracy
for a DNN model while being disaggregated among multi-
ple workers. Also, by using knowledge transfer technique,
we can compress the model by 62% for deployment, while
maintaining the same accuracy.

1 Introduction

Deep Neural Networks (DNNs) have achieved tremendous ac-
curacy improvements for various tasks, such as decision mak-
ing, text processing, and video processing. Edge and cloud ap-
plications are adopting DNNs to assist users and other systems
in better decision making. For example, a recent effort [1] is
using neural networks on surveillance cameras on the roads
to detect objects of interest. However, state-of-the-art DNN
models are computationally heavy and need to continuously
adopt to the environment.

Some related works have proposed new methods for dis-
tribution and acceleration of DNNs on distributed heteroge-
neous systems, for both training, and inference. One approach

is distributed synchronous SGD algorithm [4], where each
computing node executes the complete model on different
batches of data. This method suffers from lack of scalability
in the training process. Also, in the edge-cloud paradigm,
the edge nodes are not powerful enough to take care of the
whole model. Another method is model-parallelism [3, 9].
In this method, different layers of the model are distributed
among several accelerators (on the same machine). Need to
mention, the feasibility of such a model in a distributed edge-
cloud environment with average connections speed is not yet
evaluated.

Other related works have studied several methods to pre-
pare DNN models for edge deployment. These methods can
be broadly classified into four categories: (1) Weight Sharing,
(2) Quantization, (3) Pruning, and (4) Knowledge Transfer.
The weight sharing techniques [2, 5] reduce the memory oc-
cupied by the model by grouping weights and replacing them
with a single value. The quantization techniques [5, 7] reduce
the size of the model by shrinking the number of bits needed
by the weights. The pruning techniques [5, 8, 10] reduce the
complexity of a model significantly by removing weights or
connections that produce a negligible response. Finally, with
the knowledge transfer techniques, a small model is being
supervised by a large model during the training to achieve
a much higher accuracy. Unfortunately, all these methods
(except knowledge transfer) are only feasible for inference
scenarios.

2 Approach

Following the previous discussions, we propose Knowled-
geNet (KN), which enables a disaggregated and distributed
training/serving process while supporting heterogeneous envi-
ronments, such as the edge-cloud paradigm. KN can disaggre-
gate and deploy large DNN models on a set of heterogeneous
processors to enable continuous training based on the user
data and ever-changing environment.

The KN utilizes two specific methods to enable disag-
gregated and distributed model training and serving. First,
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Figure 1: Representation of the model in the KN setting. Each
dash box is being mapped onto a distinct processor. Also, the
synthetic gradients are being generated asynchronously, using
extra components (represented as M blocks).

KN can split a large DNN model into several small models
(Figure 1). Each of these small models can be deployed on
an independent processing node. The conventional training
method suffers from the locking among the layers in a model,
based upon their prior or next layer, during the forward and
backward propagation. To alleviate this problem, we use the
synthetic gradient method [6] to generate the target gradient
for each section, asynchronously. Using synthetic gradients,
each individual or set of layers can continue their progress,
by adding a new module, which is responsible to generate
synthetic gradients, approximating the true gradients in the
conventional training model. As a result, the training pro-
cess can be seamlessly offloaded onto a set of heterogeneous
process without compromising the accuracy.

Second, while disaggregation can overcome the distribu-
tion problem, it may still need compression to be deployed
on the edge devices. Edge devices are usually equipped with
small processors with limited computational capabilities. We
develop a new knowledge transfer (KT) technique in KN,
which enables fine-grained supervision from the oracle model
on the cloud and the model deployed on edge. Using this
technique, the DNN model can be transformed into two equiv-
alent models: (1) A large-scale oracle model on the cloud
and (2) a small-scale counterpart model on the edge. Our
novel KT technique provides state-of-the-art accuracy for the
small-scale model, while receiving supervision from the or-
acle model. In the KN, unlike conventional KT techniques,
where the only knowledge comes from only the final layer’s
loss, each section of the small model can constantly receive
supervision from a specific section of the oracle model, in
order to adopt the same representation.

3 Evaluation

In this section we provide preliminary evaluations on the
feasibility of the KN, based on the its capability to maintain a
state-of-the-art accuracy, while enabling distributed training
over a set of heterogeneous devices.

Our experimental result for the synthetic gradient approach
can achieve comparable accuracy as the conventional back-
propagation approach. We use a simple four-layered model

which consists of one convolutional layer (including max
pooling layer) and three fully-connected layers with MNIST
dataset for the evaluation. After training for 500K itera-
tions, the backpropagation approach achieves 98.4% accu-
racy whereas the synthetic gradient approach achieves 97.7%
accuracy.

Our knowledge transfer result shows that we can compress
a model significantly and maintain the same accuracy by
leveraging the knowledge from a large network. The teacher
model is VGG16 and the student model is a network that is
shorter than the teacher and consists of much fewer parameters
(3.2M vs. 8.5M). After training for 100 epochs, the accuracy
of teacher model and independent student model is 74.12%
and 61.24%, respectively. The dependent student model that
uses our proposed knowledge transfer method achieves almost
comparable accuracy as the teacher model.

4 Conclusions and Future Work

The emerging trend of heterogeneous systems, both in the
cloud-only and in the form of edge-cloud systems, necessi-
tates rethinking the current methods for training and deploy-
ing deep learning models. Current available methods cannot
enable efficient serving and continuous training of the com-
plex models on the distributed heterogeneous systems. KN
seeks to address the above challenges, through our novel dis-
aggregation and distribution of the DNNs, and also our new
layer-by-layer knowledge transfer techniques. Our prelimi-
nary results suggest our new method as a promising approach
for training DNNs for the emerging heterogeneouscomputing
paradigms.
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Abstract
Large organizations rely increasingly on continuous ML
pipelines in order to keep machine-learned models contin-
uously up-to-date with respect to data. In this scenario, dis-
ruptions in the pipeline can increase model staleness and
thus degrade the quality of downstream services supported by
these models. In this paper we describe the operation of con-
tinuous pipelines in the Tensorflow Extended (TFX) platform
that we developed and deployed at Google. We present the
main mechanisms in TFX to support this type of pipelines in
production and the lessons learned from the deployment of
the platform internally at Google.

1 Introduction

The workflows and underlying systems for machine learning
(ML) in production systems come in different shapes and
sizes. One key distinction is that between one-off and contin-
uous pipelines. One-off pipelines are initiated by engineers
to produce ML models “on demand”. In contrast, continuous
pipelines are “always on”: they ingest new data and produce
newly updated models continuously. The expectation is that a
“fresh” model should be pushed to serving as frequently and
timely as possible in order to reflect the latest trends in the
incoming traffic.

Generally speaking, any ML task whose underlying data do-
main is non-stationary can benefit from continuous training to
keep models fresh. Failing to update models in non-stationary
settings can lead to performance degradation. The frequency
with which models need to be updated depends on the speed
with which the underlying data evolves. We describe two
characteristic examples:

• Recommender Systems: In recommendation systems
the inventory of items that represent the corpus keeps
expanding. As an example, in YouTube new videos are
added every second of the day. The models that retrieve
those items and rank them for users have to be updated

as the corpus expands to make sure that the recommen-
dations are fresh.

• Perception Problems: In many perception problems, la-
bel acquisition can be slow and costly, while the models
themselves still have not converged. In these cases, it is
beneficial to continuously update the model with new
labeled training data, as long as the performance keeps
improving with newly arriving labels.

The most extreme case of refreshing models is online learn-
ing [3] which updates a model with every received request, i.e.
the serving model is the training model. However, in practice
it is more common to update a model in batches to ensure pro-
duction safety by validating the data and models before they
are updated. At Google, many ML pipelines update models
on an hourly or daily basis. This is often enough for the most
common use-cases we will discuss below.

A key metric for continuous pipelines is model freshness, as
a delay in generating a new model can negatively affect down-
stream services. Given that the arrival of new data is highly
irregular, this necessitates a “reactive” architecture where the
pipeline can detect the presence of new inputs and trigger
the generation of a new model accordingly. This also implies
that continuous pipelines cannot be implemented effectively
as the repeated execution of one-off pipelines at scheduled
intervals, e.g., every 24h: if new data appears slightly after the
scheduled execution of the pipeline, it can take more than one
interval to produce a fresh model which may be unacceptable
in a production setting.

In this paper we describe how we implemented support
for continuous pipelines in the TensorFlow Extended (TFX)
platform [1]. TFX enables Google’s engineers to reliably
run ML in production and is used across hundreds of teams
internally. The design of TFX is influenced by Google’s use
cases and our experience with its deployment. However, we
believe that the abstractions and lessons learned are relevant
for large-scale deployments of continuous ML pipelines in
other environments and organizations.
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Figure 1: Continuous, data-driven pipelines need to be aware
of artifacts, their properties, and lineage.

2 Continuous Pipelines in TFX

2.1 Maintaining State
Continuous pipelines need to maintain state in order to detect
when new inputs appear and infer how they affect the gen-
eration of updated models. Moreover, this state can help the
pipeline determine what results can be reused from previous
runs. For instance, a pipeline that updates a deep learning
model every hour needs to reinitialize (some of) the model’s
weights (also called warm-starting) from a previous run to
avoid having to retrain over all data that has been accumulated
up to this point. Similarly, model validation needs to retrieve
the current production model in order to compare it against a
new candidate model.

To manage this state, TFX introduces an ontology of ar-
tifacts which model the inputs and outputs of each pipeline
component, e.g., data, statistics, models, analyses. Artifacts
also have properties, e.g., a data artifact is characterized by
its position in the timeline and the data split that it represents
(e.g., training, testing, eval). Moreover, TFX maintains the
lineage between artifacts.

2.2 Orchestration
Metadata about artifacts reflects the state of the pipeline and
is recorded in a persistent store. The metadata store supports
transactional updates, so that pipeline components can publish
their output artifacts in a consistent fashion. Moreover, the
store serves as the communication channel between compo-
nents, e.g., the trainer can “listen” for the appearance of data
artifacts and react accordingly. This pub/sub functionality, il-
lustrated in Figure 1, forms the cornerstone of component exe-
cution and orchestration in TFX and enables several advanced
properties. First, components can operate asynchronously at
different iteration intervals, allowing fresh models to be pro-
duced as soon as possible. For instance, the trainer can gener-
ate a new model using the latest data and an old vocabulary,
without having to wait for an updated vocabulary. The new
model may still be better than the current model in production.
Second, components can reuse results from previous runs if
their inputs and configuration have not changed. Overall, this
data-driven execution is essential for continuous pipelines
and mostly absent from one-off pipelines.

2.3 Automated Validation
Any system that automatically generates new ML models
must have validation safeguards in place before pushing a
new model to production. Using human operators for these
validation checks is prohibitively expensive and can slow
down iteration cycles. Moreover, these safeguards need to ap-
ply at several points in the pipeline in order to catch different
classes of errors before they propagate through the system.
This implies more than just checking the quality of the up-
dated model compared to the current production model. As
an example, suppose that an error in the data leads to a subop-
timal model. Whereas a model-validation check will prevent
that model from being pushed to production, the trainer’s
checkpointed state might be affected by the corrupted data
and thus propagate errors to any subsequent warm-started
models.

TFX addresses these points by employing several valida-
tion checks at different stages of the pipeline. These checks
ensure that models are trained on high-quality data (data vali-
dation [2]1), are at least as good as or better than the current
production model (model validation2), and are compatible
with the deployment environment (serving infrastructure vali-
dation3).

3 Realizing One-Off, Task-Based Pipelines

TFX also supports one-off or task-based pipelines. The tar-
get audience is engineers who do not need the full power of
continuous pipelines, or engineers who have set up a con-
tinuous pipeline but need to manually trigger execution of
some components, e.g. experimenting with different model
architectures while the input data remain unchanged.

Realizing one-off pipelines with a system that has been de-
signed for continuous pipelines is technically straight forward,
as a one-off run is just one iteration of a continuous pipeline
without prior state. However, the mental model of task-based
execution does not map to that of data-driven orchestration.
Developers who are used to seeing jobs execute in sequence,
as they were defined in a directed acyclic graph (DAG), are
not accustomed to runs being triggered by the presence of
a specific configuration of artifacts, as represented by the
pipeline state.

As a solution, TFX introduces a framework that allows
users to specify job dependency as they would in a task-
based orchestration system. This also allows users of the open
source version of TFX to orchestrate their TFX pipelines with
task-based orchestration systems like Apache Airflow4.

1Using TensorFlow Data Validation.
2Using TensorFlow Model Analysis for model validation.
3Using TensorFlow Serving.
4Details about the API that allows both modes of executions can only be

added to this paper after March
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Abstract
Automatic Machine Learning (AutoML) is a powerful mech-
anism to design and tune models. We present Katib, a scal-
able Kubernetes-native general AutoML platform that can
support a range of AutoML algorithms including both hyper-
parameter tuning and neural architecture search. The system
is divided into separate components, encapsulated as micro-
services. Each micro-service operates within a Kubernetes
pod and communicates with others via well-defined APIs,
thus allowing flexible management and scalable deployment
at a minimal cost. Together with a powerful user interface,
Katib provides a universal platform for researchers as well
as enterprises to try, compare and deploy their AutoML algo-
rithms, on any Kubernetes platform.

1 Introduction
Automatic Machine Learning (AutoML) determines the op-
timal hyper-parameters or the neural network structure for
a specific task. Thus it enables less technical users, and can
discover state-of-art models that are almost as good as hand-
crafted ones ( [21], [14], [16], [4], [10]). However, we have a
long way before AutoML becomes mainstream. The first is
the diversity of AutoML algorithms. Algorithms for hyper-
parameter tuning are generally different from those for neural
architecture search (NAS). Even within NAS, different algo-
rithms follow separate structural mechanisms. This diversity
makes it difficult to reuse infrastructure and code, thus in-
creasing the cost of deploying AutoML widely. The second
problem is the prohibitive computational cost. The algorithm
proposed by Zoph [23], for example, is expensive. This is a
very active area of research.

To solve the first problem, we propose to build a general
AutoML system. We show that it is possible to integrate both
hyper-parameter tuning and NAS into one flexible frame-
work. To help solve the second problem, we enable users
to plug in their own optimized algorithms and we leverage
micro-services and containers for scalability. With the help of
Kubernetes [1], each component can be encapsulated inside a
container as a micro-service.

Our contributions can be summarized as follows:
• We integrated various hyper-parameter tuning and neural

architecture search algorithms into one single system.

• We standardized the interface to define and deploy Au-
toML workflows in Kubernetes based distributed sys-
tems.

The implementation of Katib is available at
https://github.com/kubeflow/katib.

2 AutoML Workflows
AutoML algorithms share the common ground that they
run in an iterative manner. The user first defines the search
space, metrics target and maximum iterations. The algorithm
searches for the optimal solution until the target metrics or
the maximum number of iterations is reached. However, they
may vary in terms of their internal mechanisms.

2.1 Hyperparameter Tuning
In hyperparameter tuning, we have a black-box function f (·)
whose value is dependent on a set of parameters p. The goal
is to find a p̂ such that f (p) can be minimized or maximized.
In each iteration, a search algorithm service Suggestion
will generate a set of candidate hyperparameters. The can-
didates are sent to Trial that provides training and valida-
tion services. The performance metrics are then collected by
Suggestion to improve its next generation.

2.2 Neural Architecture Search
In neural architecture search (NAS), a neural network is repre-
sented by a directed acyclic graph (DAG) G = {V,E}, where
a vertex Vi denotes the latent representation in ith layer and
a directed edge Ek = (Vi,Vj) denotes an operation ok whose
input is Vi and output is given to Vj. The value of a vertex Vi
depends on all the incoming edges:

Vi = g({ok(Vj)|(Vi,Vj) ∈ E})

g(·) is a function to combine all the inputs. It can vary in dif-
ferent algorithms. In [23] and [16], g(·) means concatenating
along the depth dimension. In [4], [21] and [14], a weight is
assigned to every edge so g(·) is naturally the weighted sum.

Extensive research in NAS has lead to enormous diversity
of NAS solutions. In terms of the search objective, the algo-
rithm may search for either the optimal network or the optimal
cell. The former constructs the whole graph directly while the
latter generates a subgraph G′, and the whole graph is built
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by duplicating the topology of G′. In terms of evolving strat-
egy, some NAS algorithms adopt a generation approach while
others use modification. With the generation approach, the
algorithm will propose a new neural architecture in each itera-
tion. With the modification approach, however, the algorithm
will modify the current architecture by adding or deleting
some parts of it instead of creating a brand-new candidate.
Based on this categorization, the latest NAS algorithms can
be summarized as follows:

Strategy Search for Network Search for Cell
Evolve by
Generation

[23], [16], [20],
[11], [2]

[23], [16], [24],
[22], [13]

Evolve by
Modification

[9], [4], [18], [7],
[3]

[17], [21], [14],
[10], [15], [6], [5]

Table 1: Summary of neural architecture search algorithms

Diverse as they are, those algorithms can be integrated
into one system. Compared with hyperparameter tuning, NAS
only needs one extra ModelManager service to store, con-
struct and manipulate models. In each iteration, Suggestion
provides the topology of the next candidate or the modifica-
tion decisions of the previous architecture to ModelManager,
which constructs the model and sends it to Trial. Then the
model is evaluated and the performance metrics are fed back
to Suggestion, starting a new iteration.

All these workflows can be summarized by Figure 1:

TrialsSuggestion

Neural Network
Topologies 

Metrics 

Model 
Manager 

Model

Hyperparameters

 / Modification
Decisions 

Common 

Neural
Architecture 

Search 

Hyperparameter 
Tuning 

Figure 1: Summary of AutoML workflows

3 Katib System Design
We combine the requirements of these AutoML workflows
and the ideas from Google’s black-box optimization tool
Vizier [8], with the design show in Figure 2. The user starts
from defining an AutoML task with Katib’s interface, the
details of which can be found at http://bit.ly/2E5B9pV.
A controller examines the task definition and spawns the nec-
essary services. The data communication between different
containers is managed by Vizier Core. The searching proce-
dure follows exactly the workflow defined in Section 2.

Consider EnvelopeNet [10] as an example of non-standard
NAS algorithm . In EnvelopeNet, the neural networks are
updated by pruning and expanding EnvelopeCells, which are
convolution blocks connected in parallel. And these mod-
ification decisions are based on feature statistics instead
of validation accuracy. The Suggestion and training con-
tainers will be pre-built so the user only needs to specify
the structure of EnvelopeCells and other necessary param-
eters in StudyJob yaml file. In each iteration, Vizier Core
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Figure 2: Design of Katib as a general AutoML system

Manager first requests one or more modification decisions
from Suggestion and sends them to ModelManager. Then
ModelManager calculates the current architectures, compiles
the models into runnable objects, and sends them to Trials,
which will carry out a truncated training process. Once fin-
ished, a MetricsCollector is spawned to parse feature
statistics from the training logs. Finally, this information is
fed back to Suggestion via the Vizier Core and a new it-
eration starts. During the process, all the model topologies
and metrics are stored in a database and presented to the user.
Katib is scalable. The controller can spawn multiple paral-
lel Trials in each iteration to accelerate the search. These
service components can be shared globally among all the
users.

The initial version provides hyper-parameter tuning with
Bayesian optimization [19], Hyperband [12], grid search and
neural architecture search with reinforcement learning ( [23]).
The user can also deploy customized tasks by creating her
own algorithm for the Suggestion and the training container
for each Trial. We will add more algorithms such as En-
velopeNet [10] and integrate the support for advanced accel-
eration techniques such as parameter sharing [16].

4 Conclusions
This paper presents Katib, a distributed general AutoML sys-
tem based on Kubernetes. The key idea is to abstract Au-
toML algorithms into functionally isolated components and
containerize each component as a micro-service. With this
extendable and scalable design, Katib can be a powerful tool
for both advancing machine learning research and delivering
turnkey AI solutions for enterprise users.
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Abstract
With the proliferation of machine learning (ML) libraries and
frameworks, and the programming languages that they use,
along with operations of data loading, transformation, prepa-
ration and mining, ML model development is becoming a
daunting task. Furthermore, with a plethora of cloud-based
ML model development platforms, heterogeneity in hardware,
increased focus on exploiting edge computing resources for
low-latency prediction serving and often a lack of a complete
understanding of resources required to execute ML work-
flows efficiently, ML model deployment demands expertise
for managing the lifecycle of ML workflows efficiently and
with minimal cost. To address these challenges, we propose
an end-to-end data analytics, a serverless platform called Stra-
tum. Stratum can deploy, schedule and dynamically manage
data ingestion tools, live streaming apps, batch analytics tools,
ML-as-a-service (for inference jobs), and visualization tools
across the cloud-fog-edge spectrum. This paper describes the
Stratum architecture highlighting the problems it resolves.

1 Introduction
With the increasing availability of data from a variety of
sources, and significant improvements in hardware and net-
works that make Big Data computing easier and affordable,
numerous machine learning (ML) libraries and frameworks
(e.g., TensorFlow, Scikit Learn, PyTorch) have been designed
in the recent past for predictive analytics. Video analysis,
Object detection, Speech Recognition, Autonomous cars, Au-
tomated traffic signals, industrial robotics are examples of the
many real-life applications that demand ML solutions as a
part of their live stream analytics or in-depth batch analytics
pipeline. However, writing code for data loading, transforma-
tion and pre-processing, and choosing the right ML algorithm
for training the data and then evaluating the model and tun-
ing the hyperparameters requires expertise. The significant
promise of using predictive analytics to address a variety of
problems of societal and environmental importance [3, 10]

∗These authors contributed equally

requires that ML model development be accessible even to
novice users.

Further, there is substantial hype, particularly, with the use
of hardware resources (e.g., GPUs, TPUs, FPGAs) along with
cloud-offered infrastructure services. Dealing with this het-
erogeneity demands expertise in choosing the right hardware
configuration that can enhance performance and minimize
cost [11, 12], which is generally lacking in ML developers.

Consequently, the requirements for lifecycle management
of predictive analytics are twofold:
1. Rapid ML model development framework, where the

goal is to aid ML algorithm developers to build ML mod-
els using higher-level abstractions [8].

2. Rapid ML model deployment framework, where the goal
is to aid developers to deploy and integrate the trained
models for analytics on the target hardware and relieve the
deployer from having to figure out the right configuration
for their ML workflows on the infrastructure [4].

To that end, we propose a framework called Stratum, which
addresses the development, deployment, and management
lifecycle challenges of data analytics in a heterogeneous dis-
tributed environment across the cloud-fog-edge spectrum. In
the rest of this paper, we present the vision behind Stratum,
its key features and architectural details in Section 2, and
application areas where Stratum will be useful.

2 Stratum Vision and Architecture
Figure 1 depicts the general architecture of how an analyt-
ics application can be deployed using Stratum using Model
Driven Engineering [5]. We motivate an edge-cloud analytics
use case scenario with a smart traffic management system.
Traffic cameras collect traffic videos all the time, and rather
than sending all the videos to the cloud, edge devices inte-
grated with image recognition capabilities can procure useful
insights such as traffic volume, speeding cars and traffic inci-
dents. Based on data collected over a period of time, the traffic
patterns and heavy traffic periods can be learned using batch
analytics, which is a computationally intensive process that
usually executes in the cloud. Finally, the intelligent traffic
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control system typically resides in the fog nodes for real-time
needs to dynamically adjust the signal timing of traffic lights
based on the learned ML model and by analyzing real-time
data using live analytics.

The Stratum deployment engine can deploy data ingestion
tools, stream processing tools, batch analytics tool, machine
learning platform, and framework on the target machine (bare
metal and virtualized environments) as required. At the heart
of Stratum, there is a domain-specific modeling language
(DSML) that provides ML developers and deployers a user-
interface with higher-level abstractions.
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Figure 1: Generalized Representation of Applications Archi-
tecture in Stratum Metamodel

Using the DSML, the ML developer can create and evaluate
their model using existing ML libraries and frameworks as
shown in Figure. 2. Based on the user-defined evaluation
strategy, Stratum can select the best model by evaluating a
series of user-built models. Stratum can distribute each ML
model on separate resources to speed up the training and
evaluation phase. Moreover, a Jupyter notebook environment
can be attached to our framework so that the auto-generated
code by the Stratum DSML can be verified and modified by
the expert user if needed.
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Figure 2: The user-defined hierarchical model (Blocks A and
B) of ML model development framework in WebGME), the
metamodel (partial) of Stratum (Block C), autogeneration of
the ML code for subsequent deployment and execution (Block
D), and performance monitoring tool (Block E).

Once the ML model is built and evaluated, the Stratum
framework can save and profile it. Stratum supports a plug-
gable architecture, so the user-supplied specifications are

parsed and transformed into deployment-level infrastructure-
as-code [5–7]. Then the user’s ML workflows are deployed
on the appropriate machines across cloud-fog-edge, and Stra-
tum’s serverless execution platform allocates the necessary
resources. A resource monitoring framework [1, 2] within
Stratum keeps track of resource utilization and is responsible
for triggering actions to elastically scale resources and migrate
tasks, as needed, to meet the ML workflow’s Quality of Ser-
vices (QoS). The modeling concepts in Stratum DSML and
code generation capabilities of the deployment/management
engine are designed using the Web Generic Modeling En-
vironment (WebGME) [9]. Both the DSML and engine are
extensible, modularized and reusable.

3 Key Features and Benefits of Stratum
Stratum has been designed with the following key require-
ments in mind and hence supports the following features:
1. Rapid Machine Learning (ML) model Development

Framework: The ML model development framework en-
ables fast and flexible deployment of state-of-the-art ML
capabilities. It provides a ML Service Encapsulation ap-
proach leveraging microservice and GPU-enabled con-
tainerization architecture and APIs abstracting common
ML libraries and frameworks. It provides an easy-to-use
scalable framework to build and evaluate ML models.

2. Rapid Machine Learning (ML) model Deployment Frame-
work: Stratum provides intuitive and higher-level abstrac-
tions to hide the lower-level complexity of infrastructure
deployment and management and provides an easy-to-use
web-interface for the end users. The DSML generates
“correct-by-construction” infrastructure code using con-
straint checkers before proceeding to actual deployment.

3. Support for ML Model Transfer: Stratum provides an
intelligent way to transfer the trained model on the target
machines (across the cloud-fog-edge spectrum) as an ML
module for inference. ML module can be placed on the
edge devices, or it can be placed on Cloud or Fog layer
for live or in-depth analysis of data, which depends on
user requirements and capacity analysis.

4. Extensibility and Reusability: Stratum is implemented in
a modularized way, and each module is easy to reuse due
to plug and play architecture. Similarly, new hardware
support can be fused to Stratum in a standardized manner.

Availability
Stratum and its associated tooling are available via Github
from https://github.com/doc-vu/Stratum.
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